

> Nowentes to
> Ube Ribraty
> of the

ETHMCLEAty of Joronto
以
Miss H.M.Armour

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

APPLETON＇S

DICTIONARY

OF

MACHINES．MECHANICS．ENGINE－WORK，

ENGINEERING．

illustrated witil four thotsayd exgrayings or wood．

$$
1 N T W O Y O L U M E S .
$$

VOI．II．

NEW NORK：

Extered, according to Act of Congress, in the year 1851, by
D. APPLETON \& CO.,

In the Clerk's (flice of the District Court of the Lnited States for the Southern District of Sew York.

Extered, according to Act of Congress, in the year 1868, by

1) APPLETON゙ \& CO.,

In the Clerli's Office of the District Court of the Enited States for the Southern District of New York.

A DICTIONARY

MACHINES, MECHANICS, ENGINE-WORK, AND ENGINEERING.

HACKLE or IIAX. A kind of comb or brush made of iron spikes; used for combing or pulling the fibres of wool or flax, so as to reduce them from a tangled to a smooth state.
IIADE. In mining, the underlay or inclination of the rein.
HALF-TLMBERED HOUSES, Buildings in whieh the fonndations nud principal supports were of stont timber, and the interstices of the fronts were fillel with plaster.

HALLIARDS. In navigation, the ropes or tackles usually employed to hoist or lower any sail.
H.13IMER. A well known carpenter's tol. Fig. 224.3 represents a modification known as Anderson's Patent Ifammer. In this hammer, the claw, as will be seen by the cut, extends to the handle and clasps it with a strong ring, which makes it impossible, in drawing nails, for the handle to give way, draw out, or become lovise. The face of the patent hammer will thus always remain true, it beiner kept at the same angle with the handle. Six different sizes are now made, weighing from half a pound to one and a half pounds.

HAMMER, stcam. James Nasmith's patent steam-hammer. Before proeveding to describe the principle, mode of action, and constructive details of the direct-action steam-hamuer, it may be proper to make a few remarks on the ordinary furge-bammers, so that the nature of the adsantages possessed by the
 steam-hammer may be more elearly understood.

In all forp-hammers previou-ly in use, the furce necessary to set them inte, "peration had to be tran-mitted in a very indirect manner,-for whether a water-wheel or stem-engine were the moving pewer, the requiste lifting and folling action of the hammer had to be produced ly the empleyment of rotatory motion, thus rendering necesiary the use of wheels, shafts, cans, nud other cumbrons details, which, tocrether with the apparatus requi-ite to comnect the various parts of the machinerse and wive due strength and solidity to the whole, not only cansed great outhy and sacrifice of valuable space, but nl-n occasioncel much las of power, ly reason of the very ci, -ntens mamer in which the force of the prime moving agent hat to travel ere it reached its final destination, and canc forth in blows from the forge hammer. Great inconvenience, alow, was found th result from having a con-iderable purtion of the Workine machinery cluse to the hammer, as therely a very serions impediment was onti red to the free execution of the work. And when we add to this very limited range in the chat fatl of and ordinary
 yery rapid ratio, with a monlerate increane in the diancter or depth of the work; mol when we take intij con-iakeration the fact that, in consegnence of the helve of the hammer working on a cente or joint. is face is parallel to that of the mavil only nt one garticular distance; and finally, when to this lint ot incons niences we add that in the ordinary forgelammer we pasesa mower or control ower the fore of ita hows, hut are compr lhed to make the bent we we can of them, whether they he mapted to on: purpee nt the time or otherwise, we timl inherent in the very prineiphe of such hammers, a comband
 for so great a length of times.
'This remark is most atrihingly applimalle in the case of thme forpobammers which rect ise the ir

other parpoee than to caure it to act in the same mamer as at first,-if we dispense with all this mawe of intermediate machinery, and simply invert the steam eylinder so as to bring its piston-rod out at the bottom of the cylinder, and attach it directly to a block of iron working in guides right over the anvie

face, we hall then lase ohtained all the grand essentials of a forge-hammer in its simplest and most slovisus, and, at the s.ame time, as experience hats demonstrated, in its most perfeet and efficient form. Sich is ihe Dirw-Action Stam-Hammer, ard such con-ilerations as the preceding led to the invention of this mathme.

Some idea of its efficiency in shingling puddled balls may be formed from the fact, that one of SC ewt., which has been for neaily two years in constint operation at the Gartness Works of the Jonkland Iron Company, in the West of Scotland, works off with perfect case the con-tant proluce of from 18 to 20 puddling turnaces. For this duty the steam-hammer is found to be peculiarly adapted, as it ean be made to act for the first few strokes as a squeezer, to brimy the puddled ball to a neat eubieal formz; after which it may be made to deal out upon it such energetic blows as secures the entire expul-iun of all cinder and wther non-metallic impurities, the abeence of which, to a greater or less extent, mainty determines the quality of wrought-iron. In short, in every process where either blows of the mot cnormous energy, or slight taps of the utmost gentleness are required, either continuously or in all grades of variation from the one extreme to the other, the steam-hammer oflers facilities which have never hitherto been obtained from any mechanical contrivance for such purposes.
Fig. 으 $4 t$ represents a side elevation of the steam-hammer, exhibited in full operation, the hammer bluck, value-reer, and other working parts being disposed in the positions which they ocenpy at the termination of is stroke. $\mathrm{Fi}-2.25 \mathrm{i}$; a general plan corresponeling to the above.

Fig. 2.246 is an end clevation, and Fig. 2947 a vertical transerse section of the machine.
lig. $2 \mathscr{2} 45$ is a sectional clevation of a portion of the machine, showing the positions of the hammerblock, valve-geer, and other working parts when the hammer is raised for a fresh stroke,
The framing of the steam-hammer consists of two strong east-iron standards A A, bolted and further secured by keys to a broad base-plate B B, embedded in the solid masonry forming part of the floor of the forge. The standards are surmounted, and their upper extremities united by a species of entabliture C , in which the steam-passages and valve-face are formed, and to the upper surfice of which the steam cylinder D is bolted. The piston-rod E is fitted to work vertically through a stuffing-box in the centre of this entablature, and its lower extremity is directly attached to the mass of east-iron F , fomming the hammer-block, which is guided to a strictly vertical and rectilinear course by being macke to work freely in planed guides formed on the interior surfaces of the standards A A. The hammer a itself is inserted into a dovetail reeess in the bottom of the block F , where it is retained by woden packing and iron wedges; while the anvil b is in a similar manner seeured to the anvil-block ${ }^{\prime}(t$, which is a mass of cast-iron of sueh weight as effectually to oppose, by its inertia, the momentum of the hammer, and prevent the force of the blows from being disipated.

Such are the main features of this machine; from which it will be at once understood that, if we can provide the means of rapidly raising the hammer-block to a sufficient elevation, and then as rapitly letting it fall down upon, and so give a blow to the work phaced upon the anvil, we have all that is requi-ite to produce a forge-hammer in its simplest, and, at the same time, its most powerful and perfeet form.

The duty above adserted to, of raising the hammer-bloek, is performed by the direet application of the elastic force of steam. For this purpose, the steam is let on to the machine by the steam-pipe 11 communicating with a neighboring high-presenre boiker; a throttle, or shut-ott valve c, inelosel within the valve-box I, being situated close to its junction with the main steam-valve chest J , and bronght within the control of the attendant workman by means of the rol and lever d d. The alternate admission of the stean into the cyfinder by the port f, and its escape therefrom by the passage q, and waste steam-pipe K, are regulated by means of the slide-vatee e, which may either be worked by hand, ur, through the intervention of the selfacting mechanism to be hereafter specified, by the action of the machine itself. The piston L, which is strongly constructed of malleable iron, and fitted with a simg!, packing ring, works steam-tight within the eytinder 1 ; and being direetly attached by the piston-roul E. to the hammer-bloek F , it will be obvious that, on the admission of steam of sufticient elastic forme beneath the piston, we are supplied with the means of raising the hammer-bluck to any required height within the range of the machine; while by opening the commmication between the under side of the piston and the external atmosphere, the action of gravity will be unimpeded, and the hammer will desecml upon the work phaced on the anvil, and discharge a blow upon it, energetic in proportion to the weight of the hammer-bloek, and the height from which it has fallen.

Amb as, by these simple means, there is mo practical inconvenience in supplying the power to raise a hammer-bleck of 5 or 6 tome weight to an chevation of 7 or 8 feet above the anvil, some idea may he formed of the vast energy of the blows given out hy such a mass of irom falling rapully throush so great as space, and di-chargime the rehole of ity momentum upon the work placed below in the musil to recoive it. In the eate of the old systom of forge or helve hammers, about one-third only of the total weight of the hammer was eflective, the other two third- restine on the pivet-standarts: so that, in this peint of view, the propertion between the blow of a stam-hammer and that of a holve-hammer is nearly $: 3$ to 1 in fivor of the former.

It will be wen, further, that the anvil-face and hammerfaee are at all times paralld to each other, whatever be the height or distance betwenn them. 'Ihe practical value and impontance of this props erty, which is inherent in the princele of the stem hammer, hat been duly appreciated by all ohm have hat experi- nee of the working of this mathene.

With a view th prevent any riak of the pinton striking the erlinder cover whon working to the matl,
 by having the cylandereower arewed down quite nir tight, no that as som as the pi-ton patace, in It-

Plan of Fig. 2944 on preceding page.

Avother point of constructive detail worthy of special notice is, the peculiar mode adopted fur con neeting the pistun-rod to the hammer-block. This is one of the most important details in the entire invention, and without which 1 practical success would have attended it. Had the piston rod been attached to the bammer in the ordinary mode of attaching pistons to the machinery of a steam-engine or such like, namely, by a cotter, or by screwing the rod into the hammer, or such other solid, unyielding mode, the effect of the blow or fall, at each stroke of the hammer, would have been that the piston-rod and piston (being composed of a considerable mass of material:) would hare themselves acted as a hammor, and would have diseharged their momentum upon the means of fastening, and this with such destructive etlect as to break through all such solicl, unyielding means of resistance, after a few blows.

This was foreseen from the first as an action to be prevented, and accordingly, in my uriginal drawing, already adverted to, a remedy was provided, which experience has proved to be entirely effectual.

This contrisance consists in placing, in a cylindrical recess formed in the body of the hammerblock, and under the knob i, on the end of the piston-rod, a series of pieces of hard wood, or other slightly elastic material, as in Fig. 2246. The effect of this arrangement is to allow the momentum of the piston and piston-rod to deposit itself in such a comparatively gradual manwer as to cause the concussion arising from the most severe and energetic blows of the hammer to have not the slightest evil effects on the piston and rod; it is, in fact, the very same expedient to which nature has had recourse for the purpose of obviating those umpleasant and destructive shocks and vibrations which we should experience at every step or stamp of the foot, had uo cartilage been provided between the joints of wur bones. It is surprising to observe by how senall an amount of elasticity, from the employment of such compressible material, the evil eflect of violent shoeks may be removed. The connection of the piston-rod and hammer-bluck is secured by means of the two keys $k k$, driven very firmly above the knob or button j, a layer or two of the elastic material being interposed fur the purpose of neutralizing any shock in the contrary direction.

We shall now proceed to describe the mechamism by which the leight of the fall of the h:m mer, and consequent intersity of the blow, may be modified according to circum-tances, and the anachine made perfectly self-acting.

The regui-ite alternatime motion of the ste:m valve e is produced in the following mamer:The valre-pindle l is prolonged upwards and attactsed to a small solis! pistom m, workiner within a short cylinder M, bolted to the main pteams cylinder D. A small portion of steams is supplied above the pi-ton m, by a slendom copper sube $~ थ$, commanicatine with the steam ratvechent J; b_{g} this arrangement it will hx^{2} sewh that, undese conntracted by some superior foree, the proseme of the stran uper the phan on will
 in which proition the oteramport fo foll opron.
 of the hammer itself; for, lig means of the trappet N, (which is bolted to the hammer black.)
 conneng into shiditer cantact, wheng the latter is

valse ϵ is raised, thus cutting off all further ingress of steam under the piston, and almost at the same instant permitting the encape of that which had served to raise the hammer. By this simple contrivance the upward motion of the hammer is made the agent for its own control in that respect. By comparing the relative positions of the parts referred to, as exhibited in Firs. 2244 and 2.45, the nature of the motion above de-cribed will be at once most fully understood. Tro obviate the injurious effects on the :hock of the tappet N against the lever O, a comection is provided at p, on a similar prineiple to that formerly described in reference to the connection of the piston-rod and the hammer-block; and in order to restrict the downward travel of the valve to the proper point, a check or buffer-box S is prosideal, con-isting of a small cylinder bolted firmly to the framing of the machine, within which a circular nut, serewed on the lower end of the rod I', works as a piston, a few leather washers being interposec between the latter and the close or upper end of the cylinder.

It may be here remarked, that it is by no means necessary to continue the admission of steam under the fiston ontil the termination of the upward stroke, or lift of the hammer, seeing that the velocity which the hammer-block has aequired in its upward motion makes it continue to ascend after the further ingress of the steam has been arrested. This circumstance is a source of considerable economy of steam, as we have by such action (as well as by that due to the expansive energy of the steam) an effect as to height of lift of the hammer, greater than that which is due to the actual expenditure of stean at its original pressure. It is worthy of remark, also, that as the over-running action above alluded to will necessarily increase in proportion to the velocity of aseent of the hammer-block, this circumstance will, to a considerable extent, compensate for the increased expenditure of steam due to that increased velocity.

From the above description it will be obvious, that the lift of the hammer, and consequent inten-ity of the blows, depends simply upon the position of the lever O, in relation to that of the hammer-block when at its lowest point. "Therefore, if we can provide the means of altering the distance between these tro points, we shall have it in our power to modify permanently the force of the blows to any required extent within the range of the machine. This condition is most completely satisfied by the arrangement of mechanism employed by me, and which is clearly represented in the figures.

The rod P which conveys the action of the lever O to the valve-lever R , is serewed throughout the greater part of its length, and is so adjusted in its bearings, as to be susecptible of rotatory as well as vertical motion. This motion of rotation is imparted to it by means of a handle fixed to a short axis, working in a bracket T bolted to the framing, and actuating a pair of small bevel-wheels $q \%$. The nut throurh which the serew works forms the point of attachment between the rod P and the lever O, the conncetion being effected by means of a short intermediate rod for the sake of insuring parallelism of motion. A pair of small spur-wheels $r r$, (through the first of which the rod P works by means of a sunk feather, serve to transmit the angular motion of the rod P to a similar screwed-rod U , situated parallel to and at a short distance from the former; the nut of the screw U forms the fulerum or centre of motion of the lever O, and the pitch of the threads of both serews being equal, though formed in contrary directions to each other, it is obvious that, on turning the handle, the lever O and all its appendages will be simultaneously raised or depressed, and consequently the lift of the hammer regulated to any required extent, and its amount altered with the utmost ease and precision. The pin which forms the centre of motion of the lever O is protected and secured from lateral strains by the east-iron guides V and W , seen most distinetly in the sectional plan, Fig. 2245.

A most essential part of the self-acting geer remains yet to be noticed. It is obvious that, were no provision made for the reteation of the steam-valve in the position into which it is thrown by the upward motion of the hammer-block, the latter would not be permitted to have its due effect in the accomplishment of its work; for, as soon as it descended so far as to relieve the end of the lever 0 from enntact with the tappet N, the ralve would resume the position into which it is constantly solicited by the action of the steam-spring at M, and the descent of the blow would be impeded by the return of the steam into the cylinder, before the hammer had completed its fall. To obviate this inconvenience, a simple but mont effectual contrivance has been applied. Towards the lower extremity of the valveserew I' a shoulder is formed, again-t which a short lever x, called the trigger, is constantly pressed by the spring x, so that when the rod P is depressed by the action of the lever O, it is arrested by the tiererer and retained in that position until the blow has been struck. This delicate and most important part of the mechanism is wery earefully constructed, the point of the trigger, and the shoulder against which it aets, being formed ofsteel, and hardened to resist wear.

Tor releave the valve-screw from the trigger, and so permit the return of the valve into the position requisite for effecting a fresh stroke, the following mechanism has been adopted: on the front of the hammer-lhoch, Firs. 2244 and 22.18 , a lever X , called the lateh-lever, is fitted to work freely on a pin passing through the body of the hammer-block. That portion of the lateh-lever which is most remote from the valse-geer is considerably heavier than the oppoite end, and is constantly pressed upwards by means of a spring. The lighter end is lrought inte contact with a long bar $s s$, called the parallel bine, the extremities of which are suspended upon two small bell-eranks $t t$, whose other arms are con tected by means of a slender rod u, Firg 22 47 , forming a species of parallel motion, for the purpose of alapting this geer to come into efficient operation, at whatever point in the range of the hammer its Whw may be arrested. A small eomecting-rod ${ }^{2}$, between the lower bell-crank and a short lever on the axis of the trigger u, completes this part of the mechanism.

The action of this geer is of a very peculiar nature, and is admirably adipted to fulfil the object intruded. At the intant the hammer gives a blow to the work upon the ansil, the effect of the concusfion is to cause the momentum of the heary end of the lever \mathcal{X} to orercome the npward pressure of the spring, and thereby to protrude its opponite end again-t the edse of the parallel bar s, which motion, thoush but slight in amont, is yet adequate, through the arrangenents above deseribed, to throw back the triguer from contact with the valve-screw, anl leave the latter free to obey the impulse of the steamff wins in the readjustment of the valse into its original porition.

These various mutements, which have taken so lung to describe, are all performed in less thata half a second, and consequently the action of the hamumer is proportionally rapid.
The construction of the self-actiner geer is so arranged as to admit of advantage being taken, when sircumstances render it desirable, of the very action to obviate which the trigger 20 is introdued. Whan it is desired to strike a gentle blow, such as is frequently required during partieular stages in the prosress of a piece of work, it is not requisite, for this purpuse, to change the pusition of the valve-lever U. All that has to be done is to hold back the point of the trigerer ie, by it- handle $\%$; this permits the ralse to reopen and let the steam in under the piston I, at the instant the tappet $\begin{gathered}\text { F hate fallen away }\end{gathered}$ from contact with the lever (). The effect of this is, that a quantity of stem is admitted into the eylinder under the piston, which serves as a custion, by which the violent fall of the hammer is arrested, and its momentum modified to any extent, or at the pleasure of the person in chame of the hambles. The handle z, is for the purpose of placing the steam-valse alzo under his control, and, for his further consenience in the management of the hammer, a platform Y and hame rail $\%$ are erected against the framing of the machine.

A modification of the frame of this machine has been made at the Washingten Nary Yard, one support only being used, by which means aceess is had to the amvil on all sides extept that oceuphed by the supprort.

HAMDIER, Tilt or Trip. Sce Tilitis.

HALVESTER. An agricultural machine for reaping and gathering ing grain, much used in the western country: There are many furms of them, known in this part of the country ats hearens, which see.
HAT-MAKING embraces two distinct kinds of manufacture, felted and covered hats; the covering of the latter being sometimes silk, and at other times cotton.

Felted lats comprehend two clases, differing chiefly in the materials wed in making, the process being nearly identical. The lower class is marked by inferior ingredients, unmixed with beaver, and embraces wool, plated, and short-nap hats.

Wool hats are made entirely of coarse native wool and hair stiffened with ghe. Plules have a nup, or pile rather finer than their boly, and are sometimes water-proff stiflened. Short naps are distin-grui-hed from plates by additional kinds of wool, viz. hare's back, seal, neuter, mu=øbith, (Muscoty cat,: and are all water-proof stiflened.

The second class may be said to comprehend two orders, called stuff and beaver hats. The first includes mottled and stuff bodies. The latter term is not used generally, as all stuffis are umderstood to be of this sort when mottled is not expresed. Mottled bodies are made chietly of tine wool, and inferion rabbit down or coney wool. Stuff bodies consist of the best hare, Saxony, and red worls, mixed with Cashmere hair and silk. Stuff hats are nayped, that is, covered with pile of mixed scal, neuter, hareback, inferior beaver, and mu*quash. Leaver huts are, or ought to be, napped with beaver only; the lower priced qualities with brown wooms taken from the back; the more valuable kinds with check and white wooms, being the finest parts of the fur found on the belly and cheeks of the beaver.

The apparatus and terms used in making felted hats, which it is necessary to describe brietly, are the bow, basket, hurdle, hattery, and planks.
The bow is about six feet long, u-ually made of ash, thick enough not to be elastic. The hamdle io called the stang. The buestring is a strong catgnt cord tensely fistened.

The hurelle is a fixed bench, with three enclosing sides, to prevent the stuff being fittered ofl in bowing.

The basket is of light wieker-work, about twenty by twenty-two inches in size.
The battery consists of the kettle and the planks. which are inclined planes, usually eight in mumber, one only being appropriated to each workman. The half of each plank next the kettle is lead, the upper half is mahorgany.
The first process in hat-making is bowing the stuff or furs, which are weryhed out to a propurionate seale, and laid on the hurdle, immediately under the bow, which is su-pemded by a puller: The how is held firmly with the left hand, rather towards the breechecml, not edgewiee, but on it sidn, with the -tring in contact with the stulf, the clotted and adherent portions of which are separated intu single fibres and attain a loose, thocky, mixed condition by the contimued viluation of the bow ring, caused by a very raphed succession of tonches with the bow-stick. It is then divided as nearly as pr-sible, and whe-half latidable, whilst the other is again bowed. In this second operation, partly ly the lwwing, but chienly by the , futhering, or patting we of the hasket, the stuff is lochery mattel intu at condeal tirure, nbout tifty ly thirty-w inches, called a but. In this fommation care is taken to work abme twothirds of the wonls domis wwards what is intended for the brim, whid beine eflected, greater density is indued bey gentle promer with the hasket. It is thon coverend with a weoti-h linem cloth, upon which is lat the harde ming skim.

 freely presed with the hatal, and hat a-ide. By this proces, called basoming, from at metal plate of

 is remenver th the plank or lattery-form.

cool and drain, when it is unfolded, rolled gently with a pin tapering towards the ends like a liqnon horse, turned, and worked with in every direction, to toughen, shrink, and at the same time prevect adhesion of its sides. Stoppiag or thickening the thit, spots which now appear on looking through the body; is carefully performed, by additional stuff daubed on by successive supplies of the hot liquor from a brush frequently dipperl into the kettle, until the body be shrunk sufficiently, (about one-half,) and thoroughly equalized. When quite dried, stiffening is performed with a brush dipped into a glutinous pulpy compoition, and rubbed into the body; the surfice intended for the inside having much more imposed than the outer, while the brim is made to absorb, many times the quantity applied to any wher part. 'This viscous matter contains pronfing, or those ingredients which render the hat waterproof.

Un being again dried, the borly is ready to be corerel, and is once more taken to the battery. The first cover of beaver or napping, which has been previously bowed, is equally strewed on the body, and patted upon with the brush charged with the hot liquor, until incorporated; the cut ends only being the points which naturally intrude. Here the body is put into a coarse hair-cloth dipped and rolled in the hot liquor, until the beaver is quite worked in. This is called rolling off, or rufting. A stripe for the brim round the edge of the inside, is treated in like manner, and is thus prepared for the second cover, which is applied and inworked in like mamer; the rolling, de., being continued until the whole has become incorporated, and a clean, regular, close, and well-felted hood is the result. The dry hood, atter having the nap beat up and freed, is clipped to the length which may be thought best, by means of common shears. A clipping machine, invented nearly four years ago in Scotland, is now very Enerally preferred, and doubtless will soon everywhere supersede the ordinary process; much greater regularity, speed, and certainty being secured by it. When the nap is thus disposed of, the hood is soaked in the battery kettle, and then drawn down on a block to the size and shape wanted, firmly tied at the bottom with a cord, aromad which the brim is left in a frilled condition.

Dyeing is the next step. A suit, or six dozen, are put into the dye-kettle at a time, all on the crowablocks already mentioned, and allowed to remain three-quarters of an hour in the liquor, which is kept as near as possible one degree below the boiling point. These being taken out and set in the yard to cool, another suit is introduced for a like period, and the various suits are so treated at least twelve times in successive order. Bach of the first four introgressions of every suit is accompanied by about seven pounds of copperas, and two pounds of verdigris. The body is then washed and brushed out in Whange: of hot water, until no coloring can be recognized in it. When thes thoroughly cleansed, it is steamed on a block shaped as the hat is wished to be when complete; and in the finishing shop by neary (21 -pound) heated irons and moisture, the frilled brim is shrunk until rendered quite level, the nap) gently raised all over with a fine wire card, and brushed and ironed smooth in the uniform directions. The tip, a thin lath-sheet, is then fitted and stuck to the inside of the crown, and robbined or -ecured all round the edges by stripes of prepared paper. When thas got down, it is sent to the picker, who, with tweezers, extracts the kemps, or "gray hairs." which are a few of those thick fibres peculiar to the fur of amphibious animals, that have eccaped the search of the machine used in blowing the beaver, so as to separate them from its fine parts. This being carefully accomplished, it is transferred to the fini-her, who, with a plush cushion, a brush, and hot iron, imparts to it that bright sleeky lustre. The shaper then rounds the brim with a kuife and notched segment to the breadth wanted; and shapes it in raried styles by means of a hot iron and damp, with about a foot length of rope, wer which the curl is laid. The trimming is next done, when the tipper-off corrects the twiste, emouths the ruffed nap caused by trimming, and papers it up with tissuc and cartridge, which completes it for the retailer:

Sill: hats are made upon bodies of wool, stuff, willow, straw, and Leghorn plait, and cambric and worllen cloth, although chiefly on felted wool boolies, which are dipped in glue size, wrung out, blocked, and dried. The tip is then fitted and robbined, when a flour-box, charged with powdered shell-lac and rowin in like quantities, is used to strew equally its grainy mixture on the external surface of the shell, -o) calletl from being the frame-work. This is burned in by hot irons, first on the top, which passes through to the lath-tip within; then on the upper brim, the sides, and, finally, the under brim. When thi- i- hardened it is conted with thick ordinary flour-paste, which is dried, and the shell again blocked and smouthed; then once more glue-sized outside, dried, and varnithed, which prepares it for covering. The -hay for the sides is cut across the web, in a ratio of obliquity increased by inferiority. This cross part is sown to a circular piece for the crown, whilst the brims are singly patched together. These beparations being completed, the top-side or upper brim is first stweds, then the crown, next the sides, and, finally. the under brim. Siticking is effected simply by the heat of the iron passing through the w, wing and melting the varni-led surface. In the finish of this manufacture, the most particular part i- the sideseram, which is di-posed of thus: The selvidge end is cut perpendicularly from top to brim, In a charpencel pallet-knife, the map having been previously brushed clear off its edge. The other seli idlec end is then stuck and cut with the utmost nicety, in close parallel with the other. It is then fini-hed wery much in the same maner as a beaver hat.

The above-nomioned methol of making hat-bories is now motly superseded in this part of the comery by the adoption of machinery, the manal habor being confined to the getting up the hat, and is a di-tinct husiness; the hatter fur the most part purchaing his hat-bedies far cheaper than he can nake them.

The machinery is very simple. The fur or hair of which the felt is to be made, after being cleaned and lightly beat mp, ly pasintr thromb a kind of wimowing machine, is delivered to a boy, who preads the fir very lightly and in -hall fuatutites on an endless web before him, which, passing between rollers, carries the fur into the berly of the machine, where it encounters a cylindrical brush in rapid motion, which separates the hair or fur eompletely, throwing it towards a contracted opening in the fides of the cylinder case. This openine, abont on inch wile at top and nearly three inches at lottom, is in height cqual to the cone of the hat-body: Immediately in fromt, and close to this opening:
is placed a perforated copper cone，the perforations so small，and in such number，as almost to renden the surface of the cone，from base to aper，a wire－gauze surface．This cone is open at the bottom and placed on an opening equal to its base，which opening is in communication with a fan or blast，so ar－ ranged as to exhaust the interior，or＂suck，＂so to speak，the air through the meshes of the copper cone． The hair or fur in its divided state．thrown towards this opening in the cylinder case，is brought under the influence of the powerful dranglit towards and through the cone；the latter at the same time slowly revolving on its axis，exposes all its sides to the opening，and the hair is driven against it with such forci－ as to adhere for the time，and receive and retain on all sides，as it revolves，the fine particles of hair as they are drawn from the cone．In the space of half a minute a dry lat－body is formed on the copper cone；this is immediately enveloped by a wetted felt．and the whole immediately removel，and its place supplied by a fresh copper while the first is being stripped of its now wet felt．The whole operation is pertormed with wondertin dispatch，the hat－body resulting from it being exceedingly light and uniform in texture，and requires but little labor before it is in condition to be tran－ferrel to the hands of the hatter for working up．In this mamer any form of felt may bo made．The opening in the cylinder case being of flexible metal，admits of adjustment to the wants of the particular firm of the felt to be constructed．The application of this principle is universal in the manutacture of felt．

HEART－WHEEL．A cam for converting a uniform circular into a unifirm rectilinear motion．
HEAT．Ieat in the ordinary application of the word，implies the sensation expericnced upontouching a body hotter or of a higher temperature．Caloric，the principle or cause of the sensation of heat．On touch－ ing a hot body，caloric passes from it，and excites the feeling of warmth：when we tonch a body haring a lower temperature than our hand，caloric passes from the hand to it，and thus arises the sensation of cold．

Caloric is usually treated of as if at were a material substance；but，like light and electricity，its true nature has yet to be determined．

Caloric passes through different bodies with different clegrees of yelocity．This has led to the division of bodies into conduetors and non－conduetors of caloric：the former includes such bodies as metals which allow caloric to pass freely through their substance，and the latter comprises those that do not give an easy passage to it，such as stones，glase，wood，charcoal，de．

Table of the relutive Conducting Powcr of diffirent Bodies．

Gold	1000	Platinum	981
Silyer	973	Copper．	898
Iron	374	Zinc	363
Tin	30.4	Lead	180
Marble	24	Porcelain	12．2
Fire－brick		Fire－clay	114
With H⿰uter as the Standurd．			
Wrater	．． 10	Elm	． 32
Pine	．． 39	Aslı．	31
Lime	．． 39	Apple．	－
Oak．	33	Elony．	2
Felative C＇onducting Power of difirerent Substances compared with each other．			
Hares＇fur	1.315	Cotton	1.046
Eider－down	1305	Lint	1－6゙）
Beavers＇fur	$1 \because 96$	Charcoal	－937
Raw silk		Ashes（wood）	927
Wool	$1 \cdot 118$	Sewing silk ．．	－ 117
Lamp－black	$1 \cdot 117$	dir	－5it
Pelative Conducting Power of Fluild．			
Mercury		l＇roof spirit	312
Water	$\cdot 357$	Alcuhol（pure）	－282

IAadiation of ealoric－When heated bodies are exposed to the air，they lose pertions of their heath by projection in right lines into space，from all parts of their surface．
lodies which radiate heat best，ab－orb it best．
liadiation is affected by the mature of the surface of the borly；thus，back and rough surfoee rabliate and absurb more lieat tham light ind poli－hed surfaces．

Writing praper ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 100 scrapcel ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16
（il：sヶ．．．！i1）lee ．．s．．．．

Iritht lead ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1: 1$ Polisheil iron ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1:$

 mont caloric，reflecte the lant，aml riee veraci．

Latent culuric is that which is insemible to the tench，or incapable of twe in deterted loy the themom－

would raise the temperature of the same weight of water 140°; and an equal quantity of heat is sel free from water when it assumes the solid form.
If $5 \frac{1}{2} \mathrm{lbs}$, of water, at the temperature of 39°, be placed in a vessel communicating with another one (in whieh water is kept constantly boiling at the temperature of 212°,) until the former reaches this temperature of the latter quantity, then let it be weighed, and it will be found to weigh $6 \frac{1}{2} \mathrm{lbs}$., showing that 1 lb . of water has been received in the form of steam through the communication, and reconverted into water by the lower temperature in the vessel.
wiv this pound of water, receired in the form of steam, had, when in that form, a temperature of 212 . It is now converted into the liquid form, and still retains the same temperature of 212°, but it has caused $5 \frac{1}{2} \mathrm{lbs}$. of water to rise from the temperature of 32° to 212°, and this without losing any temperature of itself. It follows, then, that in returning to the liquid state, it has parted with $5 \frac{1}{2}$ times the number of degrees of temperature between 32° and 212°, which are equal 180°, and $180^{\circ} \times 5 \frac{1}{2}=$ 990°. Now this heat was combined with the steam; but as it was then not sensible to a thermometer, it was called Latent.
It is manifest, then, that a pound of water, in passing from a liquid at 212° to steam at 212°, receives as much heat as would be sufficient to raise it through 990 thermometric degrees, if that heat, instead of becoming latent, had been sensible:

The sum of the sensiblc and latent leat of stcan is always the same at any one temperature; thus, $990^{\circ}+212^{\circ}=1202^{\circ}$.
If to a pound of newly fallen snow were added a pound of water at 172°, the snow would be melted, and 32° will be the resulting temperature, 138° of heat becoming latent in the melted snow.

Latent Ifeat of various Substanees.

	Fluids.	Vapors.	
Ice 140°	Steam.	990°
Sulphur	. 144	Vinegar	875
Lead	. 162	Ammonia	. 860
Beeswax.	. 175	Alcohol.	442
Zinc..... 493	Ether	302

Sonsible caloric is free and uncombined, passing from one substance to another, affecting the senses in its passage, determining the height of the thermometer, and giving rise to all the results which are attributed to this active principle. See Steam.

It is frequently desirable to convert the degrees of heat, as indicated by one thermometer, into its equivalent as denoted by another. The following rules will serve this purpose for the thermometers in general use:-

To reduce the degrees of a Fahrenheit thermometer to those of Reaumur and of the centigrade; the zero of the Reaumur scale being at the freezing point, and 80° at the boiling point, whilst the zero of the centigrade is at the freezing point, and 100° at the boiling. See Tuermometer.

Fuhrenheit to Reammur.-Pule.-Multiply the number of degrees above or below the freezing point by 4 , and divide by 9 .

$$
\begin{array}{r}
\text { Thus, } 212^{\circ}-32=180 \times 4=720 \div 9=80, \text { Ans. } \\
+24^{\circ}-32=8 \times 4=32 \div 9=3 \cdot 5 \text {, Ans. }
\end{array}
$$

or 3.5 belcar zero.
Fahrenheit to centigrade.-Rule.-Multiply the number of degrees above or below the freezing point by 5 , and divide by 9 .

$$
\text { Thus, } 212^{\circ}-32=180 \times 5=900 \div 9=100, \text { Ans. }
$$

Or multiply the degrees of Fahrenheit by 444 for reducing them to Reaumur, and by 555 for reducing them to centigrade.

Medium lecat of the globe is placed at 50°; at the torrid zone, 75°; at moderate climates, 50°; near the polar regions, 36°.
The extremes of natural heat are from 70° to 120°; of artificial heat, from 91° to $36,000^{\circ}$.
Evaporation proluces cold, becanse caloric must be absorbed in the formation of vapor, a large quantity of it pasciug from a sensibio to a latent state, the eapacity for heat of the vapor formed being greater than that of the fluid from which it proceeds.

Evaporation proceeds only from the surface of the fluids, and therefore, other things equal, must depend upon the extent of surface exposel.
When a licquid is covered by a stratum of dry air, evaporation is rapid, even when the temperature is low.

Table of Effects upon Bodics by Heat.

	Fahreuheit.		Fatremeit
Cast-iron, thoroughly smelt	2754°	Lead, melts .	$594{ }^{\text {c }}$
Fine gold, melt	1953	Bismuth, melts	476
Finz silver, mel	1850	Tin, melts.	421
Copper, melts	2160	Tin and bismuth, equal parts, melt........	283
Prass, melts.	1900	'Tin 3 parts, bismuth 5, and lead 2, melt..	212
Lied heat, visible by day	107	Alcohol, boils	174
Iron, red-hot in twilight	854	Ether, boils.	98
Common fire.	790	Ifuman blood (heat of)	98
Ironi, bricht-red in the dark	752	Strong wines, frceze.	20
Zine, melts	T10	Brandy, freezes . .	,
Quicksilver, boils	630	lercury, melts.	-. 98

Wedgenood's zero is 1077° of Fahrenheit, and each of his degrees is equal to 150° of Fahrenheit. Expansion of Solids.
At 212°, the length of the bar at 32° cun-idered as $1 \cdot 0000000$.

To find the expansion in surfice or in volume, it must be remembered that each dimension of a solid experiences a similar proportional expansion.

Tuble of the Expansion of Air by Mcat.-By Mr. Diltos.

Mclting Point of Alloys.

Boiling points.-The boiling point of water, from 27 to 31 inches of the mercurial column, varies 165° for every inch, being at 30 inches 212^{3}; and on this variation is founded the apparatus for deter. mining altitudes.

Comparative Ileat from verious I'uels.

1 lb . of tolerably grod conl will raise the temperature of 60 lbs of water from 320 to 2120 .
1 lb . of kiln or pertectly dried wood will effect the same on 85 lls .
1 lb . of wool simply dried in the air " " 26 lbs
1 ll . charcual " " 79 lb .
Turf of good quality yields as much heat for equal weights as wood, and the heat it gives out by radiation whil-t burning has been con-idered even greater than that of wood.

For the varion methots of applying heat to the wamine of buiklines, see artide Wamata,
111:DIDLES, Machine for making Heavers'. This mathme is the invention of Mr. Niswame Voger, of Lowell, Ma-siachusetts.
'The object of the mathine is to make weavers' heddes from the fhrean, castine the loop by baidine instead of kotting, and performing triple the anount of work, and betce than can be done by hand. A patent is also secured for the peculiar eye of the hedde, so that both machine and its results are protecterl.
 beams. A A is the iron framing. Ware the driving and sate pulleys. (' is the here to seer and man:

 are for the purpose of comecting the shafte of the beans th be driven by the man shaft below. 'the number of reves to the foot in the hedelles cam he inereased or dimini-bed by the geering of then artall whents. K is a small hearing for the shaft of L , and d is the shaft with a sorew cut on part of it. 'Thes
 driven slowly by the small ging of whely at the right, the shaft J is wormed sluw h through its bear-

 The section views will explain the oprathen he ther in detanl.

 Wirg by whith the tathen that earry the mimithes are made to rewhes.
A is the heddle-beam. $B B B B$ are revolving spool-frames or tables. C represents the spool-spindles. a are slots in the spool-tables. Each table has six slots or spindle recesses, but only three are occupied at once with the spindles. As the tables revolve, three slots are occupied with spindles anc: three are emptr alternately, and an occupied slot in one is brought opposite to an empty recess in its

fellow-table, as seen in Fig. 2053. The tables B 13 constitute one pair, and the tabies B $2, \mathrm{~B} 3$, another, forming two distinct harness, one on each silc on two beams, but driven by the same geering. The rarn is put on the spindles C , and pasies through a hole in the top of the flyers D , or over a depression, Fig. 225, to hold it in its place, and then passes under c, a recurved wire, that has a perforated weight

$2 a$ at each end. The flyers pass through these holes, and the legs serve as guides to the weights. This is to take up the slack of the yarn. The spindles have each a groove in their lower parts, adapted to slide into the recesses of the tables when the recesses coincide. The platform E E has circular Avities for the lower ends of the spindles. FIF, Fig. 2252, are fast and loose pulleys to drive the
shaft G. A bevel-wheel II, on G, gives motion to the revolving spool-taoles by toothed wheels, as seen at Fig. 2255. The bevel-wheel I, Fig. 2252, gives motion to the heddle-beans by geering into J, cE the shaft K . This shaft carrics a worm-wheel, which geers into M to drive A. N is an cecentric on K 2233.

to vibrate g, a shipper, which shifts the spindles from one table to another; the epposite ends of g aperate on two pairs of tables. A connecting rod with N vibrates the shippers. N is connected with K , and turns with it by clutch-pins, and when these are not engaged the shafts turn without. N. ii, Fig. 2254, is a pin that passes through \bar{N}, projecting out above and below, nearly in contact with K . There

are two clutchepins on K, either of which may be hrought in contact with i, ne the wetntric whee is

clutch with the lever clutch-pin. On the wheel M are cams or lifting pieces $p p$, whinh, when they come i_{1} contact with the end of O, force it out and raise N, the eccentric, so as to engage with the upper clutch-pin at the required time, as will be understond by Fig. 2254. The axis of A is P , a serew ligg. 2052, tapped into the frame of the machine and moves A endwise as it revolves, to wind the heddles, as they are made spirally on the beams. q is the smooth axis of A, on which the beam slides, moved by the screw on the guide-rods r. Q Q are rods that may be inserted in grooves in A. The semi-diameter of A must be of the length of the heddles. After the number of heddles for a harnese have been made, grooved pieces may be slipped over Q and glued upon them to embrace the twisted strands, or any other mode may be adopted. The shipper connecting-rod h, (which looks like an n,) Figs. 2052 and 2953 , has a hinge-joint t, to allow it to le lifted from the shipper g. The small bevelwheel J , on the shaft K , is one-third of the diameter of the driving-wheels, when there are three spindles on the table, and therefore makes the changes of the spindles in the recesses in one revolution of the revolving spool-tables. If there were four spindles in the table, the wheel J would be one-fourth the diameter of the driving-wheel, $\mathbb{d e}$.

To explain its operation, Fig. 2251 exhibits a different arrangement of mechanical parts from the ses. tion tiews, but they are just the mechanical equivalents to accomplish the same thing. Heddle ez hamess making is the formation of eyes by two cords being knotted together. These eyes must be formed at regular distances on the harness. This machine forms two cords by B B, revolving and twisting the yarn on the three spindles, one by each table revolving, the cord winding at the same time as it is twisted on the beam 1 . Now to form four eyes on the beddles every revolution of the beam, look at Fig. 2.53. If the strands that make the two cords were interlocked at certain periods, eight times during the revolution of Λ, that four eyes would be formed by the strands of the two cords being thus at certain points braided into one another. This is the way this machine does its work, and this can be done by the forked lever in Fig. 2054 shifting the shipper, or by cams on the inside of the upper geer-wheel of Fig. 2.51. To make the spindles in c interlock to braid the eyes. The cams or clnteh operate the shipper t, so that instead of vibrating from side to side, as now seen in Fig. 2253, touching the spintles outside, it is (the shipper) stopped by the resting of the eccentric one-sisth of the revolution of the tables, and then it will be easily perceived that the shipper will take into the inside of the spindle e and throw it into the empty recess a of the other table, which coincides, thus interlocking the threads and braiding the two cords together into one, forming an eye of the heddle by braiding instead of knotting. It will be observed, tno, that the elutch can be changed by cams, to operate the shipper, to make as large or as many eres in a foot as may be desired; but the changing or passing of the rpindles from one table to another must be performed by the shipper twice for one eye, according to the length of the eye, and they are not shifted again until A has revolved the distance wanted to form the bace of a new eve for the harness.

MELIOTROPE lieflectimg Jantern, used by Major.J. D. Gnamay as mericlian marks for great distances, in 1811, while tracing the due north line from the monment at the source of the river St. Croix.

The lantern was constructed by Messro. Henry N. Hooper \& Co of Boston, under Maj. G.'s directions. It was similar in form to the P'arabolic lieflector Lantern, sometimes used in light-houses, but much emaller, so as to be portable.

The burner was of the argand character, with a cylindrical wiek, whose transverse seetion was halt an inch in diameter, supplied with oil in the ordinary mamer. This was placel in the focus of a paratonlie reflector, or paraboloid, of sheet-copper, lined inside with silver about $1-20 t h$ of an inch in thick ness, poli-hed very smooth and bright. The dimensions were as follows:

The instrument answered the purpose for which it was intended admirably well, and was of greal use in tracing the due north line. While it occupied the station at l'ark's Ilill, 15 feet above the surface of the ground, or 828 feet above the sea, in the latter part of September and carly part of October, 1841, the light from it was distinctly seen with the naked eye at night, when the weather was clear from Blue Hill, whose summit, where crossed by the meridian line, is 1071 feet above the sea, the intervening country averaging about 500 feet above the sea, and the stations being 36 miles apart. The light appeared to the naked eye, at that distance, as bright, and of about the same magnitude, as the planet Tenus.

The wick employed by Major G. was eonsiderably smaller than that usually made, even for parlor lamps; and to this cause is attributed, in a great measure, the perfection with which the parallel rays were transmitted from the reflecting parabolic surface, so as to make them visible at so great a distance. Though a greater quantity of light is generated by at larger wick, the portion of rays reflected in a direction parallel to the axis, and which alone come to the eye, is the smaller as the flame transceuds the focal limit. The size of wick most advantageons for use may easily be determined by experiment. The smaller is its transvere section, provided it is only large enough to escape being choked up by the charred particles, even one-third, or perhaps less, the further the light wouht be visible.

The heliotrope, which is employed in the day time, was made by order of Mr. Hassler, at the instrument shop of the coast survey office. It was a rectangular paralhlogram of good German plate-glass, 14 -iths by $11-5$ th inch in size, giving an area of reflecting surface of $2 \frac{1,18}{105}$ square inches. This also was seen at the distance of 36 miles.

IIELLK. A spiral curve. The cylindrical or screw helix is the curve lescribed upon the surface of a cylinder by a point revolving round it, and at the same time moving parallel to its axis by a certain invariable distance during each revolution.

Figs. 22.56 and 22.57 , to construet the helieal curve described by the point A upon a cylinder projected horizontally in the circle Λ^{\prime} $\mathrm{C}^{\prime} \mathrm{F}^{\prime}$, the pitch being represented by the line $A^{\prime} A^{3}$. Divide the piteh $A^{\prime} A^{3}$ into any number of equal parts, say cight ; and through each point of division, $1,2,3$, Sce., draw straighit lines parallel to the ground line. Then divide the circumference $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{F}^{\prime}$ into the same number of parts; the points of division $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{E}^{\prime}, \mathrm{F}^{\prime}$, \&c., will be the horizontal projections of the different positions of the given point during its motion round the cylinder. Thus, when the point is at B in the plan, its vertical projection will be the point of intersection B of the perpendicular drawn through B^{\prime} and the horizontal drawn throuch the first point of division. Also when the point arrives at C in the plan, its vertical projection is thas point C, where the perpendicular drawn from C^{\prime} euts the horizontal passing through the secome point of division, and so on for all the remaining points. The rurve A BC Fi Λ^{3} drawn through all the points thus obtained, is the helix required.
A helieal surfuce i meneruted by the revolution of a straight line round the axis of a cylinder; its outer end moving in a lielix, and the line itself tirming with the axis a constant and invariathle angle.

The conient helix difficts from the cylindrical one in that it is described on the surfine of a cone instewl of on that of a "ellinder; lat tho construction difliers but slightly from tho one beseribed. By following out the mane priniplea, helices may herepresented ns lying mion spheres or my uther surf. ed of revolution. In tho arta are to be femm num rons practical upplications of tho helieal curve, ns an wh athl madhine screws, geerb und staireates.

HEP'ThiUNi. i figure having seven erpal migles and siles.
Vir. 11.--

IIEXAEDRON, the Cube. One of the five remular or Platonic bodies, and so called from its having six faces. The square of the side or edge of a hexaedron is one-third of the square of the diameter of the cireumscribing sphere; and hence the diameter of a sphere is to the side of its inscribed hexaedron als $1^{\prime} 3$ to 1 .

IIEXAGON. A figure of six sides and angles. Angle at the centre $=60^{\circ}$; angle at the circumference $=120^{\circ}$: area to side, $1=2.5980762$; area to any side, $(S)=3^{2} \times 2.5980762$.

IIIGH-PRESSURE ENGINE. The simplest form of the steam engine is the non-condensing, or high-pressure engine. In this engine the condensing apparatus is dispensed with, and steam being admitted into the cylinder, at a high temperature, and consequently high pressure, and having acted or the piston, is allowed to escape into the open air. A part of the force of the steam is of course exrended in overcoming the pressure of the atmosphere, and it is only that portion of the steam's elastic force that exceeds 15 pounds to the square inch that is effective in moving the engine. The surplus pressure is usually from 30 to 40 pounds on the circular inch. See Stationary Exgines, and Exginez Varieties of.

HLNGE, Tafr's double-jointed hinge and door-spring, Figs. 2260 and 2261. This hinge is so constructed that it admits of the opening of the door, or gate, in either direction, and in combination with it is a spring connected by a chain with the casing, whereby the door is held close to it as well as made to close itself. Each hinge employed in this improvement may consist of four or more pieces, two of which are
2260.

side plates with knuckles attached thereto. The connecting plates with their knuckles are connected by pirots to those of the plates, and each counects the plate to the other, so that when the hinge is opened in the opposite direction the connecting plate changes sides and folds upon the plate, so that the linge oresents the same appearance in either position. .

IINGES. The joints on which doors, gates, \&c., turn.
HIP. The external angle formed by the meeting of the sloping sides of roofs which have their wallplates running in different directions.

HORN. See Anmil Matter dsed in the Arts.
HORN, machine for pressing. Horn, tortoise-shell, and many other animal substances, are capable of being softened by heat and moulded by pressure into any shape and with any design in the sharpest

and most delicate relief. A serew press has usually been employed for this purpose, but the one represented liv Fig. 2262, which is a section through its centre, is far superior.

A A is a box of cat-iron. B is a copper to coutain the hot water, and X is a grate for the fire to heat the same. C is the smoke-pipe. FFtr is the prese, made of strong cast-irom, and capable of beiny drawn up ant let down in the water at pleasure, by means of racks D D, at each side, actuated ly pinions $J J$. The axles of these pinions cross the machine and have eath a wheel at the end, mosed hy two arms, or serews cut upun the axis and turned by the handle II. The press is guided in the ascent it deseent by grooves in the side of the boiler. When raised up out of the water, the moulds, with the hurn or cortuise-shell between them, are put beneath the preseer, and a severe pre-sure is produced by turniar the wheel k. This wheel has an endless screw R upon its axis, which works the teeth of it larace wheel L, fixed on the top of the serew P. The screw is receised into an interior screw formed with in the box or presser I, which is guided and prevented turning round by the erow-bar E, through which the preser is fitted; by this means, when the screw P is turned round by the wheel L and entle screw, the horn or tortoise-shll is pressed between the moulds; the pre-s is then lowered acain inte. the water of the boiler, in order to be still further softened by the boiling; but when the pres- is down in the boiler, the screw can be screwed tighter by turning the wheel K until the ele-ired impre-sion is nbtained. By turuing the handle II, the press is then raised up out of the boiler, and by turnine batk the wheel K the pressure is released and the moulds can be removed.

- HORSE. The power of a horse when applied to draw loads, as well as when made the standard of comparison for determining the value of other powers, has been variously stated.
The relative strength of men and horses depends, of course, upon the manner in which their strenght is applied. Thus, the worst way of applying the strength of a horse is to make hian carry a weinht up a steep hill, while the organization of the man fits him very well for that kind of labor. And three men, climbing up a steep, hill, with each 100 hs . on his shoulders, will proceed faster than most horees with 300 lls .

It is highly useful to load the back of a drawing horse fo a certain extent; though dirs, ou a a light con-ideration, might be thought to augnent manecessarily the fatigue of the animal: but it must be recollected that the mass with which the hor-e is charged vertically is added in part to the effort which he makes in the direction of traction, and thus dispenses with the necessity of his inelining :o much forward as he must otherwise do: and may, therefore, under this point of view, relieve the Iraught more than to compensate for the additional fatigue occasioned by the vertical pressure. Carmen, and wagoners in general, are well aware of this, and are commonly very careful to dispose of the load in -uch a manner that the shafts shall throw a due proportion of the weight on the back of the shaft hereve

The best disposition of the traces during the time a lorse is drawing is to be perpendicular to the position of the collar upon his breast and hunders: when the horse stands at ease, this position of the traces is rather inclined upwards from the direction of the road; but when he leans furward to dratw the load, the traces shouk then become nearly parallel to the plane over which the carriage is whe drawn; or, if he be employed in drawing a sledge, or any thing without wheels, the inclination of tire traces to the road should be about $18 \frac{1}{2}^{\circ}$, when the friction is one-third of the pressure.

When a horse is made to mose in a circular path, as is often practised in mills and other machinemoved hy horses, it will be necesary to give the circles which the anmal has to walk romal the greatest diameter that will comport with the local and other conditions to which the motion mu-t lx -ubjected. It is obvious, indeed, that, since ar rectilinear motion is the most easy for the horse, the less the line in which he moves is curved, with the greater facility he will walk over it, and the lesi he need recline from a vertical poition: and besides this, with equal velocity the eentrifugal force will be lese in the greatest circle, which will proportionally dimini-h the friction of the cylindrical part of the trannions, and the labur of moving the machine. Amd, further, the greater the diameter of the horse-walk. the nearer the chord of the circle in which the horse draw- is to ecincidence with the tangent, which in the most advantageons prition of the line of traction. On these aceomes it is that, although a hurnmay draw in a circular walk of 1 s feet diameter, yet in general it is alvisable that the diameter of -uch at walk should not be less than 2 as or 30 feet ; and in many instanees to feet would be preferable te either.

It has been stated by Desaguliers and some others, ihat a horse employed daily in drawing nearly horizontally can move, during eifht hours in the day, about 200 lls at the rate of $2 \frac{1}{2}$ miles per hour, in $3 \frac{2}{3}$ feet per secmul. If the weight he aurmented to abont $\because 40$ or 250 lbs , the horse cannot work more than six hours a day, ame that with a less velomity. And, in both cases, if he carry some weight he will draw hetter than if he carried nome. M. Simpenr estenaten the mean chlort of at heree at 1 on Fronch, or 189 aroird. peunds, with a velocity of rather more than three fret per secomb. But all thene are probably $t(x)$ high to be contmoed fire eight hours, day after day. In another place Deatrubers
 feat high is a minute. Jint Mr. Smeatem, tw whese authority much is due, asserts, from a number of experiments, that the greateat eflect $i=$ the raining 550 bbs. forty feet high in a minute. Amb, from abo experiments mate by the socety for the Fineomaragent of Arts, it was concluded, that a home moving at the rate of three milew an home can exert a force of 80 lba . The proper estimate would be that which measures the weight that a horse would draw up out of a well; the mimal netime ly a harizental line of traction turned into, the vertical direction fy imple pulley, or roller, whene frothon should ber reduced at much as perssible.

Trealgeld has directed his nttention to the subjeet of "horse-porecr." His exprestion fin the

He gires the following table of the comparison of duration of a horse's daily labor and maximur velocity unloaded:-

Duration of labor. liours.	Maximum velocity unloaded in miles per hour.	Duration of labor. Hlours.	Maximum velocity unloaded in miles per hour.
1	. 14.7	6	6.
2	10.4	7	$5 \cdot 5$
3	8.5	8	5.2
4	$7 \cdot 3$	9	4.9
5	... $6 \cdot 6$	10	$4 \cdot 6$

Taking the hours of labor at 6 per diem, the utmost he would recommend, the maximum of useful effect he assigns at 125 lbs ., moving at the rate of three miles per hour ; and regarding the expense of carriage in that case as unity, then,

Miles per hour.	Proportional expense.	Moving force or traction.
2	$1 \cdot 125$	166 lbs.
3	1.	125
$3 \frac{1}{2}$	1.0285	104
\pm	$1 \cdot 125$	S3
$4 \frac{1}{2}$	1.833	-62 ${ }^{\frac{1}{2}}$
5	. 1.8	41
$5 \frac{1}{8}$	$\underline{2}$	$36 \frac{1}{2}$

That is, the expense of carrying goods at 3 miles per hour being 1 , the expense at $4 \frac{1}{2}$ miles per hour will be $1 \frac{1}{3}$; the expense being doubled when the speed is $5 \frac{1}{8}$ miles per hour.

Tarious estimates have been made of a horse's power by Desaguliers, Smeaton, and others; but the estimate now generally adopted as a standard for measuring the power of steam-engines, is that of Mr. Watt, whose computation is about the average of those given by the other writers. The measure of a horse's power, according to Mr. Watt, is, that he can raise a weight of 33,000 pounds to the height of one foot in a minute.
Ilorse-pozer, as the measure of the force of steam-engines.-It is by this nominal power that engines are usually bought and sold and always spoken of, unless when the contrary is expressly stated.
The following is Boulton and Watt's rule for determining the nominal horses' power.
Let $D=$ the diameter of the cylinder in inches.
$V=$ half the velocity of the piston in feet per minute.
Then $\frac{\left(\mathrm{D}^{2}-4 \mathrm{D}\right) \mathrm{V}}{2650}=$ the number of nominal horses' power.
Bot in order to determine V before the engine has been made, Boulton and Watt fixed upon an empirical velocity for each different length of stroke. The several velocities are as follow:

Stroke.		Velocity.	Stroke.	Velocity.
f. in.		ft.	ft. in.	ft.
$\simeq 0$		160	40	200
26		170	46	210
30		180	50	220
36	.	190		

And so on, with 10 feet of additional velocity for every 6 inches of additional stroke. The original engines of the Thames and Shannon, constructed by Boulton and Watt, were rated at 80 horse-power, the cylinders being $47 \frac{1}{2}$ inches in diameter, and the length of stroke 4 feet 6 inches, $(47.5)^{2}-4(47.5)=$ $2066.25 \times 105=217930 \div 2650=83$ horse-power nearly, instead of 80 . Land engines of $43 \frac{1}{2}$ inches diameter of cylinder and 8 feet stroke, making 16 double strokes in a minute, were rated by Boulton and Watt at 80 horse-power. The average effective pressure on the piston is rated at barely 7 lbs . per square inch, and the power may be thus computed, $\left(43 \frac{1}{2}\right)^{2} \times \cdot 7854=1486.2 \times$ by 7 and 266 , and \div by $33,000=$ about 80 horse-power. In marine engines a greater area of piston is allowed to represent a horse-power than in land engines, because the motion of the piston is supposed to be slower, but the effective force is calculated a little higher, or at 73 per square inch.

HORSE-I'OWER, Bogardus's. This improvement in the horse-power for driving machinery is based on the principle of the well-known sun and planet motion, and consists of a base-frame having cogs in the inner periphery of the rim into which mash the cogs of a pinion on the lower end of the arbor of the planet-wheel, the cogs of which drive a pinion on a central shaft that carries the driving-pulley, the arbol of the planet-wheel being adapted to turn in a sleeve, in a travelling wing to which the horse-beam is secured; and the said wing having another and parallel sleeve that turns on a central hollow standard of the frame through which the shaft of the central pinion and driving-pulley passes, and in which it turns.
The base-frame is east in one piece, consisting of the central hub, and the outer ring connected by ractial arms, and standing on lecs. The central hub is east with a hollow standard properly turned with a slight taper, to which is fitted a sleeve that turns thereon freely but accurately, and resting on the upper surface of the hub; and likewise with this sleere, and making part thereof, is east a wing, to which is secured by bolts the horse-beam or lever, by which the whole is operated. The other end of the wing is also provided with another slecve east therewith, and parallel to the other, to which is fitted accurately (but yet to admit of turning freely) the arbor of the planet-wheel and planet-wheel pinion, the former being at the top and the latter at the bottom. One of these, either the wheel or the pinion, can be permanently attached to the arbor, and the other keyed on after it has been inserted in the
sleeve. The cogs of the pinion of the planet-wheel take into the cogs formed in the inner periphery of the rim of the base-frame, and which may be called the master-wheel; and the cogs of the plaret-wheel take into the cogs of and drive the central pinion on the upper end of a vertical shaft that passes through and turns frecly but accurately in the central hollow standard, which is adapted to it, the triving-pulley leing keyed on the lower end and below the hul.

A band from the driving-pulley can be carried under the frame and between the legs, to any place required in the usual manner to drive any piece of machinery; but if desired, the drivink-pulley can be attar hed to the central shaft above the central pinion, Fis. 2.0.4. The arbor of the planet-wheel is oiled through a hole in the wheel which delivers it at the junction of the sleeve and arbor; and in like manner the central shaft and the sleeve that turns on the central standarlare ailed by pouring the cil through a hole in the central pinion, which delivers it on the mpper end of the hollow standard, and which is grooved to direct the oil to its imner and outer periphery:

Arranged to carry the belt from the horizontal pulley under the foot-path on which the horse walks.
The whole apparatus is mide light and portable, rests on the case-frame, and turns on the central standard, which makes part of the base-frame, without supports or bearings at the top. The whole can te taken apart for transportation, and can be again put together with case. The whole strain comes on and is supported by the hollow, standard, which being cast with the base-frame will resist any strain that can be applied io it by the horses employed to drive the machine. The sleeves of the wing and the inside of the central standard are or may be laid with soft metal.

by emdess ehains which pass round two drums, and are otherwise supported by frition-wheels. Va. rious other methods have been practised for applying the foree of animats, but most of them are attended with great loss of power, either from friction, or from the unfavorable position of the animal.

For agricultural purposes, the movable-platform horse-power is probably the best, and is coming very nuch into use. It consists of an inclined platform, or endless chain, provided with slats of wood upor which the hore treads, giving motion to a horizontal shaft by means of tecth in the chain or rack, work mg into a pinion on the shaft. It has very lately been patented in Italy under the name of impalsoria. and is in experimental use on the Sonthwestern Railway in England, and is thus described in a late number of the London Neies:-

The patent impulsoria, for railvays, consists in introducing the animals into a kind of coach, called impulsoria, by which they transmit their acting power to the leading wheels. This transmission is conveyed by a very simple means, rendering useful both the driving power of the animals and their own weight. The horse being thus introduced into the impulsoria, is placed upon a perfect rectilinear, artificial ground, or platform, turning so easily that the animal, which is yoked to the shafts, when it walks, does not itself advance, but, what amounts to the same thing, the platform itself is pushed backward, as shown in Fig. 2266. By this artificial ground platform, called by the patentee pedivella, is moved an axle, armed with a pulley, from which, by means of a rope, the motion is conveyed to the axletree of the leading wheels. The varying proportions between the diameters of the pulleys give different degrees of speed. The horses are to be worked always at their usual pace, whilst the new locomotive will be able to run at any requisite speed, without ever altering the usual walking pace of the horses. which are inside the impulsoria, as on the floor of a room, sheltered from the weather.

The importance of introlucing the horses into the carriage in order to get more speed from the surplu* of the acting power, had been long thought of, and the principle has been several times attempted in England, France, and Italy, but hitherto without success.

The now machine (whose inventor is Signor Clemente Masserano, from Pignerol, Piedmont) has been brought from Italy to England, and deposited at the Nine-elms terminus of the Southwestern Railway, where it may be seen working on the line. It has been made for two horses only, and they work it very well on the pedivelle. More than thirty wagons have been already experimentally drawn by it up the rery inclined line of the station. For working it up and down the station, a wagon is fastened to it when it attains a speed of seven miles an hour. In the experiment to be made on the great line, it is expected to gain a speed of from fifteen to twenty miles an hour. The impulsoria runs either way, like the steam-engine; but the driving horses do not change direction or movement. They can instantly be stopped, without stopping the machine; and the machine can likewise be stopped while the horses continue to walk on the pedivella. without transmitting motion to the leading wheels.

By the simple manner in which the horses exercise their moving power on the new machine, they can work casily the usual time, commonly about eight hours a day.

Such economy is of the utmost importance to the mumerous interests engaged in the railways subject to enormous working expenses. The principal advantage of the new machine will be to afford very cheap locomotion on all branch lines, thus extending the advantage of the railway to localities litherto impracticable from the expensive moving power.

The directors of the Southwestern Railway were the first to receive the impulsoria on their line where they have grantel every facility to its ingenious inventor.
holise-shoe, Budex's patent Macmae for making. From the specifications of the patents we extract the following description of the machine and its operation.

Fig. 2267, section amb plan of the machine for rolling, drawing, and slaping horse-shoes; a a a a stationary or outsinle frame; $l b l, l$ feet which support the same; c the fly-wheel; a the comnecting-rod eo the crank; ff the moving-frame ; g the rack, having cogs in it, which is bolted into the moving-frame, and which mathes or fits into the segment h, having long cogs, as seen at h, the lower or under segment which is fostened into the roller i, as seen at i. Fig. 2269 , K the moving-jaw; $/ l$ the side steels or iron, between which the piece of iron is confined and the siles, while it is drawn or rolled by the swedges D D having steels or swedres E E the exact thiekness of the shoe intended.

It will be oberved that one of these side steels or irons is fa-tened into the movingjaw k or K , by means of serew-bolts, while the other is similarly fastened into the moving-frame $f f$. m a button, or cam, which, when the moring-frame $f f$ is moved or drawn backwards and forwards by the crank c, through the connecting-rod d, it strikes against the pin or stop n, which permits the button or cam o to push back or open the moving-jaw k, when it strikes against the pin or stop p on the other side of the stationary frame, by which means the piece of iron which may be between the side steels or irons, and which is
drawn or rolled to the shape desired, is permitted to drop out. q, ia pin or stup, which, when the cam o strikes against it on the moving-frame's return motion, permits the cilln m, when it strikes against tho pin or stop r, to close the moving-jaw k. It will be obsersed that when the moving. frame $f f$ has performed its forward motion, then the cam m strikes against the stop n, which permits the cam o to open the moving-jaw k by striking against the stop p, which allows the piece of iron, which may have been rolled or shaped to a horse-shoe, to drop from between the side stecls or irons $l l . s$, a chisel fastened iy screw-bolts on the top of the side steel or iron l; t, a chisel fastencel by screw-bults in the chisel box u u u.

It will be observed that the box u u uturns on a pin in the moving-frame, which, when the crank pushes back the moving-frame, the head or box part strikes against the pin or picce of iron τ, and presses up the chisel t against the chisel s, and cuts of the piece of iron to the length intended for a horse-shoe. $\quad u$, a piece of iron intended to draw back the chisel-box $u u u$, as seen at Fig. $2968 ; x x x x$, brasses on which the moving-frame slides backwards and forwards; y, a piece of iron to lay the bar on as a guide white in the act of feeding into the machine. Z 7 end riew and seetion of the posts through which the rollers $i i$ are fastened and revolve; A, piece of iron or stop which graduates the length v_{0} shoe; B, piece of iron havin' it hole in it, through which the iron or stop A passes, which graduates the length of shoe; $('$, the jiece of iron which prevents the shoe from being drawn back by the chisel on the side steel l, previous to the swedges pressing it between them.

 the umber cogment /i permita the rack to mperate into it, whids, when phathed backeards mat formarde by the moving frame iff the whele is put in motions. $i i$, the relleres intu which the argmanta, with -

 mal revolve.

section, having the upper roller i removed for the purpose of showing more distinctly the interiot arrangements of the machine.

Fig. 2270, sectional elevation of part of the machine. $i i$ the rollers. D D the swedges: the undet one, which is cast-iron, or may be fitted with steel swedge similar to those used for rolling or shaping the shoe, as seen at D D, EE, the edge of which being similar to the flat side of a horse-shoe. The upper one is also of cast-iron, so constructed as to fasten in two pieces of steel under the covers on zaps i i. These picces of steel are so shaped at their edges as to groove and punch the holes at one operation. They are graduated as to depth by the four screws which pass through the flanch above $l l$, one of the side steels. H represents a horse-shoe in the act of being grooved and punched.

The machine for grooving and punching is precisely as the one for rolling or drawing the shoe to the required shape, with the exception of the upper swedge, as described above.

Fig. 2272, elevation of machine for bending horse-shoes. a a a the frame. $b b$ the feet which support the same. $c c$ the fly-wheel. d the connecting-rol. E the crank-shaft. $f f$ the rack. $g g$ the two shafts. K the piece of iron round which the shoe is bent, having cogs on its edges shaped so as to fit and mash into the piece K , while they revolve round on their respective shafts $g g$. II the wheel which mashes and fits into the rack $f f$, and which communicates motion to the shafts $g g$ and pieces of iron K and L. Na button or nipper which takes hold at the end of the horse-shoe, in consequence of its coming in contact with the piece of iron L, and holds it fast while it is in the act of bending; and when bent, said button or nipper strikes against the other side of piece L, which opens and lets the shoe drop. It will be observed that the shafts $g g$ and pieces of iron K and L do not make a full revolution

Fig. 2271, plan of machine for benilngr horse-shoes. a a the frame. c the fly-whech. e the crank-shaft d the connecting-rod. f a rack. M a wheel, whose cog mashes or fits into the cogs of the rack f L the eccentric piece of iron which tite into the piece \mathbb{K}, on which the shoe is formed, as seen at Figs
$2 \cdot 2$:2 and 2273. O, cap which confines the piece of iron while in the act of bending around the piece K_{L} as represented by the dotted lines at Fig. 2273.

Fig. 2273, section of the irons K and L . These two pieces, K and L , are fastened on the shaft $g g$ with their reversed sides up from what they appear in the dratring. The dotted lines represent a cap, which is fastened on the piece of iron L with serew-bolts. This cap is about one inch thick, and serves the purpose of keeping the iron close up while in the operation of bending around the piece of iron K .

The nature of the operation is as follows:-
Firstly: Fig. 2067 represents a section of the machine, having the upper roller i removed, so as to show more distinctly the interior arrangement of the machinc. Supposing a pulley of about four feet diameter were bolted to the arms of the fly-wheel c, (which is omitted in the drawing,) and to which motion were communicated by a leather strap or belt from a corresponding pulley on a -haft connected with a water-wheel or other power; it is evident that every revolution of the Hy-wheel c would more the carriage or moving frame $f f$ backwards and forwards, giving motion to the dilferent parts of the machine, as deseribed and shown above.

And supposing the crauk ee, by the connecting-rod d, had pulled or drawn the moving-frame of f forward so as to cause the button or cam m to strike against the stop n, the cam o would also striku agrainst the stop p, and consequently push back or open the moving-jaw k, which turns on a pivot at the other end. And supposing the moving-frame $f f$ were pushed back on the hrasses $x x$, and towards the last part of the motion a hot piece of iron (presionsly rolled to the desired size) were introduced between the side steels or irons $l l$, it is esident that the cutter-box $u u u$ would strike agrainat the stop ic amb press up the chisel t against the chisel s, cutting off the necessary length of iron to make the shoe : and should the moving frame be drawn furward by the cranke, the piece of iron, being confined by the sidn steels or irons $l l$ on the sides, would be rolled or shaped by the vertical steels or swedges E E , when the can m would strike against the stop n and permit o to open the jaw k and let the piece drop; the appearance and shape of which may be seen as represented ly H , are so ground or shaped at to roll or taper the plece II at each end intended for the heels of the shoe; but it is found by experiment that by usiner the iron square, and so grinding the steel or swedges E E as to flaten or roll down the middle of the piece, leaving the ends square for the heels of the choe, makes the best shoe.

Secondly: Having explained the process of entting the bar or rod into suitable lengthe, and rolling or shaping the same suitable for horse-shoes, it remains to deecribe the method of punching and growing them. And having already stated that the machine for grooving and punching is precisely the same as the one above described for rolling or shaping the shoe, with the execption of the upper swedse, which is substituted for the swedge represented in lige 2271: supposing in a machine every way similar to the one for rolling or shaping the shoe, as deseribed under the first head, (with the exception of the upper swedte, in lieu of which the one represented by Fig. 2070 was substituted,) the phece of irm which came from the first machine were introducel between the side steels or irons 11 , and the mathene set in motion, it is evident it would be grooved and punched and drop ont of the mathine on the movithjaw $\mathcal{K}^{\text {b }}$ being opened in the same manner as the piece dropped out from the first mathine, ats described under the first head.

Thirdly: Having described the mamer in which the piece is growed and punched, it remains to show how it is bent, which is the last operation. The piece of iron beine now rolled or shaped as may tre desired for a horse-shoe, as also grouved and punched, is introlued into the machine, as shown and described in Firse ner2 to 2.27 .

Wio here copy Mr. Burden's clam:
"First: I clain the machine for rolling, Irawing, or shat ing horse--bloes, as described and represented
 whinh contine the piece of iron intembed for a huree shene, on the sides, while it is rolled or shaped hes the vertical swedpes EF. 1 alsn cham the vibuting or reciprocating motion of moning fame fif Which gives motion to all the orher parte of the mathene, whith enables the opreater to feed up the irm intended for horse-foes to the stop Λ, cutting it off acenrately, and rolling and shaping then the the -atme time.
 abowe maneal, or whether it be merely a pair of commen growed rollers, the one has ing a grome of chamed turned or cont the hape of the fhen, the ofther having at temger so haped at to fot the grome
 sthera, tes may be divired.

similar to the bending machine, it is evident that said rollers would move backwards and forwards, making such part of a revolution as the length of the crank might give them. I therefore claim said reciprocating motion when applied to rolling or shaping horse-shoes by rollers. I do not claim the use of solid rollers in rolling horse-shoes; for I believe this has been done, or, rather, attompted to be done, and has universally proved is failure, in consequence of not having reciprocating motion to enable the operator to feed up the iron to a stop so as to instre the piece of iron intended for a horse-shoe being always in the proper place to reccive the impression from the roller.

Another reason why rolling horse-shoes ly solid rollers has failed, is, that the tongue of the one and socket of the other are liable to wear, and consequently have to be laid aside. Whereas, my method of having the tongue or swedges, as also the socket, divided into sections, allows the whole being ground, repaired, and moved at pleasure by screws, so as to insure the sides of the socket fitting close to the tongue, as also haring one side of the socket movable, to allow the shoes being discharged. I also elaim the method of having those parts of the machine which confine the iron on the sides, represented as side steels, marked $l l$, movable, so as to permit their being ground, when worn, at the same time noving them close up to the swedges E E by screws. I also claim the plan of making the rollers $i i$, with an open mortise, so as to permit the swedges DD being moved. In fine, I claim the method of dividing the working parts which roll or shape the shoe into such sections as enables me to grind, replace, and remove them at pleasure; in lieu of solid rollers, which, when worn, have to be laid aside altogether. I wish it to be particularly understood that I do not confine myself to the precise method of operating the machine for rolling or shaping horse-shoes, as represented by the drawing hereunto annexed; as, in lieu of the frame $f^{\prime \prime} f$ being moved, it may be made stationary, and the rollers $i i$ moved backwards and forwards in slides, with corresponding movements given to the other parts, which would give analogous results.

Secoudly: I claim the machine for grooving and punching horse-shoes, as represented by the figures and descriptions thereof. That is to say, I claim the manner of confining the piece of iron intended for a horse-shoe, between the side steels $l l$, while in the act of grooving and punching, by the upper swedge D having the pieces of steel fastened under the caps $i i$. I also claim the vibrating or reeiprocating motion of the mathine in grooving and punching, for the same reasons as set forth in my claim to the machine for rolling or shaping. I clain the manner of so shaping the edge of the steels as to leave projections for the heads of the nails, as in all cases, even when made by hand, the groove is first made, then the holes; but by my plan I make both at once, which serves the double purpose of adding strength to the punches, by being formed and composing part of the steel which forms the groove or channel, as also performing both operations at once. I also claim the method of fastening the two pieces of steel which groove and punch the shoe under the eaps $i i$, which permits their being screwed down by four screws, when necessary, in consequence of their beconsing short by filing or other causes. fad as I deem the discovery of forming the projections or punches on the same piece of steel which yrooves or channels the shoe of great importance, I shall descrike the manner in which it is done. Take a piece of cast or other steel, previously rolled or hanmered to about one-fourth of an inch in thickness, about four inches wide, and as long as necessary, to form the groove on one side of the shoe. Then grind or reduce the edge by a file to the proper shape to form the groove: then mark the projections or punches, filing down the spaces between the projections so as to give them sufficient length to form the holes, which adds great strength to the punches, compared with the method of inserting small pieces of steel into a roller to form punches.

Thirdly: I claim the machine for bending horse-shoes, as represented and described by the drawings thereof, in every particular as there arranged. And in addition to which, I elain any other method of bending horse-shoes, so long as the piece is taken hold of by one end, while the other is bent round the mould, no matter whether the mould revolve round or is stationary, and the piece of iron is pulled or bent round it.

I also claim, in a particular manner, the placing of the face of the mould downwards, so as to permit the shoe to drop or discharge itself. I also claim the nsing of a piece of flat iron, as represented by the dotted lines in Fig. 2273, for the purpose of keeping the shoe close up to the mould while in the act of bending. I also elaim the nipper or button, which closes and holds fast the end of the horse-shoe by striking against the piece L while in the act of bending round the shoe shape K , and which opens in consequence of its coming in contact with the other side of the piece L, and lets the shoe drop.

I also claim the manner of making the geering or wheels connected with the picces of iron K and L eccentric, or so shaped as to have the pitched line describe the same circle as the shoe.
hYDRAULIC RAM. Sce Ram.
HYDRODYNAMICS, is that branch of general mechanies which treats of the equilibrium and motion of fluids. The terms hydrostatics and hydronlymamics have corresponding signification to the statics and dynamics in the mechanies of solid bodies; viz., hydrostatics is that division of the science which treats of the equilibriun of fluids, end hydrodynamics that which relates to their forces and motion. It is, however, very usual to include the whole doctrine of the mechanics of fluids under the general term of hydrodynamies, and to denote the divisions relative to their equilibrium and motion by the tems nymor statics and mymardis. We adopt the latter division, and shall confine onrselves to a lew of the most usually receivel theoretical dednetions, and state thoec mules which have been the result of a juaicions application of theory to experiment, as the subject itself is the one the leat advanced of any branch of mechanies, and we are as yct fur from being in possession of the requisite data for a rigorous colution of the problems which arise. Very many excellent treatises lave been written, to which we refer the seientific reader; lut the extent of the subject forbids the introduction of any of them intc this work, further than to select the best practical mules for the use of the mechmic.

Hydrostatics comprises the doctrine of the pressure and the equilibrium of non-elastic fluids, ae water mercury, \&e., and that of the weight and pressure of solids immersed in then.

1. Fluids press equally in all directions, upwards, downwards, aslant or laterallv

Thus con-titutes one essential difference bettren fluids and sulids, solids presimg only downeards on si the direction of gravity.
2. The upper surface of a gravitating fluid at rest is horizontal.
3. The pressure of a fluid on every particle of the vessel containing it, or of any other surface, reat of imaginary, in contact with it, is equal to the weight of a column of the tluid, whose base is equal to that particle, and whose height is equal to its depth below the upper surface of the flusl.
4. If, therefore, any purtion of the upper part of a fluid be replaced by a part of the veact, the prosure against this from below will be the same which before supported the weight of the fluid romorel. and every part remaining in equilibrium, the pressure on the bottom will be the same as it would if the vessel were a prisin or a cylinder.
.. Hence, the smallest given quantity of a fluid may be made to produce a pressure capable of sustaining any proposed weight, either by diminishing the diameter of the column and increa-ing its heirht. or by increasing the surtace which supports the weight. It is upon this principle that the hydrotatio press is made to operate. See Midrostatic Press.
6. The pressure of a fluid on any surface, whether rertical, oblique, or horizontal, is equal to the weight of a column of the fluid whose base is equal to the surface pressed, and height equal to the din tance of the centre of gravity of that surface below the upper horizontal surface of the dhail.
7. Fluids of different specific gravities that do not mix, will counterbalance each other in a bent tube when their heights above the surface of junction are inversely as their specific gravitice.

A portion of fluid will be quiescent in a bent tube, when the upper surface in both branche- ot the tube is in the same horizontal plane, or is equidistant from the earth's centre. Ind water poured down one branch of such a tube, (whether it be of miform bore throughout or not,) will rise to its own level in the other branch.

Thus, water may be conveyed by pipes from a spring on the side of a hill, to a reservoir of equal height on another hill.
s. The ascent of a borly in a fluid of greater specific gravity than itself, arises from the presure of the tluid upwards against the under surface of the body:
The centre of pressure is that point of is surface against which any fluid presere, to which if a forec equal to the whole pressure were applied, it would keep the surface at rest, or balance its tendeney w turn or move in any direction.

The centre of pressure of a parallelogram, whose upper side is in the plane of the horizontal ferel uf the liquid, is at $\frac{2}{3}$ of the line (measuring downwards) that joins the middles of the two horizontal sides of the parallelogram.

If the base of a triangular plane coincides with the upper surface of the water, then the centre of pressurc is at the middle of the line drawn from the middle of the base to the verkex of the triomyle. But, if the vertex of the triangle be in the upper surface of the water, while its base is horizontal, 't centre of pressure is at of the line drane from the vertox to bisect the bense.

If b the breadth and d the depth of a rectangular gate, or other surfice, expused to the pressure of water from top to bottom, then the entire pressure is equal to the weight of a prism of water whone content is $\frac{t}{2} d^{2}$. Or, if b and d be in feet, then the whole pressme $=31+b d^{2}$, in pounds.

If the gate be in form of a trapezoid, widest at top, then, if a and b be the breadthe at the top and buttom re-pectively, and d the depth,

Whole pressure in pounds $=31 \frac{1}{4}\left[\frac{1}{3}(3-b)+b\right] d^{2}$.
Floatiny bodies.-If any body float on a fluid, it dieplaces a quantity of the tluid equal to itself in weimht. Also, the centres of gravity of the budy and of the thud di-placed, must, when the body is at rat be in the same vertical line.

If a vessel contain two fluids that will not mix, (as water and mercury) and a solid of some int rmediate specific gravity be immered under the surtace of the lighter iluid and Hoat on the heavior, the. part of the solid immer-ed in the heavier fluid, is to the whole solid at the ditference between the -pecific gravities of the solid and the lighter thuid is to the difterence between the specitic gravities of th. two thuids.

The buoyancy of easks, or the load which they will earry withent sinking, may be estimated by reck minge 10 prounds avoirlupois to the ale gallom.

The buoyancy of pontoons may be entimated at abont half a humber weight for each culbie forot.
Thus a pontoon which contained 9ti culsie feet, would sustain a load of tis cwt. betiore it would sink. This is an approximation, in which the difference between $\frac{6}{11}$ and $\frac{1}{2}$, that is, $\frac{1}{2}$ of the whole weisht, is allowed for that of the pontom itself.

 chain which hats been previou-ly fixed to the pile by ar ring, w., is made to give the barger, and is then
 with it.

In an actual cane, a barge 50 feet tong, 12 feet wide, 6 derp, and drawing 2 feet of watar, wan om phyed. Here, $50 \times 12 \times(6-2) \times!=\frac{50}{5} \times 12 \times 11 i=192 \times 59=10.11+257=10719$ ent

 forees with which they mot upen Imaliom.

Motion and efluence of liquids.-1. A jot of water, issuing from an orifice of a proper form, and directed upwards, rises, under favorable circumstances, nearly to the height of the head of water in the reservoir; and since the particles of such a stream are but little influenced by the neighboring ones, they may be considered as independent bodies, moring initially with the velocity which would be acquired in falling from the height of the reservoir. And the velocity of the jet will be the same whateven may be its direction.
2. Hence, if a jet issue Lorizontally from any part of the side of a ressel standing on a horizontal plane, and a circle be described having the whole height of the fluid for its diameter, the fluid will reach the plane at a distance from the ressel, equal to that chord of the circle in which the jet initially moves.
3. When a cylindrical or prismatic vessel empties itself by a small orifice, the velocity at the surface is uniformly retarded; and in the time of emptying itself, twice the quantity would be discharged if it were kept full by a new supply.
4. But the quantity discharged is by no means equal to what would fill the whole orifice, with this velocity. If the aperture is made simply in a thin plate, the lateral motion of the particles towards it tends to obstruct the direct motion, and to contract the stream which has left the orifice, nearly in the ratio of two to three. So that in order to find the quantity discharged, the section of the orifice must be supposed to be diminished from 100 to 62 for a simple aperture, to 82 for a pipe of which the length is twice the diameter, and in other ratios according to circumstances.
5. When a siphon, or bent tube, is filled with a fluid, and its orifices immersed in the fluids of different vessels, if both surfaces of the fluids are in the same level, the whole remains at rest; but if otherwise, the longer column of fluid in the siphon preponderates, and the pressure of the atmosphere forces up the fluid from the higher vessel, until the equilibrium is restored; and the motion is the more rapid as the difference of levels is greater: provided that the greatest height of the tube above the upper surface be not more than a counterpoise to the pressure of the atmosphere.
6. If a notch or sluice in form of a rectangle be cut in the vertical side of a ressel full of water, or any other fluid, the quantity flowing through it will be $\frac{2}{3}$ of the quantity which would flow through an equal orifice placed horizontally at the whole depth, in the same time, the vessel being kept constantly full.
7. If a short pipe, elevated in any direction from an aperture in a conduit, throw the water in a parabolic curve to the distance or range r , on a horizontal plane passing through the orifice, and the greatest lemight of the spouting fluid above that plane be μ, then the height of the head of water above that conduit pipe may be found, nearly: viz., by taking, first, $2 \cot \mathrm{E}=\frac{\mathrm{R}}{211}$; and, secondly, the altitude of the head $A=\frac{1}{2} \mathrm{R} \times \operatorname{cozec} 2 \mathrm{e}$.
E.c. Suppose that $\mathrm{R}=40$ feet, and $\mathrm{H}=18$ feet. Then $\frac{\mathrm{r}}{211}=\frac{40}{36}=1 \cdot 1111111=2 \cot 60^{\circ} 57^{\prime}$: and $4=\frac{1}{2} \mathrm{r} \times \operatorname{cosec} 2 \mathrm{E}=20 \times \operatorname{cosec} 121^{\circ} 54^{\prime}=20 \times 1.177596=23.55792$ feet, height required.

Note. This result of theory will usually be found abont $4-5$ ths of that which is furnished by experiment.

Jotion of water in conduit pipes and open canals, over weirs, \&ic.-1. When the water from a reservoir is conveyed in long horizontal pipes of the same aperture, the discharges made in equal times are nearly in the inverse ratio of the square roots of the lengths.

It is supposed that the lengths of the pipes to which this rule is applied are not very unequal. It is an approximation not deduced from principle, but derived immediately from experiment.
2. Water running in open canals, or in rivers, is accelerated in consequence of its depth, and of the declivity on which it runs, till the resistance increasing with the velocity, becomes equal to the acceleration, when the motion of the stream becomes uniform.
It is evident that the amount of the resisting forces can hardly be determined by principles already known, and therefore nothing remains but to ascertain, by experiment, the velocity corresponding to different declivities, and different depths of water, and to try, by multiplying and extending these experiments, to find out the law which is common to them all.
The Chevalier Du Buat has given a formula for computing the velocity of running water, whether in close pipes, open canals, or rivers, which, though it may be called cmpirical, is extremely useful in practice.

Let v be the velocity of the stream, measured by the inches it moves over in a second ; r a constant quantity, viz., the quotient olstained by dividing the area of the transverse section of the stream, expressed in square inches, by the boundary or perimeter of that section, minus the superfieial breadth of the stream expressed in linear inches.

The mean velocity is that with which, if all the particles were to move, the discharge would be the same with the actual discharge.

The line R is callel by Du Buat the radius, and by Dr. Robison the hydrautic mean depth. As its affinity to the radius of io circle seems greater than to the depth of a river, we shall call it, with the furmer, the radius of the section.

Lastly, let s be the denominator of a fraction which expresses the slope, the numerator being unity, that is, let it be the quotient obtained by dividing the length of the stream, suppoing it extended in a straight line, by the difference of level of its two extremities; or, which is nearly the same, let it be the su-tangent of the inclination or slope.
The above denominations being understood, and the section, as well as the velocity, being supposed uniforru, v in English feet,

$$
=\frac{307 \sqrt{ }\left(\mathrm{R}-\frac{1}{10}\right)}{\mathrm{s}^{\frac{1}{3}}-\frac{1}{2} \log \cdot\left(\mathrm{~s}+\frac{1}{10}\right)}-\frac{3}{10} \sqrt{ }\left(\mathrm{R}-\frac{1}{1 \frac{1}{n}}\right):
$$

$$
\text { or } v=\sqrt{\mathrm{E}-{ }^{2}}\left(\frac{307}{s^{\frac{1}{2}}-\frac{1}{2} \log \cdot\left(s+\frac{16}{10}\right)}-\frac{3}{10}\right)
$$

When in and s are rery great，

$$
V=\mathrm{R}^{\frac{1}{2}}\left(\frac{307}{s^{\frac{1}{2}}-\frac{1}{2} \log s \mathrm{~s}}-\frac{3}{16}\right) \text { nearls. }
$$

The logarithms understood here are the hyperbolic，and are found by multiplying the common loga rithms by $2-3025851$ ．
The slope remaining the same，the velocities are as $\sqrt{\mathrm{R}} \overline{-1} 11$ ．
The velocities of two rivers that have the same deelivity，are ats the square ruots of the radii of thei sections．

If r is so small，that $\sqrt{\mathrm{R}-\frac{1}{1}}=0$ ，or $\mathrm{r}=\frac{1}{1}$ ，the velocity will be nothing，which is agreeable to experience；for in a erlindric tube $n=\frac{1}{2}$ the radius；the radine，therefore，equal two－tenthe；so that the tube is nearly capillary，and the fluid will not flow through it．

The velocity may also become nothing by the declivity becoming so small，that

$$
\frac{307}{s^{\frac{1}{2}}-\frac{1}{2} \log \cdot\left(s+\frac{1}{10}\right)}-\frac{3}{10}=0 \text {; but }
$$

If $\frac{1}{\mathrm{~s}}$ is less than $\frac{1}{500000}$ ，or than $\frac{1}{10}$ of an ineh to an English mile，the water wit have sensible motion．
In a river，the greatest velocity is at the surfice，and in the middle of the stream，from which it diminishes towards the bottom and the sides，where it is least．It has been found by experiment，that， if from the square root of the velocity in the mildle of the stream，expressed in inches per second，unity be subtracted，the square of the remainder is the velocity at the bottom．

Hence，if the furmer velocity be $=v$ ，the velocity at the buttom $=v-2 \sqrt{ } v+1$ ．（A．）
The mean velucity，or that with which，were the whole strean to move，the discharge would be the same with the real discharre，is equal to balf the sum of the greatest and least velocities，as computed in the last proposition．

The mean velocity is，therefore，$=v-\sqrt{ } v+\frac{1}{2}$ ．（B．）
This is also proved by the experiments of Du Buat．
When the water in a river receives a permanent increase，the depth and the velocity，as in the ex ample above，are the first things that are augmented．The increase of the velocity increases the action on the sides and bottom，in consequence of which the width is augmented，and sometimes also，but more rarely，the depth．The velocity is thus dimini－hed，till the tenacity of the soil，or the hardness uf the rock，alford a sufticient resistance to the force of the water．The bed of the river then changes only by insensible degrees，and，in the ordinary language of laydraulics，is said to be permanent，though in strictness this epithet is not applicable to the course of any river．

When the sections of a river vary，the quantity of water remaining the same，the mean velueties are inversely as the areas of the sections．

This must happen，in order to preserve the same quantity of diseharge．
The following table，abridged from Du Bate，serves at once to compare the surface，buttom，mad mean velocities in rivers，according to the formule（A）and（B）．

YELOCITY IN INCHES．			VELOCITY IN IXCIIES．		
surface．	ISchlenti．	Meлa．	surfice：	Tintoln．	Meims．
1	1.	$2 \div 5$	$51)$	［2－11］ 6	1900s
S	$\because \because \% 12$	5） 13	（i）	5.55019	$50 ヶ$ 55
19	1；リ71	（113	（i）	13.	5tis
$11 ;$	！	12\％	iv	6こ．515	がいこち？
$\because 11$	12.155	16.107	？－	す6け25	（i）（1）$=$
$\because 1$	15．1！	13.597	71	らりお心	$17 \% 7$
28	14．12｜	23.10	S11	ci3．107	¢1：5s
3：	こ1\％゙心	－1583！	S1	liflisl	Э5：305
：36	\＃．	3い5	＊4	「11－21	T：1112
4）	24：315	3117－	！2）	73\％が	$8-3!1$
11	31712	：7871	：11；	「ご吅	－ibis
1.15	\％5．151	11\％70	1（1）	¢1．	¢15
ら！	こんらい1	15ッいい			

 setion of the strean on its bed．

Fvery kind of mil hat a certain seloeity consiatent with the mahility of the chammel．A erater wo

erating forces are so adjusted to the size and figure of it; channel that the current may be in train : it must also be in equilibrio with the tenacity of the channel.

We learn from the obscrvations of Du Buat, and others, that a velocity of three inches per second at the bottom will just begin to work upon the tine clay fit for pottery, and howerer firm and compact it may be, it will tear it up. Yet no beds are more stable than clay, when the velocities do not exceed this; for the water soon takes away the impalpable partieles of the superficial clay, leaving the particles of sand sticking by their lower half in the rest of the clay, which they now protect, making a very per manent bottom, if the stream does not bring down gravel or coarse sand, whieh will rub off this very thin crust, and allow another layer to be worn off. A velocity of six inches will lift fine sand; eight inches will lift sand as coarse as linseed; twelve inches will sweep along fine gravel ; twenty-four inches will roll along rounded pebbles an inch diameter; and it requires three feet per second at the bottom to sweep along angular stones of the size of an egg. (Robison on Rivers.)
Eytelwein, a German mathematician, has devoted much time to inquiries in hydrodynamics. His formulæ apply to the motion of water; 1st, in a cylindric tube ; 2d, in an open canal.

Let d be the diameter of the cylindric tube EF, h the total height FG of the head of water in the reservoir abore the middle of the orifice F, and l the length EF of the tube, all in inches; then the velocity in inches with which the fluid will

- issue from the orifice F will be

$$
v=23 \frac{1}{3} \sqrt{\frac{57 h c l}{l+57 d}}:
$$

this multiplied into the area of the orifice will give the quantity per second.
Let $d=$ diameter of the pipe in inches, $Q=$ the quantity of water in cubie feet discharged through the pipe per minute, $l=$ the length of the pipe in feet, and $h=$ the difference of level between the surface of the water in the reservoir and at the end of the pipe or the head; then, any three of these auantities being given, the fourth may be determined from the following formulx:-

$$
\begin{gathered}
l=5 \sqrt{\frac{0448 Q^{2}(l+4 \cdot 2 d}{h}} \\
\mathrm{Q}=\sqrt{\frac{h d^{2}}{\cdot 0448(l+4 \cdot 2 d)}} \\
l=\frac{h d^{5}}{0.448 Q^{2}}-4 \cdot 2 d \quad h=\frac{.0448 \mathrm{Q}^{2}(l+4 \cdot 2 d)}{d^{5}} .
\end{gathered}
$$

These formulx are more convenient expressed logarithmically, thus-

$$
\begin{aligned}
& \log \cdot d=\frac{1}{5}\{2 \log \cdot \mathrm{Q}+\overline{2} \cdot 6515+\log \cdot(l+4 \cdot 2 d)-\log \cdot \pi\} \\
& \log \cdot \mathrm{Q}=\frac{1}{2}\{\log \cdot h+5 \log \cdot d-\overline{2} \cdot 6515-\log \cdot(l+4 \cdot 2 d)\} \\
& \log \cdot l=\log \cdot h+\log \cdot d-\overline{2} \cdot 6515-2 \log \cdot \mathrm{Q}(\text { neglecting }-4 \cdot 2 d) . \\
& \log \cdot h=2 \log \cdot Q+\overline{2} \cdot 6515+\log \cdot(l+4 \cdot 2 d)-5 \log \cdot d .
\end{aligned}
$$

When a pipe is bent in one or more places, then if the squares of the sines of the several changes on direction be added into one sum s, the velocity v will be found by the formula

$$
v=\sqrt{d+\frac{1}{45} l+\frac{1}{6} d s}
$$

l, h, d, and v, being all in inches.
Prouy gives a rery safe formula for ealculating the velocity of water in pipes, and it is very convenient for use, and is reliable.
$V=$ velocity in feet per second.
$\mathrm{D}=$ diameter of pipe in feet.
$\mathrm{H}=$ the head, from surface of water in reservoir to the surface of water above the mouth of pipe.
$\mathrm{L}=$ the length of pipe.
$\mathrm{S}=\frac{\mathrm{H}}{\mathrm{I}} . \quad$ Then $\mathrm{V}=48.5254 \sqrt{\mathrm{DS} .}$ The measures are all in feet.
For open canals.-Let v be the mean velocity of the current in feet, a area of the vertical section of the stream, p perimeter of the section, or sum of the bottom and two sides, l length of the bed of the canal corresponding to the fall h, all in feet: then

$$
v=\sqrt{9582 \frac{a l}{p l}+0.0111}-0.109
$$

The experiments of M. Bidone, on the motion of water in canals, agree within the soth part of the erults of computations from the preceding formulæ.

We have used the following formula of Eytehwein, taken from the Edinburgh Eneyclopedia, article Hydrodynamics, for ascertaining the velocity of water in an open canal, and the results have been satisfactory.
$d=$ lyydraulic mean $d l^{\prime} t h$, or mean radius in inches, called R in preceding formulie of Du Buat.
$f=$ fall in two mile of canal, in iuches.
$\mathrm{V}=$ velucity in inches per second.
Then, $V=0.91 \sqrt{f^{d}}$

For apertures in the sides or bottom of acssels．－If q equal the quantity of water discharged in cubic feet per minute，v the velocity of the affuent water in fect per sccond through the aperture，a the arca of the aperture in square inches，and h the height from its centre to the surface of the water，we have

$$
\because=c \sqrt{ } h ; \text { and } q=416 t \text { ac } \sqrt{ } h
$$

in which c is a constant quantite，depending upon the nature of the aperture，and the value of which， for several different forms，is contained in the fullowing table：－

Nature of the（ritices employed．	Ratio between the theorelicat and real dischurges．	Coeflicients for tinding the velo－ citie＇s in Eng． 12.
For the whole velocity due to the height	1 te） 1.00	804
For wide openings whose buttom is on a level with that of t the rescriour．	1 to 0.961	$\%$
For sluices with walls in a line with the orifice．．．．．．．．．．．．．．．．．．	1 to 0×61	7.7
For bridges with pointed piers ．．．．．．．．．．	1 to 0.061	7.7
For narrow openings whose botton is on a level with that of \} the reservoit．	1 to 0.861	69
For smaller openings in a sluce with side walls．．．．．．．．．．．．．．．．．	1 to 0.861	6.9
For abrupt projections and square piers of bridges．．．．．．．．．．．．．．	1 to $0 \cdot 561$	69
For openings in sluices without side walls ．．．．．．．．．．．．．．．．．．．．．．．．．	1 to 0.635	$5 \cdot 1$
For an oritice in a thin plate ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1 to 0621	5.0

The following table of Smeaton is mainly the result of experiments．
Table，abridyed from one by Mr．S＇meaton，for shoning the height of head necessury to overcome the friction of water in horizontal pipes．

Feforities per sccond of water in the pipes．										Bore of the ріре＇s．
$\begin{array}{cc} \text { FL. } & \text { in. } \\ 0 & 6 \end{array}$	I1. in.	It. in.	$\begin{aligned} & \text { YL. in. } \\ & \because \quad 0 \end{aligned}$	$\begin{array}{ll} 1 \% & \text { in. } \\ : 8 & 6 \end{array}$	$\begin{array}{cc} \text { F. } \\ 3 & \text { in. } \\ 0 \end{array}$	$\underset{3}{\text { It. }} \underset{6}{\text { in. }}$	$\begin{array}{cc} \text { Ft. in. } \\ 4 & 0 \end{array}$	$\underset{4}{\mathrm{Ft}} \mathrm{in} .$	$\begin{array}{cc} \text { I1. } & \text { in. } \\ j & 0 \end{array}$	
$0 \quad 4.5$	$1 \begin{array}{ll}1 & 1.7\end{array}$	$\because 110$	$4 \quad 977$	$7 \quad 1.7$	$10 \quad 1 \cdot 0$	13 8．0	$1710 \cdot 0$	2）6．7	12\％ 010	\pm inch．
0 3．0	0 11．1	11113	$3 \sim 5$	$19 \cdots$	138.6	$9 \quad 1 \cdot 3$	$1110 \cdot 6$	150.5	1－81	
0 9．9	0 e－l	$15 \cdot 5$	$\because 4.11$	$3 \quad 6.9$	50.5	6100	8110	113	1100	1 －
0 0－8	06.7	1 2．1	$111 \cdot 1$	$\geq 10: 3$	40.4	$55 \cdot 6$	716	！）0－3	11 m	1！＊＊
$\begin{array}{ll}0 & 1.5\end{array}$	0 0－6	$011 . \%$	172		$3+3$	16.7	${ }_{5} 11 \cdot 3$	$76 \cdots$	9 4．I	$1 *$＊
$\begin{array}{lll}0 & \mathrm{j} & 3\end{array}$	$04 \cdot 6$	$010 \cdot 0$	14.5	20.5	2106	3109	$5 \quad 1 \cdot 1$	$6 \quad 5 \cdot 1$	$80 \cdot 1$	17 －
$0 \cdot 1 \cdot 1$	$\begin{array}{lll}0 & 4 \cdot 2\end{array}$	0 ¢ 0	$1 \sim 1$	194	$\stackrel{6}{\sim} \quad 6$	$3 \quad 5 \cdot 0$	455	57%	70.0	$\stackrel{\square}{*}$－
0 1．0	$\begin{array}{ll}0 & 3\end{array}$	$0-7.2$	10.8	170	9 －¢	3004	3116	5 161	6	\＃
0 0－9	0 0 $3 \cdot 3$	0 \％ $7 \cdot 0$	011%	$1 \begin{array}{ll}1 & 5 \cdot 1\end{array}$	20%	$28 \cdot 8$	3168	1 6．1	5 \％	\because
000%	0 O．R	1） $5 \cdot 0$	$0 \quad 16$	$12 \% 3$	$18 \times$	$\pm 3 \cdot 3$	¢ 11.7	301	4 ぐ0	3
0 0．6	0 O．4	1） $5 \cdot 0$	0 8 $\%$	10%	153	1114	$\because \quad 1 ; 6$	3 3\％	41.0	$3{ }_{3}$
$0 \quad 0.6$		10 4．1	0 \％	$0 \quad 10 \cdot 7$	$13 \cdot 1$	1×5	$\stackrel{*}{\sim}$	$\because 9.8$	36.0	4 －
0 0－5	$\begin{array}{lll}0 & 1.9\end{array}$	1） 3.9	$\begin{array}{ll}0 & 6 \cdot 1\end{array}$	$\begin{array}{lll}0 & 9 & 5\end{array}$	114	16.4	111.8	$\underset{\sim}{2} \quad 1 \cdot 1$	$3 \begin{array}{lll}3 & 1 & 4\end{array}$	41 6
0 0 0．4	$\begin{array}{lll}0 & 1.7\end{array}$	$0 \quad 3: 5$	$\begin{array}{lll}0 & 5 \cdot 8\end{array}$	0 －${ }^{0}$	$10 \cdot 1$	144	194	$\stackrel{3}{2} \cdot 1$	［2 9\％1\％	5 －
01104	014	1） 2.9	（） 48	0 \％ 1	$010 \cdot 1$	117	158	J 10%	（3）4．0	ti
（） 0.3	0） $1 \cdots$	（1） 6.5	0 4．1	（） 6.1	0×6	$0 \quad 11 \cdot 7$	$13 \cdot 3$	$1 \div 3$	$\bigcirc 0 \cdot 0$	1
0 11 13	0 1－1）	110	0）3－1i	（）） $5 \cdot 1$	$0 \% 6$	010%	11.4	14.9	190	N
（1）11：5	0 0－1．3）	1）1－！	0） 3%	0 1－9	0 0 67	0 0 9.1	011.9	$13 \cdot 0$	16.7	！－
0 0） $0 \cdot 3$	0 0．${ }^{1}$	（1） 1.7	（）2－9	0 4 4	0 （1）	1） $2 \cdot \square$	11 11\％	11.5	14%	111
（1）11．3	0 0 0	1） 111	（1）${ }^{\text {a }}$（1）	（1）3－！	（） 5.5	（）$\because 3$	（） 117	$1 \quad 11 \cdot 3$	$133 * 3$	11
（1） $11 \cdot 1!$	00%	（1）1：3	（）$\because \cdot 1$	0 0－6	$0 \quad 5 \cdot 0$	（1） $6=$	11 どり	$011 \cdot 3$	$1 \sim 1)$	1＊＊

Low $\begin{aligned} & \text { for the velocity of water in the pipe in the uprer ruw，and in the colum below it，and uphosite }\end{aligned}$ to the given diameter of the pipe standing in the last colum，will be fomed the perpendieular heisht of a columin or head，in feet，inches，and tentha，requi－ite to overome the friction of shel pipe for 100 fect in length，and obtain the given velocity．
l＇rom the present standard work，Lancell Ifydrauliz Erperiments，lyy Jas．B．Francis，户sif，we extract the fillowing on weirs：
 ing complete contraction，（us first surgestel to the auchor ly Mr．Doyden in is ib，is

$$
u=r(l-b n h) h^{2} ;
$$

．n which

[^0]By experiments the numerical values were determined as follows:

$$
Q=3,33(L-0.1 n H) I^{\frac{3}{2}}:
$$

the English foot being the unit of measure.
This formula is only applicable to rectangular weirs, made in the side of a dam, which is vertical on the upstream side, the crest of the weir being horizontal, and the ends vertical; also, the edges of the orifice presented to the current must be sharp; for, if bevelled or rounded off in any perceptible degree, a material effect will be produced on the discharge; it is essential, moreover, that the stream shonld toneh the orifice only at these edges, after passing which it shonld be discharged through the air, in the same manner as if the orifice was cut in a thin plate. The formula is not applicable to eases in which the depth on the weir exceeds one third of the length; nor to very small depths. There seems no reason why it should not be applied with safety to any depths between 6 inches and 24 inches.
The height of the surface of the water in the canal, above the crest of the weir, is to be taken for the depth upon the weir; this height should be taken at a point far enough from the weir to be unaffected by the curvature cansed by the discharge; if more convenient, it may be taken by means of a pipe opening near the bottom of the canal near the npstream side of the weir, which pipe may be made to communicate with a box placed in any convenient situation; and if the box and pipe do not leak, the height may be observed in this manner, very correctly. However the depth may be observed, it may require to be corrected for the velocity of the water approaching the weir.

The end contraction must either be complete, or entirely suppressed; the necessary distance from the side of the canal or reservoir to the end of the weir, in order that the end contraction may be complete, is not definitely determined. In cases where there is end contraction, we may assume a distance from the side of the canal to the end of the weir equal to the depth on the weir, as the least admissible, in order that the proposed formula may apply.

As to the fall below the weir, requisite to give a free discharge to the water, it is not definitely determined; it appears that when the sheet, passing the weir, falls into water of considerable depth, the depth on the weir being about 0.85 feet, no difference is perceptible in the discharge, whether the water is 1.05 feet or 0.235 feet below the crest of the weir; it is very essential, however, in all cases, that the air under the sheet should have free communication with the external atmosphere. With this preeaution it appears that, if the fall below the crest of the weir is not less than half the depth upon the weir, the discharge over the weir will not be perceptibly obstructed. If the sheet is of very great length, however, more fall will be necessary, unless some special arrangement is made to supply air to the space under the sheet at the places that would otherwise not have a free communication with the atmosphere.

In respect to the depth of the canal leading to the weir, experiments show that, with a depth as small as three times that on the weir, the proposed formula agrees with experiment, within less than one per cent. ; this proportion may be taken as the least admissible, when an aceurate gauging is required.

It not unfrequently happens that, in consequence of the particnlar form of the canal leading to the weir, or from other causes, the velocity of the water in the eanal is not uniform in all parts of the section; this is a frequent cause of serious error, and is often entirely overlooked. If great irregularities exist, they should be removed by causing the water to pass through one or more gratings, presenting numerous small apertures equally distributed, or otherwise, as the ease may require, through which the water may pass under a small head; these gratings should be placed as far from the weir as practicable.

If the canal leading to the wair has a suitable depth, it will be requisite only when great precision is required, to correct the depth upon the weir for the velocity of the water in the canal by the formula (D).
h being the head due to the velocity with which the water approaches the weir: -

$$
I^{\prime}=\left[(I I+h)^{\frac{3}{2}}-h^{\frac{3}{2}}\right]^{\frac{2}{3}}
$$

Substituting $I I^{\prime}$ for $I I$ in the previous formula, we obtain the flow increased for the velocity with which the water approaches the weir.

Of gauging the flow of water in open canals of uniform rectangular section. - It has been frequently found convenient at Lowell, to gauge large streams of water by eausing them to flow through short rectangular canals of uniform section, and a particular method of obtaining the mean velocity has been practised, which will now be des ribed.

A convenient part of the feedng canal is selected and lined with timbers and planks, so as to make a smooth and uniforin rectangular channel; this is called a flume. The mean velocity is obtamed by means of tubes, loaded at one end, so that they may float in nearly a perpendicular position, the lower ends just clearing the bottom of the flume; these tubes are put in near the upper end of the flume, and from the observed paths and velocities that they assume through a defined portion of the length of the flume, a mean velocity is deduced. The times of the transits are observed by the same chronometer, the signals being made by an electric telegraph erected for the purpose. The telegraph used for this purpose is a very simple apparatus; the circuit is formed by an insulated copper wire, about $\frac{1}{30}$ of an inch in diameter, and the electric current is maintained by a small galvanic battery. Whenever the circuit is broken, a small electro-magnet becomes demagnetized, which eauses a slight blow to be struek on a vertical glass plate, placed near the observer, who notes the times of the transits. The tubes are cylinders, made of timed plate, about two inches in diameter, and of a length usually a little exceeding the depth of the water in the flume By a comparison of the results obtained by ganging, by the floats and by weir, the error in assuming the average velocity of the floats for that of the stream, was found to be correct within a triffing per centage.

Contrivarices to measure the relocity of running waters.-For these purposes, variuus contrivances have been proposed, of which two or three may be here described.

Suppose it be the velucity of the water in a river that is required; or, indeed, busth the velocity and the quantity which flows down it in a given time. Observe a place where the banks of the river are steep and nearly parallel, so as to make a kind of trough for the water to run through, and by taking the deph at various places in crossing make a true section of the river. Stretch a string at right angles over it, and at a small di-tance another parallel to the first. Then take an apple, an wange, or other small ball. just so much lighter than water as to swim in it, or a pint or quart bettle partly filled with water, and throw it into the water above the strings. Obeerve when it comes under the fir-t string, by means of a quarter second pendulam, a stop-wateh, or any other proper instrument; and observe likewise when it arrives at the second string. By this means the velocity of the upper surface will be whtained. And the section of the river at the second string must be ascertained by taking varioudeptha, as before. If this section be the same as the former, it may be taken fur the mean section: if net, add buth together, and take half the sum for the mean seetion. Then the area of the mean section in :quare feet being multiplied by the distance between the strings in feet, will give the contents of the water in solid feet, which passed from one string to the other during the time of observation; and this by the rule of three may be adapted to any other portion of time. The operation may often be greatly abridged by taking notice of the arrival of the floating body opposite two stations on the shore, especially when it is not convenient to stretch a string acros.
M. litot invented a stream measurer of a simple con-truction, by means of which the velocity of any part of a stream may readily be found. This in-trument is empused of tro long tubes of glass open at both ends: ane of these tubes is erlindrical throughout; the other has one of its extrenities bent into nearly a rieht angle, and gradually enlarges like a funnel, or the mouth of a trumpet : theee tubes are both fixed in grooves in a triangular prism of wool ; so that their lower extremities are both on the vame level, standing thus one by the side of the other, and tolerably well preserved from aceidents. The frame in which these tubes stand is graduated, elose by the side of them, into divisions of inehes and lines.
T'o use this instrument, plunge it perpendieular! into the water; in such mamer that the opening of the fumel at the buttom of one of the tube-s shall be completely oppoed to the direction of the earront, and the water pass freely thrmogh the funnel up into the tube. Then observe to what heisht the water ri-es in each tube, and note the difference of the sides: for this difference will be the height due tw the relueity of the stream. It is manifest, that the water in the eylindrical tube will be raied to the same height as the surface of the stream, by the hydrustatic pressure: while the water entering from the current by the fume! ints the other tube, will be compellen to rise above that surface by a prace at which it will be sustained by the impulse of the moving fluid: that is, the momentum of the stream will be in equilibrio with the colnmn of water sustained in one tube above the surface of that in the wher. In extimating the velocity by means of this instroment, we mu-t have recourse to theory an "orrected by experiments. Thus, if h, the height of the column sustained by the strean, wr the differe chee of heights in the two tubes, be in feet, we shall have $v=6.5 \sqrt{ } h$, nearlis, the velocity, per sucombl. of the stream; if h be in inches, then $t=20.47 \sqrt{ } h$, nearly: or further experiment: made with the instrument itself may a little modify these confficients.

Xinm:. In an example like this, it is a good approximation, to mulliy!! contimutl! fergether, fho arou If the orifice, the mumber $330,(336=56 \times 66$,$) and the square root of the dy phe in feet of the middle$ of the oritire.

Thus, it the preceding example, it will be $\frac{1}{2} \times \frac{1}{2} \times 386 \times \sqrt{105}=\frac{1}{4} \times 3: 6 \times 2+0=1750$ eubic feet.

The luse the heisht of the orifice eompared with itedepth under the water, the nesmer will the result thes ohtaned apmonel to the truth. If the height of the oritice be such as to refoire consideration, the primejple of Art. ti, pase 17, inay be blended with this rule.
 fir the culde feet diseharged. This is less than the former result by almut its ! !meth part. It is, there-
 remerenee to tables.

 buratice

 Von. II.- 3
trieity from the ejected vapor, and thus prevent its returning to restore the equilibrium of the boiler The maximum pressure at the commencement of the experiments is 80 pounds, whieh gradually gets reduced to 40 pounds, or lower. The portion of the apparatus which is peculiarly connceted with the generation of the electrieity, is a series of bent tubes with their attached jets. Each jet consists of a brass socket, containing a cylindrieal piece of partridge-wool, with a circular hole or passage through it, $\frac{1}{8}$ of an inch in diameter, into which the steam is admitted throngh an aperture. The peculiar shape of this aperture appars to derive its efficaey from the tendency it gives the steam to spread out in the form of a cup, on entering the wooden pipe, and by that means to bring it and the particles of water of which it is the earrier, into very foreihle collision with the rubbing surface of the wood.

The electricity produced by this engine is not so remarkable for its high intensity, as for its enormous quantity. In no case, antecedent to this, has the electricity of tension taken so rapid a stride towards assimilating with galvanic electrieity. Mr. Faraday's experiments on the identity of the electricities had shown how small was the quantity obtained from the best machines; and had given good reason to expect that chemical effects would be exalted when the quantity could be inereased. And such is the ease here ; a very remarkable experiment in illustration of this is, that not only is gunpowder ignited by the passage of the spark, but even paper and wood shavings will be inflamed when placed in the course of the spark passing between two points-such an effect was never before produced with common electricity: In like manner, chemical decompositions are effected mnch more readily by means of the hydro-electrie, than by that from the common machine.
HIYDRO-EXTRACTOR. An apparatus for removing liquids or moisture from yarns or cloths in the process of manuficture. The main feature or prineiple of the machine is extremely simple, consisting merely of a circular open wire-basket, in which the wet cloths are placed as uniformly as possible, and which is then made to revolre with suels rapidity that the moistare is thrown out by the centrifugal force through the interstices of the basket. As the vis inertice prevents the instant communication of a sufficient velocity to the basket loaded with heavy goods, various expedients have been resorted to to make communieated velocity progres-ive. The contrivances for this purpose, on the original Engli h patent, are extremely complicated; but the arrangement slown in Fit. 2277, (which is an exterior view of the macline and the driving apparatus.) is much more simple, and perfectly effective. It is the invention of M. C. Bryant, of Lowell, Massachusetts. The whole machine rests on two square led-stmes; the out ide of the ease, or tub, is only shown in the figure, within which the wire-basket, open at the top for the reception of the groods, revolves on a vertieal shaft; to this shaft motion is communicater from the horizontal shaft leneath the tub by means of bevel-geers. On the extremity of this berizontal shaft is fixed the driving-pulley, res slown in the figure.) This pulley is of

the form usually employed on small tilt or trip hammers ；a belt pasing round this pulley，and contin ually moring，communicates motion to the pulley whenever a binder brings the belt in close contact with its periphery．The binder is attached to an extremity of an osellating frame，su－pended from the top of the tub，as shown in the figure．The binder preses against the belt so as to communicate motion to the pulley：To stop the motion，the upper end of the oscillating hinder－frame is pressed duwn by a handle；the binder relieves the belt，and a rope attached to the periphery of a small pulley on the binder－frame passing over a pulley fixed on the horizontal driving－shaft，and fastened at the uther end to the bottom of the tub，acts as a friction－brake to retard the motion of the shaft，and consequently uf the basket．To keep the binder－frame in extreme positions a morable weight is placed on the lathde rod at the top of the frame，which slides from one end to the other of the rul，as the binder is raisel or depresed．

The basket in this hydro－extractor is about three and a lalf feet in diameter；and in fall action， thould make about 800 revolutions per minute．The driving－belt is about eight inches wide；the driving－pulley eighteen inches diameter．
This machine is in operation at the Bay State Mills，in Lawrence，and at the carpet mill in Lowell； and machines similar in the main principle are cmployed in many of the mills in this country，and give complete sati－faction．
HIDDROMETER．An instrument for determining the specific gravities of liquids，ate thence the strength of spirituous liquors；these being inversely as their specific gravities．Various in－truments of different forms have been proposed for ascertaining readily the specific gravities of thide，but only two wr three of them are deserving of clescription．
The hydrometer represented in Fig． 2278 consists of a hollow glass ball 13，with a smaller ball（C appended to it，and which，from its superior weight，serves to keep the instrument in a vertical position， to whatever depth it may be immersed in a liquid．From the large ball rises a cylindrieal stem $a d$ ，on which are marked divisions into equal parts；and the depth to which the stem will sink in water，or any other liquid fixed on as a standard of specific gravity，being known，the depth to which it siuks in a liquid whose specific gravity is required，will indicate，by the scale，how much greater or less it is than that of the standard liquid．
Those most celebrated are the seales of Laumé，Cartier，Twaddell，and Guy Lussac．Most of these scale－are arbitrary，and formed after the ideas of their projectors，but having no particular reference by which they may be understood．
The centesimal hydrometer，by Guy Lussac，is an exception，the extreme points being water and absolute alcolol；this space is divided into one hundred parts， thus showing in alcoholic mixtures the per centage of alcohol in the liquid．They are made of glass，brass，and silver，ustally from six to ten inches long，of the form represented in the cut，the graduations being marked on the stem．

Table shoving the Comparative Scales of Grey Lussae and Bumé，with the specific Gravities and l＇ronf，at the Temperuture of 60° ．

Guy Lussaces Scate．	Baumê＇s Scale．	Specific Gravily．	Prour．
100	45	796	1007
95	40	815	！12 0～
こ	36	833	シッ
$\frac{5}{5}$ 5	33	818	㕲方三
范 81	31	863	
$\stackrel{75}{\square}$	23	876	52 こ
\％ 70	26	8s：	＋2
こ 65	21	901	$32)$
\＃in	23	919	20 the proof．
\％ 55	21	$9 \because 3$	12
$\stackrel{5}{5}$	19	933	
E 45	15	3119	8)
－ 411	17	451	14 ご
	16	0.5	$29\}$
：0	15	！11t	85 二气
$\because 5$	14	971	（s）

I：xplemation of Buame＇s scale：－Mamfacturers who employ Bamoe＇s hydrometer，or have weatous to know the value of the degrees on his seale，may tind the following formula a－eful：－
Let $B=$ Ibamés degrees，and $100=$ water．＇Ihen

$$
\text { Epecitie gravity }=\frac{144}{111-13} .
$$

That is to say， 141 divided by the difference lwotwen 111 and the given demper of Bamm，is the the citie

$$
\text { specific gravity }=111 \text {, or }{ }_{111}^{111}=14 \cdot 14=- \text { pecitic grasity. }
$$

Seale of Specific Gravitics indicated by Twaddell's Scale.

Twaddell.	Sp. Gr.						
0.	1000	50.	.1250	100	1500	150	1750
10.	. 1050	60.	1800	110	. 1550	160.	. 1800
20.	. 1100	70.	. 1350	120	. 1600	170.	. 1850
80.	. 1150	80.	. 1400	1:80.	.1450	1 so.	. 1900
40.	. 1200	90...	. 1450	140.	.1700	190.	1950

Hydrometer with weights. There is a varicty of kinds of hydrometers, with weights; the principal ones are Dica's and Sikes's. They are used fur ascertaining the strength of spirituons liquors.

Another easy method of determining the densities of different liquick, frequently practised, is by means of a sct of glass beads previously adjusted and numbered. Thrown into any liquid, the heavier balls sink and the lighter float at the surface; but one of them approaching the density of the liquid will be in a state of indifference as to buoyancy, or will float under the surface. The number on this ball indicates, in thousandth parts, the specific density of the liquid.

HYDROSTATIC PRESS. If there be any mumber of pistons of different magnitudes, any how applied to apertures in a cylindrical vessel filled with an incompressible and non-elastic fluid, the forces acting on the pistons to maintain an equilibrimm, will be to one another as the areas of the respective apertures, or the squares of the diameters of the pistons.

Let ABCD represent a section passing along the axis of a cylindrical vessel filled with an incompressible and non-elastie fluid, and let FF be two pistons of different magnitudes, connected with the cylinder and closely.fitted to their respectise apertures or crifices; the piston F being applied to the aperture in the side of the ressel, and the piston E occupying an entire section of the cylinder or vessel, by which the fluid is con-
 tained.

Then, because by the nature of fluidity, the pressures on every part of the pistons E and F, are mutually transmitted to each other through the mediom of the intervening fluid; it follows that these pressures will be in a state of equilibrium when they are equal among themselres.
Now, it is manifest, that the sum of the pressures propagated by the piston E, is proportional to the area of a transserse section of the cylinder ; and in like manner the sum of the pressures propagated by the piston F is proportional to the area of the ajerture which it occupies; consequently, an equilibrium must obtain between these pressures when the forces on the pistons are to one another, respectively, as the areas of the apertures or spaces which they occupy.

Hence it appears, that by taking the areas of the pistons E and F , in a proper ratio to one another, we can, by means of an incompressible fluid, produce an enormous compression, and that too by the application of a very small force.

$$
\begin{aligned}
\text { Put } \mathrm{P} & =\text { the force or pressure on the piston } \mathrm{E} \\
\mathrm{~A} & =\text { the area of the orifice which it occupies, } \\
p & =\text { the pressure on the piston } F, \text { and } \\
a & =\text { the area of the orifice or space to which it is fitted: }
\end{aligned}
$$

then, according to the primciple announced in the foregoing proposition and demonstrated above, we shall obtain

$$
a: \mathrm{A}:: p: \mathrm{P}
$$

But because, by the principles of mensuration, the areas of different circles are to one another as the squares of their diameters; if, therefore, we substitute d^{2} and D^{2} respectively for a and A in the above analogy, we shall have

$$
d^{2}: \mathrm{D}^{2}:: p: \mathrm{P}
$$

and from this, by making the product of the mean terms cqual to the product of the extremes, we get the general equation,

$$
p \mathrm{D}^{2}=\mathrm{P} d^{2} \ldots \ldots \ldots(\mathrm{~A})
$$

This is the principle upon which depends the construction and use of that very powerful instrument, the Irylrostatic P'ress, first brought into notice about the year 1796, by Joseph Bramah, Esq., of London.
The improvement introduced by Mr. Bramah, consisted in the application of the common forcingpump to the injection of water, or some other incompressible and non-clastic fluid, into a strong metallic cylinder, truly bored and furnisbed with a movable piston, made perfectly water-tight by means of leather collars or packing, neatly fitted into the cylinder.

The proportion which subsists between the diameter of this piston, and that of the plunger in the forcing-pump, constitutes the principal clement by which the power of the instrument is calculated; for, by reason of the equal distribution of pressure in the fluid, in proportion as the area of the transverse fection of the one exceeds the area of a similar section of the other, so must the pressure sustained by the one exceed that sustained by the other.

Therefore, if the piston F, in the preceding diagram, be assimilated to the plunger in the barrel of a forcing-pump, and the piston E to that in the cylinder of the hydrostatic press; then, the equation (A) involves every particular respecting the power and effects of the engine.

Exumple. If the diameter of the cylinder is 5 inches, and that of the forcing-pump one inch; what is the pressure on the piston in the cylinder, supposing the force applied on the plunger or smaller piston to be equivalent to $750 \mathrm{lb}=$?

Here we have given $\mathrm{D}=5$ inches, $\mathrm{d}=1$ inch, and $p=750 \mathrm{lbs}$; therefore, by substitution, equation (A) becomes

$$
5^{2} \times 750=\mathrm{P} \times 1^{2} ; \text { that } \mathrm{i}=\mathrm{P}=\frac{\mathrm{PD}^{2}}{d^{2}}=18,750 \mathrm{lbs}
$$

Rule.-Multiply the square of the diameter of the cylinder by the pressure on the piston, of the foreing pump, and divide the product by the square of its diamcter, and the quotient will express the intensity of the pressure on the piston of the eylinder.

$$
j=\frac{\Gamma d^{2}}{1)^{2}}:
$$

or, in words:-
Rule--Multiply the given presure on the piston of the erlinder by the square of the diamcter of the forcing pamp, and divide the product by the square of the diameter of the eylinder for the power required.

$$
\mathrm{I}=; \frac{\mathrm{P}}{p} \cdot
$$

Rule.-Multiply the pressure on the piston of the cylinder by the square of the diameter of the foreing pump, and divide the product by the force with which the plunger descends; then the square root of the quotient will be the diameter of the cylinder sought.

$$
l=1^{\prime} \frac{\bar{p})^{2}}{\mathrm{P}}
$$

Rule. Multiply the force with which the plunger descends by the square of the dianeter of the cyinder and divile the product ly the entire pressure on the piston; then extract the square root of the quotient for the diameter of the forcing pump.

The llydrostatic press is generally furnishal with an indicator or safety-ralue for measuring the intensity of prescure, which may lie easily estimated by ensidering the diameter of the valve, aml the pressure upon it as the plunger of the forcing pump, and using previons rules.

To determine the thickness of metal in the cylinder to withstand the required pressure. -The ammunt of foree which tends to rupture the cylinder along the curved side, that is to divide the cylinder in halves lengthways, is equal to the pressure per square inch on each lineal unit of the diameter multipliel by the length of the cylindere

Thns, let the piston of a hydranlic press be 10 inches in diameter, and the pressure 300 tons net : then the pressure per square inch of piston will be 300 tons divided by the number of square inches in the piston, or $600.000=7.609 \mathrm{lbs}$. The pressure per inch in length of the cylinder tending to split or tear it apart, is equal to the diameter multiplied by the pressure per square inch, or in this case, $10 \times 7680=$ $76,300 \mathrm{lbs}$, of which, of course, each side sustains one half.

The cohesive strength of cast iron varies from 13,000 to $20,000 \mathrm{lbs}$. per square inch; of wrought iron, from 50 to $60,000 \mathrm{ibs} ; 8,000 \mathrm{lbs}$ may be taken as the safe limit for cast iron, 20,010 for wromitht iron: hence, to withstand a lorce cqual $\frac{7390}{}$ or $32,105 \mathrm{lbs}$ on each sile; the thicknese, if east iron, should be about $\tilde{5}$ inches; if wrought iron, ${ }^{2} \underline{2}$ incles.
lreses made to withstind but little pressure, that is per square inch, are mostly male with cylinders of east iron. Some of the cylinders of large presses are made of cast irm, bound with wronght iron hoops, as fir. 20s9, but the best material to withstand yreat pressure, is wroneht iron. Of this material 1. Hoe \& Co., of New York, make their presses, and of this are the jacks of K. Hulgeon constructed.

An English rule for the constrnction of cast iron cylinders, is to make the thickness of metal equal to the interior radius of the cylinder, and to determine the entire pressure in tons. When the dianeter of the cylinder is given, the following simple rule is used:
linle.- Multiply the square of the diameter in inches by the constant mumber, $2 . l 18 l^{\circ}$, and the product will be the pressure in toms.

And again, when the pressure in tons is given, the diameter of the cylinker may be determined ly reversing the proces, or by the fillluwing rule:

Rule.-Divide the given pressure in tons by the constant number 2.4186, and cextract the symare rout of the quotient for the dianctor of the cylinder in incles.
lixample. The dianneter of the eylinder in al hydrostatic prea, is 10 inches; what is its power, or what pressure does it transmit?

Eirample - What is the diameter, and what the thickness of metal, in a press of son tons power?

 conequenty, the thickness of metal is, $t=10 \cdot 13 \div 2=5 \cdot 0)(30$ inchus.

The lyydrestatic press is one of the most convenient and simplest of all machues fire tranomittinge

 .rminer clain cables; ns a Jak it is male purtable, amb is mphentle to all the purpus bir whith *H M mathines are intembend.
 pump: \mathbb{F} is a strong metallie ceylinder of cat-iron, or some other material of sullicient demity th fto
 rupture, hy reason of the immense presure which it is hatimed to withetand.

water is conseyed or forced into the cylinder; the other end of the tube is attached to the forcing-pump as represented in Fig. 2280; but this will be more particularly explained in another place.

A A are two very strong upright bars, generally made of wrought-iron, and of any form whatever corresponding to the notehes in the sides of the flat table E , which is fixed upon the end of the piston D and by workmen is usually denominated the "follower" or "pressing-tuble."
B is the top of the frame into which the upright bars $\mathrm{A} A$ are fixed, and $e c$ is the bottom thereof both of which are made of cast, in preference to wrought-iron, being both cheaper and more easily moulded into the intended form.

The bottom of the frame $c c$ is furnished with fuur projections or lobes, with circular perforations, for the purpose of fasteuing it by iron bolts to the massive blocks of wood, whose transverse sections are indicated by the lighter shades at $\mathcal{G} G$. The top B has two similar perforations, through which are passed the upper extremities of the vertical bars A, and there made fast, by screwing down the cupmuts represented at a and a.

Fig. 2081 represents the plan of the top, or, as it is more frequently termed, the head of the frame; the lower side or surface of which is made perfeetly smooth, iu order to correspond with, and apply to the upper surface of the pressing-table E, in Fig. 2280; this correspondence of surfaces becomes necessary on certain occasions such as the copying of prints, taking fac-similes of letters, and the like; in all -nch cases, it is manitest, that smooth and coincident surfaces are indispensable for the purpose of obdining true impressions.

Fis. 2281 represents the upper sicie of the block, in which the middle part B (through whose rounded extremities a and a, the circular nerforations are made for receiving the upright bars or rods A A, Fig. 2280, is considerably thicker than the parts on ezch side of it; this augmentation of thickness is necessary to resist the immense strain that comes upon it in that part; for although the pressure may be equally distributed throughout the entire surface, yet it is obrious that the mechanical resistance to fracture must principally arise from that fart which is subjected to the reaction of the upright bars.

Fig. 2282 represents the plan of the base or bottom of the frame; it is generally made of uniform thickness, and of sufficient strength to withstand the pressure; for be it understood, that all the parts of the machine are subjected to the same quantity of strain, although it is exerted in different ways. The upright bars, cylinders, and connecting-tubes resist by tension, the pistons by compression, and the pressing-table, together with the top and bottom of the frame, resist transsersely.

The circular perforations $c e$ correspond to $a a$ in the top of the frame, and receive the upright bars in the same manner; the perforations $d d d d$ receive the screw-bolts which fix the frame to the beams of timber represented at GG, Fig. 2280; the large perforation F receives the cylinder, the upper extremity of which is furnished with a flanch, for the purpose of fitting the circular swell around the perforation, ans preventing it from moving backwards during the operation of the instrument.

A side riew of the engine, as thus completed, is represented in Fig. 2283, where, as is usual in all such descriptions, the same letters of the alphabet refer to the same parts of the structure.
F is the eylinder into which the fluid is injected; D the piston, on whose summit is the pressing-taole E; A one of the upright rocls or bars of malleable iron; B the head of the press, fixed to the upright bar Λ by means of the cup-nut $a ; c$ the bottom, in which the upright bar is similarly fixed; aml $(\dot{F}$ it beam of timber supporting the frame with all its appendages.

But the hydrostatic press, as here described and constructed, must not be considered as fit for immediate action; for it is manifestly impossible to bore the interior of the cylinder so trnly, and to turn the piston with so much precision, as to prevent the escape of water between their surfaces, without inareasing the friction to such a degree, that it would require a very great force to counterbalance it.

In order, therefore, to render the piston water-tight, and to prevent as nuch as possible the increase of friction, recourse must be had to other principles, which we now proceed to explain.
The piston D is surrounded by a collar of pump leather oo, represented in Fig. 2284, whieh collar being doubled up, so as in some measure to resemble a lesser cup placed within a greater, it is fitted into it cell made for its reception in the interior of the cylinder; and when \qquad P P there, the two parts are prevented from coming together by means of the copper ring $p p$, represented in Fig. 2255, being inserted betwecen the folds, and retained in its place, by a lodgment made for thai purpose on the interior of the eylinder.

The leather collar is kept down by means of a brase or lefl-metal ring $m \mathrm{~m}$, Fïs. -2.6 , which ring is received intu a recess furmed romel the interior of the evlinder, and the circular aperture is fittel to admit the piston D to pass throngh it, without materially increasing the effects of friction, which ought to be aroiled as much as possible.
The leather is thus confined in a cell, with the edge of the inner fuld applied to the
 piston D , while the edge of the outer fold is in contact with the eylinder all around its interior circumference; in this situation, the pressure of the water acting between the fulds of the leather, forees the edges into close contact with both the eylinder and piston, and renders the whole water-tight; for if the leather be properly constructed and rightly fitted into its phace, it is almust impossible that any of the fluid can escape; for the greater the pressure, the cluser will the leather be applied to both the piston and the cylinder.

The metal ring $m m$ is truly turned in a lathe, and the cavity in which it is placed is formed with the same geometrical accuracy; but in order to fix it in its cell, it is cut into five pieces by a very fine saw, as represented by the lines in Fig. 2286, which are drawn across the surface of the ring. The four seginents which radiate to the centre are put in first, then the segment formed by the parallel kerfs, (the copper ring $p p$ and the leather collar oo being previously introduced,) and lastly, the piston which carries the pressing-table.

That part of the cylinder above the ring $m \mathrm{~m}$, where the inner surface is not in contact with the piston, is filled with tow, or some other soft material of a similar nature; the material thus inserted has a twofold use: in the first place, when saturated with sweet oil, it diminishes the friction that necessarily arises, when the piston is forced through the ring $m m$; and in the second place, it prevents the admission of any extraneous substance, which might increase the friction or injure the surface of the piston, and otherwise lessen the effects of the machine.

The packing here alluded to, is confined by a thin metallie aunulus, neatly filted and fixed on the top of the cylinder, the circular orifice being of sufficient diameter to admit of a free and easy motion to the piston.

If a cylinder thus furnished with its several appendages be placed in the frame, and the whole firmly screwed together and connected with the forcingr-pump, as represented in Fig. asso, the press is completed and ready for immediate use; but in order to render the construction still more explicit and intelligible, and to show the method of comecting the press to the forcing-pump, let Fig. 2.27 represent a section of the cylinder with all its furniture, and a small portion of the tube immediatcly adjoining, by which the comection is effected.

Then is F F the erlinder; 1) the piston; the un-laded parts o o the leather collar, in the fulds of which is placed the copper ring $p p$, distinctly seen, but not marked in the figure; $m m$ is the metal riner by which the leather collar is retained in its place; $n n$ the thin plate of copper or other metal fitted to the top of the eylinder, between which and the plate $m m$ is seen the soft packing of tow, which we have described alove, as performing the double capacity of oiting the piston and pre-
 ventime its derangenent.

The combination at $w x$ represents the method of emnecting the injecting-tube to the cylinder: it may be readily under-tood by inspecting the figure; but in order to remone all cances of dibsenrity, it may be explained in the following mamer.

The end of the pipe or tube, which is generally made of copiper, has a projecting piece or socketflanch soldered or screwed upon it, which fits into a perforation in the side or hase of the cylinder. according to the fancy of the projector, but in this figure the perforation is in the sile.
The tube thus furnished is forcibly pressed into its seat by a hollow serew im, catled a union seresw, which fits into another cerew of equal thread made in the cavity of the cylimber; the joint is madu water-tight, by means of a collar of leather, interpused between the end of the tule and the bottom of the cavity:

A similar mode of connection is emploved in fastening the tube to the fording-pump, the description of which, although it constitutes an important portion of the apparatns, dees not properly belons to this place ; the principles of its construction and monde of aetion must therefore be supluad in known, until we eome to treat of the construction and uperation of pumps in general.

Admitting, therefore, that the action of the forcinerpup is understool, it only mow remains to cxplain the nature of its opration in comection with the hylrostutic press, the cemstruction of which we have *os copron-ly exemplitied.

In order to understand the operation of the prosa, we must conceive the jiston 1), Fing. 2n-2h, ns bume at ita lowest prossible poxition in the eylinder, and the buly or sub-tance to be presed, phated ann the
 the forcing-pump, it will enter the chamber of the cylindarf immeatiately lemeath the piatim 11 amb
 Aeterminable by the ratio between the spuare of the diameter of the e? linder atm that of the fore ne

 thicknens of metat, it would he inatife to combme the atrain.

 own wrizht, return to their oripinal pumbtion.

open eylindrical or other vessel a bent tube be inserted, and if on the surface of the fluid a movabl: cover exactly fitting the vesel be placed with a weight upon it, and the tube graduated:-
Then, any additional weight placed upon the cover, may be determined by knowing the height te which the thuid rises in the tube; and conversely:-If the additional weight be known, the height to which the fluid rises in the tube may be found
Let $\triangle \mathrm{BCD}$ represent a vertical section of a cylindrical vessel, or of any other vessel, whose sides are perpendicular to the horizon; and let KIC be the corresponding section of the equilibrating tube.
Let both the vessel and the communicating tube be open at the upper parts $A 13$ and de, and conceive the ressel to be filled with fluid to the line EF or altitude D E; then, on the surface of the fluid at EF , let there be placed a movable cover exactly fitting the vessel, so that the whole may be water-tight.
Produce E F to b, then is the point b at the same level in the tube 1 k", as the surface of the fluid in the ressel whose level is E F: upon the corer E F let the weight w be placed, and suppose a to be the point in the tube, to which the tluid will rive by the action of the cover, together with the weight w which is placed upon it; in this case, the machine is in a state of equilibrium.

If some additional weight $x^{\prime \prime}$ be phaced upon the cover, then the original equilibrium
will be destroyed, and can only be restored by the tiuid ascending in the tube to a sufficient height tobalance the additional weight.

Put $D=A B$ or $D C$, the diameter of the cylindrical vessel, of which $A B C D$ is a section,
$d=d e$, the diameter of the communicating tule K 1 C ,
$k=b a$, the height of the original equilibrating column,
$u=$ the weight supported by the column $b a$,
$m^{\prime}=$ the additional weight, whose quantity is required,
$h^{\prime}=a k$, the increased altitude of the supporting column,
$\delta=\mathrm{E} m$, the descent of the cover oceasioned by the additional load w^{\prime}, and
$s=$ the specifie gravity of the fluid.
Then it is manifest, that when the equilibrium originally obtains; that is, when the surface of the fluid in the tube is at a, and that in the ressel at $E F$, the pressure of the fluid in the tube exerted at b, is

$$
p=7854 d^{2} h s
$$

Where the symbol p denotes the pressure at b; omitting the steps of the algebraic calculation, we obtain

$$
w^{\prime}=7854 h^{\prime} s\left(\mathrm{D}^{2}+d^{2}\right) .
$$

If the fluid be water, whose specific gravity is represented by unity, the equation becomes somewhat smpler; for in that case, we have

$$
u^{\prime}=7854 h^{\prime}\left(\mathrm{D}^{2}+d^{2}\right)
$$

From this equation the magnitude of the additional weight, or the measure by which it is expressed, can very easily be ascertained; and the practical rule by which it is discovered is as follows:

Rule-Multiply the sum of the squares of the diameters by 7854 times the rise of the fluid in the tuhe, or the elevation above the first level, and the product will express the magnitude of the additional reight.

Example.-The diameter of a cylindrical vessel is 16 inches, and that of the communicating tube one inch; now, supposing the machine in the first instance to be in a state of equilibrimm, and that by the addition of a certain weight on the movable cover, the water in the tube rises 6 inches above the original equilibrating level; how much weight has been added?

By proceeding, according to the rule, we have $D^{2}+d^{2}=16^{2}+1^{2}=256+1=257$, and ly multiplication, we obtain $w^{\prime}=7554 \times 6 \times 257=1211.0868$ avoirdupois lbs.

If the additional weight by which the water is made to rise in the tube be given, the distance above the first level to which it will rise, can easily be found; for let both sides of the equation $w^{\prime}=7854 h^{\prime}$ $\left(\mathrm{D}^{2}+l^{2}\right)$ le divided by the quantity $-7854^{\prime \prime}\left(\mathrm{D}^{2}+d^{2}\right)$, and we shall obtain

$$
h^{\prime}=\frac{w^{\prime}}{7854\left(\mathrm{D}^{2}+d^{-}\right)^{\prime}}
$$

And from this equation, we deduce the following rule:-
Iiule.-Divide the additional weight by the sum of the areas of the movable cover and the cross section of the communicating tube, and the quotient will give the height to which the fluid will rise above the first level.

Excomple.-The diameter of the movable cover is 16 inches, and that of the communicating tube one inch; then, supposing that the machine in the first instance is brought to a state of equilibrium, and that a load of 1211 lbs is applied on the eover, in addition to that which produces the equipoise; to What height above the first level will the water ascend in the communicating tube?

Iroceeding, according to the rule, we obtain $\cdot 7854\left(\mathrm{D}^{2}+d^{2}\right)=.7854\left(16^{2}+1^{2}\right)=201.8478$ divisor; son-equently, by division it is $h^{\prime}=\frac{1211}{201 \cdot 85 / 5}=6$ inches nearly.

And exactly after the manner of these two examples, may any other case be calculated; but in applying the principles to the determination of weights, mereury ought to be employed in preference to water, as it cxerts an equal influchee in le-s space, and besides, it is zot subject to a change of density by putrefaction and the like.

Figs. 2280 and 2290 show the elevation and plan of a press capable of giving a pressure equal to 200 tons weight; also of a press which is suitable for a pressure of 50 tons weight. Bv the arrange ment shown, one set of pumps is sufficient to operate both presses.

The hand-wheels s and r operate valves which can be opened or shut as is wanted, so as to connect or shut off either press from the pumps. w is a hand-wheel moving a valve which allows either of the press cylinders to be drawn off, and returns the water into the tank under the pump through the pipe t^{2}. t is a pipe through which the water is pumped on its passage to the presses until it reaches the valves s and r, where it passes through the pipes r^{2} or s^{2} to either or both presses, as is wanted. The pumps have three pistons, which are operated by the threc-throw crank II, and are driven by means of the pulleys G.
ssss are foundation blocks, of stone, on which the presses are placed. $m \mathrm{~mm}$ is a wooden frame under the small press to raise it to a convenient height. A and a, are the chambers or cylinders of the presses. B and b, are the pistons. D D and $d d$, are the top and bottom pieces, and E E, ec, are the columns to the frames. C and c, are the platens or followers which are moved up by the pistous B and b. These presses are from the Lowell Machine Shop.

HYGKOMETER, an instrument for measuring the degrees of moisture or drynes of the atmosphere
Variations in the state of the atmosphere, with respect to moisture and dryi-s, are manifested by a great variety of phenomena, and, accordingly, numerous contrivances have been propmed for ascertain ing the amounts of those variations by referring them to some comentional seale. All such contrivances are called hygrometers; but though the variety of form that may be givell 10 them, or of substances that may be employed, is endless, they may all be referred to two clases; namely, 1st, thuse which aet on the principle of alsorption; and, $2 d$, those which act on the principle of conden ation.

1. Hygrometers on the principle of absorption.-Many sub-tances in each of the three kinedums of nature absorb moisture from the atmosphere with greater or less avidity, and thereby sufter some change in their dimensions, or weight, or some of their plysical properties. Animal fibre is softemed and relaxed, and consequently elongated, by the abeorption of mosture. Cords compersed of twinted vegetable substances are swollen, and thereby shortened, when penetrated by humidity; and the alternate expansion and slyinking of most kinds of woud, especially when used in cabinet-work, and after the matural sap has been evaporated, is a phenomenon with which every one is familiar. Many mineral substances absorb moisture rapidly, and thereby obtain an increase of weight. Nuw it is evident that any of these changes, either of dimension or of weight, may be regarded as the measure of the quantity of moisture absorbed, from which the quantity of water existing in the atmouphere in the state of vapor is inferred; but many of them are so small in amount, or take place so slowly, that they atford no certain indication of the actual state of the atmosphere at any particular moment.

Sanssure's hygrometer consists of a human hair, prepared by boiline it in a canstic ley. One ex. tremity of the hair is fastened to a hook, or held by pineers; the other has a small weight attached te it, by which it is kept stretched. The hair is passed over a grooved wheel or pulley, the axis of which carries an index which moves over a graduated arch. Such is the essential part of the instrument, and it is easy to conceive how it acts. When the surrounding air becomes more humid, the hair ab-orls an additional quantity of moisture, and is elongated; the counterpoise consequently deseends, and turns the pulley, whereby the index is moved towards the one hand or the other. On the contrary, when the air becones drier the hair loses a part of its humidity, and is shortened. The counterpoise is consequathty drawn up, and the index moves in the opposite direction. The accuracy ol the indications on this in-trument depends on the assumed principle that the expansion and contraction of the hair are due to moisture alone, and are not affected by temperature, or other changes in the condition of the atmo -phere. Experiment-hows that the influence of temperature is not very great; but after all precautions have been taken in preparing the in-trument, it is found to be exceedingly irregular in its movencont-, and subject to great uncertainties. Besides, the substance is soon deteriorated, and will scareely maintain its properties umpaired during a single year.

The hygrometer of De Luc consists of a very thin slip of whalcbone, cut transversely or acruss the fibres, and stretched, by means of a spring, between two points. One end is tixed to a bar, while the other acts on the shorter arm of the index of a graduated scale. When the whalebone absorbs moisture it swells, and its length is increased; as it becomes dry it contracts; and the space over which the index moves by the one or the other of these effects, gives the masaure of the expansion or contration, and the corresponding change in the hygrometrie state of the atnow phere. The action of this hygrometer appars to be more uncertain than that of Silussure.

The hygrometers which have been proposed on the principle of a change of weirht arising from the absorption of movi-ture, are liable to stal! greater objections. Chateres of weight may indeed be meatured with greater aceuracy ly the common or tursim balance: but in the present cancia they are -o small, that the particles of dust which are at all times floating in the atmophere may produce a great alcuration in the results.

Hygrancer, portable.-This hyigrometer is of very simple. con-truction, mud is so arrimged at to show the lamidity of the atho-phere in decimal parts of the saturation, ats well as to afford a means of aneertaining the dew-pont. Fig. 229t reprenents at front devation of the instrument, with the details clutted. A is the back or main supporting piece. of metal or glatse, to which is attached, at the lower extrenity, a lener thin strip of worel, the gratin of which ranith a direetion transverse to the lengeth of the strip. 'Ihe יpper chal of this strip is attacheld to the nxis of the imbex C. which peints out the degrexes of satimation of the ntmosphere. A helie:al spring 1) is fastened at its lower emi to
 a brasket prejeeting from the frome of the back pienee A, ita

Phere, moves the index round accordingly, and thus indicates upon the graduated dial the ratio o moisture existing at the time being.

The dew-point is readily found by first ascertaining the exact temperature at the time of observation, and from this subtracting the number indicated on the dial by the hand C , the remainder being the temperature corresponding to the amonnt of moisture in the atmosphere, or, as it is technically temed the dew-point.
2. Irymrometers on the principle of condensation.-The instruments of this class are of a more refined uature than thuee which we have been describing. In order to give an idea of the general principle on which they depend, let us conceive a glass jar, haviug its sides perfectly clean and transparent, to be Gilled with water, and placed on a table in a room where the temperature is, for example, 60°, the temperature of the water being the same as that of the room. Let us next suppose pieces of ice, or a freezing mixture, 10 be thrown into the water, whereby the water is gradually cooled down to 55,50 , 45, de., degrecs. As the process of cooling goes on, there is a certain instant at which the jar loses its tran-pareney, or becomes dim; and on attentively examining the phenomenon, it is found to be caused by a very fine derf; or deposition of aqueous rapor, on the external surface of the vessel. The precise temperature of the water, and, consequently, of the vessel, at the instant when this deposition begins to be formed, is called the dew-point, and is capable of being noted with great precision. Now this temperature is evidently that to which, if the air were cooled down, under the same pressure, it would be completely saturated with moisture, and ready to deposit dew on any body in the least degree colder than itself. The difference, therefure, between the temperature of the air, and the temperature of the water in the ressel when the tlew begins to be formed, will afford an indication of the dryness of the air, or of its remoteness from the state of complete saturation.

But the observation which has now been described is capable of affording far more interesting and precise results than a mere indication of the comparative dryness or moisture of the atmosphere. With the help of tables of the elastic force of aqueous vapor at different temperatures, it gives the means of determining the absolnte weight of the aqueous vapor diffused through any given volume of air, the proportion of vapor existing in that volume to the quantity that would be required to saturate it, and of measuring the force and amount of evaporation.

The elastic force of aqueous vapor at the boiling point of water is evidently equal to the pressure of the atmosphere. This may be assumed as corresponding to a column of mercury 30 inches in height. Mr. Dalton, in the fifth volume of the Manchester Memoirs, has given the details of a most valuable and beautiful set of experiments, by which he ascertained the elastic force of vapor from water at every degree between its freezing and boiling points, in terms of the column of mercury which it is capable of supporting. As the same experiments have siuce been frequently repeated, and the different results present all the accordance which can be expected in so delicate an investigation, the tension of vapor at the different temperatures may be regarded as sufficiently well determined. Supposing, then, we have a table exhibiting the elasticity or tension correspondiug to every degree of the thermometer, the reirht of a given volume of vapor, for example, a cubie foot, may be determined as follows :-
stem at 212°, and under a pressure of 30 inches of mercury, is 1700 times lighter than an equal bulk of water at its greatest density, or a temperature of about 40°, and a cubie foot of water at that tcmperature weighs 437,272 grains; the weight, therefore, of a cubic foot of steam at that temperature and pressure is, $43: 272 \div 1700=257.218$ grains. Hence we may find the weight of an equal bulk of vapor of the same temperature under any other given pressure, suppose 0.56 of an inch; for the density being directly as the pressure, we have $30 \mathrm{in} .: 0.56 \mathrm{in} .:: 257.218 \mathrm{grs} .: 4.801 \mathrm{grs}$, which is the weight reguired.

Having thus explained the principle of the condensation hygrometer, we will now describe one or two of the forms under which it has been most frequently construeted. Daniell's hygrometer is represented in Fig. 2292: a and b are two thin glass balls of $1 \frac{1}{4}$ inch diameter, connected together by a tube having a bore about $\frac{1}{8}$ of an incll. The tube is bent at right angles over the two balls, and the arm $b e$ contains a small thermometer $d c$, whose bulb, which should be of a lengthened form, descends into the ball b. This ball having been about two-thirds filled with ether, is heated over a lamp till the fluisl boils, and the tapor issues from the capillary tube f which terminates the ball a. The vapor haring expelled the air from both balls, the capillary trbe is hermetically closed by the thame of a lamp. The other ball a is now to be cosered with a piece of muslin. The stand $y^{h} h$ is of brass, and the transverse socket i is made to hold the glass tube in the manner of a spring, allowang it to turn and be taken out with little difficulty. A small thermometer $k l$ is inserted into the pillar of the stand. The manner of using the instrument is this: After having driven out all the ether into the ball b by the heat of the hand, it is to be placed at an open window, or out of doors, with the ball b so situated that the surface of the liquid may be nu a level with the eye of the observer. A little ether is then to be dropped on the corered ball. Evaporation immediately takes place, which, producing cold upon the ball a, eauses a rapid and continuons condensation of the ethereal rapor in the interior of the instrument. The consequent exaporation from the included ether produces a depression of temperature in the ball l, the degree of which is measured by the
239.
 thermoneter $d c$. This action is amost instantaneons, and the thermometer begins to fall in two seconds after the ether has been dropped. A depression of $: 30$ to 40 degrees is easily produced, and the ether is sometimes observed to boil. and the thermeneter to be driver, below zero of Fahrenheit's scale. The artificial cold thus produced canses a condensation of the atmospheric rapor upon the ball b, which first makes its appearance in a thin ring of dew cosincident with the
surface of the elher. The degree at which this takes place must be earefully noted. In very damp on windy weather the ether should be very slowly droppel upon the ball, otherwise the deacint if the thermometer will be so rapid as to render it extremely diflicult to be certain of the dearee. In dry weather, on the contrary, the ball requires to be well wetted more than onee, to produce the requi-ite degree of cold. (Damiell's Meteorological Essitys.)

The instrument which has now been deseribed is extremely beautiful in principle ; but it may be duabted whether, even when the greitest cantion is observed, the temperature which it indiatie is precisely that at which the deposition of dew takes place. The deposition first occurs in a marrow rine in a level with the surface of the echer in the ball 8 , thereby indieating that the ether is ender at the -urface than a little under it. But if the temperature is not uniform throughout the bath, it is evident What only a small part of the bulb of the thermoneter can be placed in the point where the greateat cold exists; consequently, the temperature indieated by the thermometer will be ereater than is meces sary fir producing the deposition of mointure: in other words, the dew-point will be given tow hich.

II I'PRBOLA. A plane figure, formed by cutting a section from a cone ly a plane parallel to it axis, or to any plane within the cone which passes throurg the cone's rertex.

The curve of the hyperbola is such, that the difference between the distances of any print in it from two given points is always equal to a given right line.

If the rertexes of two cones meet each other so that their axes form one continuous straight line and the plane of the hyperbola cut from one of the cones be continued, it will cut the othere cone, and form What is called the opposite hyperbole, equal and similar to the former; and the distance between the errtexes of the two hyperbolis is ealled the major axis, or transuerse diancter. If the distance between a certain peint within the hyperbola, called the focus, and any point in the curve, be subtracted froms the distance of said point in the curve from the foens of the oppe-ite hyperbala, the remainder will always be equal to al gicen quentit!, that is, to the major axis; and the di-tance of either foems from the centre of the major axis is called the eccentricity. The line passing through the centre perpendieular to the major anis, and having the distance of its extremities from tho-e of this axis equal the eccentricity, is called the minor esis, or comjofute diameter. An ordinate to the major axis, a double ordinate, and an cusciss, mean the same as the eorresponding lines in the parabola.
 the areas between the asymptete and curve of the hyperbola, those areas being limited by ordinates [arallel to the other asymptete, and the ordinates decreasing in geometrical progression. But as such areas may be mate to denote any syetem of hugarithos whatever, the denomination is not correct. The hyperbolic logarithon of any mumber is to the common logarithm of the same number in the ratio of $\because 84258509$ to 1 , or as 1 to 43429448 .

ICE. Water in a solid, erystallized state, owing to the abstraction of its combined heat. Its specifie gravity, according to Dr. Thom-on, is 92 . The foree of expansion exerted by water in the act of freez. H:5 latis been found irresistible in all mechanieal experiments to prevent it. Adrantage of this wonder. i: phenomenon is taken to burst boub-shells, and other massive vessels, by filling them with water, plusgry them up, and then expo-ing them to the frost. The effects of this expansire force are often of-wable by the bursting of trees, and the rending of rocks, attended with a noise resembling the exphain of conitined gumpowder. Water, after being long kept boiling, affords an ice more solid, amd with fewer air-bubbles, than that which is formed from undoiled water; also pure water, kept for a lome time Im satue, and afterwards frozen there, freeze; much sonner than commom water expuned to the same degree of cold in the open atmosphere; and the ice formed of water thas divented of its air, is much more hard, oolel, heary, and transparent, than common ice. lee, after it is formed, entinues to expand he decrease of temperature ; th which fact is probably attributable the ocea-inall splittime amd heakine up of the ice of pomels during the time of freezing, and armetimes, independent of onther canser, the - pp. aration of icebergs from the great frozen eontinent at the pules. According to Dr. Back, we repuires $1: 17$ dererecs of heat tor raluce it to a tluil.

 lunir with at tur wimb.

To cross rivers full of floating ice, very strong boats or canoes, cut out of entire trees, are required tc resist the pressure; they may be dragged over the floes (even if in motion) which are too solid to admit of breaking canals through them.

Small barriers of ice, or the keys of barrers interrupting the navigation, or causing an inundation, may be destroyed by turning streams of water against certain points, so as to melt an opening, or by means of charges of powder in casks or bags, fixed underneath or lodged in holes bored in the ice, anc fired simultaneously. A charge of six pounds, placed in the centre of ice two feet thick, will break it up into small pieces throughout a circle of ten feet radins.

Ice and snow, well rammed together, form temporary parapers capable of even more resistanc. against shot than those of earth.

ICE-BOATS. There are many descriptions of boats which come under this denomination; namely, those that are designed to sail upon the surface of the ice, and those that are employed to open the navigation of frozen rivers or canals, by breaking up the ice. The first mentioned kind of boats is much used in Holland, on the river Maeze and the lake Y. These ice-boats are propelled, it is said, with incredible swiftnese, sometimes so quick as to render respiration difficult; they are found very :lseful in conveying goods and passengers over lakes and great rivers in that country. For this pur pose a boat is fixed transversely over a thick plank, or three-inch deal, under which, at the extremities, are fixed irons, turned up forwards, resembling and operating as skates; upon this board the boat rests, with its keel at right angles to it; and the extremities of the boards serve as out-riggers to prevent the boat from upsetting, whence, therefore, ropes are fastened that lead to the head of the mast, in the Liture of shrouds, and others passed through a block across the bowsprit. The rudder is made somewhat like a hatchet, with the edge placed domnwards, which, being pressed down, cuts the ice, and serves all the purposes of a rudder in the water, by enabling the helmsman to steer, tack, de.

The other kind of ice-boat alluded to, is a strong and heavy-laden canal boat, fitted up for the pur dose of breaking the ice, by arming the fore-part of the keel and the bows with iron, which penetrate and break down the ice as the boat is drawn forcibly along by an adequate number of horses towing it on the path. This measure of opening the navigation of a canal is seldom adopted, except when the ice is only a few inches in thickness, or when a thaw has rendered thicker ice of little tenacity.

ICE-HOUSE. A repository for ice during the summer season. In America and other places ice is kept in dleep cellars, from which the external air is excluded as much as possible, and provided with drains to keep them dry. When the surrounding soil is moist, a frame-work or case of carpentry is constructed, having a grating at bottom, and is so placed in the cellar as to be two or more fect distant from the tloor, sides, and roof of the cellar. In this the ice is said to be as perfectly preserved as in a dry cellar. Some market-gardeners preserve ice in great heaps, by merely building it upon an elevited base in the open garden, and covering it over and around by.a very thick stratum of straw or reeds. This plan of preserving ice is in accordance with Mr. Cobbett's recommendation in his Cottage Liconomy, wherein he observes that "an ice-house should not be underground, nor shaded by trees, but be exposed to the sun and air;" that its bed should be three feet above the level of the ground, and composed of something that will admit of the drippings flowing instantly off; and he adds, that "with some poles and stran, a Virginian will construct an ice-house for ten dollars, worth a dozen of those which cost the man of taste in England as many scores of pounds." The ice-houses built by the Virgininas consist of an inner shed, surrounded by an outer one, and haring a sufficient vacant space between the two to enable a person to walk round; the walls and roofs of both the sheds are made of thatch, laid on about a foot thick; and the ice is deposited in the inner shed on a bed of straw. In England and France, the common form of icc-houses is that of an inverted cone, or rather of a hen's egrs, with the broad end uppermost. The situation of an ice-house should be dry, as moisture has a tendency to dissolve the ice; it should also be so elevated that water may freely run off. It should be exposed to the sun and air, not under the drip, or in the shade of trees, in order that the external deporit of moisture may be readily eraporated. The form of the building may be varied according to circumstances; but in the well or receptacle for the ice, it is desirable to have sufficient room for the deposit of two or three years' consumption, as a provision against mild winters. Where the situation is of a dry, chalky, gravelly, or sandy kind, the pit may be entirely below the surface of the ground; in which case, an ice-house on the following plan may be adrantageously introduced.

Dig a pit of about twelve feet deep, and wide enough to permit the erection therein of a frame of rough wood posts. This frame is to be fourteen feet wide each way at the bottom, and sixteen feet each way at the top. The pusts may be about nine inches in diameter, placed near enough to each other for thin latis to be mailed upon them, and the inside be dressed to an acute angle, so that as little wood as possible may touch the ice. On the inside let thin laths be nailed at about two feet apart. On the outside, at moderate distances, nail rough boards, and fill the place within with wheat or rye straw set on end. The inside of the roof to be made in the same way, and also the gables. Straw is to be sewerl on the inside, and heath or straw on the outside of the door. The outside of the roof is to be thickly thatched with straw or heath; and heath, brushwood, or fir-tops, to be filled in between the out-ide boarding and the surrounding ground, and then neatly thatched or turfed over. The bottom or the house, for two feet deep, should be laid with large logs or stones, next with heath, fir-tops, or brushwood, and then with straw. The ice-house, thus completed, will look like a square bechive inverted, and is then ready to receive the ice or snow. But, unless the house be in a very shady place, it may be necessary to extend the roof, where the door is placed, five or six feet, making a second gable and door, fini-hed in the same way as the first, and fill up the intervening space, except a passage, with heath or straw.

Mode of filling the house.-When the ice (or snow, if ice camot be procured,) is put into the house, it must be well beaten down with a pavior's rammer, or mallet, and the surface aluays kept concrue, as by this means any snow or ice that may melt will run to the middle, or interstices, and freeze. Гor the sane reason, the ice ought always to be kept concave when it is taken out for use. Should the
frost be very intense when the ice-hou=e is getting filled, it may be very beneficial at the elose of each day's flling to throw in thirty or forty pails of water, which will fill the inter-tices and freeze. When the house is full, spread upon the concave surface a carpet, or sail split up in the midthe, and upon the top thereof a foot thick of water When ice is required for the use of the family, or when it is neesesary to put in fresh meat to lie on the face of the ice for preservation, or to take unt fur use, the straw and carpet, or sail, is to be opened in the middle. Should rats infest the place, an irm-wire frame or case may be required to put the meat or fish, de., into when lying on the ice. A small opren surface-drain ought to be dug round the house, to present any water runing into it. Opening the derir of the house does little harm. Damp or dense substances touching the ice are much more prejudicial than dry air.

ICE-SAWS. Large saws used for cutting through the ice, for relieving ships when frozen up. The vessels employed in the Greenland fisheries, and others that nawigate the polar seas, are regularly furnished with these machines, as the lives of the crew not unfrequently depend on the expedition with which a passage can be cut, so as to disengage the vessel before the further accumulation of ice renders it an impossible undertaking. The saw, with a meight suspended to it, is introduced by means of a hole broken through the ice, and is suspended by a rope pased over a pulley fixed to a triangle. A party of a dozen or more men run out and back again with a rope, and thus move the saw up and fown till it has cut it; way so far ats to hang perpendicularly from the pulley. The triangle i- then mosed a foot or two further, and the sawing recommences, the services of the whole crew being required III this laborious undertaking.
in Hoodl's machine, the saw is suspended by a slight sledige, and is worked by the power of only two or three men at the end of a lever ; a bar, called a propeller, is fixed on the lever between the fulcrum and the saw, the other end resting on the surface of the ice, and so adjusted that each motion of the tever shall produce a cut of a given length, and at the same time, ly means of the propeller, pu-h the sledge on, so that the teeth of the saw slanll always be in eontact with the ice.

Fig. 2293 gives a side elewation of the machane. a a a is n sledere, of open fiame work, re-tiner whe the unface of the ice; b a trambere bar passing through the lever $c c$, and formine the fulderm om which it moves; this haver has a crose handle, as ripresented in purspective in dotted lines; e a chang or brace consi-ting of two cheeks, one on each side of the laver, lumely pimed at tip to the lever, and at luttom to the saw f; g a clampsimilar to c, liy which the we eight il which is of the shape of a douhbe emsex lema is han to the lower end of the saw ; i the propeller, an irn har, terminating belus in two

 view, on the other side of the machime, whout is inches apart, :mil commeded ho trom wor lar. Ih

pieces most convenient for removal, either by pushing them under the adjacent floor of ice, or by drag. ging them out of the ship's track into elear water.
ICE-TRADE. The ice-trade of the United States was commenced by Frederic Tudor, of Boston, in 1805. The first enterprise resulted in a lose, but was, nevertheless, followed up until the embargo and war put an end to the foreign trade, at whieh period it had yielded no profit to its projector. After the close of the war, in 1815, Mr. Tudor recommenced his operations by shipments to Havana nuder a contract with the government of Cuba, which enabled him to pursue his undertaking without loss, and extend it, in 1817 , to Charleston, S. C.; in the following year to Savannah, Ga.; and in 1820 to New Orleans. On the 18 th May, 1838 , the first shipment of ice was made to the East Indies, by Mr. Tudor, and since that period he has extended his uperations to Madras and Bombay.
I'reviously to 1832 the trade had been chicfly confined to the operations of the original projector, although several enterprises had been undertaken by other persons and abandoned. The increase of shipments to this period lad heen small, the whole amounting, in 1832, to 4352 tons, which was taken entirely from Fresh Pond, in Camoridge, and shipped by Mr. Tudor, who was then alone in the trade. Up to ihis time the ice business was of a very complicated nature. Ship-owners objected to receive it on freight, fearing its effect on the durability of their vessels and the safety of voyages; ice-houses abroad and at home were required, and the proper mode of constructing them was to be ascertained. The best modes of preparing ships to receive cargoes were the subject of expensive and almost eudless experiments. The machines to cut and prepare ice for shipping and storing, and to perform the operations of hoisting it into storehouses and lowering it into the holds of ressels, were all to be inventel, involving much expense and vexation. Many of these difficulties have now been overcome, and since 1832 the trade has increased much, and appears destined to a still more rapid increase for some years It has also been divided among many parties, and its methods have been further improved and a knowledge of them more witely diffused.
The ice has been chiefly taken from Fre:h and Spy Ponds, and since 1841 mainly transported on the Charlestown Branch Railroad, which was constructed for that purpose. Quite recently, ice establishments have been made at most of the ponds near Boston, and it is probable that in a few years the product of all these waters may be required to supply the trade. In the year 1839 the great quantity of ice cut at Fresh Pond, and the consequent difficulties which had arisen among the proprietors as to where each should take ice, induced them to agree to distinct boundary lines, which were settled by three commissioners, on the principle of giving to each the same proportion of contiguous surface of the lake, as the length of his shore-line was to its whole border.
The shipments of ice from Boston coastwise, for the year ending December 31, 1817, amounted to 51,887 tons. The ice shipped to foreign ports during the same period amounted to 22,591 tons.
The freight paid during this year is supposed to have averaged as high as $\$ 2.50$ per ton, at which rate it would amount, on the 74,478 tons shipped abroad and coastwise, to
\$186,195
There is a great raviation in the cost of securing ice and stowing it on board ressels, caused by winters favorable or otherwise for sccuring it, and by the greater or less expense of the fittings required for voyages of different duration, or by difference of season when the shipments are made. Taking all these contingencies into consideration, the cost of ice when stowed on board may be estimated to average 22 per ton, which would give for the quantity shipped.

148,956
There were in 1817 upwards of 29 cargoes of provisions, fruits, and vegetables shipped in iee to ports where otherwise such articles could not be sent, the invoiced cost of which, at Boston, would a rerage about $\$ 2,500$ each

To these items may be addel the profits of the trade to those engaged in it 100,000

Total returns.

 \$507,651The methods and materials for preparing vessels for the transportation of ice have been rarious Furmerly their holds were ceiled up at the sides, bottom, and top, with boards nailed to joist-ribs secured to the side of the vessel, and with double bulkheads formard and aft. The spaces thus formed were filled with refuse tan, rice-hulls, meatow-hay, straw, wood-shavings, or like materials. These epaces were made of a thickness proportionate to the length of the voyage, and with reference to the ceason. The immediate surface of the ice was covered with the same materials, excepting tan. At the present time sawdust is used almost exclusively for royages of considerable length. It is placel] immediately between the ice and the side of the vessel. This material is obtained from the State ot Jaine, and before its use for this purpose was entirely wasted at the water-mills, and, falling into the st reams, occasioned serious obstructions. During the year 1847, 4600 cords were breught to Boston, at an arerage value of 82.50 per cord, delivered.

Almost the whole value of the returns of the ice-trade, including freight, are a gain to this comntry The ice itself, the labor expended on it, the materials for its preservation, and the mems of its trans: portation, would be worthless if the trade did not exist.

Ice being shipped and used at all seasons, large storehonses are requirel to preserve it. Exchisiv if ice-houses on the wharves at Charlestown and East Buston, in which ice is stored for short periods there had been erected in 1817, and previously-

At Fresh Pond, in Cambridge, ice-houses capable of containing..................... 86,782 tons.
At Spy l'ond, in West C'imbridge... 28,000 "
At Little Pond ... 2,400 "
At Wenham Pond ... 13,00.
At Medford Pond..................................... .. 4,000 "

Total .. 141.......... tons.

The ice-houses now in use are built above ground. In southern countries, where ice is nost valuable they are constructed at greater expense, usually of brick or stone, and the protection to the ice consists in airspaces, or in dry, light vegetable substances inelosed between two walls. In this vienity, on the borders of the lakes, where ice is least valuable, they are usually built of wood, in which case they are of twn walls, formed by placing two ranges of joist upright, framed into plates at the top, and placed in the ground at the bottom, or framed into sills; these two ranges are ceiled with boards secured to that side of each range which is nearest the other, and the space between the two boardings filled with refuse tan, wet from the yards. This wet tan is frozen during the winter, and until it is thawed in the spring and summer, little waste occurs; afterwards the waste is more rapid; but, as a large portion of the ice is shipped or otherwise nsed hefore this takes place, the loss in quantity is small, and, occurring before the expenses of transportation have been paid, is of less pecuniary moment.

In one instance brick has been used in the construction of an ice-house, which covers 36,000 feet of land, and the vaults of this ice-loouse are 40 fect in depth, and its walls are four feet thick from ontside to inside, inelosing two sets of air-spaces. Such a construction is more costly, but has the advantage of durability and safety from fire, to which ice-houses are much exposed from the frequent juxtaposition of railroad-engines, and the light, dry materials used about them to cover and otherwise preserve ice.

In the winter of 1847 , about $\$ 650$ were paid daily for labor of men, and $\$ 230$ for that of horses, when the weather was most favorable fur cutting ice. Such activity is, howe rer, of short duration, as there are not generally more than $\underline{20}$ days in a season which are really favorable to the operation of securing ice. The price paid is usually ©l per day for horses and men.

At first the implements of husbandry only were used in securing jee; but as the trade became more important, other machines and different methods were adopted, and abandoned when better were brought forward, or when the increased magnitude of the business required greater facilities. More ice is now secured in one favorable day than would have supplied the whole trate in 1832 . Ordinarily, before there has been cold enough to form ice of suitable thickness, snows fall on its surface. If this occurs when the ice is four or more inches in thickness, and the snow not heavy enough to sink the ice, it can be removed by using borses attached to the "snow-seraper;", and under such circum-tances this is the method in common use. But if snow falls so heavy as to brime the water above the surlace of the ice, it is removel, atter it has congealed into snow-ice, with the "ice-plane."

Thace preliminary expenses are often very great; frequently, after much expense has been incurred to remove a body of snow or snow-ice, the weather beeones warm, and spoils the ice on which so much hats been expended. And, on the other hand, if it is not done, and the cold continues, there will be little or no increase of thickness to the iee, which is equally a disaster.

When the ice is made up for trantportation, it is emploved in ships as ballat, for which purpose it is arelully cot up into blocks to fit the hold, and covered with sawdust, straw, and charcoal dust, all nom conductors of heat, under cover of which it is conveyed on the soyage. When the ice is regularly -hipped as cargo, being cut into blocks, it is packed on board the vene. , in thin air-tipht boxes, with straw and hay. In this manner it is conveyod without loss.

The machinery employed for cutting the ice is worked by men and horses in tho following mamer:-
from the time when the ice first forms, it is carefully kept free from son wntil it is thick enough to be cut; that process commences when the ice is a foot thick. A surfice of some two acres is thets selected, which at that thickness will furnish about 2000 tons; and astraight line is then drawn hirough its centre, from side to side each way. A small hand-plough is pu-hel ahng one of these lines, until
 is introduced. This implement is dratwn by two horses, and makes two new gromes, parallel with the first, 21 inches apart, the gage remaining in the original groove. The marker is then-hifted to the outside groove, and makes two more. Having drawn these lines ower the whole surface in one direction, the same proees is repeated in a tramerere direction, marking all the ice out into sipuares of ol inches.
 the ice to at diph of six iteches.

 bion. II. - I
building are performed by the horse himself. The frame which receives the block of ice to be hoisted, is sunk into a square opening cut in the stationary platform, the block of ice is pushed on to it, the horse starts, and the frame rises with the ice until it reaches the opening in the side of the storehouse ready for its reception, when, by an ingenious piece of mechanism, it discharges itself into the building, and the horse is led back to repeat the proces.s.
Forty men and twelve horses will cut and stow away 400 tons a day. In farorable weather 100 men are sometimes employed at once. When a thaw or a fall of rain occurs, it entirely unfits the ics for market, by rendering it opaque and porous; and occasionally suow is immediately followed by rain, and that again by frost, forming snow-ice, which is valucless, and must be removed by the "plane."

The operation of planing is somewhat similar to that of cutting. A plane, Fig. 2299, gaged to run in the grooves made by the marker, and which shaves the ice to the depth of three inches, is drawn by a horse until the whole surface of the ice is planed. The chips thus produced are then scraped off, and if the clear ice is not reached, the process is repeated. If this makes the ice too thin for cutting, it is left in stutu quo, and a few nights of hard frost will add below as much as has been taken off above.

In addition to filling their icc-bouses at the lake and in the large towns, the company fill a large number of prisate ice-houses during the winter-all the ice for these purposes being transported by railway. It will be easily believed that the expense of providing tools, building houses, furnishing Labor, and constructing and keeping up the railway, is very great, but the traffic is so extensive, and the management of the trade so good, that the ice can be furvished at a very trifling cost.

ICOSAHEDRON, or ICOSAEDRON, in geometry, one of the regular platonic bodies, comprelended under twenty equal triangular sides or faces. It is formed of twenty pyramids, whose bases are the twenty equal and equilateral triangles, the summits of which terminate in the centre of the body.

Let S represent the side; then will surface $=5 \mathrm{~S}^{2} \sqrt{ } 3=8.66025403 \mathrm{~S}^{2}$, and solidity $=\frac{5}{6} \mathrm{~S}^{3}$ $7+3 \sqrt{ } 5$

ILLUMINATION. Without entering minutely into the snbject, it is evident that the value of any means of illumination must depend upon two things-mamely, upon the quantity of lighet evolved, and upon the consumption of lighting material which accompanies it. A candle, or a lamp, \&c., will be the more valuable, the more light it gives from as little tallow or oil as possible. Light camot be measured with reference to its quantity any more than heat; it cannot be estimated how much light a flame emits, but it can be scientifically ascertained how much more or less light it evolves, than another flame.

All determinations of this nature are, therefore, comparative. The most casual observation of two thames, for example, that of a candle and of gas, shows the one, although both are of equal size, to be infinitely brighter than the other.

The dissemination of light is entircly effected by radiation; the intensity may, therefore, be said to express the sum of the rays which are emitted to a certain surface, for example, to a square foot. It is usident, that the sum must be diminished by the distance from the source, as the rays separate more and more from each other. According to the laws of optics, the intensity is in relation to the square of the distance; when, therefore, a surface is illumined to the same extent by two flames, the rays of light from, each will be proportional to the square of the distance at which each flame must be placed in order to produce an equal amount of light. It is upon this principle that the actual determination of the intensities and quantities of light depends; the measure for both is, therefore, the distance to which the flames to be compared must be brought, in order to produce an equal amount of light. (See Protometer, in article (iss.) Practically, however, it is not possible to determine, even approximatively, the degree of brilliancy; the degree of light is therefore not observel, but its negation, the shadou.

In such experiments a board is used, covered with unglazed white paper, before which, at a distance pf from two to three inches, an iron rod is placed, which has been previously blackened by holding it in the candle. Opposite this board, but at the same height, the flames to be compared are so placed that both the shadows (for each throws a shadow) fall close to cach other upon the board, and then the stronger thame is so far removed, or the weaker one approached, until both shadows appear equally deep, and lastly, their reapective distances from the centres of the flames are measured. The squares of these distances give the relative intensities of light; if a flame, for example, has been three times as fir removed as mother, its intensity will be to that of the latter, as 3^{2} to $1^{2}=9: 1=1: 9$, or 9 times greater. As such observations are simultaneous, and of like duration, they give likewise the relative juantities of light; for unequal lengths of time, this has only to be multiplied with the respective duration. When one of these flames, therefore, burns 3 hours, and the other only 2 , then the quantities on light evolved will be in the proportion, $3 \times 9: 2 \times 1$ or $27: 2$.

One cireumstance in particular requires notice: that when two perfectly similar shadows of this kind are observed from one sile, the one appears brighter than the other, and the same is the ease, the order whly being reversed, when they are observed from the other side; so that the rule is, to observe them thays from a position exactly opposite the board. Practice is here the best guide in forming rules.
The usual dimensions of a candle are not fixed arbitrarily or by chance, but are absolutely necessary to a well-regulated process of combustion. If the wick is too large in proportion to the surrounding mass of fat, as is the case in tapers, no reservoir is then formed, and all the adsantages attending it are lost. In the opposite case, which applies to all common camdles, the wick which is rather too small produces a flame, whilst the outermost layer of fat is beyond the sphere in which fusion is going om.

A thin ring-shaperl wall, as is ea-ily ubserved in the less fusible stearive candles, remains creet up to a certain height, and is very objectionable from the shadow which it throws, but more so from its be nh: gradually undermined and falling inter the reservoir, which it orertills and cau-e, the candle to grutter: When it has once overflowed, the evil is doubled. ir all the fat which, by overflowing, has formed ridges, is still further removed from the region of the thane. Ia night lights, made of stearine or wax, where intensity of light is a secondary consideration, this circom-tance has inen turned to account. These are mitele with a common-sized wick, but a diepropurtionate thickness of fat, so that a rery dewp and full reservoir is formed; an excess therefore of melted fat, which, as too much of the free part of the wick remains immersed, eanses them to give a very small quantity of light. For the sake of safety, they are made so short that they will swim uphght upon a bat-in of water. Several perionds must be distinguished in the whale course of the proces which is going on in a lighted camelle. The heat erenerated by the flame, and for the 4 reater part carried upwards by the current of air, acts however hy radiation to such a dearee downwards, that sufficient or rather too much fat is melted, fur supplying food to the flame. The fat is -upplied directly ley the wick, the capillarity of which is constantly at work, sucking up the fluid matter, and carrying it to the splacre of combustion. The lower uncharred portion of the wick (up to l, Fig. 2300) acts the part of a suckins-pump; the deemponirion takes place in the entire upper black portion: the fat, which arrives there, is immediately exposed to a high temperature, without being able to come into direct contact with the air; it is in the same position as if it were inclosed in an iron retort between redhot coals, and it suffics, consequently, dry distillation. The gaseons and vaporous combustible products form the dark nucleus fof the dame, between which and the surroundine air, the sphere of successive combustion is sitnated. The air streaming from betow upwarle, to the gases in f, consumes in the first instance the hydrugen, and separates the carbon as incandescent soot; this occurs in the luminons part of the thame i. La-tly, on the outside, in the hardly perceptible blui-h halo g, the carbon is consmmed; this occurchicfly at the base, which does not appear luminous, in consequence of the air exerting its fill influence at that part.

Every portion of tallow, which burna and give out light, prepares the following portion for undergoing the same proces. The different states of the thame nay be partially made vioble by an interesting experiment that is easy of excoution. If a bottle is filled with water, and supplied through the cork with a siphon in a downward direction, and a tube Irawn out to a point in an upward direction, and this point be brought into the interion of the flame whit the water is allowed to run slowly from the siphom, the bottle becones
 tilled with the combustible vapors in the form of a gray smoke. The vapors obtained from astaring candle condense, for the most part, to a dry, solid, fatty acil: not so those from oil ar tallow: Wn bow ing with the mouth, thee rapors may be expelled from the bottle, and they burn, when ingited, with at di-tinct flame, which j b but slightly luminots, in consequence of the armixture of air. The waprmant may be made withont danger with a common pipe, and by suction with the mouth. The importance of toing hard, solid tallow, to frevent untering, is obvions, and all the materials should likewise ho as pure as possible; for whatever is not decomposed in the same maner as tallow, or wan, will obstruct the capillary tubes of the wiek.

It is not remarkable from the nature of candles and the mole in which they disseminate licht, that their intensity and consequent power of illumination, even under the same circunstances, should be wo very variable. In the bermong, when the wick is freshly nuffed, this variation is comparatively - lizht, and the intencity increace up to a certain point, when, from an exeessive length of -nuff, depo-it it
 then the proces is repeated. Feclet found (hy comparison with ('areel's lamp) that the primary metnsity of a candle $=1010,(4=11 \mathrm{n}$.) became in 4 minutes 90 , in 8 minutes 50 , in 10 minutus 11 , in 10

 t" 21 , and lastly, in 41 mimutes tul 15 . Les tham half an hour, therefore is sutheient turelner the ll fit from a candle to $\frac{1}{2}$ of its oripinal hrilliancy. The sane diminution was the result of liumford' o obse rat tions, namely; $\frac{1}{6}$ after 29 minutes. When, below, the inten-ity of camdles is comparel with Comelo lamp, the mean internity of 10 minuter' duration in tallow candles is (o) he meteratom, which is alm it

 beron to cmerge from the flame.

It hats alrealy been peinted out, that all detorminations of the illuminatins power are antire le ie la tive, and hence ariacs the \& mand for a - mitable peint of conpariom.

 compared with it. On comparing two exactls similar lamps of this himl in stoh at mamer, that at.

 and in four home th 117, which it then retaned for four consecative hour

Illuminating Power of Candics.

Variety of Candle.	Comparison of the intensily of light.	Consumpion of material in an hour:	Comparison of illuminating power	
			Directly.	With Carcel's $\operatorname{lamp}=100$.
[Carcel's lamp.........	$100 \cdot 00$	$42.00 \begin{gathered}\text { rapeseed } \\ \text { oil. }\end{gathered}$	29318	100]
Tallow candles, 6 s ..	$10 \cdot 66$	8.51	1.253	54.04
" " 8s ...	$8 \cdot 74$	7.51	$1 \cdot 164$	50.21
" " 5 s	T.50	T.42	1.011	$43 \cdot 61$
Wax " 5s	$13 \cdot 61$	8.71	$1 \cdot 563$	$67 \cdot 41$
Stearine " 5s	$14 \cdot 40$	$9 \cdot 33$	1.543	66.58
Spermaceti 5 s ...	$14 \cdot 40$	$8 \cdot 92$	$1 \cdot 614$	$85 \cdot 68$

Illuminating Power of Lamps.

Sort of Lamp.	Inner. \| Outer. Breadth of the wick, or diameter of the burner.	Average intensity of light from periments.	Consumption of rape seed oil in one hour in grammes.	Quantity of light from an equal quantity of $1 \mathrm{mp}=100$.
	Lines.			
No. I. Carcel's clock-work lamp......................	$68 \quad 9.2$	100	$40 \cdot 64$	100
... II. Kitchen lamp	$3 \cdot 2$ (thick)	6.65	805	33.5S
... III. Lamp with flat wick	$8: 2$ (broad)	$15 \cdot 13$	$9 \cdot 40$	65.71
... IV. Lamp with chimney	7.6	$19 \cdot 37$	$12 \cdot 33$	63.82
... V. Table lamp with circular oil-vessel, and semicircular wick	12\%	$32 \cdot 64$	$20 \cdot 88$	68:54.
... VI. Astral lamp...................................	6.2 9.4	44.98	28.70	63.72
... VII. Sinumbra lamp	5% 8.8	52.50	$\underline{2} 74$	79.78
... VIII. Lamp with flat wick and invert'd reservoir	84 (broad)	21.50	14.90	54.80
... IX. Wall lamp with inverted reservoir and semicircular wiek	18.0 "	3938	$\bigcirc 0.15$	79:35
... X. The same with round wick	$7 \cdot 4 \mid 100$	52.51	29.33	72.81
... XI. Liverpool lamp with inverted reservoir	6.0	41.80	20.78	$63 \cdot 45$
... XII. Wall lawp with constant oil level and regulator.	5.8 8.0	82.46	3544	$111 \cdot 60$
... XIIL. Hydrostatic lamp	$7 \cdot 4 \times 9$	92.44	38.94	113.90

(See Lamps, Light.)
IMPACT. The single instantancous blow or stroke communicated from one body, in motion, to an other, either in motion or at rest.

IMPENETRABILITY. In physics, one of the essential properties of matter, or body. It is a property inferred from invariable experience, and resting on this incontrovertible fact, that no two bodies can occupy the same portion of space in the same instant of time. Impenetrability, as respects solid bodies, requires no proof; it is obvious to the touch. With regard to liquids, the property may be proved by very simple experiments. Let a vessel be filled to the brim with water, and a solid ineapable of solution in water be plunged into it; a portion of the water will overflow exactly equal in bulk to the body immersed. If a cork be rammed hard into the neck of a vial full of water, the vial will burst, while its neck remains entire. The disposition of air to resist penetration may be illustrated in the following way: Let a tall glass vessel be nearly filled with water, on the surface of which a lighted taper is set to float. If over this glass a smaller cylindrical ressel, likewise of glass, be inverted and pressed downwards, the contained air maintaining its place, the internal body of the water will descend, while the rest will rise up at the sides, and the taper will continue to burn for some seconds, encompassed by the whole mass of liquid.

IMPEIUS. The product of the mass and velocity of a moving body, considered as instantaneous, in distinction from momentum, with reference to time, and force, with reference to capacity of continuing its motion. Impefus, in gumery, is the altitude through which a heavy body must fall to acquire a velocity equal to that with whicn the ball is disclarged from the piece.

INCIDENCE, in mechanics, is used to denote the direction in which a body, or ray of light, strikes another body, and is otherwise called inclinatom. In moving bodies their incidence is said to be perpendicular or oblique, according as their lines of motion make a straight line or an angle, at the point of contact.

Angle of incidence, generally denotes the angle formed by the line of incidence, and a perpendicular drawn from the point of contact to a plane or surface on which the body or ray impinges.
Thus if a body impinges on the plane at a point, and a perpendicular be drawn, then the angle made by this perpendicular and the incident ray is generally called the angle of incidence, and the compleaent of this the angle of inclination.
When light, or any elastic body, is reflected from a surface, the angle of incidence is equal to the
angle of reflection; and in the case of refraction, the sine of the angle of incidence has to the sine of the ansle of refraction a constant ratio.

INCLINATION, denotes the mutual approach or tendeney of two bodics, lines, or planes, toward eact other, so that the lines of their direction make at the point of contact an angle of greater or le-s magnitude

INCLINED PLANE. One of the mechanieal powers: a plane which forms an atgle with the herrizon. The foree which accelerates the motion of it heavy botly on an inclined phane, is to the furce of Gravity, as the sine of the inclination of the plane to the radius, or as the height of the plane to its length. If $f=$ force accelerating the borly on an inclined plane, of which the inclination is i, and !! $y=$ force of gravity, $f=g$ sine i. Hence the motion of a berly on an inclined plane, is a motion taniformly accelerated.

If two bodies begin to desectul from rest, and from the same point, the one on an inclined plane and the other falling freely to the ground, their velocities at all equal heights above the surfice will be equal. Hence the velocity acquired by a boly in falling from rest through a given heirht is the same, whether it fall freely, or descend on a plane any how inclined. The space through which a body will deseend on an inclined plane, is to the space through which it would fall freely in the same time, its the sine of the inclination of the plane to the radius.

When a power acts on a body, on an inclined plane, so as to keep that buly at rest, then the weight, the power, and the pressure on the plane, will be as the length, the height, and the base of the plane, When the power acts parallel to the inclined surface; that is,

$$
\text { If the weight be measured by } A C \text {, }
$$

The power will be measured by BC ,
And the pressure on the plane $A B$.
These properties give rise to the following rules:-

$$
\begin{aligned}
& \text { power }=\frac{\text { weight } \times \text { height of plane }}{\text { length of plane }} \\
& \text { weight }=\frac{\text { power } \times \text { length of plane }}{\text { height of plane }} \\
& \text { preseure on the Ilane }=\frac{\text { weight } \times \text { base of plane }}{\text { length of plane }}
\end{aligned}
$$

These rules express the conditions of equilibrium, and it is obvious, that if either the weight or the power be increased, frietion excepted, motion of the body must en-ne.

When the poreer does not act parallel to the plane, the conditions of equilibrium may be foum thas: Draw a line perpendicular to the direction of the power's action; the weight, power, and pressure on the plane, will be as A C, C B, A 13 .

When the line of direction of the power is parallel to the plane, the power is least.

If two bodies, nu two inclined planes, sustain each other by means of a
 string over a pulley, their weights will be inversely as the lengths of the planes.

The space whieh a body deseends upon an inclined plane, when descending on the plane hy the furce of gravity, is to the space which it would fall freely in the same time, as the height is to the length of the plane; and the spaces being the same, the times will be inversely in that proportion.

INDICATURS' 'The important and useful little instrument which we have represented in the fullowing figures has very materially contributed to the perfection and efficiency of our modern teamengines; not only by emabling the engineer to ascertain and register the exact values of the forces from which its power is derived, at the point where these forces come into eflective opration, but abob hy puinting out the precise periods, in relation to the different parts of the stroke, at which thene elements: of power come into actinn, and therehy conducing to the mot wommical and perfect combination of them. By its use he is introduced, as it were, into the interior of his engine, and is made exghizant of its most occult and delicate movenents.

The idea embodied in this ingenions and beautiful in-trument was originated be the justly celebrated
 tical in the principle of ita operation, though less compact in form than that mow so extensively in ane: His ohject was to aceertain with certahty the mean steam preanere, and, more particularly, the propertion which the vacum in the cylimber hore, at different parts of the struke, to that in the comdenore. an order to determine the dimensions of eylinder required for any giwn pewer, as alat the relative fun-
 criven to the world so many inpreridable monuments of his genius, smeceding medanicians set on th have dapised the umpretending little instrmment ly where asoistane he had been lend to such splatsti.l

 thucloyed

Ifacnaught's Indicatgrs.-The figure comprised under this head represents the form of the indicator as at present constructed by Mr. William Macnaught, being that employed to measure the power of high-pressure engines, and is also adapted to those in which steam of a ten-ion not greatly exceeding that of the atmosphere is employed. The two instruments differ in no respect from each other in the principle of their action, and but little in the details of their construction; accordingly one description will sutfice for both, in the course of which we shall notice the points in which each respectively differs trom the other. The figures are to a scale of $\frac{1}{4}$ of an inch to an inch.

General description.-From a glance at the drawings it will be at once pereeived that the indieator is neither more nor less than a small atmospheric steam-engine, with the addition of a spiral spring and graduated scale to mark the degrees of pressure. The steam-cylinder A, Fig. 2303, is of gunmetal, very accurately bored out and fitted with a solid piston a, ground into the cylinder so as to be perfectly steam-tight. A slender steel rod $b b$ is serewed into the piston, and is guided at its upper ex tremity by passing through the cover c of an external brass casing or cylinder B, serewed to the lower end of the steam-eylinder. At this point is also fixed a stop-cock C , destined to form a communication between the cylinder of the steam-cngine and that of the indicator; in the high-pressure indieator this sock is formed with a serew at its lower end, for the purpose of attaching it to the socket-cock, which is permanently fixed to the cylinder cover, while, in the instrument as adapted to low-pressure engines, this attachment is considered to be sufficiently sceure by the more consenient method of simply inser ing the tapered end of the cock C into a corresponding socket accurately gromed to fit it.

1 owards the middle of the piston-rod $b b$ a small stud d is fixed immovabiy by soldering, and to it is serewed a brass disk, having the end of a spiral spring D soldered into it. The opposite extremity of this spring is secured, in the case of the high-pressure indieator, to the steam-cylinder, and in that used for condensing engines, to the cover of the external casing. This difference in the arrangement of the springs is owing to the difference in the prevailing directions of the motion of the piston a, in either case; it being considered most expedient to make the springs act by distes, sion, rather than by compression. In the stud is a small square bocket, into which, throngh a slot or onening in the external casing B, is inserted a steel piece, part of which is formed into an index or pointer, adapted to work against an adjustable graduated scale, serewed to the outaide of the casing B, lig. 2304.

Figs. 2305 and 2306 represent plans of 2303 and 2304 respectively.
The principle on which the strength of the springs is regulated and the scales are graduated is as follows: The area of the piston, the resistance of the spring, and the divisions upon the seale, are so proportioned to each other that one pound of pressure in either direction upon the piston will cause the madex to move through one division upon the scale. In the high-pressure indicator, although the size ot
the piston is invariable, (being uniformly made equal to $\frac{1}{b}$ of a square inch in area, the lenerth of the divisions upon the scale is arbitrary, being determined by the amount of steam pressure to which the machine may at any time be subjected, and by the length of scale that can conveniontly be applied. The instrument represented in the figures is adapted to indicate up to e0 pounds of presture, and the scale is equally divided into 20ths of an inch. each of these divisions representing one pound of pressure upori the square inch of the piston. From these data the spring is to be very carefully constructed, so that 2 ounces (or $\frac{1}{8}$ of a pound) will move the index through one divivion of the scale.

In the low-pressure indicatur the process is preciscly the same in principle, though somewhat les. involved. The tension of the steam being low, and the atmospherie pressure limited within 15 pounds to the square inch, the scale is divided into 10 ths of an inch. The piston is made equal to $\frac{1}{f}$ of a square inch in area. and the clasticity of the spring is such that 4 ounces (or f of a pound) acting upon the piston in cither direction, will cause the index to move through one division of the scale, which, conse! fuently, represents one pound of pressure upon the piston of the steam-engine to which this instrument is applied. The zero-point is that at which the index stands when the cock C is shat and the pi-ton a remains undisturbed, and, therefore, when the instrument is in action, it denotes that point in the strokn at which the pressures above and below the piston are balanced.
From these explanations it will be obvions that, by attaching the instrument to the cylinder of a steam-cngine, and observing the motion of the index upon the scale, the maximum steam pressure and vacuum may be at once ascertained. But this is not the only, nor even the most important function of the indicator. It was desirable to find out the exact periods and modes in which these two elements of power come into operation, and especially the mean etfective ralues of each; the rapidity of the motion through so short a space precluding the possibility of taking these observations with any degree of accuracy. These important objects are fully attained by the help of a simple and beautiful contrivance, by which the instrument is made to register its own performances.
An arm or bracket g is firmly attached to the indieator by being clamped to the external casing 13 on which it may be set to any conrenient elevation, and there secured by a serew. To this bracket is riveted an upright axis, on which, by a long socket, to insure steadiness of motion, is accurately fitted a cylindricul piece F, formed into a pulley at its lower end. The other extremity of the socket carries a small cylindrical box containing a spiral-spring similar to the main-spring of a watcly, and attached at one end to the fixed axis, and at the other to the internal surface of the box in which it is inclosed. The bracket g carries also a small friction-pulley j, for the purpose of guiding a cord wrapped round and attached to the pulley F, to any convenient moring part of the engine; a small catch serewed into the later, serving to circumscribe its motion to a single revolution. An external cylinder or drum E, which may be withdrawn from the instrument at pleasure, is fitted over the revolving cylindrical piece F , so as to partake of its motion, and upon it is fixed a slip of lorass formed into a double anting ll, Fig. 2304, for the purpose of securing the slip of paper on which the instroment is to register its performance. This is effected by means of a pencil f, placed in a hotder e, jointed to the piece of steel on which the index or pointer is formed, and fitted with a small spring, so as to press the point of the pencil gently again-t the paper cylinder, or admit of its being withdrawn from contact with it at pleasure. From these arrangements it will be seen that if the piston a be mused up and down, while the pencil is in eontact with the cylinder E , a straight line will be traced upon it in the direction of its lengh; and if, on the other hand, the cylinder be made 'o) turn upon its axis by pulling the cord, while the pi-ton remains at rest, a straight line wall be traced round it at right angles to the furmer. By the combination of these two motions when the instrument is in operation, a diagram is produced, which represents the performance of the engine at all juarts of its struke.

- Iction of the instrumbut. - The ark © is in-crted into the correspmedingronetet propared for its reception, mad the cord which patses under the pulley j is attacheal to the rulins-har or other moving part of the engime, to as to cause the eylinder E to make
 one revolutime on its axis, comedident with and reprementing the stroke of the emgine; ons the whation of the cord at the twmman on of the

C shut, so as to form an atmosphere line. A communication is then opened with the interior of the eyl indur of the engine by turning the coek C , and a figure or diagram is traced upon the slip of paper, ex acisy representing the successive pressures of the steam above, and eorresponding degrees of exhaustion below the atmosphere line, at every part of the stroke. To find the mean effective values of each of these pressures respectively, the figure is to be divided, in the direction of its length, into any number .

of equal parts, the perpendicular distances of the outline of the diagram above and below the atmos phere line at each of these points, to be carefully measured upon the scale of the instrument, and the Eum of these to be divided by the number of points taken. Hence the actual power of the eugine is easily calculated.

Morin's Indicator.-That eminent French mechanieian, M. Arthur Morin, conceiving, with reason, that sunsiderable inaccuracy was likely to result from the difficulty of constructing the spiral springs in Macnaught's indicator, so as at all parts of the stroke to denote equal pressures by equal divisions; and, moreover, considering it desirable to ascertain with greater precision the mean pressures and conse-
quent actual power of engines by taking indications throughout several consecutive strokes, has in: vented a machine by which the furmer difficulty is obviated, and the latter object is attained. This instrument we have represented in the accompanying figures.

Fir 2307 is a side elevation, Fig. 2308 an end clevation, and Fir. 2309 a plan of the machine.
This indicator, like that we have already described, is adapted for being fitted to the eylinder cover of the engine; it carries a stop-cock pipe \dot{G}, furnished with two keys; between these is sithated a smali horizontal cylinder II, in which a solid piston is accurately fitted to work stean-tirht. 'lowards the middle of the piston-rod m, which is properly guided to at rectitnear course, is a square part in which is inserted the lower end of a long parabolic spring n, the other extremity of which is fixed to the summit of a standard I, forming part of the frame-work of the machine, the spring being so fitted as to admit of a certain amount of travel in the piston in both directions. The square bose of the pi-ton-rod carries also a small pencil o, for the purpose of tracing the different degrees of ten-ion of the steam oti the opening of the luwer cock G.

Two pencils p p are placed in hokders fixed to the framing exactly opporite to the point at which the pencil o stands when the stop-cock G is shat, and being the immorable, serve to mark a continuous atmosphere line. A third pencil q, which is susceptible of a slight degree of vertical motion in its sucket, and is destined to mark the termination of each stroke, is brought into contact with the paper by placing the instrument so that the working-beam, cros-head, or any other rigid part of the engme may touch lightly at the end of the stroke, the top of an upright rod u, which is connected by a system of levers $r s t$ with the top of the pencil q.

A continuous band or roll of paper may be subjected to the action of this machine for an indefinite period, so as to produce diagrams representing the action of the engine during several successive strokes. The manner in which this is accompli-hed is as follows: The roll of paper is first wound upon the eylinder L, by means of the handle y; it is then passed over the three small rollers $v v v$ placed to oppose the pressure of the pencils, and is received upon the cylinder M situated at the opposite end of the framing QQ. The axis of this latter erlinder is produced on one side so as to form also the axis of a conical pulley or fusce N, opposite to which is situated a cylindrical drum O, which receives a uniform motion from any rotating part of the engine to be operated on, by means of a worm-wheel w on its axis, geering with an endless screw on the axis of the strap-pulley P'. The cylindrical roller O communicates motion to the conical roller N by a cord wrapped round both, and fastened at opposite extremities of each. The object of this arrangement is to compensate for the increaved surface velocity due to the increased diameter of the cylinder I as the paper is wound on to it, by inparting to it a proportionally retarded motion.

This instrument, although highly ingenious in many of its details, amt eapable of giving very correct indications, is wanting in that portability and compactness which has very materially contributed to bring Macoaughts instruments into such general use. Moreover, although in any instrument of this nature the observations will be more or less accurate in proportion as the space through which the spring is made to act is more or less limited, yet a considerable advantage results from the length of ramge in the common indicators. The diagrams being made upon a large seale, the expert engineer is able, at a glance, and without reference to the scale, to ascertain by the mere contour of the figure whether his engine is performing all its functions properly.

The indicator of the steam-mgine appears to fultil two distinct and very inportant ends.
It enables us to discover whether there are any defects in those parts of the machinery by which the steam is admitted to the piston; for instance, it indicates whether the slides are properly set, or leaky; whether the stops on the intermediate shaft are properly placed; whether the stean-ports are large enough; and, consequently, whether a different arrangenent of the working part of the machinery would be advisable. In fact, in the hands of a skilful engineer, the indicator is as the stethoscope of the physician, revealing the seeret workings of the inner system, and detecting minnte derangements in parts obscurely situated.

It discover:, at any instant of time, and under any given eiremmstances, when it may be desirable tu apply it, what is the actual pwwer of the empine.

Wie will first give a description of the instrmment, and then proceed to ite varions uses.
Fig. $2: 310$ is an extenal view of the indicator as constructed. The dotted lines are intended to show the internal parts. A is a hollow eylinder, whose upper end EIf is open; the lower end beine intended to fit into an orifice in some part of the chgine (cencratly the top or buthon of the cylinder) by means of the serew $a ; b$ is at stopevek, ly which, when the intrument is attached, we ean, at will, make on cut off a commmication with the internal parts of the cergine. Within the bullow eylinder A is a piston
 inereasing the friction and preventing the free motion of the pencil; but the defeet, if amy, mot lne remedied by keeping melted tallow on wil on the upher surface.

Let us sinplose, for per-phenty, the instrument to be in commmication with the bop of the stemm cylinder. 'Then, when at vemm is formed above the steam pietom, the atmopheric pressure will foree

the steam-force is perpetually varying, it follows that the piston-tube de will be continually rising of falling. If a pencil be attached to the upper end of this tube $d e$, in which the spring works, it wits describe a rertical straight line on a piece of paper brought into contact with it. This, however, is not sufficient for our purpose. It would, after it was traced, tell us the maximum and minimum pressure during the stroke; but the pressure at any particular portion of the stroke would still be undeterminec. We must, therefore, have some plan similar to that adopted in other cases where the vertical motion of a pencil under particular circumstances is to be aegrstered. In all such instances, the paper on which the variation is to be laid down is drawn horizontally at a certain rate. If, for instance, we were desirous of recording how the pressure varies with the time, the paper mu:t be drawn uniformly, by connecting it with clock-work, or some other apparatus for giving a uniform motion. But this, however, is no: usually the desideratum in the steam-engine. Our object is here to have represented before our eyes the rariation of the pressure for every portion of the stroke of the piston; and this is contrived as fol-

Lows: the paper is wrapped round a cylindrical barrel C, which is brought back against a stop by a strong watch-spring contained in the box EF. A string passes round the pulley D, and is led away throngh a fair-leader G to some part of the engine having a similar motion to the piston cross-head, only much reduced, by which means the watch-spring and the string are always opposing each other. As the piston rises, the barrel will be pulled from left to right; and, on the contrary, as the piston descends the string having a tendency to slacken, the barrel will, by the force of the spring, be brought back from right to left. The pencil is attached to the upper end of the tube $d g$, and rising and falling with the indicator piston. It can be brought into contact with the praper on the barrel C or removed from it at will, by means of the joint at g. The rod z, and another one on the opposite side of the cylinder, serve as guides to the piston.

The paper is kept on the barrel by means of a strip of metal, which also serves another impor-
tant purpose. It will be seen that it is graduated, beginning from zeto, and proceeding upwards and downwards. Now this zero is the level at which the pencil stands when the instrument is unconnected with the steam-engine, and therefore acted on by the atmospheric pressure above and beluw the piston. The pencil will be seen at this level in the figure. If the barrel be made to revolve under these circumstances, a horizontal line will be traced out. This is called the atmospheric or zero line. Ant, therefore, the pencil will also be at this level whenever the steam, taking the place of the atmo-phere below the piston, exerts the same pressure; and, consequently, wherever the diagram cut= this herizontal line, the pressure of the stean is 15 pounds on the inch; * when on the level of the marks $1, \because, 3$, de., above this zero, the pressure is $16,17,18$, de. ; and when on the hevel of the marks $1,2,: 8$, de., below this, the pressure is $11,13,12$, de.

The atmospherie line should not be drawn till after the diagram is taken; lecause, as the parts become wam by the steam, slight variations necur in its porition, depending primepally on the alnation in the force of the spring; and since this line serves as the origin from which the presobes are dated, it is necessary to have it laid down as correctly as possible.

The small hole in the side of the stop-cock b serves to let the air into the eylinder A when the steam is cut off by the stop-cock, and thus enables us to take the atmospheric line; it emables the storcock to perform the offise of a four-way cock; for by turning it in one direction we allow the steam to enter, and exclude the extemal air, and by turning it in the opposite direction we admit the air and exclude the steam.

Having an indicator, a diagram is obtained by looking out for some part of the engine whose motion is proportioned to that of the steam-piston, t taking care that the space moved through at that part shall be somewhat less than the circumference of the traversing barrel; that is to say, whatever be the diameter of the traversing barrel, let the movement of the part you are looking for be not greater than there times this diameter. Fasten a string firmly to this point, and have a traversing loop in the loose end of the string; it must be of such a length that it may be conmected with the string pasing round the pulley of the indicator. Then elose the stop-cock of the in licator, and fix it by the screw a u to some oritice previously prepared in the top or bottom of the cylinder. \ddagger Insert the pencil you intend to use in the small hole made for it : reception, and clamp it there. The pencil should be hard, and have a fine point, to give as clear and distinct a line as possible. Have some pices of clean writing-paper provided, long enough to be brought round the traversing barrel and overlap about an ineh. Wrap) a piece smoothly romd the barrel, and fix it by means of the clasp containing the seale. Then tear away all the smplus pajer, and examine what remains, to see if it le quite smooth; for if there be any ridges the curve will have an irregular appearance, and might lead us to suppoze some of the geer for working the slides had become lonse, or much worn. Next wind the indicator string romel the pulley of the barrel 1), and comect the hook at its extremity with the loop of the string attached to the engine. Adjust the string ly means of the rumning loop, till you are satistied of the motion of the barrel; allowing it to make nearly a whole revolution, but examining it most carefully to see whether it becomes slack, or overtant. The stop-cock b may now be opened wide, and the indicator-pi-ten will immediately start into motion; the piston must be well lubricated, to reduce the friction as murh as pwsible, and at the same time to prevent leakage. Let the instrmment work for a few seconds, to allow it to become thoroughly heated; and when it has arrived at the same temperature as the steam.cylinder, it is in a fit state to trace its diagram. When satisfied of the working of the machine, take hold of the pencil when it comes to the buttom of its stroke, and bring it gently into contact with the paper: This part of the operation requires some practice; for if the pencil be allowed to cone forward too rapidy, the spring at g, by which it is pressed against the barrel, will break the point: and again, if held ton lemp, the furce of the steam, suddenly acting on the machine, will tear it out of the hand, or break the holder. When left to itself, it will trace out its curve on the paper. As soon as it has made a complete circuit. let the pencil be withdrawn from the paper, (leeiner again careful to take lobld of it when at the holtom of its stroke.) In order to have the line diatinct, the pencil shond mot go over the same gromed wice. Shut off the stop-cock and the piston will becone stationary, both sides being aeted on by the presture of the atmophere. Bring the pencil agrain in contact with the paper, and ns the barrel traverese, the atmospheric or zero line will be drawn. The operation is now eumplete, so far as the curve is enneerned. Withilraw the pencil onee more, unhook the line, and take of the traver-ine barrel. Next take a tinepointed hard pencil, and mark off upon the paper the seale of pounds, begimning with the atmopheric line, ant proceeding upwards and downward: After taking the paper from the harrel, it is empleted ly writing on the date of the month, the name of the ship, that of the engine, (whether starkard or port,) top or buttom of eylinder, as the case may be, the number of revolutions, the pressure of steam hy stean-groge, and of combensation by barometer-gage.

It is important to have a rmbing lonp, or other means of hortening or lengthening the string attached (1) the indicator. Two much attention camot be paid ta this circum-tance. If too much strain be bromeht upon the string it will stretch, and if the string he tos lone it will beome slak; mend in wher cate the barrel will he stationary for a small interval while the stemmpiston is movine, and blu eurve will nut he a true im lication of the motion.

 The ditherence will dejemel on the size of the porta, amb the work the rigine has to do ; the dintane

[^1]the steam has to travel, the impediments it meets with in its passage from the boiler to the cylinder, and from the cylinder to the condenser. It is evident that the diagram taken from the top of the cylinder shows only the pressure and vacuum on the upper surface of the piston, and therefore cannot indicate what is going on below the piston. If our object be merely to calculate the horse-power of the engine, and it be in tolerably good working condition, it is not of mueh consequence whether the diagram be taken from above or below; but if the actual state of the engine be required, it is necessary to examine into what is passing both above and below the piston, because the errors in one part may have no connection with the errors in another. This will be the ease if the shide is too long or too short, so that the upper part may be properly covered, and the lower one disarranged; or the upper slide may be steam-tight, and the lower one leaky; and if the indicator be applied to top and bottom, it will deteet all these inaccuracies, and prevent our attenpting to improve the working of one end to the detriment of the other. It ought to be remarked here, that in unbalanced engines the diagram from below the piston is generally superior to the other; because, since the steam has more work to aceomplish, the piston does not run away from the steam so readily, and, in consequence, the steam-pressure is better maintained; and there is generally a little more lead to the slide, to allow a freer ingress to the steam. And, therefore, if great accuracy be required, the mean of the top and bottom diagrams should be taken for the horse-power:*
The string carrying the ruming loop must not be attached to any part of the engine indiscriminately. Generally speaking, we wish to obtain the pressure of the steam for different portions of the stroke of the piston; therefore, the string must be fastened to some part of the engine having a stroke proportioned to that of the piston, only much reduced. The part selected must be as near the indicator as otiner circumstances will permit; for the greater the distance the longer the string, and consequently the greater is the chance of error from its stretching. Caution must be used also to prevent the string from slipping on the rod to which it is attached. One of the best contrivances for giving a free and proper motion to the string is to fasten a wooden pulley to the radius-shaft, \dagger to the groove of which the fixed end of the string can be connected. It will be necessary, in most eases, to make use of fair-leader's for the purpose of conreying the motion from the part chosen to the indicator; and due regard must be paid to this, to ascertain whether the motion of the engine will be fairly represented by the indicator.

We must bear in mind that all vertical aseending motions are caused by an increcsing pressure of the steam, and that the desecnt of the pencil is the consequence of the elasticity becoming diminished: and again, that as the traversing barrel revolves from right to left, the piston is descending ; while, on the contrary, as the pencil moves from right to left, the piston is ascending $; \ddagger$ hence we shall arrive at the following general conclusions:-

1. If the motion of the pencil be rertically uprards, the steam-pressure is increasing, but the piston is not moving.
2. If the motion be downwards, the steam-pressure is decreasing, but the piston not moving.
3. If the line traced be horizontal to the right, the steam-pressure does not rary, but the piston is desconding. \ddagger
4. If the line be to the left, the steam-pressure docs not vary, but the piston is asconding.
5. If the line run obliquely to the right upwards, the steam-pressure is increasing, and the piston is desconding. \ddagger
6. If the line run obliquely to the right downwards, the pressure is decrcasing, and the piston desccuding. 9
7. If the line run obliquely to the left downwards, the pressure is decreasing, and the piston ascending. \ddagger
S. If the line run obliquely to the left upwards, the pressure is increasing, and the piston ascending. ${ }_{+}^{+}$

Let us refer to the accompanying diagram, Fig. 231Ω, taken from above the piston of an American steamer, and explain it.
First, we will put numbers round the diagram, in conformity with the principles laid down in the last paragraplı.§ Then, supposing the pencil to commence at A, and trace out the curve in the direction of the arrows, we see that the stean preserves its first and highest pressure for a considerable portion ot the stroke, viz. from A to C; from C to B the downward stroke continues, but the steam rapidly loses its pressure, although at a variable rate, decreasing rapidly at D. At B the motion of the piston ceases, but the steam continues to fall, till at length the pencil moves back nearly horizontally for some space, -howing the pressure to continue invariable, althongh the piston is rising. At F, however, 8 shows the steam-pressure to increase rapidly and suddenly, the piston still ascending, till, as this oblique line merges into the vertical one at G, we perceive that the piston has arrived at the upper end of its stroke, and the fresh influx of steam drives the pencil up to A. From this point the pencil will retrace the same curve. G D is the atmospheric or zero line.
When the pencil is at G (or, it may be, rather before arriving at G) the slide is in the position represented at Fig. 2311, and is rising, so that the steam is about to enter the cylinder. Now this will

[^2]take place, as the diagram shows, very slightly before the upward stroke of the piston i- acromplishel and since the piston and slide are both on the ascent, the lower elge it will have ascended a trifling space when the piston is at its highest. This slight space, thongh tritling in amount, is impertant in its results on the working of the engine. It is denominated the lead of the slide. As the piston descends the valve rises, and the admitting orifice becomes larger, so that although the piston is gaining speed in its downward course, yet in well-contrived engines the first pressure is continued, as we find in the diajuram, through a considerable portion of the stroke.

The slide, however, has already begun its downward motion, and when the pencil arrives at C it has returned into the pesition it had in Fig. I. It is clear that as it continues to de-cend no more steam can be admitted; whaterer the eylinder contains will remain pent up; and as the piston contimes to move downwards the steam relaxes its force, and we trace a corresponding depression in the diagram from C to D. But a still greater change is to be expected before the piston arrives at its lowe-t place. Ere that happens the slide will have come into the position shown by Fig. IlI.; for it is found to be disadrantareus to allow the steam to be kept in the cylinder till the end of the stroke, because the entering steam at the reverse stroke would meet with so much opposition, till the vacuum on the opposite side had become tulerably good, that the equability of the motion would be much affected. This being granted, we see that the port will be npen for eductiom before the end of the stroke, consequently a rapid fall in the curve takes place at D. Moreover, the slide continues to fall, not only after the pi-ton has come to the bottum, but evidently during the greater portion of the up stroke. Although after a very short interval, from the great rate at which the steam rushes into a racuum, the state of the racum is nearly unatered, and but little different from that in the condener; lience, after turning the right-hand corner, the pencil runs nearly horizontally. At l, however, the slide has returned to the position represented in Fig. III, and is rising; the piston is also rising, and near the top; consequently the stean that has not yet made its escape is pent up, and, becoming more and more conpresed, the pencil rises rapidty, till, the fres steam entering, it starts up sudelenly to A and retraces the curse.
The aceompanying diagram, Fig. 2313 , though being taken from the same engine as that represented in Fis. 2312, differs in many respects.

We observe, in the first place, that the steam-line IK is shorter than in Fige 2312, while the exhaust-line L MI is longer than in the latter; we infer, therefure, that the steam had a fhorter time to come into the cylinder, and a longer time to make its escape. We ubserse, likewiee, that the engine had made a considerable pertion of its dow: ward struke before fresh stean was admitted. Now, these phemoment can be explained by suppoing, from some caluse, the slite to be removed budily below the place it hact when the former diagran
 was tracel. For lat ns relier to the series of representatims of the shide betore moticed: Thas the point I shows us the ste:am comes in later in this diagran than in the former, and the valse is rising ; conseduently ite lower edpe wit on ... - ome print lower than it would be in orlinary circum-tneers. Again, the frint k if the diagram inab-

The opposite effects would have taken place if the slide-rod had been shortened; that is to say, the upper portion of the diagram would have been spread out, and the lower part contracted. If the whole -lide be of the proper length, it is clear that when we get a faulty diagram taken from above the piston, the one taken from below it will be similar to Fig. 231•t, and viee versa. Hence, therefore, we see one adrantage of taking both a top and botom diagram. But if the one diagram be similar to one of those just exhibited, and the other be satisfactory, the fault lies with the slide itself, and cannot be remedied but by the enginemakers. The only plan for the engineer is to divide the fault as equally
 ats he can between the upper and lower parts, by lengthening or shortening the rod, according to circumstances. Moreover, we conceive an engineer should not be satisfied that he has done all, when he has obtained a good diagram from one end of the eylinder; because, if the fault lay with the slide, he would be improving one to the injury of the other.
All the motions of the slide, whether up or down, would take place sooner than ordinary, if the stop on the eccentric were too far advanced; that is to say, the cushoning, the introduction of fresh steam, the cutting off, and the exhaust, would all commence sooner. The curve, therfore, instead of being like the standard diagram, will be similar to Fig. 2315, assming somewhat of a lozengeshape, the upper right and lower left corners being acute-angled, and the ether two obtuse. Again, a little reflection will enable us to discover that similar defeets will be exhibited in the lower diagram under these circumstances, and not opposite defects, as was the case when the slide or cecen-
 trie rod was at fault.

This curve was obtained by inserting a piece of metal, half an inch thick, between the stop on the eccentric and that on the shaft.

It cim be readily ascertained, by inspecting the diagram, if the stop on the shaft were not sufficiently advanced; for in such a case all the motions of the slide will be later than they would be in a mellconstructed engine; consequently, all the upper part of the curve will be drawn towards the right, and all the lower part to the left. And, as in the former case, the same distortion will be observable if a diagram be taken from the lower part of the cylinder. Moreover, if the defect be great, we shall meet with the hump in the lower right-hand corner, similar to that before noticed.

Fig. 2316 was taken after removing back the stop on the shaft 7-16ths of an inch.
When the ports of the cylinder or the steam-pipe are too small, the steam will not be able to enter or escape so freely as it ought; the pressure at first entrance will not be maintained for any length of Lime, and the vactum will not be formed rapidly enough, the stean and vacuum lines will therefore lose their horizontality, as is easily discovered in the diagram here given, which was taken from one uf our largest engines, afterwards altered by shortening the gab-lever.

When the steam is throttled the upper line of the diagram will rapidly decline, as in Fig. 2317, for the same reason that it would if the steam-pipe or the port were too small, and it will not be so high altogether as in ordinary cases. The vacuum-line, however, will be better than it woukd otherwise be; for sine the quantity of steam admitted is not so great, the speed of the piston will be reduced. But the exhaust-port is of the same size whether the steam be throttled or not; and therefore there is more time for the expended steam to ruch through this orifice into the condenser, and consequently the vacuum-pressure in the cmdenser and in the cylinder will be more nearly equal, and better in both than when the full power is set on.

Fig. 2318 represents three diagrams taken from the engine before referred to, the steam being throttled to various degrees.

Fig. 2319 will represent a diagram when the expansive geer alone is used. For let A B represent the whole length of the cylinder, and when the piston has traversed the space AC, let the ingress of the steam be suddenly stopped. Then, from this epoch, the steam-pressure will decrease, and the pencil begin to descend. Now if the temperature of the steam be unaltered, the pressure will vary inversely as the space it occupies. Divide, therefore, the space CB into intervals CJ G, de., each equal to A C; and therefore when the piston is at J, the space $\AA \mathrm{J}$ being twice $\Lambda \mathrm{C}$, the pressure of the steam at J is hulf that at C , at G it will be one-third, at H one-fourth, de.; and if lines be drawn through O.J G. de., parallel to $A 1$), and of the length we have just indicated, making ($\mathrm{E}=\mathrm{A} \mathrm{D}, \mathrm{JL}=$ half A D, de., and through the upper extremities of these tines a free curve be traced, it will give us an idea of what we onght to expect. But since the slide-valve also acts, we shall have the modification this would produce too, for the slide-valve is placed between the expansion-valve and the eyliuder, in most cugines; it follows, therefore, that the effective volume of the steam, interecpted by the expansinvalre, is the whole of the space letween it and the piston, and the slide-valre interposes an additional harrice when it begins to cut off the steam. The ease, therefore, is somewhat similar to what it would be if there were two expansion-valves, one nearer to the cylinder than the other, and the outer one acting first.

Fig. 2320 represents a series of diagrams taken from the same engine. Here 0 gives the full steam without using the expansion-geer, 1 that produced by the first grade of expansion, 2 that produced by the second grade, and so on. We must here remark, that in the interval that clapsed between taking: the diagram in Fig. 2317 and the series here represented, the engine had been improved by shortening the gab-lever, and thus enlarging the aperture for steam and eduction. The effect will be observable by comparing the diagranı S with that in Fig. 2317.

-350.
2321.

Wre must alway rest satisfied that an engine is in good working condition when the general features of the diagram are satisfactors; for in the hands of an incxperienced person, the indicator may trace an unfaithitul representation of the condition of the engine. When the piston is near one end of its stroke, if an undue strain be brought on the string it will stretch, and the indicator-barrel remaininer stationary while the steam is entering, the pencil will have a vertical ascending motion, such as is represented in Fig. 232.2. On the other hand, if the barrel come back against its stop befure the opposite stroke is accomplished, the pencil will fall rertically, as in Fig. 2321. These two figures ought to have twen precisely similar, the only cause of difference being the accident of the string.

The series of steps in the right upper portion of the diagram represented in Fig. 2323 arises from the pi-ton of the indicator being packel arer-tight, on which account it descends by a series of jerks as the steam-pressure relaxes.

The steam-line in Fir. 20.2 dnes not desend su rapidly as in the imaginary curve spoken of in the lat pare, becanse the expansion-valve of the engine it was iaken from was leaky, and therefore dil not entirely cut off the stenm.
The most accurate way of azcertaining the power of an engine is ly means of the indieator, bemuse the diagram gires the pressure on the piston, and hence, knowing the number of revolutions and the lecesth of stroke, the laboring force can be ascertained. The mean pressure on the piston is obtained
 better,) and, taking the horizontal line marked 0 as the origin, draw a series of other lines paradlel to it at di-tances wall to the intervals corresponding to the seate of promels on the indicator. This beine

It is usual to divide this quantity by 33,000 , (supposing this to be the number of pounds a horse would be able to raise one foot a minute, and the quotient is then called the horse-power of the engine. If there be two engines, as is usially the case in steamers, this quantity must be doubled.
Example.-In the preceding diagram, let the number of revolutions be 38 , and therefore the number of singie strokes 76.

Then, since the diameter of steam-cylinder $=\boldsymbol{2} 0$ inches,

If it be necessary to find, separately, the value to be given to the steam and vacuum pressures, we must get the actual pressure, and not the difference of pressure between the steam and vacuum lines. And therefore we might measure the height of the spaces above the atmospheric line, and the depth of the vacuum below it. But, in regard to the steam-line, a difficulty has to be surmounted, which would not be easily got over by practical men unaccustomed to analytical investigations. It is this ; that part of the steam-line is usually above the atmospheric line, and part below it; and the results of the one must be subtracted from the results of the other. This is more particularly to be noticed in canes where the engine is working expansively, and a great portion of the steam line is in consequence below the atmospheric line. The following suggestion will, however, get over the difficulty: consider the atmospheric line, as in Fig. 2325 , to be 15 lbs . (which is its actual pressure, angl reckoning downwards, call
the lines below it 14,13 , dc., till we come to $3,2,1,0$: the line marked 0 we will assume as that line from which the pressures are measured, and both the steam and racuum line will be above this new zero line; and the actual pressures of each will, by these means, be ascertained, and not the relative pressure, as compared with that of the atmosphere. In the preceding diagram, this second method of computation has been perfomed; the numbers on the right-hand side beginning from the absolute zero, and the figures along the top and bottom of the curve giving the stean and vacuum pressures respectively. The mean of the stemm-pressure is 18.85 lbs , and of the vacuum 3.8 lbs . The difference is $15 \cdot 0 \check{5}$, as we obtained before.

To determine the work done in one single stroke of the piston, we must suppose the piston to be descending; then the steam pressure acts above the piston, and the vacuum-pressure below the piston: that is to say, the steam-presure must be got from the top dingram, and the vacum-pressure from the bottom diagram; and we must, therefore, make use of the method proposed in the answer to the last question. Thus, to oltain the mean pressure during the down stroke, take the steam-pressure from the top diagram, and the vacuum-pressure from the botiom diagram, and subtract the latter from the former. Again, to obtain the pressure during the up stroke, take the vacum-pressure obtained from the top diagram, from the sterm-pressure got from the bottom diagram.
To ascertain by the indieator the quantity of steam an engine nses, we have only to fix on any con
renient part of the steam-line between that point where the steam is cut off and the opening is made to the condenser ; that is to say, between the points C and D in Fig. 2312. Observe, by counting the vertical spaces, what proportion the portion of the stroke, as far as this point, bears to the whole length of the stroke. Notice also the pressure of the steam at this point. Then we shall have a certain fraction of the cylinder filled at each stroke with steam of a given pressure. If now the cubic contents of the cylinder be determined, and the number of times the cylinder is filled per minute, we shall have the quantity of steam of known pressure supplied to the engine per minute. Thus, suppose that in the engine before alluded to $\frac{9}{10}$ of the cylinder were filled with steam of 15 lbs pressure; then, since the number of cubic inches in the cylinder twice filled is 15079.6 , the number of revolutions being of at the. time of experiment, the whole number of inches in a minute $=51252.64, \therefore 9 \times 5125204=161293.76$, and the number of cubic inches of atmospheric steam in an hour $=461278.76 \times 60=27676425.60$. But each inch of water is supposed to form 1711 cubic inches of steam at the atmospheric pressure, and therefore the number of cubic inches of water evaporated $=\frac{27676425 \cdot 6}{1711}=16,175$; and the number of gallous (English) of water eraporated $=\frac{16175}{277274}=55$ neariy.

Now, if the theory be correct, this should be the quantity of water evaporated from the boiler, due allowance being made for conden-ation, dc., in the steam-pipe and passages. But this is far from being the case, for the number of gallons actually evaporated by the boiler was ascertained to be 108 gallons in the hour. We can do nothing more at present than to state the discrepancy, and offer the following hypothesis to account for it. From the violence of the ebullition, the steam is in all likelihood not so dry its that on which careful experiments are made, as is frequently made manifest in boilers that "prime;" so that, even in good boilers, it is very possible for the steam to contain much more watery vapor than it would if it were not so rapidly consumed. If so, an inch of water would not under these circumstances form 1711 cubic inches of stean under the atmospleric pressure, and might perhaps form only one-half that quantity, which would be requisite to give the proper number of gallons of evaporated water. It remains to be seen by future experiments whether this be the fact; and if true, it will throw doubt on the tables of relative rolumes of steam and water contained in most works on the steam-engine.

To determine the friction of the unloaded engine.-If we examine the effect of any machine at work, however simple, we shall find a certain amount of power is requisite to overcome the friction of the eugine itself. Divest a common crane of its chain, or any load that may be upon it, and it will still be found that some force mast be applied to give motion to the geering itself; the amount of force depending on the materials used, the mode of fitting, and the quantity of geer set in motion. So it is with the steamengine. A certain amount of power is required to overcome the friction of all its parts ; and in this respect no two engines will be found alike, so much depending on the groodness of the workmanship, and the nice adjustment of the different parts.

Befure proceeding with the method of ascertaining the friction of an engine by the indicator, we would observe, that the greatest care and judgment are requisite in carrying out this cxperiment; there are many classes of engines in which the experiment ought not to be tried, especially direct-acting engines. The way, however, to proceed is this; the communicution ralve must first be closed, because the engine requires an exceedingly small quantity of steam to work it when the paddle-wheels are disengaged. Then let the blow-valie be opened, to allow any steam that may happen to be in the steam-pipe to escape. In the engine with which we tried our experimente, it was found necessary to destroy the vacuum, Ixfor getting the diagram, by opening the bluw-valve, to prevent the engine flying off at tuo great speed. The throttle-valve must be closed, and the paddles disconnected. After slightly opening the communication and throtlle valves, the slide may be opened gradually and cautionsly, to adnit the steam to the piston, and the injection must be let on as carefnlly as possible. Work the engine a few strokes by hand, and then let it be thrown into geer, and regulate the working by the hrotte and cominunication valves-the object being to give the encrine the same number of revolutions withont the paddles as it usually has with them-taking care to have the combenser of the same temperature as in the ordinary working state of the engine.* The indieator havimg been previously tixed and adjusted,

Vin. 11.-5
let a diagram be taken: it will be widely different from that when the load is on. Both the steam-line and vacuum-line will be much below the atmospheric line. The diagram may then be taken off, and divided as in the former case. Let the result of this diagram be worked off in the same manner as the common diagram, and the amount is the work the steam has performed, or in other words, the friction of the unloaded engine. This has been accomplished in the diagram, Fig. 2327.

This is what is commonly subtracted from the gross result obtained under ordinary circumstances, and denominated friction; but it is manifest that it is much less than the actual friction of the enging when turning the wheels, for the friction of every machine increases with its load; and moreover, the injection water, dc., raised by the air-pump increases likewise, and all this goes under the head of friction. The friction of large engines is less in proportion than that of smaller ones; in large engines it is usual to allow 1 lb . on the square inch of the piston for friction, and in small engines from 15 s to 2 Hzs ; and in most cases it would be better, excerit as a matter of experiment, to trust to this than to attempt the difficulty of ascertaining it.
A slide diagran is that in which ine inlicator-string is connected with the cross-head of the slide, and not with that of the piston; so that the horizontal motion of the pencil backwards and forwards sorresponds to ascents and descents of the slide, and vice versa. And this process will give us many particulars of the slide, without the trouble of taking the engine to pieces for measurement. If the indicator be applied to the upper end of the cylinder, it will give us information of the upper slide-face; and if to the lower end, of the lower slide-face. As was before stated, the string must be connected with some part having the motion of the slide; but generally it will be necessary to reduce the motion, because the stroke of the slide is more than the indicator-barrel will allow; in small engines it may be attached to the cross-head direct. As was before remarked, so long as the pencil is moving from leit to right, the slide is rising; and when moving from right to left, it is falling ; and any rise or fall of the steam-pressure is due to the change of pressure in the steam, as in the common or piston diagtam. Then the difference in the two cases would be this: that in the common case we have changes of pressure corresponding to motions of the steam-piston; and in the slide diagram we have changes of pressure corresponding to the motions of the slide; and the important thing to notice is, that every sudden change of pressure refers to some prominent epoch in the slide's motion; and consequently we are enabled to trace successively on the paper, the various positions of the slide from its lowest point as it cushions the steam, allows fresh ingress, \&c., and finally arrives at its highest point.
The following is a slide diagram, obtained by connecting the string to the slide cross-head of our model engine. The whole length of the figure is the same as the travel of the slide. If not, a plan must be adopted to be afterwards explained. When the pencil is at d, the slide is at the lowest point, and the vacuum is very good, as the slide rises till the pencil comes to c; but since we know at priori,

2329.

that the racuum remains good in the engine till the cushioning commences, therefore when the slide was risen from d to c, the cushioning commences; the cushioning continues as the slide rises till the pencil arrives at f, when fresh steam enters, and after this epoch the slide still rises till the pencil has reached the point h. As the upper line is not so marked in its character as the lower one, we shall not say any thing of the downward stroke. Through the points $d c f$, de., draw the vertical lines $\mathrm{A} d, \mathrm{~B} c, \mathrm{C} f, \mathrm{D} h_{\text {s }}$ cutting the atmospheric line in A IBCD, and the horizontal line EH in EFG II. Suppose E I to be the nozzle of the steam-port, on which the face of the steam-slide moves, (the cylinder being for convenience of illustration supposed to be lying horizontally;) then, since when the pencil comes to c, the cushioning commences, F^{\prime} must be the upper edge of the port. Take F J equal to the depth of the port, (which we will suppose known.) Again, since when the pencil is at d the slide is at the lowest, thercfore we must suppose it to have started from E; and consequently, at starting, the upper edge of the slide was below the lower edge of the port, the space J E. When the upper edge of the slide arrives at 6 , frech steam enters; in other words, the lower edge of the port is at J, and therefore the depth of the slide-fice js J ($\%$. Noreover, since the slide still rises through the space HG, II G will be the greatest amount of opening for steam. The successive positions here spoken of are laid down in the figures under the line EII. F J is the depth of the port. In I the slide is at its lowest; in I I the cr-hioning is commencing; in II I the steam is about to enter; in N the slide is at its highest.

When the travel of the slite is greater or less than the breadth of the diagram, let GE (Fig. 2829) be the breadth of the diagram, as in the last paragraph; from G draw G l', making any finite angle with G E, and equal to the travel of the slide. Join PE, and through F and H draw F O, If R, parallel to E P', and then proced with the line H l', as in the last paragraph with the line HE, considcring O to be the upper edge of the steam-port, de.

It shoukd be observed here, that the piston diagram does not necessarily return into it=elf, and form a
rosed figure, as in the preceding diagrams. This only happens because the indicator-barrel coutains the spring which, as has been stated, draws back the barrel directly the string relaxes. But we can $3 y$ udifterent arrangement produce a figure, of some value, in which the curve proceeds continuously in one direction, and which, therefore, we shall call the "continuous diagram." Let the spring fitted th the traversing eylinder, for bringing it back, be taken out, and also the stop that prevents the cylinder frum going too far; because our object is to let the barrel revolve freely. The clasp, by which the paper is usually secured, must also be taken off, and the paper must be secured by turning it over the tup of the cylinder, and be folded in such a manner that the gressure of the pencil will help to keep it duwn. Let now some part of the engine be selected where a double pulley may be fitted to revolve. one gronve of the pulley having about the same diameter as the pulley attiched to the barrel, and the other to the diameter of the paddle-shaft. A string must be plased round this latter pulley and the shaft, and they will revolve in the same time. Another string must be passed round the pulley of the barrel and the smaller of the two pulleys; and then the indicator-barrel will revolve nearly in the sanse time as the engine shaft. And if we suppose the shaft to be revolvine uniformly, which it will be nearly, eapecially where there are two engines, the barrel will have a unifurm motiun in one direction. If the pencil be put to the paper, as in ordinary cases, when the indicator-piston is at the lowest, it will commence tracing its carve. It should be allowed to remain for one entire revolution, and longer if convenient, provided one line do not interfere with the other in going twice over the paper.

The chief practical utility of these diagrams is, that they serve to show the rate at which the steampressure increases or decreases. It will be observed by the continuous diagram, Fig. 2310, that the steam-pre-sure does not increase instantaneously, as many suppose, and as the common diagran would lead us to believe. The vacuun commences at D and continues to E , the cushioning from E : to A ; the fresh steam enters at A, and causes the pencil to rise till it reaches its highest at 13 .

If we examine this diagram in page 56 by any of the previous tests, we shall find it rounded off at the corner, a circumstance not easily accounted for. For in all former cases we can only correct a defect in this corner at the expense of the lower corner. As the indicator persisted in giving this outline, and all attempts according to the foregoing principles (by altering the set of the slides, de.) failed, it was at length proposed to examine the steam-piston itself; and accordingly, stean was let in at the lower [rort, and the cock of the grease-cup opened, when it was diseovered that the piston was not steam-tight in the cylinder; and therefore, although when the engine was working the first impulse of the steam sufniced to drive the pencil up, yet as soon as the piston had got into motion, the escape of steam by leakage diel not allow the pencil to rise so rapidly as it otherwise woukd !ave dunce.

It is evident that no part of the diagram can be below the atmospheric line, when an engine is worked Withut condensation; for the pressure can never be less than that of the atmosphere. And since the steam has not a free e-cape into the air, but is ubliged to force open the foot-valve and delivery-valve, and make its way through the air-pump bucket, the resistance it meets with will caune the presure to bee greater than that of the atmosphere. Engines, whose stean-presure is not comsidembly greater than that of the atmosphere, cannot be worked on the high-pressure principle. The next diagran bas taken from an engine whoze boiler-pressure is 7 lbs. In
high-pressure engines, the diagram will be similar; because the steam having to escape by the blast-pipe, is pent up, and canses the lower part of the diagran to be above the atmospheric line. In general, the steam and vacuum lines muit be worked ont separately by the plan pruposed in parge 57 ; for it will be obecrved, that the limes intersect each other in the diagram. The indicator for hiofl-pres-ure emgines shombld be mate experely for the purpose the seale of pounds should have a higher rame, but need not go helow dhe atmos isheric line.

This curve presents a singular appearance, from the steman and exhast line interectinge Since the
 low-pressure engine, the steam pent up on the exhates vide and commencing with a prowure greater than that of the atmosphere, som surpases that of the builer, so that when the prot bexins to open

 nteam enters from the condenser, and the lanju of the lefthand comer is formed.

The Jymamoncter, an instrmant somewhat similar to the indionter, hats been introlured into aren
 acrew-shaft, and, consegnently, the firee the rngine, he means of this instrumem, is exerturs top pir prib the ship. It is merely a lever, or at combation of lewers; the -haft pressing hear the fukerum, and

 where than one part of the larrel in sucee-etion, if cle-irable.

zero-line must be got, as in the case of the indicator. When the dynamometer is applied to large engines, the levers can be relieved of the pressure of the shaft; and this being accomplished, the index ot the spring-balance will stand at 0 , when the zero-line may be traced. The balance will also give the seale of pounds. After the diagram is traced, draw a series of equidistant lines at right angles to the zero-line, as in Fig. 2310, in the article on the indieator, which represents a dynamometer diagram taken on board a man-of-war steam-ressel, the dimensions being reduced one-half. The distance between the curve and zero-line must be mensured and compared with the seale of pounds on the balance. Let this be registered on the diagram in its proper space. The sum of all these is then to be taken, and divided by the number of spaces taken into account. Thus we shall obtain the mean force of the lever on the spring of the balance; let this be multiplied agein by the leverage of the dynamometer, and the result will be the pressure of the screw-shaft on the dynamometer, and, therefore, on the vessel.* To obtain the leverage, if the lever be compoundi, multiply together all the long arms, (measuring from the fulcrum,) and divide the product by all the short arms multiplied together, (measuring also from the fulerum.)
The horse-power of an engine is to be found by the dynamometer in the following manner:
Having found the number of pounds pressure exerted by the serew-shaft, multiply it by the speed of the ship in knots, and the product by 6080 , (the number of feet in a knot;) then divide the result by \& 0 , (the number of minutes in an hour,) and by 33,000 , and the quotient will be the horse-power.

Or the work may be shortened, thus:
Multiply the number of pounds pressure by the speed of the slip, as before, and this product by -00307, and the product gives the horse-power.
This, it will be observed, is the affective horse-power after making allowance for friction and loss by useless resistance.
The diagram before referred to will elucidate the process of working out the result. This was taken simultaneously with two others; and the mean of the three pressures was $41: 309 \mathrm{lbs}$. Multiplying by the power of the system of levers, the result was 8086.4 pounds, (the pressure exerted by the serew-shaft.)
The speed of the ship was 9.893 knots.
Hence $8086.4 \times 9.893=79998 \cdot 7$.
And $79998^{\circ} \times \cdot 00307=245$ nearly, the horse-power required.
The horse-power by indicator at the same time was 465%, showing a loss of 220.6 by friction, reststance, de.
INDIGO. A blue substance much used as a dye-stuff. The best indigo is obtained from an Asiatic and American plant, the Indigofera. The plant is bruised and fermented in vats of water, during which it deposits indigo in the form of a blue powder, which is collected and dried, so as to form the cubic cakes in which it usually occurs in commeree. Indigo is quite insoluble in water; when heated it yields a purple vapor, which condenses in the form of deep blue or purple acicular crystals. When indigo is exposed to the aetion of certain deoxidizing agents, it becomes soluble in alkaline solutions, losing its blue color and forming a green solution, from which it is precipitated by the acids white; but it instantly becomes blue by exposure to air. This white indigo has been termed indigogene, and indign appears to be its oxide. It is best obtained by mixing 3 parts of finely powdered and pure indigo with 4 of green vitriol, 5 of slaked quicklime, and 100 of water, repeatedly shaking the mixture. In about twenty-four hours the supernatant liquor, which is transparent, and of a green color, is to be decanted off, and poured into dilute muriatic acid, when the deoxidized indigo is thrown down ; but, in order to prevent its absorbing oxygen and becoming blue, it must be most carefully excluded from the contact of air, which may be effected by siphoning it off into the acid, colleeting it in ressels filled with hydrogen, and washing it with water deprived of air and holding in solution a hittle sulphate of ammonia. In this white state indigogene absorbs between 11 and 12 per cent. of oxygen to become blue indigo. It would appear from Dumas' experiments that indigogene is a compound of

and that indigo consists of 1 atom of indigogene $=359$, and 2 of oxygen $=16$. The chemical equivalent of indign, therefore, is 375 .

When indigo is dissolved in coneentrated sulphuric acid, it forms a deep blue liquid, known to the dyers by the name of Saxon blue. The great mart for indigo is Bengal, and the other provinces subject to the presideney of that name, from the 20th to the 30 th deg. of N. lat.; but it is also cultivated, though not nearly to the same extent, in the province of Tinnerelly, under the Madras government in Java; in Luconia, the chief of the Philippine Islands; and in Guatimala and the Caracas, in Central America. The following remarks, from the Commercial Dictionary, will exhibit the history of this now indispensable commodity, and the difficulties with which it had to contend before it obtained a permanent footing in the commerce of Europe. "It appears pretty certain that the culture of the indigo plant, and the preparation of the drug, have been practised in India from a very remote epoch. It has been questioned, indeed, whether the indicum mentioned by Pliny was indigo; but, as it would seem,

[^3]without any good reason. Pliny states that it was brought from India; that when diluted it produced an admirable mixture of blue and purple colors, (in dilucndo misturam purpurec cervleique mirabilen, redalit;) and be gives tests by which the genuine drug might be discriminated with sufficient precision. It is true that I'liny is egregiously mistaken as to the mode in which the drug was produced; but there aromany examples in modern as well as ancient times to prove that the posecsion of an article brought from a distance implies no accurate knowledge of its nature, or of the processes followed in its manufacture. Beckmann (Ilist. of Inventions, vol. in., art. 'Indigo') and Dr. Bancroft (Permanent Colors, vol. i., p. 241-252) have each investigated this subject with great learning and sagacity, and agree in the conclusion that the indicum of Pliny was real indigo, and not, as has been supposed, a drug prepared from the isatis or woad. At all crents, there can be no question that indigo was imported into modern Europe, by way of Alexandria, previously to the discovery of the route to India by the Cape of Gool Hope. When first introduced, it was customary to mix a little of it with woad to heighten and improre the color of the latter; but, by degrees, the quantity of indigo was increased; and woad was, at last, entirely superseded. It is worth while, however, to remark, that indigo did not make its way into general use without encountering much opposition."

In common painting indigo is seldom or never used without a small mixture of white. A preparation from the leaves of the anillo is sometimes fraudulently substituted for indigo, but may be at once detected by throwing a piece into the fire, as genuine indigo will not burn.
INERTIA. (See Force.)
INVOLUTE CURVE, is that which is traced out by the end of a thread (while being unwound) that is coiled round another curve. This species of curve is frequently used in the formation of the teeth or wheels. (See Geeming.)
IRON, (Sanser. ais; Mod. Hindost. lohah ; Morl. l'ers. auhun; Chald. perzela; Heb. barzel; Gr sideron; Swed. jrrn; Dan. jern; Icel. jarn; Franco-theot. isar, isarn; Mreo-Goth. ais; Germ. cisen; Ang. Sux. isen, iscrn, iren; Low Germ. isen; Fries. ixsen; Dutch, yzer; Erse, jarann; Weleh, haiarn; Lat. ferrum ; Ital. ferro; Sp. hierro; Fr. fer, de.,) one of the longest known, the most generally used, and most extensively applicable of all the metals. Although found native, as it is called, it nowhere exists perfectly pure in nature. In the arts, it occurs under four conditions; 1. as pure iron: 2. crucke, or cast iron ; 3. malleable, or wrought, or bar iron ; and 4. stecl. Its precipitate, or release from a chemical solution or combination, is always pulverulent, and does not present the most important practical characteristies of the metal. Deposited in the electrotype-way, it is more coherent, but still friable. It is difficult to be produced by this method in large plates: pieces of an inch square are rare. seen by reflected light, its surfaces in this condition are more brown than gray, owing to its immediate oxidation. A frech fracture is, however, clear gray. Its texture is crystalline, or, more properly, an assemblage of crystals loosely cohering, which appear cubic. In this state it is not at all malleable. When fresh it is highly magnetic ; but this property rapidly diminishes on exposure to the air or moisture. Its density is not known, and can with difficulty be accurately ascertained. When broken into spicula and approached to a wire no longer at a red-heat, or even to the bateral flame of a spirit-lamp, it deerepitates slightly and becomes converted into powder of the peroxide. Its other properties in this coudition have not been thoroughly examined; nor are they likely to present much interest exeept for merely speculative, and, perhaps, for medicinal purposes.

In the condition of stcel, on the other hand, all the peculiarities and habitudes of this metal are important enough to require a special detail and discussion in a separate article. (See Steel.) L'uder this one will be considered what is proper to it in its two conditions of crule and malleable iron. The means for arti-tically producing these two different states, i.e. the manufacture of cast or bar iron, being different, must of course be detailed separately. In other regards they will be spoken of together, but distinctly wherever necessary; and it will be understood, that when not otherwise expressed, the term iron means malleable iron.
l'hysical propertics. The color of crude iron varies according to the state of combination and propertion of its chief foreign ingredient, carbon, from dark gray to silvery white; passing through divers mitermediate stapes of gray, mottled, bright, and white. It is upon these indications, coupled with those of texture, (which will be spoken of directly;) that the metal is classitied in commerce. Inark gray irme, erystalline, with small facets, is supposed to denote a fitness for foundry purposes, i. e. fur hoing cast into varions forms; and the denomination of such a whole class is foundry-iron, or founders pig. An its colur brightens and grows more and more silvery, with a bladed texture, it is considered betto suited for conver-ion into malleable iron: and the whole class obtains he name ordinarily of forge pig. These di-tinetions, further than as applied to elusses, are extremely loose and uncertain; and we are yet, without positive knowledere as to either what eatuses or is a permanent practical consequeme o: color in crude iron. In malleable iron the distinctions in this respert are much less marked. A full gray hue, with something of a bluish tint, is generally supposed to ntach to tho best specimens. Of comree, ull duse remarks apply only to the phenmem of a fre-h fracture; and the color and lustre which mas De given tos surfaces of iron in either conditon hy finishing and poli-hing are, it will he readily conceivert ratirely artificial, and dependent in an suall degree upon the procemes that may have been in antenl to.

In the same manner, it may be presumend, another property, which is chicefly sumpriciad, is depembut pon the artistical procesaes employeal in developing it, and this is the athesion of iron, i. e. the feree with which it attaches itself to a liguid surface 'This prowrty has not beon experimentallse examined te my extent, though a research upon it would probably he fruitfol fin all questions theching the fine

the weight necessary in several cases (abstraction being made of that of the disks themselves respect. ively) to be as under:

Although the adhesion of a surface in contact with the liquid in these experiments would be in part a function of the aptitude of the metal itself to amalgamate with quicksilver, yet these results are nowise accordant with sucl aptitude, as far as it can be inferred from other observations. And it seems to be equally independent of the density and cohesion of the solid. It is probably dependent in much greater degree upon the absolute perfection and smoothness of surface which, in bodies worked upon with the same force and for the same time, manifests itself according to another property, that of hardness. In ordinary specch, and sometimes even in exacter phrase, this term hardness is used to express the resistance of a substance to change of form of any kind. Such resistance depends mainly upon cohesion and elasticity, and covers, in part, the characteristics of malleability and stiffiness. But hardness, in its technical sense, is resistance to removal or abrasion of substance, as in cutting, boring, filing, and the like. Any material which will seratch a given substance is therefore harder than that substance. Kirwan was the first to classify substances in this respect after a decimal scale, beginning with tale and ending with diamond. The eight intermediate tests are uniform and easily accessible minerals. Measured by such a scale, native iron (which may be considered as nearly the type of the malleable iron of commerce, though it contains a notable proportion both of lead and copper, generally, is ranked in hardness at 4.5 ; that is to say, it scratches fluor-spar as much as it is itself scratched by phosphate of lime. Crude iron is harder, and most specimens of gray foundry pig are just scratched by felspar; it may, therefore, hold an average rank on Kirwan's scale of 5.8 . But white forge pig will generally cut glass, and may therefore be ranked at 7 in hardness by the same scale. It will readily be understood that in applying these tests, something depends upon the shape and sharpness of the fragment used; a dull surface will merely rub without scratching; and in the case of white iron and glass, unless the lamellar crystals of the former be used with their edges, the latter will not be cut. It is the same with the diamond, the hardest known substance; only its spherical edges cut glass. In drawing a practical inference from such observations, regard must be had, too, to the ordinary texture of the substances, $i . e$. their mode of aggregation and cohesion. Thus white iron, hardened steel, quartz and granite, de., have all the same theoretical index of hardness; but steel, for instance, is much more coherent than quartz, which is a brittle substance, and still more so granite; it is, therefore, used readily for working both. So sandstone, which is principally grains of silica held together with a siliceous cement, and therefore has an index of 7, is yet ordinarily worked with the same tools that are used for marble, whose index is but 35 . But the causes and modes of these apparent inconsistencies readily manifest and reconcile themtelves upon a little reflection.

Zo far as metals are concerned, the following table may be taken to give what is known in this par ticular; the foregoing cantions being equally applicable.

Table of Metals :'i : he proboble Order cf their Hardness.

Mercury,	Irov,
Sodiun,	Cobalt,
Potassium,	Nickel,
Lead,	Crude Iron, (gray,
Zinc,	Stecl, (soft,)
Tin,	" (hardened,)
Antimony,	Manganese,
Gold,	Titanium,
Silver,	Crude Iron, (white,)
Citdmium,	Chromium,
Bismuth,	Rhodium,
Tellurium,	Hridium, Osmium,

Copper, copper and zinc, (brass,) Platinum, copper and tin, (gun-metal,)
Palladium,
hros,

Hardest stecl, varying from white ron to the top of the list.

llow much hardness is dependent on texture, has been already mentioned; and it is owing to the varying circumstances of this last property that iron in different conditions is found to shift about so much in the list just given. In practice, another property, that of affection by heat, or specific heat, (which will presently be mentioned,) has also an influence; and a substance, hard at first, becomes sensibly warm by attrition, and finally yields to the action of a material less lard than itself at low temperatures, but endowed with a greater eapacity for heat. It is thus in one aspect that crude iron moler a red heat may be cut and sawn almost like wood; and in the other, that a wheel of soft malleable iron, rapidly revolving, may be made to cut the hardest steel. Workmen have the opportunity of appreciating these affections in manipulations with the cold chisel.

The texture of crude iron is in most treatises said to be granular. It is in fact crystallized; as we iearn from the chemical experiments of Daniell, and the microscopic observations of Schafhaütl and Alexander. According to the last-mamed, the crystals of gray iron "belong to the octahedral system, [in which the axes of crystallization are equal and at right angles,] and present themselves under the primary forms of several of its classes." "The maximum limit of these, when cubic, is not above - ${ }^{\frac{1}{0} \overline{0} 0}$
of an inch in lincar dimension, and about $\overline{9} 000 \frac{1}{0.000}$ of a grain in we ght." Crystals in white iror are smaller, and "most frequently occur in six-sided prisms, sometimes connected in fascieles by thein sides, at others by their ends, in a sort of stellated or radiated arrangement. The white color of the mass seems to be mainly arising from these arrangements of particles." Malleable iron is supposed th hieve a filamentous structure; but metallurgists are not agreed how far this arises from (as it is cor tainly in some degree dependent on) the processes employed in the manufacture. The amount of fory ing which the bars have undergone, the degree of heat to which they have been subject, as well as the ultimate size to which they may have been reduced, all atlect the texture of specimens, whose othen characteristics, originally and subsequeutly, are apparently the same. Nuvertheless, this property and that of color are the chief commercial tests of the quality of iron. It is generally supposed that a framture more pointed than irregular, and a tendency to become filamentous upon being furged into bars of an inch square or under, are indications of the two main characteristics of good iron, viz. stringth and stiffness. But there is as yet no criterion by which, on simple inspection, the quality of the metal can be determined, and both the manufacturer and the consumer are compelled to rely (in the absence of actual experiment) upon the constancy of Nature in furnishing materials, and the uniformity of Art in subjecting them to the same processes. The same ores treated in the same way ought to produce the same metal; and so they generally do.

Closely connected with texture is the property of density. The variations in this respect between the results of different observers are to be attributed partly to the difference of methods, partly to the inaccuracy of the weights employed, (a much more influential cause of error than is generally imagined,) and partly to the variations of the individual specimens. Their limits are, however, sufficiently eluse to allow of taking as a probable average (the density or specific grazity of distilled water being called 1) the specific gravity of

$$
\begin{aligned}
& \text { Crude iron, foundry or gray iron, } \begin{array}{l}
7 \\
\text { forge pig or white " } \\
\text { Malleable iron, } . \ldots . ~ \\
\hline
\end{array}
\end{aligned}
$$

In estimating absolute weight, it is sufficient for practical purposes to consider a cubic foot of distilled water as equal to loun ounces avoirdupois ; so that a cubic foot of iron in its different conditionwill weigh one thou-and times the indices of specific gravity given above, respectively, in avoirdupois ounces, sixteen of which go to the pound. For rough approximations, iron in gencral may be taken as weighing one-fourth of a puml to the cubic inch. So far as crude iron is concerned, the specifie gravity has been recently eon-idered in reports upon ordnance to the American government to be an index of another physical property, (of the greatest interest where cannon and guns are concerned.) viz, the tenacity or euhesive force of the metal. Of course, such indications are not regarded as abwlute, but merely relative; and they have been supposed hithertu to apply only to the best sort of gray foundry iron.

Upon this property of tenacity or cohesion of jron in its different conditions, experiments have heren very numerous and raried, with results as accordant as could be expected. They may be fomm de. tailed more or less fully in several special treatises; such as of Barlow, Duleau, Kiarsten, Natvier, ind Tredgold. The results of those whose apparatus may be considered as the most reliable, seem to show that cohesion depends not only upon the chemical composition of the metal, but also upon the way in whieh it has been treated ; the amount of heat, for instance, to which it has been subject, the extent of furging it has received, and also the dimensions which have been given to it, and the form in which it has been left. Were the theory of the resistance of materials perfect, the behavior of the metal under one position or set of circumstances would determine for any or all ; but in the absence of such theory, it is necessary here to give the observed results in the chief positions and circumstances in which the resistance of iron is practically called into play. These are fuur, viz. : Resistance to a foree tembing to pull asunder in the direction of length; this is usually termed absolute colesion: 』. Resistance to a force tending to cru-h in the same direction; this is termed relative cohesion: B. Resistance to a foree applied at any angle with the longitudinal axis of the mass, or a transverse force; this is termed r co spective cohecion: 4. Resistance to at twisting force, or to torsion. As to resistamee to impact or rexilienee, that will be spoken of under the property of elasticity.

1. The absolute cohesion of malleable iron may be taken for square bars of different sizes ns under; the resistance per square inch being proportioned to the breaking weight of the respective sizes.

When the bars are romed with the same area, they will show a somewhat higher resistance than the above; and when forged that they appear more resistant than whon round. Iron wire, from the monk of manuficture, is erenerally supposel to exert a greater propertionate resistance than hammered irom;
 ance inversely as the area secema to progresa with wire to n certain point, when it changes sign, and the propertionate strength dimini4es with the area. Thus, in Thelfort's expriments,

$$
\text { a wire } \frac{1}{3} \text { inch in dianneter gave a resistance per square inch of } 9 \text {, criso lhs. }
$$

and

$17,800 \mathrm{lbs}$. per square inch, which it can bear without permanent alteration. This may be taken for ordinary use at $18,000 \mathrm{lbs}$. per square inch.

Crude iron is but rarely employed as a tie ; so that a knowledge of its absolute cohesion is comparatively of little practical consequence, and there have been proportionably few direct experiments. The mean of Tredgold's gives $44,620 \mathrm{lbs}$. per square inch as the breaking weight. The results of Muschen brock, Brown, and Rennie, the former very much in excess and the latter in defect, do not appeat reliable. In practice, we may take $15,000 \mathrm{lbs}$. per square inch as the strain that gray erude iron wiil bear in the direction of its length without permanent alteration. It is, therefore, about one-sixth weaker than malleable iron. White erude iron has not been experimented upon in this sense; but it is known, from observations on transverse strains, to be much weaker than gray iron. Iron of the second fusion (i.e. melted and cast from a cupola) is, in general, stronger than when run from the high-furnace. The method of casting (i.c. in vertical or horizontal moulds) does not, as far as observed, affect its absolute cohesion.

The following table gives the mean absolute cohesion of divers metals cast in pounds per square inch, viz.:

And the following the mean proportionate cohesion of some of them when drawn into wire; iron wire being 1 , or unity.

2. In rclative colhesion, or resistance to crushing, the two conditions of the metal appear to change places; crude iron being the strongest. The mean of many experiments of Karsten gives the resistance in this sense of crude iron, gray, at $168,750 \mathrm{lbs}$. per square inch.
white, " 210,540 "
The specimens were of the first fusion, cast from a cupola, and poured from a reverberatory furnace ; the cupola castings were very uniformly the weakest, and those from the air-furnace the strongest of the sets. Those moulded vertically were also at a mean $2 \frac{1}{3}$ per cent. stronger than those moulded horizontally. Wrought-iron has not been extensively observed in this respect. The mean of the experiments of Rondelet gives $70,000 \mathrm{lbs}$. per square inch (rery nearly) as the weight under which bara from $\frac{1}{2}$ to 1 inch szare began to give way. Its texture appears to prevent it from being crushed, even with the weight that would crush crude iron; for if the height of the specimen be triple its thickness, it will bend and double up sooner than be crushed. The practical effect in either case upon the equilibrium of constructions is pretty ncarly the same. We are warranted, then, in considering the useful relative cohesion of wrought-iron at one-half that of gray crude iron. The following table exhihits this property as supposed to be ascertained for some other metals, viz.:

Crude iron, white " gray,		cubic inch,	$\begin{aligned} & 210,000 \\ & 170,000 \end{aligned}$		ratio	$\begin{aligned} & 1.0000 \\ & 0.8095 \end{aligned}$
Copper, east,		"	117,000	"	"	0.5571
Malleable iron,		"	85,000	"	"	$0 \cdot 4048$
Copper, wrought,	"	"	55,000		"	0.2620
Tin, cast,			9,000		"	0.0429
Lead, cast,	"	"	8,000			0.0381

The last four were not crumbled under the pressure, but flattened; their resistance was therefore entirely overcome; although their texture did not allow the same phenomena as belong to the crystallized structure of the others.
3. Experiments on respective cohesion of iron, i.e. its resistance to transverse strains, have been very numerous. Theoretically, their results should be functions of the absolute cohesion of the substance; but, partly from defect of theory, and partly from inherent difficulties and errors in obsersation, this is , not exactly the case. As this is the sort of resistance most extensively required in practice, its determination is of the greatest interest. In addition to the variations arising from the qualities of the metal uself, it depends so much upon the dimensions and position of the mass exposed to strain, upon the angle of direction of the foree or weight, and upon the degree of deflection that the equilibrium of construction will allow, that the statement of results can hardly be more condensed than the statisties of the experiments themselves. To give tables for practical use is liable to the same objection of taking up undue space, and also to the inconsenience of being limited in their application. All that will be done here, then, is to furnish genetal rules which may safely be calculated upon in all cases for apportioning the weight to the dimensious of the beam which is to bear it, viz.:

$$
\begin{aligned}
u & =100000 \frac{b d^{3}}{l^{2}} ; \text { for gray crude iron. } \\
w & =62500 \frac{b d^{3}}{l^{2}} ; \text { for white } \\
x & =135000 \frac{b d^{3}}{l^{2}} ; \text { for wrought-iron. }
\end{aligned}
$$

Praitisul Rule.-Divide the product of the breadth of the beam ard the cube of the depth by the square of the length, all in inches; and multiply the quotient by lua,coo for the weight in pounda when giwl iron is used. With white iron multiply by 0,500 ; and with malleable iron, by $1: 50,000$ foo the load in pounds. These coefficients corre-pond to a maximun deflection in the middle of the bean (which is assumed to be solid) of $\frac{1}{60}$ of an inch per fout in length; which it is not judicious to exceed although it is very often surpassed. The use of uthite iron should be as nuch as possible avoided in resi-ting strains of this kind. It is not only very little more than half as strong, but it is also less uni form and more uncertain.

These formulie and rules apply to instances where the beam is supported at both ends, and strained by a furce acting in the middle of the length, as in the ease of mill-shafts, dc. Where the load is uniformly distributed over the length of such a supported beam, the effect is the same as if five-eighths of this load were applied in the middle of the length, and the weight borne in this case will be $1_{1}{ }^{6} 6$ times that ascertained by the rule just given.

When the beam is square, the furmule and rules equally apply as when it is merely rectangular. If it be cylindrical, suppurted at both ends and loaded in the midule, divile the weight obtained by the rule for a square beam whose side equals the given diameter by $1_{\frac{1}{10}}^{7}$ for the load that will produce the same deflection. If the load is to be uniformly distributed over the length of a cylindrical beam, it is near enough in practice to consider that its strength and stitiness will be the same as in a square beam with sides equal to the diameter of the cylinder, and loaded with the same weight in the middle of it? length.

In all these cases, the weight of the beam itself must be taken into the account as part of the load, either uniformly di-tributed or centered in the proportion of $5: 8$, as the case may require. To diminish as far as possible the useless load in such instances, it is not unusual to make the beatm or shaft a hollow cylinder. The rule fur determining the dimensions becomes complicated; for strength and stiffness do not follow the same ratio of diameters. In general, it may be remembered that when the thickness of the metal is one-fifth of the diameter, (which, if the loat is considerable, is not more than a safe proportion,) the strength of the hollow cylinder is nearly two-thirds, and the stiflness one-half nearly of what they would be respectively in a square beam of the same depth, while there is a saving of onehalf the quantity of metal.
4. The capacity to resist torsion is of great importance in the substance of which the revolving parts of machinery are made; for it is not unfrequently by a submissim to torsion that buth power and durability are secured. Navier has explored the theory of this resistance; but the experimental cunstants which are required to make the theory of practical application are unfortunately deficient. The results of the observations made hitherto are remarkably discordant. The following table gives the proportionate re-istance in this respect of various metals.

Cast-stecl,	. 56	Crude iron, (east horizontal,)...... 9.9.4
Shear	17.06	Hard gun-metal, 5.00
Blister "	169	Fine brass, $4 \cdot 69$
Crude iron, (cast vertical,	10.63	Copper, (cast,)............................ 4.51
Wrought-iron, (coal,	$10 \cdot 13$	'Tin,............. 1迷
(charcoal,	950	

It appears from this, that iron in all its conditions exercises this resistance pre-eminently; and that crude iron does not differ in this respeet inaterially from wrought-iron. It has been generally assumed in metallurgic treatises hitherto, that resistance to torsion is in proportion to absolute cohesion. The experiments, so far, do not sustain this, as between malleable and crude iron.

In a preceding paragraph, a distinetion has been made between strength and stifiness. Although both are in part functions of the alsolute cohesion, yet the latter is a measure more particularly of another physieal property-that of clasticity. It is in virtue of its cuhesive etrength that a substance resists any change of form or peition; it is in proportion to its chasticity that such changes, when oecurring, are not fermanent. Thus, up to a certain point, a bar or wire which has been lengthened by a strain will, when the strain is removed, return to its origimal length; or a bean that has been dedlected by a load will, upen being relieved from the load, reassume its horizontal porition. When this point is passed, and the extension or deflection remain permanent after the catue prokucine them has ceased to act, we say ordinarily that the piece, whatever it may be, has taten a set, und, teelmieally, that its chasticity is overeme or deatroyed. (iray crude iron will allow an cxtension, within the linits of its elas-
 to allow for a greater deflection in masees which hate to bear a jermanent had, (such as juists, girders,
 is not reliable either for extemion or detlection. Milleable irom will bear an extension without injury of , fon of its length, only its deflection ought not to le allowed to surpass shn of it lengeth. These de-

There in another manifestation of maticity in re-intunce to impuct, or, as i. is technically termen an
 pulw or bows, and then returns tor original state. This remistance is of great impentance in mathery, (o) ail in determining what velority the moving mation -hould be allowed to have; for the impare mil

 metaly, and nearly in high as iron itself. Whalelme exbibits it in jere-minemt dorme.

Iron, (crude or wrought,)................... 1.000	Iron, (crude or wrought,).................... 1000
Gun-metal, (copper s + tin 1,) cast, 0.819	Brass, (cast,) U4400
Yellow Pine, (American, 0.740	Beech, 0:326
Oak, (English,) 0.724	Larch, 0:315
Mahogany, 0.630	Lead, (cast,).................................. 0.246
Elm, (English.) $0 \cdot 620$	Zinc, " $\ldots \ldots \ldots \ldots \ldots .0 .190$
Ash, 0.600	Tin, " 0.142
White Fir, 0.567	Whalebone, 3.000

The following comparative summary may be taken of the chief practical resistances of iron and some other substances employed in constructions and in machinery.

	strength.	Extensibility.	Stiffuess.
Crude iron, (gray:)	$1 \cdot 00$	1.00	1.00
Brass,	0.44	$0 \cdot 90$	$0 \cdot 49$
Gun-metal. (copper and tin,	0.65	$1 \cdot 5$	0.54
Iron, (malleable,	1-12	0.86	$1 \cdot 35$
Lead,	$0 \cdot 10$	250	$0 \cdot 04$
Marble, (white,		$1 \cdot 00$	$0 \cdot 14$
Oak,.......	$0 \cdot 25$	$2 \cdot 80$	$0 \cdot 09$
Tin,	. $0 \cdot 18$	0.75	0.25
Zine,...	0.87	0.50	0.76

The remaining properties of iron connected with its texture do not, as yet, admit of being numerically valued or proportioned. Such is the case, for instance, with malleability, or the capacity of being extended in one or more directions by hammering. White crude iron does not display this property at all; gray iron possesses it generally in a slight, and sometimes in a considerable degree. Wroughtiron in this respect is inferior to gold, silver, copper, tin, cadmium, platinum, lead, and zinc; the order of the names here representing the order of malleability in actual extent of surface which can be given to a unitary mass of the same volume, by the most suitable treatment. All other metals are inferior to iron in this aspect; though, if the question were as to the extent of surface which could be gained by a continuous hammering, its relations would be altered. It tends to become very brittle by forging; and, besides requiring the application of great force in the aggregate, has to be frequently softened by heat during the process. The harder the iron is in its original state as wrought-iron, the more often atch softening has to be resorted to; whence it may be inferred that, ceteris paribus, the softer the iron the more malleable it should be. And the same inference attaches in the property of ductility, or capacity for being drawn into wire. This is in so far different from malleability, that heat is a necessary part of the process if it is carried to any great degree; and the order of ductility of the several metals varies from that of their mallcability aceordingly. Gold, silver, and platinum are the only metals more duetile than iron.

Magnetism, or the property of permanent polarity, was formerly supposed to belong to iron only. Later researehes show that this is to be shared, though not equally, with nickel, cobalt, and chromium. Occasional magnetism may be excited in most substances; as is shown by their influeneing the oscillations of a freely suspended magnetic needle. But this influence is much weaker in all other substances than the four named. Silver, which stands the highest of all the other metals, is nine times feebler in this respect than iron; gold fifteen times, and marble nearly twenty times, more weak. Iron acquires magnetism by contact or suitable friction with a magnet; by being suitably rubbed or struck in a proper position ; by exposure to refracted light of the suan ; and even by being left to stand in a nearly vertical position. 'Ithe processes for this purpose will be described under the proper article. (See Magsemism.) It is enough to say here, that owing to the ease with which it is accidentally developed, it is extremely difficult to find in the shop of a philosophical instrument-maker, for instance, a tool or scrap, of iron which is not in some degree magnetic. In all its conditions and states it is susceptible of this property, but develops it differently in each. Thus, gray crude iron becomes sooner and more intensely magnetic than white iron ; but yields in both these regards to wronght-iron and to steel. Soft ductile iron is more easily and more strongly magnetizable than steel, bnt does not retain its magnetism as well. A similar relation is observable between untempered and tempered steel. .The magnetism of iron may be weakened or lost by methods similar to those which originally impressed it. The filings of a magnet are less magnetic than the solid mass. A heavy, sudden blow or shock, against a hard body, will sometimes destroy magnetism. Heat always diminishes it; although there are some peculiarities which have been observed in this regard that are difficult of explanation. It undergoes deterioration whenever similar poles of two equally strong magnets are kept in prolonged contact; and finally, is always abated by alloying with other substances, and may be destroyed entirely by inereasing the proportion of alloy. Arsenic is, in this regard, the most active of the metals; though an alloy of two-thirds arsenic does not entirely prevent the mass from being attraeted by the needle. Mushet, however, affirms that twenty-two per cent. of manganese effectually destroys magnetism in an alloy of iron.

Dalleable iron is an excellent conductor of electricity; and although in this respect inferior to coppe: and zine among the easily oxidized metals, and to gold, silver, and platinum among the others, it is yet, for cconomy, universally emplosed for lightning-rods. In the Voltaic pile it follows zine in the order of electro-positive metals.

Its electro-magnetic properties are very remarkable, in the facility with which it is converted into a magnet of great energy during the passage through it of an electric current. It is to this that the elec tro-magnetic telegraph owes, in part, ite adaptation and success.

Hitherto the properties of iron have been considered as manifesting themselves at ordinary tempera－ tures．It semains to speak of the moditications and peculiarities which arise from its affiection ly heat Of all the metals，this has the greatent specific heat；i．e．the greatest eapacity for heat，or faculty of resisting change of temperature．It bears a greater quantity of caloric for a lunger time，and with less alteration of its own sensible temperature．The index of its specitic heat has been ohserved by Dulung and Petit as follows：

Supposing the capacity for heat to augment in the same ratio，we would have at the supposed eproch of red－heat an index $=\dot{0} \cdot 1402$ ，and near the probable point of fusion $=0 \cdot 325$ ？；hat of water in equal weight being 1000 ．The specitic beat varies according to the condition of the metal，and appears to be in some proportion to the quantity of earbon associated in each．Thus the specific leat of steel，an observed by Regnault，is represented by the index $=0.11848$ ，and that of white erule iron $=0.12943$ ． Gray erude iron，as far as may be inferred from observations of refined iron，would have a lower index than white iron，but there are not observations to settle this．

The expansion of iron by heat presents it in a similarly advantageous character．It expand＝lese than any of the metals except platinum，palladium，and antimony．The observations hitherto have been made principally upon its expansion in one direction；i．c．its linear expansion，or extension．It is supposed to be accurate enough for practice to consider this extension as equal in all directions，and a＊， therefore，the one－third of the cubic expansion．All the experiments upon the extension of crude iron have been with metal of the second fusion，which is almost always gray．It may be presumed from practical phenomena on the large scale，that white irom expands less than gray．The mean of the re－ sults of Roy，Lavoisier，and Daniell with cast－iron，gives an extension ic length of 0.001097429 between $82^{\circ} \mathrm{F}$ ．and $22^{\circ} \mathrm{F}$ ．；the original length being $1 \cdot$ at $82^{\circ} \mathrm{F}$ ．This corresponds to an extension（sutij－ ciently accurate for practical usc）of in n on renheit．The extension of wrought－iron hat been more frequently and more variantly observed．The results lie between 0.000600 of Bunguer and 0001446 of 11 allström，as the extension on a length origi－ nally 1 －at $32^{2} \mathrm{~F}$ ．Theoretical consilerations，as well as an averaye of the most reliable observations， determine this extension at 0.0011350 for 150^{2} between the melting of ice and the boiling of water； corresponding to $\frac{1033}{6,3}$ of of the orginal unity for $t^{\circ} \mathrm{F}$ ．The extension of steel appears to be mi－ formly higher than thi－，and to vary according to the temper of the metal in that condition．（See Steel．）Between the limits given，the rate of expansion may be taken as eonstant for each degree， although in strictness such is not the fact；beyond $212^{2} \mathrm{~F}$ ．it would not be proper to rely upon such an assumed constancy ：but at these higher temperatures a hnowledge of the dilatation is chietly interest－ og in theoretical science．Rimman supposed，from some observations，that between ordinary summer－ beat（say $76^{\circ} \mathrm{F}$ ．）and what is ealled red－heat，crude iron extended 8^{2} and wrought－iron in of its original length：but these e－timates can hardly be relied upon．The following table presents the unot probable values in this particular，as well as certain other phenomena：

Table showing the actual Extension of Wronght－Iron at various Temperatures．

Degree of Pabrenteit．	Lengh．
$3: 2^{\circ}$ ．．．．．．．	1.
212．．．．．	1.0011856
392	1．0025こ5す）surfa
572	1.0013253 Surace becomes stren violet，purple，deep blue，bricht blue．
92．	1000m
112	1．0111811 Surface becomes dull，and then bright red．
－ 95.	1．021602t
219	$1 \cdot 0345212$ bright red，yellow，welding heat，white heat．
732 ． 7 ．	1．051：515
¿912．	destroyerl．Fusion perfect．

In the property of condecting heat，iron occupies a low rank．The fillowing statement is warmaterl by the observationy of 1）ergnet\％：

Subslances	C＇onducting lower．	Suturnmer．	Conducting lower．
（bid．．	－．ごすごく	Itus	1.
Platinum	－ 2020	＇Tǐi，	．．（1ヶ121
Silver	－20019	Le：ad	（1）！口！
Copper	$\because 1011$	Marthe．	WHi＝5
\％ine	けりでき	Iorrelain	1113ご
Д＊os		Dirickeldy	0ッ\％＂）

These observations refor to mallemble irm．Crude iron，whose specific．hent is greater than in dilatabhay

 by temperatures either higher or lower than ordinary．In regarel to low tempreatura 31 ma！ha asaumed，in general，that they promete fragility：It is uniformly wherved that inen is muh in one

especially one dependent in any way upon impact. On the other hand, with temperatures higher that ordinary, but yet below the point of boiling water, Tredgold supposes the absolute cohesion to he di minished $\frac{1}{3000}$ by an elevation of $1^{\circ} \mathrm{F}$. in temperature. Under temperatures which transcend thr boiling point of water, the table given above has ahready indicated the most remarkable phenomenonthe iridescence or succession of colors during the augmenting application of heat. To what this effect is owing is not known; partially, perhaps, to the color produced by the contact of thin plates, and partially to an oxidation of surfice. This last cause is assured by the permanence of the color after the heat has ceased to be applied. The straw color is developed fully at $400^{\circ} \mathrm{F}$., the fusing point of tin; the deep yellow occurs at $420^{\circ} \mathrm{F}$; crimson follows at $450^{\circ} \mathrm{F}$., where bismuth fuses; from that violet, purple, and deep blue succeed, till $540^{\circ} \mathrm{F}$., the melting point of lead; this blue brightens, passes into sea-green, and at last disappears at $700^{\circ} \mathrm{F}$., the fusing point of zinc. Beyond this, the epochs of temperature have no distinctive test. But if the heat is continued, there occurs a scondary, and, finally, jinst before red heat, a tertiary succession of the same color and in the same order, only less vivid and less lasting. If the metal be withdrawn at the close of this tertiary series, its surface will be found covered with a thin pellicle of oxide, whose constitution has not yet been examined. The practical utility of these color-tests is principally found with steel, where they serve as guides to determine the probable temper imparted. The deep-blue color is also used in the arts as an ornamental and antioxidable tint. Iron, in its different conditions, is not similarly affected in this respect. In general, steel is colored at a lower temperature than what has been given as applicable to the case of malleable iron, and gray iron at a higher one. White iron has not been as yet experimented on. But as there is reason to conclude that the colors occur in the direct ratio of the hardness of the metal, white crude iron may be expected to surpass steel. Of the same bar, the harder and softer portions are emphatically designated in this process. The coloring thus depending on hardness, its brilliancy is determined by the state of polish of the surface. And as the hardness of the metal thus influences the phenomena of colors, so it is in its turn reacted on by the heat which produces them. It is on this account that iron which las become hard in being wrought and hammered, is exposed to heat in order to soften it, as has been noticed before. The degree of heat requisite is in proportion to the hardness existing and to the softness required : in practice, however, it is generally a full-red heat. Iron, in all its conditions, appears to be permanently softened by being thus heated, whatever may have been its character or treatment before. The hardness and brittleness which may be cured by this resort, must be distinguished from the same characteristics arising from a peculiar chemical composition. Thus, there is a sort of iron which becomes brittle by the application of heat. Metal of this class is well known under the name red-short, or hot-short, and is met with in all conditions. Again, there is a kind of iron precisely opposite : brittle at ordinary temperatures, it becomes tenacious when hot; though, like the other, it undergoes no permanent change, and the modified characteristic belongs only to the modified temperature.

Sudden cooling appears to augment the effect of low temperature, and to impart greater or less hardness to the metal, according to its previous quality. In the case of steel, this is of the utmost interest; for on it depends the whole business of tempering. In other conditions the effect is less maked, but sufficiently sensible whenever the conducting power of the cooling material is not out of proportion to the mass of metal acted upon. The conducting power of the air is never sufficient, ordinarily, to produce any of the phenomena of sudden cooling: exposed to that, the cooling is always slow, and, according to its temperature, follows, more or less, th? softening effects which have been already spoken of, and which are technically known as annealiny. But this will be spoken of more particularly under the metallurgic treatment of iron.

The effect of suddeu cooling is more manifest in temperatures higher than red heat, and especially upon the metal in fusion. The observation of this is more readily made upon crude than wrought-iron; and the most remarkable effect is the conversion of gray iron into white, which takes place more or less completely in proportion (other things being equal) to the mass operated upon. On the other hand, White iron can be converted into gray by an opposite method of treatment; and this not only on the small scale, but also in large. Indeed, as was said before, iron of the second fusion, allowed to cool slowly, is almost uniformly gray. But gray iron, cast in moulds of any sort which conduct heat with sufficient rapidity, (such as cast-iron moulds, uniformly ehills, as it is termed; i. e., becomes converted, to a greater or less depth from the surface, into white iron. Practical advantage is taken of this in the manufacture of wheels for railroad cars, which are always purposely chilled to increase their durability.

It is at temperatures above red heat that the most important and practically useful modifications of this metal take place in all its conditions. Not to refer any further to steel, the welding of malleable iron and the fusion of crude iron, by which either of these are made applicable to the arts and wants or mankind, occur at about the same epoch of temperature, somewhat further removed from red heat than this last is from ordiuary states. The table before given has already indicated the temperature of the probable fusion of malleable iron, which is a little above that of crude iron. The uncertain indications of Wedrwood's pyrometer for a long time induced an erroneous estimate of the amount of heat required for the fusion of metals generally, and especially that of iron. Daniell has shown, by experiment with a mach more reliable apparatus than that of Wedgwood, that cast-iron (so called) cannot require a higher temperature for fusion than would be expressed by $2786^{\circ} \mathrm{F}$.; while Alexander has demonstrated, from the known relations and properties of cohesive force and specific heat, that bar-iron (whose utter infusibility was long maintained) must become fluid at about 2774° Fahr. We are yet deficient in a pyrometer whose indications would be uniform when applied in temperatures as high as this, a desideratum whose supply would contribute materially to the filling up of the theory of the manufacture ot iron. It is probable that an air-thermometer, whose tube, where it entered the furnace, is of platinum, would afford the most unexceptionable and reliable results.

The capacity for being velded, i. e. performing an intimate and perfect union of two surfaces, occurs at the epoch of incipient frision. This property is possessed by iron alone of all the metals, except pla. tinum and palladium. White crude uron, under ordinary treatment, does not show this characteristic
at all. Gray iron is weldable, but in such narrow limits of temprature that thes operation hats to be effected with great quickness in order to sueceed. With bar-iron and steel, in snticeent mawes, welding is of every-day application. If the masses be very small, they cool too quiek?y to be welded in the ordinary way. Crude iron in fusion oceupies a less space than when solid; in this respect its anomaly (which is to be traced to crystallization) is shared with antimony, bismuth, sulphur, and zine, among the metals, all of which shrink in melting. Tne same may be observed of water, which is more dense when fluid than when crystallized in the shape of ice. If a mass of crude iron be made hot and laid upon a bath of melted metal, it floats; but it it be cold, it tends to sink. Purhaps this may be owing to she repulsive effect of heat. White iron, in this respect, shrinks less than gray. On an average, good gray
 the founders in making their patterns is $\frac{1}{8}$ of an inch to the foot lineal.

Exposed to heat at any temperature from red heat upwards, with aceess of air, iron, in all its conditions, is readily covered with a coating of oxide. Bar-iron is thus oxidated more easily than crude iron; and of this latter, gray iron furms, at the same temperature, a more friable oxide than white. The following contrast may be taken to exhibit the most important characteristics of the two conditions of crude irou when exposed to high temperatures, viz.:-

Gray Iran

Is less easily oxidated; preserves its character longer, but luses it (coliesion, de.) more completely at last; suffers these changes more when protected from the air; heated below the fusing point, with access of air, demands more heat and more air to assume a certain malleability; requires a higher temperature for fusion; when fused is more liquid; expands more in cooling ; fised rapidly and cooled quickly, tends to become trhite; fused rapidly and cooled sluwly, retains its character or becomes mure soft.

IThite Iron

Is more easily oxidated; loses its character sooner, and becomes granular, grayish, and steel-like in malleability and temper; suffers these changes more when protected from the air ; heated below the fusing-point, with access of air, becomes quite malleable, and may be tempered to take an edge; fuses at a lower temperature; when fused is lees liquid and more pasty; expands less in cooling; fused rapilly and cooled quickly, becomes extremely brittle; fused rapidly and cooled slowly, becones gray.

The precautions necessary in view of these peculiarities, as well as the general processes, will be described under the head of fouxdras; and what has been said may be considered as covering the chief physical properties of the metal.

Chemical affinities and reactions.-These have been oberved for the most part with the iron of commerce, which is never entirely pure, but contains carbon, silicon, phosphorus, sulphur, arsenie, eliromium, titanium, magnesium, alumimm, and manganese, in very minute proportions. Nitrogen is sometimes met with; but oxygen, which was formerly considered a constituent, has not been recogruzed in the later researches of the most accurate chemists. The clemical symbol of iron is Fe, and its atomic weight $339 \cdot 20$, oxygen being taken as 100 . In the system where hydrogen $=1$ the atomic weight of tron is $2 s$; as an average round number.

With oxengen, iron combines in two proportions, whose resulting compounds appear capable of fresh combinations, so that in poiut of fict four componds are known to exist. The first is the state of protoxide, which does not exist maturally nor artificially, except as a hydrate. The second in the proportion of oxygen is the forye-cinder, formed on the surface of the metal by heat, with acces of air, and thrown off under the hamuser or squeezer. The third is the black or magnetic oxitc, (the oxidum firrosis ferricum of Berzelins, which exists also maturally; and the fourth is the perozide, red oxide, or sesquioxide, the first and lact of which epithets are used aecording to diflerent theories of its con-titntion. This aloo exists as a mineral, under the name of red hematite, and is massive, fibrous, or erystallized, atecording to circum-tances. Its hydrate is known to mineralogists as brown hemutite.

The following tabl: cuntains all that need be given about these oxides:-

	Composition.		Atums.	Propertionate
Name.	lron. nxygen.	Iron. Oxsmun.	Irun. Oxys.	tudix of 1 xiget
l'rotuxide	$117: 33+(1.2275$	$106)+2015$	$3+1 ;$	$\therefore 1$
Forre-cinder	$17510+0.2151$	$100+3.290$	$3+7$	$\because 7$
Magrutic uxide	$107175+0 \cdot \underline{201}$	$1110+35 \cdot 30$	$3+i$	3:3
I'eroxirle..	$1.6931+0.3066$	100 - 112	$3+9$	36

The three first are attracted by the magnet, the last is mot. The colars which have hern before spoken of as acempanying diflerent degrees of the appleation of heat, are abo donbthese due to the formation of oxiles, where comstitution, howewe, is mo known. The atlinity of iron for oxygen mpeara to be in proportion to its own purity, and alse, thenghin a less degree, to the state of its surtime. Fin, in rempert (1) that peroxidation which is wry familiar as rest, and which tends (1) weme more or hese "una this metal when exposed to the actuin of the air, (and "epecially damp air,) white iron it lese affiectel than gray, and ay ertule or cant-iron less than the malleable metal. "his difereme of the dallisent eambtions holds gioul in the can of mosture alome, und in general with mont chemital mencies.

(anchors, chain-cables, dec.) to a depth proportionate, but in a diminishing ratio, to the time of immer sion, converts cast-iron (cannon, caunon-balls, de.) into a substance resembling plumbago, or graphite i. e. into earbon, associated with metallic and oxygenated iron. Such conversion appears to be less with white than gray irom.

Air and moisture together appear to exercise a more powerful agency in producing oxidation than cither separately, and as this is precisely the joint influence to which this metal is in most practical eases exposed, there is the more interest in providing a preservative. This is found not only, as was said just now, in the polish of the surface, but also in the means by which such polish is produced, in special coatings of substances which resist humidity, and also in the protecting aetion of incipient oxidation itself. Thus, in the first instance, a polish acquired under the use of oils (and still more as those oils may be themselves unalterable) is more lasting than one obtained with water. One of the best preservatires of the second kind, is a solution of eaoutchouc in oil of turpentine, which is applied upon the polished surface, and is then removed, or rather brought down to extreme thinness, by a brush dipped in the same oil, heated. Among the third sort has been already mentioned the bluing, which is effected by a temperature of about $550^{\circ} \mathrm{F}$.; and bronzing, as it is called, is of similar result. This is done by washing the surface, which should be smooth, with acids, and mostly hydrochlorie acid, exposing it for a suitable time to the air, until it becomes thoroughly covered with a uniform coat of oxide, and then removing that rust with olive oil as a menstruum, until the surface ceases to soil white linen. This is the common resort for gun-barrels. Electric gilding, (sce Gildisg,) although beginning to be extensively used in the bright parts of machinery, which are not subject to friction, does not come proparly in the eategory of the preservatives we have been considering.

The combination of carbon with iron gives rise, in fact, to the different eonditions of this metal. In white iron and stecl it is chemically combined with the mass; in gray iron it is partly combined in polyearburets dispersed about the mass, and partly free, as graphite, (ealled, by the workmen, kish;) in malleable iron it does not exist at all, or only in insignificant proportions. Karsten considers 5.3 per cent. as the limit of saturation, which would give for the atomic constitution of the percarburet, one atom of carbon to four atoms of iron. In gray iron the whole quantity of carbon does not, at a maximum, exceed 4 per cent, of which 1 per cent. may be taken as combined, and 3 per cent. to be mechanically associated as graphite. Although the oceurrence of carbon is the principal modifier of the condition of this metal, it is probable that the differences, so far as crude iron is concerned, are owing to other assoeiations also. Thus, as nitrogen has been found only in white iron, it is likely that some of its eharacteristics depend upon the formation of compounds of nitrogen and carbon, and, ultimately, of cyanurets of iron. It is very much to be desired that this suggestion could be studied in the synthetie way. The practical precautions which have to be taken in consequence of the affinity of iron for carbon, will be referred to hereafter, under the head of Foundry, and also under the article Steel.

Siulphur combines with iron in several definite proportions, both artificially and in nature. Until the proportion reaches 2 atoms of sulphur for 1 atom of iron, (or 53 per cent. sulphur nearly,) the compound is attracted by the magnet. This proportion may be considered as that of the natural magnetic pyrites. Four atoms of sulphur to one of iron constitutes the common iron pyrites. Sulphur promotes the fusiLility of iron extremely, so much so that a plate or bar of iron, kept only at a red heat, may be piereed to a considerable depth (say an inch, or more) by a stick of sulphur. Ünfortunately, the quality of the metal becomes so far impaired as not to allow avail of this peculiarity in the arts. Sulphur combined with iron causes brittleness at all temperatures, and especially what has been before spoken of as red*hortness. Experiment has shown that ${ }_{3}{ }^{1} \frac{1}{0}$ of sulphur is enough to produce the first characteristie, asid $\frac{1}{T \Pi 000}$ the second. It is hence that many ores cannot be adrantageously (and some not at all) applied in the reduction of this metal. Where the proportion of sulphur is minute, it may be partly volatilized by previous roasting, and partly taken up by excess of lime in the flux. By this last applieation, the sulphur in the coke of some of the English furnaces is gotten rid of. The remarkable action of sulphur upon iron-filings, when made with water into a paste, (which, after a while, develops intense heat, and finally bursts forth in spontaneous flame, belongs more properly to the formation ot sulphuric acid, but may be mentioned, once for all, here. The influence of componnds of sulphur and carbon together has not yet been satisfactorily studied.

As sulphur gives the property of red-shortness, so phosphorus seems to impart that of cold-shortness, or brittleness at low temperatures, but not to an equally prejudicial extent. There is hardly any iron in which a trace of this substance cannot be found. With bar-iron oceurring in proportions as high as $\frac{1}{2}$ per cent., it only hardens the metal without diminishing tenacity; at $\frac{3}{4}$ per cent. the tenacity is seriously diminished; and over 1 per cent. makes the iron of very bad quality and very limited use. 1'ho=phorus lessens the eapacity for heat of the metal, and increases the facility with which bar-iron can be welded. Crude iron it makes more fusible and retains longer melted, so that in minute proportions it is rather an adrantage for castings. Phosphorus appears capable of uniting with iron in all proportions, but at a high temperature there is but one definite compound, consisting of 2 atoms of iron and 1 of phosphorus, or iron $0.776+$ phospl. 0.224 . The natural kingdom does not afford any phosphuret of iron, but phosphates are widely extended and numerous. Phosphorus is supposed to behave with earhurets of iron in a similar manner with sulphur, but, like this last, has not in this respect been studied.

The effect of acids, of whatever kind, upon iron, appears to depend upon the presence and decomposition of water; and hence, in an anhydrous or concentrated state, their action is uniformly more feeble than when dilute. The presence of carbon, too, and its state of combination, also affect, and in their proportion weaken, the influence of the acid. Thus steel is distinguishable from iron by the ease with which it is attacked and stained by nitric acid, and white iron is more affected in this manner than steel. Hard iron, in all conditions, is less easily attacked than soft; and upon this, as well as the state oi eombined carbon, rests the art of damasecning, or watering the surface of iron and steel.

Acetic aeid acts readily upon iron and upon its peroxide, but slowly upon the protoxide. The acetate of iron thas produced is used extensively in calico-printing, under the name of iron liquor.

Carbonic acid, without the presence of water, does not act at all on iron or its oxides, artificially, though carbonates of iron form a very exten-ive and important class of minerals. The different sorts if coloring-matter known as Prussian-blue, are carbo-azotic compounds, or hydrocyanates of iron, whose practical use is better understood than their theoretical comporition. (Sce Prussiay Blue.)

Gallic ucid, which is a compound of oxygen, hydrogen, and carbon, acts very fecbly upon iron and its protoxide, or, perhaps it may be said, not at all; but upon the peroxide it acts energetically, striking it deep, black, and permanent color, and constitutes, in fact, the bacis of all ordinary black inks.

Hydrochloric acid acts with great readiness upon iron and its oxides. For all applications in the arts where the ubject is to produce or remove oxidation, it is undoubtedly the best, though not the mont ecomomical agent. Upon crude iron it is best to be employed concentrated.

Nitric acid, highly concentrated, has but a feeble action upon iron; at its average concentration it acts with great encrgy. Un account of its peculiar belawior towards carburets of iron, it generally enters as an ingredicnt in etching-liquors. Thus, for making damascene designs upon cutlery, kimman recommends a wash composed, by weight, of 4 nitric acid +2 sal-ammoniac (hydruchlorate of amm.) f- 1 sulphate of copper + t2 water. Where the etching is required to be deep, as, for instance, in mosaic damascening, where gold is to be inlaid, the nitrie acid is ineonvenient, in depositing a salt difficult to be eleaned out.

Phosphoric acid attacks iron with great avidity, but not its oxides at ordimary temporatures. The atificial phozphates thas produced are without interest to the arts as yet; the natural ones form an extended mineral class.

Dilute sulphuric acid, as well as sulphurous acid, act upon iron at ordinary temperatures, and with energy as the temperature, and to a certain extent the difution, increase, forming, ultimately, sulphates of irun. They also combine with the oxides of iron in various proportions. The crystallized sulphate of the protoxide is known in commeree as green vitriol, or copperas. When this is heated in close ves. sels it parts with its water of crystallization, and upon continuance of the heat, after divers changes and disengrigements, becomes converted into pure peroxide of iron, which is the calcothar of commerce, ur the crocus martis of the old druggist:, and the plate-powder or ronge of the silversmiths and polishers of stecl and speculum-metal.

Sulutions of the allalies or alkaline carthes do not appear to act upon iron or its oxides. On the contrary, their presence seems rather to retard the decomposition of water. At a red heat iron will take up about 10 per cent, of ammoniacal gas, becoming white and extremely brittle, but less liable to alterathon from air or moisture. At the same temperature, potasset and sode are deoxidized by malleabhe iron; if crude iron be fued with these alkalies, it parts progressively with all its carbon, and becomes bar-iron: It has been generally supposed that the metallic bases of the alkalies do not combine with iron, or rather, are subfimed at the temperature required for such alloy. but more recent observations disaffirm this supposition. Potassium and sodium, for instance, can be combined synthetically with iron, and magnesium and calcium are often found, though in minute proportions, in the erude iron of eommeree. How far they influence the character and yuality of this metal is yet obscure. Karsten observes that $\frac{1}{2} \overline{0} 0$ of potassim causes the alloy to be liard, and to be welded with difficulty, while inn of calcium is enough to impair materially the qualities of iron. Magnesium appears to be got rid of entirely in the processes of refining and puddling. Barium no otherwise aflects the metal than by embarrassing the operations of the high-furnace, when present with the minerals there as sulphate of baryta.

The carths, so called, ($\quad \therefore$ which need only be mentioned silica and alumina, exereise, at ordinary temperatures, or even at any temperature below fusion, no appreciable chemical action upon iron. A-wociated with carbon, at this last temperature, they are reduced to their motallie bases, (either by the iron or by the earbon,) which enter intu combination with the iron, and modify it more or less. "rill rinn is found more abundmatly in gray iron than in white; its maximm, iss yet uberverl, may be -tated at $4 \frac{1}{2}$ per cent, including that which is found free in the condition of siliea in the cavities of crude trun. Its average hardly exceeds 1 per cent. There is no reason to suppose that this proportion atlects the quality of the metal; on the eontrary, it may be assumed not to interfere with, if it dene anot promote the fisibility and fitues for eastings, The opinim annong practical iron-workers (which is not, howewr, Partaken of by chenists generally) is, that a certain shall Iroportion of silicimn angments tonacity. The operation of refing generally drives off 9 -toths of the silicimn contaned in the crode metal; but a proportion is often reatored in sub)equent procesco, of which it would le wedl for man ulactarers to take aceount, in view of a partiendar guality that may be desired. Thus linn-singant
 thetic exprements in the small way waram the Ledief that a smather propertion than this hardens inn
 Ingurinhs than that of phophorus. Whether, as has been suppoed, the comversion inter sted is due to.
 nem has been obarved either in crud: or in mallable irom, sueh traces are more distimety marked III gray than in white irm, and mont di-tinet in cohl-wort iron. There can be mo douft that this base

Bismuth docs not readily form an intimate union with iron. At the temperature of fusion of this last a great part of the former is volatilized, and its effect seems more felt in the treatment than in the quality produced; $\frac{30}{80}$. 0 of bismuth do not affect the strength or malleability of the metal.

Chrome unites with iron in all proportions, making alloys very hard, brittle, crystalline; more brilliant than iron, less fusible, much less magnetic, and much less oxidable. And these characters are more marked as the proportion of chronc increases. An alloy containing 60 per cent. of cbrome is very fragile, whiter than platinum.'and so hard that it scratches glass as deeply as a diamond. On the other hand, from 1 to 2 per cent. of chrome hardens cast-steel, and gives it the property of damaseening beautifully, without diminishing jts malleability.

Cobalt unites with iron in all proportions and without altering its properties, at least until the quantity of the former becomes considerable.

Copper can hardly be said to make a true alloy with iron, though when fused together a small proportion of the former will be taken up and retained upon subsequent fusion. Of crude iron it increases the tenacity when in the proportion of 1 or 2 per cent., and it might, therefore, be advantageously and economically employed for certain castings. As mueh as $\frac{4}{4}$ per cent. in bar-iron injures its capacity for being welded; a larger proportion makes a metal brittle at a red heat.

Gold may be alloyed in all proportions with iron, for which it has a remarkable affinity, and to which it imparts no new quality until its own quantity becomes considerable. When the gold is from 20 to 25 per cent. of the mass, the alloy is silvery and very hard, so much so that cutting tools may be made of it. On the other hand, when the iron is from 15 to 20 per cent. (to be classed more properly as an alloy of gold) it makes what the jewellers know as gray gold, of late much used for little trinkets, and admired for the baatiful polish that can be given it. Gold is also used as a solder for delicate steel-work.

Lead does not form an alloy with iron directly, with crude iron not at all, and with bar-iron, treated with litharge, in proportion not exceeding 2 per cent. This (and even a smaller proportion) renders the mass more brittle and more fusible. The ores of lead, which are sometimes found associated with those of iron, and have to be treated together in the high-furnace, are reduced, but the metallic lead lies in the hearth without uniting with the iron. It is sometimes found there when a furnace is blown out, not oaly in this state, but also as red-oxide or minium, and as a crystallized silicate.

Manganese, on the contrary, has a remarkable affinity for iron, and of all the metals is found most frequently in association with it. In small proportions the manganese renders the alloy harder, without mpairing its tenacity ; the limit in this respect is not ascertained, but it may be safely assumed at $1 \frac{3}{4}$ per cent. The addition of manganese diminishes the fusibility of iron, but increases its oxidability. Alloys of these metals almost always exhale an odor of hydrogen upon being breathed on, and this greed of manganese for oxygen is one of the means by which the crude iron from manganesian iron-ores may be refined, so as to part with nearly or quite all of its alloy. The tendency of such manganesian ores to yield a metal easily convertible into steel has caused them to acquire the name of steel-ores with some persons. But this tendency, as well as the uniform liability of such ores (unless treated suitably) to give a white iron in the high-furnace, does not appear to arise directly from the manganese, but indirectly only, from the influence which this last has upon the behavior of carbon.

Molybdenum, like tungsten, unites with iron in moderate proportions, without altering its qualities, further than augmenting its hardness. An alloy of 1-5th molybdenum in iron is fusible, extremely hard, with small resistance to impact, but tenacious in other respects.

Nickel behaves with iron very much like cobalt, especially in the white color it gives, and in the facility and variety of its combinations. An alloy of 1 atom of nickel to 12 atoms of iron, (which corresponds to about $8 \frac{1}{3}$ per cent. of the former,) is one often met with in nature, under the name of metcoric iron. This is less oxidable and less ductile than iron unalloyed, but in other respects the metal is of good quality. Not to speak of the sword of Alexander, which is said to have been made of an alloy like this, nor of the sabres of Jehanguire, fabricated of a similar metal some 2000 years later, the sword presented to Bolisar in 1821 was forged of the meteoric iron of Santa Rosa, near Santa Fé de Bogota, whose atomic constitution is almost precisely what has been given above.

Palladium renders iron brittle when in even moderate proportions; when the proportion is small, it induces no further alteration than increased hardness. The same affinities and effects belong to alloys with rhodium, iridium, and osmium. A proportion of 3 per cent. of either of these in bar-iron prevents rusting, and renders the alloy capable of being tempered like steel. It is with steel, however, that the alloys of atl these metals are the most remarkable. The same may be said, too, of platinum, whose alloys with steel are of great interest, and present some renarkable peculiarities, but which hardly unites direetly with iron, except in the presence of carbon.

Silver does not form a real alloy with iron. Fused together, the iron will take up a small proportion of the other; which, when it is as low as $\frac{1}{30} \bar{n}$ only, injures the malleability and weldability of the mass. In these effeets, Karsten ranks it as very nearly equivalent to sulphur.

Tintaliun dues not unite with iron directly; except at a very high teniperature, and in the presence of earbon. So formed, it is tenacious, without ductility, and readily scratches glass.

Tin and iron have a great affinity for each other; mite in all proportions, and at last so permanently as not to be separated by fusion. The alloys in which tin predominates are without the peculiar char acters of this metal, while they have gained none of the properties of iron; and the same may be said when the proportions are reversed. This does not apply at all to that superficial alloy which takes place in what is known as the tinning of iron, and which is manifested both with crude and malleable iron. The particulars of this art will be given under the article Tin-ware.

The alloy of titanium will be spoken of in connection with the so-called titaniated iron-ores.
Thogsten behaves like molybdenum; and its prineipal effect is to increase the hardness of the alloy. Eren when the tungsten is 37 per eent. (which is equivalent to 1 atom of tungsten to 6 of iron,) the physical characters of the alloy are very much those of white iron.

When zine is kept in fusion in iron vessels, it gradually cornodes and dissolves them ; a proof of the eapacity of these metals to form alloys. At the high tennerature, however, required sur the fusion of iron, the zinc is volatilized; and so is never found, even in trace, in the metal from high-furnaces where ron-ores containing zinc are used. It is the opposite when the ores used for the extraction of zine contain iron; this last is very hard to be gotten rid of, and even in small proportions injures the malleat bility and embarrasses the lamination of zinc. There is also a superficial alliy, like that mentioned just now in the case of tin, which is produced when clean sheets of iron are plunged in a bath of melted zinc. The preparation of this zincked iron, known in commerce as galvanized iron, is a late application of art, which will be particularly described under Zisc.

Iron is one of the few metals which do not form an amalgan with mercury directly. It is posible ly the medium of a third metal, as zinc or tin, to produce indirectly amalgams whids are of no interest in the arts.

Mineral characters and geological occurrence of productive ores of iron.-1. Native iron, bolide, meteoric iron, de.-Although these are not strictly ores of irun, yet, as they are botls workable and productive when they occur, it is proper to include them here. The means of distingui-hing with eertainty those which are terrene from those which are formed in, or at least fall from, the atmusphere, are vet so vague, that the two classes are here counted together. The occurrence of mickel is generally held to mark a meteoric origin. The most remarkable specimens are those of siberia, discovered by Pallas of Louisiana, sent to New York by Gibbs; and of Buenos Ayres, found by Rubin de Celis. This last more than doubles the size of any of the others; weighing about fifteen tons. Besides these, Africa, near the Cape of Good Hope; North America, at Canaan in Connecticut, and Iandulph County, North Carolina, and in Bedford Comenty, Pennsylvania; South America, along the eastern cordillera of the Andes, and in Brazil, and Peru; Asia, in Hindostan; Europe, from Bohemia, Croatia, France, Italy, Saxony, and Switzerland; and the Esquimaux settlements near Davis' Straits, (which belong to no continent,) have all contributed specimens. The color of these varies from silvery to bluish white; their hardness may be taken at between 4 and $4^{\circ} 5$ of Kirwan's seale; they are all magnetic. 'Their specitic gravity raries from $5 \cdot 95$ to $7 \cdot 34$, according to the awociations, which are principally, and sometimes wholly, nickel, apparently in definite proportions. Arsenic, chrome, cobalt, copper, and molybdenum have also been found mited with the iron, as well as a small proportion of carbon in the shape of graphite.
\therefore Magnetic ironore, octahedral iron-are, for oxidulé, blacli oxile of iron, loadstone, se.-This is the only ore of iron acted on by the magnet without application of heat, execpt the titaniferous iron grains of Brazil. Its geological occurrence is in primary formations; and it is apt to be accompanied with quartz, hornblend, calcareons and nluor spars, and asbestus, which modify variously its fusibility and workable properties. Its chief deposits are in Sweden and Norway, and in siberia, where it occurs in bands; sometimes it is found in beds, as in Savoy and liedmont, Tyrul and the Vosres; it furma the mass of considerable mountains, as at Taberg in Smoland; and is atho worked, as in Naples, in small grains like sand. In the N'ew World it is found also, as in La P'ata, Brazil, Dexico, and the United states; but generally not in sufficient extent to work. The mines at Schooley's Mountain, in New Jersey, have been, it is believed, abandoned ; and the new works for this ore near Sykesville, in Maryand, have not been long enough in operation to determine their reliability. This ore frequently oceurs in crystals, whose primary form is the regular octahedron, and whose cleavage is perfect. Its color is black; its lustre generally metallic; its fracture genemally conchoidal; its hardnees 55 to 65 ; its specific eravity 5 at a mean. When pure, it is composed of 1 atom of iron and 1_{3} atoms of oxygen. The metal from this ore, known as swedish iron, is of the be-t quality in commerce: and its properties, although attributed sometimes to the methods of its treatment, are frobably more uwing to the materials.
3. Apeculur oxide, anhydrous peroxide of iron, iron-glance, red homatite, fir oligiste, cisenralim, de.This mineral is generally foum in primary formations, but occurs also amony sedimentary rocks. Varieties of the species, apparently of daily dormation, are to be met with amid the lava of Vesurius, and in ancient and exi-ting solfatermas, an of Tolfa and Guadaloupe. The most celel rated deposit of it is in the island of Biba, where it has been worked for more than sunn years, and where the extent of the exavations and deblais attests the fudustry more than the sill of the meient miners. The Ella mines are continuations, probably, of the 'Tuscan ores. At present there are there working in a hill of about three miles in cxtent, and elevatemb only alonot goo teet above the sea. The rock in which it wecurs is a whiti-h talcose slate, called thare bianchetta, anily workel, but, after all, not very probluctive in modern times; the whole quantity experted mot long sinee, be ing not more than 15,0 ou that The ore bere is often slightly magntic, and contams, in fact, an ahmiature of magnetic wide, an l uften titanim. The wash from the actual workings, presenting the ore in the hape of wetahedral graine like samd, is abonexported ander the mame of pouleth. 'lhe same gramular oceurrence is met with at lirmont in

 nearly rubic. Ita color is a brilliant bhek, very often iridencent, with a metalle lastre. Ha facture is

Vor. II.- 6
setts. Lied lematite occurs massive, stalactitic or fibrous, and mamelonated. Its color is a dark red. with very often a metallic lustre and aspect. Hardness, about 7 ; powder, which is red, never mag. netic; and specific gravity, at a mean, 5 . Thomson gives the specific gravity of a specimen from Sluirkirk at $6 \cdot 305$. It is often mixed with oxide of manganese, and is then a reddish-brown, almost black. Of this varicty are the deposits in Cumberland, (Eng.,) so useful in admixture with the ores of W:ales; and in this also is the principal mining about Lauterberg and Altenau in the Hartz. This is the blood-stone of the metal-polishers. The compact red iron-ore of Lavoulte, in France, occurs massire, in veins 50 to 60 feet thick. It is also sometimes found in pseudo-morphous cubic crystals. Its coler is a brownish-red; its fracture uneven; its specific gravity about 425. Red ochre, which is chiefly ustal as a pigment, but also as an ore, may be regarded as closely allied to this last varicty, in which it is principally distinguishable by a softer texture and more lively red color.

All these classes of ores, when pure, contain the iron associated only with oxygen. The others which follow contain also water as a permanent additional element, in the proportion of from 10 to 15 per cent. Such are,
4. Hydrated peroxide of irom, fibrous and compact brown hematite, brown ochre, umber, atites, limonite, bog-iron ore, de., $d c$.-This chass is very extensive, and is found as well in primary formations as in newer rocks. Its principal deposits are in the oolite series and chalk equivalents. Bog-ore is considered of daily formation. It is sometimes found in octahedral and cubic crystals, but most generally massive. The color of the mass is in various shades of brown, but its powder and streak always yellow. Its hardness is from 45 to 5 ; its specific gravity, at a mean, 4 . It does not act on the magnet. Chemically, it is composed of 1 atom of water, 1 of iron, and $1 \frac{1}{2}$ of oxygen; or otherwise, 1 atom of pure specular oxide with 1 atom of water. From this class iprincipally, the compact brown hematite) comes a great part of the iron of France ; the deposits about Whitehaven in England, which are of enormous extent, are a variety (the reniform) of it; the oolitic ores, which are small globules held together ly a calcareous or argillaceous cement, cover a considerable extent in Burgundy and Lorraine, and occur also in Carinthia and Styria; the granular hydratcs, or ferriferous sand, are worked in Normandy and other parts of France, in Switzerland, in Silesia, Bavaria, and Poland; and, finally, the bogores are profitably mixed with other ores in many places, as in Silesia and Livonia, and in the coal region of Maryland, or worked alone as in the last-named state. Phosphate of iron, however, which occurs frequently in this alluvial variety, prejudices its ummixed use. Brown ochre is principally used as a pigment; and the otitcs, or eagle stones as they are called, which occur along the Rhine, are almost as much used by the French shepherds as amulets, to be huug around the neck of a favorite ram, as for any other purpose. The metal from this variety, however, as well as from the whole class, is unexceptionable whenever (as is the case generally, except with the bog-ores,) there is no adventitious impurities or associations, in sufficient proportion to be injurious. Ordinarily, the associations are from three to ten per cent. of silica, alumina, and manganese, in nearly equal quantities; amounts which in nowise embarrass the smelting or the result.
5. Carbonate of iron, brown spar, argillaccous iron-ore, spathose or sparry iron, spherosiderite, fer spathiquc, for carbonaté lithoide, stahlstiin, de.-Under these synonyms and varieties may be includel] it clavs more widely extended and more productive than any other on earth. Two principal division; may be made of it-the crystalline or sparry, and the compact or lithoüd-the former occurring in beds and pockets in the primary rocks, the latter belonging to newer formations, and especially stratified among the coal-measures. The facility with which the former can be reduced rendered it of abundant introduction into the smelting-houses of the ancients; it was from this ore that the Styrian works turned out the metal so favorably known before our era as the Norican iron; and the name of stect-ore, under which it has been designated, from the readiness with which it yields a steel at the first treatment, is not less a test of its appreciation. This variety is both massive and crystallized. In the latter case, its primary form is an obtuse rhombohedron, nearly approaching the form of calcarcous spar. Its derivatives arn more complex ; but not unfrequently it is converted, as in the very large Cornish crystals, into regular six-sided prisms. Its color is gray of various shades, yellowish and greenish, but sometimes ahmost red. Fracture is imperfect chonchoidal, with a ritreous and somewhat pearly lustre. Thin fragments are often translucent. Its average hardness is about 4 ; its specific grarity, at a mean, 375 . It is not magnetic. Abstraction made of the impurities, which are generally carbonates of lime and magnesiat, this mineral is composed of 1 atom carbonic acid and 1 atom protoxide of iron. The compact or lithoid variety occurs in nodules and in regular veins or strata; this last is especially the case in the coll-measures, with which it is always more or less associated. Its color is a dark gray, and when the allied carbonaccous matter is abundant, almost black. Its specific gravity is from 3 to 3.5 . Its composition is the same essentially as that of the other variety, but with the uniform addition of notable proportions of silica and alumina, and conly matter; protoxide of manganese is very often found with it and in the coal-measures, sulplur but in small quantities. The value of this ore is more in the facility with which it is treated than the quantity or quality of the metal produced. When in an unaltered state, it rarely yields more than 33 per cent. of metallic iron; the altered carbonates, which oceur most trencrally in accidental beds among the primary rocks, may give 45 per cent. Mushel's black band, as it is ternied, a seam of high reputation near Airdrie, in the Glasgow coal field, returns about 41 per rent. Exen when made with charcoal, the iron from this ore is inferior in its physical properties to the Swerli-lz, to the Spanish, and to the Styrian iron, and, in general, to the metal produced from any of the preveding classes; when coke or coal is used its inferiority is, of course, more strongly marked. Yet improvements in the methots of manufacture have gradually cured these natural disadvantages to an extent which, though it still leaves something to desire, is yet sufficient for most practical purposes. and may well be balanced by the economy of production and the cheapness of the metal funished. Indeed, withrut the use of coal and the association of this ore with the beds of fuel for smelting it, some of the most important contributions to the civilization of the present day would have been either insossible, or at least unattempted. From this last variety cones now nearly the whole enormous prod-
uet in iron of Great 13ritain; is is being extensively used in France, where, as in the departments of the Nord, Loire, and Allier, it exists in abundance; it returns a part of the metal from the Hartz; it was the earliest worked of the iron-ores of America along the Atlantic coast, when, as little more than a century since, it was serionsly looked to as an a railable resource for the supply of erude iron for the English market, and, worked with charcoal at many points, still continues to yichld a profitable return; and finally, when foreign competition is, for an interval only, set aside or guarded against, will enable the bituminous coal-fields of Maryland, Pennsylvania, Ohio, and Virginia to suphly the entire consumpwon in iron of the whole American continent.

Such are the principal classes of available ores of iron. Mineralogists, and metallurgists even, oftern extend their number to include others, which should be, in theory, and sometimes may be in practice, used to advantage. So the silicated iron-ore of Kupferrath, the chanoisite of the Valais, the garnets of Ilenneberg, the titaniated ore of Maryland, are actually smelted; while the roleanic basalt of France, (iermany, and Ireland, and the jasper of Piedmont and Siberia, contain iron enough to render its extraction hopeful. So the franklinite of New Jersey, which contains 46 per cent. of metallic iron, might be supposed as proper for the domain of the iron-master; but in fact, it has only been employed, litherto, as twelve years ago for the weights and measures of the United States,) in the fabrication of brase, and probably will ever continue to be invoked solely to surrender its zinc. As for the other mineral combiuations in which iron is found-the arseniets, claromates, columbates, phosphates, and sulphurets, de.they may be omitted here. Some (as, for instance, the chromates) are worked for and applied to purposes in the arts other than the reduction of the iron they contain; others (as, for instance, the phosphates) yield an iron of such inferior quality, when treated alone, as not to be of desirable employment, while others, (as the sulphurets, \&e.,) even were there no objection on this !ast score, require such expensive processes to effect a separation, as to be quite useless as ores of iron. The fullowing table is of interest, as showing the normal proportion of metallic iron existing in the types of the classes and varieties that have been mentioned:

Class.	Variety.	Iron per 100 pirts.
1. Native or meteoric iron		94.
2. Magnetic iron-ore	. In purity	. 72.40
,	. Mean of seven analyses	.. 67.47
3. Specular iron-ore	. In purity	... 70
" "	.Red hematite	... 67.67
" *	.Compact red iron-ore	... $56 \cdot 50$
" "	. Red ochre.	. 40.53
4. Brown hematite.	. Compact.	5915
"	.Fibrous.	56.98
" "	. C (ites	. 51.97
" "	.Oolitic.	4145
" "	.Granular	. 42.21
" "	. Brown oehre.	45.85
" "	.Bors-iron ore. 2954
5. Carbonate of iron	.Spary	.. 4191
" " .	Lithoid ; altered	. 10.79
"	.. " 335 t

Mctallurgic treatment of iron.-Under this head belong the smetting of the ores to propluce ermede non; the founding or remelting of that product when required to be in certain forms and of matal properly termed cast-iron; the refining of erude or cast-iron, and ite forging, so as to give malleable or bar-iron; and, finally, the operation, by hand, upon comparatively smali massea of har iron, known an mnith's work. For the lirst of these procereses is required a furnace; for the secmul, a joundry; fir the third, a forte, or rolling-mill; and for the fourth, a smithy. Under this last denomination will he included as well the manipulations-which, fron the color of the work turned ont, (and perhape, ahos, from the soiled extermals of the workmen, are ordinaty termed bliedsmithing-ath the peeath it with the lathe, de., which are demambed in what is technically twrmed a finishing-shop.
 tendency of most earlly and metallic sulatances to melt by hatat next, upon whe allinities of the tha terials usually put in furmaces for new combinations, white in at stato of fusion; and then, upmen the -scessive gravity of metalle iron, which, in this state, temels to make it separate from and sink then h the incled mases. In this lat re"garel, it may be satil, that while the specitic gravity of all the wher
 than twice that of water, the specifie gravity of medallic iron is seven times as great, und its grasitat m.
 tendency downwards is still greater. The followimp paradigm, in which only the chief materials amd products in smelting are shown, will serve to illu-trate the character of the ntimies that are eanrei ed und the recompositions that result:

The success of these results depends upon the means employed. Thus, it is well known that, with fucl enough and air enough, heat can be generated sufficient, both in intensity and abundance, to fuse the most refractory and voluminous materials. But as both air and fucl are costly in their supply, the task of the furnace-manager is so to admix his ores and fluxes as that their simultaneous fusion shall take place at the lowest possible temperature ; that it shall be the most perfect, to allow the utmost chance for the entire separation and descent of the melted metal ; and that on its continuance, and by the presence of substances suitable for taking up and neutralizing all accidental or necessary impurities, either in the ores, fuel, or flux, there should be the least possible opportunity for the iron, after separation, to enter into new and detrimental combinations. All this was expressed long ago, with great practical terseness and almost sufficiently comprehensive caution, by Rogur, the Welch founder, in saying that "In order to make iron, you must frist make glass." It is to produce this glassy cinder out of all the solid materials in the furnace, (except the iron,) that the founder aims; it is by this cinder that, from hour to hour, he judges how his furnace works. In earlier times, and with many still, this task was matter of routine, or of tact, which habits of observation had rendered almost intuitive. At the present day such tact can be guided and helped by accurate theory, which, upon a nearly perfect knowledge of how different chemical elements behave towards one another, can calculate arithmetically the dimensions of the furnace and the proportions of ingredients proper to a given result. This will be better understood after some details upon the construction of the furnaces themselves, and description of their parts.

Figs. 2331 and 2332 are respectively a section and groundplan of the hearths, or furnaces, in use about the middle of the sixteenth century, as described by Agricola. The letter h, in both, shows the hearth proper ; t, the tuyere ; and b, the bellows. This form is not unlike the blacksmith's hearth of our own times; and has, in fact, been perpetuated, with but small modification, in the Catalan forges of the present day, where a malleable iron is produced from suitable ore by the first process. More refractory ores were treated in crucibles (as it were) of a somewhat different shape, as under ; where Fig. 2333 is a ground-plan, and Fig. 2334 a section through $x y$ of that plan. The same scale answers for all four figures.

Both of these constructions belonged to a period when iron, more or less malleable, (an civject of parlier utility in the arts than crude iron,) was froduced direct from ores whose choice and value depended then greatly upon such a property. And both are of the kind which the Germans call viuck-ofon, and the French fourneaue à masse. (in English, pot furnaces)-such as until very recently, and still, indced, are used in Hungary, Carinthia, Styria, and along the Pyrenecs. Both furnish the reduced metal in a solid lump, loupe, stück, or salamander, which has to be lifted by main force out of
the hearth-the fires, of course, being suffered to go down for the purpose. The second kind appears to have had, like the modern stuck-ofen, a tap-hole for cinder or slag to be removed. The stück-ofen, used at present in what was formerly the principality of Henneberg, are shaped internally like the adjoining Fig. 2335. They are from seven to ten feet high, built of sandstone; but the crueible pruper, c, is of cast-iron. There are two openings: one at t, where is the tuyere; the other in front, for working-i. e., removing the cinder and the metal. The cinder is always running out ; the metal is kept in (it is never very liquid) by a temporary wall of brick, which is taken down when the stück is drawn. In older times, the loupe, which weighs from 500 to 800 lbs ., and which was formed in six or eight hours, was drawn every day. The improvement of deepening the hearth left room for several loupes, wheh were separated in the workings by dry charges of fuel only, and were removed every Saturday evening. At present, the loupes, separated as before, are drawn whenerer the hearth becomes full, but with-
 out emptying the furnace, which continues in blast several weeks.

These Henneberg furnaces are types of an improvement which was beginning in the time of Agricola and is known in Germany as the fuss-ofen-in France, as fourncaux a manche-in England, as tap furnaces. The aim of this was to let the metal run out as well as the cinder; and the method of attaining the aim was a contraction of the crucible proper, whereby the heat became more intense and the metal more liquid. The stück-ofen-which, to be sure, always yields an excellent quality of metal -is very expensive, both in ore and in fuel : the low temperature it affords is not sufticient for the reduction and subsequent combination of divers impurities (such as manganese, silicium, \&e.) in the ore so that the iron is left comparatively pure; and as the slag contains ordinarily about 40 per cent. of metallic iron, the metal, which sinks down on the hearth after hasing been enreloped in this slag, becomes also partially decarbureted, and is, in fact, a mixture of crude iron, malleable iron, and stecl The fluss-ofen rendered the greater part of it crude iron; and is, therefore, the germ of the moder: high-furnace. In its actual state, and like the Henneberg furnaces, only higher, (from 20 to 35 feet, the fluss-ofen continues in use to this day in various parts of Germany, and in some places of sweden. The Swedish furnaces were, indeed, until recently, all properly fluss ofen. Since the intervention of Berzelius, they confurm more to the models generally followed in otier parts of Europe and America.

The following figures will serve to show the probable march of improvement, as longer observation. and greater range of materials that might yield iron, suggested the successive steps. For greater gen

eranty and simplieity, these firures show only the cuvette or inside section of the furnace, which necessarily regulates the externals. Thus, there is no doubt that the earliest shape was the prism, or cylinder, shown at Fig. 2336, which we know to have been in use in the time of Agricola. As it would soon be observed that, with such a shape, the materials were too heavily pressed below to allow free passage for the blast, relief in this respect would be sought by battering the sides inwards, as shown in lig. 2337; while as, upon experience, it could not fail to be noticed that, if the materials, in descend ing, had more room, they would spread more easily-on this account the shape of Fig. 2338 might the preferred. The suitability of one or other of these forms would be regulated by the less or greater fusibility of the materials. But for average fusibility, as well as to combine the greatest advantage of these two experimental principles, the furm of lig. 2339 would be seen to be the bent ; while a slight alteration of this, and a combimation, in fact, of all previonsly known forms, brings us th the form of Fig. 20.40, which is exactly the moditied tluss-ofen of Hemeberg, before desertbed. If the angles of

Fig. 2340 ber romadel off, either designedly or hy the degradations consergnent upen its use, it will
 Gieation of Fig. 2339, bringing the belly, or widest part of the cuvette, nemer to the thast, ns would to
found desirable for less fusible ores; while for those more refractory, a general narrowing, as in Firs. 2343, would be resorted to. Finnlly, as the use of earthy ores became prevalent, it was found better to bring the top of the boshes (in German, bösehuny, a talus, or slope) nearer to the tuyère, and to narrow the crucible below, as shown in Figs. 2344 and 2345, which are the types of the modern high-furnace. In both these figures, h shows the crucible, $c x$ hearth, and b the boshes. The slope of these last is more or less steep according to the fusibility of the materials, and their less or greater fragility under pressure of a superincumbent. In this last regard, the height of the furnace-stack is an element in the calculation; although, for the generality intended to be illustrated by the figures, as well as for the distinction between different kinds of furnaces, the height is immaterial. It is usual to call, now, every thing above 27 feet a high-furnace; although, in the method of treatment, as well as in the character of metal produced, it may be, as in parts of Germany and France, a fluss-ofen, and although it may have no hearth proper, as in many places in Sweden. The different shape of the in-walls-straight in Fig. 2344, curved in Fig. 2345, of either of which many examples are found-arises more from caprice than from any logical conclusion. The latter is more retentive of heat, but more embarrassing to the blast ; in the latter, therefore, the different stages of the process will be more distinctly marked than in the former. If the object be to gather combustible gases at the trundle-head, (as in the method of Faber-Dufaure, the shape of Fig. 2345 is preferable.

In some localities, the furnace is built upon the flat, and a veritable bridge connects with the hill. In places where there are no hills-as in Staffordshire, for instance-a long ramp is constructed, either of earth or carpentry, along whose inclined plane the materials are carried up by suitable machinery.

Figs. 23.46 and 2347 are a section, parallel to the front, and a ground-plan of a blast-furnace, which may be taken as a type for all, whatever may be the materials enıployed. In these figures, h is the

rrucible, or hearth : t, t^{\prime}, indicate the passages and tuyires (pronounced tweers) for the blast. In Fig $2346, b$ shows the boshes, a term applied as well to the space where the letter is as to the stones which inclose it ; s is the general mass of masonry, called the stack; i are the $i n$-walls, of refractory materials, (stone or fire-brick,) defining the cuvette; l is the lining, of broken stone, pounded cinder, dc., loosely interposed between the in-walls, to allow them to expand without thrusting more than can be helped ngainst the stack, and also helping as non-conductors of the heat; and $f f$ indicate the ties, of bar-iron, which run quadrangularly through the mass of the stack to secure it still further. In-walls are sometimes made double, with a void space between them. It is obvious that, within the limits of their general aim, the particular dispositions of these are at discretion. A chimney, generally of brick-work, is shown at c. On Fig. 2347, p p indicate the piers, connected by arch-work, for supporting the stack vertically. These piers are generally themselves still further pierced with low and narrow archways, (as shown by the dotled lines on the northeast picr,) to allow of readier communication between the tuyère-arehes, $t t$, where the blast-pipes are. The arch T , in front, where the working is done, is termed the tymp-arch-generally larger than the tuyère-arches. This plan shows three tuyeres, which is an establishment for a furnace of the largest class; yet rery many have but two, and smaller ones are worked with but one tuyere.
Fig. 2348 gives an enlarged view of the disposition of the hearth and boshes. Here, besides the parts already indicated by letters before used, s shows one of the cast-iron girders, or sows, for supporting the thrust of the arch; y is the tymp-stone, protected by a casting called the tymp-plate, (tymp, in Welch, means a delivery, and hence is applied to the place where the product of the furnace is brought forth,) both from the iron ringards, or long crow-bars, of the workmen, and from the adhesion of the cinder, which is very strong to heated stone; and d is the dam-stone, protected, for similar reasons, by a casting called the dam-plate; h shows here the hearth-stone, or sole, which is a single, large, refractory stone, and ought to underlie, in part, the dam-stone. This hearth-stone ought to have a fall of at least $\frac{1}{6}$ inch
to the foot, towarls the front, to assist the tymp of the metal, which comes out through a shoulder eur in the lower face of the dam-stone. The cinder pours over the top of this last. 'ifie place for the tuyere, which was first a square opening left in the masonrs, is generally filled up now (since the use of bot air especially) with a double hollow cone, called a vater-tuyère, made of wrought-iron, of wrought-iron with a mixture of copper, or of cast-iron, and built in with fire-clay on the tuyere-sielf. Fig. 2349 is intemded to show this uten-il. The openingsit a a are intended, the one to admit, the other to let out, the wather which circulates in the tuyere, and preserves it from the action of the heat in the hearth.

After stating the general principle that the hearth and boshes should be of the most refractory material possible, the choice of that material, of its position and treatment, it is obvious, depends,

234.
 within certain limits, upon circumstances. Thus, they are built of sandstone, dressed or undressed; of soapstone ; of fire-brick ; or of an artificial puzzolanat of cinden and fire-clay. The joints are always laid in fire-clay, worked up into the consistence of mortar.

Having now the nomenclature of the principal parts, some precutions as to their disporitions, amu some requisites as to their proportions, may next be stated. The first thing after a sccure, is a dry foundation, particularly in the vicinity of the hearth; and, therefore, too much provision of drains, active enough to take off promptly all possible moisture, ean hardly be made. Under the hearth-stone should be constructed a false-bottom, with piece: of brick or stone, so as to avail of the non-conductiug power of air. Butcurrents through this are to be avoided. In some places in Sweden, it is, to be sure, the practice still to provide mean- for passing water under the bed of the hearth-stone, with the view if increasing its duration. But such a practice cannot be approved on any score.

The plan of the hearth is sfuare, oblong, or circular, or elliptic. The two last forms agree best with theory; the other-are more eonvenient in con-truction. With three tuyeres, an oblong hearth is necessary, on account of the less revistance opposite to the third tuyere at the tymp: with two tuyeres, it is still advisable, because the two nozzles hould never be oppisite axact? , and room for their play is desirable, as well as a better distribution of the blast. So far as the resistance to the blast is con cerned, it will be in equilibrium by an addition of $\frac{1}{3}$ of the wilth to make up the length.

The jambs of the hearth are made vertical, or with varions degrees of batier, from $\frac{1}{2}$, at a minmum, to $\frac{1}{6}$, at a maximum, of the height ; and generally inversely as the height. This last proportion serms unreasonably great, and must embarrass the blast. But the absolute capacity of the hearth mu-t $h_{x^{*}}$ taken in as an element for determining the batter; as also the quality of yield which is aimed at. Tou make foundry-iron, the batter should be less than for forge-pig. The proportions of $\frac{1}{12}$ of the height for the former, and $\frac{1}{8}$ for the latter, seem to be warranted by the best examples.

The slope of the boshes, or angle which a section of their face makes with the horizon, varies from $n 5^{\circ}$ to 70°. There are some instances in the Harz of leas inclination than this; but it is not recom mendable. A slope of 60° might be taken as a constant to present the maximum alvantage; for, strictly speaking, the pressure of the blast ean lie regulated so as to compensate for unsmitability of slope, in any particular case, to the materials. In re-pect to these hast, refractory ores and soft charcoal are best treated with a less shope; but fusible ores, and coke, or chareoal of hard wood, will behave better with steep bo-hes. The length of the boshes, which are now always circular, correspunds with the greatest diameter of the furnace, or, as it is technically called, the width at the boshes.

This width, it is obvious, must he proportionate to the height of the curette, or, it may be said, the whole height of the stack; i. e., the higher the furnace, the wider it may be with the same materials. But with a given height, the width shouhl vary according to the materials, and rice visul. These two items, therefore, will have to be con-idered tegether in this rewpect; and, alone with them, another if the greatest importance-the guantity and presure of the blate furni-heal. And, after all, we com only deal in generalities, and not in arithmetical proportions, which ean only be deriverl, for a given casi, with materials of known empo-ition amd properties. 'The object of the furnace, at all, is to penerate: heat to melt some of the materials, and to melt them, alon, at a proper place. This heat is produced by the combution of othere, (viz. the fuel;) and the amome of sudh leat depend upon the gnamtity of them last burnt in a given time; which quantity, ngain, depend y yon the weight and volune of air furni-hed in the same time-i. e., upen the amont of blast. The greater the blast, the more furl will be burnt, the more heat generated, and the more matter melted in at given time. As-mming, then, the
 unaltered at the tromble head. It is manifent that, with a low furnace, a part of the nir of at ano blast will come out at the top without havin! promoted combustion at all, mad, therefore, nt a lowe With the blant constant and the hoinht suitable th that, the mext thimg is to ernsider the efliet of the widh at the bohes. At this juint the materiala have attamed their greatest extension, and are raty
 at a high temperature; fu-ible ones will liquefy in the upper part of the furnace, refractory ches will fall in framents inten the crucible, mot having had opgrounty to be properly comented imil roduced. If, on the: other hams, the wilth be ton great, the ternperature will hen insifficient, mel anen thable mines will descend unaltered into the crucible. This will he copeceially the cane with chare wh farmene

reason, that the light charcoal is easier blown aside by a strong blast, in which ease it is burned against the sides of the stack, where its combustion is comparatively 11 seless. It may be concluded, then, that the width of boshes, with a given height of stack and given blast, should be less for a friable fuel and for refractory ores than for a compact fuel and fusible ores.

Upon the boshes rest the in-walls, and their junction should be effected to present the least angle possible. The materials of these, as well as of the non-conducting and elastic lining between them and the solid mason:y of the stack, have been already spoken of. Their horizontal section is always circular, the vertical projection of their face sometimes a straight, sometimes a curved line. The former is more easy to build, the latter more retentive of heat, and, with a mould-board revolving round a central shaft, presents no difficulty in construction. In forming the curre of this mould-board, the shape of a common parabola is the most adrantageous to be employed in respect to the distribution of heat.

The width at the trandle-head depends upon the quantity of blast intended to be furni-hed, and also, in a less degree, upon the quality of the materials. If the blast is very strong, it should be less than with a weak blast; it should be large with friable fuel, and ores that tend to stick together. The widening below should not be rapid, is if, for instance, the parabola before spoken of were cut off near its vertex, for the materials in that case would tend to distribute themselves unequally; relieved suddenly from lateral pressure, the heavier ores would descend quicker than the charcoal or cokes. The gencrat practice is to make trundle-heads narrower than theory wesld dictate, under an apprehension of loss of heat; their width should not be less than $2-5$ ths, and in most cases might be adrantageously $\frac{1}{5}$ that of the boshes.
The chimncy surmounting the trundle-head is not always adopted; in proportion to the size and temperature of the furnace it is more and more necessary. It is built uniformly of brick upon a castiron bed-plate, with mortar only enough to hold it together, and further retained in shape by ribs and hoops of iron. Its leight is from one-fifth to one-fourth that of the stack, and its inside top-diameter is generally witer by the length of a brick than its base, the outside face of the wall being plumb.

The only remaining part of the construction which has not been mentioned is the stack, whose function, it is apparent, is only that of a retaining-wall to hold the curette, boshes, \&e., in place. This function it may perform either by its inertia or by its cohesion. In the first alternative it is generally built of stone-masonry, laid dry where it approaches the lining, and mortared elsewhere; externally it will be square, the width of the base will be equal, or very nearly so, to the height of the whole stack above the foundations, and the outside face will be battered at from $2 \frac{1}{2}$ to 3 inches per foot, thus making Ile width at top about half the width of the base. These are, of course, only arerage and generally uncljectionable proportions. Besides this, in levels of every 4 or 5 feet, binders of bar-iron are laid in channels of 12 or 16 square inches of section left in the masonry parallel to all four sides, which binders are held at the ends by suitable hold-fasts that can be tightened either with a key or with a nut. When these bars break, (as they not unfrequently do, they can be drawn out of their channels and others substituted. Besides these horizontal channels, there are rertical flues left in various parts of the stack to promote the expulsion of moisture, which otherwise would volatilize into steam, and accelcrate the cracking of the masonry. This tendency to crack in the stack seems so confirmed that there is hardly a furnace of any considerable size in the world which does not show it. Except for a certain loss of heat these cracks do not injure a furnace, provided the in-walls remain unkurt. Finally, there is a dust-flue (in large furnaces) communicating from the top with the tymp-arch.

When, as in the second alternative, it is the colesion of the stack that is relied on to retain the in walls, it is generally built of bricks, circular, and tied with many vertical staves and hoops of wroughtaron. Such stacks are gencrally termed cupola blast-furnaces, but ther are never of the largest
dimensions. The external proportions rary according to the fancy of each builder. Fig. 2350 shuws an ordinary furnace of this sort; Fig. 2351 another, remarkable for appropriateness, ingenuity, and taste.

Blist-furnaces have universally a roof, over the ground adjacent to the front aud sides, of greater or less extent, called the moulding-house; and one, adjacent at the top and approaching more or less near to the chimney, ealled the top-house, or bridge-house. The necessity of these in protecting from weather the workmen, materials, and metal, is obvious. They are also advantageous in proportion their extent, the spouts with which they are furnished, de., in keeping the foundation, de., of the furnace itself dry. As fir as possible, the materials used in these buildings should be iron, to avoid risk of fire.

The difference of materials in furnaces has been frequently spoken of already as entailing a difference in dimensions. The principal intluence in this respect is due to the fuel; and henee there is a marked difference in size between charcoal and coke furnaces. The necessity for this is apparent, when we consider, that with equal volumes, the heating effect of charcoal is but one-half that of eoke; of two furnaces, then, of the same size, the one fed with charcoal can never be raised to so high a temperature as the other, for even the most obvious steps towards equalizing them (riz. continually supplying fresh charges of charcoal) have of themselves a cooling tendener.
The fullowing table will show, at a glance, the comparative dimensions, de., of these two classes of furnaces, established upon what is considered a fair arerage of each. The particulars under the head of anthracite are taken from what may be regarded as the latest improvements for the use of that fue]

Dimensions.	High-furnaces, using				
	Charcoal.	Coke		Anthraci	
Stack, height from foundation.	35 feet,	50	feet,	85	feet.
width at base	28 "	50		40	"
width at top	$16 \frac{1}{2}$ "	25	"	33	"
Cuverte, diameter of trundle-hend.	$4{ }^{4}$	8	"	6	"
height of conical in-walls............	$25 \frac{1}{2}$ "	33	"	11	"
do. cylindrical	-	-		8	"
width at boshes	$9 \frac{1}{2}$ "	15	"	12	"
angle of boshes.	55 degrees,		degrees,	75	degrees
height of boshes......................	$4 \frac{1}{2}$ feel,	103	fect,	11	feet.
Crucible, height of hearth	5 "	$6 \frac{1}{4}$	"	5	"
mean of length and breadth at top	21.	5	"	6	"
do. do. at bottom	2	4	"	4	"
height of tuyere above hearth-stone	$1 \frac{1}{2}$	2	"	$1{ }_{6}^{5}$	"
Approximate capacity	1000 cub. feet,	4500	cub. feet.		
Descent of charges in about	20 hours,	401	hours.		

These dimensions and proportions undergo changes, necessarily to be accommodated to different ores they are often arbitrarily modified besides, or follow a routine established at earlier periods of the art of smelting. Jlhus, in South Germany, the old fluss-of on is still substantially retained; in Sweden, many ligh-furnaces are still erceted without a crucible, i. e. with a continued talus from the top of the Lobles to the hearth-stone; in Wales, where the product surpasses that of any other part of the world the furnaces are lofty and rast-some (but an unsuccessful model, it is said) attaining a height of 50 and a width of 20 feet; the English furnaces of Staffordhire are lower, but, in proportion, more wide; the Scotti=h are more cylinder-like and squatter, still. In America, there eannot be said to be any prevailing type for clareoal works; the coke furnaces are said by Overman to be generally on the model of the first successful one,-that at Lonacouing in Maryland: white the use of anthracite as a fuel has yet received so little extension as hardly to present more than a few instances.

With these explanations of the means made use of, we can now pars to the materials employed in the samelting of iron, and their resective preparation.

1. Fucl. This is one of the most important materials, both in regard to quality mad cont. We have already seen that it constitutes the index in a classification of furnaces; and when it is considered that there are many situations whose ores camot be availed of becanse of the inconvenient supply of fuel, the propriety of placing it first in the lint of materials will be apparent. The object in the une of fuel i- 1 pineppally to obtain heat, but it also acts in the formace upon we other materials as a reducing and denxidizing agent. In both of theee a-pecte, its value is in proportion to the carben which it contains; and in the last aspect, it is not mere theme or heat which is wanted in the furnace, but the contact alon of carbonaceous matter with the materials to be reduced. Wood, whose chemient constiturion may be taken in general at 50 per eent. of earbon and 50 per cent. of oxygen and hydrogen, in propurtions forminf water, contains ton little carbon in its natural state to be ndwatageonsly compleyed in a furnace. Compared with croke, its catoritie effect moder egnal volumes is but one-fifth of the latter; it therefore. would not raise the temperature sullicionty. It las been attempted to be applied in a baked or torrified state, but nut with sufficient sucenss to indued it further use. 'The preachee of hylrogen, which promotes indanmability, and whoh, aldough under some circmotancers it acts ns a deoxidize r, dox bout

 eration may aty yet be hoft out of question; and all that will her traterinf here in the preprathen a

eral prineiples of carbonizing either fuel are the same: viz, the expulsion, by heat, without contact of air, of the rolatile constituents of the fuel. These constituents go ofl' in part as gases, containiog more or less carbon, and, in part, as new combinations which are still liquid at a high temperature; as, for instance, acetic acid, tar, de. The distillation of wood or coal, with a view to ceonomizing any other products than residual carbon, does not form any part of the business of iron-working.

The means, too, for carbonizing either fuel for this special metallurgic use are similar, in kind, though the details of the methods vary for both considerably. These details may, however, be grouped into two great classes: 1 . Where the carbonization is effected in a permanent, air-exeluding oven: 2 . Where It is done in clamps, or kilns, or heaps. In the general aspect of carbonization, the means employed would hare to be antecedently classed according as use may be made, first, of other fuel than that to be carbonized, in order to generale the requisite heat, or secondly, of a part of the mass itself, for the charring of the other part. The type of the first system is seen generally in all the apparatus where other products than carbon are sought to be collected, and where the coke or charcoal are incidental to the operation ; as in gas retorts, or the cylinders for pyroligneous acid or wood vinegar. Although a system like these might, in some localities, where fuel was abundant or in different qualities, be adrantageously introduced, there is probably no iron establishment where it is resorted to ; and the other classification, of ovens or hilns, remains as the only one that need be discussed here.

The relative advantages of these two methods can only be ascertained by a comparison of their products in quantity and quality. With respeet to the first element, quantity, it may be assumed (though it is not universally admitted) that ovens produce a greater quantity, by weight, of carbon from the raw material. Hardly any collicr can claim a yield of more than 20 per cent. of chareoal, for instance from heaps; while the best ovens, with perhaps less trouble, though not less expense in individual cases, will gire about $\varrho 5$ per cent. Again, in the assemblage of cases, the expense ior ovens is probably less; being less exposed to accidents from weather, negleet, de., which sometimes result in the combustion of an entire kiln.

With respect to quality of product, the evidence is less decisive. It would seem in theory that the oven, producing a greater weight of carbon, ought also to produce a heavier material, per se. But sucl is not always, nor even generally, the case; and where the oven charcoal or coke are of the highest specific gravity, (and the economy of a high specific gravity is, in general, undoubted,) yet from some cause, such as a peenliar arrangement or disarrangement of fibres, it is not found to develop so much heat as that prepared in kilns. This point of quality, therefore, and, indeed, the whole question as between ovens and kilns, need a more profound and extensive investigation. All that will be done here is to describe the most usual and simple details of both methods; first, for charcoal, and then. for coke.

Charring of wood is still practised in Austria after methods which seem to have originated under the period of Roman domination, for the manufic. ture of the celebrated Norican iron. These may be denominated charring in leeaps, (Germ. haufen,) or clamps; and will be understood from the accompanying sketches, of which Fig. 2352 shows a side-view, and Fig. 2353 a ground-plan of the arrangement. The ground for this may be either levelled or sloped. In cither case, pipes are sometimes, but rarely, laid in the upper parts of the clamp, to carry off some of the liquid products. The length of the clamp (and, of course, the number of posts) is arbitrary-generally from 40 to 50 feet; the width depends upon the length of the logs, which, being ordinarily 4 feet, and being laid in a double row, with a very small space, to the casing of the sides, will make the width very nearly 9 feet across, from post to post. In Fig. 2353 the logs
 are given as if in but one length, which can very well be if the sticks are light. The casing may be of plank, slabs, or split cord-wood. The ground is well pounded; and, if in an old burning, with charcoal and dust. The logs are then piled, beginning from the upper part, to within a few inches of the top of the casing. Then it is covered with chips, twigs and leaves, and finally with sand or (better) dust, which material is also filled in against the casing, to protect it from fire. After all this is ready, fire is put in at the lower end, and some of the dust is removed from the upper end to make a draught. Draught-holes are also opened at discretion in the sides of the casing. When the smoke comes out where the dust is removed, it is necessary to throw it on again, and open elsewhere with caution. In this manner the fire is led on till the heat has charred the whole. The peculiar advantage of this method is supposed to be, that with a clamp, say of 50 feet, charcoal may be drawn from the lower end after the fire has progressed abont ten feet, which it will do, ordinarily, in twenty-four hours. This is still further helped by making it on sloping ground. If well packed, a clamp of 50 feet by 9 feet, 6 feet high at the head, and 3 fcet at the foot, will hold about 15 cords.

Another method, more extensively and commonly practised, is that of kilns, (Germ. meiler; Fr. meules.) These kilns are of two kinds, standing and lying; the wood standing on its end in the one, and lying on its side in the other, as shown in Figs. 2354 and 2355.

The circle, to be levelled and pounded down, for a kiln of this sort, will be from 40 to 50 feet in diameter; the driest ground must be selected for the purpose, and a place sheltered from winds. The best period for burning, in America, is from the middle of May until the middle of August; and then
again in October and Nuvember, during the season known as the Indian summer. Wood which has been felled, and lopped, and barked in December and Janary, will be sufficiently seasonell to char is the autumn following. After the logs have been arranged, as in the figures, around the three lung stakes of ten or twelve feet in length, (which are to serve as a chimney,) and piled as evenly and compactly as possible, the whole pile must be corered to keep out the air. A site fur a coaling improver

$$
2354 .
$$

by use, for the charcoal and loam get trodden and mixed together, forming the best material for the covo ering. On entirely new ground use must be had of sod. When covered, fire is applied, wher through the top and suffered to fall through to the centre, where provision has been made of some light woud to eatch readily, or through a horizontal flue left along the ground, which is closed at its entrance as soon as the fire las taken. For the first twelve hours the kiln must be closely watched, and, therefore, it is usual to light at daybreak. At the end of that period, or a little longer, according to the kind of wood, its state of seasoning, and the skill of the collier, the fire will have taken sufficiently, and the top may be covered in with dust and loam. From that time, it is better that the operation should proceed as gradually and slowly as possible. In three or four days the cover begins to shrink and fall in, and fresh watchfulness is required to stop every opening thus made, and even new ones are made to effect an equable distribution of heat. These are points that cannot be taught by talking; they are lessons of experience and observation. When the cover sinks gradually, and the smoke groms less and less, recularly, the work is known to be going on well. Expert colliers find indications of the process in the color of the vapor and smoke, which varies at different stagns. After all smoke has ceased, the kiln is entirely and thickly covered, and left for four or five days less or more according to its size, to cool. The coal is begun to be drawn from the foot, but cautiously at first. until it is found to be too cool to re-ignite upon admission of air. If so, the drawing may be continued all round for coal that is wanted, peeling it off, as it were, like an onion; the whole contents may be hauled off to store, or it may le left (covered up again) to be resorted to when wanted. In proportion as the kiln is well piled, flues in various places are unnecessary. It sometimes happens that the fire takes in particular parts, or dow not take at all. In this last event, the advantage of a horizontal firing flue is tested. A kiln of ordi nary size, of this kind, holds about 30 cords: the largest contain 50 cords.

When the circumstances are such as to render it likely that the same charring-ground will be used for a considerable perionl, it is worth while to adapt to it some permanent accessions, as indicated in Fig. 2356 ; which repre-ents the section of a basin laid in dry brick, to serve a* the ground of the kiln. This basin has a pit at p, with a cast-iron cover c, to keep a-hes out, and a gutter, if,
 communicating with the tank $/$, which receives the liguid products of carbmization. With resinoms wool, theere prokluct- are actrantasenouly removed as soon at possible from the charcoal, and are valuable when cought. The tamk las a lid, i, which muat be lam over it and luted when the kiln is fired.

Midway between ovens and kilhs comes the shroud or abri of Foneauld; of wheh a sidespew is shown in Fig. 2357, and an orthographic one in lig. 2358. It consists, in fact, of a series of trapezial ladders, marle of light frames, and dapable of enclosing a circle at the bave of 30 foct, it the top of 10

 by which two adjoining string can bee keyed tugether with woxken twita.. Thee thp is is that cover of
scantling, with traps that can be opened or shut for the passage of air, and also for that of a condui. made of three pieces of light plank, for the condensation of gaseous products. The effect of these lad ders is to allow of a better packing (and, as it were, thatching) of the ordinary loam covering of kilns. Fire is applied, and air furnished at first through the door d, left in one of the ladders. The charcoal furnished by this method is said to be of superior quality; its yield is stated at 24 per cent. of the wood, with 20 per cent. besides in crude pyroligneous acid. This rield of charcoal is about one-fifth more than from the kilns that have been described.

Of ovens there is a great variety of form; but as the most of them are embarrassed with apparatus for collecting other products besides eharcoal, they are more connected with distillation than carbonization for the manuficture of iron. Only one, of the most simple and economical form, and yet yielding grood results, will be described. A portion of it is shown in Fig. 2359, which is supposed to give a tolerably clear idea of the plan. The building from which this is taken is about 50 feet long, 12 feet wide in the clear, and 12 feet high, and will hold, well packed, about 60 cords, a quantity that has been found to present the maximum of convenience and cconomy. c shows the chimney-hole in the centre for firing; If flue-holes for the draught, of which there are others on top which cannot be seen. At the ends there is a small loor for charging and drawing. The stays are of cast-iron or wood, the horizontal binders on top of bar-iron. Wooden scantling was first used for both these, but it is neither so safe nor so strong. The arch which is sprung for the top is low, but yet, when the fire is in, there is considerable thrust against the walls. These walls are $1 \frac{1}{2}$ brick, and must be well laid and joined. As the acetons products in the oven are apt to attack the lime, asphalt, or a bituminous cement made of coal-tar and loam, is used instead of ordinary mortar. Coal-tar is also advantageously used for coating the outside. The wood is piled lying, as is seen in the figure. Under the chimney-hole, a chimuey (so to call it) is left in the pile, at the bottom of which the fire is placed. The wood may be kindled through the dranght-loles or at the doors, but less economically. When the fire is first started all air-holes are shut; when it is fairly caught the chimney may be filled up with dry wood, the hole closed, but not tightly, and air-holes opened at the ends. This will happen in seven or eight hours. The operation must now be watched, and by the emission of smoke and vapor through the air-holes, a judgment may be formed as to where they should be shat and where opened. In 45 to 50 hours the whole oven will have been heated; all openings are then closed and luted, and the concern left for three or four days to cool. On the fourth or fifth day at latest the coal should be fit to be drawn.
To what has been said, may be added some generalities as to the choice of wood and quality of the charcoal. The denser woods are to be preferred, because, other things equal, they afford a denser and harder charcoal. Decayed or doted wood will not yield a good article; and charcoal from green wood is more light, more friable, and less calorific than from dry, besides being less economical in the manufacture. The trees should be felled when the sap is down, i. e. in the winter, from December to February. Small timber is in general, and young timber always, worse than that which has attained a larger and more mature growth. Yet very old wood is not so good, because there is always more or less decomposition of the fibre. Branches of trees give less and a lighter charcoal than the boles, and the best of all is furnished by that part of the trunk and roots nearest the ground. In the ordinary felling of trees this part is all lost. Hence it would be better for the purpose (and the land would be left in a better state) to extract the trees at once by the roots, as is very easy, and then saw the timber instead of cutting. Heavy charcoal produces more heat, but its reducing effect is not in every case in proportion. There are some mines with which lighter charcoal acts better; but that it should be hard is an important characteristic universally. Charcoal just from the kiln burns quicker and produces less heat than that which has been kept some time in store, yet very old chareoal is admitted to be less valuable than what has not passed over one season. To what this is owing is not clear, for the affinity of the material for moisture is exercised very promptly, and after the first 24 hours, in an ordinary atmosphere and with reasonable precantions, it does not materially increase in weight. It is better to keep charcoal in store than to leave it stored in the kiln. After it has grown cool enough to handle, the sooner it is made quite cold the better; all gradual expulsion of heat, such as oceurs in a kiln, is at an expense of carbon. With ovens this caution is unnecessary, for the circumstances there always compel removal of the charcoal as soon as manufactured. The product in chareoal ranges from 18 to 22 per cent. in kilns, and from 20 to 25 per cent. in ovens. By rolume a cord of wood, 128 cubic feet, well corded, ought to give, at a mean, 40 bushels of charcoal. The price depends, of course, upon the value of labor in every locality, and the distance of hauling. The chopping of a cord of wood is equivalent to about one-third of a day's labor in the abstract, and the coaling of it in kilns or clamps afterwards to about a half day. The computations of the charcoal-burner are usually made upon the 100 bushels of charcoal delivered. Coaling in ovens, although in fact less laborious ard demanding less experience, requires more tact, and wages there are generally higher.

The cherring of coal, or coking, (from the German word kochen, to cook,) is the same in principle as that of wood, and the processes are very similar, though in some respects the considerations are different. Thus the coker does not fear, like the charcoal-burner, either air or moisture, nor is he troubled with the chrinkage and falling in of the kiln. On the contrary, for coke there has to be a large supply of air to determine combustion at all; the volume is in general increased during the process, while moisture, during the earlier stages, (but after the fire has obtained full way,) is recommended as a desulphuretting agent. It does, in fact, so act, but hardly to the extent that is claimed for it in theory, and some times supposed in practice; for the proportions of sulphur remaining in the coke from the same cual, treated either way, do not appreciably differ. On the other hand, coke-burning, subject to the same general category of regularity and manageability of temperature, and therefore when in the pure air Liable to accidents from high winds, de., of the same sort as occur to charcoal kilns, has to undergo constantly a greater per centage of loss from combustion. This loss is, on the average, about 6 per sent, so that coal which, on analysis, shows 85 per cent. of carbon and carthy matter, will rarely give 80 per cent. of coke, allowance being made for the quantity (from 5 to 10 per cent.) converted into slack.

Coke is made in heups, in clamps, and in orens. A suitable contrirance, and much used for heap-coking, is shown in Fig. 2300 , the central shaft of which is a cylindrical or conical chimney lousely built of brick, (terminated in the sketch as in Staffordshire, with a cast-iron chimney-head, against which the coal is piled conically, not tightly, and often with regular tlues and intervals left between the masses. As with wood, the heaviest lumps are near the centre, the lighter outside. Coke-dust and slackcoal are used as a cover and for stopping. Iynited coal or coke is thrown in the chimney, and fire
 is sometimes introduced by the horizontal flues below. After the fire is started, similar precautions are required as with charcoal. The height of the chimney is from 5 to 6 feet, the diameter of the heap from 14 to 16 feet, and it will take from 10 to 12 tons of coal. As the process adrances, slackecoal is thrown on in some places, and openings with a crow-bar made in others, according as the coker wishes to direct the heat, and water is injected plenti:ally, both to control the heat and desulphurate the fued, if it is supposed to need it, and finally to put aut the fire. A heap of the size given will be thoroughly coked in two and a half or three days; it is then left four days to cool, the whole operation requiring about a week.

In Wales clumps are more used for coking, which are long piles 5 or 6 feet wide, $2 \frac{1}{2}$ to 3 feet high, and in lengths varying according to the extent of coke-yard, from 60 to luo fect or more. One of bu feet will be of 30 to 49 tons. The coal is piled as in the other method, the hargest pieces inside, loose throughout, and with horizontal flues. In place of the chimney, however, a stout stake is driven in the middle of the width and at every two yards of the length, to serve as a guide in piling. When the coal is piled the stakes are pulled out, and the space they leave becomes a chimney, intu which the fire is placed as before. Sumetimes the clamp is fired in its whole length at once; most usually it is fired at but one end, (regard being had to the state of the wind at the time and its probable permanence, and even befure the piling at the uther is finished, so that it is a common thing to see coke drawn from one end and coal piled on the other end of a clamp at the same moment. The coke yielded by either of these methods is supposed to be better for iron-making than by any other way; but they are both costly in coal consumed, the latter especially. Where, however, as in the districts of its principal employment, coal is abundant and cheap, it presents divers conveniences which are probably cheaply purchased.

Slack-coal, i. e. coal beaten and comminuted in very small fragments or powder, (Gern) schlag, a stamp, a blow, and, by metonymy, a crushing, and the thing crushed, of suitalje quality, is also capable of being converted iuto grod coke by a somewhat similar process. If the slack be from very dry coals, i. e. which do mot contain much bitumen, it will not, however, coke at all; if the coal be too jut, i. e. with too much hydrogen, it will run together on the application of heat, cmbarrass the circulation of air, and yield a small proportion of a very friable and inferior article, if it does not defeat the whole operation. A - uming the coals to be of suitable quality, it may be treated by being mixed in small quasstities, well wetted, in a kiln or clamp with larger coal. But the best method is to screen it first, amd thus separate all the egar and nut-sized lumps from the mere slack, or pure powder. This last is mixed with water abundantly, and can be beaten from within against a wooden mould or shrowl. Provicion must be made by laying smooth and somewhat conical tampers of wood horizontally and vertically through the mass, for air-flues. These tampers are afterwards drawn out, and some larger than the rest, towards the tup, leave the means of introducing already ignited eual to fire the mass. It is better to fire at the top than below.

Fig. 2361 will give anl idea of the arraugement - proper for this method, which, presurving the main prineiple, are of course susceptible of many variations in detail. Thas they are sonetimes mate circular, but the mont usual form is, as in the figure, an clongated prism, su to bis feet in length, from 4 to 8 feet wide at the base, and from $2 \frac{1}{2}$ to 6 lecet at the top, and 3 or 4 leeet high. A greater width, uf to 15 fert, hats been tried, but not to advantare. Of courer a tumhl :thel corrs of the whole lompths wre:
 not inecussary, but after a purtion has berin linished the shrouds and tampers can be discrectly moved furthor on and the clamp exten bel. Iron
 The quantity and guality of coke make, due sare being takion in the prowes, is in propurtion th the quality of the coal, sum nome st per cent. of the quantity yielded from the smane slack in werm- A
 to leave it to conl, rather than extugni-h it hy cold athosoms.

coking, including cooling, is clone in from 40 to 50 hours. It is not well to let it cool too long; or to such a degree that the slack will not be speedily ignited on contact with the hearth. In this respect, the oven, like a common bake oven, works better for longer use. The first yield of coke from the cold oven is inferior to what is made afterwards. There can be no doubt of the greater economy of ovens fo* slack-coal.

Another sort af oven suitable for slack-coal resembles very much the bank-ovens for lump-coal that will be spoken of presently. The ground-plan is circular, the roof slightly arched, the only mortar used fire-clay. Flues are carried all round, communicating at generally three points with the interior. There is but one door for drawing, and the filling is done through the top; for greater convenience in which, they are generally built against a bank or sloping ground.

rig. 2363 shows an oven of a different construction, much used in Silesia, both for coking and also for coal-tar. For the former purpose alone the ash-pit and damper d may be dispensed with, sufficient draught being furnished through the flues $f f$, \&c. The opening in the section shows the door through which the fire is introduced, and which is afterwards bricked up. The filling is done from above through the throat, whose cover c is, after firing, lnted down. The flue for the escape of the tar is shown at \pm.

The oven in most general use, both on the Continent of Europe, in England, and in America, has a circular or oroid ground-plan, with a low, arched roof, to allow for the swelling of the coal. The draught is regulated by a damper in the door, and sometimes by flues communicating with the interior; the filling is in part effected by the door, and in part through the chimney, the fire applied generally through the last. The backing of the arch is filled up square, and, to save masonry, the building is generally made against rising ground, whence they have the name of bank-ovens.

Fig. 2364 shows a section of one of these ovens, for holding about two tons of coal. In England they have generally more or less of a chimney, and not unfrequently two more smaller apertures in the same axial plane to assist the draught. Also, there, the doors are usually of iron, sliding vertically in a frame and balanced; in America, the doorwav is generally bricked up, and as this is always but temporary masonry, in such case iron staples are let in on each side for receiving a bar that may resist the thrust from within of the expanding coal against the brick-work. For economy of building and heat, several ovens are generally ranged in one stack.

One of the most simple and at the same time serviceable forms of oven is that employed at. Newcastle and its neighborhood, which serves equally for lump or for slack coal. It was devised, indeed, principally in the view of ceonomizing the last. The ground-plan of these ovens is rectangular, 13 feet by 10 or 11 feet, covered with a low elliptical arch, (a parabolic one would be better,) whose crown is about five feet above the hearth, clear inside measurement. They have but one door, sliding in a close joint, as before mentioned, about 2 feet high and $1 \frac{1}{2}$ wide, with a register-door in its centre of 3 inches square for admitting or shutting off the air. The draught is further managed by three chimneys in the arch, the main one, of about 1 foot square, in the middle, the others, about 4 inches square, at equal distances from the central one. This last has as usual, a cast-iron cover; the others are closed with a brick. The coke from these ovens is supposed to be very good.

In regrod to the adrantages of the two methods of coking, in the open air or in orens, it may be said Whit there is less loss and less labor of attendance with ovens, but more skill is required in managing
the temperature. Thus, for instance, if the heat is got up tou quick, (as it is very apt to bre, the coko with fat coals is spoiled by burning out too swoln, light, and friable; with dry coals, it barns up and causes loss. Aloo, ovens yield, on an average, about 10 per cent. more coke, but generally of less specific gravity and more friable. Whether less care is taken in the selection of the coal for ovens, as is probable, it is certain that the almost universal experience of iron-masters is in favor of coke made in the open air on the score of useful effect. Again, the yield from ovens is more unifurm, and less subjeet to accidental discounts. Besides, ovens allow more readily the use of slack or refuse coal, to produce an article of the same value. The oven coke, then, charged, too, with the greater hathor required in drawing and the higher average mages of the cokers, is the cheaper in actual outlay; but its final cheapness, in which the quality of the product is an element, because of the varying decgrees of its inferiority, which depend tow much upon the con-titution of the coal used in different place-s, bardly allowing a satisfactory comparison. Coke made in retorts is unduabtedly the checopst of all, but its quality untits it for use in the smelting of iron.
 -hows the quantity of coke ranges in different places from 45 to 90 per cent. of the original weight of coal employed. About ${ }^{5}$ ths of coke would be, most likely, a fair average of all known results in the larese sale. Experiments made in small, or calculations upon the chemieal analysis uf conls are no further admissible or of use, in this respect, than to stimulate the manufacturer to an investigation and recomomization of his actual results.

Regard being had to volume yielded, most coals expand in coking; some are maltered, and some, even where a large proportion of earthy matter is prineipally aluminons, shrink. The resulting rolume with the swelling coals is nearly, but not quite, nor always, in proportion to the loss of weight. Thus, Johnson, in his report to the Navy Deparment of the United States, in 1843, states, for a specimen of coal from Allegany County, Maryland-

$$
\text { Loss in weight, } 17 \frac{2}{100} \text { per cent.; gain in bulk, } 42 \frac{25}{100} \text { per cent. }
$$

The physical properties of this coral are stated by the stme observer as under:-

	Weight of a cubic foot.			Per centage of		
Ep. grav.	Calculation.	Experiment.		Volatite matter.	Carbon.	Eurihy matter.
1337	83.3 lus.	$5.13 \mathrm{Jbs}$.	-	12.67	74.53	10.34

The water and loss on the analusis appear to have been 246 per ecut, and the proportions of the ingredients in the carthy matter is not stated.

To average increase of volume can be taken, in the present state of our information, to be of any practical utility; fur, lst, the result depends so much upon the methods employed; and, ?d, it is not the argregate of the volatile matters which determines the expansion, but chietly the proportion of oxygen amd hydrogen to one another, and also to the carthy matters present. In regard to the first point, lierthier hias shown the proportions of rolatile matters existing in coke prepared on a large scale for blatfurnaces, to vary from $2 \frac{7}{10}$ to 18 per cent.; in regard to the last, while analysis alone could satisfacturily determine it, yet for the practical purposes of the manufacturer it may be borne in mind that in general great lustre, but defieient hardness and elasticity, indicate the presence of hydrogen, (the chement promoting fusibility, while great lustre, with an intensely black color and much hardnees, show a predominsnce of oxygen, associated with a large proportion of carbon. These last-mentioned indications, ashming the earthy matter in constant proportion, characterize the class of dry coats, which may be, with more or less adrantage, employed rao in the smelting of iron. In general, it may be added, that coals containing more than 20 per cent. of volatile matter eanot be expected, prima fucir, to be adsantareously used in the furnace, cither hot or cold blast, without coking.
lirom what has been said, it is obvious that the final efficiency of any coke mu-t depemb on it ultimate constitution. Thus the coke of Luxemburg, just now mentioned, with its is per cent. of volatile matter, is substantially but dry eobls. The average composition of gool colie may be repre sentered as of

It is also obvions that the warthy mathers in coke answer no useful purpose in smetting-they are on ly abourbents of hat. In propurtion to their oceurrence, therefore, they embarrass the operations of the formace. It is dallieult to tix a limit to whith there will mot be individual exceptions; but in gemeral,
 "xeludiar prepurtion far lower than this.

The abselute or relative ctliejency of eoke, then, can only be determined upon analysis; mod extorat characters by ue means give a conchase reant, though they are often valumble ns in approximatem. tiond whe niay be inferred from its out having muldergene great alteration of rolume, or change of shy : from its colur, an iron-gring, or more marly that of graphite; from its lustre, more silky than metalle from mush hardurs, clasticil!, aml resistance to impuet; from a uniform fracture; fromia list r mome
 from a spereitie gravity which should, if nuy thing, somewhat exceed that of water.

The-e details uron fuel may be conchated with the following talke, show ing the probable consumpr tion of fuel per 100 of crude iron produced with ores of different sorts

Denomination.	Per centage of Metal in Ure.	Per centage of Fuel consumed.	
		Charcoal.	Cokie.
Fusible ores, (Class 4, in part, and 5,)............	25 @ 30	66 @ 90	$110 @ 150$
	30 " 35	90 " 110	150 " 180
do. \quad d....................................	35 " 49	110 " 130	180 " 220
Ores of mean fusibility, (mixed mines,)	30 " 40	110"140	180 " 240
do. do.	40 " 50	140 " 180	240 " 300
do. do.	50 " 60	180 " 210	300 " 360
Refractory ores, (Class 2, 3, and part of 4,)	30 " 40	160 " 200	275 " 350
do. do.	40 " 50	200 " 250	350 " 400
do. do.	50 " 60	250 " 300	400 " 560

Anthracite has been omitted in the discussion of fuels, mainly to save room, and also because, in one aspect, it may be considered as coming under the category of coals capable of being used raw in fur naces; whose employment, (whether bituminous or anthracite,) however interesting to particular districts, has not yet received actual extension enough to be treated on the ground of uniform or average experience. In another aspect, it may be regarded as belonging to the class of hard coked eoals, whose coustitution its own very much resembles, as will appear from the following average, riz. :

rbon	$88 \cdot 7$ per cent.
Eirthy matters	$7 \cdot 4$
V olatile matters	3.9

It is on the respective proportions of the ingredients in these earthy and volatile matters that its treatment and behavior depend; the principles of calculation must be precisely the same as those which govern in the case of average coke, and the results accordant.
2. Ores, and their preparation.-The methods of extraction, or mining, practised for different ores, according to differing circumstances of position and association; of picking, (Fr. triage.) washing, and stamping,_processes used according to circumstances for separating the ore proper from a more or less indurated gangue, and cleaning it,-will not be considered here; according to the distribution practised in extensive iron-works, at least, the ores do not come properly under the hand of the furnacemanager until the last of these processes is achieved; and they belong, therefore, to the article Minnse, which see.
The roasting of the ore is the beginning of the furnace processes. The objects of this are to diminish the aggregation of the mass, and thus leave more room for other chemical affinities to act, and for new combinations to take place; to drive off such impurities and admixtures (water, carbonic acid, and sulphur, principally) as can be volatilized at a red heat; and, as some suppose, to present the mine in a ligher state of oxidation. The methods followed should be in subordination to these aims.
In point of fact, all of them are partly answered with many ores by continued exposure to the atmosphere, under which a spontaneous disintegration takes place, together with a partial absorption of impurities and a peroxidation. But with some ores, these effects are not manifested till after a long period, (as, for example, with magnetic and specular oxides.) and witi all they are rastly accelerated by a due applieation of heat. It may even be said that all ores are the better for being roasted and then exposed for as long a time as convenient to the maccrating infuence of the atmosphere. The red hematites of Lancashire are hardly an exception to this; for, though used habitually raw, it is only for intermixture with other ores, and in small quantity; while the custom, in some districts, of only weathering the sparry carbonates, which are afterwards nsed unmixed, arises only from the dificulty of so managing the heat as to roast and not fuse them.
This management of temperature is more or less necessary with all ores. Thus, magnetic and red oxides, quartzose sparry carbonates, argillaceous carbonates containing a suitable proportion of silica, and generally all the silicated ores, are casily vitrifiable. As a general rule, the roasting should be as prolonged and at as low a temperature as possible, with free access of air and moisture.

The roasting may be done in kilns, or clamps, or ovens. The first is the most simple of all and the most extensively practised. The shape of the kiln is indifferent; it is sometimes conical, sometimes a square or rectangular pyramid. Its size is equally indifferent. The whole method consists in interstratifying the ur^{2} rad fuel, (in an average proportion of about five of the former to one of the latter,) from the base, when here is a sufficient accumulation of combnstible, and certain rudely made flues or prolonged cavities, to insure the fire taking throughout. The smaller pieces of ore are put outside as a cover, and ashes and cinders, coal, coke, or charcoal dust, or loam, used afterwards, where necessary, as a stopper or damper of the fire. After piling and starting the fire, it is, in good weather, only looked at from time to time. In most of the Euglish, Weleh, and Scottish furnaces, as well as at many in America, they appear to overlook the importance of keeping a large stock of roasted mine ahead, so as to give it the further benefit of atmospheric exposure.

Clamps are, in principle, very much the same with those already described for making charcoal. Three sides of a parallelogram, of width and lengh indefinite, are built round with a dry wall in stone, having draught-holes left at intervals of five or six feet in the base, and carried up to about three feet in height. Chimneys are built loosely, of brick or stone, along the middle of the clamp, and corresponding with each one (or, sometimes, two) of the flues. The fuel is laid, in the begiming, at the bottom, and is more or less interstratified with the pile of ore according to the greater or less presumed fusibility of this last. Sometimes there is no interstratification at all, but fuel is supplied as wanted to the draught-holes in the base.

The oucus used are of almost infinite varicty in shape and dimensions. Their general types are a cylisier, an inserted conce or a combination of an inverted and a right cone, and a truncated enlipsoid; they sary from 6 to 18 feet in leight, with an average diameter of 3 feet at the grate and of 5 to 10 feet at the trundle-head. They are like lime-hilus, either perpetual or periodic; and, in fact, the description of a lime kiln is also that of a roasting oven. The temperature to be mantained in the last is lower than in the other. licucricratory ovens have been tried, but unsatisfactorily, fur the roasting of ores.

It is to be supposed that the larger the oven, the more regular and economical will be the work. For refractory ores, the oval shape is, perlaps, the best ; while the more simple cone or cylinder is better suited to fusible ores. Ores generally pass, with but short (if any) interval, (and in so far di-adrantafeonsly;) from the ovens to the top-house, where they are broken up, and immediately charged iuto the turnace.

This breaking is effected upon a stone or (better) a cast-iron floor, sometimes with a bectle, one or two landed; sometimes with iron-shod stampers, moved by machinery; sometimes the mine is cru-hed between tluted eylinders made to revolve. But the best of all methods is to break by hand with an urdinary stone-hammer.

The size to which the mines should be reduced before charging ought to vary directly with the hardness of the ore and the height of the furnace. From one to three inches, average diancter; in-ide, will be the limits. Larger than the one, they leave too much to be done in the furmace; smaller than the other, they embarrass the blast.
8. F'luxes.-The reducing effect of the carbon of the fuel upon the metallie oxides in the high-furnace has been already spoken of, as well as that of the potassa and soda contained in the earthy matter of charcoal; but these are raucly sufficient, with most mines, to cause at once fusion and reduction; and it becomes necessary, then, to add other matters, sterile in metal, to promote fusion: these are known as fluxes. Silica, indeed, which is a constant association in all ores of iron, is, of itself, a sufficient flux in some cases; but, even in those, it is more apt to be in excess, when it both embarrasses the working of the furnace and impairs the quality of the metal. It would be proper, then, to neutralize this excess by the addition of some other sulstance; and such addition becomes still more proper when the practical problem in the furnace being to affect fusion at the lowest possible temperature) both theory and experiment show that it not only cures such exeess, but also promotes fusibility. In fact, we know that while of each of the earthy bases most ordinarily accessible, viz., silica, lime, maguesia, and alumina, is almost (and one of them entirely) infuible, per se, yet in combination, two and two, heree and three, and, still more, four and four, they melt readily at ca-ily attainable temperatures. The addition, then, of sutable proportions of these sterile matters, is the means to economical fusion of the materials in the furnace.

Without dwelling, however, upon the theory of their action, (which has been explored more or less profoundly by a host of chemists and metallurgists, and has been experimentally examined by Achard, Afexander, Berthier, Descotils, and Lampadius,) and regarding ouly the practical maxims that fit the question, it may be said that in addition to the siliea and almmana, always present in the ores and fuel, and to the lime, magnesia, manganese, and potassa, sometimes present, tou, the positive flux most usually added is lime, in the form of marine shells, limestone, or chalk. 'The proportion of this addition varies in almost every case; but, at a mean, it may be taken, for charcoal furnaces, at one-fourtemth of the other solid materials by weight; and at one-ejghth, for cuke furnaces.

Although lime is the flux thus alnost universally employed, it is not always the one that best suits the ense. With an excess of silien, it is the proper ane. Be:t when the ores are themselves caleareons in any considerable degree, the best addition is of aluminous or magnesian earth, or both. In some cases, where the ores and fuel are highly aluminous, the addition required (though with great caution) is silica, in the shape of quartz, de. In such cases, the best awail has been taken of siliccous matter containurg al-o a low proportion of iron. It is thus that amphibole, basalt, and garnet hase been applied. This iz, in fact, the use of a poor material instead of one utterly sterike.

In general, it may be estimated, that of the whole solid materials introducel into the funace, (the metallic iron excepted, the

If all four first mamed are present torether at onee, the mont fuible propor....ns in which they can exint (without regard to the fluxing action of metallic oxiles that may be there ton) are,

The whil material of the fluxes slumbld le, like the ores, broken up into fragments of similar and mi
 vious caldonation. 'They don not nlways receive lhat.

The artificial fluxes, (such as selt, potesh, seltyeter, (ic.) wither singly or in comb ination with alhuline

 puint whore they are wanted.

 Vol, 1t. - i

It is, therefore, in this aspect, one of the most important to be duly managed; and when the enormous quantities of it that are required are taken into view, its probable influence and collateral effeet can be still better appreciated. The following average statement may be derived from the practice in this particular.

Volume of materials, in cubic feet, per minute	$\begin{aligned} & \text { Charcoal } \\ & \text { Solid. } \\ & 0.95 \end{aligned}$	Furnaces. Gaseous 900.	Coke Furnaces.	
			1.06	3000.
do. proportionate.	1.	30 ¢5	1.	$\underline{2830}$
Weight of materials, in lbs., per minute	24.82	75.	102-12	269.
do. proportiona		$3 \cdot 022$	1.	2.63

Taking the mean of the proportional quantities, it appears that, in round numbers, the vciume of the air injected is 3000 times larger than that of all the solid materials in any given time; while its zecight is three times greater than theirs. The elements used above would show also that on the average there is consumed nineteen tons of air for one ton of iron made.
In order to illustrate the means of managing this vast supply, Fig. 2365 (a sketch, with more attention to distinctness than proportion of parts) shows the arrangements suitable for a fürnace of the first class. The power used is assumed to be steam; though the method of its procurement and application is not carried further back here than to the steam-cylinder c, worked horizontally by the same piston-rod that goes through and works the cylindrical bellows b. It is obvious that other sources of power, or other methods of geering, may, under suitable circumstances, be resorted to From b, the bellows, the air is driven into r, the regulator, whence it passes into a a, the furnaces for heating it, and then transmitting it along $t t$ into h,
 the hearth or crucible. T indicates the tymparch as before; W a retaining wall against the lill-side, and connected by an arched bridge above with the stack; while the blanks left in the piers show the passage-ways before spoken of, left for more convenient access between the tuyère and tymp-arches. Such being the general arrangements, the parts and their requisites will be spoken of briefly in order.
Bellows, or blowing machines, have been constructed of leather, of wood, of stone, and of east-iron. The first material, on account of its expensiveness and the narrow limits which it imposed upon both the volume and density of the blast, is'no longer used except for smiths' fires. The second, whether mado with hinges or (as afterwards) worked with a piston, left much to be desired. The use of the third, in an instance or two, can only be justified by necessity, or applauded as a conquest over circumstances: while the last, in the shape of a double-acting cylinder, furnishes the only satisfactory and sound means to the end.
Before describing these, however, mention must be made of a method on a totally different principle, which, under variously modified forms, is still employed in parts of Italy and the districts of the Pyrenees. This is the trompe or water-blast, of which Fig. 2366 shows the principle.
In this, a vertical tube of wood or iron, cylindrical or prismatic, of length and diameter suited to the fall and quantity of water intended to be used, connects with a cistern below, made air-tight exeept for the openirg t, to connect with the tuyere. Through this tube a stream of water is allowed to fall, drawing in the air as it descends through openings that are indicated by broken lines in the sides of the column, and breaking upon an altar below. The air thus carried into the cistern has no means of escape except the tuyère t, and its quantity and pressure delivered through that depends upon the absolute size of the column of water, and the proportions of the various parts. Venturi has already satisfactorily investigated the relations of this machine; which will not be dwelt on in that aspect further here than to say, that although very cheap and convenient iu its construction, it uses more water for a given effect than a water-wheel would do, and that its effectiveness is quite limited. Karsten refuses to admit that the dampness of the blast
 it affords, injures the quality of the iron; although it is probable that most metallurgists would conelude, in the face of general theory and expo rience, that the grood quality of iron made by this method exists in spitc of it.

The chain-blower of Henschel is an improvement upon this machine. In it, a more complete separation of the air and water is effected, by means of an endless chain of tloats or pistons, worked by the descending water itself; but its effect is not such as to take it out of the general category of objections.

The hydraulic bellows of Baader is, in fact, but a single-acting piston air-pump, in which the surface of a reservoir of water is made to take the place of the otherwise solid end of the pump. It cannot be made to furnish blast either of large volume or much density, and is mentioned here only because it is actually used with satisfactory effect in suitable cases; but it can only be recommended in districts where water is plenty and the labor of the artisan dear.

The oseillating cylinders of D'Aubuisson are an extremely ingenious blowing-machine, cheap to con struct, and worked with little power and at small expense. Although not giving a blast of sufficient amount or density for the smallest highfurnace, except with the most fusible materials, they answer very well for chafery and finery fires. Fig. 2367, which is a section of one of the cylinder:, will afford an illustration of their action. A diaphragm, central, through the entire length and nearly the whole diameter, is shown at $c d$; $\because u$ are two valves, alternately aspiring and expiring. In its normal position $d d$ is vertical ; the barrel is filled half full of water, through a bung, and is then set in oscillation, through an are of 90 or 100 degrees, by a connecting-rod and crank geered on near c. It is manifest, that in different angular positions of the diaplaragm the content of water in the two semi-cylinders will come to be unequal, as shown by the shaded lines;
 and the air will be respectively rarefied and condensed accordingly.

All these methods, however, imply more or less contact of the air with water, and the consequent immission of more or less moisture with the blast; which is objectionable. But this oscillating method leads to speak of a rotary method for delivering dry air-at least, air of the ordinary atmospheric humidity only. This last is the fan-blast, in which fans, radiating from an axis, are caused to revolve rapidly in an appropriate disk, receiving the air at the centre of rotation, and delivering it on the circumference into a chest, with or without a valve. The rolume of air furnished by this means is not, without considerable expense in construction and power, sufficient for a high-furnace of the first, or even of the second class ; but the density that can be obtained leaves nothing to desire. For cupolas, refineries, $\delta c .$, it is very convenient and appropriate. It is, in practice, of two kinds: one acting impulsively, in which the air is aspired and at once diffused in a common chamber, whence it is driven out by the fan-wheel; the other centrifugally, in which the fan itself is a hollow wheel, receiving the air at openings near its axis, discharging it first, at openings in its circumference, into the chamber or casing, and then driving it out from said chamber by fans fixed upon its own periphery. The clamber of the outer casing is kept from communicating with the external air, as it is inspired, by a portion of the internal revolving disk, which is made to work air-tight as possible in the outer casing. Here is exactly the embarrassment of the arrangement, which imposes a higher cost upon the apparatus in the beginning, and is difficult of maintenance. When it fails of being maintained, however, the machine does not, on that account, lose its value -it merely passes over into the other class.

Fig. 2368 is a section of a lorizontal, double acting, blowing eylinder, in cast-iron; which may be taken as the type of a chase that fulfits all desirable comblitions. The details, it is supposed, sutliciontly exphain themselves. There are some advantares in a horizental cylinder rather than a vertieat one. principally, it can more readly secure a goond fommation, with lews waste room from vallew, which, in the others, are more or hess necesurily it tho sides. By carrying the piston roul thromph loth heod the weight of the pinton is equalized upon the collare, and there is lefe lout little riak of the cylind in wearing oust of shape.

The size of the blowing cylinder depernda upen the volume of hast wanteal. As the laneth of the atroko is generally somewhat limited by the comditions of the other machinery which mpplat tho moving power to the piston, mal as the maximum -pered of the stroke, or mamber of revolutans in a

The blowing-cylinder at Dowlais, for instance, (which is the most extreme case that could be cited,) has a stroke of 10 feet and a diameter of 12 feet.

To determine the rolume of blast, and, consequently, the size of cylider, the best rule is, when the constitution of the materials to be used is known, to allow air enongh to peroxidate all the materials ir. the furnace at any one moment. This will be the outside limit. In ordinary practice, the machinery will be worked at a slower speed; and in emergencies, there will be still a margin to go upon. In calculating the supply of air, it is to be remembered that the best-executed blowing machines do not deliver into the furnace more than $\frac{3}{4}$ of their theoretical capacity: it would be even safer to take, as an average, $\frac{2}{3}$ of such capacity for the actual supply.

If the constitution of the materials is not known, but the size of the furnace is, and thence the number of charges that it ought to bear in a turn, we have another rule: One-fifth of the weight in pounds of fuel (either charcoal or coke) charged during one turn of twelve hours, is the number of cubic feet of air, under the pressure of the atmosphere, to be furnished in one minute.

This allows for the arerage discount on the working of the machine, leakage of pipes, \&c. ; and gires, therefore, at once the capacity of the cylinder.

Regulators are of two general classes : 1st, of variable capacity; and, 2d, of constant capacity. Those of the first class are either $d r y$, or vet, or (as these last are called) water-regulators. Dry regulators are merely cylindrical air-chambers, in which a piston works air-tight, which is loaded to the pressure desired at any time. These cylinders have, of course, an inlet and an outlet pipe for the air, neither of which needs valves: the valves shown in the air-chest abose the cylinder, in Fig. 2368, answer all the purpose of isolating the air in the regulator from that under the piston, on the one hand, while, on the other, the blast-pipes and tuyères are regarded but as continuations of the regulator. In fact, in every case, long and large blast-pipes (although density is lost in proportion to length) serve, in a measure, to assist in uniformity of blast. The capaeity of these dry regulators should be, in theory, twice the capacity of the blowing-cylinder; in practice, they will answer to be one a:2d a half times as large.

Watcr-rcgulators are oblong chests without a bottom, or receivers, let down in a tank containing water, and balanced after the manner of gasometers. The weight of the chest, and the arditional load put upon it, cause it to sink ; the influx of the air, and its elasticity, cause it to rise. As the air beneath the piston is under much greater pressure than in the regulator, and thus every stroke of the piston causes a slight fluctuation, the capacity of these regulators (whose minimum is the same as in the former kind) is generally governed by other considerations, and made as great as convenient. The adjutages and pipes for receiving and discharging the blast are, in practice, very much varied in position, de.; but the general principles of their arrangement are too obvious to require description here. Very convenient and suitable in most regards, this kind of regulators is liable to all the objections ac cruing from access of moisture.
The second great class comprehends air-chambers of constant capacity. These, which long ago were built under or above ground in masonry, or for which even subterranean caverns, sedulously rendered air-tight, were resorted to, have, in the most modern times, come up again, (as in Wales,) only in a material more suitable and manageable. Sheet-iron is now most generally resorted to ; strengthened, when thought necessary, with ties. Their form is generally cylindrical or spherical; one of the latter shape exists with the enormous diameter of $25 \frac{1}{3}$ fect. The most convenient form appears to be that of a right cylinder, of thin sheet-iron; with a base solidly supported, and a head, either of cast-iron or sheet-iron, stiffened with wood, carrying a safety-valve, (which acts here also as an equalizer of pressure,) and admitting of an aperture, large enough for the entrance of a workman, and capable of being closed air-tight.

Of course, the larger such a chamber is, the less will it feel the pulsations of the piston; but there must be an economical limit in this respect. In practice, the regulator is made from nine to fifteen times as large as the blowing:cylinder; in theory, its least capacity, to furnish a uniform discharge, should be in the same propertion to the blowing-cylinder as the pressure of one atmosplere is to the pressure desired to be maintained. Thus, if the pressure be assumed at 2 lbs . per square inch, the regulator must be at least $\frac{15}{2}$ or $7 \frac{1}{2}$ times the size of the blowing-eylinder.

From the regulator the blast-pipes were traced, in Fig. 2365, to the hot-air furnaces; but the considcrations belonging to these will be postponed for a moment, and the furnace considered as working (as all did, in fact, until 1827, the epoch of Mr. Neilson's improvement, and as many prefer to do still) with cold-blast. What remains to le spoken of in advance is the blust-pipes and nozzles; the watertuyeres, which are indispensable with hot air, and adrantageous with cold-blast, have been already mentioned.

Blast-pipes are made of shect or cast iron; for first-class furnaces, where the pressure is requirol to be considerable, generally of the last-named material. As they cannot be made in one piece, they are jointed either by flanges or by a muff, (what is called the faucet aud spigot joint, as in gas and water pipes. When cold air is employed, the paeking of the joints is lead; with hot air, an iron cement must be used. This ecment is made ef 99 parts of iron filings, sifted fine, and 1 part of powdered sal amnoniac, intimately mixed, dry. When used, as much water is added as will make a stiff paste. Flowers of sulphur, sometimes recommended, in no way contributes to the efficiency of the mixture, but rather to the contrary.

The pipes are sometimes laid under ground and covered over; but this mode is not to be recommended; they should be always aceessible. If hot air is ever expected to be used, provision shonld Be made in the laying for expansion and contraction by resting them upon rollers, (short pieces of three-inch iron pipe auswer very well,) on a smooth foundation. It is impossible, in the conditions of application, to aroid flexures; but these flexures should, of course, to save friction, be made as gentle as possible.

When the straight lengths are so great that there appears to be danger that the pipe will break, a

compensation-joint is inserted; this frequently consists of an end of a pipe movable in a stuffing box. The plan represented in fir. 2371 is preferable to it. This is a compensation-ioint, consisting of two round dishes of sheet-iron, or copper, 20 or 30 inches in diameter, according to the size of the pipe, riveted air-tight at their periphery, and serewed to the two flanges of joining pipes. The sheet iron may be from $\frac{1}{5}$ to $\frac{3}{16}$ of an inch thick. The large diameter and flexibility of the sheet-iron allow the two pipes which are joined to it, to move longitudinally, independent of each other. Wooden blast pipes are sometimes used, but are useless where a dense blast is to be conducted.
The capacity of the pipes, i.e. their diameter, should, other things being equal, be as large as possible. But, as other thing* (to wit, the expense) are not equal, they should be proportioned to the quantity of blast to be delivered. A reasomable unit may be taken, in allowing a nine-inch pipe to 1000 cubic feet of blast per minute. Then, as the quantities vary with the squares of the diameters, 4000 cubic fuet per minute will be accommodated by pipes of eighteen inches.
Whether the pipes are laid under or on the ground, the level of the tuyere will still be above them; two elbows, theretore, are necessary to bring the nozzle into the tuyere. 'The junction of these elbowpieces should be always with a ball and socket joint for giving play to the nozzle. With cold-blast, this play can be, and frequently is, attained upon fixed elbows, by connecting the nozzle and the blast pipe proper with a leather hose or bag; with hot-blast, the leather is inadmissible.
Tarious forms, of more or less complexity, are used in and about the termination of the pipes for shatting off the blast entirely (as has to be done at every run-out) or partially, measuring its intensity, dc. Fig. 2372 shows one of the most simple and satisfactory. The ball and socket and fixed elboir

ioints are both seen. At v is a trundle-valve of sheet-iron, elliptical in shape, with alternately berelled edges, and worked by the winch above. When this winch is parallel with the axis of the pipe, the valve presents nothing but its thickness to the blast; when it is at right angles to the axis, it shuts up the pipe entirely, and with a tightness proportionate to the accuracy of its fitting. It ean be made (so to speak) perfectly tight. Some furnace-managers have a phate-collar fastened bencath the winch, divided angularly on its circumference, and read by an index that moves with the winch, to show either the absolute or relative quantities of blast in the different positions of the winch-handle. At c is an cylelet, cloved ordinarily with a conical iron plug, as shown. When this plug is oat it allows the fomeder to look into the hearth and observe the aspect of the tuyere. With hot air, this has to be used discrectly. Between the valve and the elbow, somewhere abont m, is placed (with cold-blast) the manomeler or pressurc-meter of the blast. Fig. 2373 shows a section of the pipe with the apparatus attached; which is only a glass tube, ${ }^{3}$ inch bore, containing a few inches of quieksilver, and open at buth ends. When there is no pressure from within, as when the blowing-machine is at rest or the blant shat off, the mercury stands, of course, at the same level in the two branches of the tube; when there is pressure, the column in the long arm rises, at the rate of 1 inch in height for every $\frac{1}{2}$ lb. of pre-sure. The beet scale to put on it is a piece of card, divided in equal parts, sliding up and down by fiection, and capable at any moment, by shutting of the valve, of proper adjustment. With hot-blast, the matnometer has to be placed in the regulator. Otherwise the actual density of the air is more mecurately measured as near as possible to the nozzle.

These nozzles or adjutages are conical sheet-iron tubea, made to fit as tight as possible upon the eylindrical bhat-pipe, and tapering off to an orifice from 1 to 5 inches in diameter. Furnace managers ido not generally trouble thenselves muchabont the laws of pheumatics, and hence we find a great sariecy in the shape and proportions of these ntensils. Several of them are provided of harer num smather orifiees, tolbe used as circumstances require. Ordinarily they are in two jointo, of which the one fitted to the blat-pipe is the more permament. The clliptical shape of the orifice sometimes femmb, is a disalvantage, as well as the great leugth of the cone; 1 onth lewen the discharge that would follow a horter and more acute cone. The following table which is strictly necurate mader the conditions for which it Was culeulated) is suffieiently 80 to be relied on for giving the dischmege of blast into a firmace in uny can- likely to oecur, the pressure being that in the regubter, und the diancter of nozale being meatacil at the extreme puint of discharge.

A table like this is indi-pensable to a furnace-manurer who whine to be curnizant of what is romes nil in the furnace, in connection with changes, necidental or dexi_ned, in the blast. Its appliconom in

 wi-h to know directly what is the quantity actunlly going into the furnate, we conter the table, under

passing through a 2 -inch nozzle will be four times as great as through a 1-inch; therefore the quantity in question will be $122.61 \times 4=490.44$ cubic fect per minute, through one tuyere. If the furnace hav two tuyères with the same sized nozzle, the whole quantity discharged in one minute will be, then, 980.88 cubic feet. We have, then, as a general rule, to enter the first column of the table for the given pressure, ranging with which, in the scoond, is a number that, multiplied by the square of the diameter of nozzle used, will give the actual quantity blown in by the single tuyire.

It may be applied, again, inversely, to find the diameter of nozzle that will discharge any required quantity per minute under a given pressure. Thus, if the question be, what diameter of nozzle will keep up a pressure of 1 lb . on a discharge of 800 cubic feet per minute through one tuyère?-we have only to divide 800 by the number ($101 \cdot 66$) standing in the scond column opposite the given pressure; the square root of the quotient $\left(\sqrt{\frac{800}{101 \cdot 66}}\right)$ or $2 \frac{8}{10}$ inches is the diameter sought.

Table showing the Volume and Weight of Blast diseharged under various Pressures and at ordinary Temperatures.

Pressure per square inch.	Quantity in cubic feet per minute, through a 1 -inch nozzle.	Weight in lbs. per minute.	Pressure per square inch.	Quantity in cubic feet per minute, through a 1 -inch nozzle.	Weight in lbs. per minute.
$\frac{1}{2} \mathrm{oz} . a r^{\prime} \mathrm{d}$.	$18.5 \frac{1}{4}$	$1 \cdot 43$	2 Ibs. avd.	139.48	12.14
1 " "	26.20	$2 \cdot 02$	$2 \frac{1}{4}$	146.86	12.97
2 " "	36.97	$2 \cdot 86$	$2 \frac{1}{2}$ "	153.70	13.77
4 " "	52.07	$4 \cdot 7$	$2 \frac{3}{4}$ "	160.06	14.55
6 " "	63.51	5.	3 "	166.01	$15 \cdot 30$
8 "or $\frac{1}{2} \mathrm{lb}$.	73.04	$5 \cdot 80$	$3 \frac{1}{4}$ c:	171.61	16.03
10 " av'd.	81.33	6.51	$3 \frac{1}{2}$ "	176.88	16.75
12 " *	$88 \cdot 74$	$7 \cdot 16$	$3 \frac{3}{4}$ "	181.86	$17 \cdot 46$
14 " *	95.47	$7 \cdot 76$	4	186.58	$18 \cdot 15$
1 lb ."	$101 \cdot 66$	$8 \cdot 33$	$4 \frac{1}{4}$	191.07	$18 \cdot 83$
$1 \frac{1}{4}$ " "	$112 \cdot 78$	9.38	$4 \frac{1}{2}$ "	$195 \cdot 35$	$19 \cdot 50$
$1 \frac{1}{2}$ " ${ }^{1}$	$122 \cdot 61$	10.36	$4 \frac{3}{4}$ "	$199 \cdot 43$	$20 \cdot 17$
$1 \frac{3}{4}$ " "	131.44	11.27	5 "	$203 \cdot 32$	20.82

If, iustead of measuring the discharge by volume, we have occasion to know the weight of the blast, the third column, treated in the same manner, gives that clement.

The effects of a more or less dense blast, i. e. of more or less pressure, appear to take place in tro ways principally. First, meehanically upon the quantity of discharge in the same time; and, secondly, chemically upon its constitution, and upon the materials in the furnace. The air, at the instant of expiring, is of the density it had in the blast-pipe, although it very shortly afterwards assumes its normal
rolume. But as far as the melted materials in the hearth are concerned, it is, at the moment of entry richer in oxygen in proportion to its density. Thus, under

By increasing the pressure, then, we support combustion more readily, and generate a m intense degrce of heat. By augmenting volume, we support combustion more extensively, and produce a giveater quantity of heat. These considerations apply to and solve the question often mooted among foundere, as to whether the best effect is obtained by increasing the pillar of blast, (as they term it,) or using larger nozzles, and thus furnishing more air under a constant pressure. With fusible materials, sufficient air should be furnished under low pressure; with refractory ones, it is better to increase pressure rather than volume.
The apparatus used for heating the llast is very ramed and multiform, the aim being in all to furnish the utmost extent of heating surface with the greatest cconomy. Instead of mentioning all the modifications that have been suggested, or figuring the contortions that hot-air pipes have been made to exhibit, Figs. 2374 and 2375 give vertical sections, transverse and longitudinal, and Fig. 2376 a horizontal section of the most convenient and best arrangement, either for separate furnaces near the tuyeres, or for orens on the trundle head. In the latter case, the horizontal flue shown in Fig. 2376 (which communicates with a vertical one in the stack itself, or back-wall) is replaced by a short chimney. So far as outlay is concerned, to heat the air at the trundle-head is the cheapest, for there is no extra fuel required. But to realize all the benefits of the system and the greatest absolute economy, separate furnaces below are much preferable.

For the dimensions to be given, in either case, iron-masters are yet without any rule, not so much from any difficulty in investigating the principles that should govern, as from want of actual experimental knowledge on the rate of cooling, dc.,
 which prevents any general furmula from being applied. Calculations made opon the quantities and velocities of blast under pressures between the ordianry limits, (of $1 \neq$ to $2 \frac{1}{2}$ pounds per square inch,) result in 18 and 28 square inches respectively of heating surface for every cobic foot of air per minute. The mean of these, or the l-6th of a square font, may be taken as a safe allowance (if the pressure does not exceed $2 \frac{1}{2}$ pounds) for raising the temperature of the air, at the instant of leaving the oven, to half that of the pipes. What will be its temperature at the nozzle depends upon the distance it has to go, the thickness and size of pipes, \&c. With a higher pressure than $2 \frac{1}{2}$ pounds, the heating surface ought to be enlarged directly in proportion, at lea-t; for in the very fact of being leated the air acquires a great increase of velocity, and therefore is exposed so moch shorter time in the heated pipes.

There are a number of interesting points, chemical and mechanical, in the employment of loot-blast, for which there is no room here. All that can be said is, that, in general, with hot-blast the furnace works easier, carries a greater burden, with, of course, a higher yield. and reduces materials too refractory for cold air. A nutable economy of fuel and flux follows. With regard to the former, the saving of fuel, upon an extensive comparison of results, may be stated for

$$
\begin{aligned}
& \text { Cuke-furnaces at } 32 \text { per cent., from an a erage temperature of } 330^{\circ} \mathrm{F} \text {. } \\
& \text { Charcoal do. } 20 \mathrm{do} \text { do. } 390^{\circ} \mathrm{F} \text {. }
\end{aligned}
$$

Besides this, certain rato coals that would not be admissible with cold-blast, are capable of being used with hot.
As to the quality of metal made, it is generally gray foundry-iron, with a more unifurmly cubie erystalline form than cold-blast foundry. There is a general prejudice against it, as beine less stropg, but this opinion is more exargerated than actual experiments warrant. The following table shows the proportionate strength in various aspects, from mumerous trials:-

These statements upon the quality of metal lead maturally to the next chass of considerations, wheln mu-t be taken up, viz, upon the produets of the blat-furnace,
These products are, like the materials, beth sulid nul gaseons. To the former belong the ernde tron and the furnace-cinder, as the melted slag of carthy matters is termed; to the other the varimb a the mentary and compound gases which ariac from combustion and decomposition, and pasy off at the trundle freal.
The first sotid protuet, the crude iron, has been nlready sufficiently treated of the other, the cint re is reciprocal with it, and is one of the important tents which the fombler lins in jurtghen of the promeres of his work and of the is oue that he may reasomably expect.
 is a bi-ilimete, in eoke furnation a single siticate. This apperas from the follow ine hatement, whelo repr

The charcoal cinder is, in its proportions, a more fusible compound than the other ; but abstract fusibility is not so much to be considered as fusibility at the temperature mployed. Coke-furnaces, having a higher temperature, require a more refractory material, in order that the cinder may answer its proper uses.

These uses, in general, are to assist in fusion and reduction; with very fusible ores, to retard fusion until the deoxidation of the metal has occurred; and after reduction, to protect the metal in the hearth from contact with the blast. In this last aspect, especially, the degrec of fusibility of the cinder is of great practical importance. If it be too thick and pasty, it embarrasses the separation of the metal ; if it be too thin and liquid, the iron is exposed naked to the blast. These properties, as they may exist within the furnace, are judged of by the consistency of the cinder during its flow. If liquid enough to flow readily orer the dam-plate, and slowly cooling afterwards, it is of the proper character; but whatneer its liquidity may be, if it tends to cool rapidly, the presence of metallic associations is to be inferred. Such ascociation, as far as iron is concerned, may be inferred also from its color, which, with an admixture of iron in notable proportions, is always brownish or black. The most satisfactory color for the mazs, on a fresh fracture, is whitish gray. Ḃlue and bluish-green shades and streaks are almost always to be met with. The proper way to judge of color, however, is only upon a pulverized specimen. The fracture of cinder is always conchoidal, and its specific gravity, at a mean, $2 \cdot 6$. The aspect of good cinder, from charcoal works, is glassy; from coke-furnaces, it is more lithoid, or stone-like. When cinder becomes earthy-looking, it argues deficiency of heat; and if the furnace on the preceding east has given gray iron, more blast may be put on without fear,-if white iron, the blast should be augmented cautiously. A cavernous or honeycombed cinder appears to originate in the same defect of heat ; while one like cnamel, although by many founders attributed to the same cause, arises more from clements in the materials-chiefly phosphate of lime.

The gaseous products of the furnace may be taken to consist, on an average, of

Nitrogen.................... 56	Carburetted hydrogen
Carbonic acid............... 19	Vapor of water 7
Carbonic oxide.............. 16	

The watery rapor most likely arises from the moisture of the materials freshly put in, and is, therefore, hardly a product. If the fuel had all been fully consumed, the sole products would be nitrogen and earbonic acid. But this full combustion has not been, and, with the methods followed, cannot be attained.

These gases, as they are, pass off at the trundle-head at a high temperature; so high, that the oxy and bydro carbon combine there with the oxygen of the atmosphere and inflame. This flame furnishes, among other things, a sign to the founder of the state of the furnace. If it is small and weak, it is presumable that the blast does not pass through sufficiently ; and the materials, which from the moment of charging ought to be undergoing a preparation for fusion, are in fact descending more or less raw. The remedy for this is not always to increase the blast; on the contrary, a discreet founder will first take into consideration the nature of the materials, their friability, and liability to become packed in the cuvette. Too little slope to the boshes, too, is always more or less involved in the result, where the materials are constant.

If the flame is, as sometimes, on one side, it is a sign that the charges are not descending equally. If this is permanent, there is reason to suppose that the in-walls or boshes, or both, have degraded out of shape. If occasional, it is rather to be attributed to an accidental choking of the furnace, caused either by a bad state of materials, or, what is more common, bad filling. Of course, the flaring from atmospheric causes must not be confounded with this phenomenon. In a well-going furnace and a calm atmozphere the flame should rise cylindrically, with life, and with a certain whistling cry the founder likes to hear.

A flame at the tymp is a sign that the blast is not going in the right direction ; in this case, it is better to alter the charges, by putting on less mine, than to change the blast.

The high temperature at which the gases pass off at the trundle-head is an unavoidable consequence of the process; it is, nevertheless, waste-heat. This waste-heat has been turned to account, as already mentioned, in the case of hot-blast. It has also been used for burning lime, for carbonizing wood, for coking, and for gencrating steam. For all these purposes, except the first and last, it is rarely conrenient to apply the inflamed gases; and as, in leading off to a distance what is only inflammable air there is more or less loss of heat, these applications have been limited. For roasting ores, it is a per feetly appropriate means.

1I. Faber du Faure, as far back as 1837, conceived and very ingeniously executed a rery brilliant idea of leading off the gases, without contact of air at first, to suitable points where, by mixing it with highly heated atmospheric air, it could le burnt, and the heat thus produced applied not only to the generation of steam, but also to other processes (refining, puddling, and reheating) in the manufacture of the crude iron yielded from the blast-furnace. The progress of his experiments led to investigations upon the actual constitution of the gases at different points of the stack; and to the conclusion that the oxide of carbon existed as a maximum at a level below the trundle head, about one-third of the height of the stack. About this level, therefore, one or more flues are made in the stack, through which the gas uscends into a reservoir around the trundle-head, whence conduits of masonry or metal take it off into
in air-chest ; from which, after mixture with a hot-blast, it issues through a suitable number of nozzles or burners into the hearth where it is destined to be burned.
This diseovery and application excited a good deal of attention shortly after it was made public-in this country, about 1840, and large expectations were formed as to the revolution it was destined to cause in the manufacture of iron. But, either from some intrinsic difficulties, not at first apparent, or from bad management, its subsequent development has not been so extensive.

Faber's method, if confined to gases existing at or very near the trundle-head, would be perfectly unexceptionable; when, however, they are drawn too low down from the body of the materials, there is reason to apprehend that the train of the furnace will be disadvantageonsly embarrassed. At least, such seems to be the conclusion of those most practically conversant with smeltirg. This train is, as we know, very easily, and sometimes unaccountably, deranged; and there are few processes in the arts, where large masses are in action at once, so liable to the influence of apparently slight canses, and so much under the domain of what may be ealled the working. Before leaving the subject of smelting, then, some particulars must be mentioned in regard to the working of the furnace.

For working a single coke-furnace of the first class, the following statement may be taken of the hands usually found necessary, with their respective occupations: vi\%, two keepers, who take turn and turn about, every twelve hours, in the tymp-arch and below; tro fillers, who are engaged in at similar manner about the trundle-head and top-house above, each with a boy to help; two einder-fillers, in turn, to clear away einder below; one cinder-hauler; one engineer and helper at the blastengine; one weigher of pirs : all these (together, 9 men and 3 boys) are engaged, day and night, in and about the stach. Be-ides these, for ore-roasting are required one man and two boys; for coking, two men and eight boys; for breaking limestone, two boys; for hauling material from the yard, (Which is done on a railtrack,) a man, a boy, and a horse. These 4 men and 13 boys are oceupied in the yards adjacent, where, and about the stack, de., there is always miscellaneous work enougli for four laboring hands by day. This enumeration excludes the furnace-manager or founder, and underground agent; for the first can superintend the smelting, as the other cau the mining, for several furnaces as well as for one.

Of course, where the furnace is smaller, as it is where charcoal is the fuel, there is not so much work to be done, and, in proportion, fewer hands can do it; where wages are high, more work might perhaps be got out of each hand, or it may be satisfactory if done in a less perfect manmer; but the statement abore is from establishments where ultimate economy has been a principal object.

None of the work that has been mentioned can alvantageously be done by contract; the fucl and mine should always be prepared under the supervision of the furnace-manager. But a plan wed in all large works to a greater or less extent, is to have a taritl of wages for all the hands named; which is rated and paid per ton of metal made, according to its quality. It becomes, thus, the direct interest of all hands that the furnace should yield the most possible of the best iron.

The number of lands gisen above may seem large, but in reality, there is a good deal of work to be lone, and that of a sort at intervals so hard, and under such variations of temperature, that workmens about furnaces are generally short-lived. Thus, the duty of the keeper, for in-tance, be-ides moulding the pig-bed, which is done at spare fimes, and watching the tuyeres, de., which is a freyuent duty, is to do the heary work sometimes required for breaking into the furnace either at the fore-hearth or at the theyeres, putting in grates, de. These, which are extriordinary demands, are done under the direction of the founder; who also himself bears a hand when necesiny, or calls down the filler tom. The tapfing, which, when the furnace is in regular train, oceurs twice in the trenty-four hours, (amd, from ohi habit, at 6 A. M. and 6 P. M.,) is generally dene by the founder, except in extensive works of several furnaces.

As a general principle, a furnace works best when most let alone; care having been taken in the selection and proportion of the materials and blast. But, in the best managed, acedents will not unfrequently happen, the repaing of which is a serions task upon the physieal caergies of the workmen.

The filler, with lese demand ngm his reasoniner faculties, has not hess labor to perform; and its proper execution is one of the mo-t infurtant items about the furnace. Upon regular and suitable filling depends more than is often suppered. Various methods have been proposed and tried, in this respect, to promote a mechanical aceuracy; sme very platible, but mone unexeptionable. The ohd, mad most habitual method, is to fill by hand; the fuel, if coke, being ujset from two wheelbarrows-if charenal, thrown in from laskets. Gre and thux are generatly tilled from sheet-iron trays, Latter, a more judicious practice has grown up of aceighing all charges instend of measuring, for which the barrows, baskets, we, surved. Sometimes, after being weighed, the materiats are kept separate; sometimes they are mixed and charged together. This liat, if well done, is undoubtedly the be-t.

When furnaces are buile on a pane, with the yards around their bace, the hame of the filtor is sometimes much increased. With such furnates there is often an inclised plane, along which as separate - ngine gemerally winds up the trucks contaning the charges; or the hastengine is geered for the same purpone: In bith cates, the different diameters of the fore and hind wheds keep the platform of the
 machinery is employed; as the equilibatro water system of stathorddire, where the comerpoien to

 again deseond tu lee lilled, de.

The momber of charges per turn, of ewhe henrs, garios with the work that the furmee in doing from

The breaking off, weighing, and piling the pigs, sows, and runners, (as the different moulds in a pig bed are called,) is another task in a large furnace. The number of pieces in a day will amount to about 400 , from 50 to 60 lbs . each.

The moulding, de., of eastings, which are not unfrequently made at the blast-furnace, belong more properly to the next division of the subjeet, that of founding.
II. Founding, or casting crude iron iu fusion into hollow moulds, no doubt followed, historicallv, the working of the metal in a more or less malleable state ; but, in the ehronological sequence of processes, it comes, as here, directly after the production of the crude iron itself. Indeed, for some objeets, this crude iron answers very well itself, without a second fusion; but, in the general business of casting particular qualities of metal are required for particular objects, and certain charaeters are attainable only by a mixture of different sorts of metal at once. It is obvious that these conditions are not attained with a single or even several blast-furnaces. Further, in the casting, eare has to be taken to have the metal entering the moulds of a suitable temperature; this would be more diffieult in metal that is run out, as generally it has to be, from blast-furnaces, than in that which is first received in a ladle, where it is kept till of a supposed suitable temperature to be poured. Finally, it is often necessary (as for blowing-cylinders, dc.) to have a greater weight of metal than the hearth of even a large blast-furnace contains; resort must be had, in such case, to several separate furnaces, whose united contents may suffice. But wherever rough castings, as they may de termed, viz., tram-rails, railroad chairs, hollowware, ${ }^{\mathrm{dc}}$., are to be made in quantity, where the shape and dimensions of the moalds will allow uniform cooling, and where the highest quality of metal need not be possessed, or ot least such quality as is attained by mixtures, it is the best economy to put the blast-furnace upon a proper train for the purpose, and to cast at once, either by run-outs or pourings, from it.

There are general prineiples about moulding and casting which govern in all metals and alloys. These should have come under a special article, Founding ; but, in default of that, will be found under Metallurgy. All that will be given here, will be such principles, precautions, and praetice, as belong particularly to iron-founding.

In general, the metal suitable for castings is gray crude iron; for certain eases where the surface is of no great consequence, (i. e., the perfection of the casting,) and where the resistance is to a crushing force, white iron may be used. The effeet of a remelting is to consume the earbon, both free and combined, to a greater or less degree; and the aim is to produce a metal whieh shall eontain the least quantity of free carbon, and at the same time retain the octahedral crystalline structure that characterizes gray iron. This structure, other things being the same, appears to be chiefly affected by the capacity of the metal for heat, its radiation, and the circumstances under which it cools.

Iron may be melted either, 1st, in crucibles or pots; 2d, in cupolas; or, 3d, in reverberatory furnaces. The first are made of sand, as the Hessian crucibles, or of black-lead, like the blue-pots of commerce. They are of various size ; but the largest will not hold more than 35 lbs., beyond which they become :nmanageable. They are set upon some refractory stand or shelf, in a suitable oven. Not in contact with air direetly, the loss in remelting ought not to be more than five per cent. In fact, however, it is much greater; and experience seems to dictate, as the best economy, rather to burn away a portion of the iron than to use a vitrifiable flux. Where the temperature is not at command, it is better to use a flux, both as an economy of fuel and of metal. It is obvious that the application of this method is limited to small articles. The advantage of it, in such cases, is the beauty and finish of surface it affords.

In the second method, that of cupolas, the metal is in contact with air, fuel, and flux. There is, therefore, both a greater loss and an inferior result. This loss may be rated, on the average, at' 8 per cent. The introduction of cupolas followed upon the use of the pots; and they have grown from the little portable furnaces of France (about the year 1700)-say two feet.in height, in parts-into miniature blast-furnaces, 10 and even 15 feet in height. To show that this is no limit in economy, although it is, perhaps, in the labor, may be adduced a case in Prussia, some years ago, where a blast-furnace 34 feet high, which worked in hollow-ware, had become so encumbered with scraps, that it became a serious matter to disembarrass the establishment. For this, they built inside of the stack somewhat in section like a fluss-ofen before deseribed, narrowing it to 22 inches at the trundle-head; 4 feet at the boshes, which received a slope of 45°; with a hearth 15 inches in diameter at top, and twelve inches below. With this was remelted, in 21 weeks, very nearly 240 tons of metal; the fuel (chareoal) was 34 per cent. of the yield, and the loss of metal was 8 per cent.

The little furnaces of $1 \frac{1}{2}$ to $2 \frac{1}{2}$ feet
 are, except for special purposes, very much out of use. Fig. 2377 shows, lowever, a small swinging furnace in section, like those still em ployed in Sweden. The dark parallel lines show the barrel-shaped easing of stout sheet-iron, or boilerplate, inside of which the fire-brick are laid. The whole concern rests, and can be made to swing, on its
journals, $i i$, which work in an appropriate gallows-frame, seen below At $l \mathrm{~m}$ are staples, in which iron levers can be thrust to tilt the furnace over and pour through the tap-hole h, which is furni-hal wht projections on which a clay lip, or rumer, can be moulded. This tilting is still further helpend by jlacin! the centre of motion an inch or two below the centre of gravity when the hearth is full. The ia-h-lwhe, for cleaning out, is shown at p, and $t t$ represent the two tuyeres used. Over the throat is fixul a hooki, or mantle, connected with a chimney-flue. These cupolas are about 8 feet high; the tuyere, from $1+1$. 16 inches above the hearth, which, as shown, is made of fireclay, well packed and beaten on the irm bottom. The diameter at the bottom is 18 inches; across at the tuyeres, 30 inches; at the thruat, abmut 2 feet: on the average containing about 1000 lbs . of metal.
Figs. 2378 and 2379 show a section and ground-plan of a neat and consenient form of cupola. The exterior is of cast-iron plates, with flames that bolt together; the m-walls of tire-brick; the space be tween the easing and in-walls filled with ecoke, dust, or ashes. Tha bottom is an amular plate, upon

foundation of masonry, which shouhl be well drained, as shown at d. The hearth itself is made of fire . chay, sloping outwards to the lip in order to make a clean run-out. The height of such a cupula is from \& to 10 feet; the tymp, as it may be called, (i. e., the tap, is 12 by 10 inches high. This is made large purposely, in order to get at the hearth for cleaning it, and, when the cupolat is working, is stopped up.) The tuyere can be varied from 16 to 20 inches above the hearth.
The hearth in this figure is represented as very large-the object being to save metal and repairs, rather than fuel. In general, a narrow hearth saves linel; but it is at the expense of metals oxidated and in-walls worn. 'The comparison for ultimate economy must be made in each case; and the result will differ according to the locality. Where fuel is dear, the hearth may be narrowed to advantage.

The internal shape of cupolas does not appear to have been much studied, if one may judere from their variety. These rules, howeser, may be safely taken; that, with charcoal, the leeight should he greater than with coke, on account of the greater friability of the material, and the greater tendeney of the crude iron to descend tou soon. A cupolat fur coke ought not to be less than 6 feet in any cave; nor, with charcoal, less than 9 feet. The Engli-h cupolas for coke are ordinarily 8 feet hielh, and abuu: 3 feet wide, holding between 3 and 4 tons. The best form for ceonomy is that of a small blast-furnace, proportioned as for refractory materials.

According to the size, the quantity uf blast, under a mean pressure of $1 \frac{1}{2} 1$ be, will be from 250 (1) 550 cubic feet per minute. The fucl consumed under a good train will be, with the best cuke, about sul per cent.; with coke of inferior quality, 50 per cent. ; and with elarcoal, $i 5$ per eont. of the yield, which, in the best cuphlas, is abrat one ton per hour. If the pirg are not very chem, mo thax need ho used; if scraps are to be worked up, limestone (chalk is preferred in Jugland) or oyster-shells must be added in small quantities. If the werage lons of metal, in remelting, is more than sper cent, it must gencrally be attributed to some crror in the building, or in the management.

When a eupola is commeted with a hish-funace, the bast is generally taken off from the blow ing engine. Otherwise, the famblast, alrealy ducribed, is the mot comsenient. It is alow well, in apmlas
 sucerssively applied as the hearth fills.

The third method of remeltiug is by reverberatory furmaces, where the metal, not in contact wath ind is fuxed by the hest of the flame that, from the peemhar shapu of the rouf, is retlected mod reterterat if
 nir-it is all aspiration-and the mecesary draught is created hy the height of the chamone. Ii es. : al mad 238! +how a vertical and harizontal anetion of one of the hot forme of reverneratory funmex in which a indicates the ash-pit, with the grate-hars over it ; c c the charging derer for fut ; b b the hmben dividing the fuel from the metal to In melted; dd the charging dow for the metal; (laths c and 18 and

 rew the chimey therat, as an retain the fused metal; l the chammey: and to the top, where the metal

13 Iun out through the dam, and which is stopped with clay till needed. This tap is sometimes placed in the side, but disadrantageously. The imner parts of this furnace and chimney are built with tirebrick; the sole, which needs frequent repair, laid of fire-clay, resting either on massive or arched

2381.

masonry, or on castings; the external parts of common brick, well tied with iron bolts and plates; the chimney, which, in the figure, is represented fragmentary, should be, at a minimum, 40 feet in height, and is terminated with a damper, as shown in Fig. 2382. The flue in this figure appears cylindrical which is the best for the draught, although it is generally made square. In no case ought its section to be less than a square foot. The damper, which is worked with a light chain or wire, as shown, should always be provided with a register-scale below, calculated for different degrees of opening and draught.

The dimensions of such furnaces are at discretion: some hold hardly a ton, others three and four tons. But the proportions of the principal parts-viz., the fire-grate, the hearth, and the chimney-must be subject to the laws of Pneumatics and Heat, and are, therefore, not arbitrary. The following rules, which are far from having the generality and exactitude that would flow from a fully explored theory, may be taken as in accordance with the best practice:

1. The higher the chimney, the better and more manageable the dranght, other things being equal. If the section of the chimney be too narrow, the draught will be choked; if too wide, it will be weakened. When one stack is built for several furnaces, each one, then, should hare its separate flue.
2. The sections, respectively, of the narrowest part of the throat (about i, Fig. 2380) and the widest part of the shaft, (near k;) may vary between the limits of $2 \frac{1}{2}: 1$ and $3: 1$. This variation can be made from time to time, accorcing to the nature of the fuel and of the metal to be melted, by packing more or less sand upon the dam.
3. With a given capacity of hearth and given fuel, the areas of the throat and fire-grate must be in constant proportion. This is easily ascertained by observing how the furnace works. If fusion takes place the soonest near the bridge, it may certainly be concluded that the area of the throat is too small ; if fusion occurs sooner near the dam, the throat is too large. The numerical ratio will vary according to the strength of the coal and the length of the hearth: it may be assumed, as a mean, that the aggregate of the open spaces between the bars should be $3 \frac{1}{2}$ times the area of the throat.
4. The absolate capacity of the furnace is, of course, determined in advance by the work it is intended to do. Its relative capacity should be such as that it goes on continually contracting itself the further from the grate ; so that there should be an equal degree and quantity of heat in every part.

5 . The length and width of the hearth, two of the elements of the capacity, should vary according to the fuel. On an arerage, the length may be twice the width. With coal that gives mach flame, it may be $2 \frac{1}{2}$ times the width; with a dry coal, and especially anthracite, it should oot be more than $1 \frac{1}{2}$:imes the width.
©. The area of the hearth should not be more than $3 \frac{1}{2}$ times the area of the grate, bars and all.
7. The height and width of the hearth should be such as that a vertical section through its widest part, near the bridge, should be $\frac{3}{4}$ the horizontal section of the grate.
8. The slope of the hearth need not be more than $\frac{1}{3}$ inch to the foot, which allows the iron to run out freely. If the inclination be great, there is no chance for yet solid fragments to be soaked (as it were) in already melted metal, and thus be facilitated in their fusion; while there is also a greater liability to decarbonization, and consequent formation of carcase.
9. The height of the bridge above the hearth depends upon the fusibility of the iron to be melted If easily fusible, it may be from 8 to 10 inches in height ; if refractory, not more than 4 or 5 inches. 10. The section of the grate has been given already in terms of the other parts. The space betweer
the bars may vary from 0.5 to 0.75 inch, according to the size of coal. The depth of ashepit may be lessened in proportion to the inflammability of the coal; but it should always be con-iderable enough te avoid having the air heated by transmission over fallen cinders and ashes.
Theoretically, it would hardly appear that a large reverberatory furnace should give a lewis intense heat than a small one; practically, however, this is found to be the case, which marise from thisthat in proportioning the size of chimney, beyond a certain limit there occurs the phenomenon of ascending and descending currents.
The foregoing rules apply to furnaces worked with coal, which is by far the most economical fuel for these arrangements. When wood is used, which contains less earbon and more oxygen, there has to be a material alteration in the proportions. In a successful example, the area of the grate was two-thirds that of the hearth, four times the widest section beyond the bridge, and ten times that of the throat.

Every time iron is fused it becomes more refractory, especially after reverberatory fu-ion. Metal of the first and second fusion should not, therefore, be mixed together; and, as far as possible, only those of the same or nearly equal fusibility. So also the fragments ought to be of the same size. If any difference is allowed, then the larger pieces ought to be charged nearest the bridge.
In elarging, it is well to get the heat of the furnace well up first, and afterwards the aim slumbld be to raise it to the full height as quickly as possible. A low temperature is only at the expen-t of fuel and metal. After the iron is liquefied, every eare must be taken to keep out cold air; the fuel mu-t be charged quickly, frequently, and in quantities that will just maintain a continued and active combustion. If too much is thrown on at once, the temperature fluctuates; if too little, it falls. From :nehalf to three quarters of a bushel of coal, every ten minutes, will keep a grate of average size (say nine square feet) sufficiently supplied. The best test is the flame at the top of the chimney: if it does nut appear there, even with a chimmey of sixty feet, there is a waste of metal; if, on the contrary, it shoots out much above, there is a waste of fuel.
The average consumption of coal is about 61 per cent. of the yield ; the waste of metal about 7 per cent., with a good train. The average eflect, under equal volumes of coal to wood, is very nearly seveln 10 one. Upon the experience in litusia, it takes, by weight, of seasoned wood, 150 per cent. upon the yield.
The time taken to melt down a charge is very variable, according to the fusibility of the mutal, the strength of the coal, the proportions of the furnace, aml the management. The average power of fusion may be rated as equivalent to one tom per hour, and the furnace can be tapped, according to circumstances, (size, dec., every two to four hours.
If the scope and practical appliance of these three methods of founding be compared, it may be said that,

1. The employment of crucibles, rery co-tly in materials, though not in con-truction, is limited to small objects, whose price bears no comparison to the weight of metal out of which they are made.
․ Cupolas, which are rather the most expensive in construction and maintenance, are yet worked more regularly with a less proportionate expense for wages, and are the most miversally applicable for all objects of ordinary demand ; and,
2. Reverberatory furnaces are especially required for castings of the heaviest sort, where the maximum resistance of the metal is demanded.
In all, the same general principles apply in the management of the metal before and after fusiun. Thins, the mixhure or charge of different kinds of crude iron is a point of great importance, both at regards fusibility, and the properties of the cast-iron run out. Castings will hardly ever be made from one sort of pig only; at least two, and often six or eight sorts are charged together. This is a matter tependent upon the practical experience and judgment of the founder, for which no written mbes serve.

So also the pouriny of the iron, or conveying the melted metal to the daaks, is independent of the kind of furnace in which it may have been fused, and is determined by the quantity required to le poned nt onse, and the character of the easting, whether it is to be open, or in close moulds. Vier
 and the metal rums through a groter (frequently itself of iron) lined with sand, after the same fashion with the fow and $l^{\text {nir }}$ ca-ts from the highfurnace. llut when the surfaces are cmred or reenteringo (as cylinders, dec., it is beet to pour fiom hadles. These ladles vary in size, and, of courece, in mamber ment, according to their purpose. A hamd-adke, which is widded by one man, will contan from suta 60 pomds; a double hamdladle, or shath, managed by three or four men, carries from 200 to fow pounds; ladles hodling four or dive tons travel in acrame. The hamdles or pivots of all shes are plated a little above the centre of gravity of the ladle when charged, so that they may be en-ily alted. With the smaller ladlea, acedente, wither to the workene or the contents, are race; the largot are mow on
 than thate of the smaller ones.

 of iron dithers more or lees from the fombling of other metals.

 to suit; but the proportion which is given is the one generally mopted. I'lac pattem maher, m atems

 1-18th in exensy everywhere, is cmployed.

Patterns for iron-castings require to be more carefully designed as to symmetry and equality of parts, and distribution of material, than for any other metal, partly becanse of the heavier stress upon the objects in use, and partly because of the peculiar behavior of the metal itself in cooling. It is easy tc see that a small external stress, coming apon a material already strained by its own shrinkage, will cause it to give way. Inattention to these considerations is the frequent cause of breakages in the wheels for railroad cars. In planning a pattern other than for simple prismatic figures, regard shonld always be paid as to which parts are to cudure extension, and which compression. The latter may be made thin, and be allowed to chill ; but the parts to resist extension should be, as far as possible, compressed in the mould, and escape chilling. For instance, a T-shaped cast-iron joint is a bad shape at best for strength, but its resistance is still less when the vertical leg is downwards. In general, patterns for castings, if at all complicated, should be regarded as systems of framing; and in combining the several parts, it should be remembered that the strength of the whole can never exceed the weakness of the weakest part.
In taking impressions from these patterns, or maxiding the object desired to be produced in metal, the processes are the same for iron as for other metals, regard being had to the hearier masses required of the former, and also to its different affection by heat. In this last particnlar, moulds for cast-iron need not be so dry as for other metals. The sand employed is also coarser, and less adhesive. Sand for partings in the mould is generally that which is scraped off from former castings, and which, having been once exposed to a full red-heat, and mechanically triturated in the rough processes of scraping, nas become less sharp. The best facing-sand is charcoal and coal-dust in equal parts, ground fine, and intimately mixed. For small articles of luxury, the best facing is graphite.

Cores, which are prismatic or cylindrical pieces inserted in the mould, to produce the holes and openings in the casting, and in general intercept the flow of the metal, may be made of any material which does not alter its shape or volume materially when exposed to heat. The best for iron-castings are made of sand, horse-dung, and a little loam. After being shaped they are dried, and then put in a crucible and burned for ten or twelve hours, in order to consume all the vegetable matter, and leave them in a proper porous condition, both for their own pernanence, and also the escape of air.

Castings of ordinary objects are made in iron moulds or in sand; very heavy objects, such as cylinders, dce., are moulded in loam. Of the use of iron moulds, the running of bullets is a familiar, but perhaps the best illustration, though it is ordinarily exemplified with other metal than iron. This kind of mould is applied advantageously to the casting of heavy shot and shells, (which will be treated of more particularly under the title Projectiles,) to tram-plates and chairs for railway bars, and to railway wheels. In these last the outer rim only is often made of iron, and the nave and spokes cast in sand upon an iron-core, the object here being chiefly to chill the tire of the wheel. Another object, plough, shares, are advantageously cast in iron moulds, so also are cylinders for rolling metal, forge-hammers, ore-stampers, \&e., and in general all objects which have a sufficient mass of matter to resist impact or compression, and require in use the hardest and least wearing surface.

Sand-mouldings (we do not speak here of those objects, plates, joists, de., which may be run open) are made in flasks, which, for iron-founders' use, are best made themselves of iron, but in other resnects like the wooden ones used in foundries generally. The bottom flask or drag has generally plain, flat cross-ribs, to serre instead of a bottom-board; the top flask has deep cross-ribs cutting it in into compartments five or six inches wide and twenty to thirty inches long, with little fillets on their sides to lock in the sand more effectually; middle flasks have no such compartments at all. Of these middle flasks the iron-founder makes frequent use. They constitute the three or four part flasks, which are much more convenient for many objects than two-part flasks only, which might have to be of excessive depth. The cottering, or fastening these parts together, is easily effected by transverse wedges in the steadypins of the flasks, and the internal mass of sand is retained firmly, or gagged, by means of lifters, or T-shaped pieces of iron, with wedge-shaped tail, and set head downwards. These gaggers are placed in varions parts of the flask, according to the objects to be moulded, and the discretion of the founder.
The following figures, showing the pattern and mould for the top of a sliding-rest for a lathe, will illustrate the application of a three-part flask.
The pattern, Fig. 2383, might be moulded in a two-part flask of sufficient depth by making the parting along the dotted line $a \alpha$; and indeed there are several ways in which it might be cast, but the one shown will be seen to be the most convenient. The chamfer at c might also be cast, either by moulding square at first, and then filling in sand and working it to a gage, or by means of a core whose print is shown in the dotted lines terminating at b; but the most usual and the best way is to

cast it square, and plane it to the required bevel afterwards. That being the case, Fig. 2384 , whows the flisks $1,2,3$, after they are put together. In working them, 1 and 2 are first set, nearly filled witl:
sand, and the pattern knocked in as shown, the whole well rammed, and the parting made along a o The flask 3 is then added, filled and rammed, levelled, covered with a board, and all three tumed over, so that 1 becomes the top, which is now taken off, a parting made along the line $b b$, and the runnerstick put in to make the runner or in-gate, as shown by the dutted lines near r. To prepare for casting the runner-stick is taken out, flask 1 is lifted off, and the part of the pattern (shown white) is taken out from the middle flask; the middle flask is then removed, and the shaded part of the pattern (which haz been fitted by pins or lugz, as shown) is taken out from flask 3 or the drag. The flasks are then united, and the pouring made through r. It is manifest that the same system would be pursued with a alakk haring a greater number of $p^{\prime a r t s}$.

The iron-founder has, from the vast variety of works which he is called on to execute, greater occasion than others to use a variety of methods of coring. The following figures will illustrate some of these, and will indicate how others, more complicated still, are met and accomplished. Thus, Fig 85 shows the finished easting which is desired to be produced, and Fig. 2386 the pattern, with its core-prints for produeing it. The horizontal print a delivers itself, but one made like the left-hand vertical one b, would tear up the sand in the attempt to remove the pattern frum the mould. The right-hand print d, therefore, shows the proper shape and length, reaching down to the bed of the pattern. The circular opening has, in
 the same manner, a tapering print of the same length. These prints, if we suppose the pattern inverted, will leave a recess, as shown at d in Fig. 2357 . Upon being drawn, the cures are inserted as in Fig. 2388, (a section through d, the upper part of the recess is made good with sand to the general surface, and the mould is ready for castin!.

$23 \geq 8$.

8387.

By observation and practice moulders become exceedingly expert in managing their patterns, de., and ofen display remarkable ingenuity in the shifts and contrivances to which they resort for cking uat or stopping off patterns, or for moulding additional parts for which there is no pattern. Indeed, as one: of the heavy items of expense in a foundry is for a stock of patterns, it is not unusual, for aroiding this, to see many common articles of simple form, (grates, parts of stove-plates, $\mathcal{d e}$, which are made umon writen orders, built up with core-prints or slips of wood, and moulded almost entirely by hand. Wherever aceuracy is required, however, well-made pattems are indispensable.

The objects which are moulded in sand and cast in flavks are too numerous to be mentioned. They comprehenel nearly all the articles of east-iron in ordinary or domestic use. Jefore leaviug this branch, another illustration of flask-easting of the last-mentioned class of articles may he of interest to some readers, viz., the manufacture of iron pots. Fig. 2389 will give an idea of the implements in this process. The pattern fur the pot (which is of metal, for wood could not be turned down well to the thinness of these vessels) exists in two hemispheres, which fit and are fantened torether in the oblique dotted eurve shown in the figure. The moulder takes these and places them tugether, mouth downwards, upun a board which has a bevel-rinn just fittime the mouth of the pot. On the same board, he places symmetrically ower the pattern the flask a, which is in two pieces, as shown. Sand is rammed down round the pattern till the flank is full, when a parting is made even with its tep, ath! tha-k b is placed on and fit-tened. This is filled in like manner, prints for the feet and a runner-stick having been put in at the proper levels. The top of b is levelled off, a board phaced on it, and the whole concern inverted. The bourd that originally served as the drage, and upon whech a and b have been built, is removed, the interior of the pot is sect, and the flask c is set around its mouth upon a. The fuit is then tilleal whth -und and rammed to the edge of c, when it is all stricklcel, (i. ce, levelled off.) a dragromard placed on in. athl the whole reverted to its former po-ition, as seen in the cut. It drawing the pattem, 6 comme alf fir-t, out of which the core prints are alow taken; a takes apart and leares the pattern expused, whels eones out in halves. The convex and concave moulds are then dressed with terels and facmes amd, the Ala-ks replaced, the runner stiek taken out, and the whele is realy for casting. In spite of the applerent complexity of atl this, it is by no mens among the contlier or mere difticult work of the fommety.

Artiches that are heary or large have to be moulded in loum, as it is termed; mad as such thase are gromally required to be cant vertically, white the quantity of metal is tere erate to be latled, it is more convenient to elig a pite for the monded to which the metal may be leal heguters, than thene the fir-

enormous expense. The following figures will serve to explain the general process of loam-moulding. Fig. 2390 shows the first stage of the mould for a steam or blast cylinder. The lowest lines represent the bed of the loam-plate, upon which the inner wall is built. This inner wall, for small works, such as pipes, is called the core, for large cylinders it is termed the nowel. The loam-plate is of iron, cast rough. and with projecting ears for lifting it. Sometimes these plates are raised from the ground, to allow of a fire for drying the loam to be made up beneath; or if the work be not too large, it is set upon a whecled truck, by which it may be rolled into the loam-stove. Upon this truck, or on the loam-plate, or in any conrenient and steady manner, a spindle a is fixed, which carries the templet $b b$, whose distance from the centre is adjusted exactly to the internal radius of the intended cylinder. An inner wall of brick-work is then built, whose face is plastered with soft loam, which loam is shaped and turned by the motion of the templet. When smooth it is thoroughly dried, and then brushed over with blackWash of charcoal and coal-dust, to be dried again, and serve as a parting to prevent the adherence of fresh loam. This finishes the mould for the inside of the cylinder.
The templet $b b$ is then dismounted, and another $c c$, Fig. 2291, cut in profile to the external form of the cylinder, with flanges, and bosses, dce, is attached to the spindle at a distance from the centre exactly corresponding to the radius of the cylinder, plus its intended thickness. Fresh loam is then thrown on the nowel-mould, in order to form the thickness, which is shaped on the outside by the revolutions of the templet, carefully smoothed, dried, and black-washed as the other.

When this is finished, a loam-plate or ring is laid down to carry the outer case or cope, as shown in Fig. 2392. This cope is built up of brick and lonm, with an inner facing of loam worked carefull to the turned thickness; it is then thoroughly dried, and lifted off carcfully from the nowel. This is done by means of a cranc. The thickness comes off with the cope, generally broken, but it has now answered its purpose. Any accidental damage to either of the moulds is repaired, the faces are black-washed and dried again, and the mould is ready to be put together, the position of the cope having been determined at first either by studs, or by marks upon the nowel-plate.

Ports at the ends of the cylinder (or short flanged tubes for attaching the steam or blast pipes) are made by working the patterns into the cope; the cores are supported either by grains (which are little plates of sheet-iron staid by wire, and as wide as the thickness of the metal at the port) or by sandbearings, the holes left by which are afterwards plugged up. From the precariousness of the union of the melted metal with that of the wire and sheets, the use of grains is, when possible, to be aroided. Other passages for steam or air, either in the side or around the cylinder, can be worked in a similar manner upon the thickness, and be covered in by the cope.

When all is ready the mould is put together in the pit, the two plates bolted together, and the external space in the pit rammed hard, to resist the outward pressure of the melted metal. In very large works there are iron rings, larger than the cope, piled one on another to hold the sand ; these rings are steadied by numerous stays going to the sides of the pit, which is sometimes itself walled up with brick, or even cased with iron. In such works the core too has to be strengthened by iron stays laid in diameters, and entering the brick-work of the nowel.

The metal, in pouring, is led in various ways to the mould, according to circumstances, from the sow or main runner. Sometimes there is a circular trough round the top of the mould, and the feeding is through holes in the loam-cake; sometimes the runners are sunk, and enter the mould at about onethird of the height from the bottom and tangent to the circumference. This is supposed to be a good way to keep the metal in circulation, and clear of the scorix or sullage. Sometimes, to supply hydrostatic pressure for condensation, or shrinkage in cooling, iron rings are piled up to inclose a lofty rumner. In the largest works several such reservoirs or fecds are made in addition to the runners, purposely to provide for shrimkage. Sometimes a piston has been applied in the rumers, when they are not numerous; and a still better-intended process has been proposed-that of exhausting the air from the mould, and supplying the feed from below.
Both of these methods-which have never come into general use-aim at accomplishing perfectly what the founders ordinarily obviate by other contrivances, viz, the expulsion of the air from the mould. If the air or rapor in small quantities gets entangled in the metal, it produces, of course, a bad casting, leaving cavities in the mass such as we very often see. If large quantities, especially of steam, are caught, the consequence is a greater or less explosion, sometimes attended with very disastrous consequences. The Thorncliffe accident in 1820 is still remembered in the annals of founding as one of the
aaddest of such eatastrophes. Upwards of 100 persons were in the cast-house at the time, to witne-s the pouring of a tilt-shaft of about five tons in a vertical mould. The cast was vearly timi-hed when the explosion took place, and some four tons of melted iron shot out as from a petard, killing amd wounding terribly about one-fourth of those present. There happened to be a thunder-storm at the time, and as no one knew of any mistake committed in any of the arrangements, the accident was attributed to that indefinite agent, electricity. It more likely arose from a sudden and explo-ive combination of carburetted hydrogen, a gas which is always formed in the moulds. The workmen are very well aware of this, and in casting, for cxample, the thick cylinders for a hydrostatic press, which are set month downwards generally, the air-tube or tubes which are made to come up from the core underneath to the surface are ignited for greater safety, and burn like perfect gas-torehes. In small works this is not so manifest, and in these, by making openings similar to and corresponding with the runners, the metal flows through the mould, and drives out the greater quantity of the air and gas before it. In larger works the air-chamber is gencrally provided below, underneath the nowel-phate, by laying there (mass of hay-bands, with which ar-tubes, leading to the surface, immediately communicate. But the ise of this combustible matter camot be recommended on the score of security:
The temperature proper for pouring is slishtly different for every mixture; it can be judged of only by experience: at least it camot be defined by any written rules of universal application. The rate of pouring, tow, is in the same category. In general, bad castings (i. e., blown and spongy) are apt to be made by quick pouring of hot metal, and imperfect ones by slow pouring.
The necessity of providing sufficient resistance to all sides of the mould during pouring has been already spoken of. After pouring, however, the condition becomes inverted, for the metal is then shriuking into itself. The pressure from without is generally nothing ; but that from within must be removed, that the eylinder be not strained, or scorech. So, in iwo or three hours, according to the size of the work, the iron stays within the core are knocked away, and the workmen go down to break away the brick-work. The excessive heat renders this the most dreadful of their duties.
Loam-casting, suitably modified, is applied to all large works with curred surfaces, such as crlinders of all sorts, large pans, guns, pipes for water, gas, de., de. Guns have been cast with a core, like cyl inders, but their imperfections are such as to make it more advantaycous, in spite of the waste of metal, $t 0 \mathrm{rm}$ them solid and bore them out afterwards. The cores for pipes are usually made upon an iron cube pierced with holes, wound rousd with hay-bands, and revolvel, while the loam is being applied, by a winch at the end, upon two iron trestles. A scraper, fixed parallel to the axis, turns off the loam, and brings the core to its true cylindric shape. This amargenent, which is susceptible of more aceuracy, is the foumber's lathe. These cores are dried and blackwashed ; the thickuess is laid on in loan, and also dried and blackwashed; and the olject is then moulded in sand in an iron box parting in halt. The core is then taken out, the thickness removed, and the core replacel, and held in platee, if necessary, with grains. In establishments where pipes are cast in large quantities, it is usual to mould from wooden pattems in halres.

Within a short period, a method has been tried of casting pipes inside of an iron pattern, which is lat with a slight slope, and caused to revolve while the metal is fed. Its revolutions inspire a centrifural tendency to the melted metal, which is restrained and shaped, as it cools, by the pattern. The preariounnes of result, however, or some other cause, appears to have restricted the economical use of this method.
The scope of the iron-founder's art is exceedingly comprehensive, buth as to the forms he produces, and the weight of metal he has to deal with. Tinns, castings are sometimes required of 20 and even 30 tons in one piece, requiring the conjoint operation of three or four furnaces tapped at one time. Un the other hand, the beautiful Berlinomaments are cast in pieces of a few grams weight. The art of casting these omaments was first developed in l'russia, and is supposed to depend, in some degree, upon the quality of the iron and of the sand employed. The latter, as well as the ores (boremere cut of which the former is reduced, is not only fossiliferous, but appears to be constituted entirely of the remains of anmalculie. But there are examples of successful eastings of the smallest size with materials where this infusorial influence could not be su-pected of operating.
The following tigures exhibit one of these Berlin chains entirely of castings (many of those on sale will be foum th have heen connected with iron wire): its leneth is 4 feet 10 inches, and its whole weight 730 grains; a large and small link together weigh a little over 8 grains. ligg as93 shows the

 were first cant separately. Then a pattern of the chain with coreprints b lige eng whas mabled. The links a, smoked to prevent atherion of the metal, were lain! in the monht, and the othe samderent

 Vin. 11.-8
they are small, and aspersion if large. The acid attacks the metal underneath; and the crust that is left after a day or two is easily removed.

The skin of castings from sand-moulds is always harder than from loam. This is not so much frons. the siliceous matter taken up in the surface, as from the effect of a different conduction of heat, and a change of crystallization at and near the surface, which is known as chilling. These chilled castings have been already mentioned: it only remains to speak of the malleable iron castings which are produced at a few establishments.

The malleability, which is in some respects the reverse of chilling, in general follows the abstraction of carbon, and is proportionate to it; but the metal so produced has none of the fibre which is caused by forging and laminating. Like chilling, the elange is external, and penetrates but a small way; the methods, therefore, are applicable only to light and thin artieles. There are many such (brads, bridlenits, coach-makers' fastenings and furniture, locks, snuffers, stirrup-irons, \&e., and various vessels in domestic use) whieh can be east more cheaply and conveniently than forged: to all these the method applies.
It reposes both upon the character of the erude iron and upon processes subsequent to casting. Gray erude iron produced from refractory ores, which never can be chilled, is the suitable quality; and artieles cast from this, which are at first brittle, are enclosed in iron boxes, in contact with powdered oxides of iron, (either mineral, as red hematite, or artificial, as forge-cinder,) with lime, or with any absorbents of earbon. The cases, well closed and luted, are placed in an oven, and left there, at a high temperature, for a period varying from three days to a week. The temperature is then allowed to subside, and the matters to cool gradually in the ovens. When pieces of these eastings are fractured, the alteration of structure is very apparent.
III. Refining, Forging, de., of Malleable Irox.-The mention of malleable iron eastings leads naturally to the account of those processes by which a malleability is imparted, higher both in kind and degree. These processes apply, 1st, to the production of iron which can be wrought directly from suitable ores; as well as, $2 d$, to the refining and working of crude iron which has been otherwise produced. The fagoting of scrap-iron is not sufficiently distinetive, either ehemically or mechanically, to constitute a third class of processes.

1. Of malloable iron direetly from ores.-This product undoubtedly preceded any other manufacture of iron. All the workings of antiquity were of this sort, there is reason to believe; and what has been already said in this article serves to show the gradual advance of the modern epoch of crude iron. The improvement in this epoch has been the utilization of many ores which, under the old process, were unavailable. Only rich and fusible miues-magnetic oxides, and some of the sparry carbonates and rea hematites, and the like-admit of this treatment. This restriction will be justified in considering the general theoretical aim of the process, whieh, in so far different from that of the high-furnace, emlraces a double task, and recurring decompositions and recompositions. In the high-furnace, our object is to drive off the oxygen from the ores; which is effected by preventing carbon in excess at a high temperature, while that portion of excessive carbon that combines with the iron after reduction is gotten rid of by subsequent separate treatment. But in the forge-fire, one treatment must answer hoth ends; carbon at the lowest temperature that will answer must be prevented to effect an imperfeet reduction at first, till the mass consists, in fact, of a mixture of oxides and carburets of iron ; and while this mixture is reacting internally on itself, additional oxygen from a current of air must be afforded to assist in the neutralization of the carbon.
To this aim, the character of the furnaces employed must conform ; they must be low, so that the reduction may not take place too soon and fusion be checked; they must be wide, that the melting carburets may offer a large surface to the aetion of the air. Where exactly the fusion is maintained, is not of so much moment: if above the tuyere, the furnace is properly a stück-ofen, which has been already described; if below the tuyère, it ;- to be termed a forge-fire, of which the so-called Cutalan forge may be taken as the type. Whether one or the other form be used, there is in either another characteristic diversity from the processes of the high-furnace, which should not be omitted. In the latter, the result depends upon the chemical action of the materials; i. e., upon the proportions of fuel and mine, and the temperature which is kept up; in the former, the chemical reactions are chietly dependent upon the mechanical agency of the workman, whose business it is to expose successively the imperfectly reduced masses to the influence of the air. Thus the reduction and the refining are both, in a measure, meehanieally effected; the formation of too much crude iron at once is cheeked by immerliate admixture of oxide, and by a judicious management of the blast; and the result depenids upon the skill with which this is donc, just as in the case mentioned in a preceding part, where, to produce crude metal of a particular quality, doses of suitable materials are injected into the crucible of a highlurnace.

So much has been already said upon the stück-ofen, that its application need not be insisted on here, further than to remark, that their product is never entirely mullecble $i r o n$, and requires a fresh reheat. ing and fusion of a part. This subsequent process results in the formation of part malleable iron and part sted.
The furnace; used in Sweden and Norway for this purpose are also properly stïck-ofen, and the result similar. In some plates of these countries, they treat a roasted ore with woud in inverted cone-like furnaces, from 4 to 7 feet high, and from $2 \frac{1}{2}$ to 5 feet diameter at the top.

The old German method was also so far like that of the stück-ofen, in requiring actual fusion; but the shape of the hearth was different, resembling the Catalan forge-fire, and the original, apparently, of the modern blomery-fies of Pemisylvania. There was also another method used still in Gallieia, of interstratifying the ores with the fuel which is broken fine and kept almost in a pasty state. The reduced metal filtering slowly through this paste is refined by the current of air directed downwards towards the bottom of the hearth.

The methods, de., which hare been applied from time immemorial in the Pyrenees, and are called
the Catalan method, will convey a sufficient idea of all the others, which are but modifications. This appellation comprehends, in reality, the whole arrangement of water-blasts, tilt-hammers, dc.; but the exposition will be confined for the moment only to the chemical part of the process, or the production of metal ready to be furged. The ores are generally roasted in furnaces or ovens; but in some instances a compact brown hematite has been used raw. The results, compared with roasted mine, do not appear advantageous. When the ores are tolerably pure, they are usually charged in the furnace within it month after roasting; but pyritons or phosplated münes are macerated, i. c., exposed to the air, and fre quently stirred and moistened with water for a twelvemonth. Before charging, they are broken up int" fragments, like small nuts; red hematites are even used in powder. According to the character of the ore, earthy matter, argillaceous or calcareous, is added, to serve as a flux. Throughout the Pyrences, the general machinery for the blast is the trompe that has been already described; small furge-fires are sometimes blown with leasher bellows. In this last case, to maintain a continuous blast and furni-h it suitable quantity, two tuyeres are required.

The following figures indicate the construction of these Catalan forges. Fig. 2395 is a ground plan on a scale of $1-40$ th of the actual size of the furge fires used in the Lower Pyrenees. Such are properly called Navarrese furnaces; and white the general structure is the same fur all, are intermediate in dimensions between the Spanish Catalan, which are smaller, and the Biscayan forges.

Fig. 2326 is a vertical section through the axis of the tuyere; and Fig. 2397 another section at right angles to the former. In Fir. 2395, W W represents the wall separating the forge-fire from the blast machinery, and in whieh is the embrasure for the tuyere. The hearth is usually lined with east phates, and the counter, or side opposite the tuyere, of that bars. Sometimes the lining of these is omly a refractory sandstone; but the einder -lope (on the side of the tuyere) on which the workman rests his ringers and bars, is always of east-iron. The aperture o is for the: discharge of cinder into the emt rasure beneath; the tuyere t is a truneated halfconte of copper, with the orifice or eye circular, from if to 2 inches in diametor. The presure of the hlast varies from $\frac{11}{} 1 \mathrm{~s}$. to $1 \frac{1}{2}$ 11. per inch.

The fereen man to work onm of there fires, not comating the hammer-man, is three; the greatent number employed in the large-t and mote active, is cirght. In Lurgming to work, the harth has first to be hoated hy kerping it two-thirets full of ignited charewal fore t or 5 hours. The fuel is then thrown "p arainst the tuyere and beaten down into an inctined plane towards the coumt er. Upun hais is thrown at onee from onse half to threefinthe of the charge of mine; the harth is heaped np, with chareoal; the cinder tap," stupped with clay; and the blate gradunlly lot on, till, insabsint two homes, it attains its masimum. The fommer, during the presers, irepuently wets the clarecal om top to prerent its buming tox fast, and to consentrate - lus hat; throw's on, from time to time, the - maller fragments remainimer of tho charge, mar the tuyere ; foeds with it crow har at the turtom of the lararth for the cinder mad met

dast is on, has to be done more frequently: sometimes every fise minutes; the other part of the work too, goes on with more activity. In three hours the whole charge is melted; a bar is thrust through the charcoal in many places to clear the metal which is thus gathered up on the bottom of the hearth and worked and pressed with ringers into a sort of ball or loop. This takes the greater part of an hour; when the heat is done, the charcoal is raked over against the counter; and the loop thus cleared is lifted by the bar to which it adheres, and, if necessary, with tongs, and earried to the shingling-hammer to be forged. In the Catalan forges, the weight of these loops (or marsets) is from 100 to 150 lbs : in the Navarrese, from 180 to 250 lbs ; in the Bixayan, from 280 to 350 lbs ; and in some of the forges Rmong the Eastern Pyrenees, as much as 425 lbs . The tilt-hammers employed weigh from 600 to $700 \mathrm{lb} .$, generally of cast-iron, sometimes of wrought; the helve and fixtures mostly of wood. Besides these are used smaller lift-hammers, for working smaller bars, called martinets. When the loop is placed under the hammer, it is struck at first slowly to condense it and drive out the cinder; it is then forged more rapidly into the shape of a prism, 12 to 18 inches long, and 6 to 8 inches square. This is cut in two by a chisel under the hammer; the pieces carried back to the same fire as a special chafery, there heated and successively forged again. When smaller bars are wanted, these pieces are again cut, reheated, and forged under the martinet.

The charge of roasted mine for each heat is, with the Catalan fire, from 325 to 450 lbs ; with the Navarrese, from 550 to 650 lbs ; with the Biscayan, from 750 to 900 lbs ; and with the largest fires of the Eastern Pyrences, an arerage of $12 ⿷ 0 \mathrm{lbs}$. But the eenomical result in metal is, as might be expected, against the large charges. The smaller fires allow six and sometimes seven heats in the 24 hours, and give about 90 per cent. of the metal found by assay in the ore: the larger ones never more than four heats in the same time, yielding about 85 per cent. of the metal. In fuel, there is less consumption with the large charges. In the smallest fires, the fuel used is, on an average, five for one of mine; in the larger it is about three.

The fuel used is universally charcoal. Frequent experiments have been made looking to the substi tution of coke, both with cold and hot blast, but hitherto, and probably of necessity, always withoul success.
2. Of malleable iron from pigy or crude iron-produced (a) with charcoal in open forge-fires, bloom eries, de.; (b) with coal in reverberatory or puddling furnaces; (e) with coke or coal in a special furnace, termed a finery, or run-out fire, and then in a puddling-furnace. The object is the same in all these, viz., the decarburation of the metal, (as to driving off other impurities, that will be spoken of specially hereafter;) and the methods may be distinguished into two classes-first, where the metal is refined in contact with carbon, as in mode a; and, secondly, where it is only in contact with heated air and inflamed gases, as in the reverberatory furnaces of modes b and c. In theory, the latter method should be the best, so far as quality of metal and economy of material are concerned; but in practice, the former, though at a greater loss and expense, is the most successful in yielding a good article.

In regard to the quality of crude iron most advantageous for refining, different metallurgists have expressed different opinions. As this is no place for a lengthened discussion of prineiples, only sucb statements will be briefly made as seem to accord the best with experience.

Gray iron demands a higher temperature for fusion than white, becomes more liquid, and requires more blast and a longer time for conversion. White iron coagulates more readily, and passes soouer to the malleable state. Whether these differences arise solely or chiefly from the presence of the free carbon in the former, is not the question: it is certain, however, that some kinds of gray iron cannot be refined at all without having been first whitened by a special process. This is especially the ease with coke iron; and the finery of the Enghish method is an expedient for meeting this very difficulty. The best qualities for easy refining are white iron, produced in the high-furnace by heavy burden, gray pig, which is loose in its texture and cavernous, and broken eastings from a cupola or crucible. Next come the mottled pig, the lamellar and loosely cryallized white iron, and close-grained gray coke iron Last of all to be employed, are the compact crystallized gray pigs, especially those made with coke or coal.

No flux, properly so called, is employed in the fusion of refineries; but several substances are oceasionally introduced, besides the air and charcoal, to act as chemical reagents. These are, for instance the rich finery-einder, the forge-cinder, oxides of iron and manganese, sand, and water. Of the finery cinder, only that is useful which is formed after fusion is perfect, and while, in fact, the loop is about to be drawn. This cinder falls to the lower part of the hearth: rich as they are, containing from 80 to 90 per cent. of magnetic oxide, they are not displaced by the iron, and may be left in the hearth aftes the loop is removed. If drawn, which need only be when they have accumulated to a great degree, they must be tapped for very low down ; when tapped, they run and solidify slowly, and take, of course, all forms readily. Their formation in the hearth is indicated by the silvery sparks in which they are thrown out by the blast; and they are recognizable afterwards by their weight and semimetallic lustre. These present to the refiner the best reagent for coagulating the melted metal and bringing it to nature. A part of these, also, are apt to adhere to the loop, from which they are broken off and driven out by the hammer, and are very apt to be found mixed with the forge-cinder.

The oxides of iron and manganese are used mainly to save the metal which is otherwise supplied from the pig under treatment to form cinders. Sand is used sometimes (and acting then like a flux) to retain the metal in fusion; but this is lad economy, both for quantity and quality. And router, although its principal effect may be in saving fuel, as mentioned a while ago, yet acts as an oxidating agent too.

When the pig contains sulphur or phosphorus in any appreciable proportions, (which give red-short and cold-short iron respectively,) carbonate of lime, as pure as possible, may be added; and the more comminuted, the better. It should be applied when fusion is commencing, and not afterwards. In the Pomeranian forges at Torgelow, abont ten per cent. of limestone is alded after fusion is complete, in three different operations, each of which implies a stoppage of the blast and a stirring of the pig. It is
very successful in one respect-that the phosphorus, whieh exints in the pirs at an arerage of 4$\}$ per cent., is reduced, in the malleable metal, to $\frac{3}{3}$ per cent.; but it is at a considerable waste of iren and fuel. Other alkalies have been tried, such as the carbonates of soda and of potash, with and withons lime, but without much encouragement. In theory, carbonate of magnesia would be the best corrective.
(a.) The modes which are introduced under this metl:od are, in some minute respects, almost as mumerons as the localities where it is applied. Kiasten has enunerated and described sixteen different processes, of which eleven are effected by a single fusion, and five by a double fusion. But the general type of all is the so-called German method, which is spread over the whole of North Germany, widely used in France, and, in many respects, exemplified in the bloomeries of the United states, especially in Pennsylrania. The hearths used for this method, except the large chimneys under which they are set, and which must, of course, have suitable foundations, so much resemble the Catalan furges, as not to need a figure. Only some of the processes fullowed will be spoken of.
To work adsantageouly, the workman must know the pig-metal he is u-ing, for so much is dependent on management. Generally, a mixture is better than any one kind. Forge-pigs ought to be run slender, both that they may be broken easier, and that they may be proportioned more exactly. The fragments should not be too large, to waste fuel, nor too simall, to run tou quick. The quantity for one heat will, of course, depend upon the particular case: as an average, it may be taken from 250 to 350 $1 b s$. The best charcoal is that from soft woods, (for instance, the pinus alba, larix, strobus, de.,) and it should not be broken into pieces smaller than one's fist. The quantity of blast varies with the quality of metal and weight of fuel and charge, and also at different times of the operation. This last variation, unlike the high-furnace, most be under the constant vigilance and control of the workman. It is u-nal to put more pressure on with white than gray iron ; a practice which does not ariee so much from the chemical condition requisite as from the habitual mechanical arrangement-of placing gray iron nearer the turere. With an average charge, there will be required, while the melting is taking place, about 150 culic feet of air per minute; while stirring, about 225 cubic feet; and while making the loop, as much as 275 cubic feet per minute. In cases where the loop is made by attachment, as it is termed, as much as 400 cubic feet is used per minute.
This word, lonp, has been alrealy used here frequently: it is only the French loupe, (a wen, a lump,) applicable to the shape of the ina-s. The Germans call it blume, (it floner-because it resembles the mopened corol of a campanulate thower.) from which we get our English word bloom-applied, in our language more particularly, to what has been under the hammer and has been furged. The term loup is more appropriate before forging. The lireneh word renardiere, by which these forge-fires are calle th, means, literally, a blind ditch through which water escapes; and the analogy may be supposed with the filtering and disappearauce of the melted metal. The name has no relation to that of the animal (the fox) whose kennel, or earth, it also is applied to signify.
To prevent the charge from attaching itseli, in fusion, to the east-iron sides, and especially the buttom of the hearth, an arrangement is usually made by which water can be applied to the out-ide of these to cool them. This should be judiciously resorted to, when necessary ; particularly in the case ot the bottom-plate, to aroid breaking it-which would result not only in its own loss, but likewise in that of the charge for that heat. It is better to dispense with water after the fn-ion is complete.

The slope of the sides and inclination of the bottom, varying in different furges, and strongly insisted on by sonie metallurgists, appear chemically of absolute indifference. There is a mechanieal advamtage, only, in the ease of working and lifting the loop. But in the direction and pressure of the blast, and the size of the tuyere, (or tue-iron, as the American workmen call it,) the chemical results, both as to quantity and quality, are largely bound up. In former tines, there were used two diflerent tuyeres, i. e., the blast was admitted throngh more than one orifice : a more correct ubervation has reduced theon, ahnost univer-ally, to one tuyere. The nozzle of the tuyere is frequently of east or wrought iron, which can be easily titted on the copper pipe. It is usmally semicircular-sometimes round, or oval; and its area will not surpass $1 \frac{1}{2}$ sfuare inches. The inclination of the tuyere varies from 5 to 10 degrees downtards from the horizon. W"ere it horizontal, it would burn away more fuel, and a part of the blast would be lost. The more depressed the tuyere, the longer the metal remains liguil; the more horizontal it ia, the somer the metal passes to the malleable state. White iron, then, which has this last tendency in it-clf, requires a more depresed tuyere than gray inon-although some metallur-ci-ts assert the contrary. The depth of the hearth-i. e., the distance between the hottom-phate and the upper edpe of the tuyere-is manifestly eorrelative with the depression of the latter; and they -hould work together. A hearth should not be shatlower than 7 indees, ner exceed 10 inches. When the propurtions are entahli-hed, the tuyere is fixed, by eramps or otherwise built in as firmly as the cides of the hearth, to prevent deramgements that would be sure to accrue upur its necidental dislueation.

After covering the harth with fuel, (lewing there, or not, the cinder of a former heat,) mond getting up a gen 1 heat, the piry are pu-hed in the hearth to nhout 6 or 8 inches of the tuyere, (the grayer the ron, the nearer it is phaced, eovered with chareval, the blast put on, und every thime tone to promote fision. When they hatve began to melt, the workman somels with his bar tor forl the combintency if the fused mass; and he jodiges by that whether cinder requirea to he let off, und what is the stati- uf crulity of the metal. When tho latter begins to be stift and paty, he draws the mase toward- the
 It gonerally breake into several pieces, which he draws from the fire, unplime fre h fuel, un I then teplaces the pieces in the inverse order of their conversinn; i.e., the mut crude marme the there

 curding is the workman judges it necevary to have the strongly uxdatin' if filenee of the hamt, or the
more gentle reaction of the scoriæ. But in making up the loop, it is lifted quite above the tuyere, se that the air may pass under and around it; it is turned upside down, and end for end, to expose every part of it, and then redeposited in the hearth, where the cinder is drawn to one side. It is covered with fresh fuel, the blast is strongly urged, and the loop is kept at a temperature almost of fusion, completely to decarburate and purify it. This result is judged of by plunging a ringer into the loop after the blast has been gradually diminished: if the thimble, which comes out upon the ringer, is easily detached after cooling, the metal is refined, and the lonp is then taken out to be shingled.

The number of workmen required is generally five, including the hammer-man; the time taken to finish a loop from 3 to 4 hours. But there is always extra time lost in preparations, \&cc.; so that it better calculation would be to say that in the week of six days, an average forge will turn out from 4 to 5 tons of large merchant-bars, say 2 inches square ; or about 3 tons of inch-square bars. The average waste will be about 27 per cent. of the crude iron; and the fuel used will be, at a mean, about 180 for 100 of bar-iron.
This process is, perhaps, the best for the quality of the bars prodnced; in respect to quantity, however, waste and fuel, it is among the least economical. In this last regard, of all the existing European processes, that of Sregen appears the most advantageous, the quantity of bar (of large size, to be sure) amounting to 9 and 10 tons per week, the average waste about 20 per cent., and the fuel, weight for weight of bar produced.
(b.) This, which is the method used in Champagne, and extensively in America, substitutes a reverberatory or air-furnace for an open forge-fire, urged by a direct blast; and, in fact, leaves the workman to do by manual labor what was done partly in the preceding method by chemical reagents. From a supposed analogy between the manipulations here, the behavior of the material, \&c., and what was familiar in the preparation of clay to prevent the passage of water to foundations, dc., the process received the mame of puddling; as the other method is sometimes called boiling. As in this a higher temperature is necessary, (heated air being the only reagent,) a fuel giving more heat is required, and therefore coal is used. The metal, however, was at first, and is largely still, charcoal iron; prepared in advance, both in form and substance, for the final refining it has to undergo. This preparation is a conversion into white iron; which is done either at the high-furnace or by a second tusion. If the first is relied on, the crude iron should be run into plates, or very flat piss, to whiten it thoroughly. The Strrian method for this purpose is a curious one. The crude iron is run at once into an oval pit, or basin, in sand; the cinder is cleared off, and water is sprinkled over the yet liquid metal to chill it. In this way, plate after plate, weighing from 25 to 50 lbs . each, is formed in intervals of hardly a minute. Only gray iron, from fusible materials, will chill in this way. The plates thus made are roasted, i. c., exposed for 10 or 12 hours to a red-heat, either in an appropriate oven or in an open pile; by which they are slowly decarburated. If this operation of roasting were in any case well performed, a great leal of the carbon should be got rid of; but the expense of fuel is very considerable.

The second fusion to whiten iron, is what the French term mazéage, and the English running out or fining. This is very much such a process and in such a furnace as has been described under the former method of refining, only it is not carried so far, and the metal, instead of being lifted and looped, is run into plates. The waste in this operation is from 5 to 7 per cent. on the crude iron: mazéage, proper, is done with charcoal.
The reverberatory furnace used is similar in form to what has been already figured under a former section.
(c.) The constant combination of a finery, where the plate-metal is produced with coke, and a reverberatory furnace, where it is puddled with coal, constitutes the method practised in England; and there,
as elsewhere, is more or less appropriate aml even necessary, whenever iron is to be produced in great quantity, and fursil fuel is of course to be relied on.

Fig. 2394 is a gromed plan, on a scale of $1-25$ th of the actual size, of an English finery, blown with -is thyeres. In this e a a a indicate the places of the ca-t-iron columns on which the chimney rests; b b de., are the side-plates of the forge; h is the hearth formed by the water-backs $102 w ; f$ is the front plate, and p the mould in which the plates are run ; $c c$ are troughs where the bars are conded.

Fig. 2394 is a half vertical section of the same 1 lan, drawn to the same seale, and serving to explain it. Thio liat figure aloo shows the attachment of the blast, which, to save room, was left uff from the other; as well as, by the dotted lines in the hatched place beneath, the morle of securing the sustaung columns in a mass of masonry. The right half-section would be a counterpart of this.
Fig. 2400 is al longitudinal section of the air-bos r; and the dutted cireles on its face are the ports by which the blast is conducted to the several tuyeres. The levervalue allows the blast (which in these establishments comes generally from the great blowing-engines of the high-furnates:) to be regulated by the workman.

Fig. 2401 is a section, still upon the same scale, of the plate-mould p. The earlier fineries were blown obly on one side, and with three tuyeres; the modern ones, almost universally, are blown with four or six tuyeres, with a cross blast. The crule iron intended for the finery should, like that for the fires alrealy spoken of, be run into small pigs. They very frequently, however, are
 employed weighing from 100 to $1: 0 \mathrm{lbs}$.

The kind of coke to be preferred varies with the quality of the metal. When this last is refractory the coke shoukd be heary and compact. A friable coke, and one containing much earthy matter, is well as oren coke generally, are objectionable.
The sole or bottom of the hearth is indicated on Fig. 2399 ly the letter s, and by a different species of hachures. This reposes upon fire-brick or refractory sandstone; and is best made of a laver, 4 or $\overline{5}$ inches thick, of broken quartz, well rammed. At the first heat, this layer is partially melted
 and percolated by the metal, forming a bottom execedingly hard and refractory. This property, in expediting the work, compensates fully the waste of metal in the beriminer. From time to time, however, it requires replacement. The mot convenient way to get it out fur it weighs often a couple of tons) is, upon the conclusion of the week's work, and after the last heat, th throw water upon it while yet red-hot. This cracks it up and remelers it casy to be talken out ; the watur-backs may then be reset, and the bottom laid anew. The old bottom, which contains a goud deal of half-refinct iron, can be used up, little by little, as serap.

As the otyect of this process is to fuse the metal, the tools and working are only fitted to that end It is are that any tlux or reagents are added. Hard metal is heated sometimes with forge-cinder on finery-cinder. These, as well as any thing else that may be used, act in nearly the same mamer in in refineries with charcoal.

The plate-monld, which can be added to, from its construction, at pleasure, should be so lone in pro protion to the charge, (which, for a large hearth, will be, on an average, $1 \frac{1}{2}$ tons, that the plates are left not more than $1 \frac{1}{2}$ or 2 inches thich. After the metal is in the monh, water is thrown rempundy apoia the cindar which has run out with and covers it, and which, by this, is easily separated. Thio flate itself, after being chilled with water, is broken up for the next process.
Care must be taken, in thi-, to strike a proper medium between doing toe mach and deing too latte. If the metal in the rum-out sparkles little, and, after being eown, preserves its compacity, it has non been fined ctiough, and the puddling will be hard and long. If in the run-ent it divengiges, on the contrary, a multitude of finint parks, so confluent as to become a sort of thame, and emits a white vapor, it will probably be fomd conserted partly into malleable iron; and the puddling, in this case will be more difficult and wateful than in the other.
 quality of iron, and aloo aceording to the character of the fued with which it has been prombeed in the highfurnace. With charecal irun, each tuyere should furni-h from 200 to 250 entic fiet por mumte mader a jreesure of $2 \operatorname{lom}_{2}$. per square inch. With coke iron, the quatity may mbatageonsly be raisal to) 300 cubic feet, and the prewiure to $\frac{2}{2} \frac{1}{2}$ ce.

With this suplly, a finery such as deweribed will sun out rather more than a ton per hour; and ton
 iron ; and the cuke n-e.l, ubont 30 per eent. of the weight of motal charent.

 save fuel is gute probable, bit, in rapect to other comdtions, its eflicmey is more problemath al

These conditions for puddling would seem to be, 1st, that a sufficient heat be obtainable to melt the metal entirely; 2d, that the heat, in whatever degree availed of, should be uniformly distributed over the hearth; ©d, that there should be no carbon unconsumed in the flame, in contact or to be connbined

with the metal, which contains enough of that impurity already ; and, 4 th, that the metal (and this is more important for fine metal) should not be exposed to a too oxidating effect of the air which is aspersed through the grate.
As yet, bituminous coal is the best fuel that can be applied in a puddling-furnace. Anthracite is also nsed in America, with better results than have been experienced in Europe. Chareoal and wood also have been tried, but do not appear to diminisb the waste or improve the quality of the metal, while the cost of fuel is enhanced. The hearths are supposed, also, to be more difficult to maintain with these last.
This maintenance is one of the points of trouble and expense; and various methods are resorted to for the purpose in constructing the hearth. It is sometimes made of cast-iron ; in which case it is corered with a layer of cinder $1 \frac{1}{2}$ to 2 inches thick, well pounded, and melted down before the metal is charged. Others prefer to make it of sand, or broken quartz, from 6 to 8 inches thick, well rammed, and covered then with a thin coating (less than an inch) of powdered cinder, which is melted and smoothed before charging. This method is ordinarily productive of more waste, for the silica takes up portions of the oxide which is formed: with impure metal, (containing phosphorus, for instance,) the silica aids in refining it. Others, again, use cinder entirely for the hearth; stratifying it in small frag ments to a depth of 5 or 6 inches, and then fusing it and smoothing down. In working only fine metal of good quality, the tendency of the hearth is to thicken itself and change shape upwards; when it is of bad quality, (and still more when crude iron is puddled by the first operation,) the hearth becomes burnt out, as it were, and hollowed downwards. Either change of shape renders repair necessary. Old hearths in sand or cinder, which have been melted out or broken up, can be used advantageously in making new ones. Limestone hearths have also been tried, to the improvement of certain kinds of metal, but to the speedy destruction of the in-walls.

Before charging the furnace, a full red heat is got up inside, principally to save the waste that would follow the oxidation by a slower fusion. Then the fine metal, broken up into pieces, which should not exceed 28 lbs . apiece, and the smaller the better, is charged -hot from the smaller hearth, if the furnace, Fig. 2402, is used-otherwise cold. Ordinarily, the whole charge is about 400 lbs . The register is then raised, and the heat urged for about a quarter of an hour, when the mass becomes pasty, as the workman can judge by feeling it with his bar. If the metal is charged hot, this ordinarily occurs in 10 minutes; longer, if it was put in cold. If it gets too liquid in that period, water is injected to cool it. The register is let down when it is at a proper viscidity; and the workman, introducing his ringer, works the pasty mass continually, to disengage the carbon. As this passes off, the metal becomes more stiff, but it still must be worked, as before, to present the oxidated portions to those that may yet be carburettcd, and to prevent too great oxidation, or, as the workmen accurately term it, burning. Sometimes it becomes so thick as to be incapable of being worked and dirided: in such case, the external air must be shut off, the register lifted, and its consistence destroyed again by fresh urgency oi heat. If this misfortune does not happen, the thickened condition is followed shortly by an apparent briling, more or less marked, and an escape of oxide of earbon, burning with a blue flame. These appearances gradually cease, and another epoch occurs, in the metal's becoming easier to work-in fact, short, or tending to break apart in small lumps. The departure of the last remaining portions of earbon is generally indieated by a more lively lustre, which is taken as an indication of its haring become malleable iron, or come to naturc. A continued puddling for four or fire minutes more increases its shortness, and it becomes pulverulent almost-the partieles of pure iron falling apart, because there is not heat enough to weld them.

To afford this heat is the next step. The temperature, which, from the first pastiness the metal assumed, has been kept as constant as possible, is urged intensely; and the puddler judges, by his own experience, of the proper moment to commence rolling the matter into balls. If begun too soon, it woukl not be sufficiently welded; if postponed too long, the little fragments would have become independent, and would refuse to weld at all. Taking the proper moment, and begiming with the matter the nearest the fire, the puhller works it all up into five or six balls, (or eren more, if the charge is very large, which he draws over towards the bridge. While making the last, he rolls it all over the hearth to pick up all stray metal. This balling is done sonetimes by parting the mass into as many squal parts as it may be intended to make balls, and working each separatel-; or, by taking a small
portion at once, and aurmenting by attachent, (i. e., as one would roll a snotr-ball,) like one of the inodes spoken of before in refining with a forge-fire. The result in either ea-e mut be the same; and the care to hare the balls well rounded and unformly compact mut be equal. The balls, when finished, are taken out with suitable tongs and earried to be shingled.

The operation of puddling erude iron directly does not differ materially, except in time and in the oceasinal addition of cinder, from puddling fine metal. The latter, if eharged cold, will be balled in about $1 \ddagger$ hours; if hat, in 10 or 15 minutes sooner. The former, cold, will require nearer 2 hours. Ordinarily, six heats will be made in a turn of 8 hours with fine motal, and four heats with pig. There is, of course, more waste, in proportion, with pig than with fine metal. The exact loss camot be eonveniently known, because the balls go directly to the hammer, or roughing-rolls, and a part of the measured waste occurs there. This last, however, will be tolerably constant; and a fiir estimate of the waste of pig may be made at 15 per 100. With gray iron, it would be, probably, nearly 20 per 100 . The loss on tine metal should not exceed 10 per 104. "The weight of fuel consumed is about equal to that of fine metal puddled, and about $1 \frac{1}{2}$ to 1 of pig puddled. But to compare the absolute cconomy of the two processes in this respect, allowance must be made for the cuke used in the fineries. This was before stated at rather less than one-third of a ton of coke for one ton of pig fined-equivalent to half a ton of raw coal. Allowing, besides, the waste, de., in making this coke, we shonld probably conclude that, in the iten of fuel, puddling direct from the pig is cheaper than from fine metal. In all other respects, however, it is dearer; and the puddled iron made is rarely of such good quality.
The use of anthracite as a fuel for puddling was mentioned just now. In point of fact, the furnaces in which it is applicable hardly belong to the present class of reverberatory, or aspiring; since, to maintain a sufticient combustion, a fan-blast, resembling what has been befure described, has to be resorted to. Fig. 2103 is a horizontal projection of the principal features of one of these authracite

puddling-furnaces; in which f indicates the situation of the blast; g the fire-grate, with d its fillingdour ; h the hearth, with $p p$ its charging-doors, constituting a double furnatee; ind c the flue into the smoke-stack. The remaining details, fastenings, de., are analogous to other pudeling-furnaees, and ean easily be imagined. The a-h-pit is, of course, closed up, and the blast passes into it ly one or two wrifices. The grate is made to be abont twice as deep as for bituminous coall-sity 20 inches; and, for a double furnace, is about five feet long. The hearth is about six feet in diameter; and the flue, to reach the base of the chimmey, pitehes very much downwards. The heieht of the chimnery, which, for bituminous coal air-furnaces, is about 40 feet, is, in these, almost immaterial, since the dranght is regulated by the fans.

Among the modifications that have been proposed in the details of puddling furnaces, may be mentioned one (a double one) planned by Mr. Urerman, the author of one of the most recent treatises on the manufacture of iron ; and designed primeipally for economy of mantenance and repair, in cases where fusible reagents should be used for improving the iron. In this, the hearth, lozenge-shaped, is enelused by water-backs ; the sole is cast-iron, supported on pedestals, and allowing free circulation of air underneath. It is said by 3 expert author to have worked "execedingly well in all caves in which inferior hot or cold short iron, from heary burden, is purdeded. But for gray metal of small burden, particularly for all cuke, stone-enal, or hot-lhat iron, it is of questionable utility. For white metal it is perfectly u-eless." The candor of this accome is an additional guaranty of its correetners.

With the puddline ends all the strietly chemieal metallurey of iron. "The remmining processes of forging, (whether they be elfected by impaet, or unker the hammer-by pressure, at in the squeczer, or by lamination, as in the roughing roll-, althom neeessary, to expel the remains of oxides and carchy matters admixed with the metal, and essential to the production of tibrous wrought iron, are yet mly inechanical.
'ihe hammers used at the Catalan forge fires are yot of prinitive construction. A head of cast or wrought iron, or both, weirhing from tiou to som lban, is tixed, at woll as may be, upon a helve of heech or oak. This helve, or lag, is 12 or 15 feet long, and 12 to 15 inches in dimneter; not symared or dressed, further than to stab ofl the projectiner knots: and titted with trumions in a stont and solhl woxden frame, to allow of mosement up mal down. This is chlected ly tilting the ems dewnmards with cams place! uph the ciremmfernce of a water wheel, wanlly 10 or 1 dece in diameter, but only
 but four cant upen it, the rerokes of tho hammer, at a maximm, will bo not more than $1: 0$. 'the

strokes amount to 180 or even 200 in a minute. The skill of the hammer-man is shown by man aging the powerful implement at his disposal as to condense the bloom uniformly ; and his art, in fin shing the bar to a unitorm surface.

The hammers of the German forges were set with wood, in a wooden frame, like the Catalan; onlv they are almost universally trip or lift hammers-i. e., the cam is applied between the centre of motion and the anvil. This position has the awkwarduess of sometimes embarrassing the hammer-man, and makes it necessary that the helve be set obliquely in the framing. At the present day, more or less of the framing is made of cast-iron. The weight of these hammers is from 400 to 450 lbs . only ; the litt. i. e., the vertical fall of the face, from 24 to 28 inches; the wheel generally has 5 cams; and the number of strukes is from 90 to 100 per minute.

In the French forges the arrangement is the same, except that the heads are habitually heavier, weighing from 650 to 750 lbs ; the lift is not more than 20 inches; and the stroke is slower, being from 75 to 80 per minute.

In the forges of both countries, the fiwisting-luamers are tilted, both for convenience of access and speed. These are of different sizes, according to the work to be done and the quality of the iron. The larger ones weigh from 200 to 300 lbs , and make from 120 to 150 strokes per minute, with a fall of 18 or 20 inches; the smaller range from 60 to 100 lbs . in weight, and make from 250 to 300 strokes in a minute, with a fall of not more than 12 inches. To get up this speed, the water-wheel is furnished with more cams, sometimes as many as 32 in number. All, the largest and smallest, work against a sort of wooden spring, which checks their upward motion and imparts more momentum to the downward fall.
Fig. $240 \pm$ is a projection, upon a scale of one-thirtieth, parallel to the plane of the water-wheel, of one of the modern German hammers, in an iron frame. The faces of the head and anvil are, in this, a

uniform plane; but often, and especially for finishing hammers, the face is like the letter T in relief. or else a full cross.

This modification is borrowed from the English fashion, whose hammers, besides, are altogether more powerful and substantial. Made of iron throughout, the hammer-head and helve weigh from 4 to 7 tons. The lift is effected to a height of about 15 inches, by cams, which seize a projecting lip in advance of the very head, and constitute a trip-hammer proper; sometimes by an eccentric, which works against the helve between the head and the centre of motion. The number of strokes is about 80 or 90 per minute. The power is taken off from a steam-engine, and a heavy fly-wheel is necessary to equalize the motion. The anvil weighs ordinarily from 4 to 5 tons. Fig. 2405 is a sketeh of one of these

lammers; the dotted lines showing that part of the arrangement which is below the floor-line and rests upon the foundations. There are also lighter hammers, for special work, in the English forges, which weigh altogether not more than two tons, and make from 140 to 180 strokes a minute.

With their heavy fly-wheels, these hammers cannot be stopped in the same way as the lighter ones The usual mode is loy thrusting a jack, or piece of iron, under the helve when it is at its highest. In starting again, a piece of wood is dexterously placed to be caught by the cam, and the jack is released

Oreman has suggested a permanent jack, (or jack-keteh,) to be worked by a piece of wire, which is undoubtedly better.
A very ingenious and useful application of steam directly to a vertical hammer has been executed by Mr. Na=myth. Its beharior is not unlike that of a pile-driver ; only, it can be worked with great rapidity, and thus, in some cases, dispenses with the number of reheating* necessary in fini-hing a bar As this machine is applicable to other purposes than the forging of iron, it description will be gives. under a special article, Steab-Hammer.
Tre squeczers, which are extensively found in English iron-works, are cmployed for the same purpore as the heary shingling-hammers, viz, condensing the pudde-balls inte slabs: they act, as might be supposed by the name, by steady pressure instead of impact. They are supposed by some metallurgists to answer the end of expelling the cinder, de., as well as hammers; but this is very doubetul. As applied to finishing bars, their use would not be ceonomical. The most numerous elass is of tilt-squeczers-i. e., the trunnions are between the power and the squeczing-jaws. The power is variou-ly applied, by an cecentric or by cranks. Fig. 2406 shows the chicef features of one of the last kind, upin a =cale of one-forticth of the actual size. The whole apparatus, which is of cast-iron, requires to be strongly bolted down to a solid fomdation. The dutted circle indicates the position of the fly-wheel, by which the power is equalized on the crank; and the shaded lines show the jaws, which are separate plates of wrought or cast iron, bolted on the frame, and renewed when necessary. Such a machine. making from su to 90 revolutions per minute, can squeeze about 100 tons per week. Its theoretical deficiency is the want of parallel movement; its practical one, the enormous strain (especially if the loop should be too cold) upon all the blocks and journals.

A different apparatus from this, and free from some of its defeets, is Burden's patent eceentric rotary squeezer-the mode of whose action will be apparent from the projection in Fig. 2.t07, where r shows a cylinder with a roughened or serrated surface, revolving vertically in an eccentric drum which is permanent. The ball goes in at a, and is dragged round with it, more and more compressed in its narrowing path, until it comes out at b. The bottom is a solid plate; the top admits of a slight adjustment.

This machine has brought us round to the method, much ofder, and still practised in many English establishments, of squeezing and condensing between horizontal cylinders, or roughing-rolls. A sut ficiently indicative sketch of these is given in Firs a 408 , abont one-fiftieth of the actual size. The securings and couplings, de, are omitted. The first of the upper train on the right is morisoned on roughened, to catch and drag the hall. The next one is channelled for the same purpose. The sur-face-adhe-ion it enough to that end in the other two. The collars on the lower train are for upsetting or keeping the shat, in shape laterally.

What are called roughing-rolls in America are ued, not instead of, but subsequently to, the hammes or spueczer; and -rre to forge the hisom into shape, rather than perfect its mathebility. Instuad, therefore, of being flat, the cylinders have corresponding grooves of lage size, making a square or lozenge-like section. In other reaperts, in hou-ing, geering, de, they are the same with the Fingli-h.

In propmon as the blom or slab becones dratwont ly any of the condenaing or thateng proceses which have been mentioned, it becomes necessary to shear it up into shorter lengthe, which are rehatend separately or in piles, to be treated as before. The Catalan forges use a chisel umber the hammer for this purpose. Bat rough-har is much latter sevaed by hesty shemes, worked either by a water-wheel or stean-engine. Small bar can he cut with hand-
 cuttiner-wlege being substitntal for the thatting planes; and, like the latter, they are worked with a crank at the emel of a straight or bolnt mank, or with ath iceentrin that tiles the edges. The shank and =hameberk are all of cant itun; and the hererage, from the trmanims the cromk, will wary from 4 (1) 11) feet, :acording tis the work intended. The cuttingediges ure of steel,
 bolted in tw the loloek, and lie rither in the same plane with the Nlunk or

suited to the character of the work to be cut. The defect in these, as in all existing shears, is the want of horizontal slide as they come down vertically-a modification easier to imagine thau execute.

The relicating or piling furnaces, which have been just now mentioned as necessary for resturing the temperature to the slabs or bars, and enabling then to be further worked on and finished, are, in the most complete establishments, separate fires. In the more primitive methods, this reheating (whieh is required twice or thrice) is done in the forge-fires themselves; sometimes it is done in the puddingfire, or at the end of the puddling-furnace. In general character, these reheating ovens resemble the ordinary puddling-furnace; but they require some modifications to yield their best effect. The aim of these is to produce a welding heat uniformly over the hearth; and, at the same time, at the expense of as little metal oxidated as possible. The last end is answered by making the grate larger in proportion to the hearth, and charging more fuel in proportion to the chimmey, so that the air may be more completely deoxidized by the excess of carbon. The former is sought to be satisfied by lowering the bridge and bringing down the arch nearer to the ramp, to which, also, the hearth proper inclines
little. Wood may be used in one of these furnaces, but with a larger grate and a lower arch.
The remaining machinery to be spoken of is the cylinders or rolls for finishing the bars-flat, square, round, or in any faney section. The housing and coupling these trains can be understood from the rough\therefore ac-rolls just now given, without a special Ggare. All are arranged upon the same principles; only, the lighter the work the longer may be the trains, and more rollers in a train. The frames or housing for this tolls are made of cast-iron, as seen in section on Fig. 2410, which shows, on a seale of one-twelfth, an assemblage of three cylmders in a train, suitable for finishing light bars. This section also serves to illustrate Fig. 2408. These frames should, of course, he set as solidly as possible; for instance, upon a cast-iron bed-plate, bolted to a timber foundation built in with masoury. This seems better than masonry alone, because of a certain elastieity in wood. If slots are left in the bed-plate, the frames will be iound of easier adjustment. The bed-plate should be open in the middle, leaving a trench that may catch the cinder that comes off from the bars, as well as the water that drips on, and that may serve as a cellar to the foundations.

For rolling flat bars, the cylinders are grooved alternately and work reciprocally in each other; for round or square bars, however, half their section is turned out of each cylinder. The diameter in the one case, and a diagonal in the other, correspond with the normal surface of the cylinders before being turned out. In turning out
 grooves, de., for fancy patterns, a good deal of ingenuity is sometimes exercised, as will be seen in the descriptions and figures under the artield, Ralroad Bars.
The reciprocal fitting of the grooves for flat bars renders a longitudinal dislocation of the rolls impossible. With the others, such dislocation is ordinarily sought to be guarded against by strong screws in the frames ; but it is much better to have a groove and collar turned in one or both extremities of all cylinders. Vertieal displacement is prevented by the head-screw seen in the figure; and a lateral adjustment is, in some cases, given by horizontal screws working through the trussing against the plumber-blocks. There is usually a play of about a quarter of an inch allowed in the blocks and couplings, to obviate immediate fracture in case of slight derangement; and also to throw the breakage, if an aceident does occur, upon these parts rather than on the cylinders, which are the costly parts of the machinery. It is easy to see that upon the truth of all the movements depend freedom from accident, and excellence and economy of work. It is, therefore, cheapest to have every thing made of the best material and in the best manner.

In rolls for flat iron, the diameter of the cylinders is usually the same; for round and square iron, the upper cylinder is often a little (say half an inch) larger than the lower. If there are more than two eylinders, the same practice is found, in some places, of making their diameters regularly deerease (by say a quarter of an inch) from the upper to the lower. In others, and perhaps in the generality of cases, the middle of the three is the largest. Some metallurgists, on the contrary, object entirely to this difference of diameter, as causing inereased friction in the machinery, and straining the iron. This obiection is theoretically correct. The amo of the contrivance is to prevent the bar, as it passes through the zolls, from curling around the upper cylinder; if this last be larger, it will continue to bear on the
bar after the resistance of the lower roll has ceased, and will, of course, tend to force it down upon the apron. But this tendency to curl is best corrected by having guards to each groove-i. e., wedges of Wrought-iron, which catch the bar as it comes out.
The diameter of the eylinders, and their bearing, vary according to the jurpose for which they are intended. Roughing-rolls for puddle-balls are from 15 to 20 inches diameter, and 5 to 6 feet lonir ; fur piled iron or rough bars, from 12 to 14 inches diameter, and 5 feet long. Finishing-rolls for heary bar will be of the same diameter with the last, but from 12 to 18 inches sliorter; while fur small rols their diameter need not be more than 8 to 10 inches, and their bearing about $2 \frac{1}{2}$ feet. The weight of a pair of roughing-rolls is from 4 to 5 tons, and of fini-hingrerlls from $1 \frac{1}{2}$ to 2 tons.

In geering up the rolls, the lower one is the driver, when there are only two; in a train of three rolls, the middle une drives. 'The relocity of rotation varies according to size and purpose, and eren according to the state and quality of metal. Ronghing-rolls should work slow: for pudde-balls 16 to 18 revohutions, and fur piled iron $2 \underline{2}$ to 24 revolutiuns per minute, are sufficiently rapid. For fini-hing rull-, this may be inereased to 70 or 80 revolutions; while small rods are rolled with 120,150 , and sometimes even 200 revolutions per minute. But these high speeds are liable to frequent accidents.
The friction of the machine, and the initial temperature of the material to be rolled, heat the journals and cylinders very much. To abate this a wooden trough is laid above the train, from which water may drip on the machinery and metal under treatment. The effect is, to keep both the eylinders and metal clean.

The size of the grooves, and their proportionate spacing, varies in different countries; and the last particular even in different establislunents. The methods for it are purely geometrical, and present nothing peculiar in the manufacture of iron. The constant rule prevails here, as in all hamation, rize, to place the largest grouves and the heariest work nearest to the end at which the power is applied.

With a single pair of cylinders the bar always enters on the same side. As it eomes out on the other, it is caught by a sceond workman, who, with the aid of a travelling-stirrup, hands it over the rolls to the first. When the cylinders are triple, the rods enter alternately first on one side and then on the other. The process with the single pair is time-consuming, but it does not seem likely to be bettered, unless by having two trains parallel to each other, which would admit of the alternation of entry as in the triple rolls. Such an arrangement would inerease the first cost of machinery, but the work would be done cheaper and better.
Such are the particulars which beloner to the finishing of ordinary merchant-bars. The processes by which iron is further prepared for special uses will be detailed more appropriately under separate heads. Thus, the rolling of iron fur railroads-an enormous branch of trade-will be treated under Ramboad Bars; the lamination of plates and sheets, together with the further preparations fur several purposes that these undergo in the nill, will come under Sneet-lnox; the cutting up of these in suaking nails, hoops dec, will be grouped under the head Sumtivg-Mre ; the extensive and remarkable apparatu* by which this reluctant metal is shaped with chisel and drill, as if it were only wood, will be deseribed under the articles Latne Planing-Dfachine, and Tcring (of Iron;) and as far as relates to the: boring of cannon, under Ordsisce ; the methods followed in drawing it out into Wire, will be exphaned under that title; and, finally, under Smitn-work will be contamed all that elass of operations bufure indicated, which comprehend all the processes of hand-forging and welding, (as for amothors, chains, horse-shoes, de..) and of steeling and tempering, (as for cutlery, de., practised in an art whoe exercise has originated the most extensive and well-known family name in the world.

Ilistory- - There is room here only for the indication of epochs signalized by inventions that have given fre-j impules or new directions to the manufacture. From the earliest times till at least ano A. D., the proceses were either primitive, or, with unimportant modifications, gave only a more or less malleable metal direct from the ores, which were necessarily those that fused readily. The fuel, miginally aond, had been changed, during this period, to chareoal-though by whose ingenuity, or when, there is no record. Swe writeri place about the termination of this era, which is that of Charlemagne. the introduction of crule irom. This scems an antedating by at least four centuries.
A. D. 1:3n. Earlie-t epoch of ermbe or castiron ; employed as urdnance by the Duke of Normandy, nfterwards John II. of France.
1490. Usial ejuch of foumblies.
1550. Epoch of wonden blowing machine

1612-19. F'ossil-furl (pitecosal) firet used for reducing iron in England.
1610. Invention of trampers, or water-halasts.

161:5-56. Epoch of fomminiow in America.
1itu. L'it-coal and coke wed in high furnaces.
174!. Invention of rotary or fumbliate.
1760). First cast-iron celinder blowing nathine.
1751. Leperh of the purdthmefurntere.
174. Ejerh of the rolling-mill.

1 wes. Jinewery of the application of hoot blast.
14:36. Application of the wa-te gates from the high-furnace.
18:7. Anthracite aned an a fucl with hont blant.
During the intervala in tween thene dates, and simee the last, divers improvementa, both in theory : ind prastice, have been surgemeld and excented, but mane of them of paluary impertance.

Statistics. -The following tahb, cowering tha lant 10 years, contane what is hawn or coll he wit
 the world:

Years.	Great Britain Mazufacture.	United states.		
		Manufacture.	Imported from Great Britain.	
			Crude Iron.	Bar Iron.
1840	1,396,000 tons.	286,000 tons.	5,516 tons.	32,829 tons.
18.41	1,200,000 "	250,000 "	12,268 "	63,056 "
1842	1,088,000 "	215,000 "	18,691 "	61,599 "
1843	1,215,000 "	350,000	3,873 "	15,758 "
1844	1,210,000 "	490,000 "	14,944 "	37,891 "
1845	1,513,000 "	625,000 "	27,510 "	51,189 "
1846	1,675,000 "	765,000 "	21,188 "	24,109 "
1847	1,840,000 "	800,000 "	23,377 "	32,085 "
1848	1,999,000 "	750,000 "	51,632 "	81,589 "
1849	$2,150,000$ "	600,000 "	105,632 "	173,457"

The following table may be of interest as showing the range and relation of value and price in the two countries for the same period:

Years.	Average Valuation in U. S. Custom-IIouses.	Average Price of Scotch Pig in Glasgow.	Average Valuation in U. S. Custom-Houses.	Price, at beginning of Year, of Bar-lron in Liverpool.
I 810	\$21 per ton.	819 per ton.	\$52 per ton.	843 per ton.
1841	18 "	16 "	35 "	37 "
1842	16 "	13	38 "	31 "
1843	12 "	10	32 "	25 "
1844	13	13 "	28	24 "
1845	18 "	21 "	33	31 "
18 ± 6	20 "	17 "	47 "	43 "
1847	20	16 "	53	46 "
1848	16 "	11 "	45 "	36 "
1819	13 "	10 "	35 "	28 6

Sterling money is here converted, purposely, only to the nearest dollar.
Within the past ten years, of other countries only Belgium, France, Italy, and Prussia have extended their manufacture of iron; but the statistics of these which are accessible do not warrant a continuous statement. It may be safely assumed, however, that the aggregate production of the world in 1849 did not fall short of four millions of tous-an increase of 60 per cent. over 1839 . Such, and so growing, is the importance of this metal.

Libliograply.-Among ancient authors need be mentioned orily Aristotle, Meteorolog., lib. iv., and De mirab. Auseultat., lib.; Diodore of Sicily, Mistor., lib. v.; Strabo, Geograph., libb. iv. v. x.; of the Greek writers : and of Latin, the elder Pliny, Hist. Natur., lib. xxxiv. In connection should be taken Hausmann, de arte Ferri conficiendi veterum, 1820. In modern times, Agricola, de re Ifstalliea, 1546 ; Reaumur, L'art d'adoucir le fer fondu, etc., 1722 ; Swedenborg, Regnum Subterran., 1734 ; Bergman de Analysi Ferri, 1781; and the Swede Rinman, Forsök till jemets-historie, 1785, (Researches into the History of Iron, and translated into German by Karsten,) - compose a class who needed only a truer chemical theory to direct and bind up their observations. Such a theory-begun to be exemplified in the memoir of Berthollet, Vandermonde, and Monge, upon the different states of iron, Mist. de l'Aead. des Sciences. 1786-was more elaborated in the four quartos of Hassenfratz, La Siderotechnic, 1812; and underwent a final establishment in Karsten's Handbuel der Eisenhütten Kunde, first published in 1816, translated from a second German edition under the title of Metallurgie de Fer, by Culman, in 1830, and republished in a third German edition in 1844. Use has been made, in both of the last editions, of the same author's Metallurg. Reise dutch Baiern, etc., 1821. Other writers who since then have contributed facts or explanations, will be mentioned chronologically: for instance, Berzelius, in his Afluadlingar i Fysik, Fomi, dc., (a periodical begun in 1806, where there are several important amnouncements, which were subsequently collected and translated by Herré under the title of Chimie de Fer, 1826 ; the same Berzelius in Manual of Chemistry, (Traite de Chimie, vol. iii.) translated into French by Jourdan ; Manson, Traité de Fer et de l'Aeier, 1826 ; Pelouze, l'Art du Maitre de Forges, 1827; Landrin, Manuel Complet du Maître de Forges, 1829; Berthier, Essais par la Voie Sèche, tom. ii., 183.t; Holland, Manufactures in Metal, vols. i. ii., 1834 ; Gnenyvean, Nouvcaux Procedés pour fabriquor la. Fonte et le For, 1835 ; Dufrenoy, De Beaumont, Coste, and Perionnet, Joyage Metallurifique en Angleterre, (2d edition.) 1837; Le Blane and Walter, Metallurgie Pratique du Fer, 1835-38; Serivenor, Ilistory of the Iron Trade, 1839-41; Mushet, P'apers on Iron and Steel, (being a collection and revision of papers published many years before in Tillock's l'hilos. Mag., 1840 ; Johnson, Anthrucite Iron, 1041 ; Alexander, Frogress and Present State of the Manufaeture of Iron, 1841, and an etlition of Rogers's Letters on Fion-Making, 18.44 ; Flachat, Barrault, and Petiet, Traité de la Fabrieation de la Fonte et du Fer, 1846; and Overman, The Mannfacture of Iron in all its various Branches, 1550. Authors who have treated of the mechanical resistance of this metal are, Duleau, sur la Resistunee du Fer forgé, 1820 ; Tredgold, E'ssay on Cast-Iron, de., (2d edition, enlarged,) 1824, and with additions by İlodgkinson, 1842-16; Turnbull, on Cest-Iron, 1832; Nuvier, Mémoire sur les Ponts Susuethes: 1 sje, and Resmine des Jocrons, dee, (2 d edition,) 1833 -in the first volume of which there is a
copions eollection of the results of preceding experimenters. lesides these, there are to beconsulted upon the theory and practice, upon the minerals, material, and manufacture of iron, japers in various acientific journals which can only be generally indicated: fior cxample, in the $\mathrm{A} n \mathrm{n}$. de Chimie et de Physique of Guyton-Morveau, Arago, Berthier, Thenard, \&c.; in the Journal des Mines of Collet Descotile, Yanquelin, \&c.; in the Annale des Mines of D'Aubnisson, Bumen, Ebelmen, Thirria, \&.e.; in the Anmelen of Prgyendorff: of Mosander, Rose, and Seebeck; in the irchir. für Miergbuth of Kursten, of Berzelius, and Karsten; in the Phil. Transact, and in the L. and l:, I'hilosoph. Mow, of Remnie and Daniell, se: many of which would require examination and discussion in a complete modern treatise on iron.

Improved Machines for the Mumfucture of Iron. - Various machines lave been eontrived for the suluecing out the cinder from the puddle ball; the best is probably the hammer, and it is geverally used in the mannecture of the best iron. A common form of squeezers called the alligather is shorms

fir. $24 n g$, an improvement over the "Burden's Patent Eccentric Rotatory Squeezers" illustrated in fig. 2407. A machine omewhat imilar in its action, will be found mer the head of Pernmat's bans.

Figs. 2111, 2412, and 2413, illustrate an English machine, patented by Mr. Jeremiah Brown, and intemled to serve the same purpose. The machine consists of three large eccentric rollers a, b, c, placed horizontally in the strong holsters $d d$. the centres of the rollers heing arranged in a triangular position and the bottom ruller c, nearly central between the two top rollers c, b : these rollers rotate in the sume direction as shown ly the arrows, and are driven by a centre pinien e, working into three pinions of equal size fiff, fixed on the roller spindles. In the present machine, the driving power is applied direct to the bintion roller, by means of the large wheel \%, for the convenience of carrying the math shat muder the flow, but it could be applied to the centre pinion if preferrel. The rollers are east solid, with th © j jurnals like ordinany rollers, and are driven in the usual manner hy conpling boxes and spindles h h. 'The roller faces are sixteen inche; long, and the buttom roller has strongr flanges at each end is inchers deep, between which the two upper rollers work; the oljeet of these flanges is turset or com-pre-s the ends of the liwom, as the iron in the operation is elongated, and the ends are forced ngainst the flames, which make them equare and somad. The top roller a has a larre hollow, in which the pradled ball is, placed ly the pudder; and this roller arries the ball rom'?, and drops it inte th:e gyace betwern the three roller, ts shown in fig. 2112, this place being at that moment at its larent capacity. The three projectin_fontskk k, of thar rollers jnmmdiarely impinge uron the ball, and a mpress it fircibly on the three -i.f. and, kiving at rotating motion (1) the ball at the same time, they hanc: ary powertul knemding netion 1, pun the irom, spurezing out the cinder wry efiectunlly, which flows remly away, down euch side of the i,wtom roller. The space between
 the rellors grambally contracta, firm

widened for a short distance beyond the point l, for the purpose of allowing the bloom to drop out read. ily, and admitting the fresh ball.
A provision is made to prevent risk of breaking the rollers by any mnnsual size of ball being put in, by means of the two large triple-threaded screws $n n$, which bear unon the jomrnals of one of the top rollers b; a small pinion on the head of each of these screws works into a large pinion fixed between them, which has a horizontal lever fixed to it, carrying a balance weight o at the end; this weight causes a constant equal pressure on the roller, and in the case of any ball of extra size being put into the machine, the screws yield by turning back and lifting the weight to the extent that may be required, so that a large ball will be worked with the same pressure and in the same effective manner as the smaller sizes. A continual supply of water is run on to all the journals throughout the machine, which prevents any possibility of the journals becoming hot, even when the machine is in constant work.

[1:ON ROLLING MACHINE-Clay's improrement. We copy from the inventor's specification: My invention of certain improvements in machinery, for rolling iron or other metals, is designed to
produce, by the process of rolling, bars of taper forms, as for instance wedge-shaped bars or conical bars.

The tapering of metal bars I effect by allowing one of the shaping-rollers to recede cradually frorr the other, as the rolling operation goes on, and thus enlarge the space or distance between the rollera,

 of keeping the bearinge of the rollers from shifting their ponitions, cereptine ne the columat of water Vos.. 11.-9
are allowed to relax their resistance by a slow and gradual escape of the fluid from the cylinder, on chamber through an adjustable valve. The apparatus I have arranged for this purpose is shown in the accompanying drawings, in which fig. 2414 represents a rertical section, taken transrersely through the head of one of the standards, wherein the bearings of the joumals of the rollers are mounted, showing the piston, its rod and appendages, with the column of water against which the piston bears, and the valve whereby a small quantity of the fluid may be allowed gradually to escape. Fig. 2415 represents a partial front view of the rollers, the bearings, and part of the regulating apparatus in the head of the standard, being shown in section.

Of course, it will be understood that two such standards support the ends of the rollers. Fig. 2416 is a horizontal section, taken in the line 1,2 , of fig. 2414, showing the parts inverted, or as seen from below; and fig. 2417 is another horizontal section, taken on the upper side in the line 3,4 , of fig. 2414, showing the entrance and exit ralves of the chamber of water, and the means of working or regulating the exit ralve. In the rolling-mills usually employed for rolling bar-iron, the rollers are generally mounted in fixed bearings, or bearings which during the operation of rolling, are rendered immorable, by being maintained in their places by strong screws or bolts.

In my improved machinery, or apparatus, the ends of the bearing A, of the upper roller, are let into groores in the standards, as in ordinary rolling-mills, in such a manner as to admit of their sliding up and down therein, in order that, by so sliding, the parallel distances between the rollers may be allowed to change.

The rising of the bearings with the upper roller is regulated and governed by a piston-rod a, which rests on the top of the bearings, the upper end of the piston-rod being connected to the solid piston b, of the hisdranlic cyllnder, or water-chamber c, as shown in figs. 2414 and 2415 .

This cylinder c, is filled with water, or other nou-elastic fluid or liquid, and is furnished with leather or other suitable packing, for the purpose of preventing any leakage of the water.

The packing is kept in its place by a metallic ring or plate d^{\prime}, which is firmly secured to the body of the cylinder by strong screw-bolts.

The cylinder is supplied with water from any convenient source, by a lateral tube p, shown in fig. 2417 , through the rising feed-valve e, the construction and operation of which will be clearly understood by referring to the drawing.
f is the exit-valve, through which, when partially cpened, the water is allowed to escape from the chamber c, ou pressure being applied to the lower end of the $\operatorname{rod} a$, by which pressure the piston b will be made to rise and partially to expel the water, as will be the case when a bar of iron is passed between the shaping rollers B B. The ralve f is constructed in such a manner that the opening for the discharge of the water may be regulated with the greatest cxactness by merely advancing or receding the plug g, worked by the screw at its back end, the effect of which will be to open or close the ralve to any extent that may be required.

There is a slight spring behind the plugg g, which is merely intended to push it forward and close the aperture of the valve when the upward pressure of the piston is not in action, as will be the case when the rolling operation is suspended. An additional valve h, is also made to communicate with the exitpassage i. This valve, however, is always kept closed by a strong spring, as shown, and will never allow auy water to escape this way from the cylinder, except when any extraordinary pressure takes place, at which time the power of the spring will be overcome, and, by yielding, prevent the machinery from being too greatly strained.

In introducing into my improved machinery a mass of iron between the shaping-rollers, say for the purpose of producing a wedge formed bar, having parallel edges, I employ a pair of rollers of the ordinary kind, having the grooves and flanges, as shown in fig. $2 \not 115$.

The mass of iron being about to he introduced between the rollers in the first groove, I open the valve f, by withdrawing the screw behind the plug g to such an extent as will ailow the escape of water from the chamber c in a small current, regulating the opening for the intended discharge according to the required taper of the bar to be formed, the required extent of which opening will readily be tound by the experience of the workman. The operation of rolling now proceeding, the pressure of the metal passing between the rollers will cause the bearings of the upper roller to rise and force up the pistonrod a, in doing which the piston will be made to rise in the chamber c. But the ascent of the piston heing resisted by the non-lastic flud in the chamber c, the escape of water through the valve f and mutiet i must take place to allow of the ascent of the piston, and consequently the separation of the rollers: according, therefore, to the rate of the escape of water will the taper or inclined shape of the bar to be produced be determined.

It will thus be seen that, by my improved apparatus, the process of rolling metals is carricd on much in the usual manner, except that, by means of opening the valve more or less, the escape of the water from the chamber will allow the upper roller to rise, and consequently give the requisite taper form to the bar under operation, according to the rapidity with which the water is allowed to flow out of the chumber. As I do not intend to confine myself to any particular forms of bars to be produced by my infrovel machinery, it is not necessary to describe more precisely the shapes of the rollers. I will therefire only add, that loy forming the grooves of the rollers in elliptical shapes, as at $n n$, in Fig. 4010, 1 ann enabled, by the gradual rise of one of the rollers, and repetitions of the rolling operation, to produce lars of conical figures.

It is sometimes desirable to roll a bar taper or wedge-forme. 1 , for a portion of its length, and level for the remainder of its length.
f'or this purpose, it will be necessary to allow the upper roller to rise to a certain distance only, and then to stop. This I effect by means of adjusting-screws $k k$, one over cach bearing of the rollers, similat to those heretofore used, except that it is throngh the axes of the adjusting-serevs, forming guides, that Lhe iniston-rods a pass, as shown in the drawing at Fig. 2414; and it will, therefore, be understood that
when, by the escape of the water from the chamber, the bearings of the rollers have been allowet to force up the piston-rod and the piston a certain determined distance, that then the upper edge of the bearing A, of the top roller will come into contact with the under side of the adjusting-screw f; bevond which it cannot rise, and as the bearings will, for a time, become fixed, the bar of iron under operation will, for the remaining portion of the process, be rolled parallel.

The adjusting-screw k, passes through a hollow screw made in a sneket fixed in the frame, and the surew can be easily raised or lowered, so as to limit the rise of the bearing 1 , by merely turuing the band-wheel l, attacled to its lower part.

It may te as well to observe that the standards or housings may be of any convenient known pattern, and that a lever or other known balance may be used with adwantage to support the roller in its rise and fill. A portion, also, of the heal of the standard in which the piston works is made removable for the purfose of getting at the pisten and packing when required, as will be seen at $q q$, in figs. 2415 and 2416 .

JACK. In mechanics, a sort of crane for raising heary weights. It consists, first, of a small pinion wrought with a common winch. This pinion works in the teeth of a large wheel, on whose axis there is fixed a small pinion with teeth, working in a rack. The turning of the handle raises the rack, and of course any weight attached to it. If the length of the handle of the winch be 7 inches, and the piniun which it drives contain 4 leaves, working in the teeth of the large wheel having 20 teeth, then will 5 turns of the handle be requisite for one of the whel. But the length of the arm of the winch being 7 inches, the circumference through which the handle mores will be about 44 inches, and for one turn of the wheel the handle must pass through $5 \times 44=220$. The wheel carries a pinion of, say, 8 leaves, of a pitch of $\frac{1}{3}$ of an inch, working the rack that carries the weight; one turn of the pinion will, therיfore, raise the rack one inch, and as the power moves through 220 in the same time, 220 will be the puwer of the jack.

JACK-SClLEW. Figs. 2411, 2.412, and 2413 represent a plau of a jack-screw for turning large stone, used at the United States Dry Dock, Brooklyn.

JACK, TRAVERSING SCREW. Figs. 2415 and 2416 exhibit a side view and plan of the screw modification. The screw-jack A is bolted to the plank C; at the other end of the plank is fixed the rack G, in which the toe of the strut F advances as the screw B is elevated; the strut works in a joint in the follower K : the position 2417.

2416.

of the strut when the screw is depressed is shown by the dotted lines. The object of this strut is to relieve the serew of the violent cross-strain to which the apparatus is subject, when the engine or carriage is pulled over by the lever; which strain is entirely transferred to the strut, and the screw has merely to carry the load.
The operation of traversing the jack is as follows: By hooking the link I upon the hook of the lever E, the toe of the lever being inserted into a ratch of the rack II of the lower plank, when a man bearing down the end of the lever, drags the apparatus and engine or carriage towarús him with great facility; the same lever is used to turn the screw, and to produce tho traverse motion.

JACK, TRAVERSING. Another form of traversing jack is shown at fig. 2417, side elevation; fig. 2418 end elevation, and fig. 2419 section through vertical screw.

The lift of this jack is effected by means of a crank, or lever, applied to the axis a, which works the bevel-geer $b c$, the latter geer being cut on the projecting face of the nut c; the revolution of this not lifts or lowers the rertical screw, and with it the jaw d; the screw-head moving freely in a socket of the jaw-head, permits the latter to rise or fall without side movement.
2418.

2419.

The hormontal screw a a, working into a nut in the foot of the upper screw-frame, effects the horzontal or traversing movement of the jack, the frame of the lower screw scrving as a bed or slide for the latter movement. A ratchet-lever may be ased to work either of the screws instead of a crank.

The Hynraulic Jack (Patent Portable Mydraulic Jack, R. Dndgeon, New York) is the simplest
and most portable in comparison with the force it is capable of exerting. This jack, or press, appear to the eye, when depressed, a simple cylinder, and when elevated, to one cylinder sliding within another. It is from two to eight or more inches in diameter, according to the power desired, with an enlarged head (attached to the inner cylinder, which is the ram), having : socket for the reception of the lever, by which the piston of the force pump is worked.

The ram, with its head, contains just so much water or other fluid as is required to fill the vacancy in the cylinder, caused by the raising of the ram in the act of lifting: and when this is accomplished the water is returned into its original recess by a valve operated by the lever that works the pump. The lorce pump, piston and valres are contained inside of the ram.

The lever is detached, and may be put on at pleasure. The joints in the head maintain a parallel motion for the force pump piston, which is the fulcrum of the lever. The ground-lifting attaclament is an iron tube screwed into the lower side of the head, and passing down to the bottom of the press outside of the cylinder, on the lower end of which is a claw that supports the weight to be raised.

These presses are light, portable, and of easy application. A press to raise fur tons not weighing more than 50 lbs ., and one to raise 60 tons, not more than 200 lbs . They are all worked ly the habor of one man only, which is capable of raising ten tons through a space of one foot in one and a half minutes, or sixty tons the same distance in ten minutes.

JACQUARD. A peculiar and most ingenious mechanism, inrented by MI. Jacquart of Lyons, to be adapted to looms for superseding the employment of draw-bors, in weaving figured goods.

Fig. 2420 is a front clevation of this mechanism, supposed to be let down. Fig. 2421 is a cross section, shown in its highest position. Fig. 2422 the same section, but seen in its lower position.

A, is the fixed part of the frame, supposed to form a part of the ordinury lonm; there are two uprights of wool, with two cross-bars uniting them at their upper ends, and leaving an interval $x y$, between them, to place and work the movable frame B , vibrating round two fixed points $a a_{\text {. placed }}$ laterally opposite each other, in the middle of the space $x y$, fig. 2420 .

C, is a piece of iron with a peculiar curvature, seen in front, fig. 2420 , and in profile, figs. 2421 and 2422. . It is fixed on one side upon the upper cross-bar of the frame B, and on the other, to the intermediate cross-bar b, of the same frame, where it shows an inelined curvilinear space c, terminated below by a semi-circle.

D, is a square wooden axis, movable upon itself round two iron pivots, fixed into its two ends; which axis occupies the bottom of the movable framo B. The four faces of this square axis are piereel with three round, equal, truly-Lored holes, arranged in a quincuns. The teeth a, fig. 2424, are stuck intu each face, and correspoind to holes a, fig. 2427, made in the cards which constitute the endless chain for the healds; so that in the successive application of the cards to eacla face of the square axis, the holes. pierced in one card may always fall opposite to those pierced in the other.

The right-hand end of the square axis, of which a section is shown in double size, fir. 2423, earries two square plates of sheet iron d, kept parallel to each other and a little apart by four spindles e, passed opposite to the corner: This is a kind of lantern, in whose spindles the hooks of the levers f" f°, turning round fixed points $g g^{\prime}$, berond the right hand upright A, catch hold, either above or below; at the pleasure of the weaver, according as he merely pulls or lets go the cord z, during the vibratory movement of the frame D .
E, is a piece of wood slaped like a T, the stem of which, prolonged upwards, passes freely through the cross-bar b, and through the upper cross-bar of the frame 13 , which serve as gnides to it. The head of the T piece being applied successively against the two spindles e, placed above in a horizontal position. first by its weight, and then by the spiral spring h, acting from above downwards, keeps the square axis in its posion, while it permits it to turn upon itself in the two directions. The name press is given to the assemblage of all the pieces which compose the movable frame B B
l, is a cros-bar made to move in a vertical direction by means of the lever $(f$, in the motches or grooves i, formed within the fixed uprights A.

II, is a piece of bent iron, fixed by one of its ends with Ω nut and serew, upon the crons-bar 1%, out of the wertical plane of the picee C^{\prime}. 'Its other end earries at friction roller J, which working in the curvilinear space c of the picce C, forses this, and consequently the frame 1 3, to recele from the perpendicular or to return to it, accourding as the cross bar F is in the top or bottom of its course, as shown in tizs. $\because 121$ and 2122.

I, cheeks ol sheet iron attached on cither side to the cross-bar F, which serves as usufe to a himb of
 scale in fig. 2423.

J, upright skewers of iron wire, whose then bent down hook wise, maturally place themselves ower the little bars K. The butom of these spindles, likewise hooked in the sane direction ns the upper ones, combraces emall woulen bars l, whose othice is to keep them in their reppective phaces, mad to prevent them irom twirling roum, so that the uppermot hook may be always directed townals the small metallic bars upon which they impent. To these hows from below are ntanded erings, wheh after lming

 ranged here in cight several rows, so that ench spinillo corresponds hoth horizomatly unt pertionlis ench of the holes pierceal in the four finces of the square axis 1). There are therefire ns many of the spindles as there are holes in one of the finces of the syunte.

 serve as a guide, but which dues not hinder it from mositg lengethwire, within the linnits ot th bu th

Fig. 2426 represents the plan of the upper row of horizontal needles. Fig. 2427 is a fracgment of the endless chain, formed with perforated cards, which are made to circulate or travel by the rotation of the shaft D. In this movement, each of the perforated cards, whose position, form and number, are determined by the operation of tying-up of the warp, comes to be applied in succession agrainst the four faces of the square axis or drum, leaving open the corresponding holes, and covering those upon the face of the axis, which lave no corresponding holes upon the card.

Now let us suppose that the press B is let down into the vertical position shown in fig. 2422 ; then the sard applicd against the lft face of the axis, leaves at rest or antouched the whole of the horizontal spindles (skewers), whose ends correspond to these holes, but pushes back those which are opposite to the unpierced part of the card; thereby the corresponding upright skewers, $3,5,6$, and 8 , for example
pusled out of the nerpendicular, unhook themelves from above the bars of the claw, aud remain ir their place, when this claw enmes to be raised by means of the lever G; and the skewers $1, \varrho, 4$, anj 7, which have remained hooked on, are raised along with the warp threads attached to them. Then li, the passage across of a shot of the color, as well as a shot of the common wett, and a stroke of the lay after shedding the warp and lowering the press B, an clement or point in the pattern is completad.

The following card, brought round by a quarter resolution of the axis, finds all the needles in th ir first position, lifts another series of warp threads; and thus in succession for all the uther carls, which compose a complete system of a figureai pattern.

If some warp yarn should happen to break without the weaver observing them, or sloull he miatske

his colored shuttle Jarns, which would so far disfigure the pattern, he unnst unde his work. For this purpose, he makes use of the lower hooked lever f, whose purpose is to make the , ehain of the card go backwards, while working the loom as usual, withdrawing at each stroke the shot both of the ground ani of the figure. The weaver is the more sulject to make mistakes, as the figured side of the wel is downwards, and it is only with the aid of a bit of looking-glass that he takes a peep of his work from time to time. The upper surface exhibits merely loose threads in different points, according the the pattern requires them to lie upon the one side or the other.

Thus it must be erideut, that such a number of paste-boards are to be provided and momutn \mid as equal the number of throws of the shuttle between the beginning and end of any tigure or design whic! is to be woven; the piercing of cach paste-board individually, will depend upon the arrangement of the lifting rods, and their connection with the warp, which is according t, the de-ign and optio:a of the workman; great care must be taken that the holes come exactly opposite to the ends of the needle: ; for this purpose two large holes are made at the ends of the paste-boards, which fall upon conical points, by which ineans they are made to register correctly.

It will be here seen, that, aecording to the length of the figure, so must be the number of pasteboards, which may be readily displaced so as to remount and produce the figure in at few minutes, or

2126

2427

remove it, or replate it, or preserve the figure for future unc. The machine, of course, will be undoretood tu consist of many sets of the lifting rods and needles, shown in the diarran, ns will be perecive 1 by observing the disposition of the holes in the paste-board; those holes, in order that they may be mcurately distributed, are to be piereed from a gratue, so that not the slightest variation shall takic phace.

To form these enrl-slips, an ingenious apmatas is employed, by which tho preper st ed punches raquired for the piureing of each distinct card, are plafed in their relative sitnutions preparatury w the operation of piercing, and alon by its menns a card maty be punchent with any umber of holes at one operation. This di-position of the pumehes is eftiveted by means of rouls commected to corls dispued in a frame, in the nature of a fal-e simple, on which the pittern of the work is fint rend in.
 ranged that a firures to be wronght ean be extembed to my diatance nlong the lom, mat lyy that in w.
 a situation that it aflords power to the foot of the wenser, and lyy this menns chables him to dran then haviest morintures mit figured works, without tho awi-tance of it draw-hoy:

The machinery for urranging the punches, comuists of a frame with four upright stambarla and wome
 leys at the tup.

Fig. 2128 reprosents a single emdeag cord I 1 , which is here mhown in cparation, and furt of or thin
 the weaving-loum a is the wooden cylinder, revalving ughon itsuxis at the lonser part of the stan land ; b

the two pulleys of the pulley-frames above, over which the individual endless cord passes; c is a small transverse ring. To each of these rings a weight is suspended by a single thread, for the purpose of giving tension to the endless cord. d is a board resembling a common comber-bar, which is supported by the cross-bars of thestandard frame, and is pierced with holes, in situation and number, corresponding with the perpendicular threads that pass through them; which board keeps the threads distinct from each other.

At e the endless cord passes through the eyes of wires resembling needles, which are contained in a wooden box placed in front of the machine, and shown in this figure in section only. These wires are called the punch projectors; they are guided and supported by horizontal rods and rertical pins, the latter of which pass through loops formed at the hinder part of the respective wires. At f are two horizontal rods extending the whole width of the machine, for the purpose of producing the cross in the cords; g is a thick brass plate, extending along in front of the machine, and lying close to the box which holds the punch-projectors ; this plate g, shown also in section, is called the punch-holder; it contains the same number of apertures as there are punch-projectors, and disposed so as to correspond with each other. In each of these apertures there is a punch for the purpose of piercing the cards, slips; or pasteboards with holes; h is a thick steel plate of the same sizeas h, and shown likewise in section, corresponding also in its number of apertures, and their disposition, with the punch-projectors and the punch-holder. This plate h, is called the punch-receiver.
The olyject of this machine is to transfer such of the punches as may be required for piereing any indiridual card from the punch-holder g, into the punch+receiver h; when they will be properly situated, and ready for piercing the individual card or slip, with such holes as have been read in upon the machine, and are required for permitting the warp threads to be withdrawn in the Ioom, when this card is brought against the ends of the needles. The process of transferring the patterns to the punches is thus effected.
The pattern is to be read in according to the ordinary mode, as in a false simple, upon the endless cords below the rod f, and passed under the revolving wooden cylinder a, to a sufficient height for a person in front of the machine to reach conveniently. He there takes the upper threads of the pattern, called the beard, and draws them forward so as to introduce a stick behind the cords thus advanced, as shown by dots, for the purpose of keeping them separate from the cords which are not intended to be operated upon. All the punch-projectors which are connected with the cords brought forward, will be thus made to pass through the corresponding apertures of the punch-holder g, and by this means will project the punches out of these apertures, into corresponding apertures of the punch receiver h. The punches will now be properly arranged for piercing the required holes on a card.

Remove the punch-receivers from the front of the machine; and having placed one of the slips of card or pasteboard between the two folding plates of metal, completely pierced with holes corresponding to the needles of the loom, lay the punch-receiver upon those perforated plates, to which it must be made to fit by mortices and blocks, the cutting parts of the punches being downwards. Upon the back of the punch-receiver is then to be placed a plate or block, studded with perpendicular pins corresponding to the above described holes, into which the pins will fall. The plates and the blocks thus laid together, are to be placed under a press, by which means the pins of the block will be made to pass through the aperture of the punch-receiver; and wherever the punch has been deposited in the receiver by the above process, the said punches will be forced through the slip of pasteboard, and piercel with such holes as are required for producing the figured design in the loom.

Each card being thus pierced, the puncli-receiver is returned to its place in front of the machine, and all the punches forced back again into the apertures of the punch-holder as at first. The next set of cords is now drawn forward by ths next beard, as above described, which sends ont the punch-projectore as before, and disposes the punches in the punch-receiver, ready for the operation of piercing the nex card. The process being thus repeated, the whole pattern is, by a number of operations, transferred to the punches, and afterwards to the cards or slips, as above described. See Loom.

JACQUARD PERFORATING MACHINE. Machine for perforating metal plates, such as are used for steam-boilers, \&c. ; and employed for punching the plates of the tubular bridge at Conway, made at the Globe Works, Manchester, by Messrs Roberts, Fothergill it Co.

Fig. 2420 represents a sectional clevation of the machine; Fig. 2421 an elevation of the back of the machine; Fig. 2422 a plan view of the apparatus for putting the punches out of action without stopping the fly-wheel; and Fig. 2423 a plan view of a few of the jacquard plates. Fig. 2426 represents a front eleration; lig. 2427 a side cleration; and Fig. 2428 a horizontal section, taken through the dotted lines $\mathrm{A}^{1} \mathrm{~A}^{1}$, in Figs. 2426 and 2427. Fig. 2429 is a detached view of the traverse apparatus, and Fig. 2430 a detached view of the holding-down or stripping apparatus. A A the standards. B the bed, through which there is an opening for the punchings, or metal punched out of the plate, to fall through; this bed is inserted into the standards. C a stretcher-bar, to connect the top of the standards. D, fulcrum of the levers $q q$ which withdraw the punches, and of the lever w which traverses the plats. E a fu'crum shaft, to which the levers $j j$ and $k l$ are keych. F the main or eccentric shaft, working in bushes in the standards. G a spur-wheel, keyed on the eccentric-shaft. II a pinion, working into the wheel G. I the fly-wheel shaft, on which are the fast and loose pulleys K and L , the pinion II, and the fly-wheel J. M M connecting-rods, fitted to the eccentric necks of the shaft F. NN caps of the connecting-rods MM
$24 \geq 0$.

keyed on the shaft Q. having upon it a spring-catch 3s, which takes into the opening between the pro jections on the wheel R. R and R^{*} are seen detached in Fig. $2425,24 \pm 5^{2}$: the dutted lines on R^{*} repre sent a weight to counterbalance the levers k. S a toothed-wheel, keyed on the main-haft F. I' thi punch ram depressor, secured to the connecting-rods M M by knuckle-joints at the lower end of the connecting-rods. U a slide-bar, on which the frame traverses which carries the plate to be punched V V two short slide-bare, to carry one side of the traverse-frame. IV a bluck of iron, fastened with short Wedges to the bed B to carry the dic-plate \mathcal{N}, into which the dies d are inserted, and prevented from rising by a collar at the lower end of each, as seen ic Fig. 2430. I' a square slaft, carrying the holding-duwn levers or stripping-fingers oo ZZ levers on each end of the shaft $\overline{\mathrm{I}}$. a a the puriches let into the punch-holders $b l$ bolted to the rams P , as seen in the detached riew, Fig. ? 1 D. 4 , c c pieces boltod to the bed B to carry the adjusting slide-bars YY. d dies inserted into the folder X. ece, Fïg 2420, are the selecting slide-bars, which, when allowed to pass through the card-plate, enter the card roller f, without being pushed backwards by them; the card-roller has in this case six sides, and the belt of jacquard-plates, after passing orer it in the usual mamer, passes over a round roller su-pendeal in a swing-frame, at such an angle as shall keep the belt moderately tight, whilet the roller f advancess towards and recedes from the selectors e, g g brackets projecting from the depressor IT, and carried up and down with it. $h t h$ slieling-blocks, in which the journats of the card-roller turn. To an upright eat on each of these blocks, is fitted a rod of round iron, thus *, with a flat foot, long enough to extend over two of the six pins in the ends of the card-roller, against which the flat foot of the rods is made to presby spiral-springs coile:l around them in the usual manmer employed in the jaequard-loom, which is generally known, and need not be further described. $i i$, Fig. 2420 , are two sets of guide-blucks, for the selectors e, one on each side of the depressor, adjustable laterally by set-screws on flat bars, extendiner across the machine; the use of these blocks is to carry the selecting-bars c, which are round at the end that enters the cards, and flat at the other end, to keep them in their proper positions; the centre purtion of each selecting-bar is a solid piece of iron, projecting as much below the round stem as will, when the selecting-bar is driven backwards by a card-plate, permit the depressor T to complete its downward stroke without the selecting-bar touching the ram I' under it. $j j$ are levers keyed on the shaft 1 : and connected at their lower end by links to the slide-blocks $h h$. $k j k$ are levers also keyed on the shaft E. and having each a friction-roller at its lower extremity. On the shaft (2 are two cams, one of which works a lever k on one side of the shaft, and the other cam works the other lever k on the oppo-ite side. One of the came, through the medium of the levers $j j$, and the links before referred to, cause's the roller f to approach the sclecting-bars e, and the other cam causes the roller to recede from them, until, by a catch euployed in the ordinary way in the jacquard-looms, the roller f is made to turn through one-sixth of a revolution, and is then retained in that position by the pressure of the spiral-spring and flat fuot above referred to. $l l$ are brackets attached to the depressor T at the back of the machine. m a bar resting on the brackets $l l$, and connected by rods with the sliding-blocks $h k$, which, on receding, cause the bar m to bring all the selecting-bars ε into the position for depressing the rame, as seen in Fig. 2430. $n n$ are levers having their fulcra on studs screwed into the standards: one enel of these levers is connected by a rod p with the levers Z Z; the other end is furnishel with it roller which is acted upon by a cam u on the shaft Q. oo are the holding-down lerers, adjustable laterally on the shaft \bar{Y}, so as to admit of one of them being placed on each side of every punch. $p p$ are rods connecting the levers n and Z. By adjusting the length of these rods, the levers ou are made to press upon plates of different thicknesses, so as to bold the plates down while the punches are being withdrawn. $q q$ levers turning on the fulcrum-bar D for withdrawing the purches hy means of the cams $r r$ that actuate levers $q q$. s a broad but rather thin bar, extending through the series of punch-rans P , shown by dotted lines. The punch-rams 1 ' are made with slots, through which the bars passes, and these slots must be about two inches longer than the width of the bar s, in order to allow the punch-rams to be forcel down when the bar is at the hotton of its strukic: $t t$ are links connecting the bar s with the levers $q q$. u are cans which depress the holding down levers o o, through the medium of the levers n, rods $p p$, and levers $Z Z$, and hohd down the plate while the panches are being withowno v a cam fur the traversing rack 5 , oo a lever turning on the fulcrum-bar D , and worked by the cam $v, \quad x$ the cam for littiug the rack 5 . y a lewor turning on a stud in the standard, and worked by the cam x for liftine the traversingrack 5 . a a rod connecting the lever y with the lever 5.1 is a lever on the traverse-shatt $2 ; 3$ another lever on the shaft 2 . 4 a link connecting the lever 3 with the rack 5 . \& a rod connecting the lever w with the lever 1 for traversing the rack 5, 7 a haft for carrying the levers 8,9, mid 10 . 11 a link cons. necting the levers 10 and 19.13 a shaft carrying the levers 12 and 1 t . I5 and 16 are links con necting the rack 5 with the levers 9 mal 11. If the upper or retainine rack. is a stud carrying the Chow-lover 19, which is provided with a hamle, 20 another stud earrying the ellow-hever wh, wheln is connected by a liuk 22 with the lever 19. The rack: 17 is carrimed onstiuds in the horizontal arm of the lewre 19 and $\because 1$. 23 divi-ion-stuls in the bar 21 of the (raversing frame.

The plate to be pumed is put into a traversing frame formed of two side-bars $2 t$ and as, and two stretcher-hars secured by cottars to the sidu bars, which are rabbeted to suppurt the phate, and, when refuired, furni-hed with clamps to hold the plate down. 21 rypresents one of the sides of the thas arwing frame, in which there is a groove to fit on the slide-bar $\mathrm{U}^{\text {; }}$; inte the outer side of the har $\because 2$ at sorewed a series of studs 23 , represented in the engravings as being 12 inclues fron centre to enthe
 punched are vary long, rollers maty be used to carry the projecting ombe of the trasersing-trame. In
 drawn with three teeth in the length of a foont, which wilh divide platere tor n fone inch pitelt; but it will has obvious, that for a different pitch the racke mont be changed, and it may in mome cats, whe me
 btuds 23. Fig, 2129 representa the traverse "plarntus, in the positun it will be in when the ratainno

:ack is down, and the punches in the act of passing through the plate, and the traversing-rack haring completed its return-stroke.

When the punches are being raised, the trasersing-rack will rise also ; and by the side-piece 26 (which is attached to it) acting against the roller 27, on a stud in the rack 17, will raise it also, and set the frame at liberty to be adranced by the cam x, through the mechanical means already described In Fig. 2420 this traverse apparatus is shown in the position it assumes when the plate is adrancing The spiral-spring 28 acts on the lever 21, and forces the rack 17 down on to the pins 23 . For every hole required to be punched in line with the width of the plate under operation, a corresponding hole must be made in a plate of the jacquard, and an additional hole, marked 30 , is also made, inte which the stopping-bar 31 enters at every stroke until the punching be eompleted, at which tine the jacquard-plate 32 , which is left blank, will push all the selecting-bars c beyond the rams P , and at the same time, by pushing the bar 31, disengage the cam-shaft Q, by the mechanism to be hereafter explained, at the point where the punches and the levers o are held up, and thus will allow the perforated plate to be taken out of the machine, and another plate to be put into it. The stopping-bar 31 is provided with a projection on its lower surface, which depresses the click-lever 39 when the bar is pushed back; the lever 33 is keyed on a shaft 34 , moving in bearings at the back of the depressor; on the other end of the shaft 34 is keyed the lever 35 , to the upper end of which is attached the link 36 , connecting it with the elbow-lever 37 ; the end of the other arm of this lever is inclined, for the purpose of unlocking the plate $R *$, and is provided with a stud, on which is a latch 38 , the tail of which comes In contact with the incline on the clbow-lever 37, when it is in the position shown in dotted lines in Fig. 2422 ; and as the wheel R revolves, the latch becomes disengaged from the opening between the two projections cast on the said wheel, at which time the cam-shaft Q ceases to revolve. When the stoppingbar 31 has been pushed back, it depresses the lever 39 , and liberates the lever 33 from behind the projection on the lever 39 , when the spring 40 will pull the elbow-lever 37 into the position shown in dotted lines. To the blocks h a small shaft is attached, on which are two levers, suspending by links a plate of metal similar to a blank card-plate, except that the holes for the guide-pins are cut at the bottom edge. At each end of the same shaft is a lever-handle, held up or down by a side-spring in the ordinary way. The use of this apparatus is as follows: Should it be required to stop the machine before the plate is finished, by raising the lever here referred to, the blank plate will come in front of the roller, and will act the part of a blank jacquard-plate, and stop the machine.
Having now described the principal parts of the machine, we shall proceed to explain the manner of its working. The plate to be punched having been placed in the traversing-frame, on the sides U and V, is then pushed forward. In its progress, the first pin of the series 23 passes under the inclined end of the rack 17, until the first notch in the rack falls upon the pin. The driving-strap being now on the fast pulley K , the machine is set to work by pulling down the handle 42 , keyed on the shaft 34 , until the lever 33 is latched by the click-lever 39 ; the elbow-lever 37 is then, by the spiral-spring 40 , brought into the position shown in Fig. 2.122. The latch 38 being now liberated, will, by the action of the spring 41, Fig. 2420, drop into the noteh in the wheel R the first time it comes round; the cam-shaft Q will now revolve at the same speed as the shaft F , and the jacquard-roller f wlll be drawn back and made to perform 1-6th of a revolution on its centres, after which it will be advanced, and the first card of the series will remose those selecting-bars for which there are no holes in the jacquard-plate; the other selecting-bars will remain orer their respective rams P, which will then force down the punches through the plate, by the descent of the depressor T. A little before the punches have gone through the plate under operation, the levers o are made to press upon it, and are held there while the punches are being withdrawn by the bar s, which rises simultaneonsly with the depressor T , during one-half of its atscent.

Whilst the depressor is continuing its ascent and descent through the other half of the stroke, the roller f recedes, and draws with it the bar m, which brings all the selectors again over the punch-rams P'. The roller f, while receding, haring performed another sixth of a revolution, will, on advancing, bring another of the jacquard-plates against the selectors, and the operation will be repeated until all the holes are punched in the plate under operation.

JAPANNING. The art of covering paper, wood, or metal with a thick coat of a hard, brilliant yarnish: it originated in Japan, whence articles so prepared were first brought to Europe. The material, if of wood or papier-machée, is first sized, polished, and rarnished; it is then colored or painted in various devices, and afterwards covered with a highly transparent varnish, or lacquer, which is altimately dried at a high temperature, and carefully polished.
An improved method of performing the above-mentioned operation is thus described loy the insentor:
The articles which are to be so coated, or covered, or ornamented, may be made of wrought-iron, or of other malleable metal or metals, which will withstand a strong red-heat without injury, such as brass or copper, the making of such articles being performed by any of the usual modes of cutting ont of Laminated or sheet metal, and hammering, or stamping, or otherwise forming to the required shape for any intended article, by aid of all or any of the various modes of cutting out of laminated sheet metal practised by the makers of articles of malleable metals, except that the more fusible metals which will not withstaud a strong red-heat, such as tin, lead, zine, pewter, or Britannia metal, are not fit to be used bin making such articles or any part thereof, and, therefore, tinning and soldering with soft solder is not ${ }^{u} p$ plicable for taking such coating, or for uniting together the parts of the said articles; but in case of an article which cannot conveniently be formed of one piece of metal, (and which is to be preferred,) then the sercral pieces or parts inust be united or strengthened by all or any of the well-known methods of overlapping, turning down the edges, wiring, creasing, and hammering down, or by riveting or dove-tailing, as may be most suitable for the article; and in case of soldering being resorted to, it must be hard soldering with brass or spelter, usually termed brazing, and by any or all the means aforesaid the articles are to be made of wrought-iron, or of other malleable metal or metals, and in the same manner as if they were intended to be japanned, painted, varnished, laequered, or timed. When
made, the articles are to be suljected to a full red-heat, by placing them in an annealing oven or fur nace, which may be of the same kind as is conmonly used for annealing articles of stauped metal, ot for annealing metal for being stamped; a number of artieles of the same shape and size being piled up une upon another in such furnace in order that they may the letter keep their form, and sand may be interposed between the articles so piled up for that purpose. Small articles may be heated in a muthe: such as hereafter described, into which flame does not enter, and after baving been kept to a full redheat for about half an hour, the articles are cither withutrawn from the oren or furnace and allowed to cool, or else the oren, or furnace, or muffe, with the articles therein, may be allowed to coal, and the articles remored. l'y the said heating, all liquid or greas matter will have bech dissipatel, and the surfaces of the articles will have been oxidated, and then all oxide or seale js to be removed from the surfaces of the articles by rubbing them with sandstone, for the plain and acces-ible parts, and with worn-out files, scrapers, or wther suitable tools, for the less aceessible places. Ur articles of such a truly circular or clliptical form as to admit of being turned in a lathe, may be mounted in a chuck and turned; a broad flat tool being presented to every part of the revolving surfice in sucees-ion, leaving the surface of the metal smooth and eren, without the necessity of its being quite bright or polished. The articles being thus rendered perfeetly clean, are ready to reecive the first enat or covering of partially vitrifiable material, (the composition whereof is hereafter deseribed.) and which is applied to the surfice of the artieles in a semi-liquid state, which state results from the materials having been ground very fine when in mixture with water, and to the consistence of a thick cream, and then straned through fine lawn. A suitable quantity of such semi-liquid is poured out from a latle or spoon upon the surface of the article whilst it is held over a large vessel containing such semi-liquil, and by lolding: the article in the hands with the surface iuclined, the semi-liquid runs slowly and gradually along the surface, so as to spread itself out and cover the same, the article being turned about and inclined in different directions in succession, in order to canse the semi-liquid to run over the surface until the whole is completely covered and with a coating of uniform thickness, all surplus of such semi-liquid being allowed to drain off therefrom into the basin or other vessel beneath. Gireat eare must be taken, howerer, to avoid air-bubbles, specks, or defeetive places in the coating, and which is only accomplished by u-ing precaution in the previons preparation of the semi-liquid, or by thoroughly grinding or straining it, in order to keep it frec from lumps amd from any coarse particles, and afterwards avoiding all wiolent *tirring or splashing, so as by no means to get air intermixed with it, but u-ing only a gentle motion when taking it up with a ladle or spoon; and such a quantity only of the semi-liquid at one time as is not materially greater than sufficient for corering the surface of the article to be coated. The operation of coating will be greatly facilitated by performing the same in a warm room, and by making the article rather watrmer than the semi-liquid itself, but not so as to feel hot to the hand; and such warmath of the room and of the article will dispose the covering, after it has been spread over the surface of the article as aforesaid, to begin to dry upon that surface, and, in a short time, so far as not to run or move thereon, after which the drying is to be completed by placing the article in an ordinary japanner's stove, whel should be kept heated to a temperature of about, 180° Falhenheit, the article leing left thercin until all moisture is gradually dried away, or so as to leave a dry whitish covering, whelh adheres sufticiently to the surface of the article for keeping its place thereon, but which would, nevertheless, be easily rubbed uti if handled roughly, or if only touched rudely by the fingers. The composition of materials found to be the most suitable for the first coating may be prepared as follows:-

Thake six parts (by weight) of flint-glass, broken into small fragments, three parts of the ordinary bomx of commerce, one part of red-lead, and one part of axide of tin. These four ingredients being brought into the state of a comve powder, are to be well mixed tugether, by pouding them in an iron mortar, and then the mixture is to be fritted in the same manner as is usuatly done with the materials for makine glass, or by suljeeting such mixture to a strong rel heat in a reverberatory furnace for three or four hours or more, it beiner frequently stirred and turned over to expose every part to the flame, and to more effectually mix the ingredients, as well as to expel all wolatile matter; amb towarts the lather part of the time the heat mast be increased, until a partial melting or semi vitrationtion has commenem, When the whole is to lee withiramin from the furnace in a panty state, and let fall intu water in order th be suhlenly cooled, whereby it becones eracked, so at to be afterwarde ca-ily boken into small frabmonte, or inte at coaree description of powder, which is called fritt, and which is for the first horly or coat, but which fritt is only one of the merelients in the compesition of such first conat. With one pare (ty weight) of the fritt demeribet is to he mixed two parte of eateined bome, groumd to powder; and the maxture of fritt and brome is then to be grouml with water in a mill, called a procelain mill, such us is
 with water between chert stones, or other hard silicions stones, wheroof sone are tixad at the buttom of at tub or vewel eontaining water, havine the materials mixed therewith; amd other such stemes re-t lig
 manieated by the movine part of the mill, sen as to rublower the fixel stomes amel grime the materiald leetween them, which operation is continned until the materials are rembeed th atate of eatremely minste division in the water, formine therewith the semi liguid (of nlant the consi-teme of eteati)

In articles requiring only mie side to be coated, math the the billow side of a hetthe, ir of of o or

draining off the surplus the fingers of the two hands should be applied to the edges only of the article, and at the two opposite sides of its circumference, so that the weight of such article will balance itselif; and render it easy to turn it over and about, so as to drain in succession from either side, extreme care being requisite in all such cases to insure a uniformity of surface. When the coating is so far dried that it will not run, the article is to be laid down upon the points of three small supports, made of burnt earthenware, and which are made to stand upon a small iron plate that serves to carry away the article which is next introduced into the japanner's stove, where it is dried more effectually. When the article is afterwards removed from the said stove, in order to be introduced into the mufle for the firing or burning in of the coating, (and in the manner hereafter described,) it is still to be borne upon the same three supports, the iron plate on which they rest beiug removed from the stove, and also introduced into the mufle, or with the three supports and the article upon it; and in ease of any specks or deficient places appearing in the coating, such places may be mended by applying a portion of the semi-liquid thereto by aid of a brush, and in the manner of painting or pencilling, and then returning the article to the stove, and drying the same, so that every part shall not only be completely covered, but also effectually dried on, and before it goes into the muffe, the ultimate appearance of the article depending very materially upon the manner of conducting this first part of the process, and upon the care with which the coating las been applied, and upon the proper grinding and mixing of the materials, uniformity of surface in the first process being considered absolutely indispensable, in order to insure the successful result of such after-processes as have yet to be detailed. The firing next described is for the purpose of so far vitrifying the materials and hardening the coating as to fasten it on to the surface of the articles, and is performed in a furnace, of the kind used by painters in enamel, being an oven strongly heated by fire applied beneath it, and by the flame therefrom passing in flues around it, and may be called a muffe; but no fire, or flame, or smoke can euter into the interior where the articles are placed. The articles are left in the muffle, and subjected to the heat until such time as the earthy composition will have undergone so much of the commencement of fusion or partial vitrification as to render the particles of the coating firmly adherent one to the other, and also to the surface of the metal articles, and which are then to be withdrawn and laid on a flat iron bench to cool. When cold, such parts of the surface as have been coated will be found to present the dead whitish appearance of earthenware, which has been once fired only, but has not been glazed, being in that state which by potters is termed "biscuit." The time that the articles should remain in the heated mufle will vary from a few minutes to half an hour, depending upon the size and number of the articles, and upon the heat of the mufle; neither can such time be stated with precision, but the operator, it is observed, will soon find out what length of time is most suitable for any particular description of article, and also what heat should be kept up in order to obtain the required result, by observing, so soon as the article shall have become cool, whether the coating has been rendered sufficiently hard, and has or has not become firmly adherent. When cool, the newly formed coating is to be metted, either by passing over it a sponge that has been dipped in water, or else by dipping the article itself, and a second coating is then applied over the first coat and dried thereon in the japanner's stove, and then fired in the muffle in the same manner as the first, only the composition is to be different; and the patentee goes on to state that the composition he has found to be the most suitable for such second coating is as follows: Take 32 parts (by weight) of calcined bone, ground to a fine powder, 16 parts of china-clay, and 14 parte of Cornwall stone in fine powder, and 8 parts of carbonate of potash; the latter being dissolved in water, the other ingredients are mixed $u p$ therewith, so as to make a thick paste, which is then fritted for two or three hours in a reverberatory furnace, until it assumes the appearance of biscuit-china, which is to be reduced to powder; then $5 \frac{1}{2}$ parts (by weight) of such powder are to be mixed with 16 parts of flint-glass broken small, $5 \frac{1}{2}$ parts of calcined bone ground, and 3 parts of calcined flint ground, the said mixture being afterwards ground with water in a poreclain-mill until it is reduced to a semi-liquid state about the consistence of cream, and which has to be carefully strained, as before, through sieves of lawn, when it will be ready for use in the same manner as already explained in reference to the composition or semi-liquid employed for the first coating. In fring the second coating care must be taken that the articles are kept long enough in the muffe, and that the heat is suffieient for thoroughly ineorporating the second coat with the first, also for thoronghly hardening both coats. After firing for the second coat, the article, when cool, will have a stronger and whiter color, and a more decided resemblance to articles of good earthenware, but still only in the state called "biscuit."

The articles having been twice coated with composition as deseribed, and trice fired, so as to assume at this stage the external appearance of a good earthenware biscuit, the patentee further states, that should it be desired to produce a very white color, so as to resemble the very finest carthenware or porcelain, then in lieu of the 16 pounds of fliut-glass, mentioned as forming part of the last composition, proper for the second coating, he prefers to substitute a like quantity of the composition prepared as follows: Take four parts (by weight) of feldspar in powder, four parts of white sand, four parts of carbonate of potash, one part of arsenic, six parts of borax, one part of oxide of tin, one part of nitre, and one part of whiting; the mixture of these materials is to be fritted either in a reverberatory furnace: (as was before described for the materials of the first coating,) or otherwise such fritting may be per formed in a crucible strongly heated in a furmace, the heat in either case being continucd until the materials are partially fused, and the appeanance when cold will be that of a whitish enamel, which being reduced to powder, such powder is to be substitnted, weight for weight, in place of the 16 pounds or parts of flint-glass formerly mentioned as part of the composition of materials for the second coating, all the other materials remaining the same. Excepting only for the purpose of obtaining whiteness of color, the flint-glass is in other respects described as being cheaper, and yet equally good. After the articles bave received the sccoul coating, (of cither of the compositions described,) and have been fired and then cooled, they are to be wetted with a sponge, or by dipping them into water, as was done after the first coating, and are then reacly for recciving the third coat or glaze, which is also applied in a semi-liquid state, great care being required in draining of the surplus semi-liquid glaze, so as to leave
onty a thin coating or covering, equally distributed over every part of the secoml cuating of partialls vitrified material, in order that the article, after being again exposed to the heat of the mumbe, and aftermards withdrawn, may present the appearance of glazed earthenware of good quality, and which will not otherwise be the case; whereas, with appropriate care, and when the composition specially. adapted for producing whiteness has been employed, it will resemble earthewware, it is stated, of the very best quality. The composition found to be the most suitable for the third coat, or glaze, is ar follows: Take twelve parts (by weight) of feld par, in powder, four and a half parts of china-clay, eightcen parts of borax, three parts of nitre, one and a half parts of carbmate of potahl, and one and a half parts of oxide of tin, which materials being well mixed together, the mixture is to be fritted either in a crncible or in a reverberatory furmace, and then the frit being reduced to powder, is to be groumd with water in a porcelain-mill to a semilliquid state, and strained through fine lawn in the same mamer as described for preparing the composition for the firt coat. Or, instead of the above composition, the following may be adopted for such third cont or glaze: Take nine parts (by weight) of feld-par, in powder, two parts of china-clay, nine parts of borax, two parts of nitre, three parts of carbonate of suda, and one-quarter part of arsenic; which materials being mixed together the mixture is to be fritted, and then redneed to powder, ground in water, and strained as aforesaid. In firing the articles in the muftle for the third coat or glaze, the heat of the mutte, and the time the articles are subjected to such heat. must be sufficient to cause the glaze to become thoroughly vitrificd, and to spread orer the surface of the second coat so as to become ineorporated with that coat, and eflectually glaze the surface thereof, as in carthenware of excellent quality; and in case there are any imperfections in the glaze after it has been so fired, then, after the articles are culd, another coating of the same glaze may be applied in a semi-liquid state and dried in the japanners stove, and then fired in the muttle as was done for the first coating of glaze ; and so in like manner a third coating or glaze may be applied and fired, if foumd requisite.

JOINT, CLASP-COUPLING-West \& Thonpsox's. D D, Fig. 2431, are two pieces of pipe; A A are two tlanges joined each to one of the pieces of pipe. It will be observed that the coupling parts of these flanges are bevelled, and have no bolt-holes, ns those in common use all have. C is a piece of vulcanized India-rubber, or any other packing that may be thought necessary, although a pressure can be exerted in bringing the flanges so cluse together that the joint is made perfectly tight without any packing, but we think that it is all the better to use a little packing. BB is the chasp. This is divided into two parts, mul this part is represented with the flange resting on it. By placiny the concave part over the bevel of the flanges, and securing the two parts of the clasp together by bolts passing through EE , is all the operattion that is required in connecting two separate pieces of pipe torether. Every mechanic will perceive that the tighter the clasp is screwed up, the faces of the flanges are brought closer together, and the joint is :hereby made exceedingly tight. Experience has proyen this joint to be excellent for pipes that are used
 for conducting steam.
It will be clearly seen that this improved coupliug is applicable to vessels and other articles inf angular or curved forms, and that whatever may be the form, any desired and etfective mode of drawing or forcing together the segments of the ground clamp may be substituted for serew-bolts or the conical rings.

In coupling angular vesiels, or other artieles, it will be found to be advantageons to make the groned clamp, in as many sections as there are sides to the figure, and for romed complings it will be found suthcient to make it in two parts for all artieles of moderate size ; but when the diameter is very ecm-iderable it may be divided into three or more parts.

This improved mode of compling is expully applicable to the seetring of mozzles, stop-encks, hometa, and many other artiche not neessary to enumerate, and purticularly to eylinder-heats, in which the edge of the head takes the place of one of the flamper.

It will be evident to any empineer or machinist, from the formomer, that shafta and other solid bablue
 mad by a smilar aramement of parta, and therefore it is deemed mamersary to give an example:
 comecteal therewith in any maner desired, ns the mode of making the thages forms no part of the invention.

The lewling atvantages of this mote of compline over the ordinary demble flame men Indta heretofine

 it will bo untecossary to cmanmerate.

Vion. II, - II

JOINT, PATENT EXPANSION. Figs. 2432 and 2433 represent a patent expansion-joint. patented by Z. R. Dunhayr, of New York, March 20, 1847.

JOINTS, AND JOLNING TIMIBERS. As timber cannot always be obtained of sufficient leugth for tie-beams, or bridges, it is necessary to unite two or more pieces together by their ends, which is called searfing, and is differently performed by carpenters. The most common means is lapping, or halving, or, as it is sometimes called, ship-lapping. This is nothing more than cutting away a part of the thickness of one piece, and an equal quantity of the other which is to be joined to it, so as to suffer the diminished end of one piece to overlap that of the other, (as in Fig. 2484,) and then uniting them by nails
 or wooden pins, which are called tree-nails. This method is applied to plates, bond timbers, and others, where there is not much longitudinal compression or extension; where this kind of effect is to be provided for, the upper as well as the lower timbers should be cut and let into each other ; the under piece having a tenon formed at its extreme end, with a corresponding cutting to receive it in the upper piece. That these tenons may be enabled to pass each other, it is necessary to cut away a part of the timbers in the middle of the length of the joint, equal to the length of the two tenons, so as to form a square hole, through the middle of the timbers to be joined together, and this is afterwards closed up by driving an oak key into it: this also helps to drive the tenons to their respect ive mortises, and prevents the timbers from being pulled asunder. The thickness of the key, in ordes that it may not be compressed, should be equal to a third of that of the picce into which it is inserted. Another principle is here shown, which is more simple, the joint being cut obliquely; to make these two pieces stiff, the ends of both should be cut in an angular form. To strengthen these scarfs, iron straps and screw-bolts are added; but no joining can be made so strong as the timber itself.

In making joints, it must be remembered that all timber is liable to shrink when dry, and when wet to expand; on this account, doretail joints should be avoided as much as possible, as they are liable to draw out; and all joints should be made with reference to their contraction and expansion, which sometimes tends to split off portions of the framing. Where iron bolts or straps are introduced, care must be taken that their effect is not lost by the changes that the timber undergoes. The areas of the former should never be less than two-tenths of the area of the section of the beam; it must also be recollected in making a joint, that when foree is applied to any portion, the fibres of the timber will slide upon each other.

Fishing a beam is merely placing a piece of the same scantling to one side of the timber to be unted, und boltiug them or hooping them together. Separate pieces of timber are united either by scarfing, potching, cogging, pinning, wedging, tenoning, de.

Scarfing consists in cutting away equally from the ends, but on the opposite sides, of two preces of
timber tor the purpose of connecting them lengthwise. The usnal method of scarfing bond and wall plates is by cutting about three-fifths through cach picce, on the upper face of the one and the under thee of the other, about 6 or 8 inches from the end transversely, making what is ternicd a kerf; and longitudinally from the end, from two-fifths down, on the same side, so that the pieces lap together like a half dovetail. Fig. 2435 is a scarf.

Notching is cither square or dovetailed, and is made use of for connecting the ends of wall-plates and bond-timbers at the angles, in letting joists down on girders, binders, purlins, or principal rafters.

Cogging, or cocking, is a species of notch extending on one side, and having a narrow cory alone m the bearing piece, flush with its upper face. It is principally made use of in tailing joists on wallplates.

Pinning consists in inserting cylindrical pieces of wood or iron through a tenon.
Wedging is the insertion of triangular prisms, whose converging sides are under an extremely acute angle, into or by the end of a tenon, to make it fill the mortise so completely as to prevent its being withdrawn.

Tenon and mortise of the most simple kind is shown in Fig. 2439, in which the two timbers united are at right angles with each other. The tenon is on that which appears horizontal, while the mortise is cut in the upright timber. The tenon is left one-third of the thickness of the timber, as shown in the upper part of the figure.

The greatest strain upon the fibres of a girder is at the upper and lower parts, decreasing gradually towards the middle of the depth, which is the best situation to make the mortise. The form to be given to the tenon requires consideration. Some carpenters introduce it at the lowest part of the girder, which in a great degree destroys its stiffness: being a sixth of the depth, it should be placed at onethird of the depth from the lowest side. Horizontal timbers, intended to bear great weights, should be always notched on their supports, in preference to being framed in between them; and this rule is applicable to inclined timbers, as common rafters and braces. All the pressures to which they are suljected should be brought to act in the direction of their lengths, and the form of the joint should be such as to convey the pressure as much as possible into the axes of the timber. When subjected to a strain, a partial bearing is liable to very serious disadvantages, particularly in bridges.

Where the mortise is to be made in the upright timber, and the tenon to be cut on another inclined. as in a brace to a partition, a bevelled shoulder, Fis. " 441 , is cut on the inclined piece, and a sinking made in the upright post to receive it-the pin which secures it in its mortise passing through the tenon.

The bevelled shoulder adds greatly to the strength of a mortise and temon joint, and shoubl never he di-pensed with: it renders the junction of the two pieces of timber moro exact, and makes the nhutments of all the fibres stronger and more capable of resistance.

The common method of effecting such a junction does not cecupy so much time or latere, hut is me
 amghes through the timber in which the mortise is made, as well as through that which has the tenm

Baring the hole for the pin requires to bo nicely performed, in order that it may draw the fomon the into the mortise prepared to receive it, and make the shander-butt chose into the joint, "whomt amans: the riak of tearing ont a portion of the tenon beyond the pin. Syame lales and stanary pins are pre fiered to round, as they brine more of the womb into action, and there is has hatulity to phet.

insertion of the wooden bolt, which, when driven, is split by the wedge, and thus squeezed tight to the sides of the hole.

Bond-timbers and wall-plates require to be carefully notched together at every angle and retum, and scarfed at every longitudinal joint.

To make a good tic-joint requires great attention on the part of the carpenter; and, for uniting wallplates, the doretail joint, Fig. 2444, is sometimes adopted. If the effects that shrinking may produce be taken into consideration, the more usual system of halving, Fig. ${ }^{\circ} 443$, is decidedly preferable. Whenever this joint is employed, a stont pin of tough oak, or an iron bolt, should be driven through to render it
 secure; and, where there is the slightest tendency for one piece to slide from the other, iron straps must be used.

Timbers which are laid upon the plates, and intended to act as ties, should be cut with a dovetail and let into the timber it is to secure. Generally, where they cross at right angles, halving or cutting away the moicty of each is adopted, and one is let into the channel cut in the other.

For joining two pieces of timber together, notching is the most common and simple method; for, when four angles are to be formed, the surfaces of one piece are both parallel and perpendicular to those of the other. A notch may be cut out of one piece (Fig. 2444) the breadth of the other, which may be let down on the first ; or the two pieces may be both notched to each other, and then secured by an oak pin: this is the best practice when each of the timbers is equally exposed to a strain in any direction. When one piece has to support the other transversely, the upper may have a notch cut across it, to the breadth of two-thirds the thickness of the one below, which must also have a similar notch cut out on each upper edge, leaving two-thirds of the breadth of the middle entire, by which means the strength of the supporting or lower piece is less diminished than if a notch of less depth were cut the whole breadth. Such joints are particularly adapted for purlins, when let down upon the principal rafters

Lapping is performed in a variety of ways-either by simply halving the end of each timber, or by halving and dovetailing, as in Fig. 2445. In the latter case, the timbers act as a tie, and cannot be readily pulled asunder.

In these joints the greatest attention is required to make the several parts abut completely on each other, as the least play or liability to motion at once destroys their efficacy. The butting joints, being slightly tapered to one side of the beam, require very moderate blows
 with a hammer to force them into their place: if driven too hard, the parts will be liable to strain, and the abutments to split off. It is better, sometimes, to leave the abutments open, and afterwards drive in a small wedge, which, if made of hard wood and not likelv to

compress, is an excellent substitute. Iron has been said to injure the fibres of the timber, from its to great hardness; otherwise it is well adapted for the joggles and wedges.

Two pieces of timber may be united in such a manner that they preserve the same breadth and depth throughout, which is of great importance in the construction of beams for bridges or roofs of considerable span. The length to be given to the scarf must depend upon the force that will cause the fibres of the timber to slide upon each other ; and that for oak, ash, or clm should be six times the depth of the timber; in fir, twelve times : but where bolts are used so much is not required in either case. The simplest method for uniting the ends of two timbers is by cutting away an equal portion of each, and letting
 one down upon the other. Fig. 2449.
Timbers united together by a number: of such cuttings, afterwards united and bolted through on hooped round with iron, aro capable of sustaining great resistance: a stirrup-iron at each em ${ }^{3}$
holds the timbers in their places, and one or more bolts are sufficient to prevent their being drawn asunder.

The carpenter frequently exercises great ingenuity in joining timbers of considerable scantling, Fig 2450 ; and, by the introduction of iron or small cubes of harder wood into the joints, can prevent their being thrust or drawn out of their position either longitudinally or laterally.

The scarfing of girders and beams have a great variety of furms given them, and are sometimes bolted through, at others strapped round with strong hoops of iron, Figs. 2449 to 2454. Where bolts are dispensed with, it is perfectly clear that the joint cannot hare half the strength of an entire piece. Where
 the stress is longitudinal, two irons put on each side will prevent the searf that is merely indented from pulling asunder; but such a provision will not maintain the constant horizontal position of the timber.

When a scarf is forced to its bearings by the introduction of keys or wedges driven tight, they sometimes receive an additional strain, and it is often found advisable to omit them, and to bring the joints

to a bearing by some other means before the bolts are inserted. When keys are made uee of, they should be of very hard wood, having a curled grain, which resists the insertion of the tibres opposed to it.

To prevent lateral movement cogging is adopted, in addition to the ordinary method, and a small tenon or cog is left upon a portion of the searf, which enters into a notch prepared in the piece which is to cover it, as shown in Figs, 2448 to 2452. Beams intended to resist cross-strains require to be lengthened more frequently than any others, and, from the nature of the strain, a different form of searf must be made use of from that which is required for a strain in the direction of its length. When timber is subjected to both strains, the cross-strain is that which demands the greatest attention. Where a floor is supported, the scarting requires to be further secured by iron bolts, made to pass through a longitudinal piece laid to cover the under side of the joint.
licaring-posts, when used to support the floors of a magazine or warehonse, are generally fomed axactly square. Some timber will support, while that of another quality will suspend, the must; therefore, in the selection of story-posts, we must pay attention to these peculiarities. Iron, however, is generally used for these purpuses, in consequence of its horizontal sectional area wecupying less space than timber of the same strength.

When a tie-beam is mortised through to receive a king or queen post, and it is necessary to provile for the means of holding it up, the tenon should not be pimed through, as it is not advi-able for depend entirely on the pins for the support: the tenon hould be cut like a half dovetail, or in a sloping direetion on one side, and left straight on the other : the morti-e-hole should be so cut that the lower end can just pass. When it is in its place, a wooden key or wedge is driven tiphty on the straight side, which forces the tenon against one side of the mortise hole, and prevents it eflectually from being drawn out: wak or iron may le added, or an iron strap may be applicil.
'Tenons may be wedged at the end; but to io this they must be made long enomig to pates emtreby

 temon sometimes aplits, but not sumiciently to injure itestremeth. When in machinery it is int prathsable to cut the mortise thronefh, the fux tail wed, fin is adopted: the tenton is mate to tie the mortisu
exactly, the wedges are loosely put into the saw-cuts, as before, and the whole is driven to its place When the wedges touch the bottom of the mortise, they cause it to spread, and thus hold the tenor firmly in its place.

Dovetailing in some degree resembles mortising and tenoning, and is more adapted to uniting torether the angles of framework. The feet of the rafters require the mortise and tenon to be carefully made, and the thrust is destroyed to a certain extent to obtain greater strength. A portion of the rafter is tenoned into the tic-beam, and another small part is let into the upper part of it: both rafter and tenon are cut at right angles with the inclination of the roof. In Fig. 2455, the rafter has tro bearing shoulders in its depth, one behind the otleer, in addition to the tenon which unites them. Struts and braces which are loaded require but little mortising to keep them from sliding out of their places: the more flat their ends can be cut, the more efficient will they be. The shrinking of timbers fometimes occasions them to become loose, particularly where there is not mueh stress upon them.
King-posts, queens, and principal rafters, Which are subject to great strains, should have iron straps or ties when they unite with the tie-beam, as in Figs. 2456 and 2457 ; and an iron strap should embraef

the head of the kings and queens, and onite with the principal rafters, the feet of which, in large builuings, sometimes have their abutment in a cast-iron shoe, which prevents the splitting off the end of the tie-beam.
The ends of king or queen posts may have a screw-bolt passed into them, which allows the nut to be turned at pleasure; and thus the framing may be tightened again when shrinking of the timbers renders it necessary. This, in many instances, is preferable to the iron strap, and keys or serews put in the ordinary way.

Whatever form we adopt for the butting-joint, we must be careful that all parts bear alike; for, in the general compression, the greater surfaces will be less affected and the smaller undergo the greatest change. When all have come to their bearing, they should exhibit an equally close joint; and as large timbers are moved with some difficulty, the joint cannot be often put to the test of trying whether it fits meely: it must, therefore, be set out with great precision, and worked, with regard to its lines, with exaetness. A very small portion of a tie-beam left at the end is sufficient to withstand the horizontal thrust of a principal rafter, and blocks may be used at the ends where the rafters abut to give additional strength.

Scarfing a timber in a perpendicular direction.- When the top surface is divided into nine squares, if four are cut down, the other five serve as tenons to enter into as many racant spaces left in the piece of timber placed upon it, as seen in Fig. 2458; or two may be cut away, as in the same figure, to receive a tenon left on the upper picce.

Partitions and framing for the outside of buildings, de., Fig. 2459, are a species of timber walls, usually corered with lath and plaster, and formed of upright posts, mortised into a head and sill, braced in different directions, and filled in with quarters. The posts are placed at the extremities, as well as at the sides of all doors and openings. When a partition dividing two or more rooms has a bearing which is perfectly solid throughout, it is better without braces: the posts or quarters have only then to be maintained in an upright position, which is effected by driving pieces between them horizontally, so as to strut them, and prevent their bending. Where they rest upon joists, which are liable to shrink, and yield to a weight placed upon them, the partition should be trussed in a manner to throw its load on the parts able to sustain it. In most houses we find great neglect upon this subject, which occasions cracking in the cornice, inability to open and shat the doors, and many other inconreniences.

The thickness given to partitions which do not exceed 20 feet in length, is 4 inches. The posts are then 4 inches square, and the other timbers 4 by 3 . When they are of greater extent, they should be mereased in thickness. When it is required to make a doorway in the niddlle, the truss may be formed
by the braces, the inclination of which should be at an angle of about 40° with the horizon. When the doors are at the sides, the truss may be formed over the hoad:. The posts should all be strapped ic the trus-s, and the braces halved into the upright posts.

The weight of a square of quartered partition may be estimated at from 12 cwt . to 15 cwt , and every precaution should be taken to discharge its weight from the floor on which it is phaced, to the wall. which are its best points of support. In ancient timber houses, mills, tec, the fronts or external sides are formed of upright posts, placed at a distance equal to their seantling: these are mortised and tenoaed into a top and bottom plate, which serves also to carry the floors. The posts at the angles are of a larger scantling; and into these, which form openings for doors and windows, are framed horizontal pieces, which scrve for heads and sills. Braces are then introduced, crossing each uther, like a St Andrew's cross. Above the lintholes, and beneath the sills, short quarters or punchions fill in the space, and the whole are mortised, tenoned, and pinned together. The framing should be placed of Lrickwork, or a wall of masonry, so as to be kept quite clear of the ground.

Floors.-When the bearings, are equal, if joists of the same width, but of different depths or thicknesses, are used, their strength is increased in proportion to the squares of their vertical thickness: when the joists are but 6 inches deep, they are in strencth to those of 8 inches in depth, as 36 to $61-$ the square of 6 being 36 , and that of S, 64 . The quantity of timber in the one case to that of the other is as 4 to 3 -so that one-third more timber gives a strength double that of the other.

Where square oak joists are used, and the bearing 12 feet, their scantlings should be 6 inches, and laid at a similar di-tance apart. Such a floor contains the same quantity of timber as if entirely formed of 3 -inch plank: the strength of timber being as the square of its rertical thickness, it results that the strength in these tro instances is as 2 to 1 : the floor composed of 3 -inch plank is only half the strength of the other ; but had the whole been formed 6 inches thich, instead of with joists 6 inches apart, it would have been 4 times as strong-the square of 3 being 9 , and the square of 6,36 .

Faked Hoors are divided into single-joisted, double, and framed floors: and it must be remarked that unsawn timbers are considerably stronger than planks or seantlings cut out of a round tree. When a tree is cut longitudinally, and formed into two pieces, these will support less than they would do when unitcd in the original tree, arising from the circular concentric rings which compose the tree being cut through, which renders the timber more compresible on one side than on the other ; and as the texture is less close where it has been samn, it is also more suseeptible of change from humidity on alternation of temperature.

Juists whose width is less than half their vertical thickness, are subject to t wist and bend if not strutted; and fur this reason squared timber was usually employed by the builders in the middle ages; and we have numerous camples four or fiec hundred years old, where the timber selected has the pith in the centre, and the concentric rings nearly entire, being in a sound and perfect condition. Experience also teaches us that timber, whether sawn or unsawn, used for a floor of 16 feet bearing, composed of 12 joists, 8 inches square, placed at a distance of a foot apart, is mueh stronger than another of 21 juint:, 8 by 4 , placed edgeways, at a distance of 6 inches apart, although there is the same quantity of timber in both cases.

Single-joisted floors consist of one series of joists, which ought to be let down or halved on to wallplates of a sufficient strength and scantling to form a tie, as well as a support to the flours. Each juist should be spiked or pinned to the timbers on which it lies. Wherever fireplaces occur, and the juists cannot get a bearing on the wall, they are let into a trimmer or piece of timber framed into the two nearest joists that have a bearing: into this the other joists are mortised. As the trimming joists support a greater weight, they must be made stronger than the others, and should have an eighth of an inch adilitional thickness gisen to them for every joist they carry. When the bearing exceeds 8 or 9 feet the joists should be strutted, or they will have an inclination to turn sideways: the juists in use, being generally thin and decp, require strutting on all ocea-ions, and a rod of iron is often passed through them, which, being serewed up after the strutting-picees are placed, gives the entire thoor great solidity and tirmuess. The weight of a square of single joisted floor varies from 10 cwt . to 1 ton, and the joints should never extend to a greater bearing than en feet in ordinary cases.

$\because(t i 1$.

To, find the de pth of a joist, when the length of bearine an I breadh in inches is piven: diside the

 tailed duwn, thoulh have their depth equal to half that wif the jointh, ami their width half as we ho more. In many intances the plateas are nut bedided entirely in fle wall, hat hase melalf re me

 pinted down.

Double floors are formed of joists, binders, and ceiling-joists. The binders rest upon the plates bedded on the walls, and serve the purpose of supports to the joists which are bridged on them, as well is to the ceiling-joists, which are pulleys mortised into their sides. When the depth of a binding-joisi is required, the length and breadth being given, diside the square of the length in feet by the breadth in inches, and the cube root of the quotient, multiplied by 8.42 for fr , and 3.53 for oak, will give the depth in inches. When the length ond depth are given, and the breadth is required, divide the square of the length in feet by the culse of the depth in inches, and multiply the quotient by 40 for fir, and 4.4 for oak, which will give the breadth. The above rules suppose the binders to be placed at a distance of 6 feet from each other.

Binding-joists (Fig. 2461) must be framed into the girders, and care must be taken that the bearing parts fit the mortise made for them very accurately : the tenon shonld be one-sixth of the depth, and placed at one-third of the depth, measured from the lower side. When binding-joists only are employed to carry the ceiling, their scantlings may be found in the same manner as those of ceiling-joists, which are small timbers, and only of a sufficient thickness to nail the laths to. When their length and bearing are giren, their depth may be found by dividing the length in feet by the cube root of the breadth in inches, and multiplying the quotient by 0.64 for fir, or 0.67 for oak, which will give their depth in inches. Ceiling-joists are usually notehed to the under sides of the binding-joists, and nailed to them: this is better than mortising, which weakens the binder, and gives more labor.

KALEIDOSCOPE. This instrument, the invention of Dr. Brewster, in its most common form consists of a tin tube, containing two reflecting surfaces, inclined to each other at any angle which is an aliquot part of 360°. The reflecting surfaces may be two plates of glass, plain or quicksilvered, or two metallic surfaces, from which the light suffers total reflection. The inclination of the reflector that is in general most pleasing is $18^{\circ}, 20^{\circ}, 22 \frac{1}{2}^{\circ}$, or the twentieth, eighteenth, and sixteenth part of a circle; but the planes may be set at any required angle, either by a metallic, a paper, or cloth joint, or any other simple contrivance. When the two planes are put together, with their straightest and smoothest edge in contact, they will bave the form of a book opened at one side. When the instrument is thus constructed, it may be covered up either with paper or leather, or placed in a cylindrical or any other tube, so that the triangular aperture may be left completely open, and also a small aperture at the opposite extremity of the tube. If the eye be placed at the aperture, it will pereeive a brilliant circle of light, divided into as many sectors as the number of times that the angle of the reflectors is contained in 360°. If this angle be 18°, the number of sectors will be 20 ; and whatever be the form of the aperture, the luminous space seen through the instrument will be a figure produced by the arrangement of twenty of these apertures round the joint as a centre, in consequence of the successive reflections between the polished surfaces. Hence it follows that if any object, however ugly or irregular in itself, be placed before the aperture, the part of it that can be seen through the aperture will be seen also in cyery sector, and every image of the object will coalesce into a form mathematically symmetrical, and liighify pleasing to the eye.

The eye-glass placed immediately against the end of the mirrors, as well as another glass similarly situated at the other end, is of common transparent glass. The tube is continued a little beyond this second glass, and at its termination is closed by a ground glass, which can be pat on and off. In the vacant space thus formed, beads, pieces of colored glass, and other small bright objects are put. The changes produced in their position by turning the tube give rise to the different figures.

KEDGE. A small anchor used to keep a ship steady and clear from her bower anchor while she rides in a harbor or river. They are generally furnished with an iron stock, which is easily displaced for the convenience of stowing.

KEEL. The principal piece of timber in a ship, which is usually first laid on the blocks in building. It supports and unites the whole fabric-since the stem and stern posts, which are elevated on its ends, are, in some measure, a continuation of the keel, and serve to connect and enclose the extremities of the sides by transoms, as the keel forms and unites the bottom by timbers.

False-keel is a strong, thick piece of timber bolted to the bottom of the keel, which is very useful in preserving its lower side. In large ships of war the false keel is composed of two pieces, called the upper and lower false keels.
Keel is also a name given to a low, flat-bottomed ressel, used in the river Tyne to bring the coals down from Neweastle for loading the colliers : hence a collier is said to carry so many keels.

KEELSON. A piece of timber forming the interior of the keel, being laid upon the middle of the floor-timbers immediately over the keel, and serving to bind and unite the former to the latter by means of long bolts driven from without, and elinched on the upper side of the keelson.

KILN. A structure or machine designed for drying substances by the application of heat. Their forms are as various as the substances or mannfactures for which they are designed; for, although it may be said that a certain kiln will answer several purposes, yet for one single purpose we often find a varicty of kilns employed. The requisite qualities in a good kiln are cheapness and durability of construction, effectiveness in producing the required result with the utmost economy of fuel, a perfect command of the temperature, and facility of working. Ovens must be regarded as of the same class on apparatus as kilns: indeed, the terms kiln and oven are often indiscriminately applied to the same strueture, as may be noticed under several articles in this work. Under the head of Line the usual form of lime-kilns is described; and under Coal and Iron, several forms of coke-ovens. In this place we shall notice a combination of both, which was the subject of a patent granted to Mr. Charles Heathorn about seven years aro, since which time it has been in successful operation.

Ifeathorn's patent combination of a lime-kiln with a coke-oven. -The object of this insention, as expressed in the specification of the patent, is the preparation of quick-lime and coke in the same kiln at one operation. The economy of this process must be evidrut from the rircumstance, that the inflamma-
ble part of the coal which is separated to form it into coke, is the only fuel employed to bum the lime, and as the coke is in many places as valuable as the coal from which it is prepared, the cost, if any, of making lime, mu-t be reduced to the most trifling amonnt. Fir. 2.46- presents a vertical section of the lime-shaft and coke-ovens: a a are the side walls, 4 feet thick, of a rectangular tower, the intermal -pace being filled with limestone from the top to the iron bars 66 at bottom, whereon the whole column rests. The limestone is raised in a box d, or other proper receptacle, to the top of the building, by means of a jib and erane e, or other tackle, which is fixed at the back of the tower, together with a platform projecting beyond the walls for affording security and convenience for "landing" the limestone when raised as repreented, the jib is swung round, and the lime-box tilted, Ly which the whole contents are thrown down the shaft. The coke-orens, of which there may be two, or a greater or lesse

nomber, aceording to the magnitude of the work, are constructed and arranged in comention with tho I me-shaft in the eame mamer ns the two repremented in the diagram at $f f$. The we wens are sumplided with coal through irun doors in the front wall, (mot sem in the sertion;) the dones have a lomp mad mar-

 the: limeshaft through a series of hateral the (two of wheh are bronght inte view at g!\%) mat the drameht :s preventel from deranging the process in the oppasite won hy the interpasition of the partition wall h. Which direets tho course of the heat and flames theroghont the whole mase of the lime, the lower banat and prinejpal portion of which attans a white hat, the apper at red heat, nus the intervome partions the intermediate gradatinus of temperature. When the kish is completely dameal with home

pleted, the barricades at $i i$ are remored, the iron bars at $b b$ are drawn out, by which the lime fally down and is taken out by barrows. It sometimes happens, howerer, that the lime does not readily fall, having caked or arched itself over the area that encloses it, in which ease a hooked iron rod is employed to bring it down. To facilitate this operation in every part of the shaft where it may be necessary, a scries of five or six apertures, closed by iron doors, is made at convenient distances from the top to near the bottom of the shaft: two of these are brought into view at $k k$. Two similar apertures are shown in section in the coke orens at bb, which are for the convenience of stoking and clearing out the lateral flues $g g$ from any matter that might obstruct the free passage of the heated air. When the coals have been reduced to coke, the oren doors in front (not shown) are opened, and the coke taken out by a peel iron, the long handle of which is supported upon a swinging jib that acts as a movable fulcrom to the lever or handle of the peel, and facilitates the labor of taking out the contents of the oven. The operation of this kiln is continuons, the lime being taken from the bottom whenever it is sufficiently burned, and fresh additions of rav limestone being constantly made at the top.
hilns for drying corn.-If air and moisture be carefully excluded from grain, it may be kept uninjured for an indefinite length of time. This is proved by an extraordinary experiment made with some Indian corn found in the graves of the ancient Perurians, buried more than 300 years ago. Some of this corn being sown, it regetated and came to maturity. We belicre a similar fact is recorded respecting some grain found in the ruins of Herculaneum. But to preserve corn, even for a short period, it should be perfectly dry when housed, and carefully protected from dampness. But it not unfrequently happens, during of wet harrest season, that the corn is necessarily carried from the field in a damp state; and as few farmers have the means of properly and speedily drying it, large quantities are irrecoverably spoiled after all the labor and cost of production. The method of drying on the perforated floor of a kiln (which is usually resorted to where it can be obtained) is a very tedions, defective, and expensive mode, and is attended with great labor, owing to the grain requiring to be continually turned over and spread by a workman, whose utmost care is insufficient to cause every part to receive an equal degree of heat. It therefore becomes a matter of considerable importance to devise a simple, efficacious, and economical method of drying grain under these circumstances; and we think Mr. Jones's apparatus for this purpose, shown in the following figures, is well adapted to the end proposed. Fig. 2463 is a vertical section of the apparatus, which is formed of two iron cylinders $a b$, placed one within the other.

each being closed at the upper and lower end by two concentric cones, C D. The anumar space between the cyfinders, as also between the cones, is an inch and a quarter in width, for the reception of the grain, to be dried by its passing through the machine: both the internal and external bodies are perforated throughout with about 2300 holes to the square foot. The kiln is supported on five cast-iron columns, or legs, three of which are shown in the section as at E: these are attached to a strong iron riug which surrounds the base of the cylinder. From the heads of these columns descend, along the sides of the cone, five long bolts, as at G, which are passed through the same number of legs in the cast-iron ring surrounding the neck of the lower cone. From this ring proceed five stays, as at I, whick are fastened to the mieldle of the columns by a nut on each side. The body is snstained, both externally and internally, by iron hoops, as at K, and the distance between the cylinders is preserved by a number of short stays. In the front of the kiln a passage is cut out, as at \dot{O}, in which is fixed the fireplace, through which are passages for the heated air to pass into the cylinder. These passages, as well is the fiues, which proceed circuitonsly from the fire to the chimney, are best shown in the horizoatal
section, Fir. 246t. And in the rertical section of the detached fireplace, Fig. 2465, Q is the fire-hole, S the ash-hole, T the fire-bars, and U the chimney, which passes up nearly in the middle of the kiln The wheat is admitted into the kiln from abore through a lopper, and through the tube \mathbb{W}°, and, f:allin: upon the apex of the cone, is distributed equalle on all sides between the eylinders, the little a-perities in which not only slightly retard the descent of the grain, but likewiee impart to the particles a constant, slow, rolling motion, whereby every indiridual grain is exposed to the same degree of temperature; the grain from thence converges into the lower cone, and ultimately escapes through the spurt at bottom into sacks, or on to the ground, as may be required. The passage of the grain through the machine may be either accelerated or retarded, according to its peculiar condition, by enlarging or contracting the aperture through which it is discharged. The moisture is carriced off by evaporation through the perforations of the plates, with great rapidity. The kilns may, of course, be made of any dimensions. One of 6 feet internal diameter, and 12 feet in length, between the apexes of the upper and lower cones, has been said to be capable of perfectly drying more than 100 quarters of wheat in 2.4 hours.

In Fig. 2466 is shown a contrivance for drying grain which has been noticed in several French papers, and amounced as haring been successfully adopted in one of the departments. The apparatus consists of a long spiral tube a a like a distiller's worm, reaching from the basement to the upper floor and through the roof of the granary, which forms a passage for the heated air from a close store below. Externally round this tube is placed another tube $b b$, winding, like the interior one, in a spiral direction, and at about an inch and a half from it. This external tube recejres the corn from above, through a hopper c, and it is punched throughout with numerous small holes, through which the vapor escapes, as it is furmed by the damp corn coming in contact with the inclosed leated chimney. The corn, in consequence, becomes thoroughly dried before being discharged at the bottom, and that without the intervention of any manual labor.

Ilcbert's patent kiln was devised for drying washed grain; but as this kiln is equally applicable to the drying of malt, seeds, and all other matters of a similar kind and form, and by a mode that is as novel as it is efficacious, we give a description of it in this place. In the following engrarings, Fig. 2467 exhilits a longitudinal seetion of the apparatus, and Fig. 2468 a transverse section of a long air-trough, shown at e in Fir. 2467. At a is shown one of a series of fise or six common iron gastubes, placed side by side, and curved in the form repre-ented to constitute a fireplace; the space between the tubes serving for the admission of air fur combustion, which enters through the ash-pit door b at the side, provided with an air regulator: the fireplace is inclosed in front, at c, by a common door and frame. The heated air, and other products of combustion from the fuel, pass along the flue d to the funnel or chimney. The bottom and two sides of the flue d are of brick, but the top is of iron, being furmed of the bottom of a long, shallow iron box, or airtrough, e; this box has no cover but one of extremely open-wove canras, which furms a part of an endless cloth or band fiff, that is continually made to travel lengthwise over the whole area of the said trough-the edges of the eloth gliding between grooves and over tie-rods, (shown in the cross section, Fig. 2468, where the dutted lime f indicates the endless cloth,) that prevent the cloth from sarging. This cluth is made to travel by the revolution of three mhlers or druma g hi, to cither of which the moring power may be applied. The cloth is kept distended by a selfacting tightening roller, which is serewed agsant the hopper k; this
 hopper receives the grain to be dried, and is provided with it shoe at l, adapted to deliver a thin and uniform stratum of grain upon the endle-s cloth, while the same is made to pass under it, and over the trongh. Another endless band mm , of a simitar fabric to the oher, passes round the drums hi only, and is likewi-e provided with a selfacting tishtening roller, tixable th any convenient ohject. The lower emt of the six tubes af of the fireplace before mentioned have tha open communication with a rotative lhower o, by means of a broad chamel $p p$; nud the upher ents
 The operation of thin machine is as follows: A show motation, derived from any dirst mover, is to bo given to either of the drums ! $k i$, which will canse the emdlese cloth j to ghite gradunlly oner the top of the air-troughe; at the same time the bower 0 has hern put into action (hye comectinn with

ing it to fall back into the hopper, a shoot, or the band of a creeper, (not shown in the drawing,) is brought under the roller i, which conducts it to the required place. A very little experience in the working of this apparatus enables a person so to regulate its operations as to complete the drying o

damp grain by a single passage through it; such as varying the velocity of the air-forcer, the quantity of fuel in the stove, the supply of air through the ash-pit, the speed of the endless cloth, \&c., the means of doing which are so well understood by mechanics as to render a description of them unnecessary in this place.
KITE. This well-known juvenile plaything has been applied to several objects of utility. The most important of these is the invention of Captain Dansey, for effecting a communication between a stranded ship and the shore, or, under other circumstances, where badness of weather renders the ordinary means impracticable. The following is an abbreviated description of the invention, extracted from the forty-first volume of the Transactions of the Society of Arts, where the subject is given more in detail, with engraved illustrations:-A sail of light canvas or holland is cut to the shape, and adapted frir the application of the principles of the common flying kitc, and is launched from the vessel or other point to windward of the space over which a communication is required; and as soon as it appears to he at a sufficient distance, a rery simple and efficacious mechanical apparatus is used to destroy its foise and cause its immediate descent, the kite remaining, howerer, still attached to the line, and laoored by a small anchor with which it is equipped. The kite, during its flight, is attached to the line by two cords placed in the usual manner, which preserves its poise in the air; and to cause it to descend, a messenger is employed, made of wood, with a small sail rigged to it. The line being passed through a cylindrical hole in this messenger, the wind takes it rapidly up to the kite, where, striking against a part of the apparatus, it releases the upper cord, and by that means the head of the kite becomes reversed, and it descends with rapidity. In the experiments made by Captain Dansey, with the view of gaining communication with a lee-shore, under the supposition of no assistance being there at hand, a grapnel, consisting of four spear-shaped iron spikes, was fixed to the head of the kite, so as to moor it in its fall; and in this emergency, the attempt of some person to get on shore along the line would be the means resorted to. In those cases where a communication has been gained, and the maintenance of a correspondence has been the object, the person to windward has attached a weight to the messenger-in somc cases as much as threc pounds-which, having been carried up, has of course descended with the kite; the person to leetrard has then furled the sail of the messenger, and loaded it with as much weight as the kite could lift; then replacing the apparatus, and exposing the surface of the kite to the direct action of the wind, it has rapidly risen, the messenger running down the line to windward during its ascent. The kite with which Captain Dansey performed the greater part of his experiments extended 1100 yards of line, five-eighths of an inch in circumference, and would have extended more had it been at hand. It also extended 360 yards of line $1 \frac{3}{4}$ inches in circumference, and weighing 60 lbs . The holland weighed $3 \frac{1}{2} \mathrm{lbs}$; the spars, one of which was armed at the head with iron spikes, for the purpose of mooring it, $6 \frac{3}{4} \mathrm{lbs}$; and the tail was five times its length, composed of 8 lbs , of rope and 14 lbs . of elm plank. A complete model of the apparatus was deposited with the society, who presented Captain Dansey with their gold Vulcan medal for his invention and communication.

KNEADING is the process of making the stiff paste of flour and water for being afterwards baked into bread. It is usually effected by a sort of pommelling action of the hands and arms, and sometimes of the fect of the bakers. A rariety of machines have been at different times proposed for superseding the barbarous process we have just mentioned; they have, however, been but very partially adopted, the bakers in general preferring to coutinue their "good old-fashioned" dirty practice. It is said that at Geneva all the bakers of that city are compelled by law to send their dough to be kneaded at a public mill constructed for that purpose. At Genoa, also, mechanism is employed for kneading: the apparatus employed at this place has been published in several of the journals, from which it appears to be so rude and ill-contrived as not to need a description in this place.

1. The petrisseur, or mechanical bread-maker, invented by Cavallier and Co. of Paris, consists in a strong wooden trough, nearly square, with its two longest sides inclined, so as to reduce the area of the trough in the direction of its width, and adapt it to the dimensions of a cast-iron roller, the axis of which
passes through the ends of the trough; the bottom of the trough is semi-cylindrical, leaving a smal. space between it and the roller, which space is adjustable by levers. All along the top of the outsider of the roller is fixed a knife-edge, which, with the roller, divides the trough into two compartments Upon the axis of the roller is a toothed wheel, which takes into a pinion; this pinion is oturned by a winch, and communicates thereby a slower motion to the roller; and the roller, by its rotation, forces the materials or dough through the narrow space before mentioned left between it and the bottom of the trough-the knife-edge on the top of the roller preventing the dough from passing by it. Being thus all forced into one of the compartments, the motion of the roller is reversed by turning the winch the contrary way, which then forces the dough back again through the narrow space under the roller into the first compartment; in this manner the working of the dough, alternately from one compartment to the other, is continued until completed.
2. Another plan was to make the trough containing the dough revolve with a number of heary balls within it. The trough in this case is made in the form of a parallelopipedon-the ends being square and each of the sides a parallelogram, whose length and breadth are to each other as five to one. One side of the trough constitutes a lid, which is removed to introduce the flour and water, and the trough is divided into as many cells as there are balls introduced. The patentee states, that by the rotation of the trough the balls and dough are elerated together, and by their falling down the dough will be subjected to beating, similar to the operations of the baker's hands.
3. Instead of employing a revolving cylinder, it is fixed, an agitator is made to revolve, having a series of rings angularly attached to an axis, extending the whole length of the trough.
4. Mr. Clayton, a baker of Nottingham, lad a patent in 1830 for a machine somewhat similar to the last mentioned, inasmuch as a set of revolving argitators are employed to produce the kneadng action. The agitators are longitudinal bars, fixed to arms, which radiate from the axis, and they are forced through the dough in their revolution; but the cylinder in which they revolve, and which contains the materials, is made to revolve at the same time in a contrary direction-the motion of the latter being imparted by a short hollow axis, while the axis of the former is solid and passed through the hollow one. The solid axis, which is turned by a winch, has on it a bevelled pinion, which, by means of an intermediate bevelled wheel, actuates another bevelled pinion fixed on the hollow axis, and therefore causes it to revolve in the opposite direction. These tro simultaneous and contrary motions constitute the novelty claimed by the patentee, who states, that dough-making machines similar to his own have all failed for want of such an arrangement. This statement, coming from a baker, commands attention; but we cannot concur in its truth, since we know that the following plan of a kneading-machine works well without opposite simultaneous motions, and without any agitators or beaters, which absorb a great deal of power without producing an adequate effect.
5. Hebert's patent kneading-machine.-In this a cylinder of from 4 to 5 feet in diameter, and ouly about 18 inches wide inside, is made to revolve upon an axis, which is fixed by a pin during the revolution of the cylizder. The flour is admitted by a door in the periphery, which closes air and water tight ; and the water or liquor passes through a longitudinal perforation in the axis, and thence through small holes among the flour, in quantities which are regulated externally by a cock. By the rotation of the eylinder the dough is made to be continually ascending on one side of it, whence it falls over upon the portion below. When the mixture becomes pretty intimate and uniform, its adhesive property causes it to stick to the sides of the cylinder, and the dough would then be carried round without much advanciug the procesz, were it not for another simple contrivance. This is a knife-edge, or scraper, is inches lonf, which is fixed along the top of the cylinder in the inside, so as barely to touch its surface : the knife is fixed to two flatiarms extending from the axis, and these arms have sharp edges so as to scrape the sides of the cylinder; thus the cylinder is kept con-tantly clean from tho sticking of the durfh, which, as soon as it ascends to the top of the cylinder, (if it does not tear away of itself.) is shared ofl' by the knif, and falls down with great force upon the bottom; and as this eflect is comstamt Turing the notion of the cylinder, it must be evident that the process of kincating is sum completed by it. When that is done, the dorer of the cylinder is opened, and the contents discharged into a recipient beneath; at which time the scraper is cansed, by a winch on the axis, to make une revolution of the now fixed cylinder, which clears ofl any adhering dough, and projects it through the demerway. As the dough in this machine may be said to knead itself-there being no arms, beaters, or argitators whatever-it is calculated that the power saved by it is very considerable; while, from the simplicity of its construction, the cost is moslerate.

The patentee is at present engaged in combining with this kneading machine an apparatus fur preparing carbonated water, highly charged with the gas, with which he proposes to mix up the thur to form dough, for the purpose of making the bread spongy or vesientar, without havine revoree th the fermentative proce-s; the result of which process, muler the most faverable circumstanees, he com-iders to be detrimental to the health of those that eat the bread, (owing to the depmition of fermantable matter in the stomach,) while it is destructive of a portion of the nutriment of the flome

KNITTLNG MACHINE, Improved. From the specification of the inventor, J. R. Ellis, of bumeme
 knitting unchine. Fïn 2177 is a vertienl mel transwere section of it, the same being taken in such
 work down towards the roota of the needles, wher the formation of wehe new lexp. Sueh wher tieure na may be necesary to n proper reprexentation of the varions parts of my inprownonts, will bo heretiter refirreal to and describenk.

 ber of stitelies at once, as does the stocking toom. It is a mokhine in charnctor likn ofhere in uas, at-
though it differs from the same in sundry important particulars which constitute my invention, anc which I shall hereafter describe.

In the dramings above mentioned, A denotes the endless chain belt of knitting-ncedles, which is sc made that the needles a a a, dc., instead of being arranged or made to stand horizontally, and at right angles to the rertical surface of the belt, are made to stand vertically or in the plane of the belt, as seer at a a a a figures 2469 and 2477 .

The driving pinion b, instead of being arranged within the belt as it has been in other machines of this character, is disposed on the exterior surface of it, and works against, or with the projecting points of the belt. That part of the inner surface of the belt, which is immediately adjacent to the pinion, i supported by, and works round a stationary vertical post or guide c, (see fig. 2471, which is a vertical section of the belt and its support) that extends upwards from a horizontal arm d, which projects from the
muin frame B. The opposite end of the endless belt is supported by a straining contrivance L , which is similtar to such as are in common use in such machines. The work or knitting hands within is the endless belt, instead of without it, or on the outside of it.

The yarn guide or director is seen at D. It consists of a curved arm, made to extend from a hori-. zontal rocker shaft f, and to have a small conical and split tube g, on its outer end, through which tube the yarn is carried from the bobbin placed in any conrenient position.
$24 \sim 0$

 machincry for operating it. In order that the stiteh look many not only tahe up the limp, leit onet it aver the end of tho needle nul tho yarn luid on the nee tle by tho yarn directar, unt this tol firth or maken a uew stitel, the hook shombl luve the following movements inipurted to it. Ifir t, it shatid tre thate to
pass into the groove of the needle, and under the stitch on the needle. Next, it should be made to rise upwards so as to carry the stitch up to the hooked end of the needle. Next, it should be moved laterally far enough to be opposite the space between the needle (first operated upon) and the next needle. Next, it should be moved forwards between the two needles and so as to cause the shoulder i, to press or force, or cast the stitch over the looked end of the needle. The stiteh hook should next be drawn backwards, and depressed so as to disengage it from the stitch. The morements of the stitch hook may be produced by rarions kinds of combinations of mechanism. No such machinery forms any part of my invention, and I lay claim to none in particular, but employ such as may be suitable: that adopted by me is as follows, viz:

The stitch hook E , is fastened to the lower end of a bar a^{\prime}, which works or slides freely up and down through a piece of metal b^{\prime}, and is jointed by a joint screw c^{\prime}, to a connecting rod d^{\prime}, on whose upper end is a strap f^{\prime}, passing around an eccentric g^{\prime}, fixed on the main driving shaft h^{\prime}, of the machine. The upward and downward movements of the stitch hook are effected by such eccentric during its entire revolution. In order to produce its forward and back movements, a lever i^{\prime}, working on a fulcrum k^{\prime}, is jointed at its lower end to the rear end of the piece of metal b^{\prime}. The upper end or arm of the said lever rests against a cam l^{\prime}, fixed on the driving shaft (sce fig. 2473 ,) which denotes a top view of the said shaft, and the cams applied to it. See also figures 2474 and 2475 , the former of which is a side view of the said cam, and the wing cam to be hereinafter described, while the latter is a top view of the same, made so as to show the form of the wing cam. Dmring the revolution of the cam l^{\prime}, the lever i^{\prime} will be moved forwards and backwards by the action of the said cam and a spring m^{\prime}, made to bear against the rear side of the said lever. The small wing cam n^{\prime}, placed on the side of, or to project above the cam l^{\prime}, serves to press the upper end of the lever i^{\prime} laterally, in order to produce the lateral motion of the stitch hook. A spring o^{\prime}, (see fig. 2473,) presses the end of the lever i^{\prime}, against such wing cam.

Both the stitch hook and the yarn guide, are arranged between the arms of the presser, which presser consists of two arms, k, l, extended at right angles from a horizontal rocker shaft m, and loug enough to play between the needles. These arms should be made to operate so as to press the work down to the roots of the needles, after the formation of each stitch; they should next be raised upwards far enough to allow of the movement of the chain belt, which having taken place, they should be depressed so as to hold the work down until the stitch hook has fairly hooked under or taken up the stitch on the needle, against which it may be acting.

The presser should next be elevated with the stitch hook, so as to allow the work to rise. While the stitch hook is casting the stitch or loop over the hook of the needle, the presser should be stationary, but as soon as this has been effected, and the hook has withdrawn itself from the stitch, the presser should be depressed so as to force the work down to the roots of the needles. Such movements may be attained by any suitable machinery applied to the rocker shaft of the presser, such mechanism constituting no part of my invention;-but that which I employ may be thus described :-Fig. 2476 is a front clevation of the machine as it appears when its front plate p^{\prime}, and the endless chain Λ, are removed from the re-
mainder of the mechanism. Fig. 2400 is a vertical cross section of the machine; the same being taken looking towards the left through the cam, which operates the presser.
From the shaft m of the presser, an arm q^{\prime} extends towards the front, and is joined at its outer end to an upright and bent bar r^{\prime}, whose upper end is forced upwards against the cam s^{\prime}, by means of a spring ' t^{\prime}, one end of which is attached to the bar r^{\prime}, and the other to the frame or box B, as seen in figs. 2476 and 24%. The cam s^{\prime} is fixed on the driving shaft, and during its revolution, it, in conjunction with the spring t^{\prime}, produces the rocker motions of the shaft m, such as will cause the presser to operate in the manner required.
Directly after each movement of the chain belt, the yarn guide or director D, should be moved forwarl beyond the back needles, so as to lay the yarn on that needle on which the new stitch is to be made. After the stitch has been formed, the yarn guide should be retrograded and carried back of the needles, in order that the chain belt may perform its next movement without obstruction. The mechan$\mathrm{i} m$ for operating the yarn guide or director D , consists of a cam $u^{\text {i }}$, fixed on a driving shaft, a slide rod or bar r^{\prime}, (whose lower end is jointed or hinged to the outer end of an arm $2 w^{\prime}$, extended from the shaft f, and a spring x^{\prime}, which forces the bar v^{\prime} up against the cam-the said cam being shown in fig. 2470 by dotted lines.
The machinery for moving the chain belt forms no part of my invention, except so far as the arrangement of the gear or pinion B and the joints $x x x$, \&e., of the chain belt is concerned. Ou the main driving shaft, there is another cam a^{2}, which operates against the upper end of a lever b^{2}, which turns upon a fulerum c^{2}. Sce fig. 2478, which is a transverse section of the machine, taken through such eam, and looking towards the right, serves to show the machinery actuated by it. Λ spring d^{2}, is used to draw the upper end of the lever against the cam. The lower end of the lever is hent at right angles, or horizontally, and has two impelling pawls $e^{2} f^{2}$, jointed to it, and made to extend forwards, and respectively to act in concert with two ratchet wheels $g^{2} h^{2}$, fixed upon the upright shaft i^{2}, of the pimion b which works the chain belt. These ratchet wheels and pawls are seen in fig. 2477 and 2479 , the latter figure being a horizontal section of the machine, taken just above the pawls, and so as to exhibit them. The teeth of one of the ratchet wheels are arranged in a direction opposite to those of the other, in order that when its pawl is in action with it, a motion of the shaft z^{2}, may be prodnced in a direction the reverse of that effected by the movements of the other pawl and its wheel. By the movement of either pawl an intermittent rotary motion of the shaft i^{2} will take place.

The two pawls pass respectively through slots $l_{i}^{2} l^{2}$, made in a vertical stationary plate m^{3}; (see fig. 2480 , which is a front view of the phate m^{2}, and the shifting contrivance attached to it. Such shifting contrivance is a slide n^{3}, which is capable of being moved longitudinally, anl has a projection o o^{2} extending down between the two pawls. When the slide is moved in one direction, it bears against one of the pawls, and throws it out of action upon its ratchet wheel, and at the same time, in consequence of the two pawls being connected by a spring p^{2}, it draws the other pawl against the other ratchet wheel, thereby ereating a reverse motion of the shaft 2^{2}. The object of the two pawls is to enable the movement of the endless belt A to be reversed, so as to canse the knitting to be produced in an opposite direction; one pawl, however, is sufficient to produce the morement necessary to knit in one direction.

The shaft f, which carries the yarn director D , is made to slide longitudinally in its bearings, and is connected into the slide n^{2}, by a lever q^{2}, which turns upon a fulerum r^{2}, and has its ends iuserted in wotches made in the slide n^{2}, and the shaft f, and this so that the movement of the slide in one direction may create a sliding movement of the shaft, sufficient to move the yarn guide into the proper position to commence the knitting in the reverse direction.

The shifting contrivance may be operated by the attendant, or by any other proper means. Some parts of other mechanism which 1 append or attach to the above described machine, and for purposes not necessary to mention, may be seen in the drawings. As such mechanism forms no part of my invention, I make no further reference to it or deseription of it.

On the driving shaft there may be a fly wheel r^{2}, from which a crank s^{2} may extend, and for the purpose of enabling a person to put the shaft in motion-or the said shaft may be revolved by a pulley applied to it, and mande to receive an endless belt from any suitable driving drum.

By laving the endless chain of needles made and operated in the above deseribed manner, the chain extends around the work, instead of the work encompassing the chuin, as it does in other well-known knitting machines. My improred arrangement and dieposition of the work exposes all the joints of the links of the chain so that a workman or attendunt can readily remove one or more of the needles, with much greater convenience than can bo done on the suid well-known mathines, $n s$ in the latter he would be obliged to wholly or partially remove the mork from the nealles in order to nccomplish the addition or subtraction of one or more of the necdles, such aldition or suhtraction being for the purpose af embling him to " widen" or "narrow" the work. My improwement affiorls great mivantages in knitting a heel, us the same can be effected in n much more prorfect momer, without that struin mon the work und needles that is incilent to the old and well-known machines.
 of sub-tances, and adaptel by differences in form to varions ases; but the two principul sorty muy be slased under the torns of pocket knives and tnhbe knives, with their asompmement-, forkw.

In the making of preket-knife bladew, one worman and a bey are genorally cmplayed; the lny
 and takes back the rod from whieh the lant bhade was formed. One heat is reguirel to fashon the blade, and a second to form the tame, by which it in fastemed into the hamillo. The shill of the fur er is displayed in forming it so perfectly hy his hammer, ne tos require hat wory litele to be file or retmat

 has an inviatant, who, with it large hammer, atrike alternately with hion; menl the hammerme of all

Viol. 11.-II
blades is continued after the steel has ceased to be soft, in order to condense the metal and render it very smooth and firm. Table-knife blades are usually made with iron backs, which are welded to the steel by a subsequent forging, to that of forming the cutting edge; the thick piece that joins the handle, called the shoulder or bolster, as well as the tang that goes through the handle, is forged out of the iron immediately after the welding of the steel blade: dies and swages being employed to perfect and accelerate the shaping of these parts. When the forging is completed, the blades undergo the processes of hardening and tempering, explained in article Tempering. The blades are then ground upon a wet stone, abont 4 feet in diameter, and 9 inches wide, which roughs out the work; they are subsequently finished or whitened, as it is termed, upon a finer dry stone; and the shoulders or bolsters are ground upon a narrow stone, about 3 feet in diameter, which completes the grinding. The next process is that of glazing the blades, which is effected upon a wooden wheel, made up of solid segments, well fitted and secured together, and with the ends of the fibres of the wood presented to the periphery of the circle; over this is extended a piece of leather, which is charged with emery or other powders, adapted to the finish or nature of the work required.

The cheaper kind of forks are made by casting them from malleable pig-metal, sometimes denominated "run-stcel ;" and some of these, which are well annealed and worked under the hammer, turn out very serviceable and good. Those made of wronght-metal, were formerly either forged, and the prongs drawn ont by the hammer, and welded together, or they were forged into one solid piece, and the spaces between them formed by cutting away the metal. These processes, however, were tedious and expensive, and a great improvement in their manufacture has been introduced. The tang, shoulder, and a thick, flat piece, called the blade, are forged, and the blade is then submitted to the action of a pair of dies, contained in a powerful fly or stamping-press; the dies being so formed as to force or cut out the superflnous portion of the metal and raise the curved swelled portions at the junction of the prongs, termed the bosom. The forks after this operation are filed up, ground, glazed, and burnished, when they are ready for hafting, which is a distinct business.
The instruments required for hafting knives and forks are few and simple. The principal are, a small polishing-wheel and treddle, mounted upon a stand, a bench vice, and a kind of hand vice to fix in the bench vice, termed a snap-dragon; it has a pair of long projecting jaws, adapted to hold a piece of metal or other substance, with the flat side uppermost, in order to be filed or otherwise worked; a few files, drills, drill-box, and breast-plate, burnishers and buffis, emery, rotten-stone, \&c. The substances used for covering the handles are almost infinite; the chief are bone, horn, ivory, tortoise-shell, and wood of every kind. The several pieces of the handle being filed to the shape intended, holes are drilled through them for the pins by which they are afterwards riveted together. The pinning is at first loosely done, until the blades, springs, and all the parts are well adjusted and fit closely; they are then firmly riveted together. The handles are afterwards scraped and then polished, by means of buffing, on the wheel.

KNIFE-SHARPENERS. This term has been given to a variety of convenient modern instruments, especially adapted to the sharpening of knives at table, but particularly carvers, and are intended as substitutes for the common stecl. For these instruments several patents have been obtained, and a considerable manufacture of them has been established.

Filton's patent sharpener, represented in Fig. 2469 , consists of two horizontal rollers, placed parallel to each other, which revolve freely upon their axes, (represented by the two black dots;) at uni-
 form distances, there are fixed upon each roller narrow cylinders or rings of hard steel, the edges of which are cut into fine teeth, and thus form circular files; the edges of the files in the opposite rollers overlap each other a little, so that when a knife is drawn longitudinally between them, the edge of the knife is acted upon on both of its sides at once. The rollers turn round with the slightest impulse; consequently, they wear uniformly, and will last a considerable time. A good edge is given to a knife by just drawing it from heel to point two or threc times between the rollers; and thus obviates the necessity of imitating the skill exercised by a butcher upon his stcel.

Westby's knife-sharpener, which was patented in 1828 , is an ingenious instrument; an immense quantity of them have been sold, and it is said, have been the means of greatly enriching the proprictor of the patent. Fig. 2470 exhibits an end elevation of the instrument, and Fig. 2471 a side elevation of the bars, with a section of the boxes a and b, to show the interior. The same letters in each figure bave reference to similar parts; a is a small oblong box, surmounted by a smaller box b; in the top of the latter there is a slit made thronghout its length, and of sufficient width to receive the square steel bars $c c$. The box a has two similar slits. The surfaces of the bars are draw-filed; they pass through the slit in b, and alternately through both slits in a, so as to cross each other, as shown in Fig. 2470. The lower ends of these bars are supported upon a plate of metal d, which can be clevated, so as to l,ring a different portion of the bars into operation, by means of the screw underneath; $f f$ are two screws passing through the holes in d, to preserce its parallel motion, and likewise to support the bottom of the box; h is a tightening screw to steady the bars $c e$.

The mode of operating with this instrument is merely to place the edge of the knife upon the bars, -o as to bisect the angle formed by them, and then draw the knife backward and forward. As the surfaces of the bars wear away, different sides can be presented, or they can be shifted from end to end, so as to present fre:h surfaces to the knife.

Churrh's potent knife-sharpener consists of two very flat truncated cones, fixed with their smaller
surfaces together, and with several rectangular projections in the one, fitting into similar cavities in tho other. The conical surfaces of both pieces are serrated with a series of very fine tecth extending angularly towards their centres; these are placed upon the shank of the fork, between the shoulder and the handle, with which they correspond in diameter so nearly as to constitute an ornamental finish to the small end of the handle. In the position and size of these consist the principal merit of the sharpener. When used for sharpening scythes, or other large cutting instruments, the conical pieces are made larger, and fitted on an axis betreen two prongs of a forked apparatus, with an appropriate handle.

Westhy's second patent.-The extraordinary suceess attendant upon Mr. Westby's contrivance for sharpening table-knives induced him to figure a second time as a patentee, "for certain improved apparatus to be used for the purpose of whetting or sharpening the edges of the blades of penkives, razors, and other cutting instruments." The first improvement mentioned in the specification consists in the application to a hone, or oil-stone, of a guide to keep the edge of the razor, or other cutting instrument, at the same angle with respect to the surface of the hone, during the operation of whetting. This is cffected in two ways: first, by placing over the hone a plate of metal extending its whole length, and adjustable, at any required distance parallel to its surface, by set-screws; now, in the operation ot sharpening, the back of the instrument is kept resting upon the guide-plate, while the edge is applied to the hone. The second method consists in the application of two hones placed in an erect position, with a space between them for the razor, which is to be fixed by serews into a small horizontal frame, made to slide upon a circular rod, so that the edge can be applied alternately to the hones; these ean be elevated and depressed at pleasure, so that their surfaces may be miformly worn while in use. The patentee also mentions in his specification a method of attaching to his hone a leather strap which is male double, and kept stretched by adjusting screws attached to the frame of the hone, or else to the and of a rod extending lengthwise between the two folds of leather. This last contrivance does not appear to us to be scientifically adapted to the object in view, as the pressure of the ellge of the instrument upon a strap of leather only supported at its extremities, must produce a tendency in the leather to wrap round the acute angle of the edge of the instrument, and render it obtuse.

LABURNUME WOOD is in use anoug turners pulleys and blocks are made of it. Being a hard and compact wood, it is eapable of enduramee when exposed to the weather, and for various purposes is extremely valuable. When perfectly dry, a cubic foot weighs 52 lbs. 11 oz

LAO. A resinous substance, the product of an insect found on several different kinds of trees in the Fast lndies. These insects pierce the small branches of the trees on which they feel, and the juice that exudes from the wounds is formed hy them into a kind of cells for their egres. late is impurted into this country adhering to the branches in small tramparent grums, or in semi-trambarent that eakes. The first, encrusting the bramelies, is called stiek-lac ; the second are the grains pieked of the bramehes, and called seed-lac; the third is that which has undergone a simplo purification, us we shall pressatly motice. There is a fourth, called lump-lac, made by melting the seed-lac, mad furming it into lump. T'o purify the lac for use the matives of Iudia put it into long camas bars, which they heat orec a charcoal tire until the remin melts; a portion of the lac then exudes throngh the bobs, whichare sulate quantly twisted, or wrung by means of cross sticks at tho ends of tho bags, tho surfaco of the latter being seraped at the same tume to accelarate the procees. The chief consumption of lac in this comery is in the manufacture of seating-wax mul varni-hwo. It has been a great desideratum among artists to render shell lace colurless, as, with the exception of its dark-brown hate, it prosenses all the propertion asential to a good apirit varni h in a higher degree than any other known re-in. 'The prowear fivent by Dr. Hare leaves mothing to desire, exeepting on the seore of economy. Were the oxmmuriato of putath to ho manufactured in the largen way, the two processes, hat of nimbing the walt mat of bleadsbig the resin, might le mbantageounly conbined. "Disedse in an iron kettle one part if pearla-h in
about eight parts of water; add one part of seed or shell lac, and heat the whole to ebullition; when the lae is dissolved, cool the solution, and impregnate it with chlorine till the lac is all precipitated. The precipitate is white, but its color is deepened by washing and consolidation; dissolved in alcohol, lac bleached by the process above mentioned yields a varnish which is as free from color as any copal varnish."

The following is Mr. Field's process: Six ounces of shell-lac, coarsely powdered, are to be dissolved by gentle heat in a pint of spirits of wine; to this is to be added a bleaching liquor, made by dissolving purified carbonate of potash, and then impregnating it with chlorine gas till the silica precipitates and the solution becomes slightly colored. Of this bleaching liquor add one or two ounces to the spirituous solution of lac, and stir the whole well together; efferrescence takes place, and when this ceases, add more to the bleaching liquor, and thus proceed till the color of the misture has become pale. A second bleaching liquor is now to be added, made by diluting moriatic acid with thrice its bulk of water, and dropping into it pulverized red lead, till the last added portions do not become white. Of this acid bleaching liquor, small quantities at a time are to be added to the half-bleached lac solution, allowing the effer rescence, which takes place on each addition, to cease before a fresh portion is poured in. This is to be continued until the lac, now white, separates from the liquor. The supernatant fluid is now to be poured away, and the lae is to be well washed in repeated waters, and finally wrung as dry as possible in a cloth. The lac obtained in the foregoing process is to be dissolved in a pint of alcohol, more or less, according to the required strength of the varnish ; and after standing for some time in a gentle heat, the clear liquor, which is the varnish, is to be poured off from the sediment.

Mr. Luning's process is as follows:-Dissolve five ounces of shell-lac in a quart of rectified spirits of wine; boil for a few minutes with ten ounces of well-burnt and recently heated animal charcoal, when a small quantity of the solution should be drawn off and filtered: if not colorless, a little more charcoal must be added. When all color is removed, press the liquor through silk, as linen absorbs more varnish, and afterwards filter it through fine blotting-paper. In cases where the wax found combined with the lac is objectionable, filter cold; if the wax be not injurious, filter while hot. This kind of varnish should be used in a temperature of not less than $60^{\circ} \mathrm{F}$.; it dries in a few minutes, and is not afterwards liable to chill or bloom; it is therefore particularly applicable to drawings and prints which have been sized, and may be advantageously used upon oil paintings which have been painted a sufficient time, as it bears out color with the purest effect. This quality prevents it from obscuring gilding, and renders it a valuable leather varnish to the bookbinder, to whose use it has already been applied with happy effect, as it does not yield to the warmth of the hand, and resists damps, which subject bindings to mildew. Its useful applications are very numerous, indeed, to all the parposes of the best hard spirit varnishes; it is to be used under the same conditions, and with the same management. Common seed-lac varnish is usually made by digesting eight ounces of the bright, clear grained lac in a quart ot spirits of wine, in a wide-mouthed bottle, putting it in a warm place for two or three days, and occasionally shaking it. When dissolved it may be strained through flannel into another bottle for use. In India, lac is fashioned into rings, beads, and other trinkets. Its coloring matter, which is soluble in water, is employed as a dye. The resinous portion is mixed with about three times its weight of finely powdered sand, to form polishing stones. The lapidaries mix powder of corundum with it in a similar manner.

LACE. A delicate kind of net-work, composed of silk, flax, or cotton threads, twisted or plaited together. See Bobbin-work.

LACQUERING is the application of transparent or colored varnishes to metals, to prevent their becoming tarnished, or to give them a more agreeable color. The basis of them is properly the lac described in the preceding article; but other varnishes made by solutions of other resins, and colored yellow, also obtain the name of lacquer. Strictly speaking, lacquer is a solution of lac in alcohol, to which is added any coloring matter that may be required to prodnce the desired tint; but the recipes that have been published in various scientific journals contain apparently a great many useless articles.

Lacquer for Brass.

$\frac{3}{4} \mathrm{oz}$. of gum guttre,	$\frac{3}{4} \mathrm{oz}$ of terra merita,
2 oz . of gum sandarae,	2 oz . of oriental saffron,
2 oz . of grum elemi,	3 oz of pounded glass,
1 oz . of dragon's blood, of the best q-ality,	and
1 oz . of seed-lac,	20 oz . of pure alco

Before, however, the reader ventures to meddle with so formidable a list of ingredients as the foregoing, we would recommend him to make trial of the following more simple compound:-Take 8 oz . of spirits of wine, and 1 oz . of annatto, well bruised; mix these in a bottle by themselves; then take 1 oz . of gamboge, and mix it in like manner with the same quantity of spirits. Take seed-lac varnish, (described under the previous article Lac,) what quantity you please, and color it to your mind with the above mixtures. If it be too yellow, add a little from the annatto bottle; if it be too red, add a little from the gamboge bottle; if the color be too deep, add a little spirits of wine. In this manner you may color brass of any desired tint: the articles to be lacquered may be gently heated over a charcoal fire, and then be either dipped into the lacquer, or the lacquer may be cevenly spread over then with a brush.

LACTOMETER. An instrument for the purpose of ascertaining the different qualities of milk from its specific gravity compared with water. On this subject Dr. Ure observes, that it is not possible to infer the quality of milk from the indications merely of a specific gravity instrument, because both cream and water affect the specific gravity of milk alike. "We must tirst use as a lactometer a graduated glass tube, in which we note the thickness of the stratum of crean afforded, after a proper interFal, from a determinate column of new milk; we then apply to the skimmed nilk a hydrometric
ustrument, from which we iearn the relative proportions of curd and whey. Thus the combination of the two instruments furnishes a tolerably exact lactometer."

Frye's laetometer.-Fig. 2472, for testing the quality of milk; made under the "4ヶ.. direction of the Board of Agriculture of the American Institute, in the city of New Fork, who have strongly recommended it to public patronage.

This instrument was invented for the purpose of ascertaining the density, and fixing the standard weight, of pure unadulterated milk, as it is produced in the best grazing districts in the country, and with a view of detecting the frauds practised by adulterating milk with water, so often complained of by the consumer, in large towns and $3 / 3$ cities throughout the Union.

Directions for using the instrument. Will the tin tube, which accompanies the in- \% maik nod strument, with the milk to be tested at a temperature of about 60 degrees, and suspend the lactometer in the milk, and if the milk is proof, the instrument will sink to the degree marked 100 on the scale, or \mathbf{p}, showing that the milk is at par; bnt if the milk has been adulterated with water, or has been taken from cows that have been fed on slops from breweries, and kept confined in stables in warm weather, the instrument will, in all such cases, sink below par, and show the per centage of adulteration, which, in some instances, will be 25 per cent. below par; but if the milk is superior, the instrument will rise above \mathbf{p}, and show the per centage above par, which, in some instances, will be 10 per cent. Each division on the scale is 5 per cent.

Any person can test the correctness of the lactometer by mixing water with pure milk, asd note the per centage of water which they use, and suspend the instrument in the mixture, and it will give the proportion of water added.

To farmers the instrument has proved to be very valuable, as a ready means of testing the relative quality of their cows, by inspecting their milk, and also showing the effects produced by a change of the animals' food, as its quality will change the density of the milk.

LADDER. A portable frame, containing steps for the feet. There are various kinds, most of which are tow familiar to the readers of this work to need description. Ladders are very advantageously employed in the raising of weights, by the addition of a pulley-wheel at the top, or suspended over them; passing over this pulley is a rope, to one end of which is attached the article to be raised.

Ladders are the universal means of ascent and descent in mines, the distance between the levels being generally 60 feet; a single ladder in former times reached from one to the other, but the most usual length at present is from 4 to 5 fathoms. In the perpendicular shafts the inclination is commonly such that the ladder may nearly traverse the breadth of the shaft; from 18 to 21 inches in the fathom is the inclination which experience has determined to be the best calculated to facilitate the progress of the miner, being that which enables him to stand upright on the ladder with the leg clear from the stave above, so that the effort is divided between the upper and lower extremities. The distance between the staves is generally 12 inches; in some old ladders they were 14 inches apart, but 10 inches is found the best for facilitating the climbing, by which one-fourth of the labor is estimated to be saved. The staves are of wood, though iron is in some instances preferred; in others it becomes slippery and rough from the corrosive action of water impregnated with copper, dc. Each ladder usually terminates on a sollar or platform, which leads to that below, which is generally placed parallel to that above.

LAMI'S. The whole series of improvements made in lamps up to the present time, must be consirtered as the reward of no inconsiderable expenditure of ingenuity in the inventors themselves, and of a clear perception of the working of physical laws, enabling them not only to overcome the difficultics of the subject iteclf, but also to adapt the new contrivances to gencral use, and to the managentent of the unskilled. A general view of this interesting subject will place clearly before us the essential point which it has been the object of the inventors to attain, sometimes singly, sumetimes several at unce. 'I'hey are the e:
(a) T'o sclect such a form (section) of wick that the quantity of decomposed jil, and the simultaneons sapply of air, may staml in such relation to each other, that the hydrogen ad carbon may bu consecutively consumed, and consequently no smoke produced.
(b) To make the dintance between the burning part of the wick and the surface of the oil an unchangeable as possible, in order that as much oil may be drawn up at last as at first.
(c) To place the reservoir of oil in such a position that the shadow shall ocasion little or no inconvenience. The use made of the lamp must, of course, here regulate its form; it is not, however, always a fault when these do not exactly correspond. Thus the shadow thrown by wall lamps is unimportant, as the lamp itself covers the shadow: in like mamer, the shadow of a commonstudy lamp camot be considered as a fault, being used only by one prerson, although its prevention is always an improte nient.
(d) To throw the light, radiating from the flame, hy means of collecturs and reflectors, from thene parts where it is of little service, in the direction where it is most required.

The requisitions stated under a have been complied with in two ways; on the one hand, by controlling the necess of air, (the quantity of air;) on the other, by regulating the supply of oil, mud often by leuth at the sance time. They have reference to that part , if the lampe called the burner.

The serupulous cmuncration of the manifold moditications, und, for the grenter part, mimportme improwements in lamp, which have heon prexented to the public during the lant twenty or thirly sean, would be but a tations labor ; and in the following ohervations we slatl only lay lefore the bedir thone inventions which appar to indicate innortant pregreses, or form epocha in the hintory of this subject.

Worms' lemp.-The Womm' happ, shown in Figas 2173 mad 917.4 , is well known, sud characheriand
 phaced in small bumelles side by side, forming together a that ribbon. 'The effect of this is ubsious the
edges of the flame are at no point so distant that a nuclens can form in the centre, which, from want of air, will burn incompletely and smoke. The flat socket c serves to hold the wick; it is soldered in the diameter of the wide ring d, which, with its recurved edge, rests upon that of the glass globe a a. An important addition to its flat form is its movability, and this is common to all the following kinds of lamps. The teeth of a wheel e and e^{\prime}, more distinctly seen in Fig. 2474, are somewhat advanced ints the space occupied by the wick, a cnt being made in the socket, so that they press the wick in some measure against the back side. According as the serews are turned the wick is either raised or lowered, and a larger or smaller portion of it is engaged in the conbustion. When the wick is high a large quantity of oil is decomposed; and when low a small quantity in the same space of time: the supply of oil is, therefore, easily regulated.

By means of the stem a the oil vessel can be placed upon any kind of foot. Besides the very unequal, constantly decreasing height of the surface of the oil, another objection may be raised to chis arrangement, on account of the size and disadvantageous direction of the shadow, the conical space between βf and βg receiving no direet light.
Study lamp. - In the conmon study lamp, Fig. 2475, the oil vessel a is more flat, and instead of being situated below, is behind, aud at the side of the flame, so that its shadow falls mnch beyond the immediate vicinity of the flame, and in no way interferes with the person in front of the lamp. The greater part of the light passing upwards, is collected by the shade k, and from every point of its inner surface is reflected downwards towards the opposite side. The inclination of the sides of the conical shade is, therefore, not unimportant, and should be at an angle of abont 60°. The shade can be turned on the support $m n$. The motion communicated to the wiek d is not from above, as in Figs. 2473 and 2474, in which arrangement the pressure interferes too much with the supply of oil, and the flame is too much cooled by the prozimity of the wheels, but it is from below. The clamp u, Fig. 2476, which sustains the wick, is firmly connected with the toothed rod e. By turning the wheel o, this and the wick is raised up or down; the wheel works in the separate compartment g, as does the toothed rod in deseending into h, whilst the clamp, the rod of wire, and the wick, by means of a rectangular appendage c, Fig. 2477 , are all inclosed in the space allotted to the burner. This communicates with the oil vessel through the tube $b ; i$ is the inelosure round the burner. The motion of the wick, by means of a toothed rod and wheel, is, under various modifications, common to most lamps. The stopper l, at the aperture for filling the oil vessel, must be pierced, that the air without may not depress the oil in the burner.
The astral lamp.-The astral lamp, of which a sketch is given in Fig. 2478, was coustructed by BordierMarcet, with the idea of making as imperceptible as possible the sinking of the level of the oil, and at the same time the diminution of the flame by means of a very flat oil vessel, in which, therefore, a larger quantity of oil only oceupies a very insignificant height. It is clear that the annular flat oil vessel will produce only a small unimportant shadow, although this will necessarily be thrown on all sides. At the same time the side nearest the flame $a a$ is so inelined that it acts like a shade. Th: burner is not peculiar to the astral lamp, but is the well-known invention of Ami Argand, in 1789, and named after him; it is by far the most important kind of burner employed for illuminating purposes. The Argand burner, with double draught, consists of two metallic eylinders, one within the other, e and d : the ring-shaped space between them, which is closed at bottom, contains the oil and the sylindrically woven wiek; the latter is elamped between two rings, which are connected with the serew

The inner cylinder is open at top and bottom. The extraordinary advantages of this arrangement arc easily understood. It has been already shown that with entire (massive) wichs, a nucleus is formed in the middle of the candle, which illumines but little, and smokes from want of air; with the hollow wick a current of air is directed exactly to that spot, so that the flame is surrounded by two concentric currents of the same kind. The current produced in the air by a freely burning hollow-wick flame, or the natural supply of air, is by no means sufficient to produce the requisite amount of light. As soon as, bs

raising the wick, the size of the flame is increased, a thick smoke is the result; and when the wick is sc regulated as to produce no smoke, then the flame is weak and deficient. But Argand gave a real practieal use to his invention by applying the happy idea of an artificial draught. The principle is the same as that of chimneys : a rest on the outside of the burner supports a straight glass cylinder, which, including the inner and outer draught of air, exerts a powerful influence upon the velocity of both, in proportion to its height. With this arrangement, the point at which smoke begins to be evolved corresponds with a much higher intensity of flame. Another advantage, not at first anticipated, is the great steadiness caused by the chimney. When a draught of air comes in contact with an unprotected flame its force and cooling iniluence produce diminished combustion, and at the same time flickering ams smoke; in Argand's burner, on the contrary, the supply of air to the flame is become self dependent, whilst the heat itself is made the motive power. The cylinder protects it from any direct interruption, and that arising from the draught apertures is hardly felt at all in the interior. It must not be left unnoticed that the straight Argand cylinders, whilst assisting the draught, fall into an opposite extreme, and supply too large and injurious an amount of air. This was remedied, soou after the original inveution, by Jange, and forms an important improvement; it consists in contracting the diameter of the glass chimney at a certain height above the burner at b, thus forming a shoulder of a few lines in width, as in Figs, 2478 and 2479. The drauglt, moving in the simple eylinder, in a parallel direction to the axis of the cylinder, is thus broken at the shoulder, and thrown into the flame at a certain angle. The supply of air is, therefore, lessened, but the direction given to it is preferable; and that part of the current, which, without taking part in the combustion, cooled the flame in a useless manuer, and passed alung the inner surface of the cylinder, is almost entirely removed. The glass chimmeys are, how: ever, applicable to all burners with flat, round, or semicirenlar wicks.
Simumbra lamp. When the astral lamp is used as a langing lamp, the shadow of the circular oil vessel is thrown more towards the ceiling; this is not the case when it stands in an upright position.

3ection of the circular vessel o. Its three surfaces meet in the form of a flat wedge, the sharp edge of which is directed towards the flame. The position of the flame, in relation to the oil ressel is such that wo tangents drawn from the apex and base of the flame to the latter, meet a few inches behind it in x Beyond this the vessel can cast no shadow; but eren in this small space it is almost entirely destroyed oy a vase-shaped ground-glass shade, which, resting upon the oil vessel, surrounds the chimney, and icatters the light in all directions around. The manner in which the wick is moved in the sinumbra burner is original, and deserves notice; there is neither serew nor toothed rod employed. The inner cylinder f is furnished on its outer surface with a deep, much inclined spiral groove, into which the -hort peg or appendage a of the wick-holder e fits. If, therefore, the latter is turned on its axis, the peg noves along the groove and forces e up or down. From its position in the burner, howevcr, e cannot be approached by the fingers, and directly turned; this is effected by the cylinder d, whicn. throughout its whole length-that of the burner-has a slit, into which a second peg b, on the outer side of ϵ, fits. By this arrangement d can at any time be freely moved up or down, but cannot be turned without taking with it the wick-holder, causing this either to be raised or depressed. In order that d may be moved easily, and without danger from the flame, it is firmly connected with the support for the chimney, terminating above in a thick ring, two or three lines wide, which rests upon the edge of the cylinder c, this being purposely made lower, and the whole is thus brought up to the full height of the burner. In this ring the supports for the chimney are fixed. If these are turned with the hand, d is turned at the same time, and with it the wick-holder, which is thus moved up or down. Great mobility cbaracterizes this arrangement, and no forcing or compression of the ring holding the wick can эccur.

All the lamps as yet described are subject to one common evil, that of having the oil vessel, at all events, within a few lines of the level of the burner; in a position, therefore, which throws the most objectionable shadow. A whole scries © © contrivances have consequently resulted from the efforts of inventors to transpose this cistern either .) a considerable distance above the flame-when its shadow would fall upon the ceiling of the room-or to a position much below the flame, when it would fall at the foot of the lamp. Both resources, however, when applied, give rise to new and critical difficulties; the former requires that the supply of oil which flows downwards to the burner, should be accurately regulated. The most common and general application of this method is that adopted in the standing lamp, Fig. 2482. The oil cistern Λ is a movable metallic vessel, capable of being closed at the bottom by a valve a, which moves between the regulating rods $b b$. In the upright position the valve falls back and leaves the aperture open for filling the vessel ; if the valve is then pulled up by its rod, the aperture is closed, and the bottle can be inverted and put in its place in the case B, (as in the figure.) It is wo sooner there than an alteration occurs. The rod attached to the valve is, namely, so long that
the value is raised as som as it touches the bottom of the case d. The oil, thereforc, floms out for a few seconds until it has risen so high in the case as to stop the aperture of the bottle A. From this instant equilibrium is established, and as the mouth of A is on a level with the height of the burner, this becomes filled at the same moment, connection having been made by means of the tube g. The lamp has really two oil cisterns-an under one, which directly feeds the burner, and an upper one, the inverted bottle, for the supply of the lower as the oil is gradually consumed. As lung as the level of the oil in B remains unchanged, and the mouth of A consequently closed, no air can enter A, and the whole stock of oil is kept up by the pressure of the atmosphere. When the lamp has been lighted some time, and the oil sinks below the mouth of the bottle, a few air-bublles enter ancitake the place of an equal bulk of oil, which flowing out, raises the level in B until the mouth is again closed. The same operation is repeated as long as the oil is present in A.

The other parts of the lamp are easily understood: f is the support for the rylinder, (the peculiar form of which will be explained below,) q is the ressel for the toothed rod, arid e io an aperture in the casc for the easy admission of air into the interior.

On reflection it will be immediately perceived that in all similar lamps, from the peculiar arrangement of the oil cistern, the height of the oil in the burner will not be always quite constant, but will alternately sink and immediately rise again to its former height, whilst in the lamps previously deseribed, the suction of the wick is rendered more and more difficult by the constant sinking of the level of the oil.

The principle in question has been put into practice with better success by means of a simple ressel without case, as for instance, that represented in Fig. 2483. The mouth of the movable oil bottle corresponds here with the lower opening b of the tube $a b$, which passing through the air-tight collar x, is movable in the lid of A. The oil consumed in the burner e is replaced from the stock contained (above the level $n n$) in A, the place of which is then occupied by air, which enters at b. As soon as the consumption of oil in eb ceases, no more air-bubbles enter, and vice versa. As the level of the oil in tho burner is dependent upon the position of the mouth b, this can be most accurately adapted to circumstances, $a b$ being movable. The cocks o and o^{\prime} are only used in filling the ressel

This principle can be applied in the same manner, or in a much more compact form to lamps with circular oil vessels, by means of Caron's stop-cock, Fig. -4s.t. The conical plug of the cock is completely hollow, and at a certain distance from the middle it is supplied with a cross botton a, dividing the space into two unequal parts. In the upper part the round lateral aperture e is made opposite to o in the lower part; e^{\prime} and o^{\prime} are the corresponding apertures in the case. In the position represcnted in the drawing, e is closed, whilst o is in free communication with the stock of oil in the circular vessel A A. This stoch comprises the whole quantity, situated above the mouth m of the tube $m n$, corresponding with the tube $a b$ of Fig. 2453. The side tube communicating with the burner also opens into $q q$. In the opposite position of the cock (by closing o) the space Λ, and, in the first instance, $q q$ is sluut off from communcating with the burner, whilst the same space A can then be filled, e being open.

By transposing the oil cistern to the fuot of the lamp, by which means all sliadow is aroiled, we forego the important adsantage which the free flow (fall) of oil occusions, and by means of which it can easily be conducted to the burner; and, as consumption goes on, the oil must then be raised. The lamps made upon this principle are interesting on account of the ingenious, but at the same time very complicatec elevating apparatus, which partly depents upon hydrodynanic, partly upon hydrostatic laws, and is partly also a mere mechanical arrangement.

Girard's lamp.-(iirard's (hydrostatie) lamp is constructed upon precisely the same principles as the air chamber of a fire-mgine, or rescmbles rather Ilero's fountan, l"ig. 245 . In these armagements it is well known that the pressure exerfed in a vessel is transferred to any other distant cistern ly means of compressed air, and is the means of furcing a lipuid from its previous position, for example, in an upward direction. In Heros fountain the primary pre-sure is produced lyy the column of water a fud from the vessel above it ; the air inclosed hetween c and the lower bulb, is thes compressed, nets upon the surface of the fluid in c, and furces it to a corrmpmonimg height ind. All these compartanents are alon present in (iirard's lamp, but are clusely packed togethor for tho sate of saving grace, ns is seeth by the sketelh, F'ig. 218si, where the: unimpertant parts are left ont. A is the reservoir for the furcing ablum of oil in the tube a b, B the lower wase with the inclosed air 13 , whed convers the pro aro received from ab throunh $c d^{\prime} d$ to the vessel l^{\prime}, ambl in the first instanee to the air $C^{\prime \prime}$ contamed in it.

 pressure in general, amblamately npon the constant uniformity of height in the columu of of a b, which has a tembeney every moment to horten tha play of the whole, lxith from nhove and hows from alowe by the sinking of the wit in A, from below live ita rian in B. 'Ton avoid the former, at hat bur the

coincides with the aperture e, and all the oil above that must be considered as a store for the supply 0^{*} that column. The latter is obviated by the narrow vessel v which surrounds the aperture b, and is filled up to $s s$ in a few moments by the oil flowing from A, thus constituting a basis of uniform height for the column. Both contrivances are effective until the oil in A sinks below e, and has risen on the outside of v abore the level $s s$ in B . With the requisite height of the lamps the pressure of the column would raise the oil to a greater height than is desirable. To aroid an excessive length of burner, the tube $c d^{\prime} d$ may be curved like a siphon, as indeed was done by Girard, by which means the oil in $e f$ is caused to rise as much less as d is below the fluid level in C, therefore x less. The pressure is first exerted to overcome the column of oil x, and it is only the excess that exerts an upward influence in $g h$; the result is, therefore, the same as if the elevation in $g h$ was effected, not from the level of the oil at C , but at g, for $g h=e s s$.

Future endeavors to bring the principle of Girard's lamp into a form more suited to daily use will, perhaps, be successful ; for the limited application which has been made of it must be ascribed to its inconvenient shape. The following points deserve particular notice; first, as is obvious enough, the working of the lamp is not independent of the changes of temperature and pressure in the atmosphere. Increasing pressure (rise of the barometer) and a lower temperature will diminish the bulk of the air inclosed in B and C , and cause an augmented flow of oil from A towards B . A fall in the barometer, and a higher temperature, will produce an opposite effect, and cause the oil to flow from the burner. The effeet of temperature is the stronger of the two; but both by proper means can be rendered imperceptible, at least for the duration of an evening. Another and a greater objection arises from the position and the shape of the vessel C, upon which, as may be seen by the sketeh, the supply of the burnen is solely dependent, whilst the oil of A and B is only employed as a fluid pressure. C cannot well be made deeper without increasing immoderately the height of the lamp; there is, therefore, no other means of affording space for the requisite quantity of oil for an evening's consumption, than by adding to the breadth of this vessel. When this is done, and from its being placed immediately under the burner, the shadow falling between oy and $o z$ will very much exceed the space occupied by the foot 01 the lamp. Lastly, the necessary additions and apparatus for filling the lamp deprive it of that eass and simplicity in the management which daily use justly demands.

The hydrostatic lamp.--The doctrine of the equilibrium of fluid pressure has found an application in the hydrostatic lamps. Two different fluids, brought into tubes which are connected at the bottom, will balance each other at different heights, according to their respective densities. The one fluid will form a column as many times lower as its density exceeds that of the other fluid. A column of mereury requires to be only one inch in height to balance a column of sulphuric ether of 19 inches, or a column of oil of 14 inches.

After salt and water, syrup, honey, mereury, had all been tried as heavy liquids, Thitorier succeeded in 1825, at Paris, in giving a decided pre-eminence to his lamp by the use of a solution of white vitriol (sulphate of zine) and by a suitable apparatus. When we consider that the fluid producing the pressure must not affect the oil or the sides of the vessel, (timned iron,) that it must not become solid (erystallize) at
a temperature several degrees below $0^{\circ} \mathrm{C}$., that it must be cheap, and have the proper density, we shall then understand how to appreciate the discrimination which led Thilorier to employ a sulution of equal parts, white vitriol and water. Such a solution is 1.5 times denser than oil, so that a sulution of zinc 10 inches high can support a column of oil 10.7 inches in height.

It is obrious that, with the diminution of the column of oil (the consumption of oil in the burner the solution of zine will sink to a corresponding level, and will only be enabled to force the oil to the original height, when it itself is fed by a reservoir of zine solution. The cistern A in the section of the lamp. Fig. 2457, is solely for this purpose. In a chamber 13, in the foot of the lamp, both the equally poised columns terminate, namely, the column of oil in the tube $a b$, which terminates above in the burner, and the column of zinc solution in ed, abose which the cistern A is situated containing the zine solution. The flow is effected in the manner described in Fig. 2483, by means of the tube o I', through which the external air enters bubble by bubble, as the solution in ed threatens to sink. The height of the culumn must, therefore, be reckoned from P'; B is completely filled, and by buth tluids at the same time, so that no air remains in it. Into the lower solution of zinc (extending to $n n$ in the figure) the tube ed is plunged; into the oil above, on the contrary, the tube $a b$ does not enter beyond the top layer of the fluid in 13 . From the time of lighting and during the combustion, the level $n n$ naturally becomes ligher and higher. At length B becomes quite filled with solution of zinc, and oil must be supplied. This is done by a separate funnel through the burner, which obliges the solution of zinc to return to its former position, an outlet being afforded for the air in A. The tube o P, Fig. 2488, (twice its proper size,) is intended for this purpose, having a conical appendage h accurately ground to fit into $f f$, and luted into the lid of A. The position represented is that for filling, and this is effected by the peg g, which is fixed to $o \mathrm{I}$, and only rests on the edge of $f f$; when h is to be closed the tube is turned until g falls into a perpendicular cavity. The oil which overtlows the burner in filling, and at other times, collects in the concare lid of A, and passes off by $i i$ to a ring-shaped movable vessel q. This vessel is open and ring-shaped, to admit of the passage of $a b$ and $e d$ through the middle of it.

It must not be supposed, even when every thing goes on regularly, and the supply in A is not exhausted, that the level of the oil in the burner always remains the same, for the column $n a b$ is constantly shortened by the rise in $n n$, and more rapidly than is the case with the zinc column $n \mathrm{P}$ during the same time. The inventor has succeeded in rendering this imperceptible for a duration of six hours, by making the diameter of B very large in proportion to that of $a b$. The difference of level does not actually exceed two to three lines, whilst the oil in the burners of astral and simumbra lamps frequently falls one inch.

Pump lamps.-The general conclusion may be inferred from what has been said, that the different static lamps either do not attain the important advantages which their construction was intended to confer, or are accompanied with corresponding disadvantages. In contradistinction to these we have the lamps with a mechanical arrangement for raising the oil; and as a pump is generally employed for that purpose, they are called pump lamps.
'I'he simplest example of these is the pump lamp with a flat wich, very much used in the south of France, although not in this country: the motion of the pump is produced by the hand, but in a very imperfeet manner. The piston of the pump is kept constantly raised by the tension of a spiral spring. As soon ins the piston-rod, which is also the ascending tube and in firm connection with the burner, is foreed down, by overcuming the power of the spring, the descending piston forees the oil in the cylinder to rise through the tube to the burner. When the stroke is ended, the elasticity of the spring brings the piston to its former position, and the cylinder beemes arain filled. As candles require anufting from time to time, so here, the jump, mast be naed at short intervals. In lamps of this kint, with double dranght, the burner is fixerd, but then there is a piston-rend with a handle at the side of the necending tube. The uniform working of such a hmp depends, therefore, upno the care which is taken to supply the wil that is consumed by repeated use of the pump. If this is mly done at long intervals, the flame will vary from its utmest intensity to a very dingy light.
The manerous improvements which have here heon noticed, with reference th the most sucers-ful and interesting inventione, must be considered as important alvanees; but they have neverthelens left omo proint out of view, upon which the most indispersable centitions for Sombining a perfect, and at all times, uniform evolution of light depend; a print which is indi-putably the mont diticult of all to meomplish. It has been noticed how the lewering of tho oil livel abstrnets mare and

entire extent; those with an inverted bottle or similar arrangement are also influenced by it within certain limits. In the former the brilliancy rapidly diminishes; in the latter it becomes lessened, and returns to its original state at regular intervals.

Carcel's clock-work or mechanical lamp. -Carcel, in the year 1800, was the first to carry out the idea of pumping up the oil from the foot of the lamp to the wick, by simple machinery like that of clock: and, moreover, in such quantity as to exceed the quantity consumed during the whole period of burning. The invention of his clock-lamp is without precedent, with reference to the uninterrupted and perfect supply of oil to the wick. Whilst in the other lamps the burner contains a stationary column of oil, which either constantly decreases from above or is reinstated from time to time, the oil in Car cel's burner forms a constant ascending current, which always supplies the wick with as much as it can possibly require ; and lastly, the unconsumed portion flows back to the foot over the outside of the burner.

Carcel's invention left only unimportant points connected with the works and the pump to his successors, to which the ekill of others has been applied. Figs. 2489 and 2490 present a section of Careel's lamp and its various parts, with Penot's improvements. The chief parts of the lamp are arranged as follows: The case for the works B and the space A for the stock of oil, form the foot of the lamp. The stem of the column contains only the ascending tube b, which separates above (over the capital) into a forked appendage, (crutch,) upon which rests the burner with its two concentric tubes ee The burner
and the ascending tube form, therefore, a space which is connected with A by means of the pump. This latter is a so-called priest-pump, and is more simply represented in Fig. 2491. The space x is closer at the top by a piece of elastic cloth or leather, in the middle of which, when it is considered ats a piston, the piston-rod is fixed. By its upward and downward motion, an alternate expansion and contraction of x is effected. In the first case the valve s opens, and oil enters x from $r r$; in the other case, through the valve s^{\prime}, oil parses from x, and is raised in the tube t. The motion of the eloth or leather acts in short in the mammer of the cheeks and muscles in drinking and blowing. To meet the unavoidable obstructions which would result from the presence of impurities in the oil, it is all made to pass, whilst still in A and before entering the pumps, through a metallic sieve with fine holes q, which surrounds the whole of the front part, including the entrances to the valves below.

The quadrangular box of the pump contains, for preserving uniformity of
 action, three simple priest-pump; $c c c$, made of gold-beater's skin, which, during every moment they are in action, alter their positions relative to each other. This necessary circumstance is self-evident from the whole arrangement of the pump). Each single pump has two valves, an entrance valre (the under one in the figure) aud an exit valve (the upper.) a is a separate chamber for each: the space for receiving the oil above the exit valve, on the contrary, is common to all. The three short piston-rods, if they may be so called, work upon three crooked arms B $y x$ on the same axis, but in different directions. One pump must, therefore, always be foreing, whilst the second is suching, and the other midway between the two. Below, or in the direction of B , the chamber Λ is completely clused, with the exception of a stufling-box, through which the crooked pin of the axle is moved. The wheel t passes under a box placed it the side, in which this stuffing-bux is situated. The iron frame $i i$ serves to give steadiness to the works in B ; the most important parts of the arrangement may be seen in Fig. 2ty0. Mution is obtained by the spring wound up in the case ooo, which is furnished with cogs. The cogs of ooo first move the tuothed wheel t upon the same axis by means of x. The wheel t catches the scoond $\operatorname{cog} y$ above, which thas the same axis as the piston-rods, and thus the pumps are set in motion. Below, however, t moves the endless screw, on the axis of which is the tly-wheel d for regulating the works, by means of z, and the toothed wheel u and v. At the very bottom, on one side of the foot of the lamp, is a small bolt, which, when pusbed forward, catehes the ily-wheel, and either stops the works, when in motion, or sets them going when it is pulled back, and the whole has been wound up.

The stopping-wheel W^{\prime} is used for winding up the machine with a ker.
The toothed rod g, with the wick-holder, works below the crutch of the ascending tube, in the case f.

Experience has shown that the whole arrangement of the works is not sotender and brittle as might at frst sight have been supposed.

The overflow of oil from the burner makes it necessary to serew the wick up somewhat higher than in common lamps; and this brings with it the great advantage of the tlame being more raised abovo the edge of the burner, where less heat is conducted from it, and it burns more perfectly, producing no carbonaceous matter on the wick and about the edge of the burner, which, in general, so materially interferes with the regular thow of oil.

Carcel's lamp would, without cxaggeration, have been pized as much as Argand's had been sixteen years previously, if a less expensive and more suitable form for general use could have been given to it.

At an earlier period, and again more recently, the julea has occured to those versed in these matters, to replace the complicated clock-work, either by the foree of a falling bouly, for in-tance, a piston in a cylinder, on, at leat, to cause the tense spring to act upon a harger pi-ton of that kimi. In both caots the uil is contained in a lamp-like vessel, resembing the cylinder of a pump, from whence it is slowly fored upwards by the piston (moved either by gravity, or a spring to the burner.

So far, all is simple and easy; but the practical use of the lamps has always foundered on the dithculty of resulating the accolicution of the fall, or the diminution of the force of the spriny, to thes uniform demand of the burner. The arramgements of this kind are all wanting in simplicity, or they eflect their purpose but imperfeetly. (fenerally, the ascending tube is contracted conically at a certain spot, into which a conieal plug fite. The spming in rising enlarges the aperture at the contracted spet, whilst the sinking piston lessens it, by forceng the phag either backwards or forwarts, in propertenn at their motion is irregular.
'The application of a phenomemon for rai-ing the oil in lamps, tirst propesed hy Celnmer, is worthy uf motice, from its novelty and rimplicity, and becan-e it may possibly be productive of something ilo, mot from the use actually mate of it at present, which is liy no mans establi-hed. It is of sery eome
 one nbowe the other, which are separated from each other by a partition; the uprer combains wh, the lower air. In the partition, a narrow tube it placed, whid opens inte the airedamber lethw by a valve, and somewhat bigher in the ail verael with at simple "prerture. On filling the lamp, the tal in

 vessel. The resule is-with such a narrow ente-that sith the hable of air, drep of of or math 1 little columas of ail, are carriad up much abowe the lasel of the oil. Another phan, uld hal ly Samed

per cent. (This is the camphene in use with us.) This strength is necessary; for, with a greater amount of water the flame would be too much cooled, and the oil of turpentine be imperfectly held in solution. The carbon, originally amounting to 88 per cent., or 8 times the quantity of hydrogen, is diminished by this mixture (illuminating spirit) to 63 per cent., or three times the hydrogen, which is much less than is contained in oil or tallow. The lesser evolution of light, from the same weight of spirit, is, however, actually compensated, although at some cost, by the greater rapidity with which the light is evolved from the same quantity. Luidersdorft's lamp, Fig. $2491 \frac{1}{2}$, is well adapted to show the different mode adopted in burning the volatile oils, from that employed with the fats.
A is the vase for the illuminating spirit, into which the burner B descends from above almost to the bottom. It consists first of a straight, pretty wide metal tube a, fitting tightly into the real burner-tube $u u$, which surrounds a loose cotton wick oo, and fastens it by the semicircular piece x. Above A, at

a distance of about two inches, (the wick extending thus far,) the tube becomes narrower, and ends at d, in the knob c, which is the real burner; at the base of b, from ten to twelve holes, $\frac{1}{4}$ line in bore, are made in a circle at equal distances from each other. When the lamp is to be used, common spirits of wine is ignited in the cup $e e$, to vaporize the illuminating spirit in the upper part of the wick. As soon as the vapor issues from the apertures b, it is ignited, and forms the flames f, which surround the knob e. The metallic mass is then sufficient, on account of its high temperature, to keep up vaporization with ease, (even at the distance of c from the wick, and the lamp continues to burn by itself. To protect A from the action of the burner, which gradually becomes heated, the latter is surrounded, to the depth of three inches, with a wide case $i i$, which is attached to it below, (at $i i$,) so that a space filled with air surrounds it thus far. Lamps of this kind give a costly but brilliant light, free from all the inconveniences of common wicks.

The Liverpool burncr. - The original Argand burner g, Fig. 2492, is supplied with oil by the tube i. At its lower aperture a wire b is fastened, which rises through the axis of the burner to a few lines above its upper margin, where the projecting end is furnished with a screw. This is intended to support a round copper plate a (in the shape of a button) of equal diameter with the wick. It is difficult, at first, to establish the proper relation of distance between a and the margin of the burner, but it is easily found, experimentally, by screwing the plate backwards and forwards. As the result of this arrangement, the internal draught is forced from its original perpendicular direction, and broken against the plate a, whence it is propelled at a sharp angle, nearly horizontally, against the flame, which thus assumes a globular, instead of its ordinary cylindrical form, and (as is shown in the figure) is forced intc contact with the external current. The form of the flame makes it necessary to have the peculiar bulg. ing climney e, and this is supported by the case e of the burner. Complete combustion, together with
intense brilliancy ard whiteness, characterizes the flame - but there is nevertheless a certain want of uniformity, which, however, does not exist in the nature of the principle, and can be avoided by a proper regulation of the draught.

The lamps constructed by Benkler and Ruhl, in Wiesbaden, since the year 1840, depend entirely upon the same principle, causing the draught to impinge at an angle upon the flame. The apparent novelty of the invention, the surprising briiliancy and peculiarity of the flame, and partly the solid and clegant workmanship of the lamps themselres, led the public, at least for a time, to confound these advantages with the more essential one, namely, the economical consumption of the oil, and created in a short time an enormous demand for this invention. Some hasty experiments, which were published, tended very much to augment this over-estimation of its value.

Fig. 2493 is a sketch of the general plan of Benkler's burner. Fig. 2404 is the ground plan; and Fig. 2495 represents the upper distinct parts. The shoulder of the chimney is here formed at the junction of two pieces; a narrower glass b, above the flame, and a wider glass a, which is below it. Just at this junction is placed the most important part of the arrangement, which consists of a conical

aseending brass ring $d d$, with an aperture of the same diameter as the wick. This flat, open cone is immovably fixed to the upper glass b, ly bonding up its outer edge, Fig. 2.195. The connection of o with a is effected by a so-called bayonet joint. For this purpose, on the lower margin of the plate d, there are two tongues e, and these correspond with two cuts in the ring c, with which the margin of a is eneircled. When, therefore, d is so placed upon a that the tongues and cuts correspond, a simple turn of d is sufficient to bring the tongnes under the ring c, and thens secure the whole. The apertures no are made nround a, to increase the draught from without. Tho primeipal addition, therefore, in Benkler's lamp is a sudden contraction in the channey at a certain distance from the thame, the aperture being of the same diameter as the wiek, and this is produced by the insertion of a metallic ring, or cone.
The action of such a contrivance is eacily underatomb. The external and internal currents of air and the dane must pass through the aperture of d, where a rapid contraction results. The outs courrent is driven aramst the axio of the thame at a sharp anfle, med the forees the flame itself into the inmer current, so that an intimate mixture of air is effected with tho products of decompo-ition of hhe onl. 'i he llame becomes narrower, and three times ay long, when, by keeping back all the nir which hav mort in the combustion, and by giving a proper direction to that which has, the higheat mat whet billiancy, and considerable evolution of hat, is attained. A perfectly white heat is frobluced; for, in comaequence of the well-ordered combustion, the sumpended partiche of carlon are more inten uly heatorf than in any nther lamp. Notwithanding the internity of the hemt, the chimmere-in cerrotmation
 least light, is naturadly situated below the cone d : but the longer portion, the emtally lumants
part, is above, and throws a shadow from d downwards, which is perceptible in standing and hanging lamps, but is of no moment in the determination of the intensity of light, as it only occurs in the direction of the edges of d. As the cone d has no other object than that of producing a sudden contraction, cbimneys are now made in one piece with an inward bend in the proper place.

The lamps constructed by Benkler and Ruhl are on the principle just described, and have been carried out in this country under the name of Solar Lamps. The main point in the peculiar construction of these lamps, is the manner in which the air is caused to impinge upon the flame by the adaptation of a metallic or glass cone, represented at a in the figures below. The introduction of air at this particular part of the flame, or at this certain angle, admits of crude cheap oil being consumed in the lamps, which would produce smoke if burnt in lamps of the ordinary construction. The combustion of this oil in the ordinary manner being attended by an evolution of smoke and smell, indicating an imperfect consumption of the constituents of the oil, gives rise to the necessity for an increased supply of oxygen or air to that particular part of the flame where these. unconsumed portions are evolved, to produce the inodorous and invisible products which alone should result from perfect combustion. The oil in the solar lamp is contained in an annular vessel, similar to that described at Fig. 2478, and the lamps are constructed in precisely the same manner, with the exception only of the burner. The first form in which the new burner was introduced is represented in section at 1, Fig. 2196, and consists of a solid metallic box fixed upon the circular wick-holder of ordinary construction, so that the cone or

contracted aperture a, shall be bare $\frac{5}{8}$ th of an inch above the top of the wick-holder. This relative position is observed in all the burners. This form of cone box was found very inconrenient, by becoming exceedingly hot and throwing a considerable shadow, it was consequently soon superseded by that represented at 2, Fig. 2496, in which the metallic box is very much climinished in size, and the cone is composed of glass, with a small ring of metal round the mouth a. This ring of metal is essential, as it is necessary that the aperture should be always of the same diameter, and glass cones can never be made vith sufficient nicety to present at all times an exactly similar mouth. The solid box was subsequently replaced by the open skeleton cone holder represented at 3, Fig. 2496, called the serew cone glass-holder, in consequence of the tall thin chimney being screwed on to the top of the holder. The last improvement is the plate cone glass-holder represented at 4, Fig. 2496, in which the metallic cone is replaced by a flat metallic ring fixed upon a skeleton support, the externat edge of which fits closely to the glass chimney.

In the last form of burner, little or no external current impinges upon the flame from the outer sides of the cone or its substitute; but the flame is only furced inwards so as to come more completely into contact with the current of air passing through the interior of the burner. The solar lamp has been extensively used in consequence of the low price of the oil which it consumes; it requires, however, a good deal of care and cleanliness in trimming, the wick must be freshly cut every time the lamp is used, and the reservoir should be refilled with oil.

A form of pressure lamp, called the Elliptic lamp, in which the constant flow of oil to the wich is regulated in an ingenious manner, has been patented, and is found to answer perfectly, even whes crude vegetable oils are consumed in it. Fig. 2197 represents an entire section of the lamp. The foot of the lamp forms at the same time the oil cistern: it is of a cylindrical shape, and a leather piston or valve B, is worked up and down in it by rack and pinion seen at L. F is a spiral spring of strong iron wire fixed at the top to the solid stem of the lamp, and exerting a constant pressure on the piston, so long as it is in any position above the bottom of the oil cistern. The tube D, which opens at the bottom in the shape of an inverted funnel, and ends in a disk pierced with holes, supplies the oil to the burner and passes in an airtight manner through a stuffing-box in the piston B, and can thus be moved with ease, the piston remaining stationary. This tube D , is widened above on approaching the burner, and receives a fine silver tube several inches long, and one-thirtieth of an inch internal diameter, which is surrounded by a cap of gauze, made of copper wire tinned, to prevent corrosion. This gauze has very small meshes, that no solid particles mechanically mixed with the oil may be carried up into the silver tube, and thus impede or aliogether stop the passage of the oil. The whole of the oil must pass through the silver tube before reaching the burner, and the friction thus exerted against the sides of the narrow tube is the only resistance offered to the oil, which would otherwise be forced up all at once to the burner by the pressure of the spiral spring. This, thecefore, is the regulator for the supply of oil, and must be so proportioned in length and bore to the force of the spring, as to admit of a constant excess of oil flowing to the wick and over the sides of the burner, where it is caught in a receptacle and carried back into the pil vessel at the foot of the lamp. The lamp is filled with oil by slightly raising the whole interior portion from $L_{\text {, }}$, and pouring oil through the stem to the cistern below ; the oil then rests in the first instance 'm the top of the piston. The whole interior portion of the lamp is then wound up by the key I K and the rack-work L, until the tur of the eistern prevents the piston B from ascending highor. 'The tube D and the burner, $d \in c$., attached to it is then pushed down by the hand through the stuffig-box until it attains its origimal position. The oil which was previously above, having passed

daring the ascent of the pinton between it and the sides of the cylindar, is now lafow the fintorn, and the spring in forcing the latter down wall temd tor force the oil out throsigh the tube w w the bumer. The force of the spring and the remistane oflered ly the sitver tube ate so propentinged that the wap" ply of oil shall late cight or ten hours.

The thick com-intence of erude whate oil offers sach powerful renintance to the action of capithenty

Von. 11.-12
metal and slightly curved outwards, so as to reverberate the heat upon the oil vessel, and heat the oil to a considerable extent. The hot oil then descends by the arm to the burner, as shown in the figure The lower part of the arm, which is attached to the oil ressel, is furnished with a slide valve worked by the trigger, so that the supply of oil can be cut off by raising the trigger, and the oil ressel entirely removed from the lamp for the purpose of filling, \&c. The oil is introduced by this valve, the oil cistern being inverted, and this should be refilled each time the lamp is used, care being taken that no air remains in the vessel, as this would be expanded very much by the heat, and cause the oil to overflow

The flame is regulated by raising or lowering the bell-mouthed glass chimney, which rests upon three points below and is moved by rack and pinion. The wick is not movable, as is the case in ordinary lamps, and a fresh wick, which is accurately cut by machinery expressly for this lamp, must be inserted every time the lamp is used. A paper or glass shade surrounds the whole of the upper part of the lamp, according as the light is required to be thrown downwards or uniformly diffused through the apartment. Dr. Ure has reported the illuminating power of this lamp to be superior to that of Carcel's mechanical lamp, and when consuming southern whale oil, it would appear from his statements to deserve the appellation of the "Economic" to the full extent of the word.

Camphene lamps.-It is only within the last few years that oil of turpentine or camphene has been successfully introduced into gencral use as a source of illumination; and it is by applying the principle of the solar cone in an extended manner that this highly carbonaceous substance can be completely and conveniently consumed. The pure oil is clear, colorless, and very mobile; it has a peculiar smell and a burning taste. Its specific gravity is 0.86 to 0.87 . The commercial oil is frequently adulterated with resin, which raises the specific gravity, and which increases in quantity when the oil is exposed, in consequence of the absorption of oxygen from the air. When pure, the oil boils at 312°, and contains no exygen, but consists of:

88.46 crrbon.

11.54 hydrogen.

$$
100
$$

A glance at the compositiur of this substance, containing so large an amount of carbon, shows that
it must be a powerfully illuminating body, if proper modes can be adopted of supplying a sufficient quantity of oxygen or air for the entire consumption of the two combustible constituents, and at the same time so regulating the order of combustion that the full amount of light shall be obtained from it,

Mr. Young was the first who applied the increased draught of air produced by a cone to the flame of oil of turpentine. The burner of Young's Vesta lamp is shown in Fig. 2499. It is an ordinary Argand burner with a Liverpool button a, for deflecting the internal current of air, which enters by a space left open near the pinion handle and passes through a, against the inner side of the flame; b is the wich tube and c the space between the latter and the cone, which only rises in this case to the same level as the burner. Through c a curreut of air impinges upon the flame at that part where it is expanded by the button d and the internal current of air, and again the air in passing up the innes sides of the chimney is deflected inwards upon the flame by the contracted portion at e. f is the pinionhandle for raising or lowering the wick. The whole of the burner is screwed upon the glass vesel containing the oil of turpentine, and completely insulated by a ring of wood or other non-conducting material. No metallic tube passes through the spirit to supply air to the interior of the flame, as it was supposed that this would become too strongly heated and give rise to acrid and offensire fumes from the volatile spirit. Fig. 2499 shows a plan of Young's burner. This lamp, when properly managed aud supplied with pure camphene, gives an excellent light, much superior to that produced by any oil lamp; but if attention is not paid to the management, or the eamphene is not pure, it frequently evolves n strong smell of turpentine, producing headache and other disagrecable sensations, or large flakes of soot escape unconsumed and cover every thing in the vicinity. The evolution of smell or soot is alwaya the result of imperfect combustion, and the lamp has been modified in different ways to aroid the possibility of unconsumed products being evolved.

The lamp which fulfils the conditions for the perfect combustion of campheme in the mont prect inl manner, is the Gem lamp, a section of which in shown in lig. 2500. It differs from Youn ratamp, in the mode of deflecting the currents of nir, and in allowimg the Argand tuhe enpplying the internal eurrent of air to pass through the reservoir containing the oil of turpentine. In Fig. ©sote a is the tut a *upplying the internal current of air which pas is through the renervoir $\&$ to tho hurner id, with which it is in metallic comection, and it is not fumbl that the turpentime is heated liy this tube to mure than one or two degrees above the temperature which it attains in C'oung's hanp; the temperature of the
spirit in both cases being from ten to fifteen degrees above the temperature of the surrounding air and this appears to be no more than is required for the proper action of lamps of this description The button f, which deflects the inner current upon the flame, and forces the flame to take an ontward direction and come into contact with the first outer corrent, has the form of an inverted cone, and the deflection of the air is consequently not so abrupt. The supply of air to the inside and outside of the cone is regulated by a series of holes drilled in the brass gallery, and the number and size of these holes are proportioned to the size of the burwer, or to the quautity of air admitted through the internal channel.

Fig. 2501 shows a nlan and section of the gallery. C is the space occupied by the inner current of air deflected outwards by the button, A the first series of holes admitting air to the interior of the cone, and B the series of holes through which the air passes to the exterior of the cone. The circle A has 32 holes, drilled with a drill one-twelfth of an inch in diameter; the circle B has also 32 holes, drilled with a drill one-tenth of an inch, this nomber and size of the holes having been found by a series of experiments most advantageous for a burner of the dimensions represented in the drawing. The cone o, Fig. 2501, in this lamp, rises above the level of the wick tube, so that the inner current of air and the first outer current meet the flame below the button at the point represented by the meeting of the two arrows. The outer current of air, passing through the holes in the circle B, meets the flame at a higher level, and insures the complete combustion of any products that may have been unconsumed after passing the point where the arrows meet. The height of the chimney will of course materially alter the draught, and an additional quantity of air must be admitted if the chimney is heightened. The proper quantity of air and the direction of the different currents to those parts of the flame where they are most beneficial, are the objects aimed at in the construction of this lamp, and they appear to have been attained more perfectly in the Gem lamp, than in any other spirit lamp yet invented. A Gem lamp of the larger form is reported to give a light equal to 20 wax candles: the light from one of the smaller size is equal to 13 wax candles.

LAMIPS, SPIRIT-GAS. The lamps which we here present are designed to burn the gas of the socalled "spirit-gas," which is a composition of aleohol and turpentine distilled together. No wick is burned, and only in the lamp, Fig. 2502, is a wiek used, and only for capillary attraction.

C is the reservoir of the fluid. D is a brass tube extending into the fluid, and it has a cap at the top, perforated all around. F is the flame ignition points of the gas, as it comes out of the perforations. E is the wiek; the wiek, by eapillary attraction, carries up the fluid by heating the top of the tube D until the fluid becomes gaseous, it then rushes out through the perforations, and is ignited in a state of inflammable gas, as represented at F. Great numbers of this kind of lamp are now manufactured and used in this city.

Figs. 2503 and 2504 is another kind of lamp altogether. It does not use any wiek at all. Fig. 2503 is a front elevation of it, and Fig. 2504 is an enlarged section of one of the burners. A is the camphene reservoir, which can be filled at the top. B is a handle passing down the centre of the vessel and fitted to a conical valve at the bottom, where it joins the top of the central vertical tube, so that the flow from the reservoir may be cut off at pleasure. Two curved stems carry the burners, the constrnetion of which is particularly represented in Fig. 2501. C on the right is the screwed attaching branch-pipe. The camphene enters by this branch and passes through the diaphragm, as represented by the arrow ; thence upward by a sloping arm into the top horizontal passage D, which is formed on the surface of a circular disk surmounting the whole. It then descends by the opposite arm to the flattened boss E, and rises through a small conical aperture in its centre. This aperture is fitted with a conical spindle, ocrewed at its lower end, and in one piece with the cup F, which answers as a nut for turning the epindle to adjust the size of the opening. The course of the gaseous matter is then directed through the central chimney G, and is deflected by the inverted cone above it, and it then rushes out by a circular
ring if eight, ten, or more jets, like those of Fig. 2502. The burner is of brass, and the rest may be all cast in one piece, with the exception of the bottom cup. By unscrewing the cup a wire can be introduced to remove any obstructions in the side tubes, but no obstructions are at all likely to get in them. In lighting this lampa few drops of alcohol is poured into the cup F and ignited, when the heat rolatilizes the camphene in the passages of the burner, which can then be ignited, and the heat resulting from the ignition of the gases so produced, by acting upon the inverted cone at II, keeps up a continuous stream of gas. For suspension lamps, this one has no ordinary qualities to commend it. It no doubt requires attention, but the way in which it heats the fluid, and generates a very raritied gas, renders it capable of giving a very brilliant light.

LATIIE FOR TURNING IRREGULAR FORMS-Blanchard's. Fig. 2505. This machine is represented in the figure in its most simple form, for turning shoe lasts, and is so constructed that, from one as a pattern, an exact fac-simile can be formed from a rough block of wood. Both the pattern and block are fixed on the same axis, and are made to revolve around their common centre, in a swinging lathe, by a pulley and bolt on one end of the axis, as shown in the figure. On a sliding-carriage is attached three posts, through which are fixed pivots, to which are suspended the axles of a cutting and a friction wheel. The cutting-wheel, which is about one foot in diameter, turns on a horizontal axle, and to its periphery is fixed a number of crooked cutters to act like a gouge when the wheel is put in motion. This cutting-wheel is placed opposite the rough block. The friction-wheel, which is of the same diameter as the cutting- wheel, is placed opposite the pattern, so as to press against it when in motion. These two wheels are in a line with each other, and are attached to the same carriage. On the axle of the cutting-whecl is fixed a pulley, around which passes a band which puts the cutting-whecl in motion by a large drum revolving under it. A crank or first mover communicates motion to the drum, which in its turn transfers a rapid motion to the cutting-wheel, while a band which passes from a small pulley on the drum-shaft, puts in operation a feeding serew-pulley, which moves the sliding-carriage horizontally from left to right. Another pulley on the drum-shaft gives a slow rotary motion both to the patteris and the rough block, in a direction opposite to the cutting-wheel. The friction-wheel is turned by the pattern resting against it.
2005.

During the revolution the pattern, being irregular in its surface, causes the axis to approach and recede from the wheel. Thas, it will be seen, as it presents itw whole surface to the friction-wheel, so in like manner the block presents its surface to the cutting-wheel, which being in rapid motion, cuts away all that part of the block which is further from the common centre than the surface of the pattern, and thus forms, from a rough bluck, an exact resemblance of the motel.

Another application of the same principle is shown in Fig. 2506 . This machine ean turn out a duplieate or fac-simile of any pattern whatever, and it is now brought to such perfection that an oar-blade, a spoke, a last, and an axe-helve, are all turned upon it with equal facility and equal perfection.

This is a front view, as seen looking somewhat down upen the mathine. A is the frame. 13 is at latge drum, C is a driving-pulley. In is a band which, from the drum, passes over a pulley l:, and drives its rotary cutter-wheel Fr '. 'This cutter-wheed is fixed on an axis in a small sliding frathe which moves from one end to the other of the lathe hy a cond N winding urna apindle lying neross the itse chime, which cannot therefore bo seen, but wheh is drisen ley the large pulley k , thas giving it a regnisite slow motion. Il is the pattern axe-helse, and bine rough material to be cut exactly hee H . The pattern and rough material are placed in the lathe, represented by the upright frame, mod antatheal by spindles. On the hack part of the machine there is a curious but beantiful slideng-rest, whech is the nubject of a patent in itself. It moves alomp after the cotter-wherel, mat has two phano freces ont wheh the pattern and cut helve rest. The pattern and helve roll upen the planes, while the reat has a treking motion which accommolates itwelf to all the nowen turnme of the patterns, de, as they revolse. For turning long articlew, this rent is a beantiful and penitively necensary part of the mathone. To furn a fuesimile of any pattern it will at once be evident to every mechanic, that if a pattern lee placed is
a lathe, and the material to be turned be placed with its axis of rotation similar to that of the pattern. and if a guide pressing on the pattern directs a wheel with eutters to operate on the rough material over a surface like the pattern as guided, a perfect representation of the pattern will be produced on what was the rough material-simply by the cutters chipping away all the rough material outside of the axis of direction-in other words, all the wood on the rough material outside of the pattern. This is the prineiple upon which this maehine is constructed. The cutter-frame slides from one end to the other of the pattern; and the small guide seen on the frame pressing on the pattern, makes the cutters chip away all the rough material outside of the pattern on G, as the cutter-frame moves from end to end of the lathe. The cutter-wheel has three motions-a rotary, a horizontal, and an eccentric motion
2506.

The pattern and rough material revolve in the lathe. This is done by three pinions on the right, moveu by the pulley seen above K. The speed of the spindles in the lathe is regulated by a very excellent arrangement of a small gang of pulleys and straps, seen on the right at the end of the machine. These pulleys are operated by a lever L, and they are so arranged that a slower motion is communicated to the spindles when the thicker part of the pattern is to be turned, or such a part as an oar-blade. The cutter-frame moves along from one end to the other of the lathe upon a rail, and it is pressed out and in according to the shape of the pattern, by the upper guide; and the cutter-wheel being directed in the same manner, thus euts the pattern on the rough material. The strap D is retained in its proper place by a grooved pulley on the cutter-frame, and the whole kept firm and snug to the work to be turned.

LATHE, SMALL ENGINE. Fig. 2507, side elevation. Fig. 2508, end elevation.
S is the bed-piece and head-stock, east in one piece.
B, spindle which runs in gun-metal boxes.
C, cone-pulleys on live spindle.
D, upper cone-pulleys for driving feed-shaft.
D^{\prime}, lower cone-pulley for driving feed-shaft. It runs loose on a stud, and has a pinion on inner end to drive the two worms.

E, worms-one right, the other left-which drive the two worm-wheels so as to feed towards the right or left, as the operator may wish. On the worm-geer shaft there is a pinion driving a geer on the shaft above, which has a chain-pinion, around which an endless chain passes, attached to the rest.

A is a land-wheel for moving rest by hand. There is a pinion on the other end of the hand-wheel shaft geering into a rack K on the side of the bed, as shown in Fig. 2507.

F is the tool-holder.
J, top part of the rest which slides crosswise of the bed by means of the crank and serew.
I , square spindle, whieh is moved by band-wheel V , and screw inside of shell G . It is held firm in its place by the handle-nut H .
a, thumb-screw for raising rest.
m, step-screw.
b, thumb-screw for adjusting tool in rest.
This lathe will swing 16 inches orer the sills and 7 inches over the rest.

LATHE, BORINGG AND REAMING. Figs. 2509 and 2510. I, the main bed-piece, supported by twn east-iron standards.

D, head-stock, which carries the spindle and cone-pulleys A.
G, sliding-frame that supports rest P. This frame is traversed backward and forward by means of the hand-wheel R, which has a pinion on the other end geering into the rack G on side of the bed, (seen in Fig. 2509,) and is held down by the plates N, which hook under the slides \mathbb{S}, and is secured by means of the nuts with handle H, one on each side.

C, face-plate on live spindle, to which the work is fastened by bolts when drilling or reaming.
\check{r}, tail-stock, with a traversing spindle, worked by the hand-wheej M, which turns a serew inside of epindle in the w-ual way, for pressing in the drills or reamers, de.
L, hand-wheel on a serew for setting the tait-stock so as to make a tapering hole.
A, cone-pullers on spindle.
U , geer on spindle.
b, pinion on spindle, playius into geer Ib.
B, feer on back shaft for reducing motion of spindte and inereasing the power-same as is common in gerred head lathes.
K, handle for throwing the back geer-shaft out of or into geer.
This machine will hore ont a hole 3 inches diameter in a wheel 3 feet diancter
LATHE, ENGWN:. Figs. 2511, 2512, 2513. Will swing 50 inches in diameter over the ways, and 82 inches in diameter over the rest.

Fig. 2511 is a side elevation of the engime.
Fig. 2512 is an end elevation.
Pig: 2513 is a side elevation of the tatil stock.
I' represents the bed piece which supports the homd and tail stecks and rest.
C is the headstock in which tho live spindle rums; it is made in andelle form, ath very henry ; bolted to bed piece by six twiltu.
$B 13^{\prime}$ are the geers by which the motion of tho spimille is reduced and the prower ineremerd.
$\mathrm{D} \mathrm{D}^{\prime}$ are small cone-pulleys for driving the long feed-screw, which is on the inside of the bed-piece, and not shown in the drawing.

O , geer on end of feed-screw, driven by a pinion on the hub of the lower feed-cone D^{\prime}.
A, cone-pulleys on spindle of cast-iron.
F, face-plate with geer B attached to the back side.
K, tool-holder, which slides upon a swivel-post S, that can be set at any angle and fastened by the fever and screw R to the block N, which slides crosswise of the bed-piece by means of the crank and screw with a balance bolt seen in Fig. 2511, and at N^{\prime} in Fig. 2512.

G is a hand-wheel for traversing the rest by handeraft. This wheel runs on a sticd, with a pmon on its hub which works into the geer H. H is placed on the end of a short shaft with a pinion h on the other end, geering into the rack I attached to the side of the bed.

T is the main sliding-saddle or plate for the rest; it is very heavy, and permanently fitted to the slides and hooked down by pieces J, and is well adapted to fastening on heary work for boring, de.

M, lever for changing the direction of the feed.
U , handle for stopping and starting feed.
L is the lower part of tail-stock, which is notched on to the slides or ways of the bed-piece.
Q. upper part of the tail-stock, which is made to slide crosswise for tapering work, in the usual way

LATHE, LARGE BORING AND REAMING. A very convenient and uscful tool for boring and reaming locomotive and car wheels, pulleys, geers, de., de. 'It will turn out a hole straight or tapering: and spline the same, without removing it from the chuck. It is adapted to turning or drilling ous holes, or boring, by using the shell boring-tool; all self-feeding.

Fig. 2514 is a side elevation.
Fig. 2515, end clevation, looking towards the face-plate.
A, cone-pulley of cast-iron which runs on the live spindle. The spindle has strong journals, ruming in gun-metal boxes.
A^{\prime}, geer on face-plate.
B, geer on front shaft.
o. shaft, thrown out of and into geer by eccentrics.

C, face-plate, to which the work is fastened by means of bolts.
D, upper cone for driving the feed motion.
D^{\prime}, lower cone on the splined shaft which passes through the centre of bed-piece, givine motion is the rack I, which can be connected with the spindle J, by the screw on top.

F, head-stock in which the live spimille re-ts.
($;$, swivel-post on which the tool hoblder stides.
g, bed-piece on which $(\dot{F}$ stands.
(${ }^{\prime}$ ', rest, with jaws, for usiner flat drill and reamers, adjusted by the serew on top.
H, upper part of tail-stock, in-ile of which is the feeding apparatus. This piece reats upon a sliding phate that is traveraed erossolvise by the serew $\mathrm{F}_{\text {. }}$.
s, worm which gerrs intu a segment on sife of tail stock for giving (lu proper meghe when a hate is to be turned out taperine.
K , crank, with a bevel pinion on the in-ide chel of ita shaft, feerime into a large bevel-wheel that hat an intermal screw cut thengh its hal, for fatening down tail stock to the beel.
 rack on side of bedpicee, for the purpose of mosving tail stock by hand.
" ${ }^{\prime}$, pinion, geerine into rack.
N, rack un sitle of bed piece.
O. bed piece, cast with crose pieecs, mat made sary strong.

LATHE, FOR GUN BORING, TURNING, AND PLANING, arranged for the Ordnance Depart ment, U. S. Navy Yard, Washington, by Wm. M. Ellis, Engineer. Figs. 2516 to 2522.

Fig. 2519. c, rest for supporting the muzzle of the gun while borng.
d, pulley, with belt motion above, for drawing boring-bar.
When boring, the turning mandrel is taken out and the boring-bar put in its place; the back-head is forced up by feed-screws in the same manner as slide-rest for turning.
Fig. 2518. C, planing-head and tool-holder, bolted on slide-rest of lathe in place of tool-holder for turning.
h, slide of tool-holder.
i^{\prime}, eogged sector working in rack on bottom of drill of tool-holder.
i, shifting crank to convey motion to sector.
E, ratchet-wheel on main mandril of lathe, to give motion to gun on the centres while planing be tween the trunnions.
D, eccentric connection to give motion to feed-hand.
B , berel-geer to work planing-head and feed-hand.
A, pulleys on bevel pinion-shaft.

rig. 2516. Back (sliding) head for turning or boring.
k, lever for throwing head out of geer.
l, feed-screw.
n, gibs.
Fig. 2520. h, lever for throwing slide rest out of geer.
f, feed-screw.
m, half-rest for feed-screw.
$n n$, gibs on slide-rest.
Fig. 2521. d, pulley for drawing boring-bar.
e, ratchet-wheel.
f, lever on ratchet-wheel, for boring.

Fig. 2517. c, planing-head for planing between trunnions.
h, tool-holder.
Fig. 2522. Standing-head.
b, feed-geer, (same in Fig. 2519.)
g, handle for clanging feed-geer.

Lathe, sMall self-activg AND SCREW-CUTTLIG, by Chrles Waltos, Leeds, Eur Fig 2523 is a general side eleration of the lathe, and

Fig. 2524 is a plan corresponding.
Fig. 2525 is an end elevation showing the geering.
Fig. 2526 is a transverse section taken between the fast-head and the slide-rest, showing the lattet w elevation, as also the arrangement of the geering for traversing the same.

Fig. 2532 is a section through the driving-cone on the lathe-spindle.
Fig. 2533 is a front view of the chuck.
Fig. 2534 is a side elevation of the same ; and
Fig. 2535 a vertieal section in the plane of the lathe-spindle.
These figures exhibit in full detail the several parts of a very efficient, and, in many respects, coure ment self-acting and screw-cutting lathe,
The machine is carried upon three standards marked A, and of which the general forms are shown in Figs. 2525 and 2526. These standards are planed on their upper surfaces to afford a solid rest for the bed $B B$, the upper surface of which is also planed. The exterior edges of the bed are bevelled in the usual way, as a means of retaining the saddle-plate $L L$ of the slide-rest, as shown in the crossseetion, Fig. 2526. The fast-head C C is fastened to the bed by means of bolts: it earries the main *pindle D , upon which is the driving-cone a, a section of which, showing its relation to the spur-wheel e and pinion 6 , is the subject of Fig. 253\%. The cone is as usual loose upon the spindle, and can be attached at pleasure to the wheel e, which is fast upon the spindle, when it is necessary to throw the back-speed shaft E out of geer. This is effected by the hand-rail G, which comnects the two levers commanding the bearings of the shaft in the two standards of the fast-head, a method commonly adopted when the arrangement of the geering does not conveniently admit of the shaft being shifted longitudinally. The motion of the leading-screw N is derived from the cone-spindle through the train of wheels $v w x y z$, in screw-cutting; and in plain work the parallel motion of the tool is obtained through the train $v a^{\prime} e^{\prime} c$, and the band-pulleys b^{\prime} and c^{\prime}, to the traverse-spindle $f^{\prime} f^{\prime \prime}$, whieh, by means of the worm g, Figs. 2526 and 2530 , and worm-wheel i^{\prime} communieates through the intervening spurpinions r and s with the pinion t, Fig. 2527, geering with the toothed-rack u, Figs. 2526 and 2529, attached to the under side of the saddle-plate L of the slide-rest. The geering for reversing the motion of the saddle consists of three meter-wheels and the cluteh-box h^{\prime}, arranged upon the traverse-rod $f^{\prime} f^{\prime}$. The clutch k^{\prime} communicates by means of a spanner fixed upon a horizontal shaft, passing through the 2531.

ked of the lathe, with the reversing-lerer l^{\prime} in front. By this means the shaft communicating with the train of wheels from the cone-spindle may be geered either direetly with the traverse-rod $f^{\prime} f^{\prime}$, or through the intervention of the meter-wheels at pleasure. A weighted lever j^{\prime}, shown in Fig. 2596, serves the purpose of throwing the worm-wheel i^{\prime} in or out of geer with the worm upon the traverserod, thereby conneeting or disconneeting the lathe with the saddle of the side-rest as may be required. The slide-rest can be relieved from connection with the leading-screw N by means of the handle o attached in front of the saddle: by pressing this handle domn, it acts upon a stud in the plate, carrying the serew-box n, which is thereby opened, and the saddle relieved.

The movable head-stock J J is provided with a screw f for shifting it out of the line of the axis of the main spindle, thereby adapting the lathe to conical turning.

Action of the latke. The arrangement of the geering in the views given of the lathe in the plates, is that adapted to serew-cutting. The conc a, which is loose on the spindle, is fast to the pinion b of 18 , teeth; this pinion geers with the wheel c of 52 teeth upon the baek-speed spindle E, which also carriethe pinion l of 13 teeth, geering with the wheel c of 52 teeth, fast upon the cone-spindle D. Aceording to this arrangement, the ratio of the speed of the driving-eone to that of the main spindle is as 16 to 1 .
The comncetion between the cone-spindle and the leading-serew N is accomplished by means of the wheel 1 of 40 teeth, fast upon the driving-cone spindle ; this wheel is working into the wheel w of 60 toeth, upon a slifting-stud attached by means of a radial slot-bar to the bracket O, bolted upon the fast-head; this latter wheel again is in geer with the wheel x of 90 teeth, also upon a shifting-stud, and carrying a wheel y of 45 teeth, in geer with the wheel z of 90 teeth, fast upon the leading-serew shaft N. "This train ean, of course, be varied at pleasure to suit the particular pitch of serew to be cut, the positions of the radial slot-bars, earying the studs of the earrier-wheels, being at the same time shifted t. : allow the whecls to come into geer.

To adapt the lathe for plain sliding, the back-speed shaft is put out of geer with the eone-spindle, by means of its land-rail,G; the wheel v unon the eone-spindle then geers with the wheel a^{\prime}, working
loose upon a stud attached to the head-stock, and carrying the cone-pulley b^{\prime}. This last is connected by a band with the loose cone-pulley c^{\prime}, working likemise upon a stud fixed to the standard A, and carrying it wheel d^{\prime}, which geers into the wheel e^{\prime}, fast upon the end of the traverse-rul $f^{\prime \prime} f^{\prime \prime}$, on which are the three meter-wheels and elutch-box k^{\prime}, also the sliding-worm which works into the eone-wheel i^{\prime} upin the shaft $\%$. This shaft revolves in bearings attached to the saddle, and carries the pinion r, Fig. $25 ⿻=$ working into the wheel s, keyed upon the same spindle which earries the pinion t, also fast. This latter gecrs with the rack u bolted to the under surface of the saddle. Py this arrangement motion is transfierred from the cone to the traverse-rod $j^{\prime \prime} f^{\prime}$, and thence to the slide-rest through the geering attachel to the saddle.

Litural references.- A A A the standards upon which the lathe is supported.
13 B the bed or shears haring the upper ledges upon which the shifting head-stock and sadule reat, planed.

CC the fast-head, which is firmly bolted upon the bed.
D the main spindle, which is highly fuished and case-hardened. It revolres in conical collars of hardened steel, and is further secured against end-long shift by a set-screw bearing against its outer end turough the bracket I.

E the back-speed shaft revolving in bearings inserted in the projecting ling FF , cast on the standards of the fast-head.

G hand-rail for throming the back-speed shaft in and out of geer with the cone-spindle.
If the face-plate which is screwed upon the end of the main spindle.
I bracket bolted to the outer standard of the fast-head; see D .
J J the morable head-stock. It is planed and fitted upon a saddle K, both the upper and under surfaces of which are planed; on the upper to allow the head-stock to slide upon it transversely, and un the under to allow of its being travelled on the bed of the lathe.

L L the saddle-plate of the slide-rest. It is planed and fitted with bevelled pieces to retain it upon the led of the lathe, as shown in Fig. 2526.

II the tool-holder of the slide-rest.
IT the leading-screw, carried in bearines at its two extremities, attached in front of the lathe.
0 the bracket fur carrying the train, of earrier-wheels by which the motion of the main spindle is transinitted from the leading-screw.

1', Firs. 2533, 2534, and 2535, the front plate of the universal chuck. And
(Q the back plate of the same, showing the spiral groove for expanding and contracting the clutchea or jaws.

KRR the clutches or jaws of the chuck. These are fixed upon separate sules through which one of the tails passes, while the other passes over the inner end of the sole ; these tails slide between radial slot - in the front plate P , and enter the spiral grooves formed in the face of the back plate (! When the back plate is turned upon its axis, whieh coincides with the axis of the main spindle, the front plate being meantime held fast, the elutches or jaws will be guided simultaneously, furcher from, or nearer to Hecentre, and thereby be made to clutch the work in the usual way.*
" the driving-cone of the lathe; it is loose upon the main spiudle, and fast to

- the first pinion of 13 teeth; it is fast to the driving-cone a.
c wheel of 5 2 tecth on the back-speerl shaft E; and
d a pinion of 13 teeth on the same shaft.
e tirst wheel of 52 teeth on the main spindle of the lathe.
f serew for moving loose head-stock trassersely for conical turning.
If hand-wheel for working the spindle of the liwse lead-stoek; and
t a handle for tightening the pinching-serew of the same.
i adjustable check by which the sliderest M is retained upon the saddle-plate 1 .
j rent-plate for the tow-carrier; and
le a serew for fixing the tond-holder upon the slide-rest.
l a hand-wheel and handle upon the end of the transerse-screw of the side pe-t. This serem works in plain collars attached to the sablle-phate, and in a nut attached to the sliding-sole of the rest, so that the screw being turned it carries the slide from or towards the axis of the lathe.
m it erank handle upon the mper slide serew, for putting the tool in and ont of ent.
π the seres-bux for the leading-serew. That under part is serewed internally to the stme piteh an the leading-serew, and is carried upon a sliding-sole, intu which is insorted :a stud passing through a slot in
othe handle fur connectine and disernnecting the serew-bxx of the heading serew. It act- an- a lever
 crum and the part acterl on by the hamed.
p the cramk-hamde for working the ablla phate by hand; it is phend unan

r : + pmr-pinien keyed upon the tran-veree ahatt $\%$, und working into

(:a -propinion kiey ind the satme spindle as s, und wheh geers with
4 an merted rack fint to the beal of the lathe.

[^4]v the first pinion in the trains of the head-geering of the lathe.
w a carrier-wheel which geers with the pinion v; it is loose upon a stud in the stud-plate 0 .
x a second carrier-wheel upon another stud in the stud-plate O, gecring with the former.
y a third carrier-wheel on the same stud as the wheel x, and made fast to the latter.
z a wheel keyed upon the end of the leading-screw, and geering with the pinion y.
It is through this train that the leading-screw derives its motion from the main spindle of the lathe,
a^{\prime} a wheel of the back-train geering witl the pinion v, on the end of the main spindle; it is keyed upon a pap of
b the upper cone of the back-train, carried upon a stud in the standards of the fast-head. It is loose upon the stud, and has the eye prolonged into a pap upon which the wheel a^{\prime} is keyed.
c^{\prime} the lower of the two cones of the back-train. It is also loose upon its stud, and is connected by a band with the upper speed-cone b^{\prime}.
d^{\prime} a spur-pinion keyed upon the eye of the speed-cone c^{\prime}, which is prolonged for that purpose, and which geers with
e^{\prime} a spur-wheel on the end of the worm-shaft $f^{\prime} f^{\prime}$, geering with the pinion d^{\prime}.
$f^{\prime} f^{\prime}$ the traverse-rod or worm-shaft ; a grooved rod passing at the back of the lathe, and having its bearings at the two extremities. It is also supported between by the fork which slides the worm g^{\prime} along upon it, the projecting sides of which are formed into a species of double gallows, as shown in Figs. 2526 and 2530.
g^{\prime} worm or endless screw upon the traverse-spindle, geering with the worm-wheel i^{\prime}. It has a fixed key in the eye which slides in a groove in the rod $f^{\prime} f^{\prime}$.
i^{\prime} worm-wheel on the end of the transverse-shaft q, worked by the worm g^{\prime}.
j^{\prime} a weighted lever for disconnecting the worm-wheel i^{\prime}.
k^{\prime} reversing-geer upon the worm-shaft $f^{\prime} f^{\prime}$, consisting of the three meter-wheels asci clutch-box, arranged in the usual manner, and worked by
l^{\prime} the lever of the reversing-geer k^{\prime}; it acts by a spanner upon the clutch-box lever, bringing the clutch into geer with either of the wheels upon the worm-shaft at pleasure.

LATHE, BACK-GEER TURNING. This is a good specimen of a back-speed lathe.
Fig. 2536 is a side clevation of the fast-head; Fig. 2537 an end elevation of the same taken from the back, and Fig. 2538 is a plan of the fast-head. The same letters are used on each.

b, the driving cone-pulleys, loose on the spindle of the lathe and fast with the pinion p, Fig. 2538. h, a spur-wheel, fast on the back shaft, and i a pinion also fastened on the same. w, a wheel fast on the lathe-spindle, geering with the pinion $i . \quad c$, is the chock or face-plate; this admits of being taken off the latbe-spindle when not required. The spindle is kept forward by a back-centre pinching-screw.

Figs. 2541 and 2540 , are end and side elevations of the shifting-head of which Fig. 2539 is a plan. is a screw for shifting the spindle. A hand-wheel is placed on the outer end of it, which revolves in

a gland embracing the ends of the shiftingspindle and a guide-rod under the serew, Fig. 2540 ; by this means it is made to move horizontally, and to carry the shift-ing-spindle of the head along with it. u is an eye-bolt, tightened up by the traveller r on the spindle, to take the strain off the scres. When quicker speeds are manted, the shaft carrying the wheels h and i is mored back by taking outt a pin scen under h in Fig. 2537, and the cone is made fast to the wheel w by a latch in the usual way.

LATHE, BORING AND TURNLYG, by Mr. Kınsosis.

Fig. 2542 is a side cleration of the machine.

Fig. 2543 is a general plan corresponding.
Fig. 9544 is an end view from the left.
Fig. 2540 is a section taken in front of the shifting head-stock.

The fixed head-stock B B is provided with four bearinga, east in each of the two standards, for the purpose of receiving the cone-spindle C , the second motion shafts D and E, and the main spindle F, upon which the face-plate G is fixed. The geering of the machine is calculated to produce a series of variations in the speed of the main spindle F , independently of any variation which may be effected by means of the driving cone-pulley a.

To effect this the arrangement of the wheels upon the shafts D and F is such that cither of them may be thrown into geer with the cone-spindle C , and the internal wheel $\%$, on the back of the face-plate Gr. Thus, if the wheel e on thie Shaft D be brought into gece with the wheel d, on the conespindle, the pinion f will at the same time be in geer with the internal wheel g, and a quick inotion will be communicated to the face-plate; but if the oppo-ite shaft E be slid forward longitudinally till the wheel j geers with the pinion h, the pinion f^{\prime} on that shaft will be thrown into geer with the internal wheel, and a slower motion will consequently be imparted to the face-plate. Again, let both the shafts D and E be thrown out of action; the cone pindle C may then be directly connected with the main spindle fily means of the wheels b and c, the relative sizes of which may be varied ko as to produce any required velocity; this latter arramgement is only employed for obtainitig a high speed, as in the conse of polishing.

The lowe head-stock II is adjustalle to miy required panition by means of a crank-handle fitting upn thes syumer emd of the spindle marked 0 , which commonicmtes ly is train of tonthed geer with the rack M, fixed upen the bed plate of the machine, as rhown in Fig. 2516 . The pinion which works into the rack is keyed upon the spimdle p, carried in bearings attrehal to the sole of the haradstock. Wh the same spimille is a small luvel-whecl, wheh geers with a pinion on the lower cand of a vertical spinille, having ita harinsed in the interior of it hollow columm, eant in the toxly of the headstock. On the upper end of this spimile is another bevelwheel, whelh gecrs with a pinion on the horizontal apindleo

linereby comple'ing the connection with the fixed rack M. This arrangement is fully exhibited in lotted lines in Fig. 2516.

The same reck M serves also for moving the side-rest K in a longitudinal direction, by means of a pinion kered upon the shaft q, shown in Fit. 2543. This shaft is carried in bearings attached to the edge of the sole-plate of the slide J , and terminates in a square, to which a lever may be applied to give motion to the shaft. The sole-plate of the slide is provided with dovetail grooves in its under surface, to receive the correspondingly formed heads of two bolts, for the purpose of attaching and fixing to the saddle-plate J the sole of the bracket K, which carries the slide-rest L. To afford the ntmost possible facility for adjustment, the bolt holes in the sole of the bracket K are slots of considerable length, and the fixing bolts hold the two plates firmly together, metal to metal, their surfaces of coutact being planed trne.

By this arrangenent the slide may be miade fast in any position upon the saddle plate, which in turn is retained upon the bed-plate of the machine by wedge-pieces worked by means of two horizontal eccentric spindles $v v$, shown in Fig. 2543.

The longitudinal and transverse motions of the tool-holder, for the purposes of traversing the work, and placing the tool in and oat of cut, are obtained by means of the screws r and s, which work at right angles to each other, in the usual manner ; the tool is made fast on the tool-holder by means of the two Camps $t t$. In adjusting the slide primarily to the work the sole K is released from the saddle-plate J by relaxing the connecting bolts; the bracket K is then shifted to the required distance from the longitudinal axis of the machine, and also, to a certain extent, in the line of that axis by sliding the bolts in the dovetail grooves of the saddle-plate, should that operation be more convenient than moving the latter on the bed-frame of the machine. For transverse adjustment to a limited extent, the screw s can be used; for longitudinal adjustment, the tool-carrier may be set in a similar manner by the screw r.

Action of the machine.-Supposing it is required to face a heary piece of work by this machine, it is elamped to the face-plate by means of bolts which pass through radial slots formed in the latter. The when c, upon the end of the main spindle F, is then removed, and the shaft E is slid longitudinally in its bearings until the wheel j and the pinion f^{\prime}, bath keyed upon it, geer respectively with the pinion h, upon the cone-spindle, and the internal wheel g, which is fast upon the back of the facc-plate. By this arrangement the
 slowest motion of the face-plate is obtained. If a quicker motion be required, as when the action of the tool is near the axis of the machine, the shaft E is thrown out of geer, (as shown in the views, Figs. 2542 and 2543 ,) and the shaft D is moved endways until the wheel e and pinion f upon it geer respectively with the wheel d upon the conespindle, and the internal wheel g upon the back of the face-plate. The speed is thas increased in the ratio of the number of teeth in the wheel d and pinion k; that is, as 51 to 15 . A still higher speed
and indeed the highe-t, is obtained by arranging the geering of the machine as it is represented in the engravings. The shaft: D and E, it will be observed, are both out of geer, (being retained in that position by the catches $k \cdot k^{\prime}$, and the wheel b upon the cone-spindle C is in geer with the wheel c, upon the end of the main spindle F, so that the speed of the cone is transmitted to the face-plate through the single pair of wheels b and c, which are to each other in the ratio of 51 to 66 .
These three speeds, which are independent of the five speeds obtained by the cone, may be thus compared:-The numbers of teeth in the wheel j and pinion f, upon the back--haft E , are resectively 78 and 13 , and the numbers iu the pinion h, upon the cone-spindle, and in the internal wheel g upon the back of the face-plates, are 15 and 119 ; consequently when the shaft E is in geer, the ratio of the speed between the cone-spindle and the face-plate is as $75^{\circ} \times 119: 13 \times 15$, or as 476 to 1 , being the slowest motion of which the machine is capable. Again, the numbers of teeth in the wheel e and the pinion f, upon the shaft D, are respectively 51 and 13 ; and the numbers in the wheels d upon the cone-spindle, and the internal wheel g, being 51 and 119 , therefore when the shaft D is in geer, the ratio of the speed of the cone-spindle to that of the face-plate is as $119: 13$, or as $9 \cdot 15$ to 1 . And when both of theso shafts are out of geer, and the wheel b upon the cone-spindle is working into the wheel c upon the mair spindle, the numbers of teeth being respectively 51 and 66 , the ratio of the speed is 1 to 1.3 nearly.

The action of the machine in ordinary parallel turning is the same as in any common lathe. Thio mode of obtaining a self-acting longritudinal motion of the tool-earrier is by a stellar-plate fixed upon the end of the serew r, and which is worked by an arm bulted to the face-plate or to the object which is being turned, so as to come in contact with the plate, and cause it to advance one tuoth nt each revolution.
Application of this luthe to the boring of cylinders.- When the machine is to be used as a lxoring. mill, the slide-rest and shifting head-stock are removed, and a boring-bar is substituted; one end bcins supported by a standard fixed upon the bed-plate.

Literal lieferences.

A A, the bed-plate of the machine.
13 B , the fixed head-stock, bolted to the bed plate. ℓ, the driving enne-spindte.

1) E , the secund motion shafts.
r, the main spintle earrying the face plate G.
a, the driving come-pulley with five speeds.
1 , a where of 51 teeth working into
${ }^{\prime}$, It wheed of $6 \in$ tecth wh the man spindle.
d, a wheol of 51 teeth working into
e, nu erpual sized wheel on the feeont motion -haft I).
$f f^{\prime}$, pinions of 13 teeth on the shafts l) and E , working into
y, the internal whee! of 119 terth nttuched to the face-plate.
4. up pinion of 15 terth working into
j, a wherl of pis teeth upon the second montion nluft k:.
$k \cdot k^{\prime \prime}$, eatches for retaining the shafts D and k when jut in or ont of geer.
11 , stay-rods for strengthening the fixed headstock.
II, the shifting head-stock.
m, a screw-spindle with hand-wheel for aljusting the centre in the thifting head-sterck.
n, a pinching-serew for fixing the centre when ad justed.
n, n spuindle for moving the shifting hemel 4 on lomgitudimally.
f, at transweraenaft furming part of the 1 ... 1 . iom by which the shifting head stexk is bom.
$h^{\prime} h^{\prime}$, linoked bolts for lixing the shifti F Ind stock.
J, the satdle plate, forming a allymert in
K, a heracket for carryins the - hert ro
L_{4}, the lomgitulinal carringe of the the reat

M, the toothed rack, fixed to the bed-plate for the purpose of moring the slide-rest and shifting head-stock.
q, a shaft carrying a pinion which works into the rack M, for moving the slide-rest longitudinally.

LATHE, BORING MILL AND LARGE TURNLNG LATHE. 'This is an indispensable tool in works where engines of a large class are constructed. The plates exhibit a side elevation and plan, with the parts marked by the same letters of reference.

A, the boring-bar, having a recess in it to receive the feeding-screw; see Fig. 2547.
CC and D D, brackets for carrying bar.
B, bed-plate for fixing the work by T-headed bolts, passing through the longitudinal slots cast in it.
E, Fig. 2547, boring-block, fitting accurately on the bar; it is moved along it by the feed-screwr working into the nut v, inserted into the boring-block.

H, main spindle carrying the driving cone-pulleys.
G, the face-plate for fixing the work to be turned.
S, Fig. 2548, a cyliader undergoing the process of boring.
t, bars for fixing the cylinder to the bed-plate.
y, a coupling bolted to the face-plate for the purpose of driving the boring-bar.
a, pinion fast to driving cone-pulleys and to the bass on the spindle H.
b, wheel fast on the shaft o, and geering with the pinion a.
e, pinion driving the wheel d, but which may be slid along the shaft on a sunk feather towards g, so as to be elear of d when required.
g, wheel fast on the shaft 0 .
\ddot{h}, wheel which geers with the wheel g, when required.
c, wheel on the shaft p, which geers with that marked b, on the shaft 0 .
k, internal wheel fast on the back of the face-plate G.
i, pinion fast on the shaft p, and geering with the internal wheel k, to communicate motion to the face-plate.
ss, planed rails for the brackets C and D, or other supports that may be used to earry lathe-heads.
w, x, boring-rings ; the internal ring w is usually bored to fit E , and allowed to remain on the boring-
bloch, the larger ones being keyed on it. The ring x, suited to bore the cylinder $s s$, has 24 slots in its circumference; 12 of these receive the cutters, which are adjusted and fixed by small wedges; sometimes they are bedded on paper. The other slots are fitted with pieces of hard wood driven tightly into them to form a general guiding surface.
l, wheel loose on the boring-bar, and having external and internal teeth. The internal teeth geer with those of a pimion on the end of the feed-screw; see Fig. 2549.
m, wheel fast on the boring-bar, and having the same number of teeth as the wheel l, (64.)
n, q, wheels fast on the small shaft u, and geering with m and l. The wheel q has one tooth less than $n,(35$ and 36,$)$ so that one turn of the wheels n and q advances the wheel l one tooth on the bar, and (the internal wheel having the same number of teeth as the external) produces a motion of one tooth of the screw-pinion. The screw being $\frac{1}{2}$ inch pitch, and the piston 16 teeth, the feed motion of the boring-block will be $\frac{5}{16}=.03125$ inch for each turn of the wheels n and q, or $\frac{.03125 \times 64}{35}=.0571$ inch during one turn of the boring-bar.

The following table exhibits the various speeds of which the boring-bar is susceptible.

Turns per minute.			Turns per minute.
1) 333	$\times 3=1$		13) $4 \cdot 839$
$2 \cdot 416$			14.6 .049
$3 \cdot 520$			15.7561
4.650	$\sqrt{ } \cdot 650 \times 3=14$		16.9 .451
$5 \cdot 812$	$\sqrt{ } 812 \times 3=1.56$	-	1711.814
61.015			1814.767
$71 \cdot 269$			1918.457
81.586			2023.079
91.982	$1.982 \times 3=5.946$		2128.842
102.478			2236.053
113.077			2345066
123.871			24.56 .333

The speeds increase as 1 to $1 \frac{1}{4}$, so that any speed within the range may be procured to within $\frac{1}{8}$ or that reçuired ; that is, the boring speed being 7 feet per minute, the greatest deviation will be $\frac{84}{8}=10 \frac{1}{2}$ unches per minute.
The cone-pulleys of the machine are driven by a similar set of cone-pulleys on an intermediate shaft. This shaft is again driven from the main shaft by pulleys of the following relative diameters :

The diameters of these pulfeys are to each other as the first to the fifth speed of the bar, so that the smaller is to the larger pulley as $\sqrt{ } 333: \sqrt{ } \cdot 812=1: 1 \cdot 56$. The increase of speed from the largest

SMIMTOM.5C

to the smalle－t pulley on the spindle H is as the first to the fourth speed，and tho diameters of the pulleys are $\sqrt{ } \cdot 330: \sqrt{ } \cdot 650=19: 20 \frac{1}{2}$ ．

The first eight speeds are obtained－with the wheels d and c ，the second eight with the whecls b and c ，and the third eight by geering g and h ，disengaging e and c ，and taking the pinion i out of gecr with the large internal wheel on the face－plate by shifting the shaft p towards the shaft o ．

Driving Wheels．No．of Teeth．	Feed Wheels．No．of Teem．
a，．．．．．．．．．．．．．．．．．．． 4	I，external，．．．．．．．．．．．．6．1
¢，．．．．．．．．．．．．．．．．．．52	l ，internal，．．．．．．．．．．．．6．
c，．．．．．．．．．．．．．．．．．．40	m，．．．．．．．．．．．．．．．．．．．tit
$e_{\text {¢ }}1 .14$	$n, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
d，．．．．．．．．．．．．．．．．． 61	
（／，，．．．．．．．．．．．．．．．．． 34	l＇inion on traverse \}
$4, \ldots \ldots40$	screw，
i，．．．．．．．．．．．．．．．．．． 15	
k，．．．．．．．．．．．．．．．．． 144	

The speeds produced by the wheels $e d$ and $b c$ are to each other as the first to the ninth speed of the chuck： therefore， $64 \times 52 \div 14 \times 40=5.94$ nearly．
The boring speed being about 7 feet per minute，the slowest speed，viz．，$\frac{1}{3}$ of a revolution per minute，would］ rut a cylinder of 80 inches diameter $\frac{8.1 \times 3}{3 \cdot 1416}=80$ ．All the cylinder boring speeds are in the first eight of the table，the others are for turning and polishing heavy articles，such as large cylinder covers．

Another modification of the boring－lathe is scen in the vertical boring－mill of J．P．Morris \＆Co．，of Philadelphia．

A modification of the reaming and bormor－lathe may be ecen in the vertical boring－mill built in the Washing－ ton Navy Yard，under the direction of W^{m} ．M．Ellis．This is essentially the same as the boring－nill of J．P．Morris is Co．，of Philadelphia．
Fig． 25051 ，elevation of the mill．
Λ ，crane for lifting the work．
13 ，driver of boxing－shaft．
（ ，skeleton－frame to support cylinder．
D，frame to support upper end of cylinder．
E，horizontal chuching－plate．
F ＇，cone of pulleys．
a，feed－geering for boring－head．
Fig．のごこ，section．
E ，chuckinerplate．
F ，cone of pulleys．
a，horizontal shaft transferring mo－ tion by bevel pinion tw＂pright＝haft b ， which drives the chucking－plate by a pinion．
c ，small－haft for feedmotion to slide－ rest．
d，grooved pulleys for feed motion to the sime．
c，expransion comnction with univer－ sal joints at each end to convey motion of worm and rack to upright man－ drel 1 i．
f ，hrace to support comuterbalance geerime \％
h ，concenipmorting counterbalance．
i ，hexagon mandrel cometerbabance．
l゙ig． 2.55 2．（i，cat－iron frame to sup）． pert upper cud of bering haft．

Pig．ens5o hows the tand or bed imbuatel by letter r^{\prime} ，lige atsh，on which the cilinder rests which is tw be bored out．

Fig． 2550 hows a guile，imulicated ly I）Fig．2551，which is pacm upon tops of cylunder，amil surves ala guide for loni－ ing－bar．The buring－har is then cons． neeted to the revolung flate，an－hown

[^5] A
in B and E, Fig. 2551, and turns with it. The boring-head which holds the cutters is shown at G, and is connected with two screws nearly the whole length of boring-bar, set in grooves and moving with the bar and shown by dotted lines, which screws regulate the descent or feed, as it is termed, of the boring-head

Dn the upper end of the boring-bar shown at a, Fig. 2552, is placed the geer by which the proper mo tion is given to the feeding-screws. On the end of each feeding-screw is placed a emall pinion, which weers into the inner teeth of a wheel which is loose on the top of boring-bar, and of course does not turn

whth it. This wheel has teeth on the inner and outer sides of its periphery; the outer teeth geer into one of a set of two wheels which turn together, and are placed on a fixed pivot, independent of the boring-bar. The upper wheel of this set geers into the upper wheel a, which is keyed to the boring-
bar, and of course turns with it. The amount of feed, or the advance of the feeding-scresw, is due to the difference of the velocities which are given to the wheels a and m. This difference of the relocities of these two wheels may be varied by rarying the diameter of the wheels a and m.

The geering shown abore the top of the boring-bar is for hoisting up the boring-bar, when the macnine is to be used for planing a flat, or trning a cylindrical or conical surface. The machine, as arranged fur this purpose, is shown in Fig. 2552.

The cutting-tool is attached to the bar i, in which a rack is cut, into tho teeth of which a pinim peere, which pinion is moved by a perpetme serew on the bar; hy this neramement the vertionl thothon is given to the tool. The methon of producing the lateral motion of the tuol by the serew $h \mathrm{i}$ shown hy the figure, and does not need explamation.

Fig. 2557 , 11, crons-lar mad bearing for upper end of thaft of chuck phate.

LAP AND LEAD OF THE SLIDE-VALVE. The slide-valve is that part of a steam-engine which causes the motion of the piston to be reciprocating. It is made to slide upon a smooth surface, called the cylinder face, in which there are three openings to as many pipes or passages: two for the admission of steam to the cylinder, above and below the piston, alternately; while the use of the third is to convey away the waste steam. The first two are, therefore, termed the induction or steam ports, and the remaining one the eduction or exhaustion port.
The slide is inclosed in a steam-tight case, called the slide-jacket; and motion is communicated to it by means of a rod working t'rough a stuffing-box.

The steam from the boiler frst enters the jacket, and thence passes into the cylinder, through either steam port, according to the position of the slide, which is so contrived that steam cannot pass from the jacket to the cylinder through both steam ports at the same time, or through the eduction port at any time.

Case 1.- W'hen a Slide has neither Lead nor Lap.-Fig. 2559 represents the cylinder face for a " Murray slide" without lap; a and b being the induction ports, and c the eduction.
Figs. 2560, 2561, and 2562, ure similar sections of the nosle, showing the slide in its central and two extreme positions. It occupies the mid-position, Fig. 2560, when the piston is at either extremity of its stroke; the extreme position, Fig. 2561, when the piston is at half-stroke in its descent; and that shown in Fig. 2562 , when the piston is at half-stroke in its ascent.

When a slide has no lap, the width of its facing, at f and f, Fig. 2560, equals that of the steam ports; the lap being anty additional width whereby those ports are overlapped.

That the waste steam may have unobstructed egress, the ex-
 haustion port c must be made of no less width than the steam perts; and, for the same reason, the bars d and e should correspond with the slide face at f and g. The three ports, together with the bars between and beyond them, are therefore drawn of equal width; the total length of the slide being equal to the distance between the steam sides of the steam ports.

The distance through which the slide moves, in passing from one extreme position to the other, is called its travel; which, in this case, equals twice the port.

When the motion of a slide is produced by means of an eccentric, keyed to the crank-shaft and revolving with it, the relative positions of the piston and slide depend upon the relative positions of the crank and eccentric.

Demonstration.

Let $a b$, Fig. 2563, represent the crank; then b being the crank-pin, and a the centre of motion, the larger circle represents the orbit of the crank, and its diametor $b c$ the stroke of the piston. Supposing the cylinder to be an upright one, haring the crank-shaft immediately above or below it, the connection between the pis-ton-rod and crank being merely a connecting-rod, without the intervention of a beam, it is evident that when the position of the crank is $a b$, the piston will be at the top of the cylinder, and at the bottom when its position is αc. The relative positions of the crank and piston, at any point of the stroke between the two extremes, depend upon the length of the connecting-rod : for the present, however, let us sup-
 pose the connecting-rod to be of infinite length, and therefore always acting upon the crank in parallel lines, so that when the crank is at d, e will be the appareut position of the piston, and f the same when the crank is at g; the piston being represented by the sine of the are described hy the crank from either of the points b and c, in the direction of the arrow.

Thie diameter $h i$, of the inner circle of the figure, represents the travel of the slide, and its radius the eccentricity of the eccentric; or, regarding the eccentric as a crank, the radius may be said to represent that crank, as $a b$ represents the main crank. The travel of a slide, without lap, being equal to twice the port, the two steam ports are represented by the spaces $a h$ and $a i$, but transposed, $a i$ being the passage to the top of the cylinder, and $a h$ that to the bottom.
Supposing the piston to be at b, (the top of the cylinder,) the position of the slide will be that shown in Fig. 2560, the direction of its motion being downward, so that the port a, Fig. 2560, or a i in Fig. $\unrhd^{5} 63$, may be gradually opened for the admission of steam above the piston, until the pi:ton has arrived at halfstroke, when it will be fully open, as shown in Fig. 2561. The direction of tha slide's motion is then reversed, so that when the piston has completed its descent, the port b, Figs 2559 to 2562, or $a h$ in the diagram, will begin to open for the admission of steam beneath it, and exhaustion will commence from above it through the port a, or $a i$, and exhanstion port c, the slide being again brought into its central position, Fig. 2560.

Now the slide being at half-stroke, when the piston is at either extremity of its stroke, if we make $a b$ the position of the crank, $a k$ will be that of the eccentric; and the axis of the crank being likewise that of the eccentric, they must necessarily revolve in equal times, and always at the same distance apart; therefore, when the crank has reached the point d (supposing it to move in the direction of the arrow) the eccentric will have advanced to l, and $c d$ and $l m$ represent the positions of the piston and shide respectively; showing, that when the piston has descended to c, the steam port $a \dot{i}$. Fig. $2 \overline{2} 63$, or a, Figs. 2559 to 2562, will be open to the extent $a \mathrm{~m}$. Again, when the crank is at n, and the piston comsequently at half-stroke, $a i$ will be the position of the cecentric, the port $a i$ being fully open, and the slide occupying the extreme position shown in Fig. 2561. The direction of the slide's motion is now reversed, and the port is again gradually covered by the slide face until the positions of the crank and eccentric are $a c$ and $a o$, when the piston will have completed its deseent, and the port $a i$ will be completely closed, the slide being again brought into its central position, Tig. 2560 . The opposite stear.
prirt a how begins to open for the admission of steam, and the direction of the piston's motion is rerersed; the port continues to open until the crank and eccentric reach the points p and h, when the piston will again be at half-stroke, and the slide in its extreme position, Fig. 2562 . Meanwhile, exhausfion from abore the piston has been taking place, to the same extent, through the port $a i$. Finally, the piston having completed its ascent, the slide again occupies its original position, Fig. 2560 , and, its course being duwnward, steam is again admitted into the cylinder, through the purt a; the piston then begins to descend, and, at the same instant, exhaustion ceases from above, and commences from below it, through the port δ.

It is sometimes urged against the use of the eccentric, as a means of actuating the slide, that the steam ports are opened and closed too slowly; but it must be rememberell that the piston dues nut move at a uniform velocity, as the crank does; for example, while the crank describes the are $b d$, the pi-ton descends only from b to e, the versed sine of that are; and its velocity is gradually increased as it approaches the middle of its stroke, where it is greatest, being equal to that of the crank. Again, as the piston approaches the end of its stroke, its velocity is diminished in the same ratio as that in which it had previously increased, until the completion of its stroke, where it remains stationary during the anall space of time in which the direction of its motion is reversed.
Now, it must be obrious that less steam is required to impel the piston at a slow rate than at a rapid one ; and a glance at Fig. 23ti3 slows that the steam admitted into the cylinder, when the slicle is actuated by an eccentric, is at all times proportioned to the velocity of the piston, the port being least open when the piston is near the end of its stroke, and fully open when it is at halt-stroke.

When an eccentric, instead of being set, as in the preceding case, so that the steam port shall only begin to open when the piston commences its stroke, is so placed that the port shall be open to some extent prior to the commencement of the stroke, the width of that opening is termed
Tre Lead.-The nou-use of lead is disadvantageous, chietly because at the commencement of every stroke, the steam has to contend with the whole force of that which had impelled the piston during its previuus stroke. But besides obviating that dizadrantage, the lead is of essential service in locomutive chgines, "where it is found necessary to let the steam on to the opposite side of the piston befure the ent of its stroke, in order to bring it up gradually to a stop, and dimini-h the violent jerk that is caused by its motion being changed so very rapidly as five times in a second. The steam let into the end uf a cylinder before the piston arrives at it, acts as a spring cushion to assist in chamging ite motion; and if it were not applied, the piston could not be kepe tight upon the piston-rod."

Cuse 2.- HFm a slide has lead without lup.-Let «b, Firg. 25tit, represent the stroke of the piston; $c d$ the travel of the slide; and ef the leud; then, supposing the piston to be at the top of the cylinder, $c a$ is the position of the crank, and eg that of the cecentric. Following the course of the crank, in the direction of the arrow, we find the pert e ed tully open, not, as in the former case, when the piston is at half-stroke, but when it has descended to the point h,-the are $a i$, described by the erank, being equal to the are $g d$, described by the eccentric. Agrain, we find the port reclosed when the pistun las descended tis i^{\prime}, at which point exlaustion commences from above the piston through $e d$, and steam enters belor it through $e c$, for the return stroke, at the commencement of which the port $e c$ is open to the extent cl (equal to ef) for the almission of steam, while e d is open to the same extent for exhaustion.

It is to be remarked, that the amount of leud is necessarily very limited in practice, its tendency beine to arrest the progress of the piston before the completion of its stroke. The breatest possible amount of had equals half the travel of the slide. The eceentric would in that case be eet diametrically upposite to its tirst josition, which would have the efficet of reversing the direction of the pinton's motion.

In the case of a slide laving lead withont lap, the distance of a fiston from the end of its stroke, when the lead prempes its effect, is proportional to the lead as the versed sine of an are is to its sine, -

Lemonstration.

 the en represent the crank ant ewecntric, the pinton being it the top of the cylinter. Nisw, steman will enter the cylimar, brlow the pinton, when the eceentrie is at f, and

 -and hilh eytual to i b) is ity verseal sinc: hetre

liule I.-To find the dintance of the: pi-ton from the end of its stroke, when the

 proluct will be the dhance of the pi-ton from the end of it satroke, when sham is adnitted fir the retum atroke, and exhatustion commeneer. Wr,

 renpunding sine lyy the wifth of stean purt, mat the proxhert will he the hand.
 required the distaner of the pinten fiom the eme of its treke, when whan then commences.

Example 2.-The stroke of a piston is 48 inches; width of steam port 2.5 inches; and distance of piston from the end of its stroke, when cahaustion commences, 4848 inches: required the lead.

$$
\begin{gathered}
\text { Here, } \cdot 4848 \div 24=\cdot 0202=\text { versed sine } ; \\
\text { and sine of rersed sine } 0202=\stackrel{2}{ } \\
\text { Then, } \because 2 \times 25=5=\text { lead. }
\end{gathered}
$$

When the lead of a slide is equal to the width of steam port multiplied by any number in the first column of the following table, the distance of the piston from the end of its stroke, when steam is admitted on the exhaust-side, will be equal to half the stroke multiplied by the corresponding number of the second column. Or, if the distance of the piston from the end of its stroke, when steam is admitted on the exhaust-side, be equal to laalf the stroke multiplied by any number in the second column, the width of steam port multiplied by the corresponding number of the first column equals the lead.

When the lead is equal to the width of steam port multiplied by	[0625	The distance of the piston from the end of its stroke, when steam is admitted on the exhaust-side, equals half the stroke multiplied by	-0019
	-09375		-0044
	-125		-0078
	-1875		-0176
	-21875		. 0242
	$\because 5$		-0317
	-28125		-0403
	-3125		-0501
	-34375		-0609
	-375		- 0730
	- 40625		. 0862
	-4375		-1008
	$\cdot 46875$		-1166
	-5		-1339

The Lap.-A slide is said to have lap when the width of its face is greater than that of the steam ports, the ports being thereby overlapped, as in Fig. 2569.

It is to be remarked that slides should have some degree of lap on both the steam and exhaustion sides of the passage, because, although in theory an aperture may be said to be completely closed when covered by a bar of similar width, yet, in the construction of a slide without lap, we cannot insure such accuracy of fit as to preclude the possibility of steam entering or leaving both steam ports at the same time.
Lap on the steam side has the effect of cutting off the steam from the cylinder, by closing the port before the completion of the stroke, the remainder of the stroke being effected by the expansion of the steam already admitted.

Demonstration.

Case 3.-When a slide has lap on the steam side, without lead.-Let $a b$ and $b c$, Fig. 2566, represent the lap at both ends of the slide; and let $a d$ and $c e$ represent the two steam ports; then $d e$ will represent the travel of the slide, which, in this case, equals twice the steam port, plus trice the lap.

Supposing de also to represent the stroke of the piston, and that the piston is on the top stroke, then $b d$ and $b f$ are the respective positions of the crank and eccentric; for the slide, instead of occupying its central position, when the piston is at the end of its stroke, (as in Case 1,) must be set in adrance of that position to the extent of the lap, that steam may enter the cylinder when the piston begins to move. See Fig. 2567.

When the eccentric has advanced from f to e, the crank will have reached the point g; the piston is therefore at a when the port $e e$ is fully open, the slide being then in the position Fig. 2568. Again, when the eccentric has reached the point h, the port $c e$ will be reclosed, Fig. 2567, and i will be the position of the piston; therefore, the distance of the piston from the end of its stroke, when the steam is cut off, is proportioned to the whole stroke, as $i c$ is to $d e$.

When the eccentric arrives at k, the slide will occupy its central position, Fig. 2569, and the piston will be at m, where exhaustion conmences from above it; but steam is not admitted below it, for the return stroke, until the eccentric has reached the point n, where the port $a d$ begins to open, the position of the slide at that moment being that shown in Fig. 2570.

When the eccentric arrives at d, the port will be filly open, the slide being then in its extreme position, Fig. 2571 ; and it will be reclosed when the eceentric arrives at g, and the piston at p, where the steam is cut off, the position of the slide being again that shown in Fig. $25 \% 0$. Again, when the eccen-
tric reaches the point r, exhaustion ceazes from above the piston, which is then at s, and commences from below it, the slide being then in its central position, Fig. 2569 , and moving downward. Finally, the crank having arrived at d, and the eceentric at f, the piston will have completed its ascent, and the slide will occupy the position, Fig. 2567, as at starting.

The steam was shown to be cut off when the piston bad descended from d to i, the crank having described the are $d g u$, and the eccentric the are $j e h$. Now, $d i$ is the verscd sime of $d y u$, and $c e$ is the rersch sine of half $f c k$; and $d g u$ and $j e h$ are equal ares. Hence

Rule III.-To find at what part of the stroke stean will be cut off with a given amount of lap:Divide the width of steam port, by itself, plus the lap, and call the quotient versed sine. Find its cor respunding are in degrees and minutes, and call it are the first. If are the first be less than 45 degrees, multiply the versed sine of twice that are by half the stroke in inches, and the product will be the dis tance of the pi-ton from the commencement of its struke, when the steam is cut off.

If are the tirst exceed 45 degrees, multiply the versed sine of the difference between double that are and 150 degrees by half the stroke, and the product will be the distance of the piston from the end of its stroke when the steam is cut off.
liule $I \mathrm{~J}$. - To find the amount of lap necessary to cut off the steam at any given part of the stroke :-
If it be required to cut off the steam before half-stroke, divide the distance the piston moves beture steam is cut ofl, by half the stroke, and call the quotient versed sine. Find the are of that versed sine, and also the versed sine of half that are. Divide the difference between the versed sine last found and unity, by the versed sine, and multiply the width of steam port by the quotient; the product will be the lap.

If it be required to cut off the steam at a point beyond half-stroke, divide the distance of the piston from the end of its stroke, when steam is cut off, by half the length of stroke; call the quotient rersed sine; find its corresponding are, and abstract it from 180 degrees. Find the versed sine of half the remainder, and subtract it from mity. Divide the remainder by the rersed sine, and multiply the width of the stean port by the quotient ; the product will be the lap.

Excomple 3.-The stroke of a piston is 36 inches; width of stem port $1 \frac{1}{3}$ inch; and lap 6 inches: required the puint of the stroke at which steam will be cut off.

> Here $15+6=7 \cdot 5$; and $15 \div 75=-2=$ versed sime;
> \quad are of rersed sine $-2=36^{\circ} 52^{\prime}$, (are the first ;)
> and $80^{\circ} 52^{\prime} \times 2=70^{\circ} 44^{\prime}=$ are of versed sine, 7105.

Then $193 \times 15=12.95$ inches $=$ distance of the piston from the commencument of its stroke when the steam is cut ofl.

Esample 4. -The stroke of a piston is 36 inches; width of stem port $1 \frac{\mathrm{~h}}{}$ inch; and extent of lap 1 it inch : required the point of the stroke at which steam is cut ofi.

Here $1.5+1.25=2.75$; and $1.5 \div 2.75=5454=$ versed sine of are $62^{\circ} 58^{\prime}$ (are the first.)
Then $62^{\circ} 5 S^{\prime} \times 2=125^{\circ} 56^{\prime}$; and $150^{\circ}-125^{\circ} 56^{\prime}=54^{\circ} 4^{\prime}=$ arc of versed sine, $4131 ; ~ 4131 \times$ $15=7 \cdot 13$ inches $=$ distance of the p iston from the end of its stroke when the steam is cut off.

Example 5.-The stroke of a piston is 36 inches; width of steam port 1.5 inches; and distanee of the piston from the commencement of its stroke, when the steam is cut utf, 12.95 inehes: required the lap.

Here $12.95 \div 18=7198=$ versed sine of are $73^{\circ} \cdot 14^{\prime}$;
$73^{\circ} 44^{\prime} \div 2=36^{\circ} 52^{\prime}=$ are of rersed sine 2.
Then $1-2=8 ;$ and $8 \div 0=4 ; 15 \times 4=6$ inches $=$ lap.
Tane Lafad asn Lap;-Having separately investigated the two eases of a slide having lead without lap, and lap without leat, we now proceed to con-ider the effect of both in cumbination, together with that of lap on the exhanstion side.

Inchonstration.

('acl: 1.- When a slide hers lap wn both ther stram and extenstion sides, logether with lead.-Let
 and a!, the same on the exhatustion side; be and cal the stean ports; nand the line ed both the travel of the alide and stroke of the piston. Then, suppring c h to represint the land of the slide, a i will be the pusition of the eceentrie whan that of the erank is ae ; the slide wecupving the ponition shown in ligg. 2573 , nad the pioton bemp nt the thp of its downward stroke.

When the ereentric reaches the penint k, the port ed will lue fully chased, as shown in Fig. 2-74, and the piston will have demembed to l, the are em freing requal to the nre $i k$. Again, when the reentric artues at n,
 mentey from ulmwe the piston, which has dememben to of the are e m p^{\prime}

 25ibs) which has then chacemded tor r; the nere c ma la ing equal to the

When the eccentric reaches the point n^{\prime}, opposite to n, exhaustion commences below the piston, the slide being theu in the position Fig. 2577 , and the piston at o^{\prime}. Finally, when the eccentric reaches the point q^{\prime}, and the crank the point s^{\prime}, opposite to s, steam begins to enter the port $c d$ for the return stroke, at the commencement of which the port $c d$ will be open to the extent of the lead $c h$; the crank and eccentric occupying their original positions $a e$ and $a i$.

It is here shown that four distinct circumstances result from the use of a slide having lap on both sides of the port, with lead, during a single stroke of the piston. These are-

First: The cutting off the steam, for the purpose of expansion.

Sccond: The cessation of exhaustion on the exhaustion side.
Third: The commencement of exhaustion on the steam side.

Fourth: The readmission of steam for the return stroke.
With regard to the first of these results, we found the steam port $c d$ closed, when the crank and eccentric had described the equal ares $c m$ and $i d k$. Now, $c d$, the steam port, is the versed sine of $l k$; and $h d$, the steam port minus the lead, is the rersed sine of $i d$. Hence,

Rule V .-To find the point of the stroke at which steam will be ent off :
Divide the width of the steam port, and also that width minus the lead, by half the slide's travel, and call the quotients rersed sines. Find their corresponding arcs, and call them are the first, and are the second, respectively. Then, if the sum of those ares be less than 90 degrees, multiply the versed sine of their sum by half the stroke, in inches, and the product will be the distance of the piston from the commencement of its stroke, when the steam is cut off.

If the sum of arcs the first and second exceed 90 degrees, subtract it from 180 degrees; and the versed sine of the difference, multiplied by half the stroke, equals the distance of the piston from the end of its stroke, when the steam is cut off.

Example 8.-The stroke of a piston is 60 inches; the width of steam port 3 inches; lap on the steam side $2 \frac{3}{2}$ inches; lap on the exhanst side $\frac{1}{8}$ th inch; and lead $\frac{1}{2}$ inch: required the point of the stroke at which steam will be eut off.

$$
\begin{aligned}
& \text { Here } \frac{3}{3+2 \cdot 5}=\cdot 5454=\text { versed sine of } 62^{\circ} 58^{\prime} \text { (are the first;) } \\
& \text { and } \frac{3-5}{3+2 \cdot 5}=\cdot 4545=\text { versed sine of } 56^{\circ} 57^{\prime} \text { (are the second.) }
\end{aligned}
$$

Then $62^{\circ} 58^{\prime}+56^{\circ} 57^{\prime}=119^{\circ} 55^{\prime}$; and $180^{\circ}-119^{\circ} 55^{\prime}=605^{\prime}=$ are of rersed sine, ${ }^{5} 012$. $5012 \times 30=15.036$ inches = distance of the piston from the end of its stroke when the steam is cut off.

Exhaustion was shown to cease, during the ascent of the piston, when the eccentric had reached the point t, and the crank the point x; the crank having described the are $d k x$, equal to $i^{\prime} c t$ lescribed by the eccentric.

Now $i^{\prime} c$ is equal to are the scoond, (Rule V.;) and $c t$ is equal to 90 degrees minus $t t^{\prime}$, or the are of rersed sine eff; and $c f$ is half the slide's travel minus the lap on the exhaust side. Hence,
To find the point of the stroke at which exhaustion ceases:
Divide half the slide's travel, minus the exhaustion lap, by half the travel, call the quotient versed sine, and add its corresponding are, calling it are the third, to are the second. The versed sine of the difference between their sum and 180 degrees, multiplied by half the stroke, equals the distance of the piston from the end of its stroke when exhaustion ceases.

Example 9.-The several proportions being as in the preceding example.
Here $3+2.5=5.5=$ half the slide's travel;

$$
\text { and } \frac{5 \cdot 5-\cdot 125}{5.5}=.9772=\text { versed sine of are } 88^{\circ} 42^{\prime}=\text { (are the third.) }
$$

Then $89^{\circ} 42^{\prime}+56^{\circ} 57^{\prime}$ (are the second) $=145^{\circ} 39^{\prime}$; and $180^{\circ}-145^{\circ} 39^{\prime}=34^{\circ} 21^{\prime}=$ are oi versed sine, $\cdot 1743$. $\cdot 1743 \times 30=5.229$ inches $=$ the distance of the piston from the end of its stroke when exhaustion ceases.

Exhanstion was shown to commence from above the piston when the crank and eccentric hat deseribed the equal ares $c k^{\prime} p$ and $i d n$.

Now $i d n$ is equal to 180 degrees mims $n i^{\prime} ; n i^{\prime}$ is equal to $n^{\prime} i$; and $n^{\prime} d$ is equal to are the third. Hence,

To find the distance of the piston from the end of its stroke when exhaustion commences:
Subtract are the second from are the third, and multiply the versed sine of their difference by half the stroke. The product will be the distance required.
E.xample 10.-The proportions being as in the two preceding examples.

Here $88^{\circ} 42^{\prime}-56^{\circ} 55^{\prime}=31^{\circ} 45^{\prime}=$ are of versed sine, $\cdot 1496$; and $\cdot 1496 \times 30=4 \cdot 488$ inches, the distance required.
Steam was fond to be readnitted, for the return stroke, when the piston had reached the point r in its descent, the crank and eccentric laving described the equal arcs $c k^{\prime} s$ and $i d q$.
Now $i d q$ is equal to 180 degrees minus $q i^{\prime} ; i^{\prime}$ being dianetrically opposed to i. And $q i^{\prime}$ is equal to i q^{\prime}, the difference between ares the first and second. Hence,
To find the distance of the piston from the end of its stroke when steam is readmitted for the returr stroke ?

Multiply the versed sine of the difference between ares the first and second by half the stroke, and the product will be the distance required.

Eicample 11.-The proportions being as before.

> IIere $62^{\circ} 58^{\prime}-56^{\circ} 57^{\prime}=6^{\circ} 1^{\prime}=$ are of versed sine $\cdot 0055$.
> Then $\cdot 0055 \times 30=165$ inches $=$ the distance required.

Rule $V^{\prime} T$.-To find the proportions of the steam lap and lead; the points of the stroke where steam is cut off, and readmitted for the return struke, being known :

When the steam is cut off before half-stroke, divide the portion of the stroke performed by the piston by hali the stroke, and call the quotieut versed sine. Likewise, diride the distance of the pi-ton from the end of its stroke when steam is readmitted for the return stroke, by half the stroke, aud call that quotient versed sine. Find their respective arce, and also the versed sines of half their sum and halt their difference. The width of the steam port in inches, divided by the versed sine of half their sum. equals half the travel of the slide: and half the travel, minus the width of port, equals the lap. The difference of the two versed sines last found, multiplied by half the travel of the slide, equals the lead.
When the steam is to be cut off after half-stroke, diride the distance of the piston from the end of its stroke by half the stroke; call the quotient versed sine, and subtract its corresponding are from 150 degrees. Divide the distance the piston has to move when the steam is admitted for the return stroke, by half the stroke; call the quotient versed sine, and find its corresponding arc. Then proceed with the two ares thus found, as in the former case.

Example 12.-The stroke of a piston is 60 inches; the width of steam port 3 inches; distance of the piston from the end of its stroke when steam is cut off 15.036 inches; and when steam is admitted for the return stroke 166 iuches: required the lap and lead.

$$
\begin{gathered}
\text { Here } 15.036 \div 30=5012=\text { versed sine of are } 60^{\circ} 5^{\prime} ; \\
\text { and } 180^{\circ}-60^{\circ} 5^{\prime}=119^{\circ} 55^{\prime} . \\
\text { Then } 165 \div 30=0055=\text { versed sine of } 6^{\circ} 1^{\prime} . \\
119^{\circ} 55^{\prime}+6^{\circ} 1^{\prime}=125^{\circ} 56^{\prime} ; \quad 119^{\circ} 55^{\prime}-6^{\circ} 1^{\prime}=113^{\circ} 54^{\prime} . \\
\frac{125^{\circ} 56^{\prime}}{2}=62^{\circ} 55^{\prime}=\text { are of versed sine } 5454 ; \\
\frac{113^{\circ} 54^{\prime}}{2}=56^{\circ} 57^{\prime}=\text { are of versed sine } 4545 . \\
3 \div 5451=55 \text { inches }=\text { half the slide's travel } ; \\
\text { and } 55-3=25=\text { lap. } \\
5454-4545=0909 ; \text { and } 0909 \times 5.5=5 \text { inches }=\text { lead. }
\end{gathered}
$$

To find the lap and lead by con-truction.
The stroke of the piston; width of steam port; and distances of the piston from the end of its stroke when the steam is cut off, and when it is readmitted for the return stroke, being known:

Let the circle, Fig. 2578 , represent the crank's orbit, and its diameter a b the stroke of the piston, to some known scale. Make acequal to the part of the stroke performed befure the stean is cut off; and ld equal to the distance of the piston from the end of its stroke when steam is rearlmitted for the return stroke. Draw $d e$ and $c f$ at right angles to $a b$, and mark the point g at the distance b e from f. Bisect the are $a y$, and from the point of bisection, h, draw the diameter $h i$. Make $i k$ equal to $b e$; draw $i m$ and $k l$ at right angles to ab; and draw il and $i b$ indetinitely. From the point m set off $m n$ equal to the width of steam prort, full size ; from n draw n o parallel to $i m$, and mecting $i b$, and also o p parallel to $a b$, and meeting $h i$; then will $s p$ equal the lap, and $s r$ the lead.

In all the foregoing cases, we have taken the versed sine of the are deseribed by the crank, from cither extremity of the stroke, as the purtion of the struke performed by the pinton; but, as has menenalready observed, the relative ponitions of the pinton and crank depend upon the length of the connecting-rod, which will be seen by reference to Pize 2579, where
 A Brepresents the stroke of the piston, C I) the contecting-rol, and I) O the crank. Now, lye supposing ad to be the are described by the crank when the pisten has performed one-fourth of its stroke, ant from the length of that are, calculating the monnt of lap sequirel to cut off the steam at that part of the stroke, we n!pear to be in error-fur, from the obligue metion of the comecting-rod, the piston would have demcemled only to the print c. But the engine being duoble acting, we have to take into con-ideration the position of the crank when the piston has performed onefourth of its stroke in the oplonite direction from the point 13 ; nad here we tind, that by suppesing the crank to have described the are $b e$, (equal to $a d$, instest of the truo are $b f$, we canse
 the steam to lee cut off when the pinton has reached the point f; and the distance $\mathrm{B} f$ being precisely ns much more than 1 BF ns $A c$ is less than $\Lambda \mathrm{C}$, the seeming erres n self-currective.

A Table of Multipliers to find the Lap and Lead，when the Steam is to be cut off at $\frac{1}{2}$ to $\frac{7}{6}$ the of the Stroke．

The lap must be equal to the width of the steam port multiplied by col． 1 ．
The lead must be equal to the width of the steam port multiplied by col．2．

Ilalf－Stroke．		Five－Eighths of the Srroke．		Three－Fourths of the Stroke．		Seven－Eighths of the Stroke．		
1	2	1	2	1	\because	1	！	
Lap	Lead	Lap	Lead	Lap	Lead	Lap	Lead	
2.11	－000	158	－000	1.000	－000	－540	－000	風気ご00000
$2 \cdot 16$	－145	$1 \cdot 41$	－124	－893	－105	$\cdot 477$	－089	「お廌 00208
$2 \cdot 06$	－198	$1 \cdot 35$	－170	－851	$\cdot 146$	－450	－123	
$1 \cdot 94$	$\cdot 268$	1－27	－231	． 795	$\because 20$	－ 413	$\cdot 170$	を亭•00883
$1 \cdot 84$	－318	1－21	－276	－754	$\because 210$	－385	－204	気司 01250
1.77	$\cdot 358$	$1 \cdot 16$	$\cdot 312$	723	－271	－363	－232	を包•01666
1.71	－391	$1 \cdot 12$	－342	－691	－ 299	－344	$\cdot 257$	或烒 02083
1.65	$\cdot 420$	1.08	－368	－66S	－322	－327	－ 27	ご吅•02500
$1 \cdot 60$	$\cdot 444$	1.05	$\cdot 391$	－644	－343	－313	$\cdot 296$	枵気三•02916
1.56	$\cdot 467$	1.02	$\cdot 412$	－623	$\cdot 362$	－298	－313	合运岂 03333
$1 \cdot 18$	－505	－968	－ 4149	－586	$\cdot 396$	－273	$\cdot 343$	¢．
$1 \cdot 41$	－540	$\cdot 921$	－ 480	－554	－425	－51	$\cdot 370$	¢ ¢ 码 05000
$1 \cdot 35$	－570	． 881	－508	－526	$\cdot 451$	－232	－393	－¢ ${ }^{\text {E }}$
$1 \cdot 30$	．595	－814	－532	500	$\cdot 473$	－ 15	－ 414	边 ${ }^{\text {¢ }}$
$1 \cdot 25$	－617	－ 810	－554	$\cdot 476$	$\cdot 495$	－198	$\cdot 434$	，\％${ }^{\text {c }}$
$1 \cdot 21$	－638	．779	－372	－ 454	$\cdot 514$	－183	－452	$\stackrel{\square}{*}$
1.17	$\cdot 657$	751	－ 592	－ 434	－532	－160	－ 468	
$1 \cdot 13$	$\cdot 674$	＇724	－607	$\cdot 415$	$\cdot 548$	$\cdot 156$	$\cdot 483$	－需离 10000

Example of its application．－Stroke 36 inches；width of port 2 inches；steam to be cut off at half； stroke ；distance of the piston from the end of its stroke when steam is readmitted for the return stroke， 1.5 inch．
$\frac{1 \cdot 5}{18}=0833$ ．Find that number，or the one nearest to it，in the right hand，or last column，and take out the multipliers on the same line under the bead Half－stroke．

Then $2 \times 1.21=2.42$ inches $=$ the lap．
And $2 \times 638=1.276$ inches $=$ the lead．
LEAD－A well－known metal much used in the arts．Lead unites with most of the metals．has little elasticity，and is the softest of them all．Gold and silver are dissolved by it in a slight red heat，but When the heat is much increased the lead separates，and rises to the surface of the gold，combined with all heterogeneous matters；bence lead is made use of in the art of refining the precious metals．If lead be heated so as to boil and smoke，it soon dissolves pieces of copper thrown into it；the mixture，when cold，being brittle．The union of these two metals is remarkably slight，for upon exposing the mass to a heat no greater than that in which lead melts，the lead almost entirely runs off by itself．

Among the ores of lead some have a metallic aspect；are black in substance，as well as when pulver－ ized；others have a stony appearance，and are variously colored，with usually a ritreous or greasy lustre．The specific gravity of the latter ores is always less than 5 ．The whole of them，excepting the chloride，become more or less speedily black，with sulphureted hydrogen or with hydrosulphurets；and are easily reduced to the metallic state upon charcoal，with a flux of carbonate of soda，after they have been properly roasted．They diffuse a whitish or yellowish powder over the charcoal，which，according to the manner in which the flame of the blowpipe is directed upon it，becomes yellow or red；thus indicating the two characteristic colors of the oxides of lead．

The lead ores most interesting to the arts are：
1．Galona，sulphuret of lead．This ore has the metallic lustre of lead，with a crystalline structure derivable from the cube．When heated cautiously at the blowpipe it is decomposed，the sulphur flies off，and the lead is left alone in fusion ；but if the heat be continned，the colored surface of the charcoat indicates the conversion of the lead into its oxides．Galena is a compound of lead and sulphur，in eqniv－ alent proportions，and therefore consists，in 100 parts，of $86 \frac{2}{3}$ of metal，and $13 \frac{1}{3}$ of sulphur，with which numbers the analysis of the galena of Clausthal by Westrumb exactly agrees．Its specific gravity， when pure，is $7 \cdot 56$ ．Its color is blackish gray，without any shade of red，and its powder is black－char－ acters which distinguish it from blende，or sulphuret of zinc．

2．The seleniuret of lead resembles galena，but its tint is bluer．Its chemical characters are the only ones which can be depended on for distinguishing it．At the blowpipe it exhales a very perceptible smell of putrid radishes．Nitric acid liberates the selenium．When heated in a tube，oxide of selenium of a carmine red rises along with selenic acid，white and deliquescent．The specific gravity of this ore varies from 6.8 to 7.69 ．
3．Native minium or red lead has an carthy aspect，of a lively and nearly pure red color，but some－ times inclining to orange．It occurs pulvernlent，and also compact，with a fracture somewhat lamellar： When heated at the blowpipe upon charcoal，it is readily reduced to metallic lead．Its specific gravity varies from 4.6 to 8.9 ．This ore is rare．
4. Plomb-gomne.-This lead ore, as singular in appearance as in composition, is of a dirty browni-h π orange-vellow, and occurs under the form of globular or gum-like concretions. It has also the lustre and tran-lueency of gum, with somewhat of a pearly aspect at times. It is harder than lluor spar. It consists of oxide of lead, 40 ; alumina, 37 ; water, 15 ; foreign matters and loss, 4.06 ; in 100 . Hithcrto it has been found only at Iluelgoet, near P'oullaouen, in Brittany, covering with its tears, or small concretions, the ores of white lead and galena which compose the veins of that lead mine.
5. White lead, carbonate of lead.-This ore, in its purest state, is colorless and transparent, like glass, with an adamantine lustre. It may be recognized by the following characters:

Its specific gravity is from 6 to 6.7 ; it dissolves with more or less ease, and with effervescence, in uitric acid; becomes immediately black by the action of sulphureted hydrogen, and melts on charcoal before the blorppipe into a button of lead. According to Klaproth, the carbonate of Leadhills coutains 82 parts of oxide of lead, and 16 of carbonic acid, in 95 parts. This mineral is tender, scarcely seratehes cale-sar, and breaks easily, with a waved conchoidal fracture. It possesses the double refracting property in a very high degree; the double image being very risible on looking through the flat faces of the prismatic crystals. Its crystalline forms are very numerous, and are referrible to the octabedron, and the pyramidal prism.
6. Titreous lead, or sulphate of lead.-This mineral closely resembles carbonate of lead; so that the external characters are inadequate to distinguish the two. But the following are sufficient. When pure, it has the same transparency and Iustre. It does not effervesce with nitric acid; it is Lut feebly blackened by sulphureted hydrogen; it first decrepitates and then melts before the blowpipe into is transparent glass, which becomes milky as it cools. By the combined action of heat and charcual, it passes first into a red pulverulent oxide, and then into metallic lead. It consists, according to klaproth, of 71 oxide of lead, 25 sulphuric acid, 2 mater, and 1 iron. That specimen was from Anglesea; the Wanlockhead mineral is free from iron. The prevailine form of crystallization is the rectangular octahedron, whose angles and edges are variously modified. The sulphato-carbonate, and sulphato tri-carbonate of lead, now called Leadlillite, are rare minerals which belong to this head.
7. Phosphate of lead.-This, like all the combinations of lead with an acid, exhibits no metallie lustre, but a variety of colors. Before the blowpipe upon charcoal, it melts into a globule externally erystalline, which, by a continuance of the heat, with the addition of iron and boracic acid, affords metallic lead. Its constituents are 80 oxide of lead, 18 phosphoric acid, and $1 \cdot 6$ muriatic acid, according to Klaproth's analy-is of the mineral from Wanlockhead. The constant presence of muriatic acid in the varions specimens examined is a remarkable circumstance. The crystalline forms are derived from an obtuse rhomboid. Ihosphate of lead is a little harder than white lead; it is easily scratched, and its powder is alway gray. Its specific gravity is 6.9 . It has a vitreous lustre, somewhat adamantine. Its lamellar texture is not very distinct; its fracture is wayy, and it is easily frangible. The phosphoric and arsenic aeids being, according to M. Mitscherlich, isomorphous bodies, may replace each other in chemical combinations in every proportion, so that the phosphate of lead may incluck any proportion, from the smallest fraction of arsenic acid to the smallest fraction of phosphoric acid, thus graduating indelinitely usto ar-eniate of learl. The yellowish variety indicates, for the most part, the presence of arsenic acil.
8. Muriate of loud. Jorn-lead, or murio-carbonatc.-This ore has at pate yellow color, is reducible to metallic lead hy the agency of soda, and is not altered by the hydrosulphurets. At the bluwpipe it melts first into a pale yellow transparent globule, with salt of phosphorus and oxide of copper; and it manifests the presence of muriatic acid by a bluish flame. It is fragile, tender, softer than carbonate of lead, and is sometimes almost colorless, with an adamantine lustre. Specitic gravity, 60t. Its constituents, according to Berzelius, are lead, 25.81 ; oxide of lead, 57.07 ; carbonate of lead, 6.25 ; chlorme, s. 1 ; silica, $1 \cdot 46$; water, 0.51 ; in 100 parts. The carbonate is an accidental ingredient, not beiner in equivalent proportion. Klaproth found chlorine, 1367 ; lead, 3998 ; oxide of lead, 29.57; carbonate of head, 20.75.
9. Arseniate of lend. - Its colur of a pretty pure yellow, bordering slightly on the greenish, and its property of exhaling by the joint action of fire and charcoal a very distinct arsenical oder, are the ondy characters which diatinguish this ore from the phospate of lead. The form of the arseniate of lead, when it is crystallized, is a prism with six faces, of the same dimensions as that of phosphate of lest. When pure, it is reducible upon chareonl, before the blowpipe, inte metallic lead, with the copiont exhalation of arsenical fumes; but only in part, and leaving at crystalline globule, when it contans any flusphate of leat. The arseniate of lead is tember, friable, sometimes even pulverulent, and of spentic eray-
 12.5; phusphoric acid, $7 \cdot 5$, and muriatic neid, $1 \cdot 5$.
10. Rid leml, or cleromate of leal. - This mineral is too rate to require consideration in the present work.

12. Villowe tand. Molybigute of ternd.
13. T'ungstate of lial.

Having thus emmerated the several numecos of lead ore, we may remark that gutema is the only ome Which cerours in sufficiontly grent masens to become the wheet of niming mat metallurgy. This mimeral

Treatment of the ores of lend. - The meshanieal operations perfurmed upn the lem! wres, to brms the m
 π linee ulymenty are:

1. The sorliny and clansiny of the ores;
2. Ther arindin!! :
3. The iraskinig, premerty so callal

The uparatus sumervient to the dirnt objects are sieves, ruming laddles, and grations. The hage
sieves employed for sorting the ore at the mouth of the mine, into coarse and fine pieces, is a wire gauze of iron; its meshes are square, and an inch long in each side. There is a lighter sieve of wire gatuze similar to the preceding, for washing the mud from the ore, by agitating the fragmeuts in a tub filled with water. lBut instead of using this sieve, the pieces of ore are sometimes merely stirred about with a shovel, in a trough filled with water.
The method of sorting and cleansing the ore consists in asing a plane surface made of slabs or planks, very slightly inclined forwards, and provided behind and on the sides with upright ledges, the back one having a notch to admit a stream of water. The ore is merely stirred about with a shovel, and exposed on the slope to the strean. For this apparatus, formerly the only one used, the following has been substituted, called the gratc. It is a grid, composed of square bars of iron, an inch thick, by from $2 \pm$ to 32 iuches long, placed horizontally and parallelly to each other, an inch apart. There is a wooden canal above the grate, which conducts a stream of water over its middle; and an inclined plane is set beneath it, which leads to a hemispherical basin, about $2 \pm$ inches in dianeter, for collecting the metallie powder washed out of the ore.
The apparatus subservient to grinding the ore are:

1. The beater, formed of a cast-iron plate, 3 inches square, with a socket in its upper surface, fol receiving a wooden handle. In some localities crushing cylinders have been substituted for the beater

At the mines, the knocker's workshop, or striking floor, is provided either with a strong stool, or a wall 3 feet high, beyond which there is a flat area 4 feet broad, and a little raised behind. On this area, bounded, except in front, by small walls, the ore to be bruised is placed. On the stool, or wall, a very hard stone slab, or cast-iron plate is laid, 7 feet long, 7 inches broad, and $1 \frac{1}{2}$ inches thick, called a kmok-stone. The workmen, seated before it, break the pieces of mixed ore with the beater.

Crushing mackines are in general use in England, to break the mingled ores, which they perform with great economy of time and labor. They have been employed there for nearly forty years.

This machine is composed of one pair of fluted cylinders, and of two pairs of smooth cylinders, which serve altogether for crushing the ore. The two cylinders of each of the three pairs turn simultaneously in an inverse direction, by means of two toothed-wheels upon the shaft of every cylinder, which work by pairs in one another. The motion is given by a single water-wheel. One of the fluted cylinders is placed in the prolongation of the shaft of this wheel, which carries besides a cast-iron toothed-wheel, geared with the toothed-wheels fixed upon the ends of two of the smooth cylinders. Above the fluted cylinders, there is a hopper, which discharges down between them the ore brought forwards by the wagons. These wagons advance upon a railway, stop above the hopper, and empty their contents into it through a trap-loole, which opens outwardly in the middle of their bottom. Below the hopper there is a small bucket called a shoe, into which the ore is shaken down, and which throws it without ceasing upon the cylinders. The shoe is so regulated that too much ore can never fall upon the cylinders, and obstruct their movement. A small stream of water is likewise led into the shoe, which spreads orer the cylinders, and prevents them from growing hot. The ore, after passing between the fluted rollers, falls upon inclined planes, which turn it over to one or other of the pairs of smooth rolls.

These are the essential parts of this machine; they are made of iron, and the smooth ones are casehardened, or chilled, by being east in iron moulds. The gudgeons of both kinds move in brass brushes fixed upon iron supports made fast by bolts to the strong wood-work base of the whole machine. Each of the horizontal bars has an oblong slot, at one of whose ends is solidly fixed one of the plimmer-blocks or bearers of one of the cylinders, and in the rest of the slot the plummer-block of the other cylinder slides; a construction which permits the two cylinders to come into contact, or to recede to such a dis: tance from each other as circumstances may require. The movable cylinder is approximated to the fixed one by means of iron levers, which carry at their ends weights, and rest upon wedges susceptible of adjustment. These wedges press the iron bar, and make it approach the movable cylinder by advancing the plummer-block which supports its axis. When matters are so arranged, should a very large or hard piece present itself to one of the pairs of cylinders, one of the rollers would move away and let the piece pass without doing injury to the mechanism.

Besides the three pairs of cylinders which constitnte essentially each crushing machine, there is sometimes a fourth, which serves to crush the ore when not in large fragments.

The stamp-mill is employed in concurrence with the crushing cylinders. It serves particularly to pulverize those ores whose gangue is too hard to yield readily to the rollers, and also those which being already pulverized to a certain degree, require to be ground still more finely. (See Stampers.)

The sifting meshes of the sieve are made of strong iron wiee, three-eighths of an inch square. This sieve is suspended at the extremity of a forked lever, or brake, turning upon an axis by means of two upright arms about 5 feet long, which are pierced with holes for comecting them with bolts or pins, both to the sice-frame and to the ends of the two branches of the lever. These two arms are made of wrought iron, but the lever is made of wood, as it receives the jolt. Each jolt not only makes the fine parts pass through the meshes, but changes the relative position of those which remain on the wires, bringing the purer and hearier pieces eventually to the bottom. The mingled fragments of galena, and the stony substances lie above them; while the poor and light pieces are at top. These are first ecraped off, next the mixed lumps, and lastly the pure ore, whicb is carried to the heap.

The poor ore is carried to a crushing machine, where it is bruised between two cylinders appropriated to this purpose; after which it is sifted afresh.

Washing apparatus-For washing the ore after sifting it, the machine already described is employed
Smelting of lead ores.-The lead ores of England were anciently smelted in very rude furmaces, or boles, urged by the natural force of the wind, and were therefore placed on the summits or western slopes of the highest hills. More recently these furnaces were replaced by blast hearths, resembling smiths' forges, but larger, and were blown by strong bellows, moved by men or water-wheels. The principal operation of smelting is at present always executed there in reverberatory furnaces, and in furnaces similar to those known in France by the name of Scotch furnaces

The reverberatory furnaces called cupola are now exclusively usel in Derby-hire for the smelting of lead ores. In the works where the construction of these furnaces is moit improved, they are interiorly δ feet long by 6 wide in the midulle, and 2 feet high at the centre. The fire, placed at one of the extremities, is separated from the body of the furnace by a body of masonry, called the fire-bridye, which is two feet thick, leaving only from 14 to 1 s inches between its upper surface and the vault. From this, the highe-t point, the vanlt gradually sinks towards the further end, where it stands only 6 inches above the sole. At this extremity of the furnace, there are two openings separated by a triangular prism of firc-stone, which lead to a tlue, a foot ind a half wide, and 10 feet long, which is recurved towards the top, and runs into an upright chimney 5.5 feet high. The alowe tlue is covered with stone slabs, carefully jointed with fire-clay, which may be remored when the deposit formed under them (which is apt to melt) requires to be cleaned out. One of the sides of the furnace is called the laborers' side. It has a door for throwing coal upon the fire-grate, besides three small apertures each about θ inches square. These are closed with movable plates of east-iron, which are taken of when the working requires a freer circulation of air, or for the stirring up of the materials upon the hearth. On the opposite side, called the working side, there are five apertures; namely, three equal and opposite to those just described, shutting in like manner with cast-iron plates, and beneath them two other upenings, one of which is for runuing out the lead, and another for the scorix. The ash-pit is also on this side, covered with a little water, and so di-posed as that the grate-bars may be easily eleared from the cinder slag.
The hearth of the furnace is composed of the reverberatory furnace slags, to which a proper shape has been given by beating them with a strong iron rake, before their entire solidification. On the laborers side, this hearth rises nearly to the surface of the three openings, and falls towards the working side, so as to be 18 inches below the middle aperture. In this point, the lowest of the furnace, there is a taphole, through which the lead is run off into a large iron boiler, (lea-pan,) placed in a recess left outside in the masonry. From that lowest point, the sole gradually rises in all directions, forming thus an itside basin, into which the lead runs down as it is melted. It the usual level of the metal bath, there is on the working side, at the end furthest from the fire, an aperture for letting off the slag.

In the middle of the arched roof there is a small aperture, called the crown-hole, which is covered up during the working with a thick cast-iron plate. Above this aperture a large wooden or iron hopper stands, leading beneath into an iron cylinder, through which the contents of the hopper may fall into the furnace when a trap or valve is opened.
lioasting. -The ordinary charge of ore for one smelting operation is 20 ewts , and it is introduced through the hopper. An assistant placed at the back doors spreads it equally over the whole hearth with a rake; the furnace being meanwhile beated only with the cleclining fire of the preceding operation. No regular fire is made during the first two hours, but a gentle heat merely is kept up by throwing one or two shovelfuls of small coal upon the grate from time to time. All the doors are closed, and the register plate of the chimney is lowered.

The outer basin in front of the furnace is at this time filled with the lead derived from a furmer prucess, the metal being covered with slags. A rectangular slit above the tap-hole is left open, and remains so during the whule time of the operation, unless the lead should rise in the interior basin abuve the level of that orifice; in which case a little mound must be raised before it.

The two doors in front furthest from the fire being opened, the head smelter throws in through them, upon the sele of the furnace, the slags swimming upon the bath of lead, and a little while afterwards he opens the tap-hole, and runs off the metallic lead reduced from these slags. At the same tume his asistant turns over the ore through the back doors. These being again elosed, while the above two front doers are open, the smelter throws a shovelful of small coal or coke cinder upon the lead-bath, and works the whole together, turning over the ore with the paddle or iron oar. About thuee-quarturs uf an hour after the commencement of the operation, le throws back upon the sole of the hearth the fresh slags which then tloat upen the bath of the outer basiu, and which are mixed with coaly mather. He next turns over the-e slass, as well as the ore, with the paddle, and shats all the doors. It this time the smelter runs of the lead into the pigr-moulds.
The asoistant now turns over the ore once more through the back doors. A little more than an hour after the operation began, a quantity of lead, proceeding from the slag last remelted, is rum ofl by the tap; being usually in such quantity as to till one half of the outer basin. Both the workmen thon turn over the ore with the paldles, at the several doors of the furnace. It interior is at this time of a dold red heat: the roasting being carried on rather hy the combustion of the sulpharms ingredients, tham ly the action of the small quantity of enal in the grate. The smelter, after shatting the fromt drors, with the exception of that next the tire bridge, lifts off the fresh slags lying upen the surfice of the outsite bath, elrams them, and throws them bach into the furnate.

An hour nud a half nfter the commencement, the lead begins to ooze ont in small quantitie from the ore: but little whould be suffered to thow bafore two hours have expired. Ahout this time the two workmen opiot all the doors, and turis over the wre, mats nt his own side of the furmace. An lowir an ! three-qumetors after the begiming, there are fow wapo in the furnace, its temperature being bery monderate. Liomore lead is than sean to thow upen the sloping harth. A little cual heing thrownatu the grate to raise the heat slightly, the workmen turn over the ore, mad then clane nll the flours.

At the end of two homes, the firse fire or roanting being completed, wat the dhors shat, the re rater is (1) be lifted a little, and conal thrown apon the grate to give lhe secom fire, which late duriug es mumte
 down from every side towards the immer basin. Thee smelter, with his rate or padille, pill lue the dows Jon that hanin back towarls the upper part of the mole, mad his astistant spreate the manfomp ume

the slags from the surface of the inner basin back to the upper parts of the sole. The doors being now left open for a little, while the interior remains in repose, the metallic lead, which had been pushed back with the slags, flows down into the basin. This occasional cooling of the furnace is thought to be necessary for the better separation of the products, especially of the slags, from the lead-bath.

In a short time the workmen resume their rakes, and turn over the slags along with the ore. Three hours after the commencement, a little more fuel is put into the grate, merely to keep up a moderate heat of the furnace during the paddling. After three hours and ten minutes, the grate being charged with fuel for the third fire, the register is completely opened, the doors are all shut, and the furnace is left in this state for three-quarters of an hour. In nearly four hours from the commencement, all the dors being opened, the assistant levels the surfaces with his rake, in order to favor the descent of any drops of lead; and then spreads the slags, which are pushed back towards him by the smelter. The latter now throws in a fresh quantity of lime, with the view, not merely of covering the lead-bath and preventing its oxydizement, but of rendering the slags less fluid.

Ten minutes after the third fire is completed, the smelter puts a new charge of fuel in the grate, and shuts the doors of the furnace to give it the fourth five. In four hours and forty minutes from the commencement, this fire being fimished, the doors are opened, the smelter pierces the tap-hole to discharge the lead into the outer basin, and throws some quick-lime upon the slags in the inner basin. He then pushes the slags thus dried up towards the upper part of the hearth, and his assistant rakes them out by the back doors.

The whole operation of a smelting shift takes about four hours and a half, or at most five hours, in which four periods may be distinguished.

1. The first fire for roasting the ores, requires very moderate firing, and lasts two hours.
2. The second fire, or the smelting, requires a higher heat, with shut doors; at the end the slags are dried up with lime, and the furnace is also allowed to cool a little.

3, 4. The last two periods, or the third and fourth fires, are likewise two smeltings or foundings, and differ from the first only in requiring a higher temperature. The heat is greatest in the last. The form and dimensions of the furnace are calculated to cause a uniform distribution of heat over the whole surfice of the hearth. See article Metallurgy.

The lead is brought from the smelting works to any place where it is to be manufactured in the form of "pigs," each of which is an oblong mass, about three feet long, six inches wide, and weighing about one hundred weight and a half. As for the philosophy of the word "pig," applied to the masses of lead, we may remark that it forms another curions instance of the phraseology used in manufacture. It appears that in the iron-manufacture, when the metal flows from the furnace in which it has been reduced from the ore, it passes into a large trough excavated in sand, and from thence into smaller lateral chamels on cach side. This arrangement has been suggestive of a sort of simile: for the larger trough is called by the workmen the "sow," and the smaller the "pigs," who suck the metal from the "sow ;" hence proceeded the names of "sow-metal" and "pig-metal;" and hence, in all probability, the name of "pig" is applicd to the saleable masses both of iron and of lead.

The two principal articles into which lead is manufactured are sheet-lead and water-pipes; or at least they are the only two which need here be noticed, since the comparatively low temperature at which the metal fuses, and the ease with which it is beaten into various forms, enable the plumber to modify it in various ways. The sheet-lead here spoken of is that with which roofs and terraces are covered, and cisterns lined. It is sometimes made, and used formerly to be wholly made, by pouring the melted metal on a flat surface of sand, in a stratum of any required thickness; but the more modern method is that of rolling, or "milling," which we proceed to describe.

A furnace is provided consisting of a hemispherical melting-pot, four or five feet in diameter, and nearly as much in depth, heated by a fire beneath, and covered with an inclosed cap or chimney reaching above the roof of the building, for the purpose of conveying away the deleterions gases engendered during the melting of lead. Into this melting-pot is put about six tons (thirteen thousand ponnds) of lead, new and old, which remains there till thoroughly melted. During this time all the impurities, being lighter than the metal, rise to the surface. Immediately adjoining the furnace is a cast-iron frame, called the "mould," being a flat vessel about six or seven feet square, and six inches deep. The bottom of this mould is also of iron, and the melted metal is allowed to flow into it from an opened valve near the bottom of the melting-pot. A shoot or trough conveys the metal from the furnace to the mould. The glistening liquid mass soon flows out, to the weight of about ten or eleven thousand pounds, the dross and impurities being for the mast part left behind in the melting-pot. As, howerer, some impurities or oxidized portions enter the mouk a subsequent removal becomes necessary; and this is effected by drawing the edge of a board carefully over the surface of the hot and liquid metal, the board urging before it all the floating impurities, and leaving a surface very silvery and clear.

After some hours the mass of lead, technically called a "plate," is lifted ont of the monld by a powerful crane, and placed upon the machine where it is to be rolled into the form of shects. This machine is very peculiar in its action. It consists of a long frame or bench, about a yard in height, scven or eight feet wide, and probably seventy feet in length. At intervals of every foot or two are transverse rollers, all placed on the same level, so that a heavy body may be rolled from one end of the frame to the other witll great facility. About midway along the frame is the milling or rolling machine, consisting mainly of two ponderons rollers, between which the lead is passed: these are made of iron, the upper one being fiftecn or sixteen inches in diameter, with a weight of three tons, the under one being the same. The two rollers are placed at any required distance apart, the one above the other, and are also made to revolve in either direction. These being the mechanical arrangements, the process of milling proeeeds thus: The plate of lead is brought between the rollers, which are opened so as only to reccive the lead by compressing it; and the rollers being made to rotate, the plate is drawn in between them. This process is repeated over and over again, the plate passing first from right to left: and then from left to right, the opening between the rollers being gratuallv reduced bv means of an
index and graduated dial-plate. The small wooden rollers facilitate the motion of the elongated lead to and fro; and when the length, obtained by reducing the thickness, has become inconveniently great, the piece is cut into two, and each half milled in a similar manner. Thus the lead continues to pass between the rollers to the number of seven or eight hundred times, having jts thickness diminished and its length inereased by regular degrees. From 300 to 400 feet in length, with a width of seven or eight, i- the average quantity of roofing-lead produced by these means from one of the plates. The lead is then coiled up in a roll, and in that form is sold to the plumber, who adapts it to his various purposes
The manulacture of lead-pipe, like that of sheet-lead, combines the processes both of casting and elongating, or drawing. Whatever be the required diameter and thickness of the pipe, it is first cast in a -hort piece of great thickness, and then elongated, by which the thickness becomes reduced. The diameter of the cist piece is, internally, the same as that of the required pipe, the external diameter being that which undergoes reduction. The first process is, therefore, to cast the short pieces of pipe. The e moulds measure from tro to four feet in height, and are fitted for easting pipe whose diameter varies externally from two to six inches, and internally from half an inch to fone inches. The mould consi-ts of two semi-cylindrical halves, which, on being brought together, form the external contour of the pipe, while a spindle or steel core, ruming down the centre of the hollow cavity, regulates the inturnal diameter of the pipe.

A small melting-furnace is appropriated for the pipe-casting, the lead being carefully skimmed from dross while melting; and when the fusion is complete the melted metal is poured into the mould, the upper end of which is open and the lower end closed. The quantity of lead required for each moull varies from about 24 to $\because 00$ pounds, according to the thickness of the pipe. The metal being solidified and sufficiently cool for handling, the two halves of the mould are drawn asunder and the lead removed, the technical name of the "plug" being "rplied to the short thick piece of pipe thus produced.

Next ensues the very singular method whereby the plug is elongated to the required dimensions. The "drawing-bench" is a frame about thirty feet long and three in height, having in the midtle of its length mechanism for producing the elongation. An endless chain is kept in constant motion round two whecls or rollers, one near the end and the other near the middle of the draw-bench, insomuch that a hook or a clasp connected with one of the links would be forcibly drawn along the bench. A mandril, or steel rod, corresponding in size with the internal diameter of the pipe, is inserted into one of the short pipes or plugs, and then so comected with the endless chain as to be drawn along the bench; but in its progress the pipe has to pass through a hole in a steel plate, or die, rather smaller than the diameter of the lead itself, by which it; external diameter becomes somewhat reduced and its length increased. Again and again is the pipe, with its contained mandrit, drawn along the frame, the die being exehanged after each drawing and rephaced by one of smaller diameter. In producing a two-inch pipe no fewer than sixteen dies are employed, the diameters of which descend in a regular serics. The hole through the die is conical, that is, larger on one side of the die than on the other, and the lead enters the bule at the widest part, whereby a process of compression is undergone; but at a certain point in the operations a "cutting-die" is introduced, that is, one wherein the lead is at once exposed to a cutting edge, the result of which is that a thin film is cut or scraped from the whole surface of the pipe. By the time that all this routine is undergone the metal has become more dense and compact, the temperature so high ats searcely to be bearable lyy the hand, the length greatly increased, and the external diameter propurtionably diminished. After this the elongated pipe is removed from the mamdril, and is then ready fir di-posal to the plumber.

Lead-pipe is aloo manmfactured by foreng it through dies, and the process, as improved by Mr. Coriell, of New York, is thus de=cribed by him in the specifications of his patent:

Dy invention consists of certain improvements in the arrangement and combination of the machinery or apparatus heretofore used for similar purpenses, and in the construction and application of certain additumal machinery or apparatus, and the combmation thereof with the wher apparatu*, as herein deseribed.

My machine is applicable to the mamfacture of pijes and tubne of leat, and suth other metats and their alloys as are capable of being syuezed or forced by means of great pressure from a cylinder or teceiver through or between apertures, dies, cores, or mambrils, when in a solid or semi-fluid tate, and is mainly referable in it general consstruction and purpmsey to the machine patented by Thomas Burr in Great liritain, and deceribed in the first volume of the fir-t series of the "Lometon Jonernal of Arts and scieners."

In my manhine I now the hydrandic pres, the lead eylinder or receiver, the columns or pilhare conne ting the hasmalic preat with the Bat eylindar, the movable ran for preang the pinton upon the lead me the evlinder or receiver, the diex and cores to give dor pipes the required form, nud calibre, and dimenions, and and wher parts of
 machime of the said 'Jhomms Burr.
 rameromits of the mathinery, the power may la. "pplied (1) the luad cylimener, which in this ease is movable, while the phenth is -t.t cmanary.

Thia ligure is :s seretional siow of the hydrantic preme men! pipe mat

connected with the upper cross-head I, by means of the rods L L, which are secured at ihe top and bottom by the nuts MMMM, turned on the screws at the ends of the rods. On the top of the ram a head-block C is placed, and there secured. A foot-block D is attached to the bottom of the lead cylinder E, and the head-block, the foot-block, and the lead cylinder are secured firmly together by the bolt. E F. By this arrangement the lead cylinder will be moved upwards and downtrards by the ram of the hydraulic press. To the upper cross-head I the bollow piston H is attached, and secured by means of the bolts K K having screws and nuts at the ends. The die P is placed in the lower end of the piston, which is hollowed throughout, and communicates with the aperture O made through the upper cross head. The long movable core N which is used in this case, is firmly secured to the head-block of thi ram, extending upwards through the centre of the lead cylinder, and a short distance above it, to be inserted through the die in the end of the piston. The position of the core is regulated by means of the set-screws G G , four in number, which more the core laterally, and set it centrally in the die. When all the parts are thus arranged, the lead cylinder is raised up to the lower end of the piston, the end of the core passing through the die, and being there adjusted centrally by the set-screws, the lead cylinder is charged, and the power of the press applied.

The ram is forced upwards, carrying the lead cylinder before it, which passes over the piston. The pipe is formed at the point of pressure, as before, passing through the hollow piston through the aperture O, and out at the top of the machine. The core in this arrangement moves upwards with the lead cylinder through the die and the hollow piston. A strong metallic ring is placed and firmly secured on the lower cross-head, encircling the ram B, to act as a guide for the ram, keeping it steady and giving it the precise direction.

LENS. In optics, a piece of glass, or other transparent substance, having its two surfaces so formed that the ray; of light have their direction changed by passing through it; so that they either converge, tending to a point beyond the lens, or diverge, as if they proceeded from a point before the lens; or become parallel, after converging or diverging.

A double convex lens, Fig. 2581 , is bounded by two convex spherical surfaces, whose centres are on opposite sides of the lens. It is equally convex when the radii of both surfaces (that is, the distances from the centres to the circumferences of the circle they belong to) are equal, and unequally convex when their radii or distances are unequal.

A plano-convex lens, Fig. 2582, is bounded by a plane surface on one side, and by a convex one on the other.

A double concave lens, Fig. 2583 , is bounded by two concave spherical surfaces whose centres are on opposite sides of the lens.
A plano-concave lens, Fig. 2584, is bounded by a plane surface on one side, and a concave one on the other.

A meniscus, Fig. 2585, is bounded by a concare and a convex spherical surface; and these two surfaces meet, if continued.

The focal distance, or distance of the focus from the surface of the lens, depends both upon the form of the lens and of the refractive power of the substance of which it is made; in a glass lens, both sides of which are equally convex, the focus is situated nearly at the centre of the sphere of which the surface of the lens forms a portion; it is at the distance, therefore, of the radius of the sphere. Fig. 2587.

Plano-convex lcns and rays converginy.-Fig. 2586. Lenses that have one side flat and the otner convex, (plano-convex,) have their focus at the distance of the diameter of a sphere, of which the convex surface of the lens forms a portion, as represented in the figure.

According to some opticians, the greatest diameter of a lens is half an inch; if it exceed that thickness they do not eall it a lens, but a lenticular glass. Lenses are made either by blowing or grinding. Blown lenses are small globules of glass melted in the flame of a lamp; ground lenses are reduced by grinding and polishing. A variety of simple apparatus is employed in the processes of grinding and polishing lenses, among which the one shown in Fig. 2588 is much used. a shows the edge of a circular lap or slab, used for grinding flat glasses upon; b a circular tool or block, upon the under surface of which the glasses to be ground are cemented; c is a reciprocating bar; d a box containing any weighty matter ; c a long mortised aperture in the frame, through which the bar c freely works; f a crank; g a winch; $/ 4$ a double pulley-wheel, the axis of which rests in the block $i ; j$ a single pulley-wheel. Now on turning the crank by the winch g, the bar e gives to b an eccentric motion; the attrition of b on the surface of the lap a being increased or diminished at pleasure by increasing or diminishing the load in the box d. It should be noticed that the cord which passes round the pulley h is crossed previous to its embracing the periphery of the pulley i, consequently a motion is given to the lap a the reverse of that given to b, which is considered to prodnce the best effect of grinding. The apparatus deseribed is
devoted to the producing of plane surfaces to optical glasses; but the apparatus on the other side os the machine is, at the same time, br similar arrangements, employed in grinding concare or convex surfaces. Fur this purpose a rariety of laps and other tools are so made as to fit on the bed l, which bed is adjustable by four equidistant screws. The pulley o is drisen by another band on the pulley k, anc: the required pressure given by another loaded box p. The several tools used are screwed on at m, and are adaptel for ready changing, that the operations may be performed with celerity.

LEVER. One of the Mechanical Powers, which see.
LEWIS. When stone are to be laid into masonry, that are too heary for the workmen to hatadle

«ithout resort to machinery; it becomes necessary to provide means for suspending them so as to leare the lower surface and two of the joints unobstructed. This is usually done by drilling a hole in the upper surface, in which is placed an iron bolt secured by a key. The bolt has an eve or ring, by which it may be attached to the machine which is to suspend the stone. This bolt and key is called at "Lewis," from the name of the inventor.

The single lewis is in the form of Fig. 2589, and is generally used to suspend stone not exceeding 500 pounds weight.

The duuble, or chain lewis, is in the form of Fig. 2590. This was the form of the luwis which was chiefly used on the U.S. Dry Duck at l3rooklyn, for suspending stone froin $\dot{5}(\varphi)$ pounds to 10,000 pounds; and stone of twice this weight were suspended with two lewies of this de-cription.

The flose of this dock is an inwerted arch, ant the sides are male up of alter courses, the tep surface of whicls show it coping -thase. To suspend stone of this demeription, as well as steps and coppine, without marring the upper surface, has been loner a devideratum.

In Fige $\quad 0591$ is exhibited a drawine of Lidgeword's hever lowis, by meato of which all this deacription of stome were sot on the dack-some of them wrighing seven (tul19.

The mitre sills on the same work wero enormonaly heary: the centrestone weighend nearly twenty five tons, and two othery ower twenty toms, and several others nearly as large. These stone were anapemded by at
 frame, 114 slow in in lig. 2591.

 the monle of its propagation themphemate.

luminons bodies in all directions. Provided nothing intervenes to intercept the light, they are seen in all situations of the ere.
Another property of light is, that it requires time for its propagation. The velocity with which it passes from one point to another is, however, so great, that, with respect to any terrestrial distances, the passage may be considered as instantaneous. But astronomy furnishes the means, not only of detecting its propagation, but of measuring its velocity with great precision. The echipses and emersions of Jupiter's satellites become visible about 16 min .26 sec . earlier when the earth is at its least distance from Jupiter, than when it is at its greatest. Light, therefore, occupies abore a quarter of an hour in passing through the diameter of the earth's orbit. Now the sun's distance from the earth being nearly $95,000,000$ of miles, it follows that light must travel through space with the prodigious, though finite, velocity of 192,500 , or nearly 200,000 miles in a second of time, and consequently would pass round the earth in the eighth part of a second. Astounding as this conclusion is, no result of science rests on more certain evidence. It is also proved, by the phenomena of aberration, that the light of the sun, planets, and all the fixed stars, travels with one and the same velocity.

Theories of light.-Two different theories have long divided the opinion of philosophers respecting the nature and propagation of light. One of these consists in supposing it to be composed of particles of excessive minuteness, projected from the luminous body with a velocity equal to nearly 200,000 miles in a second. This hypothesis was adopted by Newton, and, till recently, has been acquiesced in by the greater number of writers on optics. The other hypothesis supposes light to be produced by the vibrations or undulations of an ethereal fluid of great elasticity, which pervades all space and penetrates all substances, and to which the luminous body gives an impulse which is propagated with inconceivable rapidity, in spherical superficies, by a sort of tremor or undulation, as sound is conveyed through the atmosphere, or a wave along the surface of water. Both of these bypotheses are rendered probable by the great number of phenomena of which they afford a mechanical explanation; but they are both, also, attended with very great difficulties. Other theories have also been proposed; but they have not met with such general attention from philosophers as to make it necessary to explain them in this place.

Corpuscular theory of light.- Sir John Herschel, in his admirable Essay on Light, in the Encyclopadia Metropolitana, states the principles of the Newtonian or Corpuscular theory as follows:

1. "That light consists of particles of matter possessed of inertia, and endowed with attractive and repulsive forces, and projected or cmitted from all luminous bodies with nearly the same velocity, about 200,000 miles per second.
2. That these particles differ from each other by the intensity of the attractive and repulsive forces which reside in them; and in their relations to the material world; and also in their actual masses, or inertia.
3. That these particles, impinging on the retina, stimulate and excite vision: the particles whose inertia is greatest, producing the sensation of red; those of the least inertia, of violet; and those in which it is intermediate, the intermediate colors.
4. That the molecules of material bodies and those of light exert a mutual action on each other, which consists in attraction ana repulsion, according to some law or function of the distance between them; that this law is such as to admit, perhaps, of several alternations or changes from repulsive to attractive force; but that when the distance is below a certain very small limit it is always attractive up to actual contact; and that beyond this limit resides at least one sphere of repulsion. This repulsive force is that which causes the reflection of light at the external surfaces of dense media; and the interior attraction that which produces the refraction and interior reflection of light.
5. That these forces have different absolute values or intensities, not only for all different material bodies, but for every different species of the luminous moleeules, being of a nature analogous te chemical affinities or electric attractions; and that hence arises the different refrangibilities of the rays of light.
6. That the motion of a particle of light, under the influence of these forces and its own relocity, is regulated by the same mechanical laws which govern the motions of ordinary matter; and that therefore each particle describes a trajectory, capable of strict calculation as soon as the forces which act on it are assigned.
7. That the distance betreen the molecules of material bodies is exceedingly small in comparison with the extent of their spheres of attraction and repulsion on the particles of light.
8. That the forees which produce the reflection and refraction of light are, nevertheless, absolutely insensible at all measurable or appreciable distances from the molecules which exert them.
9. That every lominous molecule, during the whole of its progress through space, is continually passing through certain periodically recurring states, called by Newton fits of easy reflection and easy transmission, in virtue of which they are more disposed, when in the former states or phases of their periods, to obey the influence of the repulsive or reflective forces of the molecules of a medium; and when in the latter, of the attractive."

Such are the postulates on which the corpuscular theory of light depends. Most of them may be admitted without difficulty; and they afford data for the application of mathematical reasoning to the phenomena, which may be investigated by the same sort of analysis with which mathematicians are already familiar in the theories of heat, capillary attraction, and other molecular forces.

Undulatory theory.-The principles of the undulatory theory are thus stated by Sir J. Herschel:

1. "That an excessively rare, subtle, and elastic medium, or cther, fills all space, and perrades all material bodics, oceupying the intervals between their molecules; and cither by passing freely among them, or by its extreme rarity, offering no re-istance to the motion of the earth, the planets, or comets, in their orbits, appreciable by the most delicate astronomical observations; and having inertia, but not gravity.
2. That the molecules of the ether are susceptible of being set in motion by the agitation of the partiales of ponderable matter; and that when any one is thus set in motion it communicates a similas
motion to those adjacent to it ; and thus the motion is propagated further and further in all directions. according to the same mechanical laws which regulate the propagation of undulations in other elastic - media, as air, water, or solids, according to their respective con-titutions.
3. That in the interior of refracting media the ether exists in a state of less elasticity, compared with its density, than in vacuo, (i.e., in space empty of all other matter;) and that the more refractive the medium, ihe less, relatively speaking, is the elasticity of the ether in its interior.
4. That vibrations communicated to the ether in free space are propayated through refractive media by means of the ether in their interior, but with a relocity corresponding to its iulerior degree of clasticity:
5. That when regular vibratory motions of a proper kind are propagated throurh the ether, and, pas-ing through our eyes, reach and neritate the nerves of our retina, they proluce in us the sensation of light, in a manner bearing a more or less close aualogy to that in which the vibrations of the air affect our auditory nerves with that of sound.
6. That as, in the doctrine of sound, the frequency of the aerial pulses, or the number of excursiuns to and fro from the point of rest made by each molectale of the air, determines the pitch or note; so, in the theory of light, the trequency of the pulees, or number of impulses made on our nerves in a given time by the ethereal molecules next in contact with them, determines the color of the light; and that as the absolute extent of the motion to and fro of the particles of air determines the loudness of the sound, so the amplitude or extent of the excursions of the ethereal molecules from their points of rest determines the brightness or intensity of the light."

Whichever theory we adopt to explain the phenomena of light, we are led to conclusions which strike the mind with astonishment. According to the corpuscular theory, the molecules of light are supposed to be endowed with attractive and repulsive forces, to have poles, to balance themselves about their centres of gravity, and to possess other physical properties which we can ouly ascribe to ponderable matter. In speaking of these properties it is difficult to divest one's self of the idea of sensible magnitude, or by any strain of the imagination to conceive that particles to which they belong can be so amazingly small as those of light demonstrably are. If a molecule of light weighed a single grain, its momentum (by reason of the enormons veloeity with which it moves) would be such that its effect would be equal to that of a cannon-ball of 150 pounds, projected with a velocity of 1000 fect per second. Hun inconceivably small must they, therefure, be, when millions of mulecules, collected by lenses or mirrors, have never been found to produce the slightest effect on the most delicate apparatus contrived expressly for the purpose of rendering their materiality sensible!

If the corpuseular theory astonishes us by the extreme minuteness and prodigious velocity of the Iuminous molecules, the numerical results deduced from the undulatory theory are not less overwhelm. ing. The extreme smalness of the amplitude of the vibrations, and the almost inconceivable, but still measurable rapidity with which they succeed each other, were computed by Dr. Young, and are exbibited by Sir J. Herschel in the following table:

Cuturs.	Length of undulation in parts of an inch.	Number of undulations in an inch.	Number of undulations per second.
Fxtreme Red	0.0000266	376.10	$458,000000,000000$
Red...	0.00002 ¢5	391 ®0	$475,001000,000040$
Orange	0.0000211	41610	506, 100000,000000
Fellow	$0 \cdot 00002 \div$	44000	5:5,100000,000000
Grren	0.0000211	47.160	557,000000,00000:
Bhue	0.0000196	51110	6i2,000000,000000
Indiro.	0.0000185	5.1070	658,100000, 000000
Violet.	0 O 1000171	57.190	
Extrone Violet	0.0000167	59750	7:7,000000,0000100
			The velucity of light treing guer secoms.

 different, chould concur in affording the means of explainng so grent a nomber of fate with equal jrie.
 latory theories of light, from finth wf which the mathematieal laws to which the phemomina are suljent may be deduced, though wot in all canes with the same dagree of facility
 domentic parposes, has exercied the ingrmity and scientitic researe of eminent ment for a centurs pant
 Fompht aftor haw not yot beto at tainal

 domastic un=

The requirements of the case may be stated thus: 1 st, intense illuminating power; $2 d$, economy. $8 d$, portability; 4 th, small radiation of heat; 5 th, perfect ventilation ; 6th, simplicity in the production and steadiness of combustion, so as to insure uniform power of light.
To obtain an artificial light combining all these requisites, is now one of the most interesting problems of this era of useful inventions, and its solution will place the discoverer on the same eminence with Newton, Watt, Fulton, and Morse. There is, therefore, no field of research that promises more substantial rewards to the successful than the invention of a simple, economical, and powerful light, as the want of it is felt by the whole civilized world.

That this subject has already attracted the attention of both scientific and practical men in this country, as well as abroad, we have abundant proofs in the frequent announcement of grand discoveries in the production of artificial light, that, upon investigation, prove to be either new discoveries of old chemical experiments, by some tyro or quack, or clse are of no value practically, owing to the chemical or mechanical cost of production.
It is very easy to assure the public that water can be made to burn, or that a whole city is about to be completely illuminated with a single gas-light. The demonstration of such wonders is, however, probably reserved for a future age. At present we would only direct the attention of our ingenious countrymen to the simple fact, that this subject is one of universal public importance, presenting a broad scope for the exercise of their inventive faculties.

LIGHT-HOUSES. See Sea-Litarts, under which head the subject should be treated.
LIGHTNLNG CONDUCTORS are pointed metallic rods, fixed to the upper parts of buildings to secure them from strokes of lightning. They were invented and proposed by Dr. Feanklin for this purpose, and they exhibit a rery important and useful application of modern discoveries in the science of electricity. Sce Electricity.
LIFE-BOAT. A boat originally made at Shields, in 1r89, by Mr. Greathead, for saving the crews of shipwrecked vessels. The following are the general principles: The boat is wide and shallow; the head and stern are alike, for pulling in either dircetion, and raised, to meet the waves; it pulls donblebanked, the oars being fir, for lightness, and fitted with thole-pins and grummets, and is steered with an oar. The boat is cased round inside, on the upper part, with cork, in order to secure her buoyancy with as many persons as she can carry, even though full of water; the cork likewise assists in maintaining, or, if overset, in recovering, the position of stable equilibrium. The boat is painted white, to be conspicuous in emerging from the hollow of the sea. It is a curious fact that the smugglers paint their boats white for the contrary reason, because dark-colored objects alone are discernible in dark nights.

The loss by fire constantly occurring on the western waters is a proof of the necessity for greater and more effective means of saving life, than are yet adopted in our mercantile marine of all classes nearly. That this should be so is doubly surprising, when, in our very midst, we have the remedy in Francis's galvanized iron life-boat, of which it may be stated, they are never leaky. They may be thrown overboard without injury, or lessening their usefulness; they right themselves, if swamped; and, when full of water, a thirty-foot boat will sustain forty people, so long as they can hold on to the beckets, with which each boat is provided. The non-inflammable material of their construction is another great safety on going alongside a burning wreek; and in a heary sea their elasticity and buoyancy preserves them alongside a sinking wreck, in circumstances which invariably destroy a wood-boat at the time when she is most needed. These boats are manufactured by Mr. Francis, at the Novelty Works of Stillman, Allen \& Co., on the East River.
LIME. Carbonate of lime is the substance forming the principal ingredient of all natural limestones, which may be classified, from their outward mineralogical characters, under the following arrangement:

Granular limestone, with a decidedly crystalline grain: the different varieties of marble, (Parian, Carrara,) and particularly the old mountain limestone, belong to this class.
Compact limestone occurs in quite as great a variety of colored species as the foregoing, but is never so white. It is found in all geological formations, and is named according to its age, or from the formations of which it is a member ; we thus have transition limestone, graywacke limestone, carboniferous limestone, mountain limestone, shell limestone, lias limestone, fresh-water limestone, de.
Limestone Broccia, consisting of lumps of limestone, cemented together by another limestone mass.
Limestone marl, more or less uniformly mixed with clay, of a dense earthy fracture. This and the foregoing variety belong to no particular member of the stratified rocks, exclusively.

Silicious limestone contains numerous silicious minerals, as quartz, hornestone, chalcedony, opal, \&c. This variety is dense, and interspersed often with cavities; it is gray, or yellowish-white.

Fctid limestone is characterized by the bitumen which it contains, and which is rendered perceptible to the smell by friction. It is generally dense, and exhibits stratification. It is called friable marl when it occurs as a disconnected earthy mass, and is of a dark color.

Chath is a dense, earthy rock, imparting color when rubbed, seldom other than of a white color. It is distinguished as being the matrix of flints.

Coarse lime is dense, earthy, approaching sandstone in appearance, and contains a large proportion or quartz-sand and clay, and is stratified.

Caleareous tufa consists of layers of lime which are pretty free from foreigu matters, and is still in the process of formation. Generatly unstratified. In some parts it is loose, porous, and earthy; in others dense, passing into a rarietr of dense limestone.

Calcareous tufia and Travertin belong to this class. Lime of similar origin is called calcareous sinter when the stratification contains crystalline particles (calcareous spar or arragonite) arranged like layers of bark, one above the other, often in the form of columns.
[These formations are produced by the solvent action of water containing carbonic acid upon carbonate of lime.
The stalactites and sialagmites which frequently cover the roofs and floors of certain caverns, are also
due to the same cause. The water which permeates the rocks above them dissolves the carbonate of lime, by reason of the carbonic acid which it contains. In dropping from the roof, however, it remains suspended for some time, and, losing a certain part of the acid, deposits also a portion of the carbonate of lime, previonsly held in solution. The accumulation of these minute portions of lime gradually form the stalactites. The same takes place on the floors of the caverns, giving rise to the formation of the stalagmites.]

Dulomite is characterized by a large amount of magnesia; it is generally granular, and seldom earthy or massive. It is not distinctly stratified, but sometimes bituminous.

The characters of limestone which stand in connection with the theory of the earth's furmation, the geological characters, therefore, lead to a totally different clasification. The examination of a limestone in one point of riew only, must therefore lead to a very imperfect knowiedge of its nature. The mere study of its chemical constitution, would also afford but a very partial means of judgine it.

Many limestones exhibit clear indications of having been put in motion in the liquid state. Limestone of this kind must possess a high degree of purity, as, if this were not the case, (and clay or other substances were present, the result of the fusion would certainly have been different, and would not have ended in the formation of erystals of pure carbonate of linee.

Other limestones, which have been formed by precipitation from soluble salts of lime, are more likely to contain foreign admixtures, which bave been deporited by chemical or mechanical ageney. Thus, some contain magnesia, iron, and manganese uniformly disseminated through them; others are mixed in the same manner with aluminous or silicious particles, or these are interstratified with them.

Others, again, and a whole series of limestones, have obviously been formed with the coneurrence of the animal creation, and it is of importance to ascertain what part the living beings have performed in this general development. Thus, at the present moment, whole islands are being raised up in certain latitudes and oceans, from the calcareous coverings of the coralline animals, just is in former ages the range of the Jura and other mountains have been produced from the same agener. There are likewi-6 limestones, as the shell limestomes, which are composed of masses of shells of crustaceous anmals. The shells of theee animals have been filled with lime, and cemented together so as to form a more or less solid rock. The bodies of the animals have not, however, disappeared without leaving a trace behind thein; for that which is denominated bituminous in these rocks, is generally the residue of decomposed animal matter permeating the entire mass of the stone.

While many limestone formations have been deposited from sea-water, others appear to have been deciledly formed in freh water. Calcareous tufa is still being deposited in numerous places from spings, the carbonic acid in which, under greater pressure, diwolves lime, which is again precipitated, when the carbonic acid is evolved under the lesser pressure of the atmosplare.

Pure burnt lime absorbs water with great avidity, and oceavions a great disengagement of lieat, forming a dense, very soft paste, or, as it is called, becoming fut; the limestones containing magnesia are poorer in proportion as they approach to the composition of dolomite. The oxides of manganese and iron which are so frequently found in the limestones, have grobably been formed by the action of the atmosphere upon the protoxides of these metals.

Besiles the carbonates, the silica and alumina contained in the limestone rocks are also of interest. They exit in the most variable proportions, often combined in the form of clay, sometimes ansociated with magnesia, sometimes alone. The silina is often, but the alumina never in excess, su that both remain undissolved in acids. Their presence is without any perceptible intluence when they are present in small quantity; but when their amount exceeds 10 per cent., the limestones are slaked very - lowly and with difficulty after burning, their athity for water is diminished, and they are then appliable to very different purperes. Of these we shall have oceasion to speak under the head of hatrendic lime.

Lime berniny-C'lemiond process--Cabbomate of lime is not deeomposed at a low red-heat, but is couverted at a bright red-lecat into carbonic acid and lime. The temperature at which the decompos--ition is etlected is, however, inthenced by circmastances, or rather depmes entirely upon the facility alforded the carbonie acil for escape when it hat been expelled from the lime. If the limestenes are con-tantly surrounded with ath atmesphere of carbonic acil, the further evolution of earbunic acid from them is, according to Paralay, very mueh impeded; but if the gateons acid is removed at puickly as it is expelled from the lime, the process of remuring the future pertions of acid is much accelerated. In done vesels, the decomporition is sthpred an som as the space not occupied by the lime las hecome filled with carlronic acil.

It will be proper to ixplain the proceoses employed in burning lime, which must be viewed ns as preparation of the limestone for its mmerons mplications in the urts. The burnine of lame as necoms phthen! in three mondes: Withont a kiln; \because. liy un intermitent kiln; and 3. By a kiln in constant "peration, or, as it is ealled, a perpetmed kiln.

 and 12 feet at the summit, which ocenpies in horning from six to newon days.

Intermiternt biln.- One of the simplent, but at the same tume ermbest arramgenenta, is the followias:

 Whent it fice at the botem. A projection on leate is carriod in the form of a rine nt rone 1 the me eriar

arch upon the ledge, with the large pieces of limestone which are selected expressly for this purpose. He forms in this manner a kind of support or foundation, upon which the other limestones are thrown in, at random, from above, the largest first and the smaller pieces afterwards, which are also piled up above the mouth of the kiln. When the charge has been thus arranged, a pile of wood is erected in the space below the arch, and ignited. The regulation of the fire is by no means an unimportant point, as the possibility of completing the burning depends upon the length of time that the arch, which acts as a support, will endnre. The stones composing this arch being unconnected by any cement and unhewn, and only touching in a few places so as to leave a free ingress for the flames, a slight shock will often cause the downfall of the whole, and put a stop to the operation. The sudden and powerful action of the fire, by expanding the stones very rapidly, and driving out the moisture with such force as to rupture the stones, will often produce a sufficient shock to create a catastrophe of this kind. The art of burning lime, therefore, consists in bringing the mass of limestone as gradually as possible to a red-heat. The first period is called the smoking, because the gases evolved from the fuel, being too much cooled, are imperfectly burnt, and pass off in the form of a thick smoke. The temperature gencrally increases in a kiln of this kind during the first two-thirds of the time, until it attains a white-heat, and diminishes again in the last third. The firing must, however, be kept up until the uppermost stones have been completely burnt. During the firing the bulk of the stones is much diminished, and the heap above the mouth of the furnace sinks gradually down.

The evils of such a system of burning, which involves an enormons waste of fuel, (the loss of time not being taken into consideration,) are obvious. The furnace must be allowed to cool each time it is discharged, and the entire amount of heat, or, what is the same thing, the whole of the wood employed for raising the fery extensive sides of the kiln to the temperature at which lime is burnt, must be sacrificed. It is also evident that, in such a system of burning, the lower half of the limestone must be thoroughly caustic, while the upper portions are still in the mild state. The upper part is at a very considerable distance from the fire, and removed from the direct action of the flames, is burnt, consequently, at a much greater cost of fuel than would otherwise be necessary. At the same time the lower layers in the kiln are exposed to the constant danger of becoming over-burnt, which very much injures the quality of the lime.

A great adrantage is gained by constructing the kilns of brick-work, in a more solid manner, giving the shaft more appropriate dimensions and shape, and building the kilns in situations less subject to be obstructed in working by moisture, dce.

These improvements have been carried out in the kiln shown in Fig. 2592. Instead of a rudely constructed wall, an outer wall is erected in these furnaces, with an internal one of solid brick-work. The fire is placed upon the grate which separates the ash-pit a from the fireplace b. The grate is really a permeated brick arch.

The perpetual or draw kilns are constructed as follows: Fig. 2593 represents a vertical section of a common form of perpetual kiln constructed for a coal-fire ; Fig. 2594 is a horizontal section of the same through the drawing-holes. The actual burning-space is a shaft in the form of an inverted cone, wide at the top and narrow at the bottom. There is no separate hearth, the apertures $a a b$, of which there are three, serving only for drawing out the lime. A layer of brushwood is first placed at the bottom of the kiln, upon this some coal, then a layer of limestone, which is again covered with coal, and then another layer of limestone, anl so on until the kiln is filled. The last layer of stone is heaped up abore the mouth of the kiln, and the progress of the firing is judged of by the manner in which it sinks down: the sinking in this case being due, not only to the diminution in bulk of the stones, but also to the consumption of the fuel. As soon as the uppermost layer has sunk down to the level of the top of the kiln, another charge of coal and limestone is thrown upon it. In the mean time, at intervals of one-half to one-quarter of an hour, the lime which has sunk to the bottom of the kiln is drawn out through the holes. The lower the charges sink in the kiln the more the coal is consumed, and the less space they will occupy; for this reason the inverted conical form of the kiln is the most appropriate. The intensity of the fire can be regulated with perfect ease by adding more or less coal with each charge of limestone. The draught may be impeded by stopping the apertures entirely or in part. In a kiln of the abore
dimensions, 500 cubic feet of lime are drawn in twenty-four hours, ant the consumption of coal is about two tons.
Fig. 2595 represents a section, and Fig. 2596 a plan of one of the most approved forms of perpetua? kilns in u-e in Prussia, in which one part of wood and four parts of peat are used. $d d d d d$ are opening a at bottom for drawing the lime as it is burnt; cecce fire-furmace for the fuel, whose mode of connection with the cavity where the lime-tone is placed may be seen at c in the vertical seetion, which also shows at d the manmer in which the lime may be drawn. At a a is shown a lining of fire-brick, back of which is a cavity $b 6$ filled with cinders, which act as a non-conductor of heat.
The outside is built of rough stonc. It produces about 250 bushels of lime daily.
scale, 12 fect to $\frac{1}{2}$ inch.
Coal is a kind of fuel that is easily broken in small pieces, in a convenient state for spreading about between the layers of limestone. Another advan-
 tage arising from the use of coal is the small quantity of ash which it leaves, and which is ea-ily removed from the kiln with the burnt lime. These remarks do not apply to wood which is reduced with difficulty into small pieces, and not being equally distributed amonget the lime stone, inipedes the regular barning and delivery of the lime; nor to peat, which in general leaves so large a proportion of ash as to subject the kihn to the danger of becoming stopped. In those cases where a perpetual process must be combined with the u-e of wood and peat as fuel, the construction of the kiln must undergo a suitable modification. While the kiln retains its character as a perpendicular or shaft furnace, the fuel, instead of being interstratified with the limestone, is burnt on scparate hearths at the sides of the shaft, and the flame is conducted into the latter, which, in this casc, contains nothing but the material to be burnt. The number of the fires, which must always be symmetrically arranged round the circumference of the shaft, is regulated by the size of the kiln, so that kihns with three, four, and five fires are met with. The fuel consumed in furnaces of this construction must, of couree, siedd a lung and lively flane, as from trood, peat, or coal; but for the latter, the arrangement is not so economical as the plan of stratification previously deseribed.

Fig. 2597 is a vertical section of a plain perpetual kiln, built in Berk-hire, Mass. It is 25 feet high, anci buit of alternate layers of fire-brick and stone. It is four-siled; consisting of a single chinmey 4 feet stuare on the inside, and 8 feet on the outside, making the walls of feet thick. To the height of 7 fect from the lwotom it is 12 feet in one direction, for the purpose of making room for the furnaces $d d$, in which wood only is burnt, and which are 2 feet high and 20 inches wide. For the paseage of the heat into the limestone in the chimney the bricks are laid up like a grate; a a are a-hpits beneath the fires, b an opening for clearing the lime from the bottom of the chimney-being about is inches square. The kiln consumes from 2 to $2 \frac{1}{2}$ cords of wood daily, and proluces is busbels of lime, which is drawn out at intervals of 8 hours. Scale, 12 feet to a half inch.

C'onsumption of fuel.-Nutwithstanding the great saving of fuel, which is eflectel in perpetual kilhs, yet it must be bonne in mind, that these kilns demand the entire attention of the workman, and camot be well attended to as a casual occupation, or as a sceondary branch of hu-bandry, for instance; it must also be remembered that perpetual fumaces are always yielding, that is, they proxhice, in the same time, a much larger :unount of burnt lime, and are, con-equently, only economical where there is a large and eonstant demand for the probluce. Buery improvement in the com-truction of lime-kihs would be a great beon to the jublje, for they must be decidedly claseed amongst the chief mources of the waste of fuel. The best mode of arriving at some sure foundation from which to calculate the amount of this watete, will ne doult
 be, by ascertaining the the a given weight of lime, and making this re-ult the stundard hy which to compare the real lows.
 heat of limestone amd carbmic acid is taken at $\frac{1}{3}$ that of water, med the temperature at which lime in

 sumed. 'The limstone, it is true, then not lowe its carbmice acid all at onee, ass the calculation presup.
 fuently, not only necemary to heat the kiln for a smele insant to the proper tomperature, hut to kenp

Yol. 11.-1.5
a the kiln. The average amount of produce obtained, ranges between 45 and 77 per cent., the ordinary quantity being about 54 fer cent. The contraction is not so considerable as might be expected, as the barnt lime is very porons. The specific gravity of limestone is diminished from $\frac{1}{3}$ to $\frac{1}{2}$ by burning, and its rolume is reduced from 10 to 20 per cent. Triest fonnd, by direct experiment, the weight of a solid cuivic foot (Hessian) of Rüdersdorf limestone $=93 \mathrm{lbs}$., after burning $=48 \mathrm{lbs}$; the loss was, therefore, $=-45 \mathrm{lbs}$ or 48 per cent. 100 lbs , of fresh Rodheim limestone, to give another example, occupy a space $=209$, after burning, (when they ought to weigh 60 lbs .) the space which they occupy is reduced to 183 ; the contraction, therefore, amounts to $12 \frac{1}{2}$ per cent.
Besides the lumps or shells of lime, there is always a portion leaves the kiln in the state of powder, which is in consequence of the stones splitting in the fire, or is due to the friction in charging and discharging the kiln.

Action of aqueous vapor in the kiln.-Moist limestone is said by old lime-buriers to burn much more easily than dry limestone. This fact, which is so well established among them that they prefer burning stones fresh from the pit, or even moisten those which have become dry in the air with water before putting them into the kiln, is not without a true foundation, although it is often misunderstood in practice.

When, on the one hand, it cannot be denied that limestone is more easily burnt under the influence of a current of steam, yet on the other, it is very questionable whether the practice of burning moist stones is really adrantageous. The practice of bringing moist stones into the kiln is equivalent to the exposure of limestone very much below a red-heat to the action of a current of vapor, as far the greater part of the water must be uselessly expelled (with a proportionate waste of fuel) before the stones acquire a red-heat.

Burnt lime.-Lime, when burnt, combines with the free silica at a red-heat, or enters as a constituent into the compound silicate of lime and alamina which is formed. It will be obvious from these facts, that the foreign substances must exercise considerable influence upon the quality of the burnt lime. In the purer varieties of limestone that contain but very little foreign matter, the influence is imperceptible. As the clay and silica are less prominent in these instances, the action of the magnesia is rendered still more obvious, and when present to the amount of 10 per cent., affects the heating of the lime, and diminishes its property of slaking and forming a soft impalpable paste; in short, renders it poor. When the amont of magnesia exceeds $\frac{1}{3}$, the poorness of the lime is so great as to render it useless. The nature of the limestones is not solely dependent upon the foreign substances which they contain, but also upon the mode of regulating the furnace; while one portion of the shells exhibits the proper amount of heat when slaked, other pieces will slake very slowly, and the water will often hardly act at all upon them; they are then said to be dead-burnt.

To convert oyster and muscle shells into lime, requires a higher temperature in the kiln than ordinary limestone, and they have a great tendency to produce a badly slaking lime. The gelatin in the shellis is converted into charcoal which burns with difficulty, and is long retained in the interior of the stones iphile the lime is burnt. Now, if burnt lime is heated for some time intimately mixed with charcoal, the basic carbonate is produced-according to Fuchs.

The slaling.-Burnt lime is of a whitish-gray color, or often dirty white, seldom pure white; it is much more friable than fresh limestone, but yet sufficiently solid to bear carriage. The crystalline structure of many varieties of lime is often distinguishable after burning. It is light and excessively porous. In consequence of its porosity, burnt lime absorbs water (about 18 per cent.) with the greatest aridity, during which operation the air contained in the pores is evolved with considerable noise. In a few minutes (but much later with poor lime) the satorated lime is observed to become hot, and from that moment the combination of lime and water proceeds. The lumps of lime fall to pieces with a crackling sound, and the smaller pieces are reduced to powder with the evolution of much steam, until at last the whole is converted, with a greatly increased volume, into a soft uniform white powder, i.e., into hydrate of lime. For building, it is customary to place the lime in slaking tubs, or into flat boxes constructed of boards, with a spout, and to pour as much water into them as will nearly cover the lime. During the slaking of the lime, the excess of water is heated to lively ebullition, and the workmen endeavor to mix the lime and water in a uniform manner with a hoe. If the proportion of water was correctly estimated, a miformly thick semi-liquid mass results. In the formation of hydrate of lime, 100 parts of pure lime combine with 32 parts of water, or nearly $\frac{1}{3}$.

The conversion of liquid into solid water may be viewed as the proximate cause of the great evolution of leat which accompanies the slaking of lime, inasmuch as the water must be contained in this state in the solid hydrate of lime. Suppose 3 lbs . of lime to be slaked, these will combine with 1 lb . of water, for instance, and convert it into the solid form. In this process, a quantity of heat is liberated sufficient to bring 0.79 or ${ }_{5}^{4} \mathrm{Jbs}$. of water to the boiling point. In practice the amount of heat is much breater, for a boiling temperature is attained when the lime is covered with three times the quantity of water. The conversion of water from the liquid to the solid state is, consequently, not the only source of the leat, the remainder must be accounted for by the chemical action which ensues. As a proof of this, the fact may be adduced that lime heats with snow or ice. When a large excess of water is used, the heat evolved is more diffused and less intense; it increases with a lesser quantity, and attains a naximum when no more is added than enters into combination with the lime. The heat has then been observed to attain the temperature required to ignite sulphur and gmpowder, or even wood. If the lime is moistened with water in the dark, it becomes red-hot and emits a lively luminous appearance; in this case, the heat is concentrated by the surrounding lime which is not in the act of being slaked. The heat is in general so much the more intense the more rapidly the lime is slaked; or, is in propor tinn to its purity and the proper degree of causticity attained in the liln. The temperature of slaking must always be attended to, is it influences the quality of the lime, and must be regulated by a cautious addition of water; when no more water is added to the lime than it can absorb, it does not form a soft, Jit a sandy (coarselv erystalline) powder, and is said to lave been rendered poor by slaking. The
builders hare, therefore, a good reason for slaking the lime at once to the form of an impalpable, and not a coarse powder. Rather more than 3 parts of water are required for this purpose. It lime is only preedily dipped in water in a basket, so that it falls to powder, and is afterwards mixed with moono water, it does not increase more than to $2 \frac{1}{2}$ rolumes; if allowed to fall to powder, exposed to the air, amb then made into a paste with water, it will only yield 1.7 volumes.

Influence of the air.-Fxposed to the air, burnt lime is converled very slowly and without any elevintion of temperature into a rough, coarse powder, containing small angular pieces; it then efferveser's vigorously with acids.
-1s large quantities of lime must be kept ready slaked for the purposes of the builder, and it is necesEary to protect it from the action of the amosphere which would render it uscless as mortar, it is custunary to preserve it in deep pits. The slaking-tub is placed in front of a pit into which the slaked lime in the semi-liquid state is allowed to flow until the pit is filled. The lime becomes fatter and tougher in the pit, those pieces becoming gradually slaked which resisted the first action of the watur. The excess of trater collects on the surfice and can be removed; the pit is then covered with a layer of sand two or three inches in thickness, and the lime is thus preserred totally unchanged. In removing the ruins of the eastle of Landsberg in order to lay the foundations for a new building, it is stated by Jalu, that a lime-pit of considerable dimensions was found in one of the vaults. The surface of this mass of lime was carbonated to the depth of a few inches, but all below that was in the state of freshly slaked lime, only somerrbat more dry. This lime, which was eertainly more than 300 years old, and vatued at several hundred florins, was consequently used in constructing the new buitding.

IIydraulic lime.-Those varicties of lime which contain about 10 per cent. of silica or silicates, assume different properties, and although they are only slowly slaked after burning and poor, yet when made into a dough with water, they soon become solid, and exposed in this state to the constant action of water, aequire a high degree of consistence, and are rendered hard, like stone, without being subsequently loosened or eaten away by the water, and are very appropriately called hydraulic. As the liydraulic property is solely due to a chemieal process, it can only be explained and understood by referenee to the chemical nature of the stones. The following are the results of Berthier's analyses, with the exception of the last number, which was analyzed by hersten:

The jresh Limestones contained in 100 parts :

	1	2	3	4	5	6	7	8	9
Carb of lime.	90.0	89.0	89.0	89.0	85.8	82.5	80.0	79\%	76.5
" " magnesia.....	5.0	32	$\bigcirc 0$	$\because 0$	0.4	$4 \cdot 1$	1.5	$\bigcirc 5$	$3 \cdot$
" " protox. iron...	-	-	-	-	$6 \cdot 2$	-	-	$6 \cdot 0$	80
". "protox. mang.	-	-	-	-	-	-	17.0	-	1\%
Silica..................	-	-	-	-	-	-	170	6.5	11.6
Alumina.....	0	-. 8	-	-	$5 \cdot 4$	-	1.0	$3 \cdot 3$	$8 \cdot 6$
Oxide of iron......... $\}$	5.0	7.8	$9 \cdot 0$	$9 \cdot 0$	$5 \cdot 4$	13.4	-	-	-
Carbon................... Water	-	-	-	-	二	-	- 1.0	$\because 0$	

The Lime obtainad by burning the above containal in 100 parts :

Lin	80°	8.1.0	82.0	8.0	S3.0	79.3	70.0	7.4	69%
Magne	40	2.5	1%	1.5	-	3.5	10	20	$\underline{11}$
May	90	13.5	16.5	16.5	7.0	16.7	290	17.0	040
1)sitle of irom	-			-	10.0	-	-	7.0	5.

The first five numbers yichl lime of very moderate, the latit four, of a very markel hydraulic ctha acter. It will be seen lyy the table below, that this property increases with the quantity of mather in soluble in muriatic acit. This substaner consists chicfly of a combimation of silica and ahmina, but is often compused nearly entircly of silioa in the soluble monlification. It becones of great imprortane tu nhtain a knowledge of this insoluble purtion, as upon it the hadratic properties depend. This has con werguently received more attention in recent malyane he will be seon ly the followins examples:
 vilicate that can be deemaposen by neide, athek jelty of sitima is produced. This property of yehthen Eratimons silica stame therefore, in intmate commetion with the property of becoming hard baler mater. Unburnt, pulverized stones do not harden, as is well kown; und hyidrable hane, mixed whth

 nach later periol, this mase, when ewnered with water, arcpures a haremens which is pinte equal (athl

 consequently very unequal. The degree of hardmes which they mequiro is aho wot the same ; then that hardan slowly me often more compact than tho which harden in os shorter tome. 'The than re-

which this ingredient obtains so great a preponderance, and in which the amount of carbonate of lime is so small, that they no longer exhibit the hydraulic property. All mineral substances which possess the property of rendering ordinary limestone hydraulic, are very appropriately called cements.

Contains silicious clay.		Ordinary bydranlic lime.				Ordinary cement.		
$\left.\begin{array}{l}\text { Before burning (to } 100 \text { car- } \\ \text { bonate of lime.) }\end{array}\right\}$	12	20	25	30	37	56	156	510
$\left.\begin{array}{l}\text { After burning (to } 100 \text { caustic } \\ \text { lime.) }\end{array}\right\}$	22	36	44	53	65	100	273	900

This division is of course quite arbitrary, no classes existing in nature, but only transitions; it is, however, convenient when its true signification is borne in mind. There must necessarily be numerous exceptions, for this reason, that the property of hardening in one and the same specimen of lime varies with the temperature at which it has been burnt; thus several varieties belonging to the third class, when imperfectly burnt (i.e., when the whole of their carbonic acid has not been expelled) yield an hydraulic lime of the second best quality. Vieat has determined in single cases the amount of imperfect calcination by the amount of carbomic acid not expelled from the lime, and has tested the property of hardening in these different gradations. Thus one variety of limestone in which the carbonic acid remaining in it

amounted to	30 per cent.	27 per cent.	26 per cent.	23 per cent.	20 per cent.	10 per cent.
yielded a mortar which hardened in	15 minutes	12 minutes	7 minutes	9 days	30 days	9 days.

whence it is obvious, that in the course of calcination, and with the increase in the amount of caustic lime, a great diversity of relations between it and the aluminous constituent are created, upon one of which, or upon several at once, the property of rapidly hardening is chiefly dependent. Too much heat in the kiln and incipient fusion, renders the lime very much weaker than it should be when the process is properly conducted, and at last disqualifics it completely. It must be noticed lastly, that hydraulic lime never hardens, when it is immediately immersed in water, before having acquired a certain consistence. In this case, the particles never agglutinate properly together, but form a porous mass.

Many limestones, particularly those which form the boundary between the hydraulic limestones and the cements, possess the very objectionable property of containing portions which slake at a subsequent period, when the greater bulk has already solidified and become bard. The mortar then falls to pieces and is rendered perfectly useless. It would appear as if particles of lime were in this case so enveloped, as only to become penctrated by the water in the course of the process of hardening.

Calcination.-Hydraulic lime is burnt in a similar manner to ordinary limestone; a much less degree of heat, however, is required. Perpetual kilns are used; the burnt stones are reduced to powder under stampers or ground in a mill ; the powder is passed through a sieve, and is then in a fit state for use.

Those varieties of hydraulic lime which slake easily, need not even be reduced to powder. A great error is, however, committed in exposing the hydraulic lime (particularly in the state of powder) for any length of time, during carriage, or in warehouses, to the moisture in the atmosphere; the greater part of its good properties are thus gradually destroyed, and it afterwards hardens very slowly or not at all. It need hardly be mentioned, that a larger stock of hydraulic lime should never be made than is intended for immediate consumption. With reference to this point, Vicat has shown, that hydraulic lime which has once attracted moisture, may be made to set, by renerred pulverization and mixture with water; but the action is much slower, and it is converted into an article of the worst quality.

Theory of hardcning or solidification.-The solidification of hydraulic lime is supposed to be due to the presence and mutual action of the silica and caustic lime contained in it. The final result is derived from two operations. During calcination, the lime is rendered caustic by the evolution of carbonic acid, and this caustic lime then reacts upon the silicious clay, converting it into a compound that is easily decomposed by acids. The excess of caustic lime, as well as the compound into which the silicious clay has been converted, then react upon each other, when mortar is prepared from the ground burnt lime, in such a manner, that a solid stonc-likc silicatc is produced in the humid way. The water here obviously has a double action. Dry substances, like lime and the silicate of alumina, act very little, or, under certain circumstances, not at all, upon each othez, unless the solvent power of water is employed to bring them into intimate contact. During solidification, the water will constantly transfer the lime which it has dissolved, to the silicious particles; it will then dissolve fresh lime, which is again em-
ployed in the production of the silicate, and so on. The process of solidification is not so much the conversion of a ready formed silicate into a hydrate, as the formation of a hydrated silicate in one and the scme operation.

The action of the clay.-The silica may be replaced, as is indeed the case in the greater number of dydraulic limestones, by different silicates. Amongst these, the clays are the most important.

The great diversity in the nature of the clays dues not admit of the supposition that their action is always the same, but nevertheless they all yield a substance with lime which hardens well, and in some cases affords excellent mortar. All must be previously burnt, partienlarly potter'seclay. In some cases, it is necessary to calcine the clay with line. The common ferruginous brick-earth hardly binds at all with lime when only slightly burnt, but when strongly heated, to the point of incipient fusion. the oxide of iron enters into combination with the clay, and a very porrerful solidification then ensues with lime.

Artificial hydraudic lime.-Artificial mixtures of appropriate silicates with lime, under proper treatment, possess the hydraulic property in quite as eminent a degree as the natural productions. Experience has indeed anticipated theory in this fact by sereral centuries. The liomans were well acquainted with the use of lime-mortar, and applied it both in the construction of buildings and roads; they also soon made the important discovery that a certain soft, porous, almost earthy rock, containing pumicestone, and resembling this in composition, and which was found on the coasts of the Bay of Bayze and Naples, particularly in the neighborhood of Puteoli, possessed the valuable property of forming an hydranlic mortar with barnt linie. They called the rock pulvis Putcolunus; it is described by Vitruvius and by Pliny, and was employed, mixed with an equal quantity of lime, for building under water. The pulvis Putcolanes was precisely the same substance as is known in the present day under the name of Puzzolana. The modern name of the town Puteoli is I'uzzuoli,

Trass, or tarras.-After entering Germany, and having taken possession of the Rhine, the Romans soon recognized, in the layers of trass, near Bom, the well-known pulvis Putcolanus, and opened the quarries, whence this important material is distributed, far and wide, even to the present day. buth l'uzzolana and trass are conglomerates of fragments of rolcanic rocss, transposed by the ageney of water from their origimal sites; they often contain fragments of basalt, pumice-stone, trachyte, elay-slate, de., indicating at once the connection of the one with Vesuvius, and of the other with the voleanots of Fifel. The trass in Brohlthal is derived from the constituents of the trachyte rocks in the neighborhood; it forms very thick beds, often filling entire valleys, and is in the form of a friable, easily pulverized stone, the color of which is generally light, passing from a yellowish to a greenish hue. It is ground in a number of stamping-mills in the neighborhood, and exported in the form of a time powler. Like most other voleanic productions, as basalt, klingstein, de., trass is resolved into two di-tinct silicates by chemical agency. The one is readily soluble in muriatic acid, the other resists solution.

Puzzolina.-Berthier found the Italian Puzzolana composed of $44^{5} 5$ per cent. silica, 15.0 alumina, S.8 lime, 4.7 magnesia, 12.0 oxide of iron and titanium, $1 \cdot \pm$ potash, $4 \cdot 1$ soda, and $9 \because 2$ water.

Clay as cement.-All those substances which render fat, slaked lime hydraulic, are called erments. Przzolana, trass, and all similar cements have the adrantage of requiring no preparation by burning, but are capatle of acting in the natural state-of course in fine powder, that they may be properly mixed. All varieties of clay, to be used for cements, must be disintegrated by burning, with or withont a certain proportion of lime, according to their different characters. They then afford very powerful cements, which property, however, is very much intluenced by the temperature to which they have been cxpoocd, and the manner in which they have been burnt. Treussart made some bricks from a clay which is used in strasburg for the manufacture of alum, and contains 50 silica, 3.7 alumina, $1 \cdot 6$ magnesia, with mere traces of oxide of iron; a part of these he burnt in the alum-furnace, and the others in a lime-kiln. When the burnt clays were made into mortar with half their weight of slaked lime, a great diflerence was observed in the two kinds; that which had been burnt in the alum-furnace hardened in two or three days, and would withstand a weight of 400 pounds withont being crushed, while that from the lime-kiln did not harden for thirty days, and, placed in the same cireumstances, broke under a weight of fifty or sixty pumils. A similar comparison, instituted with two mortars, also compowed of one part shaked lime and two parts cement, the one of which consisted of simple clay, the other of clay that had been calcined with 2 per cent. of hane, led to the same result in favor of the lather mortar, which hardened in 17 days, while the former required 30 days.

The excellent hydraulic mortar of Tournas, known under the name of "coulrec;" is prepared from the refuse which is left on burning the lias limentone. This waste, which remans ufter removing the lumps of lime, consi-ts of small fragnente of lime and of the ash, (the cond there med yieding at large amount of ash,) in about the propertions of $1: 3$. The mixture is slaked in a small quantity of water. and before being wed is well beaten and worked nbout.
 Int hydraulic mortar when mixed with burnt lime:

These sloga in the state of tine powder, when trembed with as small guantity of muriatic acid, are 'apidly comverted into a unifurm gelatinous mas.
It is easy to nsecertuin whether a shag is sutited for the production of hydrublic cement, by pourimg
orer it, in the state of fine powder, a small quantity of hydrochloric acid; if it forms a gelatinous mass after a short time, it will then yield, with lime, a proper mixture for hydraulic mortar.

Roman coment.-It is a remarkable fact in the history of hydraulic mortars, which originates, as we have seen, with the Puzzolana and trass employed by the Romans, that the more the knowledge of their uses has been spread, the more substances have been discovered which either act as hydraulic nortars themselves, or can be mixed as cements in the preparation of artificial mortar; so that what appeared originally a privilege accorded to a few favored spots only, can now be obtained almost cverywhere. A strong inducement to study the nature and modes of occurrence of hydraulic lime was created by the patent granted to Parker and Wyatt, in London, in the year 1796, for what they termed "Roman cement." The material employed in the manufacture of this cement are the nodules, of an ovoidal or globular form, which are found in the London clay, and known by the name of Septaria. They are calcined in perpetual lime-kitns with coal, in which a very moderate and well-regulated heat is carefully preserved. After calcination, the stones are ground under heavy edgestones to a very fine powder, which is sifted, and then packed in casks for sale. These wodules are found in many localities in this country.

Roman cement is one of the most powerful hydraulic mortars, and is exceedingly valuable, not only on account of the rapidity with which it hardens, and this is effected in a very few minutes, but because when hardened in considerable masses it is not liable to crack.

All artificial or natural hydraulic limestones are soluble (before as well as after calcination) in muriatic acid with the separation of silica, except when sand or some similar substance has been added to them.

The hydraulic limestones, when they do not contain a sufficient quantity of lime to be capable of slaking with water, must be very finely pulverized; it is only by this high state of division that a proper actiou can ensuc. A thorough penetration of the silicious portion by the lime is never entirely effected, but a certain proportion remains inclosed and removed from the sphere of action. Sers Mortar.

LINK MOTLON.-Variable expansion gear, now generally used on locomotives for the movement of the steam valves, first invented by Mr. Williams of Neweastle. Williams' incipient link was a slotted straight bar, which connected the straps of the fore and back eccentrics, formed with ears to secure the linking pins. In the slot of the link, a slide-block hung on the end of a radins link from the valve spindle, was adjustable towards one end or the other, to receive the motion of the one or the other eccentric for Core or back gear; while the link would partake jointly of the two motions of the eccentrics, its horizontal motion would be smallest at the centre of its length, and increase towards the extremities: thus by shifting the block towards the centre, the travel of the valve would be reduced, and variable expansion thereby obtained.
The objections to the special arrangement here proposed are obvious; the idea has however been de5 rloped by Mr. Howe, into the more practicable arrangement first applied to the engines of Robert Stephenson \& Co. in 1843, and from this time the link has been adopted generally by all other English
 manufucturers.
Link motions are all of two classes, in which, first the link is suspended directly from a fised point as a stationary link, fig. 2601; seconaly, the liuk is movable vertically, (fig. 2602 ,) earrying with it of course, the eccentric rods which are directly connected to it. In the first class, therefore, the variable expansion is accomplished by shifting the sliding blocks in the link: in the other class, the link is shifted upon the block. The link itself is employed under three general forms, distinguished as much by structural characteristies as by peeuliarity of action. The box link, the open link joined to the eccentric-rods at the extremities, and the open link joined behind. The box-link, fig. 2598 , is formed in two halves or sides bolted together at the extremities, enclosing a rectangular recess for the reception of the block as shown in section. The eccentric-rods are attached to the extreme stud pins, forged on the oultside of the link, and thus a clear way is obtained for the blocks from one end of the link to the other; they may be shifted even to a position concentric with the eccentric rod ends. The two forms of open link are adopted with a view to simplify the parts, the one (fig. 2600,) with the extreme connections, is the form first used by Stephenson; by its form it does not permit of the block being placed concentric with the eccentric rod ends, the range being so limited, it is plain that the block never can receive and transmit the full throw of the eccentrie to the valve, a feature in which the box-link has the adrantage. With this link the throw of the eccentrics and therefore their diameters, must be greater than those required by the box-link for a given maximum travel of valse. The third form of link, (fig. 2509 , connected behind, permits of the same freedom for the block that is yielded by the box-link; the block may be shifted to a position level with the point of attachment at which it may transmit the whole throw of the eccentric. The overhung nature of this knuckle-jointed sort of link, and its peculiarly irregular movements in consequence, render it a more ticklish variety than the others; as, however, it combines the advantage of the boxlink in respect of the transmission of the whole motion, with the simplicity of the other link, it is now most commonly employed, at least in locomotives, where vertical clearance is limited.

The first qualifications of expansion gear are to insure for every variation of expansive action, a free admission and free release for the steam; to render the periods of admission equal for the front and back
strokes, and to promote the expansive action of the steam sutficiently to extract the most if not the whole of its works for propulsion, excepting a per centage required for the purposes of the blast.

Lead. In the stationary link-motions, a constant lead throughout the forward and backwaril geat is obtained by circling the link to the radius of the ralre-rod link, and the same lead may be for the front and back strokes. In the shifting link motion, the lead essentially rarie; with the expansion, the greater the degree of expansion-that is, the less the admission the greater also is the lead; the lead is thus least in full gear, and attains its maximum in the mid gear; it may however always be matle the same for the front and back strokes, and thus equality is obtainel by cireling the link to the radiu= of the eccentric rod. Thus the conditions of constant lead and rarying almission which are incompatible with the nature of the shifting link, motion are obtainable by the stationary link with a single valve. The longer the eccentric-rod, and the shorter the link, the less is the variation of leal in the shiftinglink motion. The shifting-link motion may with a lvantage be set with the desired lead in half gear, which is the most ordinary working position of the mechanisn ; the evil of varying lead is thus divided and reduced.

Linear Adeance. With the stationary link the linear advance of the eccentrics is in all cases less tha! that of the valve, and is a quality affected by the length of the eccentric-rods; these rols by their varying obliquity increase the advance while transmitting it to the link, amd the shorter the rols the greater is the difference so eaused. With the shitting-link, the linear advance of the valve is in all eases equal to that of the cecentrics in fill gear, independent altogether of the length of the romli-cepresty meaning by full gear, that the fore rod end is brought into the centre line of the valve roies in other pinsitions, however, the linear advance of the valve varies precisely with the lead, as the lead, in fact, partly constitutes the advance.
The Mution of the Link: The motion of the link is composed of the distinet motions of the cecentrics, and every part of the link is sulyect to this compound influcuce. The motion of weh eccentric prevails in that half of the link to which it is coupled, and at the centre the motion of the link is equally composed of the two. The final result of this combined action is approximately the same as that available by the action of at single cecentric of variable throw. Thas the object which was proposed to be obtained by the spiral and wedtre reversing motions of Fenton and Dodils variable expansion, with (if possible) constant lead, is realizel in the simplest manner by the combinel operation of two eccentrics, and with an efficiency and precision which probably the oripinal promoters of the link motion did not antiepate. Horizontal motion communiated to the link by the joint action of the cecentri's is a minimum at the centre of its length, where it is equal to twice the line:sr advance, and it inereases towards the extremities varions periods of the binck in the link, or of the link on the bleek. on the general principhe that adminion varies with the travel of the valwe. The distribution derivel from the link is affeeted by the length of the connecting-rol relative to that of the crmak; the shorter the rod, the greater is the front admission, and the less is the admission for the hack stroke; therefore the term "link-motion" in so fire as it involves the relation of the valve's motion to that of the piven, firtnally includes the proportions of the pitan motion. The quality of the motion derived from the link is modified by the positions of the worhing centres, and mont "epecially of the centres of suspom-unt and councetion; the centre of su-pemion is the most influential of all in rernlatine the wimiston, un its trunsition horizontally is mech nore efieacions than a vertieal change of phate to the same extent. The periouls of alnaivion in hulf gear are mach more sensitive to variation he mate of supension an conncetion than throes in full and mid rear. It is expedient to set the muther right for this pasition as
 'There are certan montrul positions of tho centre of tho surpension, on whinh the link in vilaratin yidha equal adnitions, mel these may be fime fir any specitic noramgenent hy the methent of thre iraile These nemeral positions may be located cither in the centre line of the link, werteally or horien ntaly Sn the neighborhood of the middle of the link. As the vertion movement of the benly of the link with the
 the eentre line of the link, inernaing as the centre is removel laturnly, the centre line of the link is, in

increase as thase of admission are diminished, and when the points of suppression are equally adjusted those of release do not considerably differ. It has been found in short, that in valves the admissions and the expansions may be made absolutely identical, as in the Great Western link, fig. 2601. An admission of 75 per cent. or three-fourths of the stroke is attended with a mean expansion of 16 per cent. of expansion, exhausting at 80 per cent. The utmost period of expansion obtained by a stationary link in mid gear is 38 per cent. for 12 per cent. of admission, in which case the steam is cut off at less than oneeighth of the stroke, and expanded into a volume of 50 per cent., or one half stroke 4 times the initial volume exclusive of clearance, after which it exhausts during the remaining half stroke. With the stationary link the shortest admission is 11 per cent., or one-ninth of the stroke, expanding into 50 per cent., or $4 \frac{1}{2}$ times the initial volume, before the release takes place. With the shifting-link, the smalless attainable admission is about 17 per cent., or one-sixth of the stroke; this is about one-half more than what is obtained by the stationary link, the difference being due to the excess of lead yielded by the shifting. As the release takes place at half stroke, the shifting-link cannot expand the steam above three times its initial volume, exclusive of clearance. The average period of admission in full gear does not exceed 75 per cent., or three-fourths of the stroke, according to the examples before ns. More than this should not be required, nor indeed conld it be beneficially employed at regular speed; the admission may, however, be increased by forcing the mechanism of the valve beyond full gear; that is, by causing the block to work in the extreme overhung parts of the link, which roust be extended for thr purpose beyond the centres of connection; by this expedient the throw of the valve is increased, and it is practicable with the box and back hug links, and may in many cases be usefully employed when a ready start with a heavy train is required.

The open link connected by its extremities in its own centre line, is identical in its motions with the box-link: in the use of that ink it is imperative that the throw of the eccentric should be greater than that designed for the valve, as in full gear the block is of necessity placed nearer to the centre of the link than the rod centres.
LITHOGRAPHY. The art of transferring from stone writings or drawings made thereon, which is of quite modern insention. Unlike other kinds of printing, this is strictly chemical, and is in consequence called, in Germany, chemical printing. A drawing is made on the stone, either with ink containing oleaginous matter, or with chalk containing similar substances, but in a more concentrated and indurated state. The drawing is then washed over with water, which sinks into those portions of the stone that are untouched with the grease of the drawing. A cylindrical roller, charged with printingink, is then passed all over the stone, and while the drawing receives the ink, the rest of the stone is preserved from it by the water, on account of the greasy nature of the ink. This art is said to have been invented by mere accident, by Alois Senefelder, of Munich.

The stoncs, and the manner in which they are prepared to reecive the drawings.-The stone most used in England is found at Corstan, near Bath; it is one of the white lias beds, but not of so fine a grain, nor so close in texture as the German stone, and therefore inferior ; but it is good for transfers, and does tolerably well for ink drawings or writings. All calcareous stones may be used in lithography, because they imbibe grease and moistare; but a stone entirely calcareous does not answer well : there should be a mixture of alumina and silex. One of the most certain indications of lithographic properties is the conchoidal fracture; all stones of this kind will be found good, if they are also hard, have the fineness of grain, and the homogeneousness of texture that are necessary. It is, however, said that none have yet been fond equal to those obtained from the quarries of Sulenhofen, near Pappenheim, in Bavaria, and that the lithographers of eminence in Paris use no other. In order to sustain the pressure used in taking impressions, a stone, 12 inches square, ought not to be less than $1 \frac{1}{4}$ inch thick, and this thickness should inerease with the area of the stone. The stones are first sawn to a proper size, and are then ground smooth and level by rubbing two of them face to face, with water and sand. They must be very carefully examined with a straight-edge, to ascertain that they are perfectly level in every direction. This applies only to the side which is afterwards to receive the drawing, as the natural division of the stone is sufficiently true for the back. When the stones hare thas been gronnd perfectly level, they are well washed, to free them from any of the coarser grains of sand which may have been used in smoothing them. They are then placed on a board over a trough, and they are again rubbed face to face with sand and water, but with a sand of much finer texture than that previonsly used. The greatest care must be taken to have the sand sufficiently fine; and for this purpose it must be sifted through a small close sieve, as a single grain of sand of a coarser texture than the rest will seratch the stone, and these scratches will afterwards appear in the impression taken from the stone. When the stones have been rendered sufficiently fine, and their grain sufficiently smooth, they must then be careiully washed and afterwards wiped dry with a clean soft cloth. This is the plan adopted to prepare the stones for chalk drawings, but to prepare them for ink drawings or writings the following method is the best: After the process just described has been completed, the stones are well washed to get rid of the sand, and they are then rubbed together, face to face, with powdered pumice-stone and water. After they are made perfectly smooth, they are again washed and wiped dry, and are then separately polished with a large piece of pumice-stone.

To elean the stones after they have been fully used, sand is strewed over the surface, which is sprinkled with water and rubbed with another stone, until the writing or drawing upon it has completely disappeared. It must then be washed in aquafortis, diluted with twenty times its bulk of water, and the stone is then prepared for a new drawing or writing, by being rubbed with fine sand or pumice-stone as before. The longer drawings remain on stones the deeper the ink or the chalk penetrates into their substance, and consequently the more of the stone must be ground away to remove them; this is also mose necessary with ink drawings or writings than with chalk, owing to the greater fluidity and cousequent penetrability of the former.

The substances used by the artist upon the stone are either lithographic ink or lithegraphic chalk.

The ink for makiny irunsfers should be somewhat less burned, and therefore softer than that used Sor writing or drawing directly upon the stone.

Lithographic chalk should have all the qualities of a good drawing cravon. It should be even in texture, and carry a good point. The following proportions are recummended: $1 \frac{1}{2}$ oz of common soap, 2 oz. tallow, $2 \frac{1}{3}$ oz, virgin wax, 1 oz . shell-lac. The rest of the process is the same as in making the inla: Lees black slould be mixed with the chalk than with the ink, its only use being to color the drawing, that the artist may sce the lines he traces. When the whole is well mixed it should be poured into a mould and very strongly pressed, to expel any air that may collect in bubbles, which would render it spongy:

Monle of draving.-Previous to drawing or writing, the stone must be well wiped with a clean dry cloth. The ink is rubbed with water, like Indian ink, and is alnost wholly used on the poli-hed stone. The chalk is used only upon the grained stone; the polished surface of the other would not hold it. In drawing with ink, a gradation of tints is obtained either by varying the thickness of the lines, or their distances from one another, as in engraving. The ink lines on polished stones, beins solid and unbruken throughout, receive the printing all over; and if the lines be drawn as fine and as uniform as they are usually on copper, the print from them will be in no respect inferior; but it requires a greater degree of skill to execute as well upon stone as is usually done upon copper or steel.
In using chalk, the grained stone should be very carefully dusted, and the utmost attention be paid to prevent any lodgment of the smallest particle of grease upon the surface; personal cleanliness is therefore absolutely necessary to the perlection of his work, especially in chalk drawings. The chalk is used upon the stone precisely in the same manner as crason upon paper; but it is of essential advantage in lithography to finish the required strength of tint at once, instead of going over the work a second time, the stone being impaired in its ability to receive the second lining clearly, by the absorption of the first. Some practice is requisite to use the chalk cleverly, as there has been no chalk hitherto made that will keep so good a point as is desirable. There is likewise some difficulty experienced in obtaining the finer tints sound in the impression; and in order to obtain the lighter tints properly, it will be necessary to put the chalk in a rest, as the metal-port crayon is too heary to draw upon the stone. A good lithographer is in the habit, befure he cummences his subject, of pointing $\Omega 0$ or 30 pieces of chalk, stuck in quill-holders, and placing them beside the stone in a litte box, taking them up successively as the ponts become worn off, so as to avoid, if possible, the cutting otl chalk during the work, which endangers the soiling of the stone. When a very sharp and delicate line is required, he sharpens the point of the chalk upon paper, by pushing it forward in an inclined position, and twirling it round at the same time between the fore-finger and thumb. $A=$ the chalk suftens by the warmth of the hand, it is quite necessary to have several pieces, to be able to change them. Some artists cut their chalk into the wedge form, as being stronger. Those portions that break off in drawing should be carefully taken of the stone by a camel-hair brush.
Preparation of the stone for printing.- The drawing being finished on the stone, it is sent to the lithographic printer, on whose knowledge of his art depends the success of the impressinns. The tirst process is to etch the drawing, as it is called. This is done by placing the stone obliquely on one edtee, over a trough, and pouring over it very dilute nitric acid. It is poured on the upper part of the stone, and runs down all over the surface. The stone is then turned and placed on the opposite edge, and the etching water being collected from the trough, is arain poured over it in the same manner. The degree of strength, which is usually about one per cent. of acid, should be such as to produce a very slight effersescence; and it is desirable to pass the etching water two or three times over the darkest parts of the ofrawing, as they require more etching than the lighter tints. Experience alone can, however, guide the lithographer in this ilepartment of the art, as different stones and ditterent compoitions of chalk will be differently acted upen by the acid, and chalk drawings require a weaker acid than the juk. Then stone is next to be carefully washed by pouring elean rain-water over it, and afterwards with gun-water ; and, when not tors wet, the roller charged with printing ink is rolled over it in butls directions, sideways, and from top to bottom, till the drawimg takes the ink. It is then well covered over with a solution of !gun-arabie in water, of about the consi-tency of oil. This is allowed to dry, and preserves the drawinf from any alteration, as the lincs camot spread, in consequence of the pores of the ctene being tilled with the gum. After the etching it is de-irable to leave the stone for a day, and not more than a week, before it is printed from. The effect of the etching is first to take away the alkali mixel with the chalk or ink, which would make the drawing liable to be alfected hy the water, and, secomelly, to make the stone refine more decidedly to take any grease. The gum assists in this latter purpose, and is quite ensential to the perfect preparation of che surface of the stone.

Printing. - I'lan the intention is to pime from the stone, it is phaced ngm the phaten on bed of the preas, and a proper sized scraper is alju-ted to the burface of the stome. Rain-water is then inmakend ower the gran on the stone, which being dissolved gradually, and a wet sponere passed highty over abll, the printer works the ink, which is on the culer-table paced heside him, with the roller in all ibrections, until it is equally and thinly pread on the ruller. 'the roller is then passed ower the whole stome, care being taken that the whole drawing reecives a due portion of ink; mel thim mast he donc hey giving the roller ang equal motion und pressure, which will of courso require to be inereased if the dian ing domes not raceive the ink readily. When the drawing is tirat ned it will not rewive the ink so reably ne it will afterwards; and it is frequently neressatry to wet the stone, nud roll it neveral timen, before it will

 Ine dratwing. After the dratwing is thas rolled on, the shane of paper is pheed on the ntome, mol the in-

 tguin relled with ink, the roller having been well worhed on the colar-tathe before bemb wplied During the printing some gum mat nlways remain on the stone, althonels it with mit lat whla, other
wise the ink will be received on the stone as well as on the drawing, by which the latter would be spoiled; so that if by too much wetting, or by rubbing too hard with the sponge the gum is entirely removed, some fresh gum-water must be laid on. If the stone has in the first instance been laid by with too smail a quantity of gum, and the ink stains the stone on being first applied to it, gum-water must be used to damp the stone, instead of pure water. Sometimes, however, this may arise from the printing-ink being too thin, as will afterwards appear. If some spots on the stone take the printing-ink, notwithstanding the above precautions, some strong acid must be applied to them with a brush, and, after this is washed off, a little gum-water is dropped in the place. A steel point is here frequently necessary to take off the spots of ink. The edges of the stone are very apt to get soiled, and generally require to be washed with an old sponge after rolling in ; they must also frequently have an application of acid and gum, and sometimes must be rubbed with pumice-stone. If an ink is too thin, and formed of a varnish not sufficiently burned, it will soil the stone, notwithstanding the proper precautions are taken of wetting the stone, and preparing it properly with acid and gum; and if, on the other hand, the ink is too thick, it will tear the lighter tints of the chalk from the stone, and thus destroy the drawing. The consideration of these circumstances leads at once to the

Principles of the printing. -The accidents just mentioned arise at the extreme points of the scale at which the printing-inks can be used, for it is evident that the only inks that can be used are those which are between these points; that is, thicker than that which soils the stone, and, at the same time, thinner than that which takes up the drawing. Lithographers are sometimes unable to print in very hot weather, the reason of which may be deduced from the foregoing. Any increase of temperature will diminish the consistency of the printing-ink; the stone will therefore soil with an ink which could be safely used at a lower temperature-hence a stiffer ink must be used. Now, if the temperature should increase so much that the stone will soil with any ink at all less thick than that which will take up the drawing, it is evident that the printing must cease till a cooler temperature can be obtained; for as the drawing-chalk is affected equally with the printing-ink, the same ink will tear up the drawing at the different degrees of temperature. This, though it sometimes occurs, is a rare case; but it shows that it is desirable to draw with a chalk or ink of less fatness in summer than in winter, and also that if the printing-room is in winter artificially heated, pains should be taken to regulate the heat as equally as possible.

Other difficulties in printing, not referable to the foregoing general principle.-If the pressure of the scraper be too weak, the ink will not be given off to the paper in the impression, although the drawing has been properly charged with it. Defects will also appear from the scraper being notehed, or not correctly adjusted, or from any unevenness in the leather or paper. After printing a considerable number of impressions, it sometimes happens that the drawing takes the ink in dark spots in different parts This arises from the printing-ink becoming too strongly united with the chalk or ink of the drawing, and if the printing be continued, the drawing will be spoiled. The reason of this is easily ascertained The printing-ink readily unites with the drawing, and being of a thinner consistency, it will, by repeated applications, accumulate on the lines of the drawing, soften them, and make them spread. In this ease it is necessary to stop the printing, and let the stone rest for a day or two, for the drawing to recover its proper degree of hardness. If the drawing should run smutty from any of the causes before enumerated, the foilowing

Mixture for cleaning the drawing while printing must be used: Take equal parts of water, spirits of turpentine, and oil of olives, and shake them well together in a glass vial until the mixture froths; wet the stone and throw this froth upon it, and rub it gently with a soft sponge. The printing-ink will be dissolved, and the whole drawing will also disappear, though, on a close examination, it can be distinguished in faint white lines. On rolling it again with printing-ink the drawing will gradually re appear, as clear as at first.

Bleaeked paper unfit for lithographic printing.-Accidents sometimes occur in the printing from the qualities of the paper. If the paper has been made from rags which have been bleached with oxymuriatic acid, the drawing will be incurably spoiled after thirty impressions. Chinese paper has sometimes a strong taste of alum; this is so fatal as sometimes to spoil the drawing after the first impression. When the stone is to be laid by after printing, in order that it may be used again at a future period, the drawing should be rolled in with a
Preserving ink-as the printing-inks would, when dry, become so hard that the drawings would not take fresh printing-ink freely. The following is the composition of the printing-ink: Two parts of thick varnish of linseed oil, four parts of tallow, one part of Venetian turpentine, and one part of wax. These must be melted together, then four parts of lamp-black, very carefully and gradually mixed with it ; and it must be preserved for use in a elose tin box.

Autographic ink; or that which is suitable for transferring on to the stone the writings or drawings which have been executed on paper prepared for that purpose, should possess the following properties: The ink ought to be mellow, and somewhat thicker than that used immediately on stone; so that when it is dry on the paper, it may still be sufficiently riscous to cause adherence to the stone by simple pressure. The following is the composition: Dry eoap, and white wax free from tallow, each 100 drachms, mutton suet, 30 drachms, shell-lae and mastic, each 50 drachms, lamp-black, 30 to 35 drachms ; these materials are to be melted together.

Autogruphic paper.-The operation by which a writing or drawing is transferred from paper to stone, not only affords the means of abridging labor, but also of producing the writings or drawings in the same directions in which they have been traced; whereas, when they are executed immediately on stone, they must be performed in a direction opposite to that which they are eventually to have. Thus it is necessary to draw those objects on the left, which, in the impression, are to be on the right hand. To acquire the art of reversing subjects when writing or drawing, is both difficult and tedious: while, by the aid of transparent, and of autographic paper, impressions may be readily obtained in the same direction as that in which the writing or the drawing has been made. In order to make a transfes
on to stone of a writing, or drawing in lithographic ink, or in crayons, or an impression from a coppes plate, it is nece-sary, lst, that the drawing or transeript should be on a thin and flexible substance, sucl: as common paper; 2d, that it should be capable of being easily detached from this substanee, and transferred entirely on to the stone, by means of pressure. But as the ink with which a drawing is traced penetrates the paper to a certain deptlh, and adheres to it with considerable tenacity, it would be difficult to detach them perfectly from each other, if, between the paper and the drawing, some sulfstance was not interposed, which, by the portion of water which it is capable of imbibing, fould saf fin lessen their adhesion to each other, that they may be completely separated in erery point. It is to effeet this that the paper is prepared, by covering it with a size, which may be written on with facility, and on which the finest lines may be traced without bloting the paper. Various means may be fund of communicating this property to paper. The following preparation has always been found to sueceed, and which, when the operation is performed with the necessary precautions, admits of the finest and most delicate lines being perfectly transferred, without leaving the faintest trace on the paper. Fur this purpose, it is necessary to take a strong, unsized paper, and to spread over it a size prepared of the following materials: starch, 120 , gum-arabie, 40 , and alun, 21 drachms. A moderately thick paste is made with the starch, by means of heat; into this paste is thrown the gum-arabie and the alum, which have been previously dissolsed in water, and in separate vessels. The whole is mixed well together, and it is applied warm to the sheets of paper, by means of a brush, or a large tlat hair-pencil. The paper may be colored by adding to the size a decoction of French berries, in the proportion of ten drachms. After having dried this autographic paper, it is put into a press, to flatten the sheets, and they are made smooth by placing them, two at a time, on a stone, and passing them under the seraper of the lithographic press. If, on trying this paper, it is found to have a tendency to blot, this inconvenience may be remedied by rubbing it with finely powdered sandarac. Annexed is another recipe, which will be found equally useful, and which has the advantage of being applicable to thin paper, which has been sized. It requires only that the paper be of a firm texture: mamely, gum-tragacanth, 4 drachms; glue, 4 ; Spanish-white, 8 ; and starch, 4 drachms.

The tragacanth is phit into a large quantity of water to dissolve, thirty-six hours before it is mixed with the other materials; the glue is to be melted over the fire in the usual mamer. A paste is made with the starch; and after having, whilst warm, mixed these several ingredients, the Spanish-white is to be added to them, and a layer of the sizing is to be spread over the paper, as nlready described, taking eare to agitate the mixture with the brush to the bottom of the vessel, that the Spanish-white may be equally distributed throughout the liquid. We will hereafter proint out the manner in which it is neceszary to proceed, in order to transfer writings and drawings. There are two autographic processes which facilitate and abridge this kind of work when it is desired to copy in fac-simile, or a drawing in lines. The first of these methods is to trace, with autographie ink, any subject whatever, on a tramsparent paper, which is free from grease and from resin, like that which, in commerce, is known by the name of papier végetal, and to transfer it to stone; this paper to be covered with a transparent size: this operation is difficult to execute, and requires much address, in consequence of the great temelney which this paper has to cockle or wrinkle when it is wetted. Great facilities will be found from uing tissue paper, impregnated with a fine white varnish, and afterwards sized orer. In the secund process, transparent leases, formed of gelatin, or fish glue, are employed, and the design is traced on them with the dry point, so as to make an incision; these traces are to be filled up with autograplie ink, and then transferred. We will deseribe, in their proper places, these processes, as well as that of transferring a lithographic or a copper-plate engraring.

Autofrethic processes.-To transfer a drawing or writing to stone, it is made with ink on paper, both. prepared in the way we have described. A erayon drawing may, on an emergener, be exceuted nutugraphically; but this mode of procehure is too imperfect to admit of procuring, by its means, neat ath perfiect proofs; besidea, it is as expeditions to draw immediately on the stone.

In order to write, or to draw on antorgaphic paper, a little of the ink of which we have given the composition is diluted with water, takine eare to use only rain-water, or such as will realily dissulve soap. The solution is facilitated by slightly warming the water in the cup; and the ink is dissolved by rubting the end of a stick of it in the manner practied with Indian ink. There should be no more dis solved at at time than will be used in a day, for it does not redissolve so well, neither is the ink sul good, particularly fur delicate de-ipus, after it has been left to dry for several days. This ink shoule] have the consistence of rather thick creans, so that it may form rery black lines upent the paper: if these lines are brown, good impressions will not be obtained. A sheet of white paper is placed under the hand while writing, in order that it may mot greaso the autographic paper.

The stone used for antograply should be pelinhed with punice-stone, and the impre-anions will be neat in proportion ns the stonc is well polishecl. Autographie work maty be excented either cold or warm; that is, taking the stone at its ordinary temperature, of making it warm ly phacing it near to the fire, or exposing it to the heat of the sma: if the first means of warming be ased, care mat be taken that the fire be not too lont, or it will crack the stone; the tempernture given to it should bee ahout that of an earthen vessel filled with lukewnem water. 'The work may be don', though hess perfeety, with. out warming the stone. When the stone is thus prepared, it is tixed in the preses, und the paper oin wheh the writigy is made is applied to it. The stome may be rubleal with a limen choth slightly maistemed with spirits of turpentine ; and in every case it is nevemary that it be male perfectly clean. The tur-
 with a sponge und water on the reverse side to that on which the writing is done, wo that the namethere may penctrate throughont every part. The water, howewr, mat mot mpear on the papr what it
 pressed apponge. When the paper is brought to the preper atate, it in taken by both hand at one of ita extromities, and placed lightly and grandanlly upon the stone, so hat there may be nup phat fommed in th, and that it may be equally npplied over ita whole surface. Cure mas be taken mo th lix the serapet
that it may bear steadily on the autographic paper; for if it removes it at all it will change the place of pressure, and the hines will be doubled. There should be at hand five or six sheets of very even mackle paper, so that they may be changed with each impression. The paper on which the writing or drawing is made being placed on the stone, it is covered with a sheet of mackle paper, and subjecter to a slight action of the press; then to a second, a third, or even to more, until it is believed that the writing is perfectly transferrec., At each stroke of the press the mackle paper, which has imbibed moisture, is withdrawn, and a dry sheet substituted in its place. All these operations require to be performed with expedition and dexterity, particularly when the stone is warm. The next thing is to detach the autographic paper, which will be found adhering closely to the stone. To effeet this, it is well wetted with a sponge, so that every part of it may be perfeetly penetrated by the water; it may then be removed with facility, entirely detached from the writing, which will remain adhering strongly to the stone. If this operation, which requires much practice, be well performed, there will not be found the slightest trace of ink remaining on the paper. Should there be any lines not well marked on the stone, they may be retouched with a pen; or, which is better, with a hair-peneil and ink; but when this is done, care must be taken that the stone is quite dry. A part of the sizing of the paper may be found dissolved and adhering to the stone; this may be remored by washing or slightly rubbing it with a wet sponge. The stone is then prepared with aquafortis, and the impression taken.

Autography is not confined to the transferring of writings or drawings done with autographic ink; by its means a transfer may be obtained from a sheet of ordinary printed paper, and with sueh exactness, that it would be impossible, excepting to well-practised eyes, to perceive the least difference between that printed in the usual way, and that which was the result of the autographic process. This mode is very useful when it is desired to unite Oriental characters, which might not be possessed with words, phrases, or lines composed in ordinary typography. In this way have been executed, in the office of the Connt M. C. de Lasteyrie, at Paris, from whose papers on this subject, contained in the Journal des Connaissances Usuelles, and translated by the learned editor of the Franklin Journal, our account of this art is largely indebted,) many pieces, in which the French or the Latio language was intermixed with words or phrases in Chinese or Arabic. In the same way have also been executed typographie maps, in which all the details were lithographic, while the names of places were at first produced by typography, and afterwards by autography. This operation is begun by composing and arranging, in a typographic form, the words, the phrases, or the lines, as they ought to stand. The autographic paper is printed on by this form, and the words in the Oriental languages are afterwards written in the spaces which have been left for them ; the whole is transferred to a stone, which is prepared for the purpose, and from which the impression is taken in the usnal manner. The same mode is pursued in making geographical maps. After having printed the names on autographic paper, the other parts of the map, but without the names, are drawn immediately on the stone; and after having printed the names on white paper, the map drawn upon the stone is printed on this same paper.

Maps, or line engravings on copper, where the work is not very close, may be multiplied in a similar way. For this purpose the plate of copper is covered over with the autographic ink, diluted to a convenient consistence. Instead of the autographic ink, a composition is sometimes used, made of one ounce of wax, one ounce of suet, and three ounces of the ink with which the ordinary impressions in lithography are taken. The whole is warmed and mixed well together, and there is a little olive-oil added to the composition, if it is not liquid enough to spread itself over the plate; the plate ought to be warmed as usual. After having taken the impression in the rolling-press on a sheet of autographic paper, the transfer may be immediately made on to the stone, after having rubbed it with a sponge, dipped in turpentine. It is necessary to give three, four, or even more strokes of the press, increasing the pressure at every successive stroke; the other processes, which we have already described, are likewise to be followed. It is well to wait twenty-four hours before preparing the stone, in order that it may be better penetrated by the transferring ink; it is then gummed and washed, and is ready for use. This process, which has not yet come much into use amongst lithographers, merits the attention of ariists ; for it affords the means of reproducing aud multiplying geographical charts, and some kinds of engravings indefinitely, so that they might be furnished at a quarter of their present actual value; in fact, all those which are done in lines, or those in which the shadows are boldly executed, are capable of reproducing good impressions by means of autography. The operation becomes extremely difficult when it is necessary to transfer fine line engravings; the lines of these are so delicate, and so near to each other, that they either do not take well on the stone, or are apt to be crushed and confounded together by the effect of the pressure. Much practice and address are necessary to obtain tolerable impressions; and this part of the art requires improvement. In the office of M. de Lasteyrie, they had succeeded in transferring to stone a small highly finished engraving, which had been printed on common half-sized paper. After having dry-polished a stone very perfectly, it was warmed, rubbed with spirits of turpentine, and then the engraving was applied to it. This had, however, been previously dipped into water, then covered on the reverse side with turpentine, passed again through the water, so as to remove the supertluous turpentine, and then wiped with unsized paper. In this state the engraving, still damp with the turpentine, was applied to the stone and submitted to pressure, when it afforded very good impressions; the preparation not being applied until it had remained on the stone for twentyfour hours. 'The difficulties increase, of course, in proportion to the size of the engravings whieh it is desired to transfer to the stone. Attempts have been made to transfer old engravings ; they have, however, succeeded but imperfectly. It would be rendering an essential service to the art to discover a mode of reproducing old engravings by means of autography; the undertaking presents difficulties, but from the attempts made, suceess does not seem improbable.

Printing from two or more stoncs with differcnt colored inks.-This is managed by preparing a composition of two parts of wax, one of soap, and a little vermilion. Melt them in a saucepan, and cast them into sticks; this must be rubbed up with a little water to the thickness of cream, and applied to the sarfacs of a polished stone. An impression is taken in the common wav from a drawing, and ap-
plied to a stone prepared in this manner, anel passed through the press, taking care to mark, by means of this impression, two points in the margin corresponding on each of the stones. The artist, having thus on the second stone an impression from the first drawing to guide him, serapes away the parts which he wishes to remain white on the finished impression. The stone must now be etched with acid stronger than the common etching water, having one part of acid and twenty of water; the whole is then washed oft with turpentine: this plan is generally used in printing a middle tint from the second stone; the black impression being qiven from the first stone, a flat transparent bromnish tint is giren from the second, and the white lights are where the paper is left untonched. The dots are necesary to regulate the placing of the paper on the corresponding parts of the two stones.

LOCKS. From the Proceedings of the Institution of Mechanical Engineers. It was conceded abont twelve years since in the United States, by all locksmiths, that a lock having a series of tumblers or Elides, such as was used at that time in Europe, and more particularly those of Barron and Chubb, was secure against all known means of picking, or of forming a false key by any knowledge that could be obtained through the key-hole. The only point that seemed desirable was to make it secure against the maker, or any party who might have had possession of the key, and from it taken an impression.

The first step, therefore, was to construct the lock so that the party using it could change its form at pleasure. Mr. Andrews constructed a lock similar to that made by Mr. Clmbb, having a series of tumciers and a detector; but before placing the lock on the door, the purchaser conld arrantre the tumblers in any way, so that the combination suited his convenience; the key being made with a series of movable bits, was arranged in a corresponding combination with the tumblers. In order to make a change in the lock withont taking it from the door, each tumbler was so constructed that in locking the lock the tumbler could be raised, or drawn out with the bolt. A series of rings was furnished with the key, corresponding with the thickness of the movable bits of the key; and any one, or as many more of the bits could be removed from the ker, and rings substituted. These bits being removed, and the riugs taking their place, the corresponding tumblers would not be raised by the turning of the key, and consequently would be drawn out with the bolt, (becoming, in fuct, a portion of the bolt itself.) Therefore, when a bit was removed and a ring substituted, so much of the security of the lock was lost as depended on the tumbler that was not raised ; consequently, a lock having twelve tomblers, being lockel with a key with alternate bits and rings, would evidently become a six-tumbler lock; but should a tumbler that was drawn out with the bolt be raised in the sttempt to pick or unlock it, or should any one of the acting tumblers be raised too high, the detector would be thrown, and prevent the withdrawing or unlocking of the bolt. This lock was in great repute in the Lnited States, and was placed on the doors of nearly all the principal banking establi-hnents of the country; a large reward was offered ly its maker to any one who conld pick it; and from its great repute it consequently called ont many rivals.

Mr. Newell constructed what he termed his Permutating Lock, which was composed of a series of first aud secondary tumblers, the secondary scries being operated upon by the first series. Through the secondary series there was passed a serew temned a clamp-serew, having a clamp overlapping the tumblers on the inside of the ioek; each tumbler in the series having an clongated shot to nlluw the serew to pass through. On the back side of the loek was a small round key-hole, in which the head of the serew rested, furming, as it were, a receptacle for a sinall secondary key; so that when the large key gave the necessary form to the tumblers, the party took the small key and operated on the clamp screw, clamping and lolding together the secondary series, retaining them in the relative heights or distanees impartel] to them ly the large key; the dom was then closed, and the bolt projectod, and the first series of tumblers fell again to their original position. The nljection to this mode of constructing a lock was, that it required the insertion of the small secondary key; and should the party neafeet to release the clamp-screw every time he mbocked the lock, the first series of tmmilers would be held up ly the secondary series. Concequently, an exact impression of the lenuths of the several bits ot the key conld be obtained throngh the key-lole while the lock was unlocked. 'This lock and Mr. Andrews' were both pieked ly Mr. Nowell, who demonstrated that this lock as well as all others bised on the tumbler principhe was insecure.

The first step taken to make a socure lock, was to add a series of compliented warls to the locks; but it will be readily sem, that what can be reached with a key, conld be reached hy some other introment ; and, althong it requiren an in-trument of a different form, yet the operation whe just as certain und fatal to the security of the fock.

The next step taken, and one which whe comsideren offectme, for a time, was the motehing of the
 tmmblers. So that if a pres-ure was put uporithe bolt, the tumblers conld not be sucesosely raised by the picking instrument, lwing hell fa-t by these "folse notelese." This lock buthed the shill of all
 Pettis pieked this lock.
'The l'arantoptic Loek was then invented by Mr. Niwell, retuining all that was deemed prond in the
 ment.

 from the comectiona between the firat mid secombary sories of tumblers; F F are the separatine plates
 make then follow the fires seriow when they are liftent hey the key. On ench of the sucombury emaht ra

tumblers, withdrawing the tongues d, from between the jaws e e, of the intermediate tumblers E E , and allowing the first and intermediate tumblers to fall to their original position: whilst the secondary tumblers D D, are held in the position given to them by the key, by means of the tooth h being pressed into the several notches, as shown. Should an attempt be made to unloek the bolt with any bnt the true key, the tongues d will abut against the jaws e e, preventing the bolt from being withdrawn; and shonld an attempt be made to ascertain which tumbler binds and requires to be moved, the secondary tumbler 1) D, that takes the pressure, being behind the iron wall I K, which is fixed completely across the lock, prevents the possibility of its being reached through the key-hole, and the first tumblers $B B$ are quite detached at the time, thereby making it impossible to ascertain the position of the parts in the inner chamber behind the wall IK. The portion II of this wall is fixed to the back plate of the lock, and the portion K K to the cover.

L is the drill pin on which the keys fits; and MM is a revolving ring or curtain, wheh turns round with the key, and prevents the possibility of inspecting the interior of the lock through the key-hole; and should this ring be turned to bring the opening upward, the detector plate is immediately earried over the key-hole S, by the motion of the pin P upon the auxiliary tumbler 00 , which is lifted by the revolution of the ring M, thereby effectually closing the opening of the key-hole. As an additional protection, the bolt is held from being unlocked by the stud R bearing against the plate Q ; also the lever $\mathrm{T} T$ holds the bolt when locked until it is released by the tail of the detector-plate Q pressing the pin $\mathrm{U} . \mathrm{V}$ is a dog, holding the bolt on the upper side when locked, until it is lifted by the tumblers acting on the pin $\mathrm{W} . \mathrm{X} \mathrm{X}$ are the separating plates between the intermediate tumblers $\mathrm{EE} ; \mathrm{Y}$ and Z are the studs for preserving the parallel motion of the different tumblers.

There are several features in the construction of this lock which are descrving of partieular attention. The most novel and extraordinary is, that the lock changes itself to the key; in whatever form the novable bits on the key are changed, the lock answers to that form, without moving any part of it f. a_{m} the door.

The party purchasing the lock can change it to suit his convenience. If a 6 -tumbler lock, to 720 ; if 7 tumblers, 5,040 ; if $8,40,320$; if $9,362,880$; if $10,3,628,800$; and if $12,479,001,600$. Therefore it will be perceived that, by changing the nnmerical position of the bits in the key, the lock can be altered, or in fact alters itself to any number of new locks, equal to the permutation of the number of bits on the key. Two extra bits are supplied with each key, which add very greatly to the number of changes. As the key turns round, each bit raises its tumbler to a point corresponding with its length, imparting to the first and secondary series the exact form of the key. The secondary series of tumblers being carried ont with the bolt, and the tooth on the lever or dog being pressed into the several notehes on the front face of the secondary series, holds them in the position given them by the key, while all the other portions of the lock fall again to their original position.

Should a pressure be put on the bolt to ascertain the obstruction, it will be readily seen that it will be brought to bear on the third or intermediate tumblers. To prevent the possibility of reaching these, there is a wall of metal fixed across the lock, which coufines the operator wholly to the key-chamber. By detaching the portion of the tumbler that takes the pressure given to the bolt, from the parts that can be reached through the key-hole, leaving that portion always at liberty, the possibility of ascertaiuing what is wrong is cut off; so that instead, as in the former loek, having only a first and secondary
series, Mr. Newell here introduced a third or intermediate series; thereby throwing the whole security of the lock into a chamber beyond the wall of metal, which is wholly inaccessible, and forming as it were another lock without a key-hole. These are the principal featurcs of security in Mr. Newell's Parautoptic Lock.

There is another source of insecurity that has still to be provided against; when the first tumblers can be seen through the kev-hole, if the under side of them is smoked by inserting any flame, the kev will leave a distinct mark unon each tumbler the next time it is used, showing where it began to touch each tnmbler in litting it. This can be seen by inserting a small hinged mirror into the lock through the key-hole, and the exact length of each bit of the key measured, from the centre-pin to the point where it tonched the particular tumbler, from which a correct copy of the key can be made. (An electric light from a small portable battery, has been employed for this purpose, to illumine the interior of the lock.)

The possibility of seeing the tumblers is cutirely prevented, by surrounding the inside of the key-hole with a ring or revolving curtain; and when this curtain is turned, to bring the opening opposite the tumblers, the key-hole is shut on the outside by the detector tumbler, which tumbler would also detect all attempts at mutilating the interior parts of the lock.

Should the lock be charged with gunpowder throngl the key-hole, for the purpose of blowing it from the door, the plug in the back of the key-clamber yields to the force, learing the lock uninjureil, whilst the curtain protects the interior of the lock from injury, thereby cffectually preventing all kinown means of opening or forcing the lock.

LOCKS OF CANALS. A contrivance by which boats may pass from a lower to a higher level, or the reverse, by the buoyancy of the water.
The least length that can be allowed between the locks should be such that 12 inches of depth, over and above what a loaded boat will draw, will only lower the water 6 inches without the narigation being interrupted; and if it be required to draw the contents of each lock from the interval above, the distance for the locks must be so regulated that the quantity of water expended by one should not lower that of the upper interval more than 6 inches at most: thus the distance should be greater in proportion to the contents of the chamber of the locks and the width of the ganal; that is to say, when the chambers are large and the canal is narrow, the distance between the locks should be greater. Chambers 110 feet in length between the gates, by 17 feet in width, contain 1870 superficial feet; therefore $11, S 13$ cubic fect when the fall is 6 feet 4 inches, 15,859 cubic feet when it is 8 feet 6 inches, and 19,635 cubie feet when 10 feet 6 inches. If the canal be 48 feet in width, at 3 feet below the ordinary level of the water, the length of the interval should be 446 feet, in order that the expenditure of locks of 6 fuet 4 inches of fall should not lower the water more than 6 inches; this length should be 607 feet when the lucks are 8 feet 6 inches of fill, and 750 feet when they are 10 feet 6 inches: the distance then between the lower gate of one lock, and the upper gate of the other, should be always about $6 \underline{-}+$ fect for ordinary canals. If two locks of 8 feet 6 inches fall were only distant 160 feet, the water drawn from the interval, for the purpose of mounting the boat, would lower it nearly 26 inches, nad there wexuld not remain sufficient to keep it atloat; consequently, it would be necessary to draw a lockful from the upper interval, and then a second, to cause it to rise, whilst only one would be required if the locks were at a sufficient distance.
This example will show the inconvenience of having locks too near each other, which is still further increased when they are contiguons. It frequently happens that several boats arrive together in the same interval, particularly where the bargemen stop or sleep, and that wo water may be lust, the interral where they stop should be sufficiently long to admit more than one. If circunstances will not permit this, a greater width must be given, that the lockful which the riving boats draw from the interval -hould not cause the water to lower so considerably as to prevent their floating, or the descending boats force in such a quantity ay to inake it run over the gates. If the interval has only the ordinary width of 44 fect, it should be 639s fiect in lempth, so that ten rising boats could stop, if none were descending at the sane time, otherwise a part of the water must be drawn from the other intervals to keep) them Athat: if there were as many ascendiner as de-cending boate, this need not be so great, but this ob--ervation proves that in furmines a canal it is necessary to have basins at those situations where boats are required to stop any lenerth of time.

Qumentity of water erpendel b!! bonts in tremersine! a comal.-It was the opinion of MMI. Gabriel and Abeille, that the passage of a boat through the while length of a camal nlways cost twice the quantity of water neceseary to fill a lock. Belidor thomeht the same, and it is still the common epminn. In. Thmmason has neverthelons maintained that this dileat is erronems, and that when ohe lasat pasocis owral locks one after nowther, the second hat moly expendy two loekeful in its whole passage; but Whon they pass alternately, one up and the other dion, that it costa no many locksful as there are jock
 of M. Kegmorte, asserting that the axpentiture of the water is the same, whether eotitiguens of apparated; lut this distinetion mot havinz been sutticiontly examined, a secomd error has been come mittenf; but it is umdoubted that when fock are contiguons, they often expend more than two leck-tul; and it has not been remarked that whon the lueks are more than Gin feet unart, they often expemb oaly
 alternately, ome up and the other flown, the twat whidh pawe nfter the first frequently finds in mone ing all the locke cmpty, and to till them it mast drati : lerkful from each interval und one from the

 intervals, nut the highant from the atarting puint; in denembiner. all the locks will le ompts, an I the
 his boat will expent two lexck-ful in its journey:

When the loeks are so near each other that the water of one taken into the interval between the $t-0$ diminishes the depth of this interval sufliciently to impede the narigation, or when the locks are contiguous and the boats pass alternately, the second boat in ascending finds all the lochs empty, and as it cannot draw water from the intermediate intervals from the contiguity of the locks, all are filled with water from the starting point. Thus in ascending each boat expends as many locksful as there are contiguous chambers; in lescending, all the locks being full, no water need be drawn from the starting point, consequently in a whole journey as many locksful may be expended as there are contiguous locks in ascending. When the locks are contiguous, and the boats pass each other in succession, the second in ascending will find all the locks full, and to enable it to enter the intervals, it must empty them successively to fill them with the water from the intervals, except the last, which it fills with water from the starting point; in descending, another lockful is taken from the starting point, so that in this case tro locksful are taken from the latter.

Although the four above cases contain the whole theory of the working of locks, it may be remarked that if two boats meet at the starting point, and two others before or after the starting point, the four will expend five locksful; if two boats meet at the starting point, and the two following meet there also, the four will only expend four locksful; if the two last boats that have passed meet before or after the starting point, and the two succeeding meet also before or after the starting point, they then will only expend four locksful, had the first come in an opposite direction to that which had passed previously, and five if it had come in the same direction; and it has been generally observed, that a boat always takes a lockful from the starting point to ascend, but that it often does not take any to descend on the other side: consequently, when there are no contiguous locks, the boats will only expend a lockful for their whole journey, when they pass the starting point alternately, one going up, the other down: in like manner, where there are contiguous locks, the boats will expend in their journey as many locksful as there are contiguous locks in ascending; when one boat follows another, it will expend two locksful, whether the locks are contiguous or isolated. It must be remarked that the passage of those boats only can be considered relatively to the locks which join the starting point. When the locks are not contiguous, and their fall is equal, which happens in the lower intervals, it has no influence on the expenditure of water, especially when the boats do not stop any length of time; in giving 640 feet length to each interval, it is evident, when two boats follow each other, they will never be together in the same interral, since, while the second passes the lock, the first will have time to pass the interval and enter the following lock; thus two boats cannot meet in the smaller intervals, except when one ascends and the other descends, and in this case, as one takes a lockful from the interval, while a second pours one into it, consequently the water does not diminish or increase in it. It must be observed that we can never have above a lockful, more or less, in an interval, unless several boats remain in them together, which should be avoided when they are small; further, when the contiguous locks are distant from the starting point, it often happens that the lockful is not immediately taken; but when there is no second quantity of water before the contiguous locks, it is always the starting point which furnishes that of the canal abore them.

Form to be given to the chambers of locks.-The most convenient is the parallelogram, a little wider than the boats that require to pass, and sufficiently long to admit of the gates being mored with facility. The chambers of the canal of Languedoc are of an oval form, to give greater strength in resisting the banks contiguous to them; but as this causes an increase of expense in construction as well as in the quantity of water necessary to fill it, it will be useful to inquire if, in avoiding one inconvenience, a greater is not produced. The oval chambers of the canal of Languedoc contain an area of 3636 feet, while if the side walls were parallel, they would only be 2248 superficial feet. Thus the expenditure of water in the oral chamber exceeds more than a third that of the parallelogram, the proportion being about 5 to 3. The inconvenience is considerably increased by want of water, which frequently occurs Another result of the oral form is, that the passage of the lock is also longer than in the rectangular; in the same proportion the expense of the timber platform is also increased. It is, however, certain that a curved wall is stronger against a pressure of earth than a straight one, and if the cost of masonry requisite to give the same strength to a straight wall is greater, the expense is compensated for by the diminution of the cost of the timber platform, which is two-fifths stronger. It is very essential to prevent the filtration of water through the side walls, and the best method to effect this is to place on their thickness a lining of beton, or of brick laid in cement, which will be impervious to water; but as this will destroy the bond, a greater thichness of wall is requisite; thus there are many circumstances where it might be necessary to give to curvel walls as great a thickness as to straight. The thickness of straight walls which support earth should be a third of their height, while those which resist the thrust of water should be one-half; if the walls of the chambers of locks have a thickness relative only to the thrust of the earth, they may give way when the earth is put in motion, which often occurs from a slight filtration behind the wall. Gauthey has a rule for finding the thickness to be given to the wall of a basin intendel to support water throughout its whole height, and in the chambers of locks it must be remembered that the thrust of the water against the vertical surface is equal to the product of these surfaces by half the height of the water. Call h the height of the wall, $x=$ its thickness, supposing its length to be 1 metre, the acting power will be $1000 \times \frac{1}{2} h^{2}$; supping the enbe metre of water to weigh 1000 kilogrammes, and the centre of impression of this thrust being at a third of the height of the wall, the arm of the lever of the acting power will be equal to $\frac{1}{2} h$.

The resisting power will be the wall itself $=h x \times 2000$, supposing that the cube metre of masonry generally weighs 2000 kilogrammes. The arm of the lever will be half the thickness of the wall $=\frac{1}{2} x$, consequently the momentum of the acting power will be $1000 \times \frac{1}{2} h h^{2} \times \frac{1}{3} h$, and that of the resisting power $2000 \times \frac{1}{2} h x^{2}$; and as in the state of equilibrium these two powers should be equal, we shall have $167 h^{3}=1000 h x^{2}$, from whence we have $x=\sqrt{ } 0.16 ל h^{3}=041 h$; but as something should always oe allowed above the equilibrium, by adding $\frac{1}{3}$, we shall have $x=\frac{1}{2} h$ nearly. Hence it is evident that
the thickness of a wall intended to support water should be at least equal to half the height of the wates which acts against it.

The length and width of chambers of locks must necessarily be regulated in conformity with the boats used on the canal ; these are generally longer and narrower than those on rivers, where the shal lows which occasionally occur require flatter bottoms to be given them. With regard to the length os the clambers, it should be such as to enable the gates at the lowest ends to open and shut easily; is the rudder of the boat camot be un-hipped, or occupies any portion of the lengtly of the chamber, then the chambers must be made sufficiently long to prevent them from interfering with the opening of the gate, on which account the most proper rudders for navigable canals are those like broad ours, which can be taken out while passing through the locks. The height of the water in the intervals is regulated by the mean height of the waters of the river which communicate with the canals. It is, however, cu-tomary to allow the latter a sufficient height of water to receive boats of the same tonnage as those which navigate the river; another advantage in giving an extra depth of water to canals is the greater ease with which the buats can be drawn, the weeds at the bottom causing less inconvenience, and the evaporation being of course less than in a shallower body of trater; in summer also, when the boats can only carry half a load, two loads may be put into one boat, and the transport rendered less expensive.
The quantity of water expended by locks is found to be in direct proportion to the height of the fall, and the time employed in going through them, and the expense of construction nearly in the same proportion; this is greater as the locks are least elevated, because they are more in number, but the increase is not in proportion to the number.

Gates of locks are composed of two posts placed vertically, and united by horizontal rails; the former, being supported throughout their height, are not subject to much wear, although they are of larger scantling than the other timbers of the gate, which is necessary, as they sustain the entire framework. The horizontal rails resist the weight, and as that weight is greater where the rails are placed beluw the level of the water, it would seem natural that their dimensions should vary in proportion to the weight. To determine these dimensions it must be recollected that the thrust of water again-t vertical surfaces is equal to the weight of a prism of water having its surfaces as a base, and its height half that of the water. It must next be considered that the rails of the gate are at least 26 inches apart, and 38 inches from centre to centre, so that, on account of the casing of plamk in the first in-tance, 12 inches of height support 26 juches of water, and in the second 38 inches. The weight supported by each rail will be found by multiplying their length, the interval from one to the other, the height of the water above the centre of the rail, and the whole by 62 pound, the weight of a cube fuot of water; the product of these measures will be the number of pounds which the rails ought to support throughout their whole lemith.

Timbers from 4 to 5 inches square would be sufficient for small gates, and fur larger from S feet 6 inches to 10 feet 6 inches of fall; with a width of 17 feet between the hangingr-posts, the rails would bee sutficiently strong if from 7 to 8 inches square, putting six rails in the height. They are general!y fron: 9 to 10 inches at least, which is double the strength required; it is true that the gates are more durable, but the weight is greater, which is sometimes injurious to the collar and the masonry to which it is attached, requiring more reparations than lighter gates.
The frames or styles of gates should be at least 5 inches in thickness more than the rails, and the juint covered by a fillet, as well as the edge of the planks, which are aftixed perpendicularly to the rails, and mortised into the styles, increasing the strength of the rails and the framework by their greater thickness. Braces are also introduced between the rails, which aid materially in strengthening them, and by their inclined position transfer the stress to the hanging-post.

Great gates should always have a lase of braces placed diagonally, and making an angle with the lower rail; all the braces above should have the same effect, and consequently the same inchation; those below resting on the lower rail tend to depress it, and, even when properly framed and pinned into the rails, their inclination towards the banging-post renders them insulicient to sustan the lower rail; but they may be made useful by giving them an inclination in a contrary direction, and mitins them by pins to the rails.

Instead of inclining the braces below the diuronals on the side of the struttiner-post, a bar of iron is sonctimes placed diagonally from the collar to the lower end of the strutting pust, which is an exeellent contrivance; or the planks inay be placed diaromally, inclining them from the side of the hanging pot, and crowing them soldly, e-pecially that of the dagemal atove the hamingepost, and at the extremity of the lower cross-piece; or instead of a platak, a piece may be let in in an opplowite direction to the crosepieces, which must not be mortised into, "r very little, that it may not be in athy way weakened; this piece mited carefully to the lower crons-pisece would tie it to the past, and give more solidity to the framework; the diagonal position of the planks gives them more strength tor reist the presure. There is a little loss of material, but, on the other hame, plank of dillerent kind may be uned after cutting out the knotty or defective portions.
fiates are opened by means of large timbers fixed above the: ponte, forming a comterpeise to the grace, and preventing it from grinding the collars and racking the framework; for this purpuse the tail of the

 had not a little motion, and the collar fitted exactly; but the weight of water owesumb the gate ,

 Tou remedy these defores, the posts should to partly ent in in circular form, mit partly thevelled, the

 rithout nsfecting the eave of the motion.

The gates of locks of navigable canals are made in a right line, but in great sea-locks they are curved: Belidor has demonstrated that these latter are not more solid than the former, but this must only be understood when the curved timbers are made out of straight pieces; for it is undoubted that, if naturally curred, they are much stronger, and will resist more pressure than straight pieces, especially when resting on their two extremities. The collars embrace the whole heel-post, which being generally $12 \frac{1}{2}$ inches in diameter, produces considerable friction, especially when the balance-beam does not act RE a counterpoise; a large bolt may be placed in the axis of the post, and a smaller collar be substituted to confine it; but thís method can only be applied to chamfered posts; round posts must have a motion in their collar to lean against the hanging-posts, which could not be effected by an axis; the collars must be attached to iron anchors strongly bedded into massive masonry. The pivots often get deranged, the posts, as generally made, causing considerable play; if these were bevelled, the pivots might be fixed and bedded in large stones cramped to those adjoining, or united with anchors to the surrounding masonry. Formerly the pirots were made of copper, but cast-iron is equally efficient; they should be the same size as the ends of the posts, and terminated at the lower end in a spherical form. The other iron work of the gates consists of squares laid on at right angles, which must be very strong; it is also well to lay on the rails of each sluice a band or two of iron to bolt them securely together.

Lock-gates measuring 8 feet from the centre of one heel-post to that of the other, are in some canals on a segment of a circle, the chord of which is about the sixth of the span, or a little more: these proportions not only allow of the gates being smaller, lighter, and stronger, but also increase the pressure of the heel-post against the hollow quoins, which renders them quite water-tight. Where canals are narrow, the paddles of both the upper and lower gates are usually kept open by an iron pin inserted between the teeth of a rack and pinion which raises them: when the paddle is required to be shut, the pin is withdrawn, and the paddle falls by its own weight.

Hollow quoins, or upright circular grooves, are formed in the side walls, at the ends of the timber sills, serving as the hinge for the gates; the upright post that turns within them is called the heel of the gate, and the other the head. The former are retained in their position by a gudgeon or pivot turning in a cup let into the foundation stones for the purpose; sometimes the pivot is fixed, and the cup revolves upon it. The upper part of the post is retained by an iron ring or strap let into the side wall. and made very secure; the hollow quoins should be worked with great attention; they are usually of stone or brick, though cast-iron has been found well suited for the purpose.

Lock-gates of large dimensions are now usually opened and shut by machinery, and the boom or spar attached to the head-post entirely dispensed with: on many canals a rack-bar of wrought-iron is convected with the gates, which are furnished with rollers to run in a groove fitted into the sill, and by morking a wheel and pinion, they can be opened and shut at pleasure. We ought not to omit mention of several gates formed like boats, upon the principle of the camel, which rise and fall in deep recesses prepared to receive them as water is pumped out or admitted into them: such boat-gates are sometimes constructed with three parallel keels, which fit into as many grooves in the side walls of the lock; they are maintained in their position by admitting the water, and raised by pumping out their contents, after which they are floated away; for the stop-gates of docks such a contrivance is well adapted, but where the navigation is regular, as on a canal, they are not found to answer, from the time requisite to open and replace them. See Floating Gates of Dry Dock.

The angle to be given to double lock-gates has long occupied the attention of engineers, but the strongest position may be taken when the angle at the base is $35^{\circ} 16^{\prime}$ nearly, and the sally of the gate is $\frac{7}{2^{\frac{7}{0}}}$, or a trifle more than one-third of the breadth of the lock.

Valves.-Some lock-gates have their paddles, or valves, made to open and shut by the movement of a lever, the lower end of which being loaded, keeps it always over the aperture in the lower part of the gate: when it is required to be moved, the upper part or handle of the lever is pulled back, and the water forcing its passage through, keeps it open until its weight overcomes the power, and it is balanced back into its original position.

The crank and pinion working in a toothed-rack are now generally applied to raise the paddle.
Screws are sometimes used for this purpose, formed of wood, sliding up and down in a rebated frame, fixed in the stone mouth of the conduit or paddle-hole; the lateral pressure of the water occasions it to adhere closely to the frame, so that it is not only necessary to make it run with the grain of the wood, but also to have considerable power to move it: this is occasionally effected by means of a long iron lever, with an eye at one end that spans the square end of the screw, and allows a sufficient force to be applied to ratise the paddle.

There are several applications of the screw, one of which, as used at the gates of Dunkirk, is very simple, and was for a long time adopted throughout Europe. To overcome the hydrostatic pressure and friction at the mouth of the paddle-hole was a horizontal circular opening, within which was inserted an open cylinder of wood or iron ground to fit it, which could be raised by a lever; the waste water of the canal could then escape over the upper lip of the cylinder and afterwards pass out by the paddleholes.

The following figures represent the latest improvements for the valves or sluices of a lock-gate. Fig. 2598 is an elevation. Fig. 2599 a vertical section through G G. Fig. 2600 a horizontal section through A A.

The object of this improvement is, that while the gate is kept close and tight by the pressure of the water foreing it against its seat, the effort of lifting the gate shall at the same time relieve the seat from the pressure of the water; and this is efferted by means of friction-rollers $h h$, which immediately, upon the commencement of the lifting of the gate, act as short inclines, thus taking the pressure from the seat, and throwing it upon the friction-rollers or wheels, easing the lifting of the gate. When the gate is closed, the wheels have run off the inclines, and the gate bears against its seat with the pressure due the head of water

Iron lock-yates.-The frames of those at the Wet Doek at Montrose are of eastiron, and entirely covered on both sides with wrought-iron boiler-plate: where they are placed the entrance is 55 feet wide in the clear, and the centre of the heel-post is 1 foot within the face of the wall, the distance bétreen their centres being 57 feet: the height of the gates is 22 feet 6 inches; they point 10 feet, and their ribs hare a curvature on the hollow side of 18 inches. The heel-posts are 21 inches in diameter, and in form a little more than a semieircle; after easting they were turned in a lathe: the thickness of the metal is $1 \ddagger$ inch; they each fit into a east-iron socket, and work on an iron gudgeon 10 inches in diameter, east on a soleplate 4 feet 6 inches long, 21 inches wide, and 2 inches thick; this is dovetailed and riveted firmly into the stone, and afterwards so keyed as to press the heel-posts into the quains, which are of Kingmodie stone, polished as nearly to the circle as possible, and the stone and iron are in such close contact, that the water is effectually prevented from passing throughout any portion of their height.

Tho mitre-posts are $18 \frac{1}{2}$ inches in
 brealth, $1 \frac{1}{2}$ inch thick: holes are cast in them for the introuluction of the iron lura, of which there are eleven to each leaf, 2 inches thick, 16 juches hroal it the ende, and 18 in tho midille; their cronsemats aro 18 inclies in height and 2 in thickness, with 14 inch screw-hwits to cach, which pase through the hawl und mitre posts. The elip sill was cast in two pieces for each leaf; it in 8 inches in depth mud 1 h inch thick; the height of the sill above the platform is 15 indhes. The boothom bar is of walk 12 inches thick, 17 inches bromil at the ends, and 13 in the middle; this is bedded on felt to the lowermon cant iron har, and securcly fixed by $1 \neq$ inch lxils. The Ineiler-plates which line both silles of the gatees nre mo arranged that they break joint: for 6 feet in heighth their thickness is of of inch-nheree ouly in: they overlap each other about 2 子 inches, and were riveted on while hot, that the rive ta might comple tely tiil

anchors, which are of cast-iron, $3 \frac{1}{2}$ inches square; they are dovetailed into the quoins, and run with lead The roller segments or railways are 10 inches in breadth by $1 \frac{1}{4}$ inch, 4 inches in thickness; they are sunk into the stone, and securely bolted, and bedded with felt and white lead.

The rollers are of cast-iron and conical, 18 inches in diameter, and 5 inches in thickness, with turned stecl axles; the roller-boxes are of east-jron 1 inch thick, moulded to the bevel of the gates, and fastened by screw-bolts throngh the flanks of the horizontal bars: cast-iron covers confine the roller-blocks, which slide up and down withinside the boxes by the action of the top screws; the roller-bars are od wrought-iron, 3 inches in diameter, keyed into the blocks at the bottom, each being steadied by three plummer-blocks; each bar near the top has a coupling, with a square theaded serew, and a brass not at the top, working in a cast-iron bracket, which bears the whole weight of the outer end of the gate, and is fastened by three screw-bolts through the flanges of the horizontal bars. Each leaf has a sluice, 3 feet by 2 , the frames of which are 7 inches broad and $1 \frac{1}{4}$ inch thick; the sluice-valves are also $1 \frac{1}{4}$ inch thick; all the screved bolts have zinc nuts, to prevent the iron from rusting: the sluice-rods are 2 inches in diameter, and have a square threaded screw, and a briss nut at the top; these are worked by a wheel and pinion, and bevelled geer, with a crank-handle, nearly level with the hand-rail.
The gangway is 42 inches in width, and is supported on cast-iron brackets for each leaf; cast-iron ballusters and a wrought rail is attached to the convex side of the gates, with movable iron stanchions and chains on the other; in each heel-post is a pump with a brass chamber and boxes, $2 \frac{1}{2}$ inches in diameter, with a lead pipe down to the bottom.
The gates are worked by four doublc-purchase capstans, and geering with seven 8 -inch chains. Their weight is as follows:

	Tons.	Cwt.
Cast-iron work in the gates.	64	14
Wrought-iron	22	151 $\frac{1}{2}$
Brass.	0	5
Zinc.	0	$1 \frac{1}{3}$
Cast-iron in segments and other fittings	19	0
	107	0

at Woolwich the clear opening of the dock-gates is 65 feet, and the weight of each of the two iron g_{2} ses is 150 tons. See Gates of Dry Dock, Brooklyn Navy Yard.
LOCOMOTIVE ENGINE-1. A locomotive engine is a steam-engine with two cylinders, formed on the high-pressure principle, without a condenser. The motion of the pistons is caused by the introduction of steam into, and its alternate escape from, the cylinders, which is transmitted by means of con-neeting-rods to an axle, furnished with two cranks.
In boilers of locomotive engines the fire is inclosed in a box having a double casing, with a body of water between. The air enters between the grate-bars. The smoke, flame, and gas, produced by the combustion of the fuel pass through, in their way to the chimney, a great number of tubes, which are situated in the cylindric part of the boiler, and extend from the fire-box to the smoke-box, and are surrounded by water. These tubes, being of very small diameter, would not pass off the flame and gas with sufficient rapidity if they were not urged by a powerful draught; this is also rendered necessary to overcome the friction, and the resistance offered by the cold air within them.
2. Of the draught.-The draught is employed to produce a fresh supply of air in the fire-grate, and thereby supply the oxygen necessary for the combustion of the fuel; it is accomplished by allowing the waste steam to escape at a tolcrably high pressure, after it has fulfilled its office in the cylinders. This steam is conveyed from the cylinders to the chimney by a pipe, the upper end of which is contracted for the purpose of confining it, and checking its too rapid escape. It passes off at regular intervals, according to the velocity of the engine, and the force of each puff depends upon the pressure of the steam. The velocity of the steam in the blast-pipe is equal to that due to the initial pressure of the steam, whatever may be the size of the mouth of egress; but the pressure is at once reduced if the size of the orifice of the blast-pipe be considerable. The great speed with which the steam escapes in the chimney imparts to the air around it a corresponding velocity ; and this air can only be replaced by a current passing from the grate through the fire and tubes.

We should observe that the contraction of the blast-pipe at its upper extremity, being for the purpose of checking the escape of the steam, and prolonging the time of its engagement, a continued pressure of waste steam is consequently the result, which should be regulated by proper rules or laws, as it ought not to exceed more than is nceessary. This pressure is therefore an obstacle to the progress of the engine, in consequence of the draught invariably having the effect of absorbing a part of the power of the engine. Its influence, however, is not felt when moving at a slow velocity, on account of the intervals being longer, which gives more time for the steam to escape; but when the speed is great, the pis-ton-strokes are so rapid that the pressure of steam in the blast-pipe is almost continuons. This pressure, consequently, forms a resistance to the motion of the piston.
3. Of the boiler.-The boiler is the most important part of the engine. There is a fire-box connected with it, the bottom of which supports the grate-bars, and the four sides are formed double, in such is manner as to allow of a space of $2 \frac{1}{2}$ to 4 inches between them, which is occupied by water; the fire-box is therefore surrounded by water. It is very important to preserve a sufficient width of water space, otherwise the relocity of the steam at this part of the boiler would prevent the water being replaced with sufficient rapidity, the great heat to which the fire-box is exposed producing steam of very great force the walls, also, from not being sufficiently cooled by the water, would acquire a high degree ot temperature, which would likewise promote the formation of incrustations-the space would consefallently become filled up, and the casing soon destroyed from the action of the fire. This serious inconrenience has occurred in boilers where the water-space has been made 2 or $2 \frac{1}{2}$ inches. The top of the

Gire-box is strengtliened by pieces of iron, that the force of the steam may not rupture it ; and the whole of the flat portions of the briler, being unable to resist the pressure of the steam within, are also strongly secured together by bolts to prevent their giving way; but this is unnecessary with the cylindric portion of the boiler, which resists the pressure without the tendency to rupture. This part is traversed by 100 to 150 or more copper tubes, through which the flame and the gas proluced from the fuel escape The extremitie; of these tubes are secured to the phates at each end of the boiler.
Consitlering the complication of this casing, one can readily conceive the great play of expansion and contraction produced by the rise and fall of the temperature, and how much the action of such powerful forces tends to wear it out, and to occasion shocks which the several surfices expoced to the pressure of the stean are unequal to withstand, their form being unfavorable to it; thus, the flat parts become the soonest deranged. Another circumstance which increases these defects arises from the two extreme parts of the builer being secured together, partly by the frame and partly by the rails or cross-pieces. The latter are attached to the lining of the fire-box at one end, and to the smoke-box at the other, and are kept cool by the air, and therefore are not subjected to those alternate changes which the body of the boiler undergoes. As long as they remain fixed in their original position, they offer resistance to the play of the other parts; but when at length they become unfistened, they alford a passage of eseape to the water of the boiler. We must concfude, from all these forces aeting against each other, that docomotire engines possess some degree of clasticity in their several joinings and fatenings, although difficult to be perceived, and which, so far from impeding their progress, actually renders it, after n time, more casy than before.
The surface of the grate varies. The coonomy attending great fires arises from the heat being proportionately much more regular than with small ones. It is possible that the rise of temperature, produced by the burning of a large body of fuel, exerts an unfavorable intluence on the that sides of the firc-hox, the dimensions of which are so considerable. It is probable that an increase in the depth of the grate, combined with the employment of a fuel so little iuclined to cake as coke, would be found more adrantageous than enfarging its surface, since the passage of the air through a great thickness of coke would raiee a large quantity of it to the temperature necessary for its combustion, instead of passing through the fire unconsumed, ats it does when filled with ton large pieces or laid too thin. This remark applies equally well to the employment of anthracite coal.
We have only to remark, in addition to our description of the boilers of iscomotive engines, that the casing shoukl, at the same time, posess great strength and phiability: thus, where a very powerful draught is created from a rapid succesion of puffis of liegh-pressure steam, the heat of the fire gives a high temperature to the several surfaces of the fire-box and tubes, and stean of extraordinary power is generated; but if the dour of the fire-box be openel, a large quantity of cold air is admitted, or if the pumps be held open too long, the air introduces itself into the boiler, and instantly ehecks the generation of steam; the pressure is consequently dimini-hed, and at length becomes unicqual to a rapid transit of the engine.
In locomotive, as in stationary engines, the whole of the parts in contact with fuel, flame, and hot air, should be covered with water. The most serious consequences occur if the uncovered portions are allowed to become red-hot, and a quantity of water sufficicut to cover them is suddenly let into the boiler ; the production of stean is so rapid, ibat it becomes too considerable to be wholly carried of by the ralves, and an explosion consequently follows.

Another very essential point for the preservation of boilers is to prevent the formation of depo-its. These arise from the calcareous matter disengaged from the water when it is converted into stean, and which is not wholly carried away with it ; but an carthy matter is left, which is constantly increasing in bulk. These incrustations become fixed principally on thase parts where the greater portion of the steam is generated; and, as they aequire thickness, it results that less steam is produced, from their being ball conducturs of heat: the metal upon which they are tixell is heatel to a much higher degree than the other parts, as it is mot conled dy immediate contact with the water. This riee in the cemperature of the metal increases the action of dilatation, and renders it hess able to revist the pressure; it also has the effect of burning it; the boiler, therefure, sequires to he often cleaned.
This incru-tation is the most powerful do-troyer of lommetive engines, and it is of the greate-t innportance to fied some means of getting rill of it.

When the escape of stram from the cylimeler is sutficiently strong to came a powerful draurght, then the pewwer of sencratius steann attains its maximun! "t which instant the bulk of the water in the boiler rises artificially to the hecight of two where inchers. This is cansed ley the rap passare of the particles of stean through the water, which hats the eflect of increa-ing its volume, As som as the throtle is shut, the cmission of steam is mu-pendend and the water takes its matural lused; also when cold water is injerteed into the Imiler, which, in prepportion as it is introduced, conden-es thase particles of stean with which it comes in contart in the mase of heated water, and thes restore the density it hail low. It results that the leved of the water remains constantly at the same mark ans long as it continues to be fed, and that the intronluction of water is only jerecivable by the rednetion of the pricissire.
 a wuy a quantity of water into the eglinders with the stean, callod priming. "This inconvenience miste from varions cansese. Among them may be wermed particle tilling the lxiler no full that the watur rines up beneath the dome over the stemn entrane, und is comveyed into the stean entrance pipe" "uh the same velocity ns the steam, and introluring greary maters, which, Incoming mixal with the when,
 enguged hy the stean in this cate in wery combile rable.
 steam above the wurface of the water heing tom small, wr the dome heing placed over the fire bes. wheb
is too often the case; that is to say, it is placed at that part where the evaporation is greatest, and the particles of water are in the strongest agitation.

Of the drauglt.-One of the means employed in regulating the draught consists in placing a disk valve at the extremity of the blast-pipe, which was the invention of Stephenson. This talve is open in the middle, by which it does not offer any obstacle to the passage of the steam; but it can be made to close the passage whence the flame or gas produced by the fuel issues, when required. This damper is managed by the engine-driver by means of a lever-rod.

This valve is also useful for another purpose. Thus, when the men extinguish the fire of the engine after it has finished work, the grate being done with and removed, the air enters at this part with great freedom, the heat of the engine maintaining a very strong dranght. Now the effect of this passage of cold air is detrimental to the boiler, for the reasons before stated; therefore, if Stephenson's damper be fitted in the chimney, and care be taken to shut it close on these occasions, the current of air would be checked, and an excellent effect would result from it.

Of explosions.-We have few remarks to make on the subject of explosions connected with locomotive engines. Accidents of this kind are wholly attributable to the wilfulness of the engine-driver, or a want of care on his part. His first duty is to notice that the safety-valve does not emit steam exceeding a given pressure.

It is probably from these explosions being so rare, that the cause of them has been a question up to the present time; we can give none other than that they are owing to the imprudence of the enginedrivers, from their endeavors to raise the power too higb, and thus impeding the escape at the safetyvalves. Perhaps this imprudence may be combined with a bad system of elosing and bolting the iron plates, and defectiveness in the large interior iron bolts of the front plate. We do not, however, mean to affirm this, but only mention it to our readers, inasmuch as we know that the joinings and arrangement of the plates of some boilers are mueh less skilfully contrised to resist internal pressure than others.

One observation will be sufficient to prove to mechanics the uselessness, generally speaking, of increasing the pressure, and of tightening the safety-valves. When they thus increase the pressure of the steam in the boiler, the engine simply acquires the power of propelling a heavier train, but it has not any sensible effect upon the speed. They should, therefore, remember that they do not derive any advantage from committing this very great offence. As the steam in the cylinders acts at a less pressure than that in the boiler, of what use is it to increase the latter, when, by opening the regulator a little more, sufficient additional strength is obtained in the cylinders? The most essential thing for the speed is the generation of a large quantity of steam at once, and of the requisite force-sufficient for the discharge of a great number of strokes, and not steam generated under a greater pressure than there is any oceasion for.

Distribution.-The steam entrance, or the aperture by which the steam is introduced into the pipes of distribution, is situated in the interior of the boiler, and opens at the upper part of the dome surmounting it. The object of the dome is to carry the steam as high as possible, that the water held in suspension may have time to drain from it. The pipe by which the steam is introduced (steam-pipe) is earried along to the extremity of the boiler, and passed through into the smoke-box, where it is divided into two, to supply each of the cylinders. This pipe may be contracted in the interior, by means of an apparatus termed a regulator, which is inserted for the porpose of regulating the transmission of steam to the cylinders; this apparatus will also entirely close the passage of the steam-pipe, if required. The steam entrance is placed either at the head of the boiler, above the fire-bos, or, otherwise, towards the extremity near the chinney. In the first case, where the pipe trayerses the entire length of the boiler, it is attached to the plates at cach extremity; and, in order that it may readily yield to the action of expansion, it is furnished with a stuffing-box.

The joints of that portion of the steam-pipe within the boiler should be made with the greatest care, that the water may not gain admittance into the pipe. 'It is generally formed with a section equal or superior to that of the steam-ports in the passage to the cylinders, and the same as the apertures opened and shat by the regulator.

Throttle-valves are constructed of various forms; but that generally employed consists of two separate disks, one being made movable; and they are cut in such a manner that the open parts of one will either correspond with or cross those of the other, so that the steam passage may be left either open or closed.
The movable disk is secured to the fixed disk by the pressure of the steam, also by a screw and a spring. The spring is rendered necessary from the steam within the steam-pipe being sometimes of greater pressure than that in the boiler.

Other forms of throttle have also been employed-and the prineiple of safety-valves has been applied in some cases, and in others the principle of cocks-again, that of slides; those which present the least surface-friction, and in which the apparatus is brought into action upon the least degree of force, are the best, for it is important to connteract the effort required to overcome the pressure of the steam by suitable contrivances, as by equilibrating it by a pressure nearly equal : the friction resulting from the unequal expansion of the several pieces fixed and inclosed within each other should also be reduced as mueh as presible. Throttles formed with cylindric surfaces exposed to the action of friction, possess this ineonrenience in the highest degree. There also appears to be some ground for rejecting regulators which require helixes in the interior of the boiler, upon which the pressure of the steam would act.

If the cylinders, slide-boxes, and slides.-The steam passes along the breeches-piece leading to the cylinders through the slide-boxes, from whence it is distributed alternately upon each side of the piston.

The mode of introducing the steam may be readily comprehended: the botton of each slide-box is [icrced by three holes called ports; the two extreme ports convey the steam into the interior of the erlinders at their extremitics. A sort of cover, called a slide, is placed over them, which is subjected do an alternating motion when at work, and thus leaves each port alternately umeovered; and as tho
dide-boxes are kept constantly filled with steam, the latter passes throwgh these ports into the cylin ders at the moment of each being uncovered. It will therefore be perceived that the system of intro ducing steam is very simple. The ejection of the steam from the cylinders remains to be explained every time that steam enters upon one side of the piston, that which has effected the preceding halfstroke escapes at the third port, which is pierced in the bottom of the slide-box, and is not in communication either with the cylinder or the slide-box, where the steam is lodged, but is separated from these and is constantly covered with the movable slide, which covers and uncovers alternately the two other ports; it is furnished with a pipe at the extremity which leads into the chimney. Now, the movable cover or slide being hollow, it results from its alternate motion that when it meovers one of the steanports and admits steam into the cylinder, it puts the other steam-port in communication with the waste team-port situated between them, by means of the cavity beneath it; and the steam admitted into the cylinder, at the preceding half-stroke of the piston, by the port then uncovered, enters the interior of the slide, forces itself through the waste steam-port, and thence escapes; therefore the slide-box constantly answers as a passage to conduct the steam into the cylinders, and the cavity within the slide serves only for a passage to convey the steam away from them. The true steam-ports admit steam when they are uncovered, and they alternately convey steam to the waste steam-port when they are cuvered by the slide; thus the slide never leaves more than one of the steam-ports uncovered at a time for the passage of the steam, and it covers the other two at the same time, to allow of the waste stean escaping. The force of the steam lodged in the slide-box is therefore employed upon the piston The waste steam, being put in communication with the atmosphere under the slide, instantly loses its force. The piston is then quickly carried along to the other end by the force of the stean, and the resistance it encounters on the other side is quickly overcome. Now it is the difference between these two forces which causes the engine to perform its several functions: if these forces were equal, the piston would remain in equilibrio, and without motion. In order that this difference shall be as great as pus-ible, the force of the steam entering the cylinders should not be less than that which exists in the boiler, or the pressure of the steam that passes out of the cylinders greater than the pressure of the atmosphere into which it escapes; but this desideratum is difficult to be attained. The pistons of locomotive engines being impelled with great velocity, the steam is necessarily carried into the ports of introduction with a velocity which is in inverse proportion to the section of the uncovered part (of the port) with the area of the cylinders. This velocity is further affected by the irregularity attending the converion of a rectilinear motion into a circular one. The latter is accomplished by means of a crankarm, which follows every movement regularly, and transmits the motion to a rectilinear horizontal rod, the velucity of which is represented by 0.293 for the quarter of the revolution which approaches nearest to the vertical, and by 0.707 for the quarter nearest the horizontal. Thus, the total speed of the pistun is composed of is minimum and of a maximum; the minimum takes place when the crank-arm passen above and below the horizon-the maximum, when it performs the quarter of the cirele of the passare from one side to the other of the vertical; in other words, the more the direction of the mowement of a crank-arm approaches to a paratlel with the rectilinear rod which it works, the greater is the speed transmitted to the rod; and the more it moves from a parallel, and approaches the rod by a perpendicular movement, the slower is the motion imparted to the rod.

When the engine works at its greatest speed, or at about 38 miles an hour, or 1093 yards per minute, the size of the wheels being 5 feet 3 inches, and their circumference 10 feet 6 inches, the number of stroked of each of the pistons is about 200 per minute, and of their movements 100 , the length of each being about 1 foot 6 inches, which gives the piston a velocity of 192 yards per minute, or 10 feet per second, in-tead of about one yard, which is the velocity given to the pistons of stationary engines. Thu dimencions of the ports are generally $1-10$ th the area of the piston; the velucity of the steam in the forts would be about 100 feet per second, if they were always entircly open when the pistom wats moving, which is not the care, the aperture being only fully open doring the midde of its course, and at a point where the piston hats a speed unce and a half as fist as its mean velocity; the velocity of the stean through the ports would therefore be about 165 feet. Thking the contractions, also, into aceomen, reduces the openings to two-third-; we thas find that the stem has a mean velucty of elow to 250 fere per second at the prorts. This velueity, althomg very considerable, does mot, howerep, produce the minurious effect that was at dirst imarined. The velucity of the waste steam, in pateine into the wold, is upwards of 1970 feet per secomb, and ite velocity upon errapiner into the atmosphere is about latio feet, when the absolute pressure of the stemon is about (wo) atmosphires.

This velocity is more than siof fect for an ethective pressure of a quarter of an atmosplure, or an ath-
 feet does not exeed 1 soth [art of the atmo-phere aldme.
The resistance ari-ing from the steam-ports io, then, perfeetly matlected at high velueties, but if the
 an hour, the beiler canot furnish the eylimders whth ane wher than steam of reduced prosure; there-
 wholly effeeted by the rewnlator?

But although we have no lost of force arinimg from the stean- ports, this in mot the cand with the wa te

 frew one side of the eylinder instantly:

with a speed of 39 miles, the cylinders are filled with steam of 3 at : 75, which is successively held and dispersed. In calculating the volume of this steam, with successive stops, we should find that it is nearly double that of the cylinder. Taking the total volume of steam supplied, having the section of the blast-pipe, (whose conical shape does not present much contraction,) we arrive at this result: that, supposing the escapement to be incessant, the steam would hare a mean relocity of 820 feet, corre sponding to a generating pressure of a quarter of an atmosphere. This result shows that this great velocity of escape absorbs a considerable portion of the power of the engine; and if we remember that at these same velocities, the motive stean must necessarily diminish the pressure, also that the air opcrates upon and at length overcomes it, we can easily conceive that there are certain limits to the velocity which cannot be exceeded with certain engines, even when running without a load. These limits, which were originally from about 39 to 44 miles an hour, have been increased, with engines made more recently, to nearly 53 , or even uprards of 60 miles an hour.

Eccentrics.-The tro pistons are each attached by fixed rods, to guide them in their rectilinear strokes, and by movable rods, called comecting-rods, to an axle furnished with two cranks, set square with each other; this axle is inounted upon two whecls, which are termed the driving-wheels, and receive a rotative movement direct from the pistons.

The readiest plan of distributing the steam, at the commencement of the action of the piston, consists in employing the rotative motion of the axle to conduct two eccentrics at the same time with the wheels, which, by their alternating motion, open and close the slides. The eccentrics are placed on the axles of the driving-whecls in such a manner as to disengage the slides from those ports whereby the steam is introduced into the cylinders, and to cover those rescrsed for its cscape, at the commencement of the stroke of the piston; to accomplish which, each eccentric is mounted upon the axle of the wheels square with the crank of the cylinder, the slide of which it conducts. In order to understand perfectly what then transpires, it is necessary to bear in mind that, when a crank transmits motion to a horizontal rod, it impresses the rod with a rapid motion when it passes in a vertical, and with a slow one when it passes in a horizontal direction.

In accordance with this general law, when two crank-arms are mounted on the same axle, and transmit their motion to tro rectilinear rods, the motion of each will be different, notwithstanding the cranks are both animated with the same velocity.

Now, the slow movement occurs precisely at the commencement and at the termination of each halfstroke of the piston, since the crank-arm crosses the horizontal at this particular period. Therefore, if the eccentric be mounted square with the crank, the instant that it crosses in a vertical direction, and transmits the greatest amount of velocity to the slide, the crank will be in a horizontal position, and the piston will be taking its slowest movement. The steam is introduced and let off uniformly every time the crank-arm is in a horizontal position-that is to say, every time the piston has finished one stroke and is commencing another-and it is performed with great precision, depending upon the uniform action of the slide. It may be further observed, in the case of one crank being placed on the same axle with another, when one is passing from one side to the other, in making a semi-revolution, the other is passing from the top to the bottom; or if each of these cranks transmits a rectilinear motion to a rod, the rod conducted by the first crank conveys a certain motion in one direction, and that conducted by the other conveys the same amount of motion, but distributed in the opposite direction. The results of this uniform principle in the construction of locomotive engines are as follow: At the instant one of the cranks is in a horizontal position, and the piston at the commencement of its stroke, during the first half (of this stroke) the slide moved by the eccentric, which is in a vertical position, conveys a motion which has the effect of uncovering one of the ports, and by the time the eccentric arrives at the horizon it becomes wholly uncovered. In the sccond half of the course of the crank, the slide returns to its original position, and the port becomes again covered. The slide is, therefore, always ready to uncover the opposite port at the commencement of the following stroke.

It further results, when the crank is horizontal, that the two steam-ports are shut, the eccentric being then in a vertical position.

Such is the principle of the distribution of steam. We shall not enter into the particulars of the several plans for effecting it at present, but their details, which do not differ essentially from each other, will be found in their proper place. The return motions, from the eccentrics to the slides, are constructed of slight rods, and are therefore readily shifted; yet, as the slides are drawn backwards and forwards under the pressure of the steam they are subjected to considerable friction, the rods are liable to be strained, and frequently become deranged by the eccentrics, also from the play of the points of the levers, and the several turning-joints being so very elastic. These circumstances of derangement have an impurtant influence, by retarding the slide slightly, which has a powerful effect upon the regularity of the distribution; and since the course of the eccentric is similar to that of the slide, the detention of the action and the loss of speed occurring in the return movement from the above canses, show the necessity of the engine-man devoting the greatest attention to this point, and avoiding the evil as much as possible. The distribution of steam may be suspended whenever required, by means of handgeer and reversing-handles, which detach the rods of the eccentrics from the levers which conduct the slides; the same levers are also cmployed to reverse the movement of the slides at the time of running, and in such a manner as to render it opposite to the direction the engine is running in.

This reversing the distribution of the steam is employed to stop the engine where other means are found insufficient, in which case the steam-ports on that side where the piston is returning become instantly uncovered, and the steam fills the whole cylinder, and thus opposes the progress of the piston; the latter returns the steam again to the boiler if it should not be arrested. At the same instant the waste steam-port is covered by the slide, and consequently put in communication with the air, which enters by the blast-pipe and fills the cylinders, being drawn in by the action of the piston. Thus, the drance of the engine against the steam has the cffect of convering the air into the boiler, and the safety-valves consequently emit steam mixed with air.

Of the feeding of the boiler.-Haring described the means of generating steam, and of distributing it in the cylinders, we shall now consider those for renewing the water in the boiler in sufficient quantity, n s it becomes absorbed by the work of the engine. There are two pumps employed in effecting this, which are on the lift-and-force principle; the pistons consist of plungers, similar to those employed in ordinary stationary engines. They transmit the water from the tender to the boiler. One of these pumps can deliver a volume of water in the course of about twenty minutes sufficient to supply the boiler for one hour's run. The quantity of water furnished by the pumps may be properly regnlated, and the delisery of the same rendered continuous, but the latter is only accomplished in new engines, the boilers of the other engines are sure to be momentarily chilled, either in the operation of feeding with water, or in replenishing the fire with fuel; but the fires of new engines are nut so liable to this.

Of the machinery and its disposal. We shall conclude our general observations on locomotive engines by referring to the clisposal of the machinery connected with them. The power of the engine originates in the cylinders, the force produced within them proceeding through the smoke-box in which they are inclosed. This furce or power acts in two ways, dependent upon the steam being on one side or the other of the pistons, and imparts to the rods an effort of traction or of pressure accordingly. The whole of this force is exerted upon the cranked axle, wherefore it becomes highly necessary that this axle should be attached to the cylinder-box by very strong framing; the boiler is for this purpose placed on a frame, with which it is connected by stays secured by strong bolts. There are many engines which, after a few months' work, manifest a sensible play; to an experienced eye, between the cylinderbox and the supports of comnection between the boiler and the frame, from this reason. The earriages, or grease-boxes, which receive the gudgeons at the extremity of the axles, and thus support the entire weight of the engines, are situated beneath this frame, the gudgeons turning freely in them.

If these carriages were the only points of resistance to the cylinders, it is probable that not only the supports of the boiler on the frame would soon give way, but the axletree, being only seeured at its extremities, would also be subjected to these vibrations, and the greater part of it so powerfully forced in each direction, horizontally, by the cranks, that they would be soon broken. It is to obviate this that the eylinder-box is attached to the cranked axle by four, or at least three iron rails. These rails are strongly fastened to the cylinder-box, and each carries a copper collar, in which the cranked axle is inclosed. This collar is capable of moring in a vertical direction, whereby it is enabled to accommodate itself to the play of the springs and countersprings, which frequently have the effect of separating the axletree from the boiler; but the collar is always secured horizontally, being that in which the cranked axle offers the greatest resistance, by means of suspended wedges, which operate similarly to keys, and tighten the carriages against the axletree. The cranked axle is secured in this manner at five or six places respectively, and further attachel to the eyfinder-box. The attention of the engine-driver should be directed to the e rails of attachment, and he should constantly notice that they fultil their uffice properly; and in furtherance of which he should tighten them, by beightening the wedges as the carriage of the axletree becomes worn.
The three principal rails or cross-pieces which we have noticed, are attached jnst at their extremities, next the axletree, to lugs fastened to the fire-box. It is of consequence that these joints should not be made too stiff, and that a little play be allowed for their extension in cooling, for the reasuns befure stated, viz., that these rails are not subjected to the same degree of elongation from the effects of expansion as the body of the boiler; and, upon this occurring, the boiler is forced upon the rails, and the joints connecting them with the fire-box consequently become deramed, and give passage to the water situated within the double casing surrounding the fire-box.

We have now to observe, that the necessity of reducing the weight of locomotive engines has led to the almont exclusive employment of iron in their construction, from which it results that the whole of the several pieces in friction arganst each other, from the affects of rotative or rectilinear movement and the sliding of one surface upon another, are proportionately weaker than those of ordinary stationary cogrines, the cantings included, viz., the axeltrees, the beams, the comecting rods, the gruides, the ecerneriey, de., and formed of smatler proportions. Now, there is a very important fact commected with engines, viz, the circmanamee that the friction dies not depend soldy on the pressure, but on the degree of fitness of the metal to support the pressure without alteration. Thas when the state of the earriages becomes altered, the frietion aequires inmense indluence; the bedies become heated amd reduced from the filing, mising from the grip, they have of each other; they nlso sometime become meltel. The rubling surfaces are therefore kept constantly eilod, to prevent any alteration taking
 redneed alnost to the minimun limits commensmate with the amome of pressure which they have to suppurt. The least nesligence on this point is comerequently attended with serions comserpuences; the tirst, from its increa-ing' the resistance of the empine considerably, mud often stopping its promese; secombly, from its increasing the wear of the carriages ; and, thirdly, from its c:msing the mpture of the piseces in com-equence of their beomming heated, mul the straing to which they mere suljected. If the

 whinh it then destroverl.

place those pieces which become worn, and tighten those mountings as they become loosened. 'Tlie several joinings are, moreover, disposed in such a manmer as to counteract the difficulties conpected with them, and exhibited with all the pieces thrown in friction with each other.

Respecting the frames of locomotive engines, we may remark, that the plan of arrangement has been a subject of much controversy, whether they should be placed on the outside or on the inside of the wheels. If a perfectly rigid shaft were urged in a rotative direction by a rectilinear force, it would revolve with a degrec of firmness proportionate to the distance its carriages were placed apart. If a cranked axle be supported by carriages situated near its centre, and impelled by forces acting ir. contrary directions, as those transmitted to it from the cylinders, it would cease to be perpendicular to the morement of the pistons, upon the carriages becoming the least worn, and would form an angle proportionably large, accordingly as the carriages were placed near the centre. The flanges surrounding the wheels would thereforc knock against the rails, and the engine undergo violent lateral movements from its direct course, which would be dangerous, on account of the great relocity. A like effect occurs when the cranks are placed at the extremities of the axle, instead of near the middle of it, as in the case of engines having the cylinders placed on the outside. The wear of the carriages, also, has the effect of increasing the force of the lateral movements considerably.

Of locomotives employed in conveying freight.-It is customary, in the conveyance of freight, to employ engines with their driving-wheels coupled to the fore ones, which is effected by connectingrods; in which case the fore-wheels are of equal diameter with the driving-wheels. This coupling possesses no other advantage than that of increasing the power of adhesion, by allowing the forewheels to partake of the weight carried by the others.

Of the tender.-A sort of wagon is attached at the extremity of a locomotive engine when in motion, which is called a tender, and which is generally mounted on four wheels, and sometimes on six. It contains water and fuel sufficient to feed the boiler and grate during a run of about twentyfive miles as a maximum, and about fifteen miles as a minimum. In order to supply trips exceeding these limits, reservoirs of water and depots of fucl are arranged at convenient distances on the line, which enables them to extend their run to distances which are only limited by the strength of the engines.

The tender is joined to the engine which it accompanies by a bolt, which is adjusted to fit into a staple. This bolt should be capable of resisting the entire power of the engine. The reservoir of water communicates with the engine by the two pipes of the feed-pumps; the convection of the barrels of the pumps is made by means of a flexible pipe, denominated hosing, whose nature is such that it can readily yield to all lateral and vertical movements of both engine and tender; the movements are inevitable, for reasons before stated, from the little stability of the railway, the great velocity of the engines, \&cc. The bolt admits of every movement, except that of lengthening.

Tenders of good construction should present an appearance of lightness combined with solidity ; the joints of the iron plates composing the reservoir of water should be well stopped; the cocks of the sup-ply-pipes to the pumps also require to be made perfectly water-tight, which is a condition they do not always fulfil. The fuel in the tender is placed upon a level with that in the fire-grate. The wheels are wedged on the axletrees similar to those attached to the engine, and the weight of the tender is suspended on springs, to remedy the abrupt motion of the water. There is a hook at the back of the tender, which is attached to a powerful spring, to neutralize the effects of concussion, and for the purpuses of traction, and it converts all shocks occasioned by the jerking of the engines, which are sometimes very abrupt, into pressures more or less strong accordingly.
Esplanation of the principles which govern the power of locomotive engines. The power of a locomotive engine is not to be estimated alone by the pressure of the steam in the boiler, and the diameter and length of stroke of the piston. In passing between the boiler and the cylinder, the elastic force of the steam is diminished, before it reaches the cylinder, by the smallness of the apertures of the steampipes, through which it has to pass. This difference is, likewise, more frequently produced by the evaporating power of the engine not being capable of keeping up a supply of steam to the cylinders, of an elasticity equal to that in the boiler; and, therefore, the pressure upon the piston is less thar that against the steam-valve of the boiler; and this diminution of the elasticity of the steam, in the cylinders, as compared with that in the boiler, will, in many cases, be in the ratio of the increase of velocity of the engine. Thus, suppose an engine capable of evaporating a certain quantity of water per hour, or converting it into a certain bulk or quantity of steam, of the elasticity indicated by the valve on the boiler; if this production of steam is sufficient to supply as many cylinders full of steam, of the density of that in the boiler, as shall be equal to the number of strokes per minute of the pistorn, required to produce the given velocity; then, the elasticity of the steam in the cylinder will be the same as that in the boiler, except that which is required to force the steam through the steam passages with the requisite relocity; and, consequently, the pressure on the piston will be nearly the same as that in the boiler. But, if the velocity of the engine is such, that the number of cylinders full of steamrequired is greater than the evaporation of the boiler can supply, at the elasticity marked by the steam valve, then the clasticity in the eylinders is correspondingly diminished. Thus, suppose an engine sapable of evaporating 50 cubic feet of water into steam per hour, and that the pressure on the steam ralve is 50 pounds per square inch ; this will supply a given number of cylinders full of steam of that clasticity. Suppose the resistance to the motion of the piston be equal to this pressure of the steam, or equal to the elasticity of 50 pounds per square inch of the surface of the piston; then the engiue will travel at that rate, which the evaporating power of the engine will supply it with the requisite number of cylinders full of steam. But, suppose the resistance upon the piston increased by at change in the gradients of the railway, then the velocity of the engine will be diminished, until the evaporating power raises the elasticity of the steam in the boiler, so as to counterbalance the increased resistznce of the piston, and the engine will consequently move more slowly. On the contrary, if the resistance be diminished by a change of the gradients of the railway, then steam of a less density will
be required, and, consequently, a greater number of cylinders full will be furnished by the boiler, and the velocity of the engine will be increased.

We see, therefore, that the only correct expression of power of these engines, is the evaporating power of the boiler, and that the velocity with which the engine will move, will depend entirely upon the quantity of water it can convert into steam in a given time; or the number of eylinders full of steam, of a given elasticity, which the boiler can produce in a given time. Having found, thercfore, by experiment, the quantity of water which an engine, of given dimensions, can evaporate per hour, we then find the power which that engine is capable of exerting upon the piston, and the relocity, or number of strukes per minute, which that evaporation will produce, with a given load. The volume of steam which a cubic foot of water will produce, depends upon the elasticity; this has been ascertained by various experimentalists, and the following 'lable will show the result. The third column is the result of Mr. Pambour's later investigations:

Relative volume of the steam generated under different pressures, calculated by the proposed formula.

Total pressure of the steam, in pounds per square inch.	Volume of the steam, caledlated by the ordinary formule.	Volume calculated by the proposed formula for high-pressuro non-conducting engines.	Total pressure of the steam, in pounds per square inch.	Volume of the steam, calculated by the ordinary formulx.	Volume calculated by the proposed formula for hish-pressure non-condensing engines.
15	1669	"	65	434	436
20	1280	1243	70	406	406
25	1042	1031	75	381	351
30	8心2	881	S0	359	358
35	765	768	85	340	338
40	677	682	90	323	320
45	605	613	105	281	276
50	552	556	120	24?	243
55	506	509	135	2-t	217
60	467	470	$151)$	203	196

We propose now to give the formula for calculating the porrers and proportions of locomotive engines, commencing with the values, as ascertained, of the various causes of retardation in the movement of a train on a railroad drawn by a locomotive engine; and, combining these values, exhibit a general formulx for all cases of the movement of a locomotive, and under all circumstances.

1. Resistance to motion caused by the atmosphere. -The resistance against a body moving in an indefinite fluid, at rest, is less than the resistance experienced by the same body placed at rest in an indefinite fluid moving against it, which seems to denote that a fluid in motion separates itself less easily than a thuid at rest. The second is, that a thin plate meets with a greater resistance from the air than a prismatic borly presenting in front the same surface, and that the resistance diminishes accurding as the prism is longer. This circumstance is oceasioned thus: The air having glided over the edges of a thin body, ru-hes immediately behind it with great rapidity, and carryine in its motion the portion of fluid which we have mentioned above, produces a relative vacuum belind the oppoed surface. But if the moving bouly be a lengthened prim, the air in passing along its sides loses a certain pertion of its acquired velocity, and, consequently, on reaching the hind-face of the prism, extends it-elf behind it with it lince more and more moderated; whence results that it produces there a partial vacum, wr monpressure, less considerable than in the case of a simple surface. And as we have seen that the duffitive resi-tance against a moving bxdy is the difference between the presure of the air in front and the partial vacum created behnd, it follows that longer bodies definiturely sutfer from the air a les resiatanee than lodies of inconsiderable thickness.

The experiments of W. Thibualt have eantirmed thuse of Borda, on the proportwhatity of the resistance of the air to the square of the velonity, within the limits of velocity that we have to con-ider. They have, morenver, demonstrated that if two squatre surfices be placed so that one shatl precesely sereen the other, and at a distance apart equal to ote of their sides, the resistance against the screemeil surface will be $\%$-10ths of the resistance sulfirend by the surface in front. It consequently resulta that, when two surfaces are separatel by a com-idurable space relatively to their extent, the reaistane of the air against the second is to be eatimated nearly as if it were isolated in the air ; but if, on the contrary, the: two surfaces are very near each other, relatively to their extent, there is roon to think that thi rercened surface may be ahoost entirely protected mpanint the effeet of the nir, since at pate equal on ohe side of the surfice would be regui-ite for the air to exert against it a resistance edgal to twe-dhirda of the resistance agaimst an ivolated surfaci.

Uniting the resulte, and limiting ourcolvea to the case of a bomp moving in the nir ut rest, we hase, to dotermine the recistance of the air, the following formular, in which \& reprement the fromt surface of a honly traversing the air in a direction perpundicular to that surface, V the velocity of the motun, s is eneflicient variable with the length of the buty, and, lastly, Q the detintive re-i-tance proselueed ly the nir ngainst the body:
 in square feet, and the velocity V in lingli-h feet per second.
And in applying these formule it will be necessary, according to the care, th give to the letter the fullowing values.

For a thin surface .. $\varepsilon=143$ For a cube	
For a cube \qquad $\varepsilon=1 \cdot 17$ For a prism of a lencth equal to three times the side of its front surface $\varepsilon=1 \cdot 10$	

Of the resistance of the air against the wagons, isolated or united in trains.-From what we have just seen, it will be easy to estimate the resistance of the air against a prismatic body in motion, when ite front surface and dimension in length are known. Bnt as a wagon does not present a regular prismatic form, it becomes necessary first to consider how we may find what surface it really offers to the shock of the air.
The front surface of a wagon may be directly measured; it consists of two distinct parts, the surface of the load, and that of the wagon itself. The former of these surfaces necessarily varies according to the nature of the goods which form the load; and the surface of the wagon, properly so called, includes the spokes of the wheels, the axletrees, axle-boxes, springs, and hind-wheels of the wagon.

We obtain, as the result of sufficiently extended experiments for separate wagons, the value of \boldsymbol{t} in the preceding formule to be $=1 \cdot 15$.

As to the trains of several wagons, we see that for the resistance of the wheels, an addition must be made to the transverse section of the train; but as the wagons composing the same train, though very near each other, are not however in contact, it is necessary further to seek upon what extent of surface these wagons, thus united, still suffer the resistance of the air during their motion.

From the result of a number of experiments undertaken to determine this resistance, it was found that in order to estimate the effects of the resistance of the air against the progression of a train, to take as resisting surface that of the wagon of greatest section, auginented by 10 square feet per intermediary wagon, and by 6 square feet for the first wagon, including of course in this number the engine itself and its tender.
On railways of about 5 feet width of way, the surface of the highest wagon may, at a medium, be reckoned at 70 to 74 square feet; we may then esteem, in general, the resisting surface of a train of wagons at 70 square feet, plus as many times 10 feet as there are carriages in the train, including the engine and its tender.
If the road has a wider way, or if the carriages offer a surface different from that we have just indieated, the carriage of greatest section must be measurgd, and that measure nsed instead of the nomber 70. If the wheels of the wagon are more than three feet in diameter, there will likewise be an addition to make to take account of the greater surface which they expose to the shock of the air during the motion. This addition would be about 3 square feet per wagon, for wheels of 5 feet in diameter instead of 3. Finally, if the interval between the wagons, instead of being as it is at a medium on ordinary railways, considering the different kinds of carriages and the inequalities of their loading, were augmented by any important quantity, there might also be some addition to make for the effect of the air against the loads of the successive wagons; but as our determination in this respect gave something less than one square foot per wagon, and as the interral between the wagons could not be augmented by any thing considerable without being liable to inconveniences in practice, we deem that one square foot per wagon may comprehend nearly all cases.
When the effective surface presented to the shock of the air shall be known by the preceding calculation, it must be substitated for the letter Σ in the formulæ given above, putting at the same time for ε its value suitably to the length of the prism formed by the train of wagons. According to the variation of ε observed by Dubuat for prisms of divers proportions, it will be found that in the case of a train of 5 wagons, we must make $\varepsilon=1.07$, and that the ease of a train of 25 wagons would require $\varepsilon=1 \cdot 04$. In order then not to have to return continually upon these considerations we will take as a mediun $\varepsilon=1.05$, which is suitable to a train of 15 wagons, and expressing at the same tine, in the formula given abore, the velocity in miles per hour, we shall have, in fine, to express the resistance of the air against a train of wagons in motion, the following formula:
$\mathrm{Q}=\cdot 002687 \Sigma v^{2}$. Resistance of the air, in pounds, the effective surface of the train or the quantity Σ being expressed in square feet, and the velocity of the motion in miles per hour.
Table of the resistance of the air against the trains.-To dispense with all calculation relative to the resistance of the air, we here subjoin a table showing its intensity for all velocities from 5 to 50 miles per hour, and for surfaces of from 10 to 100 square feet. Were it required to perform the calculation for a velocity not contained in the table, it would evidently suffice to seek the resistance corresponding to half that velocity and to multiply the resistance found by 4 ; or, on the contrary, to scek the resistance corresponding to the double of the given velocity, and to take a quarter of the result. So the resistance of the air against a surface of 100 square feet, at the velocity of 50 miles per hour, is equal to four times the resistance of the air against the same surface at the velocity of 25 miles per hour. As to surfaces greater than 100 square feet, they must be decomposed into surfaces less thau 100 feet, and then the table will still give the results required; for the resistance against a surface of 120 square feet is evidently nothing more than the sum of the resistances against one surfice of 100 square feet and one of 20 square feet.
By means of the table in question will be obtained, withont calculation, the resistance of the air expressed in poonds, for any velocity of the moving body; but it is to be observed that the table supposes the atmosphere at perfect rest. If, then, there be a wind of some intensity favorable to the motion, or contrary to it, account must be taken thereof. In order to effect this, it will suffice to observe that if the wind is favorable, the body will move through the air only with a relocity equal to the difference between its own absolute velocity and that of the wind; and that if on the contrary the wind is opposed to the motion, the effective velocity of the body through the air will be equal to the sum of its owu relocity augmented by that of the wind. In this case, then, the velocity of the wind must first be measured, by abandoning a light body to its netion, and noting the time in which it traverses a space previously measured on the ground; or else an anemometer may be used for the purpose. Then the
relocity of the wind mu-t be subtracted from that of the train in motion or added to it, according to the ase; and that difference or that sum is the velocity to be sought in the table, or substituted in the formula, to obtain the corresponding resistance against the whole train.

If the wind, instead of being precisely contrary or favorable to the motion, should exert its action in an cublique direction, it would tend to displace all the wagons laterally; and consequently, from the conical form of the whecls, all those on the further side from the wind would turn on a larger diameter than thove on the side towards the wind. The resistance produced will therefore be the same as that which would take place on a curve on which the effect of the centrifugal foree were not corrected, and Hat resistance would necessarily be very considerable.

Practical Tuble of the resistance of the air against the trains.

Velocity of motion in mites per hour.	Resistance of the air in pounds per square foot ot surface.	Resistance of the air in pounds; the effective surface of the train, in square feet, being:								
		$\underline{2}$	30	40	50	60	70	80	90	100
Miies.	lus.	1bs.	lbs.	lbs.	1bs.	1bs.	Jbs.	Ibs.	tbs.	lus.
5	. 07	1	2	3	3	4	5	5	6	7
6	$\cdot 10$	2	3	4	5	6	7	8	9	10
7	-13	3	4	5	7	8	9	11	12	13
8	$\cdot 17$	3	5	7	9	10	12	14	15	17
9	-22	4	7	9	11	13	15	17	20	22
10	27	5	8	11	13	16	19	22	2.4	27
11	$\cdot 33$	7	10	13	16	20	23	26	29	33
12	-99		12	15	19	23	27	31	35	39
13	45	9	14	18	23	27	32	36	41	45
14	- 3	11	16	21	$\underline{2}$	32	37	42	47	53
15	-60	12	18	21	30	36	42	48	54	60
10	-69	14	21	28	$3 \cdot 4$	41	48	55	6.	69
17	-78	10	23	31	39	47	54	62	70	78
18	-87	17	26	35	45	52	61	70	78	87
19	$\cdot 97$	19	29	39	49	58	68	78	57	4
20	1.07	22	32	43	54	65	75	86	97	107
$\because 1$	$1 \cdot 19$	24	36	47	59	71	83	95	107	119
22	$1 \cdot 30$	20	39	52	65	78	91	104	117	180
23	$1 \cdot 12$	23	43	57	71	85	100	114	128	1.12
24	1.55	31	47	62	78	93	109	12.4	140	155
25	1.68	34	50	67	8.1	101	118	13.4	151	168
26	1.82	36	55	73	91	109	127	146	16.4	182
27	$1 \cdot 96$	39	59	78	98	118	137	157	176	196
28	$2 \cdot 11$	42	6.3	8.1	106	127	148	169	190	211
29	2×6	45	68	90	113	136	158	181	203	206
30	2.42	48	73	97	121	145	169	194	215	$\bigcirc 12$
31	2.55	52	77	103	129	155	181	206	232	258
82	2.75	55	83	110	138	165	193	200	2.4	275
33	2.43	59	85	117	147	166	205	23.1	264	$\because 93$
34	$8 \cdot 11$	62	93	12.1	156	187	218	249	2s0	311
35	$8 \div 9$	66	99	132	165	197	230	263	296	3:9
36	$8 \cdot 48$	T1)	104	139	17.4	$\bigcirc 09$	24.	278	313	3 ts
37	8.68	7.4	110	1.47	184	221	258	291	331	368
35	3.85	Ts	116	155	19.1	233	272	310	3.19	3×8
39	4.09	82	123	16.4	205	245	2S7	327	368	409
40	4*34)	83	129	172	215	258	301	8.14	337	130
41	4.52	90	136	181	2.6	271	316	362	407	452
42	4.74	95	112	190	237	25.1	332	379	427	47.4
43	497	99	119	193	219	298	345	398	4.17	$4!17$
4.	$5 \cdots 0$	104	156	$\because 03$	280	312	304	414	468	$5 \geq 0$
45	$5 \cdot 4$	109	163	$\because 18$	272	320	381	435	459	5.4
40	5.69	114	171	$\because 28$	255	341	398	455	512	5 5i9
47	5.91	119	178	238	297	356	416	475	585	591
44	6-19	124	156	$\because 18$	310	371	433	195	557	619
49	0.45	129	194	$\because 5$	323	3.4	452	516	5-1	415
50	0%	131	20:	$\because 69$	336	403	470	535	605	かi:

Of the friction of the cars of a train.- From experiments, the menn frietion of the cars tahen Inde-

 the ears.
These are the reculte which onght to be used when, for the rebintance of the nir, the determimation deduced from the mont recont and mont exact experiments on the subject is midd now what arcount is
taken, as it ought to be, of the length of the prism formed by the train in motion, as well as of the effects of the air against the rotation of the wheels and the accessory parts of the wagons.

It appears from this result that for the mean velocity of trains it would be indifferent to compute the friction of the cars at 5.76 pounds per ton, taking account of the real resistance of the air and of its effects against the accessory parts noticed above, or to take the friction of the wagons at 7 pounds per ton, accounting merely for the resistance of the air against the wagon of greatest section. On the other hand, as during the work of the engines their velocity is so much the greater as the train they draw is less considerable, whence the resistance of the air increases as the friction of the train diminishes, it will be found that either of the two preceding calculations leads to very nearly the same result, for the total resistance opposed by the moving train, and that it is only in eases of extreme velocity that the two modes of calculation present a notable difference.

Without any important error, the second of the two modes of caleulation may be used; but the first is introduced with a view to the exhibition of a general formula.
It should be premised that the valuation of the friction, which we obtained above, ought to be understood only of carriages similar to those which were submitted to experiment, and subjeet to like conditions, viz., with iron axles, turning on brass chairs, and provided with self-acting grease-boxes; with threefeet wheels and axle-bearings $1 \frac{3}{4}$ inches; with the use of a well-kept railway, and finally with the :rsual proportions of about $\frac{5}{6}$ between the weight of the body of the loaded carriage and the total weight of the wagon. Were these conditions materially altered, a new determination of the friction would become necessary.

Of gravity on inclined planes.-We have seen how the resistance caused on a railway by the friction of the wagons may be valued. But it sometimes happens that this frietion is the smallest part of the total resistance which the engine has to overeome, in order to effect the motion of the train. This case oceurs when the way is not level, and the train is obliged to ascend an acelivity. The resistance then caused is, as every one knows, much greater than on a level line, and in consequence it becomes necessary to take account of it in the calculations.

When a body is placed on an inclined plane, the weight which urges it, and which always acts in a vertical line, is decomposed into two forces; one perpendicular to the plane, and which measures the pressure produced against the plane, by virtue of the weight of the moving body, and the other parallel to the plane, and which tends to make the body slide or roll along the deckitity. The latter force, which we will call the gravity along the plane, would inevitably drag the body towards the foot of the declivity, were it not counteracted by a contrary force. When therefore a train of wagons has to ascend an inclined plane, the moving power must apply to it: firstly, a force able to overeome the frietion of the wagons themselves; and again, another force able to overcome the gravity in the direction of the plane. If, on the contrary, the mover draw the train of wagons down the plane, then, in order to produce the motion, it will evidently have to apply only a foree equal to the difference between the friction proper to the wagons and the gravity, since the latter force then acts in the same direction as the mover.

When a body of a given weight is set on a plane of a given incliuation, we know that, in order to obtain the gravity of the body along the plane, its weight is to be multiplied by the fraction which expresses practically the inclination of the plane. Thus, for instance, on a plane inched $\frac{1}{89}$, that is to say, on a plane which rises 1 foot on a length of 89 feet measured along the acclivity, the gravity of 1 ton, or 2240 lbs ., is

$$
\frac{2240}{89}=2 \check{2} \cdot 2 \mathrm{lbs} .
$$

Moreover, when a train of wagons ascends an acclivity, the engine has not only to surmount the gravity of the wagons of the train, but likewise its own gravity and that of the tender which follows it ; and these forces do not present themselves when the motion takes place on a horizontal line. It is then on the total weight of the train, that is, including engine and tender, that the resistance caused by gravity on acelivities is to be caleulated.

If it be supposed, for instance, that a train of 40 tons, tender ineluded, be drawn up a plane inelined $\frac{1}{89}$, by an engine weighing 10 tons, it is clear that the definitive resistance opposed to the motion by the train will be

$$
\begin{array}{r}
40 \times 6 \mathrm{lbs}=240 \text { lbs., friction of the carriages at } 6 \text { lbs. per ton.................................. } 240 \text { lbs. } \\
50 \times 2 \frac{240}{89}=1258 \text { lbs., gravity of the } 50 \text { tons of the train (reduced to lbs.) on a plane } \\
\text { inclined } \frac{1}{89}, \text { to be added.. } 1258
\end{array}
$$

Total resistance arising from friction and gravity 1498 lbs.
If, on the contrary, the same train had to descend a plane inclined $\frac{1}{1000}$, the resistance it would then offer would be

Definitive resistance arising from friction and gravity.. 128 lbs.
In general, let M be the weight of the train, in tons gross and including the tender; let m be the weight of the engine, expressed also in tons; k the friction of the wagons per ton, expressed in lbs., as has been explained; finally, let g be the gravity, in lbs., of 1 ton on the plane in question. It is clear in the first place, from what has been said above, that the quantity g will be equal to 2240 , multiplied by the practical inclination of the plane; so that if $\frac{1}{e}$ express that inclination, or the ratio of the height of the plane to its length, we shall have, to determine g, the equation

$$
g=\frac{2240}{\dot{e}}
$$

This premised, the friction of the wagons will have for its value k. II. Again, since g expresses the gravity of 1 ton, it is plain that $g(M+m)$ will represent, in lbs., the gravity of the tutal macs, traiu and engine, placed on the inclined plane.

Thus, according as the motion takes place in ascending or in descending, the total resistance, in lbs., offered by the train on the inclined plane, will be

$$
k \mathrm{M} \pm g(M+m)=(k \pm g) \mathrm{M} \pm g m
$$

an expression in which the sign + belongs to the ascending motion, and the sign - to the descending motion of the train.

It will always be easy then to obtain the number of lhs., which represents the resistance opposed by a train in motion on a plane of a given inclination.

Of the effects of the blast-pipe.- We have just examined several of the resistances which are opposed to the engine in its motion, viz., that of the wagons along the rails, and that of the air against the trains. But among other resistances which the piston has yet to overcome, is one arising from the disposition of the engine itself, and of which it will be proper to treat befure proceeding further.

The steam, after having exerted its action in the cylinder, might escape into the atmosphere by a large opening. It would then be possible for it entirely to dissipate itself in the air, during the time the piston takes to change its direction. Consequently the steam would in nowise impede the retrograde motion of the piston, whatever might be the velocity of the piston. But the disposition adoputed is contrary to this. The steam, on leaving the cylinder, has no other issue towards the atmosphere than an aperture exceedingly narrow; nor can it, by that aperture, escape totally within the time of one stroke, except by assuming a very considerable velocity in its motion. For this, the steam in the cylinder must necessarily be at a pressure sensibly greater than that of the atmosphere into which it flows; and as the pressure of the steam while flowing acts in all directions, and consequently against the piston, it results that the latter, instead of having simply to counteract the atmospheric pressure, finds an additional one to overcome, which is to be added to the divers resistances already measured.

This new cause of resistance might, as has been said, be in a great measure suppressed, by enlarging sufficiently the outlet of the steam. But to do this would be to lose one of the most active causes of the definitive effect of the engine; for the object of the disposition of which we treat is to excite the fire sufficiently, and to produce, in a boiler of small dimensions, the very great quantity of steam requisite for the rapid motion of the engine. To this end, the waste stean is conducted to the chimney, and thrown into it by intermittent jets, through a blast-pipe or contracted tube, placel in the centre of the chimney and directed upwards. The jet of steam, as it rushes with furee from this aperture, rapidly expels the gases which occupied the chimney. It consequently leaves behind it a vacuum; and this is imnediately filled by a mass of air rushing through the fire-grate into the space where the vacuum has been made. At every aspiration thus produced, the fuel contained in the fire-box grows white with incandescence. The effect then is similar to that of a bellows continually urging the fire; and the artificial current created in the fire-box by this means is of such efficacy for the vaporization, that were the blast-pipe suppressed, the engine would become almost nseless, which proves that the current of air attributable to the ordinary draught of the chimney is in comparison but very tritling.

Omitting the experiments and calculations from which it is derived, we obtain as the value of the resistance against the piston caused by the action of the blast-pipe, the formula

$$
0113 v \frac{\mathrm{~S}^{\prime}}{o}
$$

in which v is the velocity of the engine in miles per hour: S^{\prime} the tutal vaporization of the boiler in cubic feet of water per hour; o the area of the oritice of the blast-pipe expressed in square inches; and the result of the calculation will give the pressure in the blast-pipe expressed in pounds per square inch. The pressure per square foot will be 14.4 times as much.

Witl respect to the quantity represented here by S^{\prime}, the experiment from which we deduced the formula shows, that the vaporization signitied is the total vaporization effected in the boiler, that is to say, the vaporization counted before deduction of the water carried away in a liquid state with the steam.

Making in the preceding formula

$$
0113 \frac{\mathrm{~S}^{\prime}}{o}=r^{\prime}
$$

the pressure in the blast-pipe may be represented by the expression $p^{\prime} e^{\prime}$, m which p^{\prime} will be the ratio of the vaporization to the oritice of the blant-pipe, multiplied by a constant coetlicient.

Now, for engines which raporize ns much as 60 cubic feet of water per hour, practice has established the use of a blast-pipe of 2.25 inchey diancter, of 396 square inches of area, which gives for the value of the ratio $\frac{S^{\prime}}{o}$,

$$
\frac{60}{3 \cdot 4 t_{i}}=152
$$

In constructing engines of a greater vapmazing power, it would he naturnl to increase the arent of the blast-pipe in proportion to the quantity of stean to which it is to give issum. There is romm therefore to think that the proportion thus established between the production of stemn and tho aren of the blastpipe, will not be notably changed by the difforent rngimernakers. Consequently the ratio "may bo regarded approximatively as a constant quantity, given ly the nlmse proportion.
Then the preceding firmula will be reduced mimply to the expression 1 定 1 , which wall to useful expecially in valuing the pressure due to the blast-pipe in engines whose baporization io
unknown. In this formula, v is the velocity of the engine, in miles per hour, and the result is the pressure in the blast-pipe, expressed in pounds per square inch. As the pressure per square foot is 144 times as much, it follows that if we require the pressure expressed in that manner, we shall obtain its value by the formula $25.2 v$.

We shall then represent generally the pressure in the blast-pipe under the form $p^{\prime} v$; and for the most ordinary cases, it will suffice to give to p^{\prime}, in this expression, one of the constant values above mentioned, according to the measures employed. But if the engine in question should differ too considerably from the proportions which we have just indicated with reference to the area of the blastpipe, it would be necessary to substitute for that approximate value of p^{\prime}, its value function of S^{\prime} and o.

In fine, to dispense with all calculation on this head, we here subjoin a table, in which will be found, on inspection, the pressures in the blast-pipe for given circumstances, and we continue that table beyond the actual effects of locomotive engines. It will there be recognized how, by augmenting the orifice of the blast-pipe, the resistance against the piston, arising from that canse, may be diminished at pleasure ; and it may probably be found, in consequence, that in the regular work of locomotives, it might be useful to adopt a blast-pipe with a variable orifice, such as was employed temporarily in the experiments from which these values were deduced. Then, by contracting the orifice of efflux of the steam only just as much as is necessary, there will be no more resistance against the piston than what is indispensable for the proper action of the enginc.

Practical Table of the pressures against the piston, due to the action of the blast-pipe.

Diameter of the blast-pipe.	Velocityof theengine, inmiles perbour.	Effective pressure against the piston, in lbs. per square inch, the vaporization of the boiler, in cubic feet of water per bour, being:							
		30	40	50	60	70	S0	90	100
2 inches.	miles.	lbs.	lbs.	lbs.	1 lbs.	1bs.	lbs.	lbs.	lbs.
	10	$1 \cdot 1$	$1 \cdot 4$	$1 \cdot 8$	$2 \cdot 2$	2.5	",	"	",
	15	1.6	$2 \cdot 2$	$2 \cdot 7$	3.2	$3 \cdot 8$		",	"
	20	$2 \cdot 2$	$2 \cdot 9$	$3 \cdot 6$	$4 \cdot 3$	$5 \cdot 0$		"	",
	25	$2 \cdot 7$	$3 \cdot 6$	$4 \cdot 5$	$5 \cdot 4$	$6 \cdot 3$	"	"	"
	30	3	43	$5 \cdot 4$	6.5	$7 \cdot 6$	"	"	"
	35	$3 \cdot 8$	$5 \cdot 0$	6.3	$7 \cdot 6$	$8 \cdot 8$	"	"	"
	40	4.3	$5 \cdot 8$	$7 \cdot 2$	$8 \cdot 6$	$10 \cdot 1$	"	"	"
$2 \ddagger$ inches.	5	0.4	0.6	0.7	0.9	1.0	$1 \cdot 1$	"	"
	10	0.9	$1 \cdot 1$	$1 \cdot 4$	$1 \cdot 7$	$2 \cdot 0$	$2 \cdot 3$	"	"
	15	13	1.7	$2 \cdot 1$	$\bigcirc 6$	$8 \cdot 0$	$3 \cdot 1$	"	"
	20	1.7	2.3	2.8	$3 \cdot 4$	$4 \cdot 0$	45	"	"
	25	21	$2 \cdot 8$	$3 \cdot 6$	43	5.0	$5 \cdot 7$	"	"
	30	$\stackrel{1}{2}$	$3 \cdot 4$	$4 \cdot 3$	$5 \cdot 1$	6.0	6.8	"	"
	35	$3 \cdot 0$	4.0	$5 \cdot 0$	6.0	70	8.0	"	"
	40	$3 \cdot 4$	45	$5 \cdot 7$	6.8	$8 \cdot 0$	$9 \cdot 1$	"	"
$2 \frac{1}{2}$ inches.	10	03	0.5	0.6	0.7	0.8	$0 \cdot 9$	1.0	"
	10	0.7	$0 \cdot 9$	12	$1 \cdot 1$	$1 \cdot 6$	1.8	$2 \cdot 1$	"
	15	1.0	1.4	1.7	$2 \cdot 1$	$2 \cdot 4$	$2 \cdot 8$	$3 \cdot 1$	"
	20	$1 \cdot 4$	1.5	$2 \cdot 3$	2.8	3.2	$3 \cdot 7$	$4 \cdot 1$	"
	25	1.7	2.3	2.9	3.5	4.0	4.6	52	"
	30	$2 \cdot 1$	$2 \cdot 8$	3.5	$4 \cdot 1$	4.8	$5 \cdot 5$	62	"
	35	$2 \cdot 4$	$3 \cdot 2$	$4 \cdot 0$	4.8	56	6.4	$7 \cdot 3$	"
	40	$2 \cdot 8$	3.7	$4 \cdot 6$	5.5	$6 \cdot 4$	$7 \cdot 4$	8:3	"
	45	$8 \cdot 1$	$4 \cdot 1$	$5 \cdot 2$	6.2	7.3	$8 \cdot 3$	93	"
	50	3.5	4.6	$5 \cdot 8$	6.9	$8 \cdot 1$	$9 \cdot 2$	104	"
23 inches.	5	0.3	0.4	0.5	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	0.9	1.0
	10	$0 \cdot 6$	0.8	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 3$	15	1.7	1.9
	15	$0 \cdot 9$	$1 \cdot 1$	$1 \cdot 4$	$1 \cdot 7$	$2 \cdot 0$	$2 \cdot 3$	2.6	2.9
	20	$1 \cdot 1$	15	$1 \cdot 9$	$2 \cdot 3$	$2 \cdot 7$	$3 \cdot 0$	$3 \cdot 4$	$3 \cdot 8$
	25	$1 \cdot 4$	1.9	$2 \cdot 4$	$2 \cdot 9$	$3 \cdot 3$	$3 \cdot 8$	43	48
	30	1.7	$2 \cdot 3$	2.9	3.4	4.0	$4 \cdot 6$	$5 \cdot 1$	$5 \cdot 7$
	35	$2 \cdot 0$	$2 \cdot 7$	3.3	4.0	4.7	$5 \cdot 3$	6.0	$6 \cdot 7$
	40	$2 \cdot 3$	$3 \cdot 0$	3.8	$4 \cdot 6$	$5 \cdot 3$	$6 \cdot 1$	6.8	$7 \cdot 6$
	45	$2 \cdot 6$	$3 \cdot 4$	$4 \cdot 3$	$5 \cdot 1$	6.0	6.8	-7	$8 \cdot 6$
	50	2.9	$3 \cdot 8$	4.8	$5 \cdot 7$	6.7	76	$8 \cdot 6$	9.5

Diameter of the blast-pipe	$\|$Velotity of the engine, in miles per hour.	Effective pressure against the piston, in lbs, per square incls, the vaporization of the boiler, in cubic leet of water per hour, being:							
		30	40	50	60	70	S0	90	100
3 inches.	miles.	${ }^{\text {lbs. }}$	${ }_{0} \mathrm{lbs}$.	1bs.	1 lbs .	1 lbs.	1 lbs .	1bs.	1bs.
	5	02	$0 \cdot 3$	04	0.5	0.6	$0 \cdot 6$	$0 \cdot 7$	0.8
	10	0.5	0.6	0.8	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 3$	1.4	$1 \cdot 6$
	15	0.7	$1 \cdot 0$	1%	$1 \cdot 1$	$1 \cdot 7$	$1 \cdot 9$	$2 \cdot 2$	2.4
	20	1.0	13	1.6	1.9	2.2	2.6	2.9	3.2
	25	$1 \cdot 2$	$1 \cdot 6$	$\because 0$	24	$\because 8$	$3 \cdot 2$	3.6	4.0
	30	1.4	$1 \cdot 9$	24	2.3	$3 \cdot 1$	$3 \cdot 8$	$4 \cdot 3$	4.8
	35	$1 \cdot 7$	$2 \cdot 2$	2.8	3.4	3.9	$4 \cdot 5$	5.0	$5 \cdot 6$
	40	1.9	2.6	$3 \cdot 2$	3.8	$4 \cdot 5$	$5 \cdot 1$	$5 \cdot 8$	6.4
	45	2.2	$\stackrel{2}{2} 9$	3.6	$4 \cdot 3$	$5 \cdot 0$	$5 \cdot 8$	0.5	7.
	50	2.4	$3 \cdot 2$	4.0	4.8	$5 \cdot 6$	6.4	72	8.0
	55	$2 \cdot 6$	$3 \cdot 5$	$4 \cdot 4$	$5 \cdot 3$	$\mathrm{C} \cdot 2$	$5 \cdot 0$	7.9	8.8
	60	2.0	$3 \cdot 8$	$4 \cdot 8$	5.8	6.7	$7 \cdot 7$	$8 \cdot 6$	$9 \cdot 6$
31 inches.	5	0.2	0.3	$0 \cdot 3$	04	0.5	0.5	0.6	0.7
	10	$0 \cdot 4$	0%	$0 \cdot 7$	0.8	1.0	$1 \cdot 1$	1.2	$1 \cdot 4$
	15	0.6	0.8	1.0	$1 \cdot 2$	1.1	1.6	1.8	20
	$\bigcirc 0$	0.8	$1 \cdot 1$	$1 \cdot 1$	1.6	1.9	$\bigcirc 2$	$2 \cdot 4$	$2 \cdot 7$
	25	$1 \cdot 0$	14	1.7	$\bigcirc \cdot 1$	2.4	2.7	$3 \cdot 1$	$3 \cdot 1$
	30	1%	1.6	2.0	25	$\bigcirc 9$	$3 \cdot 3$	$3 \cdot 7$	$4 \cdot 1$
	35	$1 \cdot 1$	1.9	$\bigcirc 4$	$\bigcirc 9$	$3 \cdot 3$	$3 \cdot 8$. 4.3	4.8
	40	$1 \cdot 6$	2.2	$\bigcirc 7$	$3 \cdot 3$	3.8	$4 \cdot 4$	4.9	$5 \cdot 4$
	15	$1 \cdot 8$	$\bigcirc 4$	$3 \cdot 1$	$3 \cdot 7$	$4 \cdot 3$	4.9	$5 \cdot 5$	$6 \cdot 1$
	50	$\bigcirc 0$	2.7	$3 \cdot 4$	$4 \cdot 1$	$4 \cdot 8$	54	$6 \cdot 1$	6.8
	55	-2	3.0	$3 \cdot 7$	4.5	$5 \cdot 2$	6.0	6.7	75
		2.4	$3 \cdot 2$	$4 \cdot 1$	4.9	5.7	6.5	T-3	S:2
$3 \frac{1}{2}$ inches.	5	02	0%	0.3	0.4	04	0.5	0.5	0.6
	10	$0 \cdot 4$	$0 \cdot 5$	0.6	0.7	0.8	$0 \cdot 9$	$1 \cdot 1$	$1 \cdot 2$
	15	0.5	0.7	0.9	$1 \cdot 1$	$1 \cdot 2$	1.4	1%	1.8
	20	0.7	0.9	$1 \sim$	$1 \cdot 1$	1.6	1.9	$2 \cdot 1$	$\bigcirc \cdot 3$
	25	0.9	1.2	1.5	$1 \cdot 3$	$2 \cdot 1$	$2 \cdot 4$	$2 \cdot 7$	2.9
	30	$1 \cdot 1$	$1 \cdot 1$	1.7	$2 \cdot 1$	2.5	2.8	8-	3.5
	35	$1 \cdot 2$	1.6	$\bigcirc 0$	25	2.9	3.3	$8 \cdot 7$	$4 \cdot 1$
	40	3.4	1.9	2.3	2.8	$8: 3$	3.8	$4 \cdot 2$	$4 \cdot 7$
	45	$1 \cdot 6$	$2 \cdot 1$	$2 \cdot 6$	3.2	$3 \cdot 7$	$4 \cdot 3$	4.8	$5 \cdot 3$
	50	1.8	$\bigcirc 1$	2.9	3\%	$4 \cdot 1$	$4 \cdot 7$	$5 \cdot 3$	5.9
	55	1.9	$2 \cdot 6$	$3 \because$	89	45	$5 \cdot 2$	$5 \cdot 8$	6.5
	60	$2 \cdot 1$	$2 \cdot 8$	35	4%	4.9	56	$0 \cdot 1$	70
$3 \frac{3}{\text { anches. }}$					$0 \cdot 3$	0.1	$0 \pm$	$0 \cdot 5$	0.5
	10	$0 \cdot 3$	0.1	0\%	0.6	0.7	08	0.9	1.0
	15	0.5	$0 \cdot 6$	0.8	0.9	$1 \cdot 1$	1 12	$1 \cdot 1$	1\%
	29	00	0.8	1.0	12	1.16	1.6	1.8	$\because 0$
	2.5	$0 \cdot 8$	1.0	$1: 3$	1.5	1\%	$\bigcirc \cdot 1$	$\bigcirc 3$	20
	:3)	0.9	1	1\%	1.8	$\bigcirc 1$	2.5	-	$3 \cdot 1$
	35	$1 \cdot 1$	17	1.8	$\because 1$	2.5	29	3×2	36
	$41)$	1.2	1%	$\bigcirc 0$	$\bigcirc 5$	29	38	37	$1 \cdot 1$
	4.5	14	$1 \cdot 8$	2%	2.5	$3 \times$	37	. $1 \cdot 1$	40
	50	1%	$\because 1$	26	31	8.6	$4 \cdot 1$		51
	55	1.7	23	$\bigcirc \cdot 8$	$\because 4$	39	15	$5 \cdot 1$	56
	(10)	1.8	25	$\because 1$	$3 \cdot 7$	43	19	5.5	6.1
4 inches.	5	01	0.2	192	${ }^{1} \cdot 3$	$0: 3$	$0 \cdot 1$	$1 \cdot 1$	0.5
	11	03	0.1	05	15	06	07	$1 \cdot \mathrm{~s}$	(1.9)
	15	$0 \cdot 1$	0%	0.7	0.8	0.9	$1 \cdot 1$	122	1.4
	21	0.5	07	119	$1 \cdot 1$	13	11	1*	1 s
	? 5	0.7	0.9	11	14.	$1 \cdot 6$	18	\because	$\because 3$
	81	0.8	$1 \cdot 1$	14	16	19	$\because 2$	2.1	2.7
	35	09	$1 \cdot 3$	1%	1.4	\because	25	-	$8 \cdot 2$
	49	$1 \cdot 1$	14	15	$\because 2$	25	29	2	
	45	1.2	1 \%	ご)	$\because \cdot 1$	$\because \mathrm{S}$	$\because \because$	34	41
	50	$1 \cdot 1$	$1 \cdot 8$	$\because:$	27	32	:3	41	45
	55	1%	$\because 0$	$\because 5$	80	8%	40	45	50
	C, 1	1%	2.2	27	8:2	$3 \times$	48	4.4	6.

[^6]Of the several cloments of the friction of locomotive engincs.-After having examined the resistance offered by the loads to be moved, it will be proper also to make known the passive resistance or friction of the movers which we have to employ; for it is only the surplus of their power over and above what is necessary to propel themsclves, that these movers can apply to the drawing of burdens.

While a locomotive engine is performing the traction of a train, it evidently requires:-1st, a certain force to make the train advance, or to overcome the resistance of all the loaded carriages; and 2 dly , another force to propel itself by overcoming its own friction. It is this second force, that which causes the engine to move, which represents the friction of the engine; whereas the first is the resistance of the load, and the union of the two efforts constitutes the total foree applied by the mover.
The friction of a locomotive engine is then the force it expends to maintain itself in motion on the rails. But that force must clearly vary according to the weight or resistance of the load which the cugine draws. In effect, the greater that weight, the greater also will be the pressure it causes on the axes of rotation, and ou the divers moving parts of the apparatus; and as the friction is always in proportion to the pressure, it follows that the friction which takes place at these points, must augment with the load. Hence the friction of the engine, which is nothing more than the force resulting from the union of these different frictions, must equally increase with the load.

Thus we find a difference between the friction of an engine unloaded, and that of the same engine loaded. The value of the first is found to be 15 lbs . per ton of their weight, and of the second, $\cdot 137 \mathrm{lbs}$. additional per pound of traction in the case of uncoupled driving-wheels, and 215 lbs . per pound of traction in the case of engines with wheels coupled.

It will readily be conceived, however, that it must vary some with the constrnction and state of every engine.

With reference to the manner in which the additional friction of engines ought to be calculated, we have to bear in mind that it is to be reckoned on every pound of the total resistance exerted against the motion; that is to say, the resistance caused by the friction of the wagons, that of gravity, and that of the atmosphere, must first be calculated, and on the sum of these the additional frietion of the engine is to be taken at the rate already indicated.

Of the total resistance on the piston, resulting from the divers partial resistances just enumerated.We have just estimated successively the divers resistances which oppose the motion of the engine. It is necessary now to seek the definitive resistance which results from them united, per square inch or per unit of surface of the area of the piston.

The resistances which we have hitherto considered are-the resistance of the air, the friction of the wagons, the gravity, the friction of the engines, and the resistance arising from the blast-pipe. But we must here add, besides, the atmospheric pressure; for the engines under consideration being highpressure engines, it follows that the opposite face of the piston necessarily supports, like every other body in communication with the atmosphere, a certain pressure due to the elasticity of the atmospheric air.

Thus, the definitive resistance exerted against the piston consists of six resistances, which are-the friction of the wagons, the resistance of the air, the gravity of the train, the friction of the engine, the atmospheric pressure, and the pressure caused by the blast-pipe. Of these six resistances, the last two act immediately and directly on the piston. They must therefore be mored at the velocity of the piston itself; but it is not so with the other four. In an engine, the pressures exerted on different points by the same force, are in the inverse ratio of the relocities of those points. Here the engine and its train must be mored at a velocity greater than that of the piston, in the proportion of the circumference of the wheel, to twice the length of the stroke. The intensity of the pressure exerted by the resistance of the load, the air, the engine, and the gravity, is then increased by its transmission to the piston, in the above ratio of the velocity of the wheel to that of the piston.

Consequently, if M express the number of tons gross which compose the total load, that is to say, including the weight of the tender-carriage of the engine, and k the number of pounds requisite to draw me ton on a railway,
will be the resistance, in pounds, resulting from the friction of the wagons which carry the load. If as the same time we call g the gravity of 1 ton on the inclined plane to be traversed by the engine, and if m represent the weight of the engine, in tons,

$$
g(M+m)
$$

will be the resistance, in pounds, produced by the gravity of the total mass, train and engine; so that, according as the motion takes place in ascending or in descending, the definitive resistance arising from friction and gravity will be

$$
k M \pm g(M+m)=(k \pm g) M \pm g m .
$$

Similarly, if we express by $u v^{2}$ the resistance, in pounds, exerted by the air against the train, at the relocity v of the engine,

$$
(k \pm g) M \pm g m+u v^{2}
$$

rill be the resistance opposed to the motion of the engine by the friction, the gravity, and the shock of the air.

If, again, F represent the friction of the unloaded engive, expressed also in pounds, and δ its additional friction, measured as a fraction of the resistance, as has been already indicated, we see that

$$
F+\delta\left[(k \pm g) M \pm g m+u v^{2}\right]
$$

will be the total friction of the engine at the moment when it draws the resistance

$$
(k \pm g) M_{-1} g m+u v^{2}
$$

Consequently

$$
(1+\delta)\left[(k \pm g) \mathrm{M}_{ \pm g m}+u v^{2}\right]+\mathrm{F}
$$

will be the total re-istance opposed to the progression, along the rails, by the engine and its train.
As this force produces on the piston a resistance augmented in the ratio of the circumference of the wheel to twice the stroke of the piston, if D express the diameter of the wheel, l the length of the stroke, and π the ratio of the circumference to the diameter,

$$
(1+\delta)\left[(k \pm g) M \pm g m+u v^{2}\right] \frac{\pi \mathrm{D}}{2 l}+\frac{\pi \mathrm{D} \mathrm{~F}}{2 l}
$$

will be the resistance on the piston, caused by that force, that is to say, caused by the resistance of the warons, the gravity, the air, and the friction of the engine.

This resistance is that which is exerted on the totality of the area of the pistons. But representing by d the diameter of the cylinders, $\frac{1}{2} \pi d^{2}$ will be the area of the two pistons. Whence

$$
\frac{(1+\delta)\left[(k \pm g) \mathrm{M} \pm g m+u v^{2}\right] \frac{\pi \mathrm{D}}{2 l}+\frac{\pi \mathrm{DF}}{2 l}}{\frac{1}{2 \pi} d^{2}},
$$

or, simplifying,

$$
(1+\delta)\left[(k \pm g) \mathrm{M} \pm g m+u v^{2}\right] \frac{\mathrm{D}}{d^{2} l}+\frac{\mathrm{DF}}{d^{2} l},
$$

will be the same force, divided according to the unit of surface of the piston.
Adding to this the atmospheric pressure p, and the pressure caused by the blast-pipe $p^{\prime} v$, which are already measured per unit of surface, we shall have, in fine, for the total resistance R exerted on the piston,

$$
\mathrm{R}=(1+\delta)\left[(k \pm g) \mathrm{M} \pm g m+u v^{2}\right] \frac{\mathrm{D}}{d^{2} l}+\frac{\mathrm{DF}}{d^{2} l}+p+p^{\prime} \imath^{\prime}
$$

In this expression, the quantity of represents the gravity on the plane to be traversed by the train; if the plane be horizontal instead of inclined, we shall have $g=0$. The weights λI and m of the train and the engine are expressed in tons gross; the quantity k, which is the friction of the wagons per ton, is equal to 6 lbs : ; the ralue of $\delta \cdot \mathrm{is} \cdot 137$ or 1 , for engines with uncoupled wheels; the relocity v of the engine is expresed in miles per hour; in fine, according as the dimensions D, l and d are expressed in inches or in feet, and the forces u, p and p^{\prime}, in pounds per square inch, or in pounds per square foot, the value K which will result from the calculation will be the resisting pressure on the piston, expreseed likewi-e in pounds per square inch, or in pounds per square foot.

Applying this calculation to a train of 9 wagons and a tender, weighing 50 tons gross, and drawn at the velocity of 20 miles per hour, up a plane inclined $\frac{1}{50}$, by an engine with two cylinders of 11 inchedianeter, stroke of the piston 16 inches, propelling wheels 5 feet, not coupled, weight 8 tons, friction 101 Has, blast pipe 2.25 jnches in diameter; and referring, for the resistance of the air, to what has been -aill above, the proceeding will be ats fullows:
$511 \times 5=800 \mathrm{lb}=$. Frietion of the wagons, in pounds, or value of km .
$\therefore 2(1) \times 5=0$ on $11 \mathrm{~s}=$. Gravity of the total mass, train and engine, or value of $g(\mathrm{M}+\mathrm{m})$.
19411% Resi-tance of the air agrainst an effective surface of 180 square feet, at the velocity of 20 miles per hour or value of $u v^{2}$.
$751 \mathrm{ll}=$. Resistance of the train, or $(k+g) \mathrm{M}+g m+u v^{2}$.
$751 \times 1.137=5: 7 \mathrm{lb} \%$. Resistance of the train, inchating the additional friction which it prodaces 1 m the encime, or $\left.\quad(1+\delta)[k+g) M+g m+u c^{2}.\right]$
+101 llss. Friction of the unlomeded eugine, or F .
961 lbs. Tutal resistance to the promeresive motion of the engine, or value of the term

$$
(1+\delta)\left[(k+y) M+y m+u v^{2}\right]+\mathrm{F} .
$$

On the other hand, we have
$3.1116 \times 60 \mathrm{in}=145 \%$ Cireumfernace of the whe 1 , expresed in inches, or $\pi 1$).
$\because \times 16$ in $=32$ bouble the struke of the pintom expressed in inches, or $2 l$
$\frac{1525}{82}=5.9$ Ratio of the velocitics of the wheel and the piaton, or $\pi \frac{1)}{\because 2}$
Thus,
$961 \times 50=56,50 \mathrm{lb}$. . We-istance produced on the pivton, or vatue of the term

$$
(1+\delta)\left[(k+g) M+g m+u v^{2}\right] \frac{\pi \mathrm{I})}{2} l+\frac{\mathrm{F} \pi \mathrm{~V}}{2 l} .
$$

Again,
$\frac{3 \cdot 1 \cdot 116 \times 11^{2}}{2}=190$ Area of the two pistund, in spmere inches, or $\frac{1}{d} \pi d^{2}$.

Consequently, we obtain in fine
$\frac{5670}{190}=29.8 \mathrm{lbs}$. Abore-mentioned resistance, portioned per square ineh of the surface of the
piston.

Were it desired to know that resistance per square foot, it would suffice to multiply the last result by 144, that is to say, the pressure required would be 6912 lbs . per square foot, which number would have been obtained direetly, if instead of expressing the area of the piston in square inches, and the partial pressures in pounds per square inch, these measures had been referred to the square foot as unit on sarface.
This example shows what is to be understood by the different quantities contained in the formula, and how each of them ought to be introduced into the calculation.

To know the evaporating power of which a given engine is capable, it suffices to measure the number of square feet composing its total heating surface, without distinction between the firc-box and the tubes, and then to multiply that number by the vaporization which each square foot of surface is capable of producing. It is then the latter quantity which we must now seek to determine; but, as we have seen that the vaporization produced per unit of surface varies with the velocity of the motion, it is necessary to specify at the same time the veloeity at which we wish to mensure the vaporization.

We find that in certain engines the vaporization per square foot of heating surface was 198 cubic foot, at the velocity of 18.15 miles per hour. On the other hand, we know that the vaporization varies in the dircet ratio of the fourth roots of the velocitins. We may then deduee from thence, that at the velocity of 20 miles per hour, the vaporization of those engines will be

$$
\cdot 198\left(\frac{20}{18 \cdot 15}\right)^{\frac{1}{4}}=203 \text { cubic foot of water per square foot of heating surface. }
$$

Operating in the same manner for the two following series, we obtain, for the velocity of 20 miles per hour, the determinations of the following table:

Experiments on the vaporization of locomotive engines, per unit of total heating surfuce of their boiter.

Number of the series.	Average velocity of the engine in miles per hour.	Vaporization per hour and per sq. loot of total heating surface, at the preceding velocity.	Vaporization per hour and per sq. foot of total heating surface, at the velocity of 20 miles per hotur.
	Miles.	Cubic foot.	Cubic foot.
2 d ,	$18 \cdot 15$	-198	-203
3d,	$20 \cdot 13$	-200	$\cdots 200$
4 th ,	8.99	-172	-210
5 th,	$15 \div 6$	-194	-208
			Mean......205

Thus, from these experiments, it appears that at the relocity of 20 miles per hour, the vaporization of locomotives may be valued at '205, or, in round numbers, at a cubie foot of water per hour, per square foot of total heating surface of their boiler; and it appears also that the different engines and different velocities lead to numbers almost identical, which tends to confirm the valuatiou we have just obtained.

This determination is, as we have said, suitable to the velocity of 20 miles per hour ; but it is easy to deduce from it that which would take place at any other velocity, by multiplying by the fourth root of the ratio betwcen the given veloeity and the velocity of 20 miles.

It must, however, be observed, with respect to these determinations, that they are strictly suitable only to boilers constructed in proportions not very different from those used in the experiments; that is to say, according to what has been explained above, that the heating surface of the fire-box ought not to be under a tenth of the total heating surface of the boiler, and the orifice of the blast-pipe not much larger than we had it in our experiments, aecording to the adopted practice. Were any notable change made in this respeet, were the fuel of an inferior quality, or the engine materially different in ennstruction from what we have described, there would be grounds for a new determination of the vaporization.

In fise, we will again add, that the numbers obtained above indieate rather the consumption of water of the boiler, than the real vaporization produced; for we shall presently see, that out of the total water thus expended by the engine, there is a portion whieh is drawn into the eylinders, mixed with the steam, but without being itself raporized. Consequently, to obtain the real raporization of the engine, it will be necessary to take account of this circumstance, as we shall do further on.

Of the loss of steam which takes place by the safety-valves, during the work of locomotive cngines.Among loeomotive engines there are a great number which are subject to a continual loss of steam by the safety-valves. This effect arises from the engine being designedly eonstructed with an excess of
power; that is to say, that according to the production of steam which takes place in its boiler, the engine could draw its regular load at a greater velocity than it is allowed to do. The result is, that te prevent the engige from acquiring too great a velocity, it becomes necessary partially to close the regulator, that is, to diminish the pasage of the steam, till no more euters the eylinder than the quantity necessary to produce the desired velocity. Then the surplus accmulating iu the boiler, at last raises the safety-valve and escapes into the atmozphere. When this loss takes place only on the regulator being somewhat closed, it is but a proof, as we have said, of a surplus of power which the engino holds in reaerve. But if it takes place more or less under all circumstances, then it depends on the steam-ways being too narrow, and is consequently a defect in the engine; in either cave, however, it is necessary to obtain a valuation of this loss.

There is yet another caze in which engines are subject to a loss of stean by the valves; but this luss is owing to a different cause from the preceding, and exhibits itself much more abundantly; it is when the engine ascends a steep acclivity, with an apparently moderate load, or when it ascends a moderate inclination, with a very heavy load. At these moments the valves are always seen to emit an enor mous quantity of steam. The reason is that, as soon as the engine reaches the inclined plane, its load instantly becomes extremely heary, on account of the surplus of traction required by the gravity on the plane. It has been shomn, in effect, that on a plane inclined $\frac{1}{1} \frac{1}{0}$, crery ton produces, by grarity alone, a resistance equal to that of 3.7 tons on a level. It happens therefore, at that moment, that the re-si-tance of the train may become greater than the actual pressure of the safety-valve. Consequently the steam, instead of flowing by the eylinder, driving back the piston, mises the safety-valve, and escapes into the atmosphere. If then the passage which the steam thus opens for itself were sufficient for its total efflux, no more steam would pass through the eylinder, and the engine would inevitably stop.

Morcover, since, supposing even the steam in the eylinder at the same pressure as in the boiler, which is the most farorable supposition we can make, it still happens that the volume of steam expended by the cylinder is less than the volume of steam gencrated in the boiler, a part of the water must have been carried from the boiler to the cylinder, in its liquid state; and the comparison between the quantity of water consumed by the boiler and that which, in the state of vapor, corresponds to the velocity of the piston, shows that the quantity of water really courerted into steam, is to the total quantity of water consumed, in the ratio of the numbers

$$
\frac{11827}{15641}=\cdot 6 .
$$

This, in this experiment, we see that net of the water expended by the boiler was carried into the eylinders without being reduced to steam, or that the ral vaporization of the engine was $\% 6$ of the tutal ecater expended.

The results which have just been presented above show that the quantity of water carried away with the steam, varies in different engines, and ought to be determined for each separately ; but as in taking the means between the different experiments, that loss is found to amount to $-\underline{t}$ of the total vaporization of the boiler, this proportion may be adopted approximatively for engines that have not been directly submitted to experiment in this respect; that is to say, in order to have the effective raporization of a locomotise, the total vaporization of which its boiler is capable must be first measured; from the result must be subtracted, if necessary, the loss, cither accidental or permanent, which may be observed at the sufety-values, and the remainder must be multiplied by the fraction 76 . Thus will be obtained the volume of water which passes into the cylinder, in the real state of steam, and produces the motion of the pisten.

We have reason then to think, from the different experiments cited above, that with coke for fuel, and with the other circumstances of the work and the construction of the engines, the most alvantarcous ratio to establish between the total heating surface and that of the fire-box would be nearly that of lo to 1: since for a leas proportion there would be incrense in the expenditure of fuel, withont inerease of vaporization; and for a greater proportion, on the contrary, there would be reduction in the vaporization of the engine per unit of surface, which would ineur the necessity of a larger boiler, and eonseguently uf a greater weight, which it is important to a void.

In tine, to arrive at a general conelusion from the experiments which have been made ia order to the determination of this question, it appears that, according to the proportion of the fire box to the total heatine surfice, the consumption of fucl in locomotive engines varies from 9.2 to $11: 3$ mill $11 / 7$ 1munde per coubic foret uf totel water vaporized: so that it may, on an average, be valucd nt 10.7 pounds of coke jer cubic foot of total vaporization, or its equivalent in other fuel.

Fint.-To find the quantity of fuct necessary for the engine per ton per mile, the loat the engine is to draw must previously be given: in multiplying the given load by the velonity the emgine will nsimme with that load, the product will immediately make linown, in tons conveyod one mile per hour, the uneful thete of the engine. Dividing then the comsomption of fuel of the engine per hour the the weful - freet produred in the same time, the quotiont wall give definitively the quantity of frel which wall low consumed by the engme per ton per mife in drawing the given had.

 only the qumetions relative to the first cate.

Whan an engine is alrealy constructerl, and all ita danemonn may be directly mensured, the fulluw. ing problane may prewent thenselves:

1. Theletemine the velocity then ef bine will a-mume with a tixed load.

2 'Todetermine the lond it will draw at a desired velocity;
3. Tu determine the useful effect it will produce at a desired velocity, or with a fixed load.

And this last problem may itself be expressed under ten different forms-namely, to find successively
The useful effect of the engine in tons drawn one mile;
The useful effect expressed in horse-power;
The quantity of fuel necessary per ton per mile;
The quantity of water necessary per ton per mile;
The useful effeet produced per pound of fuel consumed;
The useful effect produced per cubic foot of water vaporized ;
The consumption of fuel which produces one-horse power ;
The consumption of water which produces one-horse power ;
The horse-power produced per pound of fuel;
The horse-power produced per cubic foot of water vaporized.
Moroover, as two cases are necessarily to be distinguished in the work of the engines, namely, the case in which they work with a load or velocity indefinite, and that in which they work with the load or velocity which produces the maximum of useful effect, there will yet occur in this respect a new series of questions, namely:

1. To determine the velocity at which the engine will produce its maximum of useful effect ;
2. To determine the load corresponding to the production of the maximum of useful effect ;
3. To determine the maximum of useful effeet that the engine can produce.

And this last problem may be expressed under the ten different forms which we have indieated abore.

Of the velocity of the engine with a given load.-Suppose, in effect, that a load of 50 tons gross, tender included, be drawn up a plane inclined $\frac{1}{5}$, by an engine with 2 cylinders 11 inches in diameter, stroke of the piston 16 inches, wheels 5 feet, friction 103 pounds, total pressure of the steam in the boiler 65 pounds, or effective pressure 50 pounds per square inch, and, finally, vaporizing power 60 cubic feet of water per hour, or 1 cubic foot per minute.

The total resistance opposed by that load to the motion of the piston is 48 pounds per square inel, when the velocity is 20 miles per hour. If, then, we admit that the engine will come near enough to that velocity, for the valuation which we have mæde of the resistance of the air and the pressure caused by the blast-pipe, in the calculation, not to be very far from the truth, we must conclude that, during the uniform or permanent motion of the engine with that load, the pressure of the steam, during its action in the cylinder, will likewise be 48 pounds per square inch.
Now, the quantity of water consumed by the boiler amounts to 60 cubic feet of water per hour, and we have shown in treating of the vaporization that out of that mass of water 75-100ths only, on an average, are really converted into steam, and that the rest is merely carried away with the steam into the cylinders, but in a liquid state. The effective vaporization of the engine is, then, firstly,
$\cdot 75 \times 60=45$ cubic feet per hour, or
.75 cubic foot per minute.

This water is first transformed, in the boiler, into steam at the total pressure of 65 pounds per square inch; but on passing into the cylinders it acquires the pressure of 48 pounds per square inch, and we know that, in this change, the steam remains always at the maximum density for its temperature. Its volume may then be determined by the table, which we have already given, on the volume of the steam formed under different pressures. According to this table, the volume of the steam formed under the total pressure of 48 pounds per square inch, is 573 times that of the water which produced it. Hence the quantity of water effectively vaporized per minute in the boiler, will form, during its passage through the cylinders, a volume of steam expressed by
$573 \times 75=430$ cubic feet.
On the other hand, the area of each cylinder is 95 square inches, or in square feet that area is represented by - 66 square foot; and the stroke of the piston is 16 inches, or 1.33 foot. Whence the capacity of each cylinder traversed by the piston is

-88 cubie foot

But besides the portion traversed by the piston there still exists, at each end of each cylinder, a vacant space called the clcarance of the cylinder, which is necessarily filled with steam at each stroke. The capacity of this vacant space, represented by an equivalent portion of the cylinder, and steam-ways included, is usually $1-20$ th of the part of the cylinder traversed by the piston. The real capacity, therefore, which is filled with steam at each stroke of the piston, is

$$
88 \times \frac{21}{20}=924 \text { cubic foot. }
$$

Consequently the number of strokes of the piston which the engine will give per minute, by reason of its effective vaporization, will necessarily be

$$
\frac{430}{924}=465 .
$$

Now, each time the wheel makes one revolution the engine gives two strokes of the piston in each of its two cylinders; and the diameter of the wheel is 5 feet, which makes 15.71 feet in circumference. Therefore, at every four strokes of the piston the engine advances $15 \% 1$ feet; that is to say, its velocity, in feet per minute, will be

$$
\frac{465}{4} \times 15 \cdot 71=1822 \text { feet. }
$$

Finally, as one mile contains 5280 feet, and one hour contains 60 minutes, the definitive velocity of the engiue, in miles per hour, will be

$$
\frac{60}{5250} \times 1822=20 \% 1 \text { miles }
$$

Thus we see that the above raporization will necessarily produce a velocity of 20.7 miles per hour for the engine; that is to say, a locomotive engine with the given proportions may, if in good order, and with a mell-stucked fire, draw a load of 50 tuns gross, tender ineluded, up a plane inclined $\frac{1}{305}$, at the velocity of 20.7 miles per hour.

With regard to the relocity which we have just obtained, we must add that if the engine suffers besides a loss of steam by the safety-valve, which takes place in a great number of locomotive engines, there will then be a corresponding loss on the effective raporization; and consequently the definitivo velocity of the engine will be reduced in a corresponding proportion. For instance, if the engine be liable to a loss of of its vaporization in full activity, its definitive velocity, in the case above mentioned, will become
$.95 \times 20.71=19.67$ miles per hour.
The calculation will be performed in the same manner for every other load and for every other engine. Thus, in general,
M, Representing the number of tons of the load, tender included;
m, The weight of the engine, in tons;
g, The gravity, in pounds, of one ton on the plane the engine has to traverse; this gravity being nuli for the case of a horizontal plane;
k, The friction of the wagons per ton, expressed in pounds;
v, The velocity of the engine, in miles per hour;
$p^{\prime}, 2$, The pressure against the piston, arising from the aetion ρf the blast-pipe, expressel in pounds per equare foot;
F, The friction of the engine, in pounds ;
δ, Its additional friction, measured as a fraction of the resistance;
D , The diameter of the propelling wheels of the engine, in feet;
d, The diameter of the cylinder, in feet;
l, The length of the stroke of the piston, in fect;
c, The clearance of the cylinder, represented by an equivalent portion of the stroke of the piston, and consequently in feet;
1, The total or absolute pressure of the steam in the boiler, in pounds per square foot;
p, The atmospheric pressure, expressed in pounds per square foot; fiually,
S', The effective raporization of the engine, in cubic feet of water per hour, at the velocity knomn on miknown of the motion;

$$
\mathrm{R}=(1+\delta)\left[(k \pm g) \mathrm{M} \pm g m+u v^{2}\right] \frac{\mathrm{D}}{d^{2} l}+\frac{\mathrm{D} \mathrm{~F}}{d^{2} l}+p+p^{\prime} v^{\prime}
$$

will be the pressure of the steam per unit of surface in the cylinder.
On the other hand, if we express by μ the relative volume of the steam generated under the pressure R , a relative volume which will be found in the tables given, p .230 , since S is the volune of water vaporized per hour in the engine, it follows that

$$
\mu \mathrm{S}
$$

will be the corresponding volume of the steam under the pressure R; that is to say, during its action in the cylinders.

But, expressing by π the ratio of the circuinference to the diameter, the eapracity of each eylinder - which is traversed ly the piston, has for its measure

$$
\frac{\ddagger}{1} \pi d^{2} l ;
$$

and the clearance of the cylinder offers, besides, a capacity of

$$
\ddagger \pi d^{2} c .
$$

Therefore the totality of the space filled with steam at each stroke, in each eylinder, has for its expression

$$
\frac{1}{2} \pi d^{2}(l+c) .
$$

Conserpucntly the number of strokes of the piston corresponding to the volume of steam expented $\mu \mathrm{S}$, will be

$$
\overline{f \pi d^{2}(l+c)}
$$

But, while each piston performs 2 strukes, that is, at every expenditure of 1 cylimbers-full of stean, the engine alvances 1 turn of the wheel, that is to say, a space represented by

π I).

Therefore the velocity of the engine, in feet per hour, will be cxpres-ent by the above number of strukes, divided by 4 and multiplied by $\pi \mathrm{D}$; that is to sayy, the velocity will he

$$
r=\frac{\mu N}{d^{2}} \cdot \frac{1}{l+i}
$$

And finally, ns 1 mile contains 5230 feet, the velocity of the enfine expressed in miles per hour, will he

$$
\begin{equation*}
v=\frac{1}{5280} \cdot \frac{\mu \mathrm{~S}}{d^{2}} \cdot \frac{11}{l+c} \tag{1}
\end{equation*}
$$

This expression will make known the velocity required, on substituting, for ench of the lettere, tho valud suitable to it in the engine convilured.

As it has been shown that the relative volume of the steam under the pressure R, may be ex. pressed by

$$
\frac{1}{n+q \mathrm{R}},
$$

it is plain that, instead of seeking the relative rolume μ in the table which we have given, its value may be represented by the expression

$$
\mu=\frac{1}{n+q \mathrm{R}}=\frac{1}{n+q\left\{(+\delta)\left[(k \pm g) \mathrm{M} \pm g m+u v^{2}\right] \frac{\mathrm{D}}{d^{2} l}+\frac{\mathrm{D} \mathrm{~F}}{d^{2} l}+p+p^{\prime} v\right\}}
$$

and consequently the preceding expression of the velocity of the engine may equally be written under the form

$$
\begin{equation*}
v=\frac{1}{5280} \cdot \frac{1}{q} \cdot \frac{l}{l+c} \cdot \frac{\mathrm{~S}}{(1+\delta)\left[(k \pm g) \mathrm{M} \pm g m+u v^{2}\right]+\mathrm{F}+\frac{d^{2} l}{\mathrm{D}}\left(\frac{n}{q}+p+p^{\prime} v\right)} \tag{1bis}
\end{equation*}
$$

Such then will be the general expression of the relocity of the engine, in miles per hour ; an expression in which all is known from measures taken on the engine, even the raporization S , which results from the extent of heating surface.

Making use of this formula to find the velocities corresponding to divers loads of the engine, or to divers falues of M, attention must be paid never to suppose, for M, a load capable of producing on the piston a resistance greater than the pressure of the steam in the boiler, because it is evident that the resistance would then exceed the power, and the motion could not take place. Nor can M be supposed of a value less than the weight of the tender, which is the minimum load an engine can hare to draw. Beyond these two limits the solutions given by the formula would evidently cease to suit the problem.

Practical formulce for calculating the effects of locomotive cngines, and examples of their application.We have hitherto presented the formulie proper for calculating the effects of the engines, under a form completely algebraical, that is to say, leaving in them all the quantities represented by letters, without excepting the constant quantities whose values have been already determined in former pages. But we now purpose to reduce these formulæ to their most simple practical form; in order to effect which, it will be proper to replace in them, as far as may be, the letters, by the numerical values which they represent.
The letters which have a constant value in all cases and for all the eugines are-
$p_{\text {; }}$, Friction of the wagons, which we have found equal to 6 lbs . per ton;
p, Atmospheric pressure, the value of which is 2118 lbs per square foot;
n, Constant quantity relative to the volume of the steam, its value being 0001421 , when the pressure is measured in pounds per square foot;
q, Factor relative to the volume of the steam, equal to 00000023 when the pressure is expressed in pounds per square foot;
c, Clearance of the cylinder, which may be taken generally at $\frac{1}{20}$ of the useful stroke of the piston, which

$$
\text { gives } \frac{l}{l+c}=\frac{20}{21}
$$

These values being constant for all engines, may be introduced permanently into the equations. Substituting them therefore for the respective letters, and effecting the calculation as much as possible, we obtain the following formulæ, which are quite prepared for practical applications.

In order to avoid recurring to another page of the work, we will first repeat here the signification of all the letters which subsist in these formulæ.
M, Load of the engine, in tons gross, tender included;
m, Weight of the engine, in tons;
C, Weight of the tender, in tons;
g. Gravity, in pounds, of 1 ton placed on the inclined plane to be traversed by the engine. If the inelination of the plane be $\frac{1}{e}$, that gravity will have for its value, in pounds, $\frac{2240}{e}$; and if the plane be horizontal, the gravity will be equal to zero;
v, Velocity of the engine, expressed in miles per hour;
$u v^{2}$, Resistance of the air agaiust the train, at the velocity v, a resistance expressed in pounds;
$p^{\prime} v$, Pressure owing to the blast-pipe, expressed in pounds per square foot;
F, Friction of the engine, in pounds;
i, Additional friction of the engine, measured as a fraction of the resistance, namely: 14 for engines with uncoupled wheels, and 22 for those with coupled whecls;
D, Diameter of the propelling wheels, in feet;
d, Dinmeter of the cylinder, in feet;
i, Stroke of the piston, in feet;
P , Total or absolute pressure of the steam in the boiler, in pounds per square foot;
S, Effective vaporization of the engine, in cubic feet of water per hour. It varies according to the engimes, but may, on an average, be valued at 75 of the total or gross vaporization, when there is no blowing of steam at the valves;
S', Total vaporization of the boiler, at the velocity of the motion, in cubic feet of water per hour
N , Consumption of coke in the fire-box, in pounds per hour.
practical formulae for calcclatixg tue effects of locomotive engines.
General case.

$$
v=\frac{784 \mathrm{~S}}{(1+\delta)\left[(6 \pm g) \mathrm{M} \pm g m+\imath v^{2}\right]+\mathrm{F}+\frac{d^{2} l}{\mathrm{D}}\left(2736+p^{\prime} u^{\prime}\right)}=
$$

Velocity of the engine, in miles per hour.

$$
\mathrm{M}=\frac{1}{(1+\delta)}[6 \pm g)\left[5 \frac{\mathrm{~S}}{v}-\frac{d^{2} l}{\mathrm{D}}\left(2736+p^{\prime} v^{v}\right)-\mathrm{F}\right]-\frac{1}{6 \pm g}\left(u v^{2} \pm g m\right)=
$$

Load of the engine, in tons gross, tender included.

$$
\text { ч. E................ }=\mathrm{M} v=
$$

Useful effect, in tons gross, drawn 1 mile per hour, tender included.

$$
\text { u. E. in HP............. }=\frac{M v}{62.5}=
$$

Useful effect, in horse-power.

$$
\text { Q. co. pr. t. pr. } M \ldots \ldots \ldots \ldots \ldots=\frac{\mathrm{N}}{\mathrm{M} v-\mathrm{C} v}=
$$

Quantity of coke in pounds, per ton gross drawn 1 mile, tender not included.

$$
\text { Q. } \pi a . \text { pr.t. pr. m.............. }=\frac{\mathrm{S}^{\prime}}{\mathrm{Jv}-\mathrm{C} v}=
$$

Quantity of water, in cubic feet, per ton gross drawn 1 mile, tencler not included.

$$
\text { u. E. } 1 \mathrm{lb} . \operatorname{co} \ldots \ldots \ldots \ldots \ldots=\frac{\mathrm{II} v}{\mathrm{~V}}=
$$

Useful effect produced per pound of coke, in tons gross drawn 1 mile, tender included.

$$
\text { u. E. } 1 \mathrm{ft}, \mathrm{wa} \ldots \ldots \ldots \ldots \ldots=\frac{\mathrm{I} v}{\mathrm{~s}^{\prime}}=
$$

Useful effect produced per cubic foot of total vaporization, in tons gross drawn 1 mile, tender included

$$
\text { Q. co. fr. } 1 \text { II P............... }=\frac{62.5 \mathrm{~N}}{31 v}=
$$

Quantity of coke in pounds, which produces the effect of 1 horse.

$$
\text { Q. wa. fr. } 1 \mathrm{HP} \ldots \ldots \ldots \ldots \ldots \ldots=\frac{62.5 \mathrm{~S}}{M v}=
$$

Quantity of water, in cubic feet, which produces the effect of 1 horse.

$$
\text { u. E. } 1 \mathrm{lb} \text {. co. in II } \mathrm{P}^{\prime} \ldots \ldots \ldots \ldots \ldots=\frac{\mathrm{M} v}{62.5 \mathrm{~N}}=
$$

Useful effect, in horse-power, produced per pound of coke.

$$
\text { u. E. } 1 \mathrm{ft} \text {. wa. in } \mathrm{HI} \mathrm{P}^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots=\frac{\mathrm{M} v}{62.5 \mathrm{~S}^{\prime}}=
$$

Useful effect, in horse-power, produced per cubic foot of total vaporization.
Cuse of maximum usejell effict.

$$
v^{\prime}=\frac{1 \cdot 804}{1 \cdot 121+\cdot 00231^{1}} \cdot \frac{1)}{l} \cdot \frac{\mathrm{~S}}{d^{2}}=
$$

Velocity of maximum useful effect, in miles per lour.

$$
M^{\prime}=\frac{d^{2} l}{\left.\left(1+\dot{c}^{\prime}\right)(\dot{b} \pm g) 1\right)}\left(\mathrm{P}-2118-\mu^{\prime} v^{\prime}\right)-\frac{1}{\dot{b}^{ \pm}!}\left(\frac{\mathrm{F}}{1+j}+u u^{\prime 2} \pm g m\right)=
$$

Saximum load of the engine, in tons grosa, tender ineluded.

Maximum useful effect, in tons gross drawn 1 mile per hour, tender included.
That there may be ne misunderstanding as to the manner of expressing the divers quantition containend in the formula, mor on the manner of performing the ealeulation, we will here give nu example or two with some detnil.

 Feet in diancter, nut coupled, friction IU3 lbs, weight \& thas, blant pipe $2.3: 3$ inches in diameter, fobal or

know what velocity it will attain with a train of 10 wagons weighing 56 tons, tender included, which is the same as 50 tons without tender.

1st. As the motion takes place on a horizontal plane, we have $g=0$; and since the wheels of the engine are not coupled, we have $\delta=\cdot 14=\frac{1}{7}$. Moreover, from the ratio which we have found between the total and the effective vaporization of the engine, the value of the latter, at 20 mites per hour, is
$S=75 \times 65=48.75$ cubic feet of water per hour ;
and in fine, from the proportions of the engine, we have

$$
\frac{d^{2} l}{D}=\overline{917}^{2} \times \frac{1.33}{5}=\cdot 2237
$$

This done, to find what velocity the engine will acquire in drawing the train of 56 tons, we will first suppose that it may be, approximatively, 23 miles per hour, and we shall then have, for the pressure in the blast-pipe, 4 lbs . per square inch, or $p^{\prime} v=576 \mathrm{lbs}$. per square foot. As the effective surface presented to the shock of the air, valued according to the mode already explained, is $\Sigma=70+10 \times 12=190$ square feet, the resistance of the air at the velocity of 23 miles per hour, will be $u v^{2}=270$.

Thus the value of v, taken without supposing that the vaporization changes with the velocity, will be

$$
v=\frac{784 \times 48 \cdot 75}{1 \cdot 14(6 \times 56+270)+103+2237(2736+576)}=24.88
$$

This first essay of calculation gives then 24.88 miles per hour, for the velocity of the engine, and we conclude from it that the two terms $u v^{2}$ and $p^{\prime} v$ which we have calculated on the supposition of $v=23$, have not been valued in a manner sufficiently exact, but that the true velocity is comprised between 24.88 and 23 miles.

Trial then might be made of $v=24$, and this value would be found to satisfy the problem, when the variation which the raporization undergoes with the velocity of the motion is neglected. Thus approximatively we might hold to this result; but if it be desired to calculate with greater accuracy, it will be proper to introduce the increase of vaporization due to the velocity.
For this purpose, as the increase of vaporization will have the effect of increasing the result of the calculation, we will try a number greater than 24 , as $v=25$, for instance. Supposing then this datum for the valuation of the variable quantities, we shall have

$$
\begin{aligned}
\mathrm{S} & =51 \cdot 55, \\
p^{\prime} v & =630, \\
u v^{2} & =319 ;
\end{aligned}
$$

and resolving the equation with these values we find

$$
v=25 \cdot 19 .
$$

Consequently, in fine, taking a mean between 25 and $25 \cdot 19$, we have, for the definitive velocity sought, $v=25.10$ miles per hour.
Such then will be the velocity which the engine will assume, when drawing on a level a train of 56 tons, tender included.

2 d . To continue this example of the application of the formulæ, let it be required to find what will be the velocity of the maximum useful effect of the engine.
In order to effect this, we will replace in the equation proper to that problem, the pressure P in the boiler by its value $\mathrm{P}=65 \times 144=9360 \mathrm{lbs}$. per square foot; and supposing first that the vaporization of the engine will undergo no change notwithstanding the reduction of velocity, we obtain the result

$$
v^{\prime}=\frac{1 \cdot 804 \times 48.75}{1.421+0023 \times 9360} \cdot \frac{1}{-2237}=17 \cdot 13
$$

This would then be the velocity sought, if the vaporization of the engine were mariable; but as the diminution of velocity will lower the vaporization, which is such as we have supposed it, only at the relocity of 20 miles per bour, we will try whether the velocity of 16 miles will suit the formula. Then the effective vaporization of the engine, reduced in the proportion of the fourth roots of the velocities, will become 46.10 cubic feet of water per hour, and the formula resolved according to this supposition, will give

$$
v^{\prime}=16.20 \text { miles per hour. }
$$

This is therefore the relocity suitable to the production of the maximum useful effect required.
3 d . In fine, to obtain the load corresponding to the maximum of useful effect, we recur to the proper equation, which is

$$
\mathrm{M}^{\prime}=\frac{d^{2} l}{\mathrm{D}} \cdot \frac{1}{6(1+\delta)}\left(\mathrm{P}-2118-p^{\prime} v^{\prime}\right)-\frac{\mathrm{F}}{6(1+\delta)}-\frac{u v^{\prime 2}}{6} ;
$$

and first calculating in this all the terms, except the last, we have as a result 208.46 .
It remains then to subtract from this number the value of $\frac{u v^{\prime 2}}{6}$, to conclude from it definitively the required value of the load. As the value of the term $\frac{u v^{\prime 2}}{6}$ depends on the number of carriages in the train, which will itself be known only by the definitive solution of the problem, we will again in this place follow the method of approximations. Supposing the load to be of about 160 tons, the train will consist of 31 carriages besides the tender; thus the effective surfice offered to the shock of the air, will be

$$
\Sigma=70+33 \times 10=400 \text { square feet. }
$$

Consequently the resistance of the air, at the velocity found, of 16.20 miles per hour, will be $u v^{\prime 2}=25$? lbs., which gives

$$
\frac{u v^{\prime 2}}{c}=47.00
$$

substituting then this valuation in the formula, we obtain the result

$$
\mathrm{M}^{\prime}=208 \cdot 16-47 \cdot 00=101 \cdot 46
$$

Consequeutly the load of 161.5 tons, forming a train of sl carriages, besides the tender, will be the maximum load required.

4th. In fine, if it be desired to know the maximum welocity the engine is capable of attaining, whe? followed by its tender only, and without drawing any train, the proceeding will be as in the first cave but supposing the load to be of 6 tons only, and taking accusut of the increase of vaporization, accord. ing to the relocity, the result will be

$$
v=35.03 \text { miles per hour. }
$$

In this last case, the useful effect of the engine, tender not included, will be null.
From these detailed examples is seen how the calculation is to be performed in all the eases; but it must be remarked, that with the use of logarithms, these different trials present no sort of diffienlty, and that those who have once got the habit of these researches, guess immediately and at a glance, what numbers they ought to employ in the approximations, so that the apparent length of the calculation entirely disappears.

Collecting the results which we have just obtained, calculating moreover the useful effect of the engine, and expressing it under the different forms already indicated, we form the following Table:

Erjicts of a locomotive of GJ cubic feet of vaporization, with a load of 56 tons gross, on a level, torder inclule:-

I
(.................... $=56$ ton $*$ gross, tender included, (10 carria -3 and the tender;)

u. E. $=1411$ tons gross drawn 1 mile per hour, tender included;
u. E n in II P. $=23$ horses;
Q. co. pr. t. pr.m. $\ldots=47$ lb. per ton gross per mile, tender not included;
(2. wa. pr. t. pr.m. $\ldots=052$ cubic foot per ton gross per mile, tender not included;
u. E. 1 lb. co. $\ldots \ldots \ldots=0.36$ tons gross drawn 1 mile, tender included;
u. E. 1 ft wa. $=21.70$ tons gross drawn 1 mile, tender included.
2. co. fr. 1 II J. $=2 \overrightarrow{6} \cdot 50 \mathrm{lbs}$;
(2. wa. fr. 1 HP . $\ldots=2.550$ cubic feet $;$
u. E. 1 lb . co. in 1 II . $=03 \mathrm{~S}$ horse ;
u. E. 1 ft . wa. in 11 P. $=347$ horse.

Maxima efficts of the same engine.

$3 I^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots=161^{\circ} 5$ tons gross, tender included, (31 carriages and tender;)
$v^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .=16 \ldots$ miles per hour;
u. I., $\ldots \ldots \ldots \ldots \ldots . .$.

Q. co. 1r. t. pr. $m . \ldots=-21 \mathrm{lb}$. per ton gross per mile, tender not ineluded;
(2. wa. pr. t. pr. $\mathrm{m} . \ldots={ }^{0} 026$ cubie font per ton gross per mile, tender not included;
u. $\because .1 \mathrm{ll}$, co. $\ldots \ldots \ldots=4.3 \mathrm{~s}$ tons gross drawn 1 mile, tender included;
u. F. 1 ft . wa. $=10 \% \mathrm{~J}$ tons grosi drawn 1 mile, tender included;
(2. co. fr. $111 \mathrm{P} . \ldots \ldots=11.2 \mathrm{lb}=$
Q. wa. fr. 111 IP...... $=1.553$ cubic font;
u. E. 1 IH . co. in $11 \mathrm{l}^{\prime}$. $=0.0$ horse ;
u. … 1 ft . wa. in II P. $=641$ horse.

To give a second example of this calculation, we will suppoee the railway to have 7 feet of width of way, and seek what will be the velucity of the empines of medimn force, in neo on such a line, under the same cireumstances as we have ju-t examinel relatively to a railway of about 5 feet of width of was.

We will suppne then a locomotive of 120 cubic feet of vaporization, it the velocity of 25 milus pier hour, with the following proportions: cylimers, 16 inches or 117 fout in diameter; stroke of the pintun, 1 incheg or 1.53 foot; wheels, 8 feet in diameter, not coupled; weizht, is tenis; friction, 250 Ils. blast-pipe, $3 \cdot 11$ inches in diameter; total or aboulute presume in the lailer, al lba per spuare inch; and
 ower, by reason of the wilth of the way, we will take the surface of the largest waron of the tran at 100 square feet, the average surface of a wagon ut ${ }^{\circ} \mathrm{f}$ square feet, and the weight of the tember at lut tons.
 in drawing a train of 60 tons grose, tender included, which makes 50 tobs without the tember mind ater kards in drawing its maximun luad, we obtain the following results:

Effects of a locomotive of 120 cubic feet of vaporization, with a load of 60 tons gross, tender inchudad
$M \ldots \ldots \ldots \ldots \ldots \ldots \ldots=60$ tons gross, tender included, (7 carriages and the tender;)
$v \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=34 \cdot 75$ miles per hour ;
n. E. $. \ldots \ldots \ldots \ldots$.
u. E. in H P. $=33$ horses;
Q. co. pr. t. pr. n. ... $=60 \mathrm{lb}$. per ton gross per mile, tender not included;
Q. wa. pr. t. pr: m. $\ldots=.069$ cubic foot per ton gross per mile, tender not included;
ı. E. 1 lb. co. $\ldots \ldots . .=1.99$ ton gross drawn 1 mile, tender included;
u. E. 1 ft . wa. $=15 \cdot 38$ tons gross drawn 1 mile, tender included;
Q. co. fr. 1 H P. $\ldots \ldots=31 \cdot 48$ lbs.;
Q. Wa. fr. 1 H P. $\ldots .=3.597$ cubic feet;
u. E. 1 lb . co. in HP . $=032$ horse ;
u. E. 1 ft . wa. in HP. $=-278$ horse.

Maximu effects of the same engine.

$\mathrm{M}^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots=14$ tons gross, tender included, (20 carriages and the tender;)
$v^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots \ldots=2 . \ldots \ldots$ miles per hour
u. E. $=3756$ tons gross drawn 1 mile per hour, tender included;
u. E. in HP.......... $=60$ horses;
Q. co. pr.t. pr. m. $\ldots=30 \mathrm{lb}$. per ton gross per mile, tender not included;
Q. wa. pr. t. pr. m. $\ldots=-034$ cubic foot per ton gross per milc, tender not included;
u. E. 1 lb co. $\ldots \ldots \ldots=3.58$ tons gross drawn 1 mile, tender included;
u. E. 1 ft . wa. $\ldots \ldots \ldots$..... $=31 \cdot 30$ tons gross drawn 1 mile, tender included;
Q. co. fr. 1 HP $=17.47 \mathrm{lbs}$.;
Q. wa. fr. 1 H P. ... $=1.997$ cubic foot;
u. E. 1 lb . co. in H P. $={ }^{\circ} 057$ horse ;
u. E. 1 ft . wa. in $\mathrm{H} P .={ }^{\circ} 501$ horse.

The velocity of the same engine, drawing its tender alone, would be 43.28 miles per hour; which would be the maximum of velocity that this engine could attain.

It is visible, in these examples, that the above formulæ prescut no difficulty, and that it is merely necessary to preserve in them the homogeneity of the measures employed.

Practical formulce, to determine the proportions of locomotive engines, according to given conditions.We will here give, in their numerical form, all the formulæ which are essential for determining the proportions of the engives, according to given conditions. For the signification of the signs employed, we. refer to page 243 of this volume.

PRACTICAL FORMULE TO DETERMINE TIE PROPORTIONS OF LOCOMOTIVE ENGINES, NECESSARY TO PRODUCE GIVEN EFFECTS.

$$
\mathrm{S}=\frac{(1+\delta) v}{784}\left[(6 \pm g) \mathrm{M} \pm g m+u v^{2}+\frac{\mathrm{F}}{1+\delta}+\frac{1}{1+\delta} \cdot \frac{d^{2} l}{\mathrm{D}}\left(2736+r^{\prime} v\right)\right]=
$$

Total vaporization of the boiler, in cubic feet of water per hour.

$$
d^{2}=\frac{\mathrm{D}}{l} \cdot \frac{1+\delta}{2736+p^{\prime} v}\left[\frac{784}{1+\delta} \cdot \frac{\mathrm{S}}{v}-(6 \pm g) \mathrm{M} \mp g m-u v^{2}-\frac{\mathrm{F}}{1+\delta}\right]=
$$

Square of the diameter of the cylinder, in feet.

$$
l=\frac{\mathrm{D}}{d^{2}} \cdot \frac{1+\delta}{2736+p^{\prime} v}\left[\frac{784}{1+\delta} \cdot \frac{\mathrm{S}}{v}-(6 \pm g) M \mp g m-u v^{2}-\frac{\mathrm{F}}{1+\delta}\right]=
$$

Stroke of the piston, in fcet.

$$
\mathrm{D}=\frac{d^{2} l}{1+\delta} \cdot \frac{2736+p^{\prime} v}{\frac{784}{1+\delta} \cdot \frac{\mathrm{S}}{v}-(6 \pm g) \mathrm{M} \mp g m-u v^{2}-\frac{\mathrm{F}}{1+\delta}}=
$$

Diameter of the wheel, in feet.

$$
\mathrm{S}=\frac{1}{784} \cdot \frac{d^{2} l}{\mathrm{D}} \cdot v(618+\mathrm{P}) \doteq
$$

Total vaporization of the boiler, in cubic feet of water per hour.

$$
\mathrm{P}=(1+\delta) \frac{\mathrm{D}}{d^{2} l}\left[(6 \pm g) \mathrm{M} \pm g m+u v^{\prime 2}+\frac{\mathrm{F}}{1+\delta}\right]+2118+p^{\prime} v^{\prime}=
$$

Total or absolute pressure of the steam in the boiler, in pounds per square foot.

$$
\mathrm{P}=784 \frac{\mathrm{D}}{d^{2} l} \cdot \frac{\mathrm{~S}}{v^{\prime}}-618=
$$

Total or absolute pressure of the steam in the boiler, in pounds per square foot.

$$
d^{2}=784 \frac{\mathrm{D}}{l} \cdot \frac{\mathrm{~S}}{v^{\prime}} \cdot \frac{1}{618+\mathrm{P}}=
$$

Sruare of the diameter of the cylinder, in feet.

Stroke of the piston, in feet

$$
l=784 \frac{\mathrm{D}}{d^{2}} \cdot \frac{\mathrm{~S}}{v^{\prime}} \cdot \frac{1}{618+\mathrm{P}}=
$$

$$
\mathrm{D}=\frac{1}{78 \frac{1}{4}} \cdot d^{2} l \cdot \frac{v^{\prime}}{\mathrm{S}}(618+\mathrm{P})=
$$

Diameter of the wheel, in feet.

$$
d^{2}=(1+\delta) \frac{\mathrm{D}}{l} \cdot \frac{(6 \pm g) M^{\prime} \pm g m+u v^{\prime 2}+\frac{\mathrm{F}}{1+\delta}}{1^{\prime}-2115-p^{\prime} v^{\prime}}=
$$

Square of the diameter of the cylinder, in feet.

$$
l=(1+\delta) \frac{\mathrm{D}}{d^{2}} \cdot \frac{\left((\pm \pm) \mathrm{M}^{\prime} \pm g m+u v^{\prime 2}+\frac{\mathrm{F}}{1+\delta}\right.}{\mathrm{P}-2118-p^{\prime} v^{\prime}}=
$$

Stroke of the piston, in feet.

$$
\mathrm{D}=\frac{d^{2} l}{1+\delta} \cdot \frac{\mathrm{P}-2118-p^{\prime} v^{\prime}}{(6 \pm g) \mathrm{H}^{\prime} \pm g m+u v^{\prime 3}+\frac{\mathrm{F}}{1+\delta}}=
$$

Diameter of the wheel, in feet.
Of adhesion.-It has been observed, in the description of the engine, that the effort of the steam being applied to the wheel, the engine is precisely in the case of a carriage which is made to advance by pushing at the spokes. Thus, as in this action the only fulcrum of the mover is the adhesion of the wheel to the rails, if that adhesion were imsufficient, the foree of the steam rould indeed make the wheels turn; but these, slidieg on the rails instead of adhering to them, would turn without advancing, and the engine would remain on the same spot.

The heavier the train to be drawn, the more force the engine must eaploy, and the more resistance it must consequently meet with at the point on which it strains to effect the motion. It might then be feared that with trains of considerable weight, the engines would be mable to advance; nut that furce would be wanting in the mover itself, but in the fulcrum of the mover.

Adhesion being indispensable to the creation of the progressive motion, two conditions are requisite for an engine to be capable of drawing a given load: lst, the dimensions and proportions of the engine and its boiler must enable it to produce, by means of the steam, the necessary pressure on the pivton, Which constitutes the force applied by the engine; and 2d, the weight of the engine must be such as to cause a sufficient adhesion to the rails. These two conditions of force and weight should acend together; for, were there a great force of steam and a slight adhesion, the latter would limit the effect of the engine, and steam would be lost; and were there too much adhesive weight for the power of the engine, that weight would, during the motion, become a useless burden, since the limit of the load would then be inarked by the presure of the steam.

It is necessary therefure, after having determined the dimensions of the engines from the conditions which they are to fulfil, as has been done in the preeeding pages, to seek what ought to be their weight so as to enable them to draw the greatest load intended to be imposed on them during their werk. Thee enormous weight now given to locomotive eugines, generally causes this condition to be fultilled of itself. Six-wheel engines however require, in this respect, more attention than four-wheel engrines, because it often happens, on an uneven railray, that a six-wheel engine is wholly supported on its fom extreme wheel, whereas the midtle ones, which are the propelling wheele, being aecidentally situnted immediately above a luw part of the railway, scarcely touch the rail, and therefore have limt a ligh: athesion. In the best state of the rails the athe-ion which is the limit of the traction of an engine, may be taken at ! of the weight on the drwer, and it is mever less than ${ }_{g}=0$ in the wor-t state of the rail-, when they are greasy and dirty from the efliect of wet weather.

Fir the preceling calculations and formule we are indehted to Mr. lamhour, whose works on the
 and to which we refer for a more complete clucidation of the laws which govern the motion of this wom derfit mitchine.

Lexomotive engine and emele - The example which we have chasens for detailed illistration is the

 path-ion frame, and the mechanism hy which it is moved.

LOCOMOTIVE ENGINE.

trains, where a high rate of speed is required, railway travelling would be rendered comparatively safe by employing engines specially made and adapted for such purposes.

Enumeration of the figures.-Fig. 2601, a longitudinal clevation of the locomotive engine.
Fig. 2602, a general plan of the same.

Fig. 2603, a longitudinal elevation of the tender, showing the mode of its connection with the engine.
Fig. 2604, a general plan of the tender, in which are seen the cocks for regulating the supply of wate to the boiler, and the hand-wheel for working the brake apparatus.

The following four figures are sectional views.

Fig. 2605, a longitudinal section of the engine, showing the internal arrangements of the boiler, and the working parts of the engine.

Fig. 2600, a sectioual plan of the engine, with the cylindrical part of the Loiler removed, for the purpose of exhibiting the general arrangement of the working parts, and the construction of the tire-box:

Fig. 2607, a longitudinal section of the tender.
Fig. 2cos, a plan of the tender with the tank removed, anowing the construction of the framin's, dray. sorings, brake-geer, de.

The fullowing figurey represent emd clevations nud transerss sections of the engina
Fig. 2600, an elevation of the engine as recon at the fire low end.
Fig. © 610 , a transverse section throngh the fire bux.
Fig. 2611 , an clevation of the cmine as semen it the smoke twix chal.
Fig. 26le, a transver-e section throngh the amoke box. In thit view the cylindur to the it it in see timed throngh the ste:am pas-ire, while that to the right is muplosed to be cut through the diachange port and blast pipe.

The following figures represent detailed views, drawn to a larger scale, of such parts of the engine and tender as could not be fully shown in combination:
Fig. 2613, a transverse section of the steam regulator and chest; Fig. 2614, a longitudinal section of the same.
Fig. 2615, a plan of the piston, with the cover removed to show the packing.
Fig. 2616, a section of the piston through the lines 123.
Fig. 2617, a plan of the same, complete, with the cover and guards.
Fig. 2618, a plan of the piston-rod cross-head, with slide-blocks and projecting arm for working the feed-pump.

Fig. 2619, a side view of the same.
Fig. 2620, an end view of the same.
Fig. 2621, an clevation of the backward eccentric.
Fig. 2622, a plan of the same, showing the stud for working the expansion-geer:
Fig. 2623, a side view of the reversing or coupling link.
Fig. 2624, an edge view of the same, showing the stud by which the ralve is shifted into forward or back geer.

Fig. 20025, an eleration of the front end of the eccentric-rod.
Fig. 2626, a plan of the same.
Fig. 2627, a longitudinal section of the feecl pump, with the plunger, valves, dc.
Fig. 2628 , an end view of the same.

Fig. 2629, a plan of the double safety-ralve, with the seat; Fig. 26:0, a longitudinal section of the same.
Fig. 2631, an edge view of the driving-wheel, half in section, to show the mode of fixing the arms, tyre, de. In this view is also given part of the cranked axle, to show the relative positions of the crank, wheel, bearing, scc.

Fig. 2632, a transwerse section of the driving-wheel axle-box, and of part of the outer spring Eig 2633 , a longitudinal section of the same.
Fiy. 2631, a section of the suzpending link for adjusting the weight of the engine on the springs. Fig 2635 , a side eleration of the same.

Fig. 268f, a general devation of the thater brakegeer; Fis. 2637, a plan of the brakelever and oothed sector; Fis. 26 bis, the serew and link-nut fur the: tender brake.
Description of the cugine-The fire-bor- - The fint part of the thgine whith chans one atfention is the lire-bux. The form of fire-box whidh Mosera. Haw horn have adopted is clearly shown in the emel
 which in reatity forms part of the beiker, being tilled with water to about tiftern inchers from the top: mat the internat tire-box 13, placed within the other, and which contains the fuet for eromerating stemen. The intermat firedmex is made of copper, and tapere i sli hatly towardy the top, for the purperse of allow: ing the ghobules of stem which are firmed on its sides th: isecmed more freely. Jo revint the downard presture of the steam, the roof is streng themel by the strong mableah iron stays (" (: Lulted acons, and

 form, and the lateh it proviled with a chan for the grater convenioner of openine and thateme Fine

 the inside at some letce di-tance from it, to sate it from warping by the inte ity of the hat whthin
 V'or. $11-1.1$
to each other on a wrought-iron frame fixed to the under side of the fire-box, and a portion of thera marked d in the plan, is so arranged as to admit of their falling at one end on the removal of the pin which supports them. In this case the burning fuel drops into the ash-box D fixed below to receive it, and the combustion almost immediately ceases.

The boilcr.-As before remarked, the external fire-box A forms part of the boiler, communicating freely with it, and being, like it, filled with water to the proper height when the engine is in operation The boiler, properly so called, is marked E in the figures, and in the specimen now under notice consistz of a cylinder 11 feet 6 inches in length, and 3 feet $6{ }_{8}^{5}$ inches in diameter outside. It is trarersed throughout its length by 107 brass tubes eee, $2 \frac{1}{8}$ inches outside diameter, of No. 13 and 14 wire gage.

These tubes are inserted into the front plate of the internal fire-box, (called the tube-plate, which is made of a sheet of copper considerably thicker than the other plates of which the fire-box is composed, se as to afford a better bearing for the fixing of the tubes. At the front extremity of the boiler, they pass through a similar plate of iron, which forms the partition between the boiler and the smoke-box Into these plates the tubes are secured at both ends by riveting, and subsequently by strong steel ferrules accurately turned, and driven firmly into the interior of the tubes, so as to render them perfectly tight and free from leakage. The cylindrical form of the boiler renders lateral staying unnecessary, and the tubes themselves, at that part where they are situated, secure it against the pressure in a longitudinal direction; but for further safety, three strong malleable-iron stay-bolts fff traverse the whole length of the boiler, and are secured to it by round pins passing through brackets riveted to the front tube-plate, and to the back plate of the external fire-box. The whole boiler is covered externally with a coating of thick felt and with strips of wood, called the layging, or cleading, to prevent the radiation of heat, as well as to give greater symmetry of appearance.

The smoke-box.-The tubes cee all open into that part of the boiler called the smoke-box F, the purbure of which is to collect the gases evolved by the combustion of the fuel, and to transmit them through the chimney G into the air. In this compartment of the boiter are also placed the steam cylinders, and uther very important parts of the engine, to be hereafter described. The front plate of the smoke-box is furnished with large folding-doors $g g$, fitted air-tight to it, and provided with a handle, by which both dours are simultaneously shut and opened. These doors, which are distinetly shown in the end eleration, Fig. 2611, and in the scetion, Fig. 2605, serve to afford access for the insertion and cleaning of the tubes, as well as for the examination and repair of the parts of the engine referred to above.

The safcty-values and boiler mountings.-Although the efficient working of the engine requires that the boiler be capable of generating steam of a high elastic foree, it is yet essential to safety that the steam pressure be confined within certain limits. In order to insure this, the boiler is provided with
two safety-valves, h and i, both placed in one chest, (Fig. 2629,) fixed on the summit of the external fire Loox, and surrounded by a polished brass chimney H, of a form symmetrical with that of the large chimrey G. One of these ralves, marked i, which is of the kind called the lever safety-value, can be regulated to any required degree of pressure by the engine-driver, being furnished with a spring-balance, by which the amount of pressure is distinctly indicated. The other safetr-valve h is inaccessible, and it laaded by a spiral spring and screws, to such a pressure as may be considered safe, yet higher than tha engine is expected, under ordinary circumstances, to require.

To indicate the height at which the water stands in the boiler, and to emable the driver to keep it alwats at its proper level, a set of gage eocks and glass tube j, communieating with the water inside, are fixed at a eonvenient situation near the foot-phate. A graduated scale is fixed behind the ghass tube, and the required level may thus be maintained with considerable accuracy.

As a precantion against aceilent-, and to give notice of the approach of the engine, a steam whistlo I_{i} is attached to the tup of the fire box, and communicates with the steam within by a short pipe, provided with a stop eock. The internal construction of the whistle is such, that when the stup-coek is -pened, the stean rushing out with grat foree encounters the sharp edges of a species of invertel eup, therehy emitting a shill and very loud noise, which ean be heard at the distance of reveral miles.

Brhind, and at the lowent extromity of the fire-box, is situated the blone of cock I, by which the beriter may be emptied of water when required; mat, for the purpowe of cleansing it of the mee mulathan of whiment which is con tantly teins formad in it when the empine is in operation, it is provided wibs

2612, are secured when the engine is at work, by covers or doors bearing against the inside of the boiler and fixed each by a single bolt passing through a strong wrought-iron bridge bearing against the outside

The stcam-pipes and regulator-value.- The steam-chest or receiver I rises from the centre of tho eylindrieal part of the boiler, and is carried to a considerable height above it, in order that the mouth of the steam-pipe J, which opens into it, may be removed to as great a height as can conveniently be obtained, from the surface of the water in the boiler. The object of thus raising the open orifice of the steam-pipe is to prevent priming, that is, the ascent of water along with the steam, and its consequent flow through the steam-pipe into the cylinders, where its presence in any considerable quantity would produce the most serious inconveniences, besides the danger to which the boiler would be exposed by its rapid abstraction. As a further precaution against priming, Messrs. Hawthorn make use of a simple but very ingenious contrivance. This consists of a species of inverted cone m, Fig. 2605, made of shectiron, and riveted to the interior of the steam-chest, with an aperture in the centre just wide enough to allow the free ascent of the steam between it and the steam-pipe, which passes through it. The water in the boiler tends to prime chiefly where there is a surface of metal to which it may adhere; consequently, when, in rising up the sides of the steam-chest, it encounters the inverted cone m, its course is diverted downwards and towards the centre, where being unsupported it falls back into the boiler. Should any priming occur round the sides of the steam-pipe itself, the water is, in a somewhat analogous way, diverted by the bell-shaped mouth of the pipe, and returned into the boiler. The steam-receiver is surrounded by a polished brass dome, which, besides being highly ornamental to the engine, serves the very important purpose of diminishing the radiation of heat, by interposing a stratum of heated air between the steam-chest and the external atmosphere.

The steam-pipe J is made of copper, and that part of it which is inclosed within the boiler is 5 寻 inches internal diameter. It enters an orifice accurately bored and fitted to receive it, in the cast-iron regulator-valve chest K, which is bolted steam-tight to the exterior of the front tube-plate of the boiler. The valve-chest K incloses a regulator-valve n, of a new and improved form, which, as well as the chest itself, is shown on an colarged scale in Figs. 2613, 2614. It is formed of cast-iron, and has two projecting, faces accurately and smoothly turned, and of such form and dimensions as, when placed in the position shown in Fig. 2613, completely to cover the orifices of the two branch steam-pipes J J, whose faces are bored truly cylindrical, and of the same diameter as that of the faces of the valse. The distance between the contiguous edges of the two branch-pipes is somewhat greater than the breadth of the valve face, so that when turned round in cither direction, the orifices of both pipes may be fully opened. In the centre of rotation of the valve is an oblong hole, into which is fixed the correspondingly formed end of a long rod oo, traversing the whole length of the boiler, and passing steam-tight through a stuffingbox in the back plate of the fire-box. A long lever-handle p, is fixed to the outer extremity of this rod, and the engine-driver is thereby emabled, with the greatest ease and precision, to regulate the supply of steam to the cylinders. A small pipe q, screwed into the upper part of the regulator-valve chest, rises through the smoke-box, and is surmounted by a cup, and provided with a stop-cock, by which oil may be admitted into the interior of the valve-chest, for the lubrication of the working parts.

The two branch steam-pipes $J J$, as will be distinetly seen by reference to the transverse section, Fig. 2612, open a communication for the admission of steam from the regulator-valve chest K , into the valve casing or steam-chest L L. They are each $3 \frac{3}{4}$ inches internal diameter, and ther, as well as the dis-charge-pipes $N N$, are so disposed within the smoke box as not to obstruct the cleaning or replacing of the tubes.

The cylinders and valucs.-The slide-valves, with their expansion-slide frames, are placed between the cy! inders II M, in one steam-chest L, formed by the construction of the cylinders when bolted together, as will be seen by inspection of Fig. 2606. By this arrangement access is afforded to both ralres by the removal of only one cover, which seems to be an improvement over the other methods row in use.

The stean cylinders M M are 14 inches diameter, with a stroke of 21 inches. They are placed at a slight angle in the saroke box, for the purpose of being accommodated to the position of the cranked axle. The furm and dimensions of the pistons [${ }^{\prime} \mathrm{P}^{\prime}$, and the arracgement of the packing-rings a ' $a^{\prime \prime}$, are clearly indicated in Figs. 2615, 2616, 2617. The packing consists of two cast-iron rings $a^{\prime \prime} a^{\prime \prime}$ turned slighty eccentric, the thick sides in each being set diametrically opposite. At these points they are cut, and wedges $b^{\prime \prime} b^{\prime \prime}$ fitted accurately into the openings. These wedges are presed outwards by two springs $c^{\prime \prime} c^{\prime \prime}$, which are adjustable by set-screws. The whole is rendered compact and secure by the piston corer, $d^{\prime \prime}$, which is bolted to the body of the piston by four bults, guarded by the pieces $c^{\prime \prime} e^{\prime \prime}$, as shown in Fig. 2617.

The steam-ports $s s$, which communicate between each extremity of the cylinders and the slide-valves $r r$, are formed in the body of the cylinders, as are also the discharge-ports $N \mathcal{N}$, to the point where the blast-pipes are jointed to them. The discharge or blast pipes N N , ascend from eacls cylinder till they reach the bottom of the chimney, where they are formed into one pipe, in the orifice of which is phaced a cone or tapered plug t, so disposed and connected by means of a system of rods and levers $u u$, as to be capable of being raised or depressed by the engine-driver. By this means the orifice of the blastpipe may be enlarged or contracted at pleasure, thereby causing a greater or less draught to the fire. By this simple contrivance, the engine-driver is enabled to adapt the quantity of steam generated in the boiler to the exact amount required for the supply of the engine, and thereby to prevent the waste of fucl indicated by the steam blowing off at the safety-valse. For the further regulation of the draught when the engine is at rest, it is provided with a damper r, at the lower end of the chimney, worked, like the blast regulator, by a system of rods and levers, also marked $v r$, and terminating near the foot-plate.

The framing and connections of the engine.-Having described the internal arrangements of the engine, we now proceed to explain the parts by which motion is communicated to the wheels. These are most fully and clearly delineated, in combination, in our sectional elevation, Fig. 2605, and in the plan, Fig. 260b. Between the smoke-box and external fire-box, are bolted the four etrong malleable-iron beams OOO, called the inside jraming, and which, besides imparting great strength and rigidity to the whole structure, serse the purpose of giving fixed points of resistance for the bearings of the working parts. Of these, the first that claim our attention are the piston-rods I' P. These are made of steel, turned truly eylindrical and smooth, and of the diameter of $2 \frac{1}{8}$ inches; they are fixed into the piston with a cotter in the manner indicated in the detail, Figs. 2615 , 2616, and at the opposite extremity they arn terminated each by a cross-head (2 ', also attached to them by a cotter, Fig. 26ils. Un these cross-heads are bearings for the small ends of the connectingrods Q Q; and concentric, and of the same piece with these bearings, are prujecting arms into which the cast-iron guide-blucks w w, Figs. 2618 , 2619 , are fitted The gnide-blocks are formed with flanges, and are accurately fitted and ground into steel slide-bars, also marked $w u$, so as to work smoothly and steadily between then. These latter are set truly parallel and in the same inclined plane with the centre of the pinton-rods, and are firmly bolted to the framing-plates OO. By this means, the piston-rods are constrained to move in a rectilinear direction, and secured against any deflection, or undue strain arising from the continual cliange of pusition of the upposite ends of the connecting-rods, in obedience to the revolution of the cranks to which they are respectively attached.

The feed-pumps S S, for the supply of water to the boiler, are also set in the line of the piston-rods and their plungers partake of their motion, being each fixed to a small arm x, firmly secured by a cot. ter to the cross-head Ω^{\prime}. The pumps, the internal arrangement of which is fully shown in the lungitudinal section, Fig. 2027, are furmed of cast-iron, and are firmly fastened to the inside framing 0 , by bolts passing through the projecting flanges $f^{\prime \prime} f^{\prime \prime}$. The plungers $g^{\prime \prime}$ are of brass, two inches in diamcter, and at each stroke of the engine draw the water from the tender through the feed-pipe $\%$ and lower or s'action valve $h^{\prime \prime}$, forcing it, at the return stroke, through the upper or delivery valve $i^{\prime \prime}$, and along the pipe z, into the boiler. The valves are prevented from rising out of their seats by the rops $i^{\prime \prime} j^{\prime \prime}$, fixed into the covers of their respective chests, and so adjusted as to admit of their rising only ${ }^{\prime}$ the proper height for the due ingress and egrees of the water. At the point where the water is ilicharged into the boiler is placed a valve-box a^{\prime}, within which is a valve opening upwards, for the re tention of the water within the builer. A small cock, called the pet-cock, b^{\prime}, is fixed to the outside of - te feed-punp, and by means of a long slemer rod, the handle is brourht within reach of the engineIriver, so that he may be enabled to ascertain at my time whether the pump, is working efliciontly.

The connecting-rods (2 (2 are jointed, as we have before explained, to the cross-heads of the pistonroulw. The coupling is effected in the usual way, by means of strap, gibs, and cottera, properly seenared against relaxing or folling out. The opposite embls are attached in the same manmer to the crimks lR lh, upen the axle of the driving wheels. This cramked axte is made of the bent forgen irm, the cranks bein, cat out of the solid mass, and the one formed exactly at right anghes to the wher. In the earlier stages of the luconotive engine, it way usual to provide bearings for the cranked axle uph cacls of the framee O(), but this practice is now discontinued, and thereby the machinery is much simphtied, and the irsetum con-iderably reduced.

The ceentrics and valec gere.-This engine is provided with four eecentrice, two for the firnard,
 enlargeal beale in Fig. 2621, which gives a view of one of the backwad encratrics, but wheth, wh a slight diference, presents an aceurate type of the whole at . Finch eecontre is furmed in lalsea, for the purpase of embracine the axle, and theare are joined immovally fugether by the two

eccentric-reds $m^{\prime \prime} m^{\prime \prime}$, are bolted firmly to the brass strap surrounding the eccentrics; and their oppo site extremities, the form of which is shown in Fig. 2025, are connected together by a double link e Figs. 2023 and 2024, so formed as to admit of either forward or backward eccentric being thrown into geer with the valve-spindle, as may be required. The link which Messrs. Hawthorn empioy for coupling the ends of their eccentric-rods is of a new and improved construction, being so formed as to diminish as much as possible the frietion and wear upon the slide-rod pin and the eccentricrod ends. The reversing geer, or mechanism by which the engine-driver is enabled to propel the engine in either direction, consists of a system of rods and levers $f^{\prime} f^{\prime} f^{\prime}$, commencing with a stud upon the lower extremity of the coupling-link e^{\prime}, and terminating in a long handle, placed in in convenient position near the foot-plate. The motion of the eccentrics is communicated directly th the slide-valves by means of valve-spindles, working through oblong guides at the one extremity, to insure steadiness, and attached at their opposite ends to the slide-valves by nuts and jam-nuts, for the pnrpose of adjustment. We may here take occasion to remark, in anticipation of the subject upon which we are now about to enter, that by Messrs. Hawthorn's arrangement the ordinary slide-valves, when once properly adjusted, never require to be varied, to whatever extent the expansion geer may be employed.

Auxiliary expansion slide-frame and geering.-On each of the backward eccentrics is fixed a stud h^{\prime}, Fig. 2621, to which is jointed a rod, the other extremity of which is connected with the upper arm of a double lever, working upon a bearing fixed to one of the framing-beams O O. The lower arm of this lever is grooved throughout its length to receive a sliding-pin, atiached by a link to a system of rods and levers, terminating in a long handle, working on the same centre with the reversing handle. The sliding-pin is also connected by the rod to the hollow spindle which works through the stuffing-box of the valve-chest L, and incloses the spindle g of the ordinary slide-valve. It may here be remarked, as objections may be urged on the ground of expense, that the hollow spindle is not essentially requisite in this arrangement of valves; the spindle may be made solid, similar to the rod of the ordinary slide, and worked through a separate stuffing-box, either above or on one side of it; the mode represented is, however, the neatest and most compact arrangement.

The expansion slide-frame is worked by the hollow spindle, being attached to it by means of a slender malleable iron frame, embracing it on all sides, and screwed to the end of the hollow spindle. It is fitted to and works upon the same face as the ordinary slide-valve, but is of such a form as, when the frame is in motion, to overlap alternately the ends of the latter, (the back of the slide-valve being accurately planed and fitted for that purpose,) according to the amount of expansion required. This can be varied at pleasure by the mechanism above described; for when the sliding-pin which works in the grooved arm is brought into the centre of motion of that lever, it is obvious that no motion of the slide frame will ensue, and in this position, when it is not required to work expansively, the geering may be secured so as to obviate all unnecessary wear and tear. If, however, the handle be adranced into the position represented in the general elevation, Fig. 2601, the sliding-pin and rod l^{\prime}, which is attached to it, will then be forced downwards, as shown in Fig. 2605, and the slide-frame will partake of the motion communicated to the lever i^{\prime} by the backward eccentric, and the amount of this travel will obviously be in proportion to the distance at which the sliding-pin is set from the centre of motion. A graduated sector is placed at the foot-plate in view of the engine-driver, as shown in the general elovation, for the purpose of indicating minutely the amount of expansion, or at what part of the stroke the ateam is cut offi.

We may remark that Messrs. Hawthorn's expansion geer appears to possess advantages over many of the other methods hitherto employed. The first and perhaps the most important of these we have before adverted to, namely, the complete independence of the motion of the ordinary slide-valve from that of the expansion-frame, rendering any alteration of the latter, after it has been once properly adjusted, unnecessary, whatever amount of expansion may be employed. The admission and discharge of the steam are thus, in all cases, regular, and take place under the most advantageous circumstances attainable by the ordinary valre. Again, the movement communicated by the backward eccentric to the expansion-slide is so regulated, in relation to that of the ordinary valve, as to produce a very peculiar and advantageous effect in cutting off the steam quickly. Thus, the expansive principle may be employed to any extent, between that due to the cutting off of the steam at $\frac{1}{8}$ of the stroke of the piston, to that which would be produced by the action of the ordinary slide alone, without throttling, or what is technically called vire-drawing the steam, a defect so much complained of in most of the other modes of expansion hitherto in use. These theoretical advantages have been fully corroborated by the results of experience. Messrs. Hawthorn have successfully applied their expansion geering to the locomotives which they have supplied to ten different railways in England, and the saving of fuel effected by the use of it, in many cases, amounts to 30 per cent.

The wheels and outside framing.-The driving-whecls TT are firmly fixed to the cranked axle, the ends of which, produced beyond the bearings, carry the cranks and coupling-rods $o^{\prime} o^{\prime}$. The other extremities of these rods are connected by cranks of exactly the same dimensions with the axle of the fore-wheels U U. By thus connecting the driving and fore wheels, the amount of traction, or the surface upon the rails available for the propulsion of the engine, is greatly increased, which renders this species of engine peculiarly suitable for drawing merchandise or other heavy trains, at moderate speeds. The hind or trailing wheels V V, are situated under the fire-box, and the advantages of this dispesition have been already pointed out. The dimensions of all these wheels have also been already given, and the mode of their construction will be clearly understood by reference to Fig. 2631, which shows both external and sectional views of one of the driving-wheels, but which, as far as regards construction, may be taken as a type of the whole. The nave is of cast-iron, moulded and poured round the arms, which have been previously prepared with a dove-tail at their inner ends, for the purpose of giving additional security. The arms and rim are of the best forged iron, and the latter is accurately turned in the latim
after being welded together. The tyre, which is also of the best furged serip-irom, is bored internally to a slightly smaller diameter than the rim, and shronk on. It is then secured to the rim by a few rivets, and the whole turned accurately to the proper form and diameter.

As the whole weight of the engine rests upon the wheels, it may be expected to suffer from julting in passing over the irregularities of the rails. To obviate this as far as possible, the springs $p^{\prime} p^{\prime} p^{\prime}$ and $q^{\prime} q^{\prime} q^{\prime}$ are interposed, the former upon bearings in the outermost of the internal framings 00 , and that latter under the axle-boxes $r^{\prime} r^{\prime} r^{\prime}$, of the main external bearings. The springs marked ' $q^{\prime} q^{\prime}$, and the mode in which they are attached to the axle-boses and to the framing, are clearly represented in Figrs 2634 and 2635 . They are composed of thin layers of steel, gradually diminishing in length from the zentre to the extremities, and bound together by the connecting-hoop $o^{\prime \prime}$, sozured in its place by a smaly round pin passing through it and the stecl plates. The connecting-hoop is formed with a tail projectinf upwards into the lower portion of the axle-box, where it is fixed by a round pin $p^{\prime \prime}$ passing through if. The axle-box r, which is of cast-iron, fitted with bearings composed of a metallic alloy farorable for ne reduction of friction, slides up and down as the springs bend with the weight of the engine, retween the cast-iron axle-guides $q^{\prime \prime} q^{\prime \prime}$, which are accurately planed and fitted to receive it, and bolted firmly to the plates of the external framing. The axle-boxes are formed with a sort oi reservoir for oil or tallow, which is constantly supplied to the rubling surfaces by two small tubes and siphon-wicks. It may here be remarked, that the other rubbing parts of the engine are lubricated in the same manner. The mechanism by which the springs are attached to the external framing is shown in Fiys. 263.4, 2635. These parts are ealled the spring-links, and consist of a species of small cross-head $r^{\prime \prime}$, fitted with round pins for passing throngh the plates of the external framing, and with screwed studs attaclised by similar round pins to the ends of the springs $q^{\prime} q^{\prime}$. The nut $s^{\prime \prime}$ works into these screws, and by means of it the weight which it may be thought expedient to throw upor each spring may be accurately adjusted.
The external framing consists of two strong parallel beams \mathbb{W} W, extending somewhat beyond the engine at both ends, and connected in front by the wooden cross-beam or buffer-bar K, and behind by it similar team, on which rests the foot-plate I. These beams are firmly bound together at the corners by angular plates of iron bolted through each, and the weight of the boiler is supported upon them by the strong malleable iron brackets or stays $\mathcal{X} X \mathbb{X}$, riveted to the boilcr, and bolted through the beams W W. These latter are formed each of two parallel plates of iron, cut out into the form shown in the general elevation, with horns projecting downwards for the bearings of the wheels. Between each pair of plates a bean of well-seasoned oak is interposed, and the whole firmly bolted together.
To deaden the shoeks to which the engine is exposed, it is provided with buffers, s' s', fixed to and projecting in front of the buffer-bar Z. These buffers are a species of elastic cushions, formed of horsehair, surrounded by strong leather, and further strengthened by slender malleable iron hoops. Tis secure the engine against the effects of the wheels coming in contact with stones or other obstaclewhich may happen to be lying on the rails, it is furnished with strong malleable iron safe-guards $t^{\prime} t$ ', descending from the external framing to within a short distance of each rail, and so formed at the points as to turn aside any object with which they mar come into collision.

Any water whicls may happen to accumulate in the cylinders, whether from the priming of the boiler or the condensation of the steam, and which, mbless removed from time to time, would be very tetrimental to the working of the engine, is let off by means of the pipe and stop-coek u, communicating with the discharge prisiage of each cylinder.

Upon the front of the smoke-box, and towards the tup, is fixed a small bracket fur supporting the signal-lamp, v^{\prime}, by which notice is given at night of the approach of the engine and train.

As a precaution against accident to the engine-driver and his assistant, hand-rails $2 c^{\prime} 20^{\prime}$ are erected on cach side of the foot-plate Y, and these are continued along the whole length of the boiler, so that they may be enabled with comparative safety to walk round the engine, even when it is in rapid motion. The rods furming this latter part of the hand-rail are made hollow, and thas atherd a neat and compact guide and protection for the slender rods by which the blast regulator on one side, and the damper on the other, are worked.

When the engine is at rest, the steman which would otherwise esape at the safety-valve and he thrown to waste, is made available for the hating of the water in the temder. This is accomplished by means of the bent pipe x^{\prime}, by which a communication is made between the steam within the fire-box and the feed-pipe y, rand therely a considerable saving of fuel is fomed to be effected.

The connection of the engine and temder is male by means of the strong donkle link or drag-bar y. one end of which is secured by a strong pin to a bracket fixed under the foret phate of the engine, while the other is in a similar maner jointed th the drag springe of the temeter.
To atsint the engine-driver in rising intu his place on the foot-plate, the foot-steps $z^{\prime} z^{\prime}$ depend an each side of it to within an easy distance from the gromal.
Having thus minutely described the parta of wheh this engite is componed, and explamed the ir sev-
 mode of action. This is in every respect identiont with that of the ordinary high prosoure cosine, amb to those who have followed us in our previond descriptions will be perfectly intelligilde.

Description of the tender. - The tender is an invmiable cencomitant of the lemonotive emgine, amb na in it, as well ats in the engine, there is considurable rown for the dimplay of tantefut desigh and judnome arrangement, we have thought that. wh should romber our engravings moro intoresting and mote ncceptable by giving representations of both. The whter tank A A forms the primemplart at
 water for the supply of the boiler. It is madn with ol long rewes is for the receptum of the fuel. The floor a of this reeess is made with a slepre downwards from the thont of the tomer by
which arrangement the fuel is prevented from being thrown out by any jolting or shaking to which it may be subjected.

Towards the back of the tank it is surmounted by a pipe or opening C, by which water is introduced from the water-crane or other contrivance for that purpose. A wooden cover is fitted over this opening when not in use. At the same point are fixed the wooden tool-boxes D D for containing spanners and other implements which may be required for the engine. At the front of the tank, and on each side, are situated the cocks $b b$ for regulating the supply of water to the suction-pipes $c c$ communicating between the feed-pumps and the tender. These are connected to the feed-pipes $y y$ by means of leather hose screwed on to each by the union-joints $d d$, thus adnitting of a considerable amount of vibration or change of position of the pipes, without breaking the connection. The tank is secured to a strong wooden frame E E, forming the body of the tender, and strengthened by numerous cross-beans. Beyond this wooden framing, and on each side of it, the external iron framing-plates F F are fixed by bolts passing through short cross-beams of timber c ce abutting against both. The external framing-plates are made of a form symmetrical with those of the engine, as seen in the gencral elevations, Figs. 2601 and 2603 , and their purpose is to afford bearings for the reception of the axle-boxes $f f f$, which slide up and down in them in obedience to the action of the springs $g g g$.
The tender is supported upon six wheels G G G, of the same diameter as the trailing or hind wheels of the engine, and constructed in the manner already described in treating of the latter. The brake apparatus, which is shown on an cnlarged scale in Fig. 2636, consists of a train of mechanism by which a great amount of friction can be simultaneously produced upon the peripheries of the tender-wheels, for the purpose of reducing the momentum of the engine and train, when it is required to arrest the motion of the train. The hand-wheel h is fixed to the upper extremity of the vertical spindle H, working in a strong bearing attached to the tank. The lower portion of the spindle is formed into a serew, and works through the wrought-iron nut I, on which is forged a double link, jointed at its lower end to the brake-lever i. The latter has its centre of motion in the short shaft J, which works in strong bearings attached to the wooden frame, and carries the double-toothed sector j. Two longitudinal iron rods $k k$ extend the whole length of the tender, and a small portion of each towards the front extremity is formed into a rack, so adjusted as to work into the teeth of the sector j. The rods $k k$ are supported and guided in their motion by small rollers working in the wrought-iron guides $l l l$, and upon them are bolted the wooden brake-blocks $m \mathrm{~mm}$, by the contact of which with the exterior surface of the wheels the friction is produced. By this arrangement it is obvious that by screwing the vertical spindle H into the nut I, the latter will be drawn upwards, and carrying with it the lever i, the toothed sector j will be made to revolve upon its axis J, and consequently the rods $k k$ will be drawn each in the opposite direction to the other. Each whel will therefore be forcibly compressed between the brake-blocks $m \mathrm{~m}$, and the engine and train be proportionally retarded.

At the point where the engine is connected to the tender, the latter is provided with a system of springs, to deaden the effects of shocks from either direction. This consists of two springs set back to back, and connected together by a socket n, which receives the end of the drag-bar. The fore spring p comes into action when any force is applied tending to separate the engine from the tender, as in starting a train, and the hinder spring o when the force is applied in the opposite direction. Both springs are supported upon pieces of thin iron bolted between the beams of the wooden frame, and the extremittes of the spring o bear upon the two guide-pins $q q$.
For further security, in case of the ordinary connections failing, the safety-chains $r r$ are attached between the engine and tender.
For the accommodation of the engine-man and fireman, or stoker, the tender is furnished with footsteps $s s$, placed at an easy distance above the steps of the engine. By these arrangements, and with the assistance of the handles $t t$, the foot-plate is rendered easily accessible.

At the front of the tender a picce of boiler-plate u is fixed by hinges, for the purpose of forming a floor where the engine and tender are connected. At the other extremity of the tender the buffers $v v$, similar in construction and in situation to those formerly described, are fixed to the cross-beam of the wooden framing, for the purpose of deadening the shocks produced by the occasional irregularities of motion betreen the engine and the train. The drag-chain w, which is firmly secured to the same beam, forms the connecting link between the tender and the train.

Literal References to the Engine.

Λ, the external fire-box.
B, the internal fire-box.
C C, stays for strengthening the roof of the intermal fire-hox.
a a a stays between the external and internal fireboxes.
3, the fire-door.
$c c$, the fire-bars.
d, the movable portion of the fire-bars.
D , the ash-box.
E , the cylindrical part of the boiler.
oee, the tubes.
$f f$, longitudinal stays from the back of the fire-box to the front of the boiler
F , the smoke-box.
$a g$, the smoke-box doors.

G, the chimney.
H, a brass funnel for inclosing the safety-valres.
h, the spring safety-valve.
i, the lever safety-valve and spring-balance.
j, the water-gage, and gage-cocks.
\dot{k}, the steam-whistle.
l, the blow-off cock.
I, the steam-recciver.
m, the inverted cone for preventing priming.
$J J$, the steam-pipes.
K , the regulator valve-chest.
n, the regulator valve.
o, a rod connecting the regulator valve with
p, the handle for working it.
q, the oil-cup and pipe for lubricating the regulator valve.
L_{2}, the steam-chest of the cylinders.
$r r$, the slide-valves.
M II, the steam-eylinders.
: 8, the steam-ports.
$I N$, the discharge-ports and blast-pipes.
', the blast-regulator.
it u, handle, rods, and levers for working the blastregulator.
$v v$, the damper, with the handle, rods, and levers for working it.
O O, the inside framing of the engine.
$\mathrm{I}^{\prime \prime}$, the steam-piston.
$a^{\prime \prime} u^{\prime \prime}$, the packing-rings of the piston.
$b^{\prime \prime} b^{\prime \prime}$, wedges for tightening the packing.
$c^{\prime \prime} c^{\prime \prime}$, springs bearing on the back of the wedges $b^{\prime \prime} b^{\prime \prime}$.
$d^{\prime \prime}$, the piston-cover.
' e^{\prime}, guards for the bolts of the piston-cover.
a' 1 ', the piston-rods.
Q' Q', cross-heads for the piston-rods.
v_{0} ic, the cross-head slides.
$x x$, projecting-arms for working the feed-pumps.
Q Q, the conneeting-rods.
R , the cranked axle.
s S , the feed-pumps.
$f^{\prime \prime} f^{\prime \prime}$, flanges for bolting the feed-pumps to the inside framing.
$g^{\prime \prime} g^{\prime \prime}$, the plungers of the feed-pumps.
" ℓ ", lower or suction valve of the feed-pump.
$i^{\prime \prime}$, upper or delivery valve.
$j^{\prime \prime} j^{\prime \prime}$, stops for regulating the lift of the valses.
$y y$, the feed-pipes from the tender to the feedpumps.
$z z$, branch-pipes from the feed-pumps to the boiler.
$a^{\prime} a^{\prime}$, valre-boxes at the boiler.
$b^{\prime} b^{\prime}$, the pet-cocks and their handles.
$c^{\prime} e^{\prime}$, the forward eccentrics.
$d^{\prime} d^{\prime}$, the backward eccentries.
$k^{\prime \prime} k^{\prime \prime}$, bolts for connecting the halves of each eccentric.
$l^{\prime \prime} l^{\prime \prime}$, stecl pinching-serews for fixiny the eccentrics to the axle.
$m^{\prime \prime} n^{\prime \prime}$, the eccentric-rods.
$e^{\prime} e^{\prime}$, coupling links for the ends of the eccentricrods.
$f^{\prime} f^{\prime} f^{\prime}$, levers, shafts, and rods for working the re-versing-geer.
$g^{\prime} g^{\prime}$, the main steam-walve spindles.
$h^{\prime} h^{\prime}$, studs on the backward eccentrics fur working the expansion slide-frames.
$n^{\prime \prime} n^{\prime \prime}$, connecting-ruls between the studs $h^{\prime} h^{\prime}$ and
$i^{\prime} i^{\prime}$, the grooved arms for the variable expansion.
$j^{\prime} j^{\prime}$, links between the grooved arms and the lev. ers $k^{\prime} k^{\prime}$.
$k^{\prime} k^{\prime} k^{\prime}$, levers, shafts, and rods for regulating the expansion-geer.
$l^{\prime} l^{\prime}$, connecting-rods betreen the grooved arm $i^{\prime} i^{\prime}$, and
$m^{\prime} m^{\prime}$, the hollors spindles attached tu
$n^{\prime} n^{\prime}$, the expansion slide-frames.
T T, the driving-wheels.
$o^{\prime} o^{\prime}$, the outside cranks and coupling-rods.
$\mathrm{U} U$, the fore-wheels coupled to the driving. wheels.
$\mathrm{V} V$, the hind-wheels under the fire-box.
$p^{\prime} p^{\prime}$, springs for the inside bearings of the cranked axle.
$q^{\prime} q^{\prime}$, springs for the outside bearings of all the axles.
$o^{\prime \prime} o^{\prime \prime}$, comecting-hoop, for the outside springs of the cranked axle.
$r^{\prime} r^{\prime}$, the axle-boxes.
$p^{\prime \prime} p^{\prime \prime}$, pins for attaching the springs to the axleboxes.
$q^{\prime \prime} q^{\prime \prime}$, cast-iron guides for the axle-boxes.
$r^{\prime \prime} r^{\prime \prime}$, the spring-links.
$s^{\prime \prime} s^{\prime \prime}$, the nuts for adjusting the weight upon the springe.
W Wr, the external frame of the engine.
XX , stays from the external frame th tho boiler.
Y, the foot-plate. .
Z, the buffer-beam.
$s^{\prime} s^{\prime}$, the buffers.
$t^{\prime} t^{\prime}$, the safeguards.
$u^{\prime} u^{\prime}$, a cock and pipe for letting off water from the cylinders.
v^{\prime}, the signal-lamp.
wo w^{\prime}, the hand-railiner.
x^{\prime}, a pipe from the boiler for leating the water in the tender.
y^{\prime}, the drag-bar.
$z^{\prime} z^{\prime}$, the foot-steps.

Literal References to the Tinder.

A, The water-tank.
B, the recess for containing the cokr:.
a et, the tlow of the coke-box.
C, the" openins into the tank.

1) D, the towl boxes.
$b b$, the cocks for regulating the sulphly of water to the feed-pumps.
ce, water or suction pipes to the angine.
Id d, union-joints for conmecting the feed piges.
E. E, woorden frame of the tender.
ec, stays between the wooden and iron frames.
$f f$, the iron frame for receving the axlehoxus
fiff, the axle-boxes.
IIf, the springs.
(i) $;$ G, the wherls.

II, the vertieal spindle mud serew for workiner the brake:
4 , the hand-whed for the brake serew:

I, the nut and link for connecting the serew wath
i, the brake-lever.
J, the short shaft carrying the brake-lever, and
j, the double toothed sector, working into
$k k$, the longitudinal reds carrying the brakeblocks.
$l l$, supports fitted with rollers for guiding the rosh k k:
$m \mathrm{~m}$, the woondon brake-blucks.
n, kocket for comnecting the dray spring to the drac-bars.
op, the sprinere fur bufting and drawing.
7\%, bearings for the sprinig 0 .
$r r$, the safety-chains.
$3 x$, the frot steps.
tt, hamilles to uswint in riving to the fent plate.
u, in himgad plate between the engine and tender.
vi, butlow fire the temener.
v. drag chain of the tomber.
 The distinctive part of the engine und of Aneric an lenemotives in ginneral, is the tormard trath consist.
ing of two sets of wheels on one frame, the frame revolving on a centre-pin, which enables the machine to move more easily around corners; this form of engine is called the bogey in England.

The locomotive here shown is one of the earlier kind, with inside connection, and but one pair of drivers. At present in this country, engines with outside connections are thought to be safer, steadier and cheaper than inside, and are very generally adopted. The number of driving wheels is seldom lest than two pairs. Fig. 2638 is the side elevation of a locomotive as built by Rogers, Ketchum \& Grow

mer of Paterson, and may be taken as the type of the American locomotive. The earliest Americat locomotives were but copies of the English with slight adaptations, for the service required and fuel used but the later engines, as will be seen, are distinstive.
The valve-geer now mostly used is the link-motion, for description of which see Link-Motion.
The coal locomotives as built by Ross \& Winans of Baltimore, differ essentially from those of othel
makers. The freight engines are usually eight-wheeled engines, all connected; the fire-bos is extremely long and capacious. The fuel is let down through a hopper above the fire-box, the tender being twostoried, and the engincer is placed on the top of tho engine, immediately back of the stnoke-stack. Fur the results of experiments on these engines on the Reading Railroad see lionerr.

Coal engines, as bast by Perking of Alexandria, havo threo pairs of connected drivers and a torward sruck. The coal engines of other makers aro in f"neral mprenrnace sinilur to tho woul ungin, tho dif Qrenco being almost entirely in tho form of the boiler.

LOGARITHM. The logarithm of a number is the exponent of a power to which another given invariable number must be raised in order to produce the first number. Thus, in the common system of logarithms, in which the invariable number is 10 , the logarithm of 1000 is 3 , because 10 raised to the third power is 1000 . In general, if $a^{x}=y$, in which equation a is a given invariable number, then x is the logarithm of y. All absolute numbers, whether positive or negative, whole or fractional, may be produced by raising an invariable number to suitable powers. The invariable number is called the base of the system of logarithms: it may be any number whatever greater or less than unity; but having been once chosen, it must remain the same for the formation of all numbers in the same system. Whatever number may be selected for the base, the logarithm of the base is 1 , and the logarithm of 1 is 0 . In fact, if in the equation $a^{x}=y$ we make $x=1$, we shall have $a^{1}=a$, whence, by the definition, \log. $a=1$; and if we make $x=0$, we shall have $a^{0}=1$, whence $\log .1=0$.
These propertics of logarithms are of very great importance in facilitating the arithmetical operations of multiplication and division. For if a multiplication is to be effected, it is c:.ly necessary to take from the logarithmic tables the logarithns of the factors, and add them into one sum, which gives the logarithm of the required product; and on finding in the table the number corresponding to this new logarithm, the product itself is obtained. Thus by means of a table of logarithms the operation of multiplication is performed by simple addition. In like manner, if one number is to be divided by another, it is only necessary to subtract the logarithm of the divisor from that of the dividend, and to find in the table the number corresponding to this difference, which number is the quotient required. Thus, the quotient of a division is obtained by simple subtraction.

Logarithms apply with equal advantage to the formation of powers and extraction of roots. Let y be a number to be raised to the power m, (m being any number, whole or fractional, positive or negative.) As before, we have $y=a^{x}$; and, on raising both sides of the equation to the power $m, y^{\mathrm{m}}=a^{\mathrm{m}} x$: whence, by the definition, $\log \cdot y^{\mathrm{m}}=m x=m \log . y$; that is, the logarithm of the power of a number is equal to the product of the logarithm of the number by the exponent of the power.
If in the equation of $\log \cdot y^{\mathrm{m}}=m \log . y$ we make $m=\frac{1}{n}$, we shall have $\log \cdot \frac{1}{y^{n}}($ or $\log . \sqrt{ } y)=\frac{1}{n} \log$. y; that is to say, the logarithm of any root of a number is equal to the logarithm of the number divided by the index of the root.
From these two last results it is obvious that by means of a table of logarithms numbers may be raised to any power by simple multiplication, and that the roots of numbers may be extracted by sim. ple division.
When a table of logarithms has been calculated for any given base, it is easy to find by means of it any other system of logarithms corresponding to a different base. Thus, supposing a system of logarithms has been calculated of which the base is a, or, which is the same thing, that the value of x has been found for every different value of y in the equation $a^{x}=y$, and that it is required to construct another table, of which the base is b, or to find the values of v corresponding to every different value of y in the equation $b^{\circ}=y$, we may proceed as follows: Taking the logarithms of both members of this last equation from the table supposed already calculated, of which the base is a, and recollecting that $\log . b^{v}=v \log . b$, we have $v \log \cdot b=\log . y$; whence $v=\frac{\log \cdot y}{\log . b^{6}} . \quad$ But because $\mathrm{b}^{\mathrm{v}}=y$, it follows that v is the logarithni of y in the system of which the base is b; therefore, denoting the logarithms in this new system by L , we have $\mathrm{L} y=\frac{\log \cdot y}{\log . b}$. Hence it appears that, in order to find the logarithm of any given number y in the new system, it is only necessary to multiply its logarithm in the system already calculated by the constant number $\frac{1}{\log \cdot b}$. This constant number, by means of which we pass from the one table to the other, is called the modulus of the new table with reference to the old.
The logarithms of the particular system of which the modulus is 1, is called the Napierian system. But, as has been shown, whers the logarithms have been found in any one system, they may be transferred into those of any other system by means of a constant factor. In the common system the base is 10 , and the Napierian logarithm of any number is consequently transformed into the common logarithm of the same number by multiplying by the modulus $\frac{1}{\mathrm{~L} 10}$. This number, which is of great importance in the computation of the logarithmic tables, is found to be 0.4342944819 , \&c., the Napierian logarithm of 10 being 2.30258509 , \&c. It may also be remarked that this modulus 0.4342944819 is the ordinary logarithm of the base of the Napierian system; for, calling e this base, we shall have ${ }^{\text {L. } 10}$
$e^{10}=10$, whence, taking the ordinary logarithm of both sides of the equation $\mathrm{L} 10 \times \log \cdot e=\log .10=1$; therefore, $\log . e=\frac{1}{\text { L10 }}=0.4342914819$. On passing to numbers, we find $e=2.7182818284$.

The Napierian logarithms are sometimes called the natural logarithms, on account of the modulus of the system being unity; and, more frequently, hyperbolic logarithms, because they represent the arca of a rectangular hyperbola between its asymptotes, and on this account are of immense use in calcula tions connected with the stean-engine.

Logarithms being of constant use in calculations, the tables which have beon published are very numerous. The most complete are those of Vlacq, to ten decimals; but they are very scarce, and can with difficulty be procured. There is an edition of them by Vega, in 1797, also scarce. Gardincr's Logariilms, printed in 1742, in 4to, and another edition of then at Avignon, in France, in 1770, are to seven decimals. Callet's Logarithms, in 8 vo , like Gardiner's, contain the logarithmic sines, dro., for
every 10 seconds. Taylor's Logarithms, in 4to, and also Baguay's, have them to every second. Irutton's Logarithms, and Babbage's Logarithms of Numbers, are well known. The latter was carefnlly collated, and is very accurate and convenient. Hulsse's Sämmlung Mathematischer Tufiln (Sro. Leip;sig, 18 ± 0) deserres to be mentioned as a very useful collection. "The above (excepting Tlacq's and Vega's) are all to seven decimal figures; but for many purposes, logarithms to a less number ol decimals are sufficiently accurate. For navigation and surveying, tables to six fixgures are the most convenient, as they give, in general, the trigonometrical lines correct to single seconds. The best tables ol this kind are Farley's Tables of Six-figure Logarithms, (12mo, 1840.) For many auxiliary computationt in astronomy it is sufficient to have the logarithms to five places. The reprint of Lalande's F"ive-figure Tuble by the Useful Knowledge Society ($18 \mathrm{mon}, 1839$) is convenient, and may be relied on for accurary:

LOG, for steam-vessels. Fig. 2649 is a side view, and Fig. 2650 an end view of this instrument. A is a small wheel, 1 foot diameter, having ranes set at such an angle that, when let into the water, the action upon their inclined surfaces would cause the wheel to revolve once in passing the distance of two feet through the water. Upon the axis of the wheel is an endless screw a, into which works a small toothed wheel, haring 51 teeth. The instrument should be mounted on the low end of a stiff bar of wood, or other material, of such length as that the top end could be fastened by a joint or hinge b, to the side of a vessel, in conrenient proximity to a calin window, or to the deck. To the low end of the rod or bar a small line should be attached, c, the other end of which to be secured on the deck of the vessel. The use of this line would be to withdraw the instrument from the water when not required for observation, and to lash it horizontally out of the reach of the waves. When the line was released, the instrument should be su suspended as to fall perpendicularly into the water, and the bar sufficiently stiff to remain perpendicular, and resist the pressure of the water against its front edges, which, however, would be but tritling. The axis of the small toothed wheel should be inclosed in a tube in front of the bar on which the wheel is suspended, and prolonged to a short distance below the hinged joint; and upon the top end of it should be fixed an index c. to revolre on a dial-plate decimally divided. The wheel being constructed as before described, this index would make one revolution round the dial-plate in the time that the ressel passed 102 feet through the water, which is about the one-sixtieth part of a knot, or nautical mile.

If, therefore, an observer stood with a minuteglaw, (or seconds watch,) and turned the glass the moment the index was at \%ero upon the dial-plate, and noted the number of revolutions and parts made by the index durine the time the sand was moning out, he would have the rate at which the vessel passeil through the water, in knots and decimals, per hour.

LOGWOOD. A lard, compact wood, so heavy as to sink in water, of a fine grain, capable of being polished, and so durable as to be scarecly susecptible of decay. Its predominant color is red, tinged with oranfe, yellow, and black. It yidds its color both to spirituons and watery menstrua. Alcobol extracts it more readily and copiously than water. The color of its dye is a fine red, inclined a little to violet or purple, which left to itself, becomes yellowish, purple, and at length black. Acids turn it yellow, alkalies deepen the colur, and give it a purple or violet hue. A blue color is obtained from logwood, by mixing verdigris with it in the dye-bath. The great consmmption of logwoul is lur hacks, to which it gives a lustre and velvety east; it is also extensively used ats a red, purple, or black dye to becel, and various white woods. See Woons, Vamusns or:

LOOM, POW ERE. FHig. 2051 is a front clevation of a power loom for weaving printing gronla, as buila in the Lowell Machine Shop, Lowell, Mass.
lie. 65 s is the drivingent, showing pulley, geers, shipper, de.
Fig. 2655^{5} is a view of the other enel, showing the take-up motion.
A chonoter the cat iron ends, wheh, with the iron girts that are lolted between, con-titute the framework to which all other parts are attached.

Is is a cast-iron arch, which supperts the roll ower which the harnesses hatur.
CC C are the drivinf.jnilleys, one loose, the other fatt.
1), large geer or can shaft, driven by a geer on the erank-uhaft.

Fi, cams fir working the harnesses; F, c:th for throwint shtile.
G, lever for taking up the closh by "perating on the ratchet whed H. This lever is whinhed bey a arank motion attached to the emed of canmatate.

It, ratehet-wheel, operated ly liwer (a.
 up en this roll. This roll is drisen from I ly a latt.

L, Fig. 265:, is a view of the tilling stop inotus.
M, head on yarn beam, with a gromer for a strap.
N , strup and spring fior friction on yom-them.

ก, lever, operated by cam, on cam-shaft.
P, lever attached to O, which comes in contact with catch L, (when the filling breaks, and throws the shipper-handle Q out of the notch in which it is held, and stops the loom.
Q, shipper-handle for stopping and starting the loom.

R, piece attached to the protecting-rod, that strikes a lever under the breast-beam, (whenever the shuttle fails of performing its duty,) and stops the loom.
S, picker-staff for throwing the shuttle, which receives its motion from a cam on cam-shaft, commu nicated by a treadle and strap T.
T, strap for picker-motion.

U, harness-treadles, operated by the cams E E.
I, crank-shaft, which gives motion to the lathe or sley. \AA, sley or lathe, which contans the reed.
Y, harnesses for separating the warps while the filling passes through, which are operated by the narness-cam E alternately.

ZZ Z are the swords that support the lathe，and are attached to the rocking－shaft at the bottom． d ，rocking shaft on which the lathe swings．
a^{\prime} is a geer attached to the yarn－beam，used only when dressing the yarn．b^{\prime} ，reed．c^{\prime} ，friction roll ior picker－leser strap．d^{\prime} ，picker－levers or treadles．e^{\prime} ，race－rods，on which the pickers slide．$f^{\prime \prime}$ ，piekers， made of green hide，dried and pressed．g^{\prime} ，temples for holding the eloth in its place and keeping it stretehed in width．h^{\prime} is the cloth，as it passes over the breast－beam down between the two rolls on to the eloth－roll．
LOOM，BIGELOW＇S COUNTERPANE．This improvement consists principally in the manner in which the shuttles are thrown；the manner of raising and depressing the shuttle－boxes；and the man－ ner in which the picker is relieved from the shuttle．
We copy from the specification of the patentee：
In throwing the shuttles，I cause the two picker－stares to operate simultaneously，so that the shuttle may be thrown from whichever of the boxes is presented to their action．This I effect by the uee of one picker－treadle only，which is acted upon by a cam－ball，in the usual way of working such treadles． From this treadle two bands are extended，and pass around the two pieker－pulleys in such manner that when the treadle is depressed both the picker－staves will be set in action at the same moment．By this arringement，two or more shuttles may be successively thrown from the same end of the loom by the action of one treadle．

The shuttle－boxes are raised and lowered in the following manner：a shaft extends along under the race－beam，from one shuttle－box to the other，and earries pinions，which take into racks attached to the shuttle－boxes；it will be manifest，therefore，that by causing this shaft to revolve，the shuttle－boxes may be raised．The revolving of this shaft is effected by the action of a spiral or other spring，one end of which is attached to the frame of the loom at its Lack，and said spring extends furwards towards the tathe；from this forward end a band attached to it passes round guide－pulleys，the situation of which will be shown in the accompanying drawing，and also round a pulley upon the above－named thaft，to which latter said band is attached．The action of the spring，by its drawing upon the band，will cause the pinion－shaft to revolve，and will consequently raise the shuttle－boxes．Should this spring be thrown out of action，and the band by which the shuttle－boxes are raised be relaxed，they will then descend by their own gravity．To take off the tension of the spring，there is a cam upon the main shaft of the loons， which cam，as the shaft revolses，depresses a treadle，to the end of which a band is attached，which operates in such a way as to relieve the shattle－boxes from the action of the spring，and they then de－ scend．In reliesing the picker from the point of the shutle，I make nse of the protection－rod consti－ tuting a part of the apparatu－employed in the ordinary power－loom，for stopping the loom whens the shuttle does not arrive home in the shuttle－box．From the protection－rod，which extents along below the shuttle－boxes，I allow a small arm or finger to deseend，which finger，as the lathe comes up tuwards the breast－beam，strikes against a stop or pin，attached，for that purpose，to the frame of the lhom，callus－ ing the protection－rod to rock or revolve to a short distance．This gives motion to two arms which extend out from the extreme ends of the protection－rod，opposite to the outer ends of each of the shuttle－ hoxes；from these arms motion is communicated to a lever which works on a fulcrum over the outer emds of each of the shottle－boxes，said arms being connected to the levers by rods or wires．By depre－s－ wis the outer ends of these levers their inner ends are raised，and to these ends are appended rods which carry pieces of rood or metal，which，when down，rent on and embrace the picker－rod，and in that position they serve to hold the picker at a short distance from the end of the shuthe－box，and to stop the shuttle；the pieker is then removed from the point of the shattle by the rai－ing of the lever， the pieker being made to pass home to the end of the box，thus leaving the shuttle and shuttle－box free tw he rai－ed or lowered without obstruction，the pieker being also ready assam to act on a＝hutthe．

Having thus given a reneral de－eription of my improvements，I now proceed to exemplify the same by references to the aceompanying dratwing：．

Fig． 2651 is a front sicw，in per－pective，of my improved comerpane power－hom，and Fing 2655 a back view of one end of one of the shutte－boxes，this being drawn for the purpose of showing the particular comseruction and arampenment of this fart of the machinery，which could not he exhibited in the front virw．In Fige gost the breast bean is mot reprecoled，it being removed for the purque of showing the lathe and the parts cennected therewith，the mone distinet！She jacquard apraratus，which is emploged to regulate the figure，and is perfectly well lanwn，being in general nse， 1 also noe as hereto－ lise con－tructed．It is mot represented in the drawiner，it not being deemed necessary to deserabe it； but I hase fully shown those parta which enm－titute my inprovements．

A A are the picker－staves，and B the pheker（realle ；1）is the cam－ball for working this troadle，oper
 pasw over the pulleys l゙ド，and are attacheal hy their outere ends to the pulleys（i，which carry the

 as＇，the pulley a tring uttached to the frame，fand the pullisy in cither to the frame or to the ther．The

this is to take place, the tension of the spring is taken of by the aetion of the cam N, placed on the main shaft of the loom, which cam is so formed as to depress the treadle O , which, drawing on the part P of the band k , takes off the action of the spiral spring therefrom, and the shuttle-boxes descend.
The protection-rod QQ and its appendages, used for stopping the loom when the shuttle does nct arrive home, are employed by me in the ordinary way; but I also make use of this protection-rod for the purpose of relieving the shuttle from the picker, in the following manner: R is an arm or finger which is aftixed to and descends from the protection-rod, and this, as the lathe approaches the breastbeam, strikes against the stop S attached to the frame of the loom, and causes a partial revolution of the protection-rod. TT are arms on its extreme ends, which arms are connected to two vibrating levers U U , by a $\operatorname{rod} z z$, which work on fulera on the ends of the lathe, above the shuttle-box.

lig. 2655 is a back view of the euter end of one of the shattle-boxes, showing the manner in whet, he lever U and its appendages operate. The piece of wood or metal V which is raised and lowere: by the action of the lever U, and which is represented as resting on the picker W, will, when the inner end of the lever U is down, rest upon the pieker-rod X, where it serves to arrest the pieker and stop the shuttle. When the lever U is raised, the picker is thereby allowed to pass home, and is consequently removed from the point of the shuttle, and this and the shuttle-box are left free to be raised or lowered. The rod A^{\prime} bears against the pin b projecting from the picker, and serves to remove it irom
the shuttle when the piece V is raised. The rods c c support the pin b, and serve as guides to the rod A^{\prime}; the cord d connects the upper end of the rod Λ^{\prime} to the upper end of the stave A, in order that the stave may by its motion move the rod also.

I will here remark, that a weight may be substituted for the spiral or other spring M : that the shuttle-boxes may be raised by springs placed immediately under them, and that the tension of such eprings may be taken off by means analogous to those described; but it will be manifest to every competent machinist that any such variation of the respective parts will not substantially change the character of my invention. The manner of constructing and arranging the apparatus as set forth by me, is that which I have deemed the best in practice.

 the lowin. Fige 2658, chevation of the tom, Fin. "657, section.

V(1. 11.-1!

Fig. 2659, illustration of the movement which operates the picker-staff.
Figs. 2660 and 2661 , shuttle. Fig. 265s, elevation of the loom on the side of the warp.
Figs. 2662 and 2663 , plan and section of the brake.
Fig. 2664, plan of one of the shuttle-boxes.
A, warp-beam. B $B^{1} B^{2} B^{3} B^{4}$, frame of the loom. $b b$, supports of the shaft of the drum C , fastenea to the uprights of the frame by set-screws. C, wooden drum. $d d^{\prime}$, blocks to preserve separate the

threats of the warp. EE', harness for raising and lowering the threads of the warp for the passage of the shuttle, F, breast-beam. G, eloth-beam. H, spur-wheel on the shaft of the cloth-beam. f, piuion working into the wheel II. I, ratchet-wheel, which works with the pinion. J, bell-crank, moving on the centre n, and carrying the clicks $g g^{\prime}$ and the counterpoise j. g, lay-click, serving to give motion to the ratchet-wheel. $g^{\prime} g^{\prime}$, stop-clicks, to arrest the movements of the ratchet-wheel. i, pin on one of the sworts of the lay, to give motion to the bell-crank J. K, spur-wheel on the shaft of the drum Λ, work ing with the pinion k F ninion of 12 teeth, fixed to the slaft which carries the brake-pulley L, Fig

2658, and also Figz. 26t2 and 2663. m, cord, fastened at one end to a spiral spring. and passing over the pulley M, supports the counterpoises M^{\prime}, formed of iron rings. N N', needles, which give morement to the harness of the treadles, one shorter than the other. $O O^{\prime}$, two eceentrics, cast in the same piece, serving to give motion to the treadles, and consequently to raise and lower the harness. P, shaft car rying the eccentrics of the treadles, and also the cranks Z, which give motion to the picker-staff. P", spur-wheel on the shaft P. Q, pinion, of half the diameter of the wheel P', and giving motion to it. (\mathfrak{l}^{\prime}, a driving-shaft of the machine. R R', fast and loose pulleys on the shaft © . for the working of the machine. SS', eccentrics, by means of which a donlle beat is given to the lay V at each revolution of the main shaft. $t t^{\prime}$, friction-rollers at the ends of the swords of the lay, to receive the action of the ecceutrics SS'. T, two swords of the lay. U, lay or batten, on which traverse the shuttles. V, shut :les; \mathcal{X}, picker-staff; x, picker strings. x^{\prime}, pickers of hide, serving to throw the shuttle. x^{2}, guide-rods to the pickers. Y, wooden levers, sunk in the substance of the cheeks of the lay, and turning on the pin y. $y^{\prime \prime} y^{2} y^{3} y^{4} y^{5}$, details of the stop-motion by which the loom is thrown out of geer by a failure of the proper motion of the shuttle. Z, two cranks on the shaft P, giving motion to the picker-staff by neans of friction-rollers z on the ends of the crank, working upon inclines $z z^{\prime}$. Z^{2}. troo levers, connected with the axes of the picker-staffs, and united by means of straps to a spiral spring Z^{2}.

LOOM, POWER CARPET, for weaving two or three ply ingrain or Rïdderminster carpets, by E. 13. Breelors. It gives peculiar interest to the description of a valuable and meritorious invention, to precede it by some account of the life and character of the inventor. The mind loves to contemplate the eariy struggles of genius, to perceive and comprehend its first inspirations, and step by step to trace the development of its powers.

Erastus B. Bigelow was born at West Boylston, Massachusette, in April, 1814. His father was a cotton manufacturer, which circumstance, we have a right to assume, gave to the son's mind its first tendency towards that peculiar branch of mechanical pursuits in which he has now attained an enviabe and undi-puted eminence. His parents, however, designed him for the medical profession; but such a misdirection of faculties was not predestined by the "Divinity that shapes our ends." Before he had completed his medical education, his father, in common with many others engaged in manufactures at that time, failed in business, and was unable to complete the education of his son. What appeared at first a severe private calamity, has, under a wise Providence, resulted in great public crowl.

Findine limeclf without means to prosecute his medical studies, young ligelow yielded to that necessity which has so often proved the benign mother of early invention, and determined to direct his ingenuity to the contrivance of some piece of mechanisin, from which he might obtain some pecuniary benefit. Whilst his thoughts were directed to that object, he happened one day to be lying on a bed corered with a knotted counterpane, a species of fabric in which the figure on the surface appears as if made by tying into knots the threads of the woof; and as, some years before, an attempt had bern made in West Boyhton (where he was still living) to manufacture such conterpanes on hand-homand abandoned on account of the great labor and expense insolved, three or four days being reguired (1) make one connterpane, it became evident to his mind that if he could succeed in producing a power lown for this purpose, it would be hichly valuable as a labor-saving machine, and that he could derise from it the pecuniary assistance for the want of which his medical studies had been suspended. It was a bold undertaking for one wholly uninitated in the mysteries of the mechanic art, but his very ine: x perience was to him a great benefit, by concealing from his sight the enormons mechanical difficultiehe would have to encounter, and which, if then fully known, might have deterred him from ever carrying his purpose into execution. We may here notice this remarkable fact, that the most original and important inventions the world has ever seen, were the productions of men whod received little or no previous training in the particular art which they sought to improve. Jacquard, the inventor of the beautiful mechanism which bears his name, for weaving figured fabrics, is the conly exception with which we are acquanted. It would seem that in pursuing any arocation steadily, the mind becomes so habituated to a certain practical routine, as to make it distrustful of any other; whilst, on the other hand, a mere novier, from the fact of his approaching the suljeet untrammelled by habit or prejudice, will be bettor titted to detect existing errors, and suggest loold and original improsiments.
But to return. This new idea, foreed by circum-tances npon Mr. Jigedows mind, he prowectent en
 i: succesful operation, doing the work in cone-fourth of the the requmed hy the hath lewn

 mat by tappeta, arranged in a helieal bine on a barrel or eylinder, for the purpme of depmaning the

 duction of the ligure, the hooke, or rather that prortion of thens required each time, were uprated wor fourth pick or throw of the thattle, mad after the fourth throw of the shatthe, ther repuired perthot if
 of its passing by the weft-lhread; and then, when drawn down, cach howh in succolon cugght the we t
 was beaten up by the reed, and tho warps crossed, esty lomp would peryect th the remurent d the

dents required to be elevated and depressed, for each operation to determine the figure was effected by a series of needles, on the principle of the jacquard, and governed by punched cards; but these needles, instead of being used to operate knotted cards, were, at their outer ends, joined to wire hooks connected with the levers of the hooked dents, and when the needles were acted upon by the cards, the hooked wires of such of the levers as were to be operated to lift the dents were brought within the range of motion of a lifting-bar, which carried them up where they were held by the spring before described; the lifting-bar was then depressed, and then, as the tappets on the barrel passed around, the lifted hooked dents were each in suecession drawn down to form the series of loops.
This loom was so ingenious, and worked so well, that our young inventor soon found capitalists able and willing to furnish the means necessary for the enterprise, and a patent was secured for the invention in the United States, on the 6th day of January, 1838, and in England the same year:

He contracted with parties to build three looms, they to pay a certain price for the invention, but before this contract was fulfilled on either side, he visited New York, and there saw for the first time a new and different species of counterpanes, then just introduced from England, which, from the superiority of the fabric, he perceived must soon supersede the knotted counterpanes. Although being at that time in great pecuniary want, and surrounded by all its attendant privations and temptations, instead of proceeding to the enforcement of his contract, which would hare at once relieved his wants, he immediately returned to Boston, and communicated to the parties what he had seen and believed, and advised them to abandon the enterprise, as, in his judgment, the new kind of fabric would be preferred in the market, and that he could produce a loom which would weave it with greater facility than the knotted counterpanes could be woven. His success in his first effort of invention, and the honesty of purpose manifested in this his first business transaction, could not fail to inspire a degree of confidence in his ability and integrity which proved of great advantage throughout his subsequent life, in bringing all his enterprises to a successful issue.

He now entered into an agreement with the same parties to invent an automatic loom for weaving this new species of counterpanes, which was afterwards produced, and patented on the 24 th of April, 1840 , and put in successful operation. There are now 36 of these looms in operation at Clinton, Massachusetts, which supply the principal demands of our markets.

Before he had completed the counterpane-loom above described, he had incidentally seen in New Jersey the operation of weaving coach-lace in hand-looms, and not haring as yet realized any pecuniary advantage from his efforts, he determined, while progressing with the new counterpane-loom, to direct his attention to the subject of weaving coach-lace. With this view, he made inquiries of persons engaged in rending this kind of fabric, as to the extent of the consumption and the cost of production, as well as the difficulties of weaving it by hand. The result of his investigation determined him to make the attempt, and, with the pecuniary assistance of an elder brother, he proceeded to the construction of a loom which was completely successful. So urgent were his necessities at this time, and such was the ardor with which he pursued the sulject, that he labored day and night, scarcely taking time for food and rest, and in the short space of six weeks from the time that he made the inquiries above referred to, he had the first loom in operation, and in three months after that, another and more perfect one, and the requisite capital under his control for putting up a large establishment. This result, when we consider the youth and inexperience of the inventor, and the peculiar difficulties of the subject, seems to us to hare no parallel in the history of inventions.
The figure on coach-lace is produced by raising on the surface of the ground-cloth a pile similar to the Brussels carpet, formed by looping the warps over fine wires, which are inserted under such of the warps as have been selected by the jacquard to determine the figure. The warps are then woven into the body of the cloth, to tie and fix the loops. The wires are then withdrawn and re-inserted. Automatic pincers, as if instinct with life, grasp the end of the wire, draw it out from under the forward loops, carry it back towards the lathe, where the warps are spread apart, forming what is called the open shed, and there introduce and drop it, that the shed may be closed and opened, that by the throw of the shuttle, the weft-threads, which are to tie and weave the warp-threads into the cloth, may be beaten up by the reeds. The pincers then move back to draw another wire from under the formed loops, and repeat the same operation, several such wires being used at the same time in the cloth, to prevent the loops from being drawn out by the tension which is given to the warps to insure an even and regular surface to the fabric; but as there are a number of these wires woren into the cloth, nearly touching one another, it became a matter of great difficulty to contrive a mechanism which would insure the taking of only one of these wires to draw it out, and select the proper one at each operation. The pincers could not practically be made so narrow, and work so accurately, as to insure this. This difficulty was overcome by an ingenious mechanism placed on the opposite side of the loom, which at each operation selects the required wire, and pushes it out sufficiently far beyond the ends of the others to be gripped by the fingers, which then draw it out to carry it back and introduce it in the open shed of the warps.

Some notion can be formed of the difficulties which this subject presented, by taking into consideration that the mechanism which works the wires must operate in connection with the mechanism which weaves the cloth, and the jacquard which produces the figure.

The cost of weaving coach-lace was very much reduced by this invention, and there are now in one establishment in Clinton, Massachusetts, 96 of these looms in successful operation.
Soon after this was in successful operation, Mr. Bigelow completed his second counterpane-loom, to which we have before referred, and he had then accomplished the first purpose which impelled him to exercise his ingenuity-he had acquired the means of completing his medical studies. But by this time he had found much greater attractions in the new career which circumstances had opened before bim-it was one for which nature had manifestly intended him, and therefore invention was an occuna-
tion no longer ancillary, but paramount, and the success with which he has pursued it up to this day is now distinctly marked upou the pages of our industrial history:*

The coach-lace loom was merely the basis of a series of improvenents then contemplated, but Which hare since been completed, and are now in successful use; these inprovements are in looms for weaving Brussels and tapestry carpeting.
The weaving of Brussels and tapestry carpets by automatic machinery was considered by many, a iew years back, to be a mechanical impossibility, and, indeed, there were few subjects that presented such formidable difficulties. After constant and laborious exertions, at times snatched from other pressing engragements, Mr. Bigelow succeeded also in this undertaking. There are now 28 Brussels looms in operation in one establishment in Clinton, producing carpets which are pronounced by the ablest judges to be the best Brussels cappets manufactured in any part of the world, and 50 tapestry looms in the establishment of Messrs. Higgins \& Co., New York; and when those now in contemplation shall have been completed, there will be 225 looms in operation on his plan, weaving each, on the avcrage, from 18 to 20 yards per day, while from 3 to 4 yards per day is the average product of handlooms.

The surface of the carpets woven by these looms is more perfect and regular than when woven by hand, the texture of the eloth more regular, and, what is of the greatest importance, the figures are so regularly measured that, when put together, they make a perfect match. This perfection in the quality of the cloth and the regularity of the figure is in part due to improvements which will be described in connection with the ingrain-loom, as they are applicable to the weaving of all kinds of figured fabrics that require regularity in the figure.

Shortly after the completion of his coach-lace loom, Mr. Jigelow called on Mr. Alexander Wright, the agent of the Lowell Manufacturing Company, who was not ouly a man of great experience in manufactures generally, but possessed an intimate knowledge of the manufacture of coach-lace. From him he obtained valuable information, and in the course of their conversation, Mr. Wright called his attention to ingrain carpets, and suggested to him the importance, as well as the difficulty, of produciug a power-loom for weaving that kind of fabric. The lint was not thrown away, for as soon as he had completed his second counterpane-loon, he bent his mind to improving the ingrain manufacture, and in the year 1839, through the instrumentality of Mr. Wright, entered into an agreement with the Lowell Manufacturing Company to accomplish this purpose, and before the close of that year had conpleted the first power-loom for wearing two-ply ingrain carpets. This loom produced from 10 to 12 yards per day-the hand-loom produced only 8 yards per day.

When his mind was first turned to this subject, it presented these leading difficultics. The mere weaving of the fabric by an automatic loom was easily effected, but to invent a loom which should make carpet fast enough to be economical, one which should make the figures mateh, and to have a good and regular selvage and a smooth, even face, were very scrious practical difficulties. The hand-weaver, by the excreise of his judgment, can, to a certain extent, meet these contingencies; if the weft-thread is too loose after the shuttle has been thrown, he can give it a pull with the fingers to make the selvage reg. nlar; if he finds by measurement that by reason of the irregularity of the weft-threads or the ingraining, the figure is being produced too long or too short, he gives more or less force to the lathe in beatingup; and if he finds that the surface of the cloth is getting rough, he regulates the tension of the warps. In this way, by observation and the exercise of skill and judgment, he can approximate, and only approximate, to the production of a good and regular fabric. But to invent an organization of matter which should itself observe, and think, and judge, and do it all with more unerring accuracy than man himself-this was a result almost absurd to contemplate, but which it was reservel for Mr. Bigelow to attain.

In the first loom produced, he approximated more nearly than the hand-weaver to a perfect mateh in the figure, and this he effected by taking up the woven eloth by a regular and positive motion which was uncrring, the same amount fir every throw of the slattle and beat of the lathe, and as the weftthreads are not spun regularly, and the wearing in of the warp-threads and passing the different colors from the upper to the lower ply or cloth, (as ingrain carpets are composed of two or three choths wowen and connected together, to produce the figures, requiring sometimes more and somotimes less to make a given lengtl, he determined to regulate the delivery of the warps as required by their tension, thereby throwing the irregularities into the thickne-s, where it cannot be noticed, instead of in the lemgh, where it would distroy the match of the figures. And he accomplished this by suspending a roller on the woven eloth, between the lathe and the rollers that take up the woven eloth, so that when the cloth was being woven tor short, which indicates a deficient supply of warps, the roller would be elevated, and by its connection inerease the delivery motion to give out more warps; und when the eloth was being woven too long, which indicated too great a supply of warpa, the roller was let down to decremse the delivery motion, and thus reduce the supply of warps. In this way the ruller was made to act as a meanurer and fecler of the quantity of warp denambed, nud to direct the supply. But this contrivance, like the mind of the hand weaver, only came in play to prevent the jrugress of an evil after it had lien obsersed. If he had applied this yiedding roller to the noweven warps to feed and aseertain the demand of warp, beforchand, he could have prevented the evil. He did not then perecive that that conld be done, for the reason that this roller mist bo beusitive to detect nud indicate the sumont, and at the: lime the lathe beats up, the weft, the warps must he rigid to resint the heat, or else a good fatiric canmot be produced. This was, however, acemplished by a sulseghent improvement, which will be berenfler deseribed.

[^7]A smooth and even surface for the cloth be obtained in the following manner. Wre have already pointed out that the passage of the warp-threads from one ply or cloth to the other, called ingraining. must necessarily be unequal and depending on the figure to be produced, and that in consequence of this the warp-threads that are the most ingrained will be taken up faster than those less ingrained, and as all the warps are of necessity rolled up on the warp-beam with equal tension, they can only be given out equally.

This seeming impossibility he did effectually overcome in the following manner. Each warp-thread in the usual way passes through a loop called a mail, attached to a card snspended from the jacquard, and each card has suspended to it a weight, all the weights being equal. The two trap-boards of the jacquard move simultaneously, one up and the other down, and in these morements they catch or trap such of the cords (determined by the combination of cards) as are required to bring up the proper warpthreads at each operation to produce the figure, leaving down such of them as are not required at that particular operation; and when the two trap-boards are on a level, and all the warp-threads connected with them in a horizontal line, and those not connected with them hanging down with the weights suspended to them, the lathe beats up the weft-thread which lies between the warps that are in a horizontal line, at the same time exerting a force on the weft-threads previously thrown, and beating them up more closely
Now, as the warp-threads are all comected at one eud to the woven cloth, and at the other with the beam, it follows that those which are hanging down in a bent line with the weights suspended to them, will receive a greater proportion of the force of the beat of the lathe than those which are in a straight line; and as all the warp-threads in succession take this hanging-down position, and all of them have an equal weight, it follows necessarily that each warp-thread in succession receives the same pull at the time the lathe beats up, and that therefore all tendency to irregularity in the length of the warpthreads taken up by the ingraining will not tend to produce an irregular surface, but, on the contrary, the surface of the cloth will be as smooth and even as if all the warp-threads were equally taken up in the weaving of the cloth, and were under a constant and equal tension.

At the same time he accomplished the making of a good selvage by a mechanism which handed instead of throwing the shuttle across-an arm carried the shuttle half way across, and another there took it and carricd it entirely across. By this means any required degree of tension could be given to the weft to make a smooth and even selvage. But although it accomplished this desirable object, it failed to work with sufficient velocity, and thereupon Mr. Bigelow, nothing daunted, renewed his efforts, and produced another loom with the fly-shuttle, in which he was enabled to make a good selvage by a mechanism which gives a pull to the weft-thread after the shottle has been thrown, and as the lathe beats up. He also introduced other improvements, which will be hereafter described. This loom, although it produced about 18 yards per day, did not satisfy the inventor, and he again applied limself with renewed energy until he made a third loom, which averages from 25 to 27 yards per day of twoply, and from 17 to 18 of three-ply carpets. There are now in operation at Lowell, Thompsonville, and Tariffille, 450 of these improved looms.

This brings us to our main purpose, the description of the loom as it is now worked, with all the improvements which have been made in succession from the commencement to the date of the last patent, the 23d day of October, 1849. But before proceeding to the detailed description of this loom, it may be well to state that the improved method of producing figures that will match, which makes part of this loom, was invented in 1844, and patented on the 10 th of April, 1845, in connection with a loom for weaving plaids and ginghams, which has gone into extensive use at Clinton, there being now 580 of them in one mill, and 120 in another.

In addition to the varions important inventions which have been enumerated, many others have been made by Mr. Bigelow connected with the details of various kinds of looms, and for drying and stretching fabrics and printing warps, some of which have been, and others are to be, patented both in England and in this country, and which are nearly all of decided practical utility. No ove man within our knowledge, either in Emrope or in this country, has given to the world so large a number of raluable inventions as Mr. Bigelow, and inventions, too, evincing not only great ingenuity, but sound inductive powers of the highest order.
This invention for weaving ingrain carpets, taking it from the commencement, through all its stages, to the date of the last patent, consists:

1. In operating the trap-boards of the jacquard in a power-loom simultaneonsly, one up and the other down, instead of moving them alternately as in the hand-jacquard, whereby either the time required for the movements of the jacquard, or the velocity of their motion is reduced, the former admitting of more expeditious weaving (if the other operations be accelerated in the same ratio), and the latter reducing the liability to wear and tear. But there are other and important advantages incident to tnis change, such as balancing the weight of the harness, which in a jacquard is considerable, for that part of the harness suspended to the descending trap-board balances the corresponding harness suspended to the ascending trap-board, thus equalizing the resistance to the moving power, and rendering the operations easier and more regular. And still another change is, that the beat of the lathe takes place after the warps comnected with the two trap-boards have passed and are a little crossed, and whilst the remaining warps are in their lowest position, that is, bent down by the weights suspended to their trapcords, so that these, which like the others are held at both ends and bent down, will receive a greater portion of the force of the beat of the lathe; and as all the warps in turn take this position, and each warp-thread, when in this position, is held down by the weights-all of them equal-suspended to its trap-cord, it follows that all the warp-threads, as before stated, receive an equal tension in beating-ur the weft-threads, no matter what may be the variation in their lengths between the woven cloth and the yarn-beam, occasioned by the irregularity of the ingraining. The practical weaver will appreciate this as one of the most important advantages in weaving ingrain carpets, for it presents a principle of sompensation and self-adaptation to the irregularity of the ingraining due to the figure never before
attained, and by which alone such fabrics have leen made with a regular and measured figure, having a face or surface as smooth and even as a plain fabrie.

2d. In taking up the woven eloth by a regular and positive motion, whieh measures the length of cloth to be produced at each beat of the lathe when employed in connection or combination with a method of regulating the delivering out of the warps by their tension in proportion to the quantity required, and taken up in the process of weaving, and also with the holding of the warps rigid at the time the lathe beats up the weft to prevent them from yielding to the foree of the beat. It will be seen that In this way the irregularities of the ingraining and of the weft-threads will be thrown into the thickness instead of the length of the cloth, for as the lathe beats up the weft-threads to the same distance each time, and a given and measured length of eloth is taken up, the same length of cloth will be weven; but if the warp-threads were free to yield at the time the lathe beats up instead of forcing up the weftthreards to the required position, the whole cloth and warp would be foreed forward, and produce what is called a sleazy fabric ; and this, from its loose texture, would soon accumulate to such an extent as to stop the further progress of weaving. But to prevent this, the moment the lathe begins to beat up the weft-thread, the warps are held firm to resist the force of the beat, and thus insure the carrying of the weft-thread up to the required line. In this way the two opposing or antagonistic conditions-sensitiveness to deliver out the quantity required, whatever may be the irregularity of the demand, and non-yielding to resist the beat of the lathe-are reconciled to produce the important result of weaving ingrained fabrics with a regular and measured figure; a result never before attained, even with the hand-loom.

3 d . In mounting the shuttle-boxes in independent frames at the sides of the lathe, whieh in this way becomes a mere guide to the shuttles as they are thrown from one side to the other. The advantages of this arrangement are, first, the weight of the lathe (which must have a considerable range of motion and a high velocity) is greatly reduced, and will not, therefore, require so much power to operate it ; for in wearing two and three ply carpets, particularly such as have a variety of colors, the shuttle-boxes are numerous and heavy, and in proportion to the number and weight would be wasteful of power aml liable to derangement if carried by the lathe. Sceondly, it affords a surer, easier, and more durable mode of operating the shuttle-boxes to shift the shuttles for the changes in the colors of the pattern and, lastly, it is very efficient in producing a good selvage, for the moment the shuttle is thrown the weft-thread is held on a permanent bed by fingers, so that as the lathe beats it up, the pressure of the fingers affords the required friction to pull the weft-thread to make a tight and regular selvage; and the shuttle-boxes being in independent frames, the weft-thread is not drawn out of its position in the cloth by the back movement of the lathe, as in the ordinary loom. Thus, the weft-threads, when onew beaten up, are retained in that position, and their parallelism in the choth is insured.

4th. In connection with the mounting of the shattle-boxes in independent frames by the side of the lathe, using one eam and roller to work the lathe, and another to hold it in a fixed position during the throw of the shuttle, one of the said cams being on the lathe-shaft, and the roller which works in connection with it on the lathe, and the other cam on the lathe, and its roller or wrist attached to the tirst cans; one of the cams being concentric to hold the hathe in a fixed position during a part of the rutation. and whilst the shuttle is being thrown, with its ends cecentric, that the roller may enter and leave it as the lathe is either gradually started or gradually arrested, and the other eam being of any form suitable for giving the lathe the required varying motions.

Bry this means the cam and roller, which operate the lathe, and which are, in consequence, exposed to all the strain and wear and tear, are not used to hold the lathe in a fixed position during the throw of the shuttle.
thth. In combining with a power or automatic lonm four series of shuttle-boses, two on each side in separate frames at the sides of, and independent of the lathe, the said four sories of shuttle-boxes receiving motion from the loom or from some first mover in connection with, or oneratiner in tuison with the loom; one series of these shuttle-boxes on one side beiug for the purpo-e of hokling ath the shatthes of the various colors required for one ply of the carpet, and the corresponding serirs on the other side to contain the shattles of the various colors for the other ply, so that by the up and down motions of these boxes, the various changes of colors ean be effected, the other two series of shattle-boxes bejner merely to receive and return the shuttle from and to the first series. In view of this, for some patherns the second or receivine dattle-boxes may be single; Lut for others they are required to be double, it the colors are required to be alternated.
bith. In combining with the lathe and the shottle-boxes in separate and independent frames by the sirles thereof, himged guides to gruide the shattles from the one the wther, and to yield and thereby prevent breaking whenever a shuttle, or any part of it, fails to cinter the shuttle-kixes.
ith. In giving to the jacquard, which detormines the figure, a separate organzation indepoment of the lown which forms the eluth, that the varions motions of the jaequard may bee taken fron or given by a shaft or shafts within it, and simply deriving its or their motinn from seme prart of the lexim, on frona some first mover corre-ponding with or regnlated by the motion of the hom or part thereof, that the motions of the jaequard may corre-ponal with thase of the lown. In this way the motions of the jac, uard are rendered more necurate and steady, and the weight wo the mowing parts is greatly rednceal

Prior to this invention, in all homs for weaving ly power in commetion with the juefurd, all wat motions of the jacquard were derived directly from some part of the foom and communieated by (w)
 of construction and organization were the inacenrary of the motions by reacon of the gratat hongth at the connecting-rods, the linbility to derangenemt, und the labor and difticulty of anjusting the conmectume th
 which dilliculties are neaided or greatly reduead hy blat- whate organizations.

the harness, whereby the utmost nicety in the adjustment can be obtained, and at the same time, in connection with the separate organization, avoiding the necessity of adjusting the connections when it becomes necessary to adjust the jacquard to the varving lengths of the cords of the harness, for the jacquard, having a separate organization, no change becomes necessary in its own conuections.

Silt. In commmienting the reguired motions to the pickerstaffe and to the apparatus for thifthe the

from a shaft or shafts below to the picker-staff and the apparatus for shifting the shuttle-boxes wlich must be attached to or comnected with the shuttle-box frames that vibrate on axes above. By this im proved arrangement the motions are derived from a shaft or shafts coincident with or near to the axis of motion of the pendulous frames that carry the shuttle-boxes, instead of being below, where the frames bave the greatest mation.

10th. In introducing in power-looms a reversing motion. Before this, power-looms were simply pro rided with the means of disconnecting the motive power, and arresting the momentum of the moving parts to enable the attendant to piece the threads, or to do what might be necessary preparatory to re-starting; but as the loor cantot always be stopped with the parts in the positions required, the

Ittendant has to reverse the motion of the loom by the applieation of hand-power to the driving-pulley, a mode of procedure attended with waste of time and great inconvenience, for the attendant must leave his usual position to ge to the driving-pulley, and in heavy looms, such as are used for weaving carpete, much strength is required to set the machinery in motion. But by the use of a reversing motion, the attendant, without leaving his place, and by the simple motion of a lever, can operate the meehanian in either direction and to any extent desirable to bring the parts to a proper position for piecing the threads, \&e., and re-starting.

In the accompanying drawings, Fig. 2665 is a plan of the loom in the present improvel furm.
Fig. 2666, a plan of the loom below the jaequard.
Fig. ${ }^{266 T}$, a front elevation; Fig. 2 $66 S$, a bach elevation.
Fig. 2600, an eleration of the lett-hand side, without the jacquard; Fig. 2060, it vertical section, with the jacquard; and Fig. 2671 another section.
In the said drawings, A represents the power-loom, and B the jaequard-frame resting on beams C C C ${ }^{\prime}$ C supported on columns D from the main floor.
The pendulous frames E E, which carry the series of shuttle-boxes, are arranged on each side of the lathe, and independent thereof, and are hung on arbors FF, at the top, on which they vibrate. These frames are vibrated back and forth simultaneously, in opposite directions, at each throw of the shuttle, so that the first series of shuttle-boxes on one side, and the second or receiving boxes on the other, shall

And these motions are ubtaned from a cam A^{\prime} on the main cam shaft $1 B^{\prime}$ of the lexm, which mott on min

arbors $G^{\prime} G^{\prime}$ are vibrated by the rotation and peculiar form of the cam A^{\prime} and the connections, the pendulous frames are vibrated in opposite directions, and there held during the throw of the shuttle, and then back again.

The driving-shaft a of the loom has a fast and loose pulley $b c$ on one end, which receives the drivinghelt from any first mover in the usual way; and on the other end the said shaft has a bevel-pinion d.

which takes into and drives a bevel-wheel c on the lower end of a line-shaft f, which extends up to and has its upper bearing in a box g attached to one of the beams C^{\prime}, the upper end of the said shaft having a bevel-pinion h, which engages and carries a bevel-wheel i on one end of a horizontal shaft j, which has its bearings in boxes attached to the tops of the beams C. It is from this horizontal shaft that all the jacyuard and shuttle motions are taken.

On this shaft j there is a cogged wheel R which communicates motion to cog-wheel i on the jac-quard-shaft m, by the medium of a connecting pinion n, which turns on a stud-pin o adjustable in a sector-mortice p, the curve of which is struck from the centre of the shaft m, that the pitch-line of the said connecting pinion may be always at the same distance from the axis of the wheel i, when its studpin is shifted. By this means, when the jacquard-frame is adjusted, the connecting piniun can also be -hifted and adjusted relatively to the pinion k on the shaft j.

The frame \mathbf{B} of the jacquard, as already intimated, instead of being permanently attached to the beams $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, is free to slide vertically, for the purpose of vertical adjustment, to suit any change in the length of the harness. The side-pieces $q q$ of the frame of the jacquard embrace the transerse beams $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, and slide in them accurately, but freely.
The jacquard-frame rests on two horizontal slides S S, which are adapted to slide on the transverse beams $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, the upper surfaces of each being formed with two inclined planes $t t$, one for each of the aides of the jacquard-frame to rest on, so that when these tro slides are moved to the one side or the other, the entire jacquard-frame will be elevated or depressed relatively to the loom below, the stud-pin of the connecting purion n being at the same time adjusted in its sector-mortice to adjust the pitch-line of the cogged geering. The slides S S are operated simultaneously by a hand-wheel u on a short arbor \uplus in front, which carries a worm wo that engages the $\operatorname{cog} s$ of a wheel x on a shaft y that carries two pinions z (ouly one shown in the figures) that engage the cogs of a rack a^{\prime} on each of the slides.

For the purpose of adjustment, it is only necessary to turn the hand-wheel until the jacquard is

 cient to retain the parta in a permanent powition.

The required motions of the trap boarde b^{\prime} and é, mod the journale of $e^{\prime} r^{\prime}, j^{\prime}$, are de rined from the

of the loom below, and the proportions of the geering, as represented in the figures, should be such as to give to the jacquard-shaft one revolution for every two of the lathe-shaft of the loom. On each end of the jacquard-shaft m there are two cams $h^{\prime} h^{\prime}$ and $i^{\prime} i^{\prime}$, which are all of the same form as represented in the figures. The cams $l^{\prime} h^{\prime}$ are placed on opposite ends of the shaft, and in corresponding positions to work the trap-board b^{\prime}, and the other two cams $i^{\prime} i^{\prime}$ are arranged in the same manner, but on the opposite side of the axes of the shaft m, to operate the other trap-board e^{\prime}, as one trap-board descends whilst the other ascends; and the form and position of the cams should be such that one trap-board shall begin to ascend as the other begins to descend. There are four levers $j^{\prime} j j^{\prime} k^{\prime} k$ ' placed above the cams and operated by them, each lever being hung on a fulcrum-pin at the rear of the frame, and having a roller m which bears on the cam. The two levers $j^{\prime} j^{\prime}$ are connected with the ends of the trap-board b^{\prime} by connecting-rods $m^{\prime} n n^{\prime}$, that the cams $l^{\prime} h^{\prime}$ may communicate the required motions to it; and the

other levers $k^{\prime} k^{\prime}$ are in like manner and for the same purpose connected to the other trap-board c^{\prime}, by similar rods $n^{\prime} n^{\prime}$. In this way it will be perceived that the required alternate up and down motions are given to the two trap-boards. The same cams and levers are employed for operatiug the four jouruals $d^{\prime} e^{\prime} f^{\prime} y^{\prime}$. The two journals are alternately elevated with the trap-board l^{\prime}, and the other two $f^{\prime} g^{\prime}$ are in like manner operated with the other trap-board c^{\prime}, which is effected in the followiog manner: To the ends of the four levers j, and k^{\prime} are jointed four rods o' $o^{\prime} o^{\prime} o^{\prime}$, (one to the end of each, the upper ends of which play in slots $p^{\prime} p^{\prime} p^{\prime} p^{\prime}$ in the top plate q^{\prime} of the jacquard-frame-these slots being of such length that the rods can vibrate sufficiently to pass from one jourval to the other. The upper ends of these rods are rounded, and enter sockets in the under face of the ends of the journals, so that when Erought under either of the journals, when the levers are raised by the cams, the journals will be elevated. As there are two journals for each trap-board, and these are alternately elevated with the forresponding trap-board, the lifting-rods must be alteruately shifted from the one to the other. As the
rods are so jointed as to incline outwards, when vibrated they will fall, by gravity, against the outer ends of the slots p^{\prime}, which are so located as to hold the rods in a position to catch under the two outer journals d ang g^{\prime}.

In this position, when either of the trap-boards are elevated, one of the journals will be carried up with it; but when the other journals are to be lifted, the rods o are to be shifted from the outside jourmals to the inside ones, and this is effected by cams $r^{\prime} r^{\prime} s^{\prime} s^{\prime}$, two on each side of tho frame, and on one

ard the same shaft l^{\prime}, receiving motion from the shaft m^{\prime} hy two eng whels, $i^{\prime} v^{\prime}$. These frour eatat ure
 each end of the shaft, mint the pmation of the two sete relatively to each wher will depend ugan the furm and position of the levert which they operate. On ench -iflo of the frame the re ure twal bote
 which bears lyy the di-po-ition of it wefinh en the perjphery of otw of the come r^{\prime}, umbl the olher x^{\prime} en

two of the jacquard-shaft, the levers $u v^{\prime}$ and x^{\prime} will act upon the corresponding rods o^{\prime} at every alternate descending motion of each trap-board.
The form of the cams r^{\prime} and s^{\prime} is such that during one rotation of the jacquard-shaft m^{\prime}, they elevate one set of levers $w v^{\prime} w^{\prime}$, to shift the two corresponding rods $o^{\prime} o^{\prime}$ from one journal to the other, and during the next rotation of the jacquard-shaft they recede to permit these rods to fall back, whilst the other set of levers $x^{\prime} x^{\prime}$ shift the other two rods $o^{\prime} o^{\prime}$ from one to the other of the other set of journals, the next rotation liberating these and shifting the first set. In this way it will be seen that during one operation, when the trap-board c^{\prime} descends, the journal g descends with it, the trap-board b^{\prime} at the same time being carried up and down with the journal e^{\prime}. At the end of this motion the cams $r^{\prime} r^{\prime}$ throw out the levers $w^{\prime} w^{\prime}$, which shift the rods $o^{\prime} o^{\prime}$ to the journal f^{\prime}; at the next operation the trap-brard $e^{\prime \prime}$ is

elevated, and with it the journal f^{\prime}, the trap-board b^{\prime} at the same time descending, and with it the journal e^{\prime}, and when this has reached the end of its down motion, the rods $o^{\circ} o^{\prime}$ continue the motion down sufficiently to clear the sockets of the journals, and then by their own weight the rods fall back to the journal d, to be ready to carry it up at the next upward motion of the trap-board b^{\prime}; and when this takes place the trap-board c^{\prime} descends, and with it the journal f^{\prime}, at the end of the down motion of which the rods $o^{\prime} o^{\prime}$ fall, to come under the journal g^{\prime}, so that at the next upward motion of the trapboard c^{\prime}, this journal may be elevated, during which the trap-board b^{\prime} descends, and with it the journal d^{\prime}. and when this is entirely down, the cams $s^{\prime} s^{\prime}$ act upon the levers $x^{\prime} x^{\prime}$, which shift the rods $o^{\prime} n^{\prime}$ to the journal e^{\prime}. 'Thus the journals d^{\prime} and c^{\prime} are alternately carried up and down with the trab-board b^{\prime} and the other two journals f and g^{\prime} with the trap-board c^{\prime}.

The journals of the card-prism a^{2} (of the usual construction) are hung in the rods $b^{2} b^{2}$, which slide horizontally on the sides of the jacquard-frame, and which at the back are jointed to two arms $c^{2} c^{2}$ in a rock-shaft d^{2}, from which projects another arm c^{2}, connected by a rod f^{2} with a treadle g^{2} that vibrates
on a fulcrum-pin at the back, its front end being provided with a weight h^{2} of sufficient gravity to push out the prism, the levers being clevated to draw in the prism by a cam i^{2} on the jacquard-shalt m. The form of the cam i^{2}, and its position relatively to the trap-board cams, must be such as to bring the prism into action while the trap-boards are at rest.

The straps $k^{2} k^{2} k^{2} k^{2}$ of the picker-staffs $j^{2} j^{2}$ extend up to, and are secured each to a pieker-lever l^{3}, there being two such levers on each side, which are jointed at their back end to the upper arm m^{2} ot two levers $x^{2} n^{2}$ that vibrate on a stud-pin o^{2} attached to one of the beams C .

The levers $x^{2} x^{2}$ constitute each two arms, at right angles with the arm m^{2}, the back one earrying a weight f^{2} which must be sufficient to carry back the picker-lever l^{2}, and the forward end carries a roller q^{2} which bears up against the periphery of a cam-wheel r^{2}, so that when the roller bears on the periphery of this wheel, the picker-lever is pushed and held forward to the full length of its longitudinal motion; but when, by the rotation of the wheel, the roller is permitted to enter a depression in its periphery, the picker-lever is drawn back. As stated above, and as represented in the plates, there are two picker-levers on each side, one for each picker-staff, and, therefore, two inverted T levers $m^{2} n^{2}$, and one cam-wheel r^{2}, for eachlever $m^{2} n^{2}$. The forward ends of the picker-levers l^{2} work between verti cal guides s^{2}, to prevent lateral play, and they are each provided with a hook t^{2}, which, when the lever is drawn back, hooks into the end of the picker-treadle u^{2}, which is made of sufficient breadth to receive and operate the two, there being one treadle on each side, and operated at the proper periods of time by two cams $v^{2} v^{2}$, one for each treadle, and placed on opposite ends of the shaft j, as before described.

Each cam has two projections opposite to each other, so as to operate the treadle twice for each rotation, and the projections of the two cams are placed in the same line, so that the two treadles are operated at the same time, and the shaft makes one rotation for every two beats of the lathe of the loom; hence the treadles are both worked once for each leat. This simultancous working of the treadles is rendered necessary, because two shuttles have frequently to be thrown in succession from the same side. As both treadles are operated for each beat of the lathe, and there are two picker-statf.s on each side, at each beat of the lathe one of the picker-levers l^{2} must be put in connection with one of the treadles, whilst the other remains disconnected. This is effected by draming back the picker-lever which is to be operated, until its hook catches into one of the treadles, and this must be done whilst the treadle is down, and at rest. The manner in which the picker-treadles are drawn back to effect the hooking on to the treadle has already been described, as also the manner of pushing them forward to carry their hooks beyond the range of motion of the treadles, and it only remains to explain how the succession is determined. This is done by means of four cam-wheels r^{2}, which act on the four levers $n^{2} n^{2}$, as described above. These cam-wheels are formed with a series of cam-like depressions u^{2} made at equal di-tances around the periphery, into each of which the rollers of the levers n^{2} enter; and when this takes place, the weights on the levers n^{2} draw the picker-levers so fan back that the treadles in rising eatch under the hooks and elevate the picker-levers, and the further rotation forces out the rollers from the cam-like depression on to the periphery of the circle of the wheels, which furces the picker-levers so far forward as to disengage the hooks. Thare must be as many of these cam-like depressions in each cam-wheel as the number of changes of shuttle required in the kind of fabric to be woven; eight being the number represented in the plates for eight chames of shuttle. To each of these depressions is titted a block, which when put in renders the periphery of the wheel cylindrical; and when all are in, the pieker-levers will not be engaged or hooked by the treadle, and hence no shuttle will be thrown; and, therefore, in setting the loom for any particular kind of fabric, the operator will leave out of each of the cam-wheels as many of these blocks, and in the order required, as may be necessary for opecating the picker-stafts in the order required for the succession of the shuttles. The four cam-wheels r^{2} are on a shaft x^{2}, parallel with, and receiving motion from the shaft j, by a cors-wheel and pinion $y^{2} z^{2}$, the shaft x^{2} making one rotation for four of the shaft j. The plates represent the back, or receiving shotte-boxes $c^{3} c^{3}$, as consisting of $t w o$ on cach side, although for some kinds of fabries but one is required, in whieh case they are not required to be operated in the pendulous frames. When the two are used on each side, they are adnpted to shide in the Lack of the pendulous frames, and are suspended each to one end of a lever b^{3}, by a connecting-rod d^{3}. ther rear end of the said levers beiner prowided with a sullicient weight c^{3} to lift the boxes, in order to bring the lower box of the series in line with the race-heam of the lathe; and when the upper box is to be let down to receive a shottle, the weighted end of the lever is devated lyy a cam a ${ }^{3}$ on the end of the shaft x^{2}, before described as carrying the cams to determine the sucession of the motions of the pickerstaffs. The firm of the cams a^{3} will of comee depend on the pattern to be woven, and as they are on the ends of the shaft, they can be removed mul uther cans of ditferent forms substituted. The front series of shathe-boxes $j^{3} f^{3}$ are repremented ns con-isting of twelve shathe buxes ath each side, adapted to work patterna requiring twenty four sluttles. As the two serics are operated in like manner, it is unly necessary to deacribe one arnes.

Thee shattle bexes f^{3} are all connected torether, and slide in the front of the pemdutens frame, and are an pended to a chain a^{6} that is attanhed to and winds on 14 barred b° on the arhor F° a the pemduhome frante ; and this athor carries another harrel, on which winds another chatn c^{0} that passed orer as guide pulley, med has a romuter weight d^{n} su-pemeded to it to comntertalanee the shatele boxes, the weight bemg made in sections, that it may heremplated to suit the mmber of shothey employed. As
 down, when permitted so to do thy the turning of the artor man direction, mut that they will be lifect

 when the wheel is turned, the pressure of the step shatl have the e tfiet to ctope the whin l, in dil in

Vin. M.-20
pins projecting from its inner face, at equal distances apart, and so proportioned that the turning of the wheel the distance of one of these pins shall shift the shuttle-boxes to a distance required for one change. There are two rods $j^{6} j^{6}$, one on each side of the axis of the wheel e^{6}, and so far apart that when thrown out they will not touch the pins on the wheel. These rods are jointed to a sliding-frame h^{6} above, adapted to work on a guide-rod, and suspended to a lever g^{3} that carries a roller λ^{3} working in a cam-groove i^{3} on the shaft j^{2}, which makes two revolutions to each beat of the lathe, so that the lever and rods j^{6} will be carried up and down every alternate beat of the lathe; and there being a similar arrangement on each side of the loom, with the cams placed on opposite sides of the axis, one set will be worked for each beat of the lathe. The rods $j^{6} j^{6}$ before described, are drawn together by a helical spring l^{6} to bring their inner edges against the pins of the wheel e^{6}. Their inner edges are formed each with a hook m^{8}, so that when drawn up the hooks catch under the pins to turn the wheel; and as the two rods are on opposite sides of the axis of the wheel, the wheel can be turned in either direction if the appropriate hook be brought in the required position. The manner in which the rods are drawn inwards has been pointed out. They are kept out so that their hooks shall not engage the pins as they are moved up and down at each operation, by means of weights $n^{6} n^{6}$ (represented by dotted lines) suspended to cards $o^{6} o^{6}$ attached to levers $q^{6} q^{6}$, which by the force of the weights are made to bear against the inner faces of the said rods j^{6}, and to overcome the tension of the spring which tends to draw them in. The weights $n^{6} n^{6}$ are connected each to one of the cards (not represented) of the jacquard, so that when either weight is lifted by the jacquard, the corresponding rod j^{6} will be drawn inwards by its spring, and hence, when drawn up by the rotation of the cam, as before described, its hook will catch under one of the pins and turn the wheel, and hence shift the shuttleboxes. As these movements are very quick, and it is important that the shifting motion be accurate, the two rods are bent in at their lower ends to such an extent, that when drawn up, with the hook of one turning the wheel at the required extent of motion, the said bent projection of the other comes in contact with another one of the pins on the wheel, and thus effectually stops the movements. In this way it will be seen that by the punching of the cards that operate the needles connected with the eards that control the weights to disengage the hooks, the shuttles can be shifted to suit any variety of changes of color in the pattern.

The connection between the frames that carry the hook-rods $j^{6} j^{6}$ and the levers operated by the cams to give the shuttle-motions, is by means of spring-gripes, which hold by friction surface, so that in case of an imperfect throw of a shuttle, or any other impediment, the connections will yield instead of breaking. This is effected in the rear or receiving shuttle-boxes by the weighted lever, which is sufticient to move the boxes, but not to strain the parts in case of any impediment.

When a shuttle enters either of the boxes, it is arrested in part by its point striking against the picker, which soon becomes so indented as to permit the point of the shuttle to lodge therein, and therefore it will be seen that in this condition of the parts the shuttle-boxes could not be shifted, or rather would be seriously impeded, for the shuttle being in the box which is to rise, and its point imbedded in the picker, which does not move up, the parts would thus be held or strained. To prevent this, at the time the shuttle enters a box the picker is forced inwards by a lever r^{6}, which is afterwards drawu back to permit the picker to be drawn back clear of the point of the shuttle by the spring of the picker-staff. There are four such levers r^{4}, one for each series of shuttle-boxes; they turn on ful-crum-pins on the pendulous frames, and at their lower ends carry wrist-pins that work in cam-grooves on wheels s that turn on stud-pins on the lower ends of the pendulous frames, and from each of these wheels extends an arm t^{6} with a slot near the end, playing on a pin u^{6} attached to the floor, so that as the pendulous frame vibrates, the required vibratory ration shall be given to the cam-groove wheels One such cam-groove wheel answers for two levers, as shown in the plates.

The warps pass from the warp-beam below the floor, and pass over a roller e^{7} above the warp-beam, and thence through the mails of the trap-cards in the usual manner of mounting a jacquard loom. The woven cloth from the breast-beam passes between two rollers $f^{7} f^{7}$, one of which is weighted to make pressure against the other, that the cloth may be gripped between the two with sufficient force to prevent it from slipping. And thence the cloth is wound upon the cloth-beam, (not represented, which is driven by a friction-strap with sufficient velocity to take up the slack, the band slipping on the pulley when the diameter of the beam becomes so large as to tend to wind on the cloth faster than it is carried forward by the two rollers $f^{7} f^{7}$, which constitute what is called a positive take-up motion, and which receive the same motion for each beat of the lathe, that the same length of cloth may be taken up for each operation of the loom, and thus measure the figure to be produced on the cloth. As the mechanism for giving this regular and positive take-up motion to the rollers was not invented by Mr: Bigelow, but was previously well known to weavers, it is deemed unnecessary to give a description of it here.

The mode of operating the yarn-beam is not representesl, but it will be understood with sufficient clearness from the description alone.

On the shaft of the yarm-beam there is a cog-wheel operated by a worm on a vertical shaft, which carries a crown ratehet-wheel, the teeth of which are engaged by a pall, or ratchet-hand, on the end of a rod jointed to the sword of the lathe, so that as the lathe beats back, by the connections described, the ratchet-wheel is turned a given portion of a revolution, which shall be sufficient to give out the required quantity of warp-threads for any one operation of the loom. But as the diameter of the beam is constantly varying, beginning with a large diameter, and gradually diminishing as the warps are given out, and the demand for warps is constantly varying, by reason of the irregularities of the weftthreads and the ingraining of the fabric, the regular and positive motion of the warp-beam given by the mechanism requires to be varied to suit the varying conditions abore described. This, as before intimated, is governed by the tension of the warps between the beam and the woven cloth. The roller c^{7} over which the warps pass from the warp-beam is hung in the upper ends of two levers $g^{7} g^{7}$ which have their fulcra at h^{7}; and the lower arms of these levers are formed in sector-racks i^{7}, the cogs on
which engage pinions j^{7} on the ends of a shaft, and this shaft is provided with an arm which carries a weight l, which, by the connections of the pinions and sector-racks, tends always to furee back the roller e^{7} to keep the warps under the same, or nearly the same tension. This weight is adjustable on the arm by a set-screw, to regulate the degree of tension, to suit the quality of the warps and the fabric to lee produced. From this it will be seen not only that the warps will be always kept under the same degree of tension during the operation of weaving, a condition very essential to the production of a fitbric of regular texture, but if the quantity of warps given out by the warp-beam be greater than the quantity taken up in weaving, the roller will be carried back by the weight, and that when the quantity is less than enough, the roller will be drawn forward. This motion of the roller is made use of to reg. ulate the motion of the warp-beam in the following manner: On the shaft befure described there is another arm, to whieh is jointed one end of a connecting-rod, the other end of which is in turn juinted to an arm which turns on the arbor just above the ratchet-wheel, and this arm carries a plate that re-t on the face of the ratchet-wheel, so that when the roller is carried back by the action of the weight when the supply of warps is too great, the shaft is turned in one direction, which, by the connection decribed, carries the plate so far over the surface of the ratchet-wheel as to cover all, or only a portion uf the tecth which would otherwise have been engaged by the band, and hence the let-off motion of the warp-beam is either entirely or partly prevented; and when, on the other hand, the ruller is drawn forward by the amount of warps given being insufficient, the plate is drawn back, which permits the hand to engage the teeth of the ratchet, and to operate the warp-beam, to give out the required quantity of warps. In this way the supply of warps is proportioned to the demand, and the cloth being takell up by a positive and measured quantity at each operation, it follows that the irregularities will be thrown into the thickness instead of the length of the eloth, and hence the figures will be produced of a regular and measured length, whatever may be the irregularities of the weft-threads and the ingraining.

But there is still another condition which is important to be ubserved. The roller e^{7} must be suffidiently sensitive to yield to the tension of the warps under the force of the weight suspended to the arm of the shaft connected with the levers that earry the roller; and hence, when the lathe beats up the weft-threads, it would yichl to the force of the beat, particularly in weaving fabrics of a close texture, which motion would have the effect to prevent the full action of the reed, and cause the cloth of loose texture to lay up in front of the reed, and in a short time impede the proper working of the loom. I's prevent this, the shaft carries a wheel m^{7}, and around a portion of its circumference passes a frictionbrake, n^{7}; that iz, a metal strap jointed to the frame and to a connecting-rod σ^{7}, attached to the sward of the lathe, so that when the lathe beats up, this metal strap is drawn in contact with the periphery of the wheel, and thus by friction holds it firmly so that it cannot turn, by the connections holding the roller firmly, that the warps may be prevented from yielding to the foree of the beat of the lathe. In this way the desired effect is produced; viz., that of producing a close fabrie of sechular texture and measured figure, with the irregularities thrown into the thickness instead of the length of the cloth.
su soon as the shuttle has been thrown the weft-thread lies between the warps in a diagonal line from the selvage on one side th the shuttle-box on the other, and this diagonal line being longer than the bremith of the cloth, it is evident that if the weft-thread were beaten up frechy, it would beeome louse and produce a bad selvage. To prevent this, the sides of the frame at a^{p} constitute a bed on eath side, growved to receive a series of fingers b^{7}, jointed to the frame, and the moment the shuttle hats pasced a cam d^{7}, on the lathe-shaft, perimits the fingers to fall on to, and gripe the wefl-thread, so that when it is carried forward by the reed it is resisted by the pressure of the fingers, which gives the reguired pull to insure a goonl selvare. The cam then passes around to lift the fingers, that the shattle may pass. These fingers are made to answer the purpose also of stopping the loon when the weftthread hats not been carried acrosis; for then, ats the fingers descend, not being hedd up by the weft thread, they enter the gronves, and the arm at the back acts as catch-fevers comected with the shipper (1) stup the loom.

The manner of uperating the lathee has been described with sufficient elearness in ponting out the Tharacteristies of thas insention, and it is therefore umecessary to give a more decailed deacription of it.
 quide b^{\prime}, in the unal way; but to adapt this to the intronduction of a rever-ing motion, the shippr and
 shaft c°, humg in appropriate boxes, amd this shatis hollow, and within it there is an mint d^{4}, which extemely out at cach cmil. From the rear end of this immer urbur projects an arm c^{\prime}, whirh carreen a wrist-pin f^{\prime}, that tits and shifes freely but aceurately in a corved mortiow g^{\prime}, in ons arm of a hever h^{\prime}, that turns on a fulerumpin i^{4}, its other mim being jointed the the eonneeting roed of the Irake j^{4}, that Works aganst the immer periphery of the fast pulley \dot{b}, in the unal way of arrangine the l rabe for arresting the operation of the lexin when the belt is chited from the fast to the howe pulley. When the inner arbor d^{\prime} is therefore connectel with the bhaft of the shipper, the brake is operateit to make frection on the fant pulley when the bett is shifted to the lerve pullev, thal hibemated tor reliere the frice tiun when the belt is mhfted to the fant pulley, the motion of the shipper to slutt the late from the one Wh the other of the pulleys being suffietent to mowe the nrus es that its wrint \boldsymbol{f}^{4} : hall mose over a dintance mpal to half the lensth of the eursed anortive in the lever of the hrakis, the curse and the Lempth of this mortise being such that moving the wring pin from chther cont of the mortise to the mid lla
 end will remove the brake. Aa amplay the lonsu pulley for the purpose of gis ing the revera mation, It becones nocessmy in the firat place thestop the lexm, und then to start it in the reveree directions. and therefore in shifting the belt from the fat to the lone pmlley, the brake ut firat mast bo operated to make friction to arrest the parts, and then liberated whifet the mechan-an of the reverand mathon is urought into action. 'This is eflecteal in than fullowing mamer: on the fiont end of the arlar d^{\prime} ', when

of the loom, nearly in a horizontal direction and at a convenient height to be reached by the attendant's foot. On this arm is journalled a treadle h^{4}, and so connected with the arm g^{4}, by means of a helical spring i^{4}, that when no force is applied to it, an arm j^{4}, which projects upward from its inner end, is beld against a projection k^{4} of the shipper, so that the arbor of the brake and the shaft of the shipper are kept in a locked condition by the helical spring i^{4} to be operated together; but when pressure is applied on the top of the treadle, then the brake is operated separately to remove the friction from the pulley. When the attendant moves the shipper towards him, the belt is shifted from the fast to the loose pulley, the brake at the same time being drawn down to make friction for arresting the momentum of the moving parts, and then the attendant with his foot forces down the treadle which relieves the brake, thereby liberating the parts preparatory to the reversing motion which is brought into action by the same motion. From the bottom of the treadle projects an arm l^{4}, that carries a pin m^{4}, that plays freely in a mortise n^{4}, in the end of a sliding-rod o^{4}, and the length of this mortise is such that the motions given to the arm l^{4} by the ordinary motions of the shipper will not communicate motion to the sliding-rod, but when the treadle is borne down to relieve the brake after the shifting of the belt into the lonse pulley, the sliding-rod is drawn in the direction of the arrow.

The sliding-rod o^{4} is jointed to the lower arm of a lever p^{4}, which turns on a fulcrum-pin q^{4}, its uppes arin being forked and made to embrace the collar r^{4} of a wheel s^{4}, which slides freely on the main driv-ing-shaft a of the loon, When the sliding-rod o^{4} is drawn in the direction of the arrow, it forces the wheel s^{4} against the face of a friction-plate u^{4}, which is fast on the main shaft, and this friction-plate has the effect of locking it with the main shaft, so that any motion given to this wheel s^{4} will drive the main shaft. The hub v^{4} of the loose pulley carries a pinion v^{4}, which engages another pinion x^{4}, on a parallel shaft y^{4}, the other end of which has a pinion z^{4}, which engages cog s on the inner periphery of the wheel s^{4}, so that the motion of the loose pulley communicates a reversed motion to this wheel, which drives the main shaft in the reversed direction whenever they are locked together by the friction-plate.

The moment the attendant removes his foot from the treadle, the wheel is withdrawn from the fric-tion-plate by the tension of a helical spring a^{5}, on the slide-rod 0^{4}, and the parts are then in a condition for starting the loom by the shifting of the belt on to the fast pulley.*

MACHINES are instruments employed to regulate motion, so as to save either time or force.
The maximum effect of machines is the greatest effect which can be produced by them. In all machines that work with a uniform motion there is a certain velocity, and a certain load of resistance, that yields the greatest effect, and which are therefore more advantageons than any other. A machine may be so heavily charged that the motion resulting from the application of any given power will be but just sufficient to overcome it, and if any motion ensue it will be very trifling, and therefore the whole effect very small. And if the machine is very lightly loaded, it may give great velocity to the load; but from the smallness of its quantity the effect may still be very inconsiderable, consequently between these two loads there must be some intermediate one that will render the effect the greatest possible. This is equally true in the application of animal strength as in machines. \dagger

1. The maximum eflect of a machine is produced when the weight or resistance to be overcome is four-ninths of that which the power, when fully exerted, is able to balance, or of that resistance which is necessary to reduce the machine to rest; and the velocity of the part of the machine to which the power is applied should be one-third of the greatest velocity of the power.
2. The moving power and the resistance being both given, if the machine be so constructed that the velocity of the point to which the power is applied be to the velocity of the point to which the resistance is applied, as four times the resistance to nine times the power, the machine will work to the greatest possible advantage.
3. This is equally true when applied to the strength of animals; that is, a man, horse, or other animal will do the greatest quantity of work, by continued labor, when his strength is opposed to a resistance equal to four-ninths of his natural strength, and his velocity equal to one-third of his greatest velocity when not impeded.

Now, according to the best observations, the force of a man at rest is, on an average, about 70 lbs.; and his greatest velocity, when not impeded, is about 6 feet per second, taken at a medium. Hence the greatest effect will be produced when the resistance is equal to about $311-9$ th pounds, and his uniform motion 2 feet per second.

The strength of a horse at a dead pull is generally estimated at about 420 pounds, and his greatest

- The history of the invention of this machine is so full of instruction to the young mechanic, and the facts of the case coming entirely within our own knowledge, we have been induced to dwell upon them, allhough by so doing we have departed somewhat from the original plan of the Dictionary, which would confine all description to the machines themselves,
\dagger These conditions are deduced from the following empirical expression, which is adopted by Euler and other writers, to represent the law of the moving power: Let $P=$ the power applied, (or weight which the power, when fully exerted, is just able to overcome; $\mathrm{R}=$ the resistance, or load, or weight to be overcome; c the greatest velocity, or that at which the power ceases to act; $v=$ any other velocity: then the law or the moving power is

$$
\mathrm{R}=\mathrm{P}\left(1-\frac{v}{c}\right)^{2}
$$

The variables in this expression arc R and v, and the effect is represented by the product $\mathrm{R} v$; on making which a maximum, the rules of the differential calculus give $v=\frac{1}{3} c$; whence the formula becomes $\mathrm{R}=\frac{4}{9} \mathrm{P}$.
From these expressions it follows, that when the moving power and the resistance are both given, if a machine be so constructed that the velocity of the part to which the power is applied is to the velocity of the part to which the resistance is applied in the ratio of 9 is to 4 P , the effect of the machine will be a maximum, or it will work to the greatest possible advantage. The above conditions apply equally to machines impelled by mimal foree and the agents of mature, as running water, steam. the foree of gravity, \&c. An animal exerts itself to the greatest advantage, or pertorms the greatest quantity of work in the least time, when it moves with about one-third of the htmost speed with which it is eapable of moving, sud is loaded with four-ninths of the greatest load which it is eapable of putting in motion.
rate of walking 10 feet per second ; therefore the greatest effect is produced when the load $=186$ pounds, and the velocity $\frac{10}{3}$, or $3 \frac{1}{3}$ feet per second.
4. A machine driven by the impulse of a stream produces the greatest effect when the wheel moved with one-third of the velocity of the water.
The following may be taken as a general arrangement of machines:
Class I.-Machincs for overcoming inertia.
Machines for raising weights.
Machines for trausporting weights on land.
Machines for raising water.
Class II.-Machines for overcoming cohesion.

Ploughs.

Drilling machines.
Reaping machines.
Threshing machines.
Mills.
Boring machines.

Blowing machines.
Machinery for ascending and descending in fluids.
Hachines for narigation, \&c.

Cutting machines.
Machines for cleaning, or removing impurities.
Grinding machines.
Machines for turning.
Machines which act by compression.
Pile engines, \&c.

Class III.-Machincs for combining matcrials.
Maclaines for weaving cloths, earpets, nets, stockings. | Machine for combining materials in brewing, dec.
Class IV.—Machines for measuring forces.

Anemometers.
Torsion machines.
Balances and steclyards.
Barometers.
Thermometers.
IIygrometers.

Machines for measuring the elasticity and strength of materials.
Dynamometers for measuring the force of men, animals, and other agents.
Machines for measuring the force of projectiles.
Machines for measuring the force of running water.
Class V.-Machincs for measuring and dividing space.

Quadrants.
Circles.
Theodolites.
Levels.
Micrometers.

Croniometers.
Dividing machines.
Odometers.
Drawing and copying instruments.

Class VI.-Machincs for measuring time.

Machinery.-The utility of machinery, in its application to manufactures, consists in the addition shich it makes to human power, the economy of human time, and in the conversion of substances apparently worthless into valuable products. The forces derived from wind, from water, and from steam, are so many additions to human power. The difference between a tool and a machine is not capable of very precise distinction, nor is it necessary, in a popular examination of them, to make any distinction. A tool is usually a more simple machine, and generally used by the hand; a machine is a complex tool, a collection of tools, and frequently put in action by inanimate force. All machines are intended to transmit power. Of the class of mechanical agents by which motion is transmitted-the lever, the pulley, the wedge-it has been demonstrated that no power is gained by their use, however combined. Whatever force is applied at one part can only be exerted at some other, diminished by friction and other incidental causes; and whatever is gained in the rapidity of execution, is compensated by the necessity of exerting additional force. These two principles should be constantly borne in mind, and teach us to limit our attempts to things which are possible.

1. Accumulating power.-When the work to be done requires more force for its cxecution than can be generated in the time necessary for its completion, recourse must be hat to some mechanical methord of preserving and condensing a part of the power exerted previously to the commencement of the process. This is most frequently necomplithed by a dy-wheel, which is a whed hatwing a heavy rim, su that the greater part of the weight is nemr the circumference. It requires great power, applied for some time. to set this in rapid motion; and when moving with considerable velocity, if its force is concen trated on a point, its effects are exceedingly powerful.
2. Jicgulating porer.-Uniformity and steatiness in the motion of the machinery are essential bouth to its macees and its duration. 'The gosernor, in the steam-engine, is a contrivance for this purpene. A vane or tly, of little weight, but large surface, is alon used. It revolves rapilly, and soon aequires a
 dition to the resistance of the air. This kind of oly is geverally weed in smatl fineces of mechanism, ant, milike the heavy tly, it serves to chatroy instead of to presemve fores.
3. Farcoase of velocity.-Operations requiring in trithng exertion of force may become fatiguing hy tho

 economize time. Thna, twisting the fibres of wowl by the finger would he a ment tedions ogeration. In the common spiming wheel, the velucity of the fonit is moderate, but, bey a simple contrivance, that of the thread is ment rapin!.
A. Jimination of velecit! -This is commomly required fur the purpme of overcoming great reintamees with small power. Systems of putleys atlord sum example of thes.
4. Sprending the action of a force extrted fic a few minutes over a large time.-This is one of the most common and useful employments of machincry. The half-minute which we spend daily in winding up our watches is an exertion of force which, by the aid of a few whech, is spread over 24 hours.
5. Saving time in natural operations.-The process of tanning consists in combining the tanning pribciple with every particle of the skin, which, by the ordinary process of soaking it in a solution of the tanning matter, requires from six months to two years. By inclosing the solution, with the hide, in a close ressel, and exhausting the air, the pores of the hide being deprived of air, exert a capillary attraction on the tan, which may be aided by pressure, so that the thickest hides may be tanned in six weeks. The operation of bleaching affords another example.
6. Exerting forees too large for human power.-When the force of large bodies of men or animals is applied, it becomes difficult to concentrate it simultaneously at a given point. The power of steam, air, or water, is employed to orercome resistances which would require a great expense to surmount by animal labor. The twisting of the largest cables, the rolling, hammering, and cutting of large masses of iron, the draining of mines, require enormous exertions of physical force, continued for considerable periods.
7. Exeeuting operations too delicate for human touch.-The same power which twists the stoutest cable and weaves the coarsest canvas may be employed, to more advantage than human hands, in spinning the gossamer thread of the cotton, and entwining the meshes of the most delicate fabric.
8. Registering operations.-Machinery affords a sure means of remedying the inattention of human agents, by instruments, for instance, for counting the strokes of an engine, or the number of coins struck in a press.
9. Economy of materials.-The precision with which all operations are executed by machinery, and the exact similarity of the articles made, produce a degree of economy in the consumption of the raw material which is sometimes of great importance.
10. The identity of the result.- Nothing is more remarkable than the perfect similarity of things manufactured by the same tool. This result appears in all the arts of printing: the impressions from the same block, or the same copper-plate, have a similarity which no labor of the hand could produce.
11. Accuracy of the work.-The accuracy with which machinery executes its work is, perhaps, one of its most important advantages. It would hardly be possible for a very skilful workman, with files and polishing substances, to form a perfect cylinder out of a piece of steel. This process, by the aid of the lathe and the sliding-rest, is the every-day employment of hundreds of workmen.

Machines are classed under different denominations, according to the agents by which they are put in motion, the purposes they are intended to effect, or the art in which they are employed.

The reader is referred to the various machines, under their respective heads.
MAGNET-MAGNETISM. The magnesian stone, or native magnet, abounds in various parts of the earth, especially in iron mines, where it is found massive, frequently crystallized, and occasionally in beds of considerable thickness. Its constituents are, for the most part, oxygen and iron under the form of two oxides, the black and red. In 100 parts, we have about 73 parts iron and 27 oxygen: it has been termed inagnetic iron ore. Its color varies from a reddish black to a deep gray. Native magnets from Arabia, China, and Bengal are commonly of a reddish color, and are powerfully attractive Those found in Germany and England have the color of unwrought iron.

The specific grarity of magnetic iron ore is about $4 \frac{1}{2}$ times that of water, and affords, when worked, excellent bar-iron.

This remarkable substance has not only the power of drawing apparently towards itself small particles of iron, but it has also the important property of communicating or propagating, as it were, its own attractive power through a scries of masses, so as to cause them to hang one on another in a sort of linked chain.

If the magnet be suspended by a delicate silk line from some point between the surfaces of attraction, so as to admit of its turning freely on that point, the mass will rest only in one position: this position will be such as to place its poles cither in the line of the meridian, or very near it; oue of the surfaces of the mass will have turned towards the north, and the opposite surface towards the south, and. if drawn aside from this position, will continue to vibrate backwards and forwards until it again rests in the same position.

The attractive force of the loadstone or natural magnet cannot generally be considered as of any great amount. Native magnets in their rude state will seldom lift their own weight, and, with some rare exceptions, their power is limited to a few pounds.

The effective power of the loadstone may be considerably improved by means of what is termed an armature, which consists of small pieces of very soft iron applied to the opposite polar surfaces of the stone, and projecting a little below it on each side. The attractive force is thus transmitted to the small projecting or artificial poles of iron; this is found not only to augment the power, but also to enable the experimentalist to bring both the poles to bear upon any given mass at the same instant.

The pieces intended for the armature should be made of very soft iron, and each formed with a vertical face about $\frac{1}{8}$ th to $\frac{1}{4}$ th of an inch thick, with a projecting solid foot below, as at $a p$ and $b n$, Fig. 2672; the rertical face being closely applied to the polar surfaces, and the mass allowed to rest on the projecting feet $p n$, forming the artificial poles. Things being thus arranged, the whole is bound firmly together ly a cap of silver or brass, or by plain metallic bands, as represented in $A \mathrm{~B}$ and CD, Fig. ${ }^{2} 673$. A ring R is usually fixed in the upper part of the cap for the convenience of raising the whole mass, and a transverse picec of soft iron K, termed a kecper or lifter, furnished with a central hook G, is placed across the artificial poles $p n$, so as to unite them. This keeper is found to preserve and increase the attractive force of the poles, especially if the magnet be suspended by its upper ring R , and weights be attached to the book G, and by which its power may be roughly estimated.

If the armed magnet be thus suspended, and a small scale-pan attached to the kecper κ, an additiona!
weight may be added daily for a considerable time: the loadstone thus armed may be caused to sustan from twenty to thirty times its own weight.

When all armed loadstone is employed for particular experimental inquiries or other purposes, the keeper K may be removed, but it should be replaced when the magnet is not in use.

It we suspend a magnet by a fine silk fibre over another magnet, or near another magnet also staspended, the poles of these magnets will arrange themselves in such a way as to bring the opposite poles together; the similar poles are found so powerfully and reciprocally repulsive, as not to allow -he masses to rest with their similar poles in juxtaposition.

l'seces of common iron, which have been for a great length of time in one fixed position, or underground, acquire considerable polarity-in fact, become magnets. In the " Memoirs of the Acadeny on sciences" for 1731, we find an account of a large bell at Marseilles having an axis of iron: this axis rested on stone blocks, and threw off from time to time great quantities of rust, which, mixing with the particles of stone and the oil used to facilitate the motion, became conglomerated into a hardened mass: this mass had all the propertics of the native magnet. The bell is supposed to have been in the same position for 400 years.
The artificial magnet.-To make an artificial magnet, procure a small bar of steel about 8 inches in length, th of an inch wide, and $\frac{1}{8}$ th of an inch thick, or a piece of common steel wire of about the sanne length, and from $\frac{1}{8}$ th to $\frac{1}{4}$ th of an inch in dameter. Let the steel be well hardened and tempered by plunging it at a cherry-red heat into cold water; when cold and polished, apply each extremity in suc cession to the opposite poles of an armed magnet, Fig. 2672, first touching with gentle friction one ex tremity of the bar, or one of the poles and the opposite extremity on the other pole, or, which is better, draw the bar ab, Fig. 2074, a few times, in the direction of its length, acro-s the two pules m of the magnet M, as represented in the firure, and in such a way as not to pass either extremity, ab, beyomd or oll the opposite poles $m n$; finally, bring the bar $a b$ so as to rest with its extremity ab equally dis tant from each pole $m n$; that is to say, bring the poles $m n$ at the centre of the bar, or as nearly as may be. In this position remove the bar from the poles. The bar will now be found attractive of particles of iron, common steel needles, and other ferrurinous matter: when suspended it will arange itself in the direction of the magnetic meridian, and will, in fact, have all the properties of the loadstone, including the important property of imparting or exciting a magnetic condition in tempered ateel.

Take a small bar of steel which has been rendered marnetic by the process just deerribed, apply it with slight friction to a piece of hard steel wire or a similar bar, und in such way that the opposite extrennities of each bar may have contact attended by a slight degree of friction: this second bar or wire will be found also to have acquired a similar magnetic condition to the first; mad this procesa may be continued from the second to a third wire of steel, and so on without limit.
The proparation of marnetiom from one bar of steel to another, ns illustrated in this experiment, enables the experimentalist to obtain artificial magnets to any given amount; and since the form and magnitude of the steel has not been found to interfere with the generality of the result, we are further enabled to obtain magnets of any required tigure or magnitude.
It is to be erpecially observed that the polarities exeried in the oppesite purtions of a steed bar by this artificial process of mapnetizing are the reverse of those of the matenetic poles to which these per tions have been applied. Thus in Fige e6t, if the extremity b of the steel ab rint on the north, on prositive pole x of the magnet $I I$, we polaty induced in that extremity b will be n sontl or menmive polarity. Reciprocally, if the extremity a be bronght to rest on the merghtive on smoth pele m, than the prolarity induced in that peint of the steel will bes a powitive or morth polarity:
Artificial magnets may be of any required form, of of alnowt may dmensons, meording to the par

 horse-shoe, Many nuch bars, either straighe or cursed, forne. When combined, what is termed a coir
 nevernl componad magnets with projecting armatures constitutes a maynefic buthery wr mochine. 'The dimensions well ndapted to magnetic bara, either straight or corved, are such as to gise the brembth about $\frac{1}{1}^{\frac{1}{4} \text { th }}$ or $\frac{1}{3}^{\frac{1}{s} \text { th }}$ of the lengeth, mind the thickness something less, or not exceeding one half of the fremeth.

To magnetize a bar of tempered steel, Fig. 2676, curved into the horse-shoe form, fix the bar, Fig 2679, on a flat board, with its extremities, $p s$, against a straight piece of soft iron, $p s$, of the same thickness and width as the bar. Having secured the whole in this position, place a compound magnel M , or an armed native magnet, on one of the extremities s, of the curved bar, taking care that the opposite or marked and unmarked ends are in contact with each other. Continue as before to glide the magnet M several times round the whole series, and in the same direction, $s c p$, finally stopping in the

centre, c. Repeat this process on each face of the bar, when a high degree of power will have become developed; so much so, that the iron or keeper $p s$ cannot be directly pulled away without considerable force, and in some instances cannot be conveniently removed except by sliding it off.
In order to preserve effectually the magnetism thus excited in bars of steel, it is requisite, when not in use, to keep their opposite poles united by means of pieces of soft iron.

Take a perfectly straight and even bar of steel, P S, Fig. 2680, sufficiently hard to retain a magnetic state. It may be 7 inches long, $\frac{1}{8}$ th of an inch wide, and $\frac{1}{10}$ th of an inch thick. Drill a clean hole through the centre of the wide surface, and then pass an extremely fine drill also through the centre transversely to this hole, across the thickness of the bar, edgewise, and so accurately as to pass through the centre of gravity of the mass, or as nearly as possible ; proceed now to complete the equilibrium of the bar upon a fine ncedle as an axis, and in such a way as to render it indifferent as to position in a vertical plane or nearly so, and that whether it be placed with one or the other face uppermost. Let the bar be now magnetized, and then mounted on its central axis; run the axis through a small silver stirrup $c r$, and suspend the whole by a fine silk fibre $r t$, attached to a fixed point t; the bar PS will be observed gradually to assume a definite and oblique position, $p n$, inclining in these latitudes its north pole, P , nearly 70 degrees below the horizontal line, turning at the same time into a plane deviating from the plane of the meridian by a given angular quantity, called "the dip," the lower extremity having turned towards the north, and the other extremity towards the south; and it may be likewise observed, on the principle already stated, that the extremities which have thus turned, the one towards the north and the other towards the south, will have been derived from the opposite poles of the loadstone or magnet by which it has been magnetized.
The position of the magnetic centre and poles of each surface, together with the general magnetic condition of the bar, and the reciprocal attractions, repulsions, and ncutralization of the opposite forces, may be shown in the following way.
Strain a piece of common drawing-paper on an open frame, A C, Fig. 2681, and place it over a hard steel bar S N, regularly and powerfully magnetic ; project on the paper over the bar, through a small muslin or lawa sieve, some fine iron dust or filings; the particles will arrauge themselves in a series of
curved lines of magnetic furce proceeding from homologous or similar points on each side of the mildle of the bar, some uniting about the magnetic centre, others standing out at the extremities as if repelled from the poles NS, and tending to turn at considerable distances into other cursed lines of force, to unite their branches between the opposite poles. This experiment may be rendered more decisive by slightly tapping the finger on the paper, so as to give the particles a little vibration.

Oppose the dissimilar poles \mathbb{S} N, Fig. 2681 $\frac{1}{2}$, of two powerful bars to each other at about two inches
2681.

$2681\}$.

distance, and project over them fine iron filings as before ; similar results ensue. Magnetic lines of force, both straight and curved, and proceeding from similar points of eacla bar, will be apparent, uniting the two poles by chains of reciprocal attraction.

Change the position of one of the bars, so as to oppose two similar poles N N, Fig. 2682; the lines of force will then appear to be conflicting lines; the repulsive forces will eause a straight line $a b$ to appear on the open space or field between the poles, from which the iron dust stands out transversely. At this line, the opposed forces on either side are apparently struggling with each other, being exerted in repulsive directions from the opposed poles.

We lave in these phenomena satisfactory visual evidence of the existence of two distinct forces-of their reciprocal attractions and repulsions, and their mutual neutralization.

A light magnetic bar NS, Fig. 2683, or a small magnetic steel cylinder, of great comparative length, has been termed a magnetic ncelle. When delicately poised on a central point c, so as to retain a horizontal position, and move freely in a horizontal plane, it has been termed the horizontal necdle. When poised on a fine central axis, so as to move freely in a vertical plane, it has been termed a vertical or dipping necdlc. If suspended as in Fig. 2653, so as to have motion in both a horizontal and vertical plane, it has been termed the horizontal and vertical needle.

Instruments for ascertaining whether a substance has polarity or not, and for detecting the presence and hind of force in operation, have been termed magneloscopes. The most simple kind of magnetoseope is a small horizontal needle, about an inch in length, delicately suspended by a tino silk fibre, or otherwise set upon a fine point and agate ecentre, within a small wood or glass case, as represented in lig. 2684, and so set as to admit of some degree of dip or depression of either pole, as well as a perfect motion in a horizontal plane. From the attractive and repulsive forces of similar and dissimilar poles it is evident,
2684.
 from the kind of effect produced un the poles of the magnetoscope, we may always determine the presence or kind of polarity acting on it. Thus, if such sum instrument as that just described, be glided along the surface of my given substance without any attractive or repulsive effect being apparent, such a substance may be considered as non-magnetic. If, on the contrary, wo lind both poles of the instrument everywhere attructed indifferently, then we maty infer that the substance is a magnetic substance: such would be the case with a picee of common soft iron. Fhould we tind certain points attractive of one of tho poles of the small needle, and repulsive of the other, then We may infer that not only is the substance a magnetic substance, but that it has also polarity, or is in magnet.

Ifagnelic influence or induction. When a piece of soft iron is hrought juto contact with a mangetic pole, it immediately aequires an attractive power, as if the magnetism of the pole havd spread out and pervaded the iron. In fact, if we examine a pieco of iron that circumstanced by means of the mametodeope, we find the sane prolarity continued throughont the iron; it will everywhere attrat one pole of the magnetescope, and repulso the opposito pole. If, however, we separnte the iron from the manet, mal retain it at a short distance from the magnetic pole, then a now case nppeas for nrine: that purtion of the iron next tho magnet will have an opponite polarity to that of tho pele to which it is oppmad ; the two magnetic elements rewident in the iron will, in lact, leeome separated; ono of then will be sensible at the extremity next the magnet, and the ofleer at its distan extremmy: a re uli which we
might expect to follow from the repulsion of the similar elements and the attraction of the opjosite elements. This separation of the latent magnetism of the iron into its constituent elements has been termed magnetic induction. It is altogether a temporary state or condition of the iron sustained by the influence of a magnetic pole, and vanishes so soon as that influence is withdrawn.

In the communication of magnetism by the loadstone to hardened steel, and from one piece of steel to another without limit, neither the loadstone nor the artificial magnet loses any of its inherent power, nothing, therefore, appears to be communicated ; the whole result is entirely a species of molecular excitation, or a calling into sensible activity certain forces already existing in the magnetic substance, and which, under ordinary circumstances, remain in a quiescent or neutral state. No means yet devised have ever insulated these forces in such way as to enable us to obtain one of them only, independently of the other. We cannot, for example, produce a magnetic bar having a single pole; for although we touch one extremity of the bar only with one pole of the loadstone, still two poles will appear in the bar, although the one induced by the presence of the other may not be so forcible.

Methods of communicating magnetism to steel bars.-The first means of imparting magnetism to steel was, as we have already described, by contact with the armed loadstone or other magnet. A more efficacious method, however, of maguetizing small needles or bars by simple contact, consists in placing the bar or needle between the opposite poles of powerful magnets, as, for example, in the magnetic field S N, Fig. 2681, immediately between the poles S N.

We are indebted to Dr. Gowan Knight, F.R.S., a London physician, for the first important step in the communication of magnetism to bars of steel. His method, as given in the Philosophical Transactions for the years 1746 and 1747, vol xliv., is as follows: two powerful magnetic bars M M', Fig. 2685, are placed in the same straight line, with their opposite poles N S very near each other; the needle or bar $n s$ to be magnetized is laid flat on the surface of the bars, immediately over the opening $N \mathrm{~S}$, between them. If the bar $n s$ be a magnetic needle, having a cap for suspension, then the cap is allowed to rest between the bars: if the surface be unimpeded by this, the bars $\mathrm{M} \mathrm{M}^{\prime}$ may be brought very near each other. Things being thus disposed, the bars $M \mathrm{M}^{\prime}$ are gradually withdrawn in opposite directions, and immediately under the bar $s n$; the result of which operation is, on the principles already explained, that each half of the bar $s n$ being acted on by opposite polarities, the two magnctic forces resident in it become separated; the pole N of the bar M attracts all the south polarity and repels the north, whilst the pole S of the bar M^{\prime} attracts all the north polarity and repels the south: hence a final and permanent magnetic state is imparted to the bar $s n$, the position of the poles $s n$ being the reverse of the poles N S of the bars.
2686.

Small needles will become magnetized to saturation by one operation of this kind performed on each of its surfaces; for larger bars, two or three, or more, repetitions are desirable. This method is very effectual, especially for single bars, and there is not, perhaps, any better for certain purposes, even at the present day.

After this method of Dr. Knight's had become known and practised, M. Du Hamel, member of the Royal Academy of Sciences at Paris, was led, about the year 1749, to a further and still more extensive application of it. Two bars N S and T P, Fig. 2686, required to be magnetized, are laid on a table parallel to each other, and their intended opposite poles united by pieces of soft iron NT, S P, so as to form a closed rectangular parallelogram, as seen in the figure. The opposite poles $n s$ of two porverful magnets A B, either simple or compound, are then applied to the centre C of one of the bars N S, and drawn away from each other in opposite directions C N, C S, being held all the while at an inclination of about 40° : this operation is repeated several times; the magnets $A B$ are now either reversed, or their relative positions changed, by turning them round; they are then applied in a similar way to the other bar P T, so as to bring the poles $s n$ opposite to their former position: the same operation is now repeated on the bar T P, and this process is to be further repeated on each surface of the bars T P, NS. M. Du Hamel's method is effective and expeditious; the elementary forces resident in the bars being by the joint operation of the magnets casily separated, whilst the union of the opposite poles N T and S P by soft iron, further tends to increase the effect, by holding together, as it were, the two separated magnetic elements, and thus allowing the exciting magnets A B to operate with more considerable effect.

Bars of the horse-shoe form may be rendered magnetic in a similar way, by uniting their near extremities or intended poles with soft iron, and then drawing the magnets away from each other, commencing at the centre of the curve, and terminating at each extremity.

A high magnetic development may be obtained in a series of straight bars, without the aid of powerful magnets, by a successive touching in combination one with the other. We are indebted to Mr. Canton for this process, which is as follows:

Having a set of 12 bars, however slightly magnetic, two of the series $S^{\prime} N^{\prime}, N S$, Fig. 268\%, are laid
with reverse pules parallel to each other, and the rectangle clused by pieces of soft iron $\mathrm{S} \mathrm{N}^{\prime}$, $\mathrm{N}^{\prime} \mathrm{S}^{\prime}$, about one-half the length of the bars, and of the same breadth, as in the method of Du Hamel; the remaining 10 bars are separated into two combined systems A b, of 5 bars each, placed on one of the bars $N^{\prime} S^{\prime \prime}$, with their remote and opposite poles C in contact, and their lower poles $n s$ somewhat open. This arrangement being made, the bars $S^{\prime} N^{\prime}$ and NS are rubbed with these systems in the way already described, and being thus strengthened $k\rangle$ the united powers of all the rest, are nuw removen.

and placed at the back of the others, as at $A \mathrm{~B}$, whilst the two interior bars of each system $\mathrm{C} s, \mathrm{C} n$, are withdrawn, and subjected to the same operation as the preceding; in this way we continuc to strengthen each pair of bars by the acquired power of those last touched, until the whole become nagnetized to saturation. This process is very useful when powerful magnets are not at hand; for however weak may be the magnetic state of the bars, even although two of them only be slightly magnetic, we may from these render the whole scries very powerful.

The combined systems A 1 may be temporarily bound together by a little common tape, and a small block of wood placed between them, so as to support the whole in position during the process of magnetizing.

Besides these direct methoda, we have other processes for obtaining a magnetic development in steel and iron, of much practical importance. Marcel, so long since as the year 172o, observed that a bar of iron acquired a temporary magnetic state by position alone; and he succeeded in imparting magnetism to a piece of hard steel placed on an anvil, merely by rubbing it with the lower end of a bar of iron about 33 inches long, set upright upon the steel. The temporary magnetie state thus induced by position in the iron bar is such, that the lower extremity, in these latitudes, becomes a south pole, and the upper extremity a north pole; and the forces are much increased by placing the bar in the direction of the inclined needle: in southern latitudes the reverse of this occurs-the lower extremity is then a north pole, and the upper end a south pole. Mr. Canton, by an ingenious manipulation of this kind, succeeded in communicating a weak degree of magnetism to steel by means of a common poker and a pair of tongs, and from this magnetized his series of bars to saturation by the process we have deseribed: the bar to be rendered weakly magnetic was attached to the upper end of the puker by means of thread, and the whole placed in the direction of the dipping needle; whilst in this position the bar was repeatedly touched with the elosed extremities of the tongs, carried from one end of the bar to the other, from below upward, the marked end of the bar being below.

Another method of developing magnetism in steel bars, without the aid of common magnets, consiste in suljecting the bar to slarp concussion. This principle was well known to Gilbert so long since as the year 1570 , who, in his celebrated work "De Magnete," represents a blacksmith hammering a steel bar in the position of the inclined needle. Smithe toola, such as drills, broaches, de, which have undergone pressure and motion, are generally maknetic. When a steel puneh it driven hard into iron, the punch is not unfrequently rendered maignetic by a single blow.

In the lhiloopplical Transactions for 1735 we tind an account, by Desaguliers, of iron bass rendered magnetic by striking them shapply aganst the ground whilst in a vertical position, or otherwine striking them with a hammer when phacel in a horizontal position at right angles to the magnetic meridian. Such bars attract and repulse the poles of the needle. Aceording to Du Fiaye, whone rixperiments are quoted, it is no consequence how the bar is struck: all that is required is to impart to the bar a viboatury state, whilot in a vertical purition.

Availing himself of these facte, Scorealy, after a further and critical examination of the subjeet, succeded in obtaning maynetic bars of extraorlinary power by permssion. In the course of thene inguiries, a con-iderable advantage was found to arine by striking the bar whint rentits in a vertical provition upon a rod of iron. A eylindrical har of soft mtiel, $6 f$ inchey lons, and f of an meh diame ter,
 grains; whereatwhen resting on a bar of iron, and struck in a smilar way, it lifeed sh grame. Sioure. hy, in developing marnetiom in this way by percousion, tirat atruck a latre iron lar in a vertion powi tion, ame then laid it on the gromed with its acquired sonth pele towards the north; he then prene eded to strike sharply with a hammer a soft steel bar, 30 inches lomif mat min inch square, restinf bertually on the routh pole of the iron bar. A second fimilar bar was treated in the mame way; tha, phamg
 of soft steed, 8 incher long, mad if math broad, and in af fow minuted they had mequired a con itherable lifting power. The series of bares being now tanchad ons with the other, niter the maner of ('anton became very som magnetized to saturation; each pair readily lifted 8 ounces.

Dr. Scoresby observes that large iron and stecl bars are not absolutely requisite to the success of this process, common pokers answering the purpose very well.

The next series of plenomena claiming attention, arise out of a property peculiar to natural and artificial magnets, by which they tend, when freely suspended, to arrange themselves in a certain relative position to a wire carrying a current of Voltaic electricity. These phenomena have been hence termed clectro-magnetic, and although of sufficient moment and extent to come under a separate and peculiar branch of physical science, yet so far demand a brief notice here, as constituting a very important property of the natural and artificial magnet.

With a view to a clear conception of these reciprocal magnetic and Voltaic actions, it is requisite to: understand that two plates of zine and copper, $z c$, Fig. 2688, placed near each other in a vessel of di-

lute acid, and connected by a metallic circuit $c^{\prime} \mathrm{S} \mathrm{N} z^{\prime}$, turned or directed in any manner, give rise, during the solution of the zinc in the acid, to a peculiar electro-chemical action, by which a current of electricity is supposed to flow from the zinc plate z in the direction of the small arrow, through the acid upon the copper plate c, and from thence through the metallic circuit $c c^{\prime} \mathrm{SN} z^{\prime} z$ back again upon the zinc plate z. A combination of this kind has been termed a Voltaic circle, and the metallic circuit $c^{\prime} \mathrm{SN} z^{\prime}$ the uniting wire.

This understood, let S N be a perfectly straight portion of this circuit, which, as a standard of reference as to position, we will suppose to be in the direction of the magnetic meridian. Let $p t$ be a magnetic needle, suspended below and parallel to NS ; then, directly we complete the communications N $z^{\prime} z-S c^{\prime} c$ with the zinc and copper plates $z c$, the needle $p t$ varies from the meridian, and tends to place itself across the wire NS, and in such way that whichever pole of the needle is next the copper plate c, that pole moves to the right hand, or towards the east. If, therefore, the current flow over the needle from c to z, through the wire $S N$, from south to north, and the observer be looking over the wire in the same direction, then the south pole t, next the copper plate c, turns to his right hand, or to the east, and the north pole p to his left hand, or west. If we suppose the position of the plates c and z to be changed, and the direction of the current reversed, by connecting the extremity N with c, and the extremity S with z, so as to canse the current to flow from north to south, then these deflections are also reversed. The south pole t now goes to the left hand, and the north pole p to the right handthat is to say, the north pole p being now next the copper plate, goes to the right hand.
Place the needle above, and parallel to the wire $\mathrm{S} N$, then the reverse of all the former deflections will be obtained; whichever pole of the needle is now next the copper plate, that pole mores to the left hand, or west When the current, therefore, flows from south to north, the south pole t, which before went to the right hand, or east, now goes to the left hand, or west, whilst the north pole turns to the right hand; if we reverse the current, and cause it to flow from north to south, as in the last experi ment, then these deflections are again reversed; the north pole of the needle, being now next the cop per plate of the battery, goes to the left hand.

If the needle be immediately in the plane of the uniting wire, on either side of it, no motion is obtained in that plane; but if it be suspended in a vertical plane, on a horizontal axis, so as to admit of π deflection of inclination, then it tends to place itself across the wire as before. If the needle be on the east side of the uniting wire, that is, on the right hand, taking the current and direction as at first, then the south pole, next the copper side of the battery, dips below the horizontal plane, and the north pole, next the zinc plate, rises. If the current be reversed, the deflections are also reversed. If the needle be placed on the left hand, or west side of the uniting wire, then the south pole, next the copper plate, rises, and the opposite north pole dips. By reversing the direction of the current, these deffections are again reversed.

It is apparent, from the successive directions of the bar as it becomes placed above, at the sides, or below the wire $S \mathrm{~N}$, that the force affecting the magnet is a force transverse to the pole of the bar, by which, if the bar had complete freedom of motion in every direction, the poles would actually turn round the wire, but in different directions; and, conversely, supposing the kar fixed, and the wire S N carrying the current free to move, then those parts of the wire parallel to the magnet would rotate about the magnetic poles in opposite directions, in a similar way. If both are supposed free to move in any direction, then the wire and magnet would turn round each other, and such is really found to happen, giving rise to a very important series of electro-maguctic actions.

Let a magnetic bar $\mathbf{M ~ M}^{\prime}$, Fig. 2689, be bent so as to produce a short oblique portion at the middle of the bar, with two rertical arms $M M^{\prime}$; poise it on a fine central point c, and let a wire $\mathrm{N} S$ be placed near and parallel to one of the arms M. Then, supposing a descending current to flow from the enpper plate c, Fig. 2688, through the wire in the direction N S, upon the zine plate Z, the magnet II revolves about the wire N S , upon the central point c; and if the north pole of the bar be uppermost, the motion will be direct, or from the left hand to the right.

Conversely, if the magnet 3 be fixed as in Fig. 2690, and the wire N S be movable on a fine centre o, then, on transmitting the current as before, through the wire $N \mathrm{~S}$, it immediately revolves about the pole P of the magnet, with a direct screw motion, supposing the current to descend the wire, and the pole P to be a north pole. To enable these motions to go on without disturbing the progress of the current and the connections with the Voltaic plates, the movable parts dip into small cups and cisterns containing mercury, and with which the plates of the Voltaic circle, Fig. 2658, communicate, as indirated in the figure 3.

The tangential or transverse force, by which a magnetic pole is caused to revolve about a wire transmitting a current of Voltaic electricity, is equally apparent when the magnetic bar it-clf becomes the conjunctive wire of the battery; so that an electrical current flowing over or through a magnetic bar from one of its poles to the equator, or from the equator to either of the poles, causes such a bar to revolve upon its axis, the requisite mechanical arrangements for motion being complete.

Let a magnetic bar, S I', Fig. 2691, be mounted vertically between two delicate centres; the bar may be about 18 inches in length, 1 inch wide, and \ddagger of an inch thick. Let an electrical current be caused to flow from either of the poles $\mathrm{P}^{\prime} \mathrm{S}$ to the equator d, or from d to cither of the poles P; the bar will immediately revolve upon its axis PS, the direction of the motion being sueh, that supponing the har to rest upon its north pole I ', the centre d being in communication with the copper plate of the battery C, and either or both of the poles 1'S in communication with the zise plate Z, electrical currents will flow from the equator d to the poles, and the bar will revolve from left to right, as in the motion of the hands of a watel, or a common right-handed screw. By reversing the communication with the Veltaie plates, that is, placing the poles I's in connection with the copper plate, an the centre d with the zine plate, the electrical current will flow from the poles to the equator d. In this case, the direction of the motion will be the reverse of the furmer; it will be from right to left, or backward, as it were.

If the position of the magnet be changed, that is, if we place it to rest with its south pole below, then, the communication with the Voltaic circle remaining, as in the first instance. we also reverse the motion. If now the commonications be changed, as in the last instance, we arain reverse the motion, and obtain, as at first, a motion from left to right.
To facitate the pasing of the electrical current over the magnet, the bar is supported between fine centres P'S by a light vertical colum fixed on a firm base; a small wing or ciatern of merenry d, alsa supported from the vertical colum, surromida the equator of the bar; the bar turns within this, and it is comected with the mercury in turning by a small bent wire dipping into the cintern; the lower 'centre I'turns upon an arate contained in n small cup at J^{\prime}, comected with the point $\%^{\prime}$; this cup cons. tains a small globule of mereury, to keep up the metallic comection with the mathet; there is a smi lar globule in a small eavity ut the upper casd of the bar for the centre s; this upper centre is sup ported by a wire extending from tho hend of the pillar $\% \%$. It is here erident, that in commerting the

 wr eopper plate of the circle.

A recollection of the relative direction of the motions we have been decoribing will be facibteret bs
 hand, or will give rise to a direct serew-motion; fiom this smple fact all other rehnese mothon wre eaxily determined.

 Filectro magnetic Multipliur, ur Gidenometer, by which extremely small magnetic and electmoneme tio forees inay be detectiol athel masared.

It will be apparent, ay already oberved, that a current fowing both nbowe and belnw a neelle, is
opposite directions, deflects the needle in the same direction; hence it follows that if a magnetic needle pt, Fig. 2692, be suspended on a delicate centre c, within the bite of a returning wire $z d c$, and the extremities zcof the wire connected with the zinc and copper plates of the Voltaic circle by means of two little cups containing mercury, then a current will flow longitudinally round the needle, both above and below it, and in opposite directions, that is to say, in the direction $c d$ above the needle, and in the direction $d z$ under it; the effect of this will be to deflect the needle with twice the power by which it would be deflected with a single current only, as in Fig. 2688.

If we imagine the wire $z d c$ to be several times turned longitudinally about the needle, as in Fig. 2693 , then the effect would be still further increased; it would, in fact, become multiplied in proportion to the number of turns of the wire, which would represent so many additional currents. It ic only requisite to cover the wire with silk thread, or some other imperfect or non-conducting matter, so as to avoid metallic communication between the coils, and oblige the current to traverse the whole length of the wire. This is the principle upon which the electro-magnetic multiplier rests, and the delicacy of the effect is such that the needle will become deflected by the immersion of two pieces of zinc and platinum wire less than $\frac{1}{8}$ th of an inch long, and $\frac{1}{50}$ th of an inch in diameter, in water slightly acidulated. Fig. 2694 represents this instrument under one of its most perfect and delicate forms. Two

magnetic needles, with their poles reversed to each other, are fixed on a central rigid axis, so as to neutralize the directive power of the needles, merely allowing a sufficient force to bring the whole into the meridian. This system is suspended by two parallel threads of unspun silk $r n$, one of the needles being within a rectangular coil of wire $z d c$, and the other needle immediately without it, and over the upper part of the coil. The wire $z c$ is covered with silk thread, so that the coils may not have metallic communication, and the extremities $p q$ are brought out near each other, and terminate in small cups $p q$, containing a little mereury, for the better convenience of communicating a current to the coil from any given source. The coils are separated a little near the centre, to allow the axis of the astatic system of the two needles to pass through them.

The slightest current transmitted through the coil from p to q, or q to p, causes the needles to deviate from their constant position. Both the needles, as is cvident, will be impelled in the same direction; the lower needle being in the position just described, Figs. 2692 and 2693 , whilst the upper needle, its poles being reversed, is impelled in the same direction by the upper side of the coil.

The threads of the double or bifilar suspension $r n$, in tending to cross each other as the needles turn, give rise to a reactive force, which may be set against the deflective force employed to measure it ; for this purpose a graduated circle s, s is fixed under or round the upper needle, so that the angle of deflection may be accurately estimated. If the earth's directive force be completely neutralized by the reversed positions of the needles, then this would be the only force opposed to the deflective force; i not, then it becomes mixed with the little directive power left in the system, but which is generally so small as not to be of much moment.

The instrument is set upon a convenient stand, and may be inclosed within a glass shade, the bifilar suspension being sustained within a tube of glass.

Stcel magnetized by the elcctrical current.-One of the many important results of these discoveries is the means of imparting a ligh degree of magnetism to iron and steel, and to so great an extent as to give a soft iron rod a lifting power of more than a ton.

We have seen that the electrical and magnetic forces are so related that the one is exerted at right angles to the other. We derive from this elementary principle a means of disturbing the latent magnetic forces resident in magnetic substances, by which these forces become separated, and the body rendered magnetic, precisely in the same way as effected by the contact of an ordinary magnet.

Let a long piece of copper wire be wound round a piece of glass tube of about $\frac{1}{2}$ an inch or less in liameter, and from 6 to 10 inches in length, so as to produce a helix or spiral, A B, Fig. 2695, and mount this spiral between two vertical supports, as represented iu the figure. Place a perfectly neutral piece of hard steel wire $p n$, of about $\frac{1}{1}_{10}$ th of an inch in diameter, or a large sewing needle within the helix, and connect the extremities ΛB^{10} with the zinc and copper plates of the Voltaic circle, the steel $p n$ will become immediately magnetic; in fact, each turn of the spiral causes electrical currents to flow in reverse directions above and below the steel. If the coils of the spiral be numerous and close, they may
be regarded as parallel circles standing at right angles to the direction of the inclosed wire, and with which twe axis of the helix may be made to coincide. The effect of a helix of this kind on a tine maguttic needle placed within it is so powerful, that with a strong Voltaic current the needle is frequently canght up and retained on the axis of the spiral, as if liberated from the trammels of gravity.

The kind of polarity given to steel or iron thus circumstanced will depend on the direction of the current with reference to the axis of the helix, and this again will depend on the connections with the plates of the Voltaic circle and the direction in which the helix is turned. Now, the spiral may evidently be turned either direct, like the threads of a common cork-screw, forming what is termed a right-handed helix, or they may be turned in the reverse direction, in which case we have a lefthanded helix.

If we suppose the helix to be a reverse or left-handed helix, as in Fig. 2696, the current flowing from c to z, round a small cylindrical steel needle or wire P N, and the coils standing in the direction of the magnetic meridian $c^{\prime} z^{\prime}$, so that the current may flow under the wire in the direction $c^{\prime} z^{\prime}$, from south to north, as indicated by the dotted lines, and over the needle in direction $z^{\prime} c^{\prime}$, from north to sonth, a; indicated by the full lines, then the positive pole I^{\prime} will be determined to the right hand, and the extremity P, of the wire next the copper plate c, will be a north pole: by similar reasons the oppusite extremity N will be a south pole, and next the zinc plate of the battery.

If we take a direct or right-handed helix and an inclosed wire P N, as in Fig. 2697, and transmit the current as before from c to z, then the reverse of all this occurs; the currents flow under the wire from north to south in direction $z^{\prime} c^{\prime}$, and over the wire from south to north in direction $c^{\prime} z^{\prime}$. Under these conditions the positive pole I' is determined to the left hand, so that the extremity [' of the steel cylinder I'N next the zinc plate becomes a north pole, and, by similar reasoning, the opposite extremity next the copper plate c, a south pole. Supposing the current to be reversed and to pass through a direct helix from left to right, the copper plate of the battery being to the left hand, and which is the ordinary form of the experiment, the north pole will be always determined next the zine plate, that is. to tho right hand.

 to be faceing the north, N, and the helix A 13 phaced transuersely before him an that its axis may lie east and west, then if the curcont be desernding the coils of the spiral directly before him, the morth polde is determined to the right hand, and the south pole to the left. Reciprocally, if the current be asending the coils of the spiral direetly before him, then the south pole is determined to his right hamed, and the north pole to the left. Hence, with in direet helix, the north pole will be nlways found next the zine plate, and with a left helix next the copper phate.

Thu mannet ic power doveloped in soft iron clusely surrounded hy holiteal coila transmittine clectrical currents all in the same elirection is $=0$ great, that a eurved iron sod, during the action of the batter!. may be causel to sustain an enormona weight. The watal form of the experiment is at follows:
 inches long, is bent inter the horse-shoe form, as indeated in the figure. It is then surrombed by several leng ceils of copper wire z 'Tce envered with silk or uther insulnting thrend, so ns to interrapt aill metal. lic communication or evil with the other; one net of eoils is superpused on another, and all the emde of the wires P' N on each side united into common terminations $z e$, to be connechel with the hattery:

If, when the curvents nre passing throngh the coils, wo mply 16 soft iren keeper I'N, and cries the projecting perles, it will be held fat with nil emormons force, so that several humbred weight, II, may
 us to nuppert upwards of 2 cons.

 uetonsters.

Magnetoseopes generally consist of light bars or needles, either suspended by a delicate flexible thread, or attached to an agate or metallie calp, and set on a fine central point. Of these two forms of snspension, the filar suspension is the most sensitive. The Rev. A. Bennet, F. R. S., employed filaments of a spider's web, which proved so extremely delicate, that two small pieces of straw, placed at right angles to each other, in the form of the letter T inverted, would, when thus suspended under a closed receiver, turn towards a person coming within 3 feet of the glass, and would move so decidedly towards wires merely heated by the hand, as mueh to resemble magnetic attraction. A fine and weakly magnetic steel wire, susperded from a spider's thread of 3 inches in length, would admit of being twisted round 18,009 times, and yet continue to point accurately in the meridian-so little was the thread sen sible of torsion.*
Magnetometers.-The quantitative measurement of magnetic fores may be either direct application \rightarrow of equivalent weight, or any species of equivalent reactive power, as in the reactive force of torsion; or may consist of indireet determinations of force, through the medium of certain relative effeets, as in the amount of deviation of a suspended magnetic needle from its line of direction by the influence of a magnet placed at a given distance from the needle.
Scale-beam magnetometer.-The common seale-beam has been oceasionally applied to the measurement of magnetic forees. A small cylinder of iron or a magnet is to be suspended from one arm of the beam, and counterpoised by weights in a seale-pan suspended on the opposite arm. The beam being sustained on any convenient support in the usual way, a second magnet or iron is placed on the table, immediately under this, and the attractive force at any given measured distance is estimated by additional weights placed in the seale-pan.
Much care is requisite in effecting this experiment. The beam should not be allowed any very considerable play, but be limited in its motions by two vertical forked stops, one under each arm. If the beam, with a given added weight in the scale-pan, be overset by the attractive force, and rest on the stop, we may either increase the distance of the attracting bodies, or increase the weight, so as just to eatch the instant of the balance of the force. Or, supposing a given added weight in the scale-pan, we may continue to approximate a magnet towards the suspended iron or other magnet over a divided scale of distance, and catch the point at which the beam turns.
The bent lever, or any self-adjusting balance, may be also employed in a similar way to the measurement of magnetic force.
The hydrostatic magnetometer.-This instrument, shown in its general form in Fig. 2700, and partially explained in the following figures, is of such consenient and universal application to the measurement and exhibition of elementary magnetic phenomena and forees, that a particular description of it appears essential.
A light grooved wheel, W, Fig. 2699, about two inches in diameter, being accurately poised on a firm axis, $m n$, is mounted on the smooth circumferences of two similar wheels, $n w, n w^{\circ}$. The extremities of the axis $m n$ are turned down to fine long pivots, and whilst resting on the friction-wheels $m w$, $n w^{\prime}$, pass ont at $m n$ between other small check-wheels, two at each extremity of the axis, so that the wheel W cannot fall to either side: great freedom of motion is thus obtained. These friction and check wheels are set on points or pirots in light frames of brass, and the whole is supported on short pillars serewed to a horizontal plate or stage, as shown at A B, Fig. 2700. The stage is sustained on a rertical column, A E, fixed to an elliptical base of mahogany, E , supported on three levelling serews.
There is a short pin h, Fig. 2699, fixed in the circumference of the wheel W, to receive an index of light reed, eut to a point, and movable over a graduated are MN, placed behind the wheel, as represented in Fig. 2700: the weight of this index is balanced by a small globular mass d, movable on a screw in the opposite point of the circumference; so that the wheel alone with the index would rest in any position, or nearly so. The are MN is a quadrant divided into 180 parts: 90 in the direction IM1, and 90 in the direction I N, the centre 0 being marked zero. Two fine holes are drilled through the whecl, one on each side of the point h, for receiving and securing two silk lines, $10 w^{\prime}$: these lines pass over the circumference on opposite arms of the wheel, and terminate in small hooks, t and w. A cylinder of soft iron t, or a small magnet, rather less than 2 inches in length and $\frac{1}{4}$ th of an inch in diameter, is suspended by a silk loop from one of these lines, w^{\prime}, and a cylindrical counter-
 poise of wood, $a u$, weighted at u, and partly immersed in water, is hung in like manner from the other line, w. The weights, and altitude of the water, and of the vessel q containing it, are so adjusted, that when the whole system is in equilibrio, the judex $b o$ is at zero of the are MN. With a view to a perfect adjustment of the index, the water-vessel q is supported in a ring of brass at the extremity of a rod q, movable in a tube k, Fig. 2700 : this tube is attached to a sliding piece $b h$, acted on by a milled head at h and a screw within the cylinider, which is fixed to the stage $A 1 B$, so that the water-vessel may be easily raised or depressed by a small quantity, and thus the index be regulated to zero of the are with the greatest precision; for it is evident, by the construction of the instrument, that the position of the index will depend on the greater or less immersion of the cylindrical counterpoise $a u$, the weight of which being once adjusted to a given line of immersion, and a given position of the wheel W and index O , any elevation or depression of the water-vessel q must necessarily inove the wheel. The counterpoise $a u$ is about $1 \frac{1}{2}$ inch in length and full 3 of an inch in diameter: a small ball of lead is attaehed to its lowest part, in order to give it a sufficient immersion, and at the

Fame time balance the iron cylinder t when the float is about half immersed in the water. With a view to a nival regulation of the meight, a small hemispherical cup a is fixed on the head of the counterpoise for the reception of any further small weights required. This counterpoise is acctrately turned out of fine-grained mahogany, and is freed from greasc or varnish of any kind, so as to admit of its becoming easily wetted in the water.

The column A E supporting the stage AB consists of two tubes of brass, one, Gr, morable within the other, E C, so that by a rack on the sliding-tube (6 , and a pinion on the fixed tulse at C, the whole of the parts just described may be raised or lomered through given distances, as shown by a divided scale G, adjustable to any point by means of a slide and groove in the movable tabe G. The brass tubes composing the coluinn are cach about a foot in lengits and an inch in diameter.

It will be immediately precoive l, fom the gemerat en natruction of this intrument, that if any fore

 kimen stambard of weight. It is further evincht, that, whe ther we "perate on tho kyatom by erasity

 Vor. II.-21
gives 3 degrees, 2 grains will give 6 degrees, and so on. And thus we obtain a continual and know: measure of the force we seek to examine, within a given range of degrees of the are, which will be more or less extensive according to the dimensions of the cylindrical counterpoise, the intensity of the foree, and the rate of its increase. When we require to examine yery powerful forces, or forees operating on the suspended iron t at small distances, it is requisite to increase the size of the counterpoise flont, the indications of which we may alpays find the value of in grains, as before.

Previously to suspending the cylindrical counterpoise a u, the iron cylinder t should be placed in equilibrio on the wheel W, with an equal and opposite weight, as previously determined by an accurate scale-beam, in order to observe if, when loaded with the whole, the wheel W and index are indifferent as to position on any part of the are, or nearly so. The instrument will be sufficiently delicate, if, when loaded in this way with 350 grains, it is set in motion by something more than $\frac{1}{2}$ a grain added to either side.

In order to retain the wheel W, Figs. 2699 and 2700 , in its position at the time of removing either of the suspended bodies, a small brass prong is inserted at h into the arms of the circular segment $M N$, so as to inclose the pin h earrying the index: the wheel is thus prevented from falling to either side.

The forces requiring to be measured are brought to operate on the suspended eylinder t through the medium of induction on soft iron, or by a magnetic bar placed immediately under it, either vertieally or horizontally. In the vertical arrangement, shown in Fig. 2700, the maguet or iron is fixed against a graduated seale S, by which the distance between the attracting surfaces or bodies is estimated. This seale, together with the magnet H, is secured by light bands s, of brass, united by a rod DK . The lower band and rod D are both fixed to a stage D , movable between guide-picees, and acted on through a nut at q by a vertical screw $\mathrm{P} q$, about 6 inches in length and $\frac{3}{8}$ ths of an iuch in diameter; so that the whole may be raised or depressed, and hence the suspended eylinder and magnet placed at any required distance apart. The regulation of this important element in the operation of magnetic forces is hence provided for in two ways, viz., by the rack at G and the milled head at P, either of whieh may be employed, as found most convenient. The scale S is of boxrrood, 1 foot in length, $\frac{3}{4}$ ths of an inch wide, and $\frac{1}{7}$ th of an inch thick: it is divided into inches, subdivided into tenths and trentieths of an inch. About 6 inches of the upper part is divided in this way, viz, 3 inches on each side of a central division which is marked zero; the rest of the piece extends to the stage D . The magnetie bar H is tied to the seale by compressing screws and simple brass bands, either fixed, as at D and K , or morable, as at H. This adjusting apparatus is secured to a stout brass plate R, fitted by a dovetail into a sliding piece v, forming part of the mahogany stand E, so that it may be removed at pleasure. The brass bands and frames at DH K are sufficiently capacious to inclose two bars together if required, the superabundant space bcing filled when only one magnet is employed, either by a bar of wood or small wedge pieces in the brass frame.

When we require to examine the forces in different points of a moderate-sized magnetic bar, the bat is laid in a small frame piece T' Y, Fig. 2i01, temporarily fixed by a compressing screw to the divided seate S , in the way already described, the foree on the suspended cylinder t being caused to operate through a small eylinder of soft iron d, aecurately fitted to the surface of the bar ; and thus, by sliding the bar along in the holding-frame, we may get, approximatively, by induction on the iron d, the foree of any point in the bar.

When the bar is of considerable magnitude and weight, or we require to examine iuductive forces, the magnets may be placed on a narrow table, $a b$, Fig. 2702, supported on a central square pillar l', fitted to the frame-pieces, K^{\prime} I', of the adjusting apparatus already deseribed, so that the whole may be raised or depressed through any given distance. In this ease the divided scale S , which measures the distance a between the attracting or repelling surfaces, is a detached picee fixed against one of the perpendicular sides of a right-angled triangle, so as to be anywhere placed upright on the bar: the
table a b also has a divided scale s, movable in a wide grouve through its centre, by which any distance s between magnetic mases may be also shown. When the bars are rery ponderous, two supports are required, one at each eud of the table $a b$.

Inductive firees are examined vertically by fixing the masecs be compersing bands against the seale S, Fig. 日-0ン, and of which we may have, if requi-ite, two or three in succes-ion.

These arrangements put us in a position to note readily and simultaneously all relative distanees ans forecs under a great variety of magnetic and apparently complicated conditions.

We have been somewhat prolix in our description of this instroment, but not unnecessarily so. There is scarcely any elementary experiment in maguetism wheh it does not completely and satisfactorily illustrate, besides furnishing quantitative measures of great importance to the mathematical inquirer into the laws and operations of magnetic force. Sce Flectro-Metallergy.
M. 11 OGANV. The beautiful reddish-brown colored wood, of which household furniture is now chietly made. It is a native of the rarmest parts of America and the West Indies. It thrives in most soils in the tropical climates, but varies in texture and grain according to the nature of the soil. On rocks it is of a smaller size, but very hard and weighty, of a close grain, and beautifully shaded; while the produce of the low and richer lands is obeersed to be more light and porous, of a paler color, and open grain; and that of mixed soils to hold a medium between both. The tree grows very tall and straight, and is usually four feet in diameter. On account of the difficulty of transporting the mahorany imber from the fore-ts, when the tree is of great thickness they cut it into short loge, otherwise the great weight and bulk would be unmanageable with the restricted means available on the spot; and with the view of equalizing the burden or draft of the cattle, (oxen,) the logs are long in proportion to their dimini-hed thichness. The iargest log ever cut in IIonduras was of the following dimensions: length 17 feet, breadth 57 inches, depth 64 inches; measuring 5421 fect of plank, of one inch in thickness, and weighing upwards of 15 tons.

MANOSETER. An instrument for measuring the rarefaction and condensation of clastic fluids, but especially that of the atmophere. It differs from the barometer, which shows only the weight of the superincumbent column of air; whereas the manometer shows the density, which depends on the combinced effect of weight and the action of heat. It is sometimes called manoscope. Among the various contrivanees of this kind may be mentioned that of the Hun. liubert Borle, which he ealls a statical barometer, which consists of a bubble of thin glass, about the size of an orange, which, being counterpeised in an accurate pair of seales, rises and simk with the alterations of the atmosplece. This instrument, however, does not show the cause of the difference of density in the atmosphere, whether it be from a change of its own weipht, or its temperature, or both. The manometer construeted by Mr. Ramsden, and weed by Capt. Mhipps in his vovage to the North Pole, was compused of a tube of Emall bore, with a ball at the end; the barometer being $2-97$, a small quantity of quick-ilver was put into the tube, to take off the communication between the external air and that confmed in the ball, and the part of the tube below this quicksilver. A scale is placed on the side of the tube, which marks the degrees of dilatation ari-ing from the increase of heat in this state of the weight of the air, and has the same graduation as that of Fahrenheit's thermometer, the point of freezing being marked $32{ }^{\circ}$. In this state, therefore, it will show the degrees of heat in the same manner as a thermometer. But if the air becomes lighter, the bubble inclosed in the ball being less compressed, will dilate itself, and take up a space as much larger as the compressing force is less ; therefore the changes arising from the increase of heat will be proportionably larger, and the instrument will show the diflerences in the density of the air, arining from the changes in its weight and heat. Mr. Ramschen found that a heat erpal to that of hoiling water increased the margitude of the air from what it was at the freezing peint by ${ }^{4} 1$ tho of the whole. Honce it follows, that the ball and part of the tule below the heriming of the scale, is of a marnisude equal to almont $11+$ degrees of the seale. If the height of both the mamometer and ther moneter be biven, the lefight of the baroncter may be determined aloo.

When u-ed for mea-uring pressure above that of the atmo-phore, the instrument (as w-ually comstructed) is in all reapects the same, execpt that the tube is not tilled with mercury, but invertend, while full of atmosiblerie air, intu a resersoir of mercury, and the seale is differently marked. When the pres ure on the surface of the mereury in the rearvoir is that of the atmen phere, the meremy will rise in the tabe nearly to the lewel of that surface, (but slighty lower, owing to the resistame of the air in the ghas- tube.) Asoon, lowerer, at the priseure commanieated exereds that of the atmo-phere, the
 equal to the pressure. The height of the mercurial column will of eourer vary with any varition uf
 divisted, aceording to Starinte's law, intu ntutu-pheres, pande, or the like.

The hish denge of pre-ure to which the lat deacrined form of mathometer may he subje ted withent

 presure.

serviceable for determining pressures less than that of the atmosphere, have recently been made the subject of a patent to Mr. Paul Stillman, of New York.

Fig. 2703 is the usual form of the patent manometer for showing a pressure up to eight atmospheres
Fig. 2704 represents the form of one for showing a pressure up to twenty atmospheres.
Fig. 2705 is the form used for showing less than one atmosphere. The arrangement of the glass tube is quite similar in all the forms usually given to the instrument.

Fig. 2706 is a longitudinal seetion through the centre of the glass tube, in which A is the tube; B is an iron piece in which the tube is firmly secured by means of the stuftingbox G. It is screwed at one end to receive the brass ease C , and in the middle to confine it in the reservoir of mereury into which the lower end of the tube is to be immersed. D D are seales divided into atmospheres, pounds, or inches of pressure, as desired. EE are blocks to secure the scales in their proper places. F is a gland which protects the lower end of the tube, and compresses the packing in the stuffing-box G. II is a cap or plug loosely screwed into the gland to facilitate the operation of charging the tube, and also, by admitting the mercury into the tube only through the iuterstices of the screw, prevent its oscillation, and at the same time allow the orifice to be made the full size of the tube whenever it may be necessary to clean the tube.

In Fig. 2703 the reservoir for mereury is a deep cell, with an tron tube communicating from the

cock at the bottom to the middle of the chamber above the surface of the mereury. In Fig. 2704 it is divided, the glass tube being inserted into a cell of greater depth, while the reservoir of mercury is in the bulb, to which a sufficient eleration is given to compress the gas within the tube to two or threo times the density of the atmosphere, according to the density of the steam of which it is to serve as the gage. In this, as in the other form, an iron tube communicates the pressure from the cock below to the surface of the mereury in the bulb above. The subdivisions of the seale are by this meaus much more uniform and distinct than when used at atmospheric pressure only.

In all eases, the mercury should be seen above the junction of the tube with the tube-holder, so as to indicate the initial pressure, or 0. In Fig. 2703 it is brought up by partially exhausting the tube at the time it is erected. In Fig. 2701 it is forced up by the superincumbent weight of the mercury in the bulb. The oxidation of the mereury within the tube is prevented in the latter form of the instrument by charging the tube with nitrogen or hydrogen gas; but in the former, on aceount of the difficulty of preventing the admixture of atmospheric air, while exhausting a portion of the contents of the tube, for the purpose above referred to, atmospheric air only is used, and a drop or two of naphtha or other fluid answering the end, is introduced within the tube, on the surfite of the mereury, to prevent the oxidation.

When designed to show a pressure less than atmospheric, but not less than that shown by two inches of mercury, the tube is to be perfeetly filled with mercury, and inverted in the reservoir, and the pressure will be determined by the number of inches sustained above the level of the mereury in the reservoir below; but if it is to be used for a pressure less than the weight of two inches of mercury-that being the distance from the lowest visible part of the glass tube to the surface of the mercury in the resorvoir-it will be necessary to use the bulb shown in Fig. 2704, but with such an elevation only as

Fill bring the surface of the mercury in it to a height equal to the lowest visible pait of the glass tube ; or it may be done equally well by using the form shown in Fig. $2=0$, if a seale is properly made for the purpuse, and the bulb elevated so as to compress the air so high in the tube as to allow the mercury to hase sufficient fall without going out of sight, when the pressure of the atmosphere is removed from the surface of the mercurs in the bulb above.
It will be seen that either of these arrangements would resist the tendency of such partial racuum as is generally formed in steam-boilers, when they are allowed to cool down, from disturbing the quantity of air within the tube of the manometer.
If the initial quantity of air or gas in the tube be deranged by a change of temperature, or by any other cause, it becomes necessary to know the extent of the variation occasioned thereby. To ascertain this, (if inexpedient to correct it at once,) a simple arrangement is adopted, viz., 1 st, to remove the pressure by closing the stop-cock and opening the small waste-cock between it and the reservoir-this will allow the mercury to fall to a place in which it will be at equilibrium with the atmosplere; $2 d$, to note the point to which it descends. The variation from the original place of 0 will be, in addition to the pounds shown on the scale-plate, such part of the whole as the variation from 0 bears to the whole length of the tube above 0 . To determine this proportion, a series of decimals is placed on the scale at fixed distances, and the one of these nearest to where the base of the column of air within the tube rests, is to be used as a multiplier, by which the pressure of steam indicated on the scale is to be multiplied. Their product, less the pounds of variation shown on the scale, will be the true pressure. Thus, for example, if the mereury in the tube falls until the base of the column of air rests at the decimal 06 , which would be near to the place due to 1 pound pressure, and if, on opening the communication to the boiler again, it should rise to 130 pounds, this apparent pressure of 130 pounds is to be multiplied by $\cdot 96$, and deduct from their product the 1 pound, thas giving as the true pressure 123.8 pounds, showing a variation of $6 \because 2$ pounds. see Gage, Indicator.

MANGLE, house. Figs. 2707 and 2608 exhibit a house mangle for swathing cloth, the action of which is obvious.
270.

MAPLE WOOD, is found growing in mountain distriets, is indigenous to the Crited states, and valmable for its lightues* ; and not beinis sulpect to warp or split, it will take any color, and a line polish. When green, it weighs 61 lbs. 9 oz a culie foot; and when dry, 51 lth .15 oz .

The bied'serye maple, from the beanty of its grain and the shades of its spots, is much employed for rencering; by sawimy the timber nearly parallel with the concentric rines, the eflect of its marking or pencilling is much improved. In this country whelwrights employ it, after giving it aseatoning for two or three yeary; ant whon constantly under water it will not readily perish.
 late years been exten-ively workel by machanery driven ly shant peiwer; the proseses are chasely
 it is properal to explain brielly some of the peenliarities of the mathine proxesers.

In the -impleat aphlication of machimery to nawing marble, wh for making one or two cuts in a large bheck, the contruction of the ortinary stomasale is chomely followent, lut ehe frame is mate much

 trecent of the saw in the cat.

with sand and water supplied in the same manner as for the stone-saw used by hand, but the introduo tion of the guide principle renders the chasing of the stone for the entry of the saw unnecessary. In some cases emaller saws of similar construction are used for cutting thick slabs into narrow slips, and sometimes sereral cuts are made at once by an equal number of saw-blades, arranged in a rectangulaframe that is suspended horzontally by vibrating slings, and works between vertical guide-posts.

In the hosizontal sawing machine for marble patented by Mr. James Tulloch, in 1824, the entire ar rangements are combined in a very effective manner, for cutting a block of marble into a number of parallel slabs, of any thickness, at the one operation. The iron frame-work of the machine, shown in Fig. 2709, consists of four vertical posts strongly connected together at the top and bottom, to form a stationary frame from 10 to 14 feet long, 4 to 5 feet wide, and 8 to 12 feet high, within which the block of marble to be sawn is placed. The two upright posts at each end of the stationary frame have, on their insides opposite to each other, perpendicular grooves, within each pair of which slides up and down a square rertical frame ; to the lomer end of each of these slides is affixed a spindle carrying two guidepulleys, or riggers, upon which the horizontal saw-frame rests, and is reciprocated backwards and forwards. The saw-frame is thus traversed within the fixed framing, and supported ppon the four guidepulleys of the vertical slides, which latter are themselves suspended by chains coiled upon two small drums placed overhead. On the same spindle with the drums is a large wheel, to which a counterpoise weight is suspended by a chain. The weight of the counterpoise is so adjusted as to allow the samframe to descend when left to itself, and which thus supplies the necessary pressure for causing the penetration of the saws.

The saw-frame is made rectangular, and from two to three feet longer than the distance between the vertical slides, in order to permit of the horizontal traverse of the saws, which is from 18 to 20 inches. To allow of the blades being fixed in the frame with the power of separate adjustment, every blade is fecured by rivets in a clamp or buckle at each end. The one extremity of the buckle embraces the saw, the other is made as a hook; the buckle at one end of the saw is hooked upon a horizontal bar fixed across the end of the saw-frame, and the opposite end of the frame has a groove extending its entire width, through which a separate hook, provided with a vertical tightening wedge, is inserted for every saw, which thus admits of being replaced without deranging the position of the neighboring blades.
The distances betwreen the saws, and their parallelism with the sides of the frame, are adjusted by means of iron blocks made of the exact thickness required in the slabs of marble; the blocks and blades are placed alternately, and every blade is separately strained by its tightening wedge until it is suficiently tense; the blocks are sustained between two transversc bars, called gagc-bars, and are allowed to remain between the blades to give them additional firmness.

The traverse of the saw-frame is given by a jointed connecting rod, attached by an adjustable loop to a long vibrating pendulum, that is put in moion by a pair of comecting-rods, placed one orer the other, and leading from two cranks driven by the engine. All three connecting-rods admit of vertical adjust.
ment on the pendulum. The connecting rod of the saw-frame is placed intermediately between the other two, but its exact position is regulated by the height at which the saws are working, as it is suspended by a chain and counterpoise weight, which allow it to deseend gradually downwards on the pendulum with the progress of the cut, so as always to keep the connecting-rod nearly herizuntal.

In the London Marble Works four of these sawing-machines of different sizes are groupell together, with the driving-shaft and pendulums in the middle, and so arranged that each pair of saw-framea recipreate in opposite directions at the same time, in order to balance the weight, and reduce the ribration.

Another mode of traversing the saw-frame sometimes adopted, is by means of a vertical frame that is reeiprocated horizontally on slides, and the connecting-rol, instead of being jointel, is fixed rigidly to the saw- frame, and slides upon a vertical rod. Various other unimpurtant moditications in the construc tion of the machines are also adopted.
One of the mot difficult points in the application of these machines, was found to be the supplying of the sand and water meclianically to the whole of the euts at the same time. This is now sucees. fully effected by the following surangement. Above the block of marble to be sawn is fixcl a water cistern, or trough, extending across the whole wilth of the frame, and measuring about 1 foot wide, and 1 foot deep; about 20 small cocks are arranged along each side of the cistern, and a small but constant stream from each of the encks is received beneath in a little box; a sloping clannel leads from every box aeross the bottom of a trough filled with sand, which mingles with the water, and flows out in separate streams, that are conducted to each of the saw-cuts. In the first construction of this appartitus for the feed, the sloping channels were led straight across the bottom of the sand-trough, but it was then found that the water exeavated little tunnels in the sand, through which it flowed without carrying the sand down. This dififieulty was overcome by leading the channels across the bottom of the trough in a eurved line, when viewed in plan. The forin of the chaunels is shown in Fig. ${ }^{2}$ ello, which repre sents four channels cut across the middle of their length, to show their section, from which it will be seen that the channels are made as a series of Gothic shaped tunnels, supported only on one side, and open on the other fur the admission of the sand; the water flows through these tumels, and continually washing against the convex sile of the channel, undermines the sand, which falls into the water and is carried down: to assist this action the attendant occasionally stirs up the sand to loosen it. There is a sand-trough and set of channels on each site of the water cistern, so that every saw-eut reccives two streans of sand and water in the coursc of its length.

The saws having been adjusted to the proper distances for the required slaks, the salw-frame is raised by means of a windlass and the suspended chains attached to the vertical frames, and the block of marble to be sawn is mounted upon al low carriage, and drawn into its position beneath the satws, and adjusted by wedges. The an's are then lowered matil they rest upon the blow, the eomiterpoise weights are adjusted, and the mixed sand and water allowed to run upon the saw-blades, which are put in inotion by attaching the connecting-rod to the pendulum. The sawing then proceeds mechanically until the block is divided into slabs, the weight of the saw-frame and connecting-rod causing thein gradually to descend with the progress of the cutting.

To allow the sand and water to tlow readily beneath the edges of the saw-blades, it is desirable that the horizontal frame should be slightly lifted at the end of each stroke. This is enfected by making the lower edges of the frame, which bear upon the guide-puldeys, straight for nearly the full length of the stroke, but with a short portion at cach end made as an inclined plane, which on pasing orer the guide-pulleys lifts the frame just sufficiently to allow the feal to how beneath the saws.

For cutting slabe of marble into narrow pieces, sueh as shelses, and which is eflucted by hand with grub-atw, a machine called a ripping bul is employed, in which as many cuts as may le repuired in the one slab are effected simultaneou-ly, by an equal number of circular saws with smmeth edises, revolving vertically, and fed, as usual, with sam and water. This mathine consists of a homelh about 10
 uph which a phatform, mounted on pullege, is drawn sluwly forward hy a weight. The horizontal axis carrying the saws revolves about 9 incher abose the platform, and to insure the rotation of the saws,

 collars about 6 inches diameter, fitted so as to slide ngure the spintle, and be retained at ang grate of its lengeh by side strews.

 entirely divided intos shpe

 "ear, it becomes neetary to tmphey a thichr liger uf and, wo to we a suphementary plathom the

by means of revolving cylindrical cutters, constructed on much the same principle as the crown saws for wooil. The slab to be sawn is placed horizontally on a bench, and the axis of the machine works vertically above it in cylindrical bearings, which allow the spindle to slide through them, so as to be elevated or depressed according to circumstances. The spindle is suspended at the upper end by a swing-collar attached to a connecting-rod, that is jointed to the middle of a horizontal lever. The weight of the rertical rod and cutter supplies the pressure for the cutting, and the whole is raised for the admission of the work by a rope attached to the end of the lever, and passed over a pulley:

For circles of small diameter, the cutters are made as hollow cylinders of sheet-iron, of varions diameters, and each attached by screws to a circular disk of cast-iron, as shown in section in Fig. 2711. The cutter is screwed on the lower end of the spindle, just the same as a chuck on a lathe mandrel, except that the spindle is placed rertical instead of horizontal. To insure free access for the sand and water beneath the cutter, one or two notches, about three-quarters of an inch wide, are generally made in the lower edge.

For large circles, the apparatus is made strong, and the vertical spindle is fitted at its lower extremity with a circular plate, to which is bolted a wooden cross, shown in plan in Fig. 2711, and in elevation in Fig. 2713; the cross has radial grooves about 18 inches long, near the outer extremities of the four arms. The cutters consist of detached plates of iron, from 6 to 18 inches long, of various widths, according to the thickness of the work. The cutters are curved as segments of a cylinder, of the partieular diameter they are required to cut, and are each riveted to a clamp that passes through the radial groove, and is retained by a wedge. The number and length of the cutters is solely a matter of convenience, as a single cutter, when put in rotation, would make a circular groove, and several cutters are only employed in order to expedite the process. But every different diameter requires a different curve in the cutters, and which must all be placed at exactly the proper distance from the centre of rotation.

The horizontal bench upon which the marble is laid, is generally a temporary structure, adjusted to suit the thickness of the object to be sawn. Works of large diameter are seldom more than one or two inches thick, but those of small diameter are frequently much thicker, and sometimes three or four thin pieces are cemented upon each other, and cut at one operation. Short pillars are bometimes sawn out of an irregular block in a similar manner, instead of being chipped and turned. And it has been proposed that long cylinders, and tubes of stone, should be cut with cylinders of sheet-iron of correspond-
 ing length, put in rotation, and supplied with sand and water.

Marble works of small and medium size, are ground fiat upon horizontal revolving laps, after the same general method as that pursued by the lapidary, but with a proportionate increase of size in the lap, which is supplied as usual with sand and water. The laps for marble works are made as circular plates of cast-iron, from 6 to 14 feet diameter, and about 3 inches thick when new; they are mounted in various ways upon vertical spindles, so that their upper sides or faces may be about 2 feet 6 inches abore the ground. Across the face of the lap, or, as it is called, the sanding plate, one or two strong equare bars of wood, faced with iron, are fixed so that their lower sides may just avoid touching the face of the lan, and their edges present perpendicular faces, from 5 to 6 inches high, at right angles to the face of the lap. The wooden bars scre as stops to prevent the work from being carried round by the lap, and also as guides to insure the work being ground square.

The piece of marble is laid flat upon the lap, with the face to be ground downwards, and the side of the work in contact with the guide-bar. Water is allowed to drip upon the plate from a cistern fixed above, and small quantities of sand are thrown on as required. During the progress of the work the workman leans upou the marble, the position of which is shifted occasionally to expose both the work and the lap to an equal amount of wear, and prevent the formation of ridges, but which is less likely to occur with iron laps used for grinding large surfaces of marble, than when small objects are applied upon lead laps, as by the lapidary and mechanician.

The one side of the marble haring been reduced to a flat surface, the work is turned over to grind the adjcining face, and the first face is held in contact with the perpendicular side of the guide-bar, in order to present the sccond face of the work to the lap exactly at right angles to the first. When two pieces of similar size are to be ground each on the one face and two edges, as for the upright sides of a chimney piece, the two pieces of marble are cemented together back to back with plaster of Paris, (a proness that is called lininy, and the pair are ground as one piece on all four faces; in this case the Hat sides are first ground parallel to each other, or of equal thickness on the tro edges, and the latter are then ground square by placing the sides in contact with the guide-bar.

When the lap is of moderate size, one guide-bar only is employed, and it is fixed across the diameter of the plate, which then allows of two workmen being employed on the opposite sides; but large grinding plates sometimes have two or three bars placed at equal distances across the face, and four or six workmen may then be employed at the same time upon separate pieces of marble.

The sand and water are continually thrown from the lap by the centrifural furce, and the large size of the works sometmes applied prevents the use of a rim standing up above the level of the lap to catch the wet, as used by lapidarjes. Every workman, therefore, stands within a kind of trough like a box, about three feet high, without a top or back; the troughs serve as a protection to the workmen, who would otherwise be exposed to a cuntinued shower of sand and water.
The surfaces of large slabs are in some cases ground upon revolving plates; in this case the axis is placed entirely beneath the surface of the plate, somewhat as in Fig. 2714, and the slab is traversed by two men over the fice of the plate to grind it equally, but the machine next describad is better adapted for large slabs of marble requiring tulerable accuracs.

Large slabs of marble and stone are ground very aceurately in a machine patented by Mr. Tulla. and called a grinding bed. In this machine, represented in Fig. 271t, the slab to be ground is $p^{1 \rightarrow c}$

mrizontally upon a moving bel, and the trinding as aftectel by sand and water, ly means ot thage flat phate of iron re ting upon the surface of the shats. The two suffees are traversel wer each other with a compeond motion, partly eceentric and partly rectilinear, so at continnally to chame their reladive poritions. 'The machine consists of a frame about 9 feet loner, 6 foct widn, and of feet hirh; abmut \because fect from the gromed is monted a phatform, that is very slowly reciprocated harizatally for a distame of from 1 tu 2 feet, according to the size of the shat, by weans of a rack and pinion placed bune:ath, and worked alternately in both direotions.

 on the driving-shatt. The two serticnl hafte nere thas made to revolve at equal velocity, or turn fir turn, and to the ir howor cmls are utheched two equal cramka placed parallol to cadhother; the extremi-

 contact.

double lever. and attached to the arms of a cross secured to the centre of the upper surface of the plates which is thus hifted alnost like a seale pan. For slabs that are much thicker or thinner than usual, the principal adjustment is obtained by the removal or addition of separate beds, or loose boards, laid upen the platform to support the slab at the proper height. Slabs that are too large to be ground over the whole surface at the one operation, are shifted ouce or twice during the grinding, to expose the surface equally to the action of the grinding plate.

The necessary pressure for grinding, is given by the weight of the horizontal plate, which is supported almost entirely by the work, as the pirots of the cranks merely enter the sockets, and allow the plate to descend when left to itself. For delicate works a counterpoise weight is attached to the double lever so as to regalate the pressure on the work.

The sand and water are applied to the grinding surfaces in much the same manner as in the iron rumers used by hand, previously described. The grinding plate is made on the ipper side with a raised rim like a tray, and the bottom of the tray is perforated with numerous holes about $1 \frac{1}{2}$ inch diameter arranged at equal distances apart. The sand and water are thrown into the tray at intervals in small quantities, and run through the holes and between the surfaces of the slab and grinding plate, which are thus uniformly supplied with the feed that ultimately makes its escape around the edges of the grinding plate.

Various qualities of sand may be employed according to the perfection of surface required, and very flat surfiees are produced by this machine. The grounding or smoothing of the best works is effected with a succession of fine emeries, with which the surfaces may be made very smooth, and almost polished; but from motives of economy, the grounding of ordinary works is more frequently completed by hand, with grit-stone and snake-stone, before the work is finally polished on another machine.

Rectilinear mouldings in marble are wrought by machinery in a manner altogether different from the hand process of working mouldings, in which, as previously described, nearly the whole of the material is removed with chipping chisels, and the surfaces of the mouldings are only smoothed by abrasion. In the machine process, on the contrary, the whole of the material is removed with revolving grinders, by which the work is reduced to the required form, and left smooth at the one operation.

The machine for working rectilinear moulding, or as it is called the moulding bed, elosely resembles in its construction the ripping bed described previously, except that the frame carrying the revolving grinders is provided with the power of vertical adjustment by a screw placed beneath, in order to raise the grinder to the proper height to suit the thickness of the marble, and that instead of the grinders being thin circular sheets of iron, they consist of solid cylinders of east-iron turned to the counterpart forms of the required mouldings. Indeed the ordinary ripping bed is occasionally used for working mouldings on large works, and when it is provided with the vertical adjustment for elevating or depressing the axis to any required position, the ripping bed is equally suitable for working mouldings; but as the latter are in general only required on slips of marble only a few inches wide, a narrow mashine is usually employed for the purpose.

MANINE ENGINES, steam. Marine engines may be divided into two broad classes, viz: beam ol lever chgines, and direct acting engines. These may be either condensing or non-conaensing engines, the former, however, are the most extensively used. With the exception of small serew-propellers and tow-boats, and steamers on the western waters, the condensing or low-pressure engines are almost
wholly wed in this conntry. The terms ligh and low pressure are in general used to defirnate reape tively the non-condensing and condensing engine, although tho terms are not in truth sufficiently distinc. tive, ns the condensing engine may be, and in connection with the expansion principle, frequently is, used with what may be callet high steam. What would be considered in this country a low presure steam, say 40 lbs . to the inch, would be consitered in England as high-pressure.

These two clases admit of subdivision into many varieties, but may, for all practical purposes, bo confined to the following system of arrangement:

Beam-engine.
Side-lever.

Oscillating,
Rotatory.
The Direct-Acting Engines differ from the beam-engine simply in the method of taking the power from the piston-rod. In the one the head of the piston-rod is connected either direetly with the crank, or by means of a connecting-rod or rods; in the cther, the working-bean or great lever, vibrating on it: centre, reccives at one end the power fiom the piston-rod through the modifying action of "paralle] motion" rods, or plain slides, and communicates it to the crank-shaft by a connceting rod attached to its other extremity.

The Side-Lever Engine is a modification of the beam-engine. In our river and coast boats the walking-beam or lever is above the engine, and single; batin the sea-going steamers two of these beams are used instead of one, and instead of being above the engine they are bronght down to the bottom, one on each side, and being connected by a cross-tail, they act as a single beam or lever. Hence is derived the name from this disposition of the working-bean, the "side-lever engine."

The Beam-Engine, illnstrated in fig. 1511 , is the engine of the "Osceola," running on the North liver, and may be taken as the type of a lante class of engines in use on our coast and rivers. The boats worked by these engrines are frequently on an immense scale, with eugines of the most perfect construction, and are managed with great skill, very frequcutly attaining a speed of over 20 miles an hour. They have been employed successfully for sea-going steamere, as in the Nortle star and Vanderbilt, and como properly under the head of marine engine:

Jjur. 2715 will give an itlea of the gencral appearance of tho side-lever engine, in ontlinc. Of this character are the engines of the Colline line of stwamers, as also the ciunard, the llavre, Charleston, New Ohleans, and Charres ste:mers, and in fact a very large majority of all sua going stemers are of this description of chaime. So miversul indeed is its ase, that when wo speak of the marine engine, this furm of engine is ordinarily unterstond, untws otherwise specified. For althongh other forms of engines may become of as much importance to steam navigation, certain it is that at this day no engine has been fomd to equal it in point of peneral ethicinney. The description of "H ris called owilluting is, however, coming into fivor, from other comsiderations to he moticed subequmety.

 Lut the classification wh have used is simphe, and sallecienty minute fir nlt purpans.

atcly over the axis and cranks，to which motion is communicated from the cross－head of the piston by means of side－rods，the air－pump being worked by a scparate beam connected with the cross－head by pro－ per links；but this is equally unsuited to sea－going steamers on account of the height of the cylindes above the paddle－shaft．
To obtain the object sought without incurring these evils，many descriptions of engine have bert contrived；among others the stecple engine，so called，where the piston－rod is made forked，so as，pass－ ing round the shaft，to rise above it to a considerable height，from which again descends the connceting－ rod to the crank．Figs． 2716 to 2721 illustrate the principle．The top of the piston－rod carries a four－ armed cross－head $h h$ ，on each end of which stands a pillar $h h$ ；these four pillars again unite in another quadruple cross－head，sustained upright by a vertical gnide；and it is from this summit that a comnent ing－rod descends to the crank K ．

Nfter passing throngh a great rariety of phases the steeple engine appears to have settled down inte the two following shapes．In figs 2720 and 2721 the piston－rod is seen united to a triangular frame， from the apex of which the connecting－rod descends to the crank．In fig． 2722 this frame is shown to be square，and fig． 2719 is the side view of both varietics．

Another method of accomplishing the direct connec－ tion without cucumbering the deck is called the trunk engine．The axis is placed at the height of half the stroke，or more，above the cylinder，and a connecting－ rod unites immediately the crank－pin with the centre of the piston．In this way the connecting－rod，passing through the top of the cylinder，would allow the steam to escape but for a large trunk or casing with which it
 is surrounted，and which，passing through a chasm of large area conceived to be steam－tight，rises and falls with the piston to which it is attached．In fig． 2724 ，A A is the cylinder；to its piston is attached a trunk B，which works through a stuffing box in the cylinder cover；to the piston the comneeting－rod $c c$ is attached．Fig． 2723 represents the top of the cylinder A A，with its stuffing－box and the trunk．

These engines were first used for marine purposes with vertical eylinders， and were again introduced into use by Pem，of Greenwich，with horizontal cylinders．The first application of it was to H．M．S．Encounter，a vessel of 360 horse－power．The cyliuders are horizontal，and connected at once to the encew－shaft．These engines make between 78 and 80 revolutions per minute， which was sufficient to propel the ship abont cleven knots．They were fitted witl．locomotive slides，and worked with two eccentrics．The air－pumps，like the sylinders，were horizontal；and indeed all the parts of the engines were
 as low as they possibly could be，for the purpose of bringing the inachinery belew the water line．

This form of engine was nsed by the Messrs．Kemble，for the steamers＂Pioncer＂and＂City of Pitts vurg．＂In these the cylinders are again brought back to the original vertical position，and form，note withstanding，a most compact form of engine．

The Gordon，Fairbairn，and the double－eylinder engines are English varieties of direct－acting engines extensively used abroad，but little used in this conntry ；they deservo a passing notice，as illustrative of the efforts made to reduce the dimensions of marine engines within the least possible limit．

The principle of construction of the Gorgon engines will be clearly seen by reference to f . 2725 , which represents a section of one of such engines; and the several parts, for simplicity sake, are represented

forced up and down by the steam, the crank will be made to revolve, and consequently cause the paddlewheel to rotate. The remaining parts of the engine will be readily understood: L is the condenser, M the air-pump, N the hot well, a and b are the foot-valve and delivery-valves respectively. There are twe purtieulars deserving special notice in this engine, viz. : the slides for admitting the steam and allowing it to escape, and the parallel motion, or the means of keeping the piston-rod in its vertical line. It is observable that there are four slides, viz.: A, B, C, and D, two of which, A and C, are for allowing the mgress of steam, and the other two, B and D, for allowing it to escane to the condenser L. The following is an matline of the narallel motion: HO is a bran called the "rocking-beam," one end of whicl:

is fitted to the upper extremity H, of the piston-rod. $P Q$ is a vertical frame, called the 'roekingstandard; " the lower end of this is connected with some convenient point Q, about which it can more, and the upper end P will therefore describe a small circular are abont Q; but this are will be so small that it may be practically looked upon as a straight line. TS is a bridle-rod, secured at one end T to the framework of the engine, and at the otlee to the rocking-beam. If, now, these rods have the proper proportions, the motion of H will be vertical. The rocking-beam is continued along to O, and the air-pump rod is fitted to it by means of the intermediate rod lio. The air-pump rod is kept in a vertical line by means of guides.

Fig. 2726 represents an outline of the Gorgon engine.

The chicf peculiarity of Fairbairn's direct-acting engines is in the paraliel motion, which is somewhat similar to that of the Gorgon engines.

The dotted lines, fig. 2727, represent the Gorgon engines. HPO is the rocking-beam; H the point to which the piston-rod and connecting-rod are attached; P the point of attachment of the rocking-standard; then, to construct Fairbairn's parallel motion, let the rocking-standard I' Q be inverted, as in the figure, so as to lang down from a point Q^{\prime} in the entablature of the engine. In the Gorgon engines, H P is prolonged to O, as before described, and the air-pump is worked from this extremity; but in Fairbairn's engines the radins-gear S T will be produced to some point O^{\prime}, and $O^{\prime} \mathrm{T}$ serves as the beam for working the air-pump. The stean is admitted and allowed to escape by means of a slide-valve, worked by an eccentric.

The four main parts of each engine, viz. : the cylinder, slide-valves, condenser, and air-pump, form a square, and thins occuny little space.
Fig. 2728 represents in outline one of the Fairbairn engines.

Maudslay's Donble-Cylinder Engines. In the foregoing direct engines the comecting-rod is necessarily shorter than it would have been if side-levers liad been used; and vonsequently the force exerted on the
crank alters more suddenly as the motion is alternated from the up to the down stroke, and wiee versa, than would lave leen the ease had the connecting-rod been longer.
Sow, in most direct engines a long comecting rod is an imposibility; for the lijtance from the shaft to the bottom of the ve olluitg limitel, the degth
 of the cylinder, the radius of the erank, and the length of the compecting-ros, mu-t all be aecommodited to it. Mescrs. Mandlay mal Field propmeel to remedy it by adapting twn crlinilers to each angine, instead of one : the eylinders having one eon-neeting-rod between them. In firs. 2729 aml $2-: 30$ A and λ^{2} are the two ertinders of one of the chgines; $a a^{2}$ the piston-rods; these rods are comected together at their upper extremities by the ero:--piece 2731

BC I , ealled (irom its forms) the T-plate; the lower end C of the T-plate is attached to the eormectingronl C E, which aqain being connecte? with the crank EF communeates with the paddle-shait F'. 'Tlee combenser fi is underncath the cylinders. It is clear that if steam be admitted below both pistoms at the same time, the pistons, in rising, will force up the T-plate, and with it the commectiner-mid, ofe.; and conversely these will aysain descomb as the

Fig. 2782 will give an idea of the appearance of the oscillating engine.
Many nautical men, and some enginecrs, have objected to oscillating engines on account of the movement of the cylinder, which, they imagined, would become a formidable evil in the case of a vessel rolling heavily at sea. These objectors do not seem to have remarked that the rolling of the cylinder is neither dependent upon, nor proportionate to, the rolling of the ship, but is regulated exclusively by the morement of the piston; and it is difficult to see why a mass of matter, in the form of a cylinder, should be more formidable or intractable in its movements than a similar quantity of matter in the form of a side-lever, or in any other shape whatever. It has also been objected against the oscillating engine, that the eduction passages are more tortuous tnan in common engines, so that the stean gets out of the cylinder less freely. We do not believe such to be the fact, if the comparison be made with the common mon of marine engine; and in practice, no diminution of efficacy from this cause is appreciable. All the objections that have been raised to the oscillating engine are hypothetical; they are anticipatious of defects to be found out in large engines on the oscillating plan, and would probably be plausible enough to carry some weight, were it not the fact that they have been completely controverted by experience. The remark, indeed, is heard sometimes even yet, that the oscillating method may do very well for small engines, but is of doubtful efficacy for large ones. But the definition of large engines has been continually changed, to escape the contradiction experience afforded, and that size is, in every case, decided to be large, which just exceeds the size of the oscillating engine last constructed. The grounds of this skepticism, howerer, are now being fast contracted; and, indeed, experience has now demolished every objection that theory had raised. Some persons have apprehended that it would be difficult in large oscillating engines to obtain sufficient surface of trumnion to prevent the trunnions from heating; yet we lave never been able to learn that any heating of those bearings has been found to occur in practice, and it appears probable that any such disposition would be resisted by the cooling effect of the steam passing through them, which, though hot, is of greatly inferior temperature to that of a hot bearing. It does not appear to ns, however, that the trunnions may not be made with any amount of surface that is thought desirable, but we believe the proportion adopted by Messrs. Pemn have been found adequate, and are generally adopted in this country.

Rotatory Engines are engines for obtaining a motion round an axis by the direct action of the steam, without involving the necessity of reciprocation. Some of them operate on the principle of reaction of which the engines of Avery and others may be taken as specimens; others operate on the principle of impulse; a third kind trusts to the intervention of some liquid to produce the desired effect, as in the mercury engine of Watt and the wheel of Amonton; while in the fourth class the piston moves in : circle round the axis. It is impossible to give any enumeration even of the numberless schemes for rotatory engines that have at various times heen projected; but none of them have been applied with any prospect of success to the purposes of narigation, and in their present state, need scarcely be ranked as marine cagines.
MARINE STEAM-ENGINE, of one hundred and forty-five horse-power. By Caind \& Co., Greenock. The following figures illustrate very fully the form and construction of marine engines made by Messrs. Caird \& Co. of Greenock, for the steam-packets Actæon and Achilles, and also for the royal mail-packet Urgent, still plying betwixt Liverpool and Dublin. The drawings were made from the engines of the Actron, since lost on the West-India station; but in order to render them more complete, and therefore more acceptable to the engineer, the expansion-geer subsequently applied to the engines of the Achilles has been embodied. It may also be remarked, that by proportionally reducing the scale of the drawings, they will be found to agree in every respect, beyond a few very slight modifications of a technical kind, with the larger class of engines, since constructed by the same spirited firm for the West-India mail-packets Clyde, Tay, Tweed, and Teviot, of 225 horse-power cach engine. The figures may thus be regarded as giving a general representation of the form of marine engines built by a firm to whose engineering skill the profession is indebted for a design of engine equally remarkable for elegance of appearance and compactness of arrangement. In lightness of material it is no doubt surpassed by the recent introduction of malleable-iron framing, and direct-action; but in the class to which it belongs, known as side-lever cnyines, it exhibits a massiveness of appearance and an economy of weight which, in combination withequal strength, has not hitherto been surpassed.

Enumeration of the figures.-Fig. $2714 \frac{1}{2}$ exhibits a complete side elevation of the engine, showing the general design and arrangement of the framings, and the relative positions and connections of the working parts; the valve, expansion, and starting geer, parallel motions, and situation of the pumps. In this view the side of the vessel is supposed to be removed and the engine seen in situ.

Fig. 2715 is a plan of the sole-plate of the engine with all the parts removed, but showing the position and provision for fixing the steam-cylinder bottom and valre casing, the hot-well, placed on the top of the condenser, the air-pump, and the soles of the main framing.

Fig. 2716 is a gencral plan of the engine, exhibiting very fully the starting and eccentric geer, the mode of working the pumps, the direction and position of the steam-pipe, and mode of conneeting the diagonal framing ; also the horizontal relation of the valve and expansion geer.

General deseription.-Sole-plate and condenser:-The sole-plate, marked $\Lambda \Lambda$, with the condenser U, consists of a single casting, double-ribbed on the under side, to give it additional strength and rigidity. For facility of fitting it is provided wilh fitting-strips on its upper surface; these are faced true to receire the soles of the main frame and eylinder bottom, which are fitted upon it metal to metal, aud consequently are likewise provided with corresponding fitting-strips, faced in the same manner. The sole-plate is firmly sccured to the keelsons of the ressel by sixteen strong malleable-iron bolts marked a in the elevation, and the recesses for which are similarly designated in the plan of the sole-plate The middle of the plate, falling between the two keelsons, is depressed to allow the condenser and its appendages to stand lower in the vessel than they otherwise would, as shown in the general section.

Iraming.-The main framing of the engine consists of four strong fluted columns, cast pair and pair
will their soles and ertibhatmes. The soles, as above observel, are fitted upn the sole-plate metal to metal, and are secured to it by bolts and keys, for which snurs are cilt on the sule plate. The entablature is completed ly two cross-beams corre pon ling in form with the sids, into which they are fitted and secured by bults. The form of their crossesection is shown in the general section of the engine.

The upper or crank framing consists likewise of fur columas ca-t pair an 1 pair with their soles and entablatur s; but in this case there are no cross pi-ces, the two siles beiner simply braced together by two strong malluable-iron stays marked c. One of these pasec; beween two stron luge c st on the b.ack culumns neur the top, and the other betreen the cheels of the limonal jreming marke I C . The crank-framing rests on the entahlature of the main frame to whin it is titted, an 1 secure 1 by bolts and by two centre keys in each sole, driven on the ri, fit and left of a dovetail smur cast on the entablature of the lower frame, and which enters a similarly firme! but lureer recess in tl e sule of the upper frante -an arrangement which is clearly shown both in the genemal eleration and section. This framis is further secured between the ship's heams by the stromy stays $b 6$ cast upu the entablatures. The etays usually abut against cart-iron face-plates, bolted upon the phatle beams at the points of contact but they are neither bolted nor otherwise fixed to the facing, but are left free to slide vertically mon then in obedience to any spring which the vessl may have whon un ler way, and which is often eronsiderable, especially in a rough sea. The crank-framing is also braced to the steam-cylinder by the diagonal franing C C Consisting of two strong parallel struts cast upen the imner colums of the crank framing, from which they spring. These struts terminate in rectamgular flanges, answering to similarly furned projections east on the cylinder on opposite sides of the salve-casiner at top; and to these they are carefully fitted metal to inetal, and secured by bolte, as partally shown at el in the elevatio: and plan.

The principal use of the cranh-framing, and that fre whict it takes its name, is to support the conkshaft. This is accomplished in each of the engines liy two flumm r-blocks, one on each side of the crank, secured by bolts and keys on the entablatures of the frames. The soles of the plummerliochs are in this, as in all highly finished engines of tle same clas, likewise facel and fitted metal to, metal.

Stcam-cylinder.-The steam-cylinder E is cast open, and with hroad and trong thanges at both enche. It is placest uron a $=$ parate bottom piece, flanged lite the erlinder, to allow of their being bulte 1 to gether. This bottom piece being truly facel, above and below, is secured to the sole-plate of the enerine ly strong balta, and ru-ted. The lower en! of the eylinder beine truly faced is similaty fitted upan and ecoured to the uper flarge of this kuitum fiece, s, that the whole may be periectly team-tiolt.

The interior of the cylinder is bored as truly as poscible of a uniform inside diameter of sixty-t tro inches. The cover d^{\prime} which, as will he obsorved from the section, is car thallow, is fitted by emrnian and grindines, into the upper end to nearly the depth of the steam-port. On the inside is a circular rcess to receive the heads of the bolts of the jumk-ring of the piston; and the exterior phate is expamed ly a strong dlange to the same diameter as the flange of the cylinder, to which it is sectred ly bolt In the centre is furmed the stuffing bor through which the piston-rot ascends

The projecting corner pieces marked dare thase to which the diagomal framine is attached; they are faced both un their horizontal and vertical surfaces, so that the correspon ling thanres, in which the struts of the framing terminate, may be fitted truly upon them. The projecting value facings are cast of a piece with the cylinder. 'Ihese are carefully dressed and the whole surface of bop hexactly reduced to the same plane; and to complete them, a carefully timish facine of brase, but of las bremblh, (two inchea, is applicel stemm-tizht round each of the ports, and projects on ach side, by rumers of a langth correponding to the length of the helringe wit the valve. the outhers of thes
 the engine

The piston.-Tlu bo iy of the pi-tun con ints of a simele bullenc eastine, strencthomel by ralatine frathers, with a strong eye in the ecentre torecrive the pisten-renl. The under side is a purnm of at sphere atswering to the curvature of the besten of the eylinder. The upper si fe in like manser is arvex to its jun tion with the rine, which is berizontal, anl corre-pmot; to a horizontal part romel the in-ide of the enver, within which the cover is a surment of a hodlow splure of the same ratit: as

 bottom, the luse of steam due to the rearence is refte eal th a minimm.
 the upere side beime made up hy the junk rame. This ring is tittel stean if hat, firot hy turning

Vol. 11. $=2$

The junk-ring is secured in its place by bolts and nuts; the nuts are placed in recesses provided for them in the metal of the piston, and the bolts are screwed into them from the outside. The heads thus project on the surface of the ring, and would come into contact, at the end of the up-stroke, with the cylinder cover, but for a circular recess formed in it for their reception, as before noticed.

Thie piston-rod II is inserted into the piston through the eye in the centre, which is bored and taperea from the under side. The rod is of malleable iron, and turned, the body of it truly eylindrieal, so that it may work freely in the stuffing-box through which it ascends, and the lower end with the same taper as the eye into whieh it is fitted, and in which it is secured by a cotter-key traversing the metal of the
cye and the thickness of the rod thereby effectually binding the latter to the piston．For conrenience of inserting the key a recess is left in the upper jlate of the piston，whids is afterwards filled，to prevent the steam gaining admission to the hollow interior of the piston．

Piston cruss－Fead and connections．－The piston－rod，ascending through a packed stuffing－box， 19 inserted into an eye，bored a little smaller than its own diameter in the eros－head 1，equidistant from the two extremities；and is then fixed by two gibs and cotter in the usual mamer．The crose head has two joumals turned on each of its ends，separated from each other by rufls of an inch

 nuer of a key learing neath the lack of the lown hris；but the comectuan with she ale levers is

dle of their length till their projecting ends fit closely upon the rectangular ends of the side-rode, te which they are secured by a gib and cotter. This species of connection, technically known as the butt. end and strap, and universally adopted in like circumstances, provides for any slight wear of the brasses for should these become too large, they can be brought closer together by driving the cotter more tightly, the holes through which the gib and cotter pass being so disposed in the strap and butt that the gib shall only be in contact with the ears of the strap and the cotter with the butt on its under edre. The holes in both strap and butt being thons of greater breadth than the gib and cotter together, the connection admits of adjustment to the extent of the difference, and no further, for then the edges of the holes being in the same plane, the relative positions of the strap and butt will not be altered by any subsequent action upon the cotter.
The side-levers are divided at their extremities at the point of connection with the side-rods $\mathbf{J} \mathbf{J}$ and the links $j j$, which connect them with the cross-tail. The joints are completed by strong malleableiron pins which pass through the jaws of the levere, and the bushes of the straps which are placed between them. These centre pins are turned with a little taper on the parts which pass throngh the levers, and the holes made for their reception are accurately bored to the same diameter and ground. The studs are driven in tightly from the outside, and secured in their places by riveting at the opposite extremity.
Both levers are suspended upon the same axis called the main centre, M', which passes throngh and is fixed in the sides of the condenser. It will be observed that the eye of the lever is fitted with brasses which can be tightened as they wear by a pair of cotter-keys, passing through the boss and bearing against the back of the under brass. Inside, and bearing against the shoulder of the bose, is a ring of malleable iron, of sufficient breadth to cover the margin of the eye to fully an inch beyond the circumference of the brasses, thereby presenting the lever from deviating inwards: and to prevent it from Ghifting its position outwardly, a plate of the same external diameter is applied by a strong bolt serewed into the end of the main centre.

The side levers are connected with the connectingrod \mathbb{N} by means of the cross-tail 0 and links $j j$ The connecting-rod passes through an eye at the midule of its length, and is fixed by two gibs and a cotter, in the same way as the piston-rod is attached to the cross-head, while the links are connected in the same manner as the side-rods, except that the upper ends do not admit of adjustment, being simply riveted in the eyes. The attachment of the connecting-rod with the crank is likewise by a butt-end and strap, the cotter of which is tightened and maintained in its place by a screw and nuts. The crank-shaft Q rests, as before observed, on pedestals fixed upon the entablature of the crank-framing, and is prevented from moving on end by ruffs on the outsides of the pillows, and by the shoulders of the crank-brasses inside.

It may be noticed that the piston-rod, side-rods, cross-head, main centre-shaft, cross-tail and links, conncting-rod, and crank-shaft are all formed of the best malleable iron, and turned and pared to the requisite forms and dimensions.

The parallelism of the piston-rod is maintainel when the piston is in motion, by the two radius bars $K K$, by the radius levers $f f$, fast upon the ends of the shaft L, called the parallel-motion shaft, and by the parallel bar h. The ends of the radius burs K K, on the cross-head are formed with solid eyes, fitted with brasses, the inner of which are tightened by keys, in the same manner as those of the siderods which are attached at the same points. The eyes at the opposite ends, which work upon studs in the radius levers $f f$, are formed in the same way, but are smaller, and have the outer brasses adjustable by screwed-pins $g g$. The length of the bar thus admits of slight adjustment betreen its centres, to compensate for errors of workmanship and wear of the bushes. The parallel bar h is also attached by a solid eye and stud to the lever f, and admits of still more extensive adjustment at its lower end. This bar, it will be observed, is formed in two pieces, with the contignous ends screwed right and left, and embraced by a long nut similarly screwed. By turning this nut to the right or left it is obvious that the upper and lower ends will be made to approach or recede, and the distance between the centres be thereby diminished or increased. The upper end of the rod is formed with a solid eye bushed, and the lower with a buttend and strap in the usual way; it is attached to the exterior side-lever by a malleableiron stud inserted into a rectangular eye formed in the latter.

The disposition of the flexitle points of these connectiona being such, that in every position of the piston the angles of the parallelogram formed by the part of the side-lever comprehendel between the stud of the rod h and the junction of the side-rod, opposed to the radius bar K , and by the parallel bar h and the side-rol J, shall change proportionally, always preserving the same constant ratio, il follows that the piston-rod eross-head will move constantly in the same place and the parallelism of the piston be thereby maintained.

The parallel-motion shaft L is supported by two plummer-blocks, resting on the entablatures of the small pillar-framing D. This framing, called the parallel-motion franing, consists of four columns, cast, like the larger framings, pair and pair, with their soles and entablatures, and with provision ou the latter for bolting and keying the pedestals. The soles rest upon oblique flanges cast on the diagonal framing C C , to which they are secured by bolts and keys.

The relecs and value-geer.-The valve easing F is cast of a semi-cylindrical form, corresponding to the form of the valyes, which are of that kind designated, in accordance with their outline, short D-slides.

The casing is fitted steam-tight and bolted to the side of the cylinder by projecting flanges cast onf both for that purpose; and also to the sole-plate over the recess ${ }^{\prime \prime}$, shown in the general elevation The flat side, as will be observed from the general section, occupies only about a third of the whole length equidistant from both ends, and is cast with projecting flanges, which are carefully fitted ste:mtight between the ends of the projecting faces of the cylinder. These faces thus project iaside, but are concealed by the circular part of the casing, in which, it will be obsersed, when the cover is applied, there is no communication with the external atmosphere; through the passages T' it communicates
with the condenser $[$, and throurh the steam-ports with the cylinder. The steam-pipe G likewise apens into it, and a communication is thereby effected with the boilers.
The valves, as already noticed, are of the kind known as short D.slides. There are two of these, one to each port of the cylinder. The backs are turned truly circular, and the faces are planed and ground to the brass facings of the ports, so that they may slide uron them steam-tight, and with as little friction as possible. They are kept tight against the faces, and also rendered steam-tight in the casing by hemp packings, introduced through the pucking-ports cast in the casing. These packing; are covered by the packing rings which are pressed against them by set pins acting in nuts between the packing rings and the port-covers, as fully shown in the general section. These set pins can be tirhtened at pleasure by a box key, inserted through holes formed in the covers, and filled with hollow plugs, which can be withdrawn when necessary.

The plancs forming the faces of the valves are slightly less than double the breadth of the port, but the circular parts are necessarily much larger. The finces and backs are connceted by strong diaphragms, through which pass the ends of the rods whieh couple the two valves together. These rods are turned to an exact length between the ruffs, against which the contiguous sides of the diaplaragins bear, and are kept fast in their places by nuts upon their protruding ends. They are stiffencd at the middle of their length by a cross-stay. A strong stud is inserted domnwards in the middle of the diaphragm of the upper slide, and is retained in its place by a nut on the end projecting below. The upper end is formed with strong projecting lugs, between which the enlarged :quare end of the salve-spindle is received, and retained by a strong square pin which passes through the lugs of the stud and the end of the spindle, thereby forming an inflexible joint at the point of comection.

The valre-spindle passing through a packed stufting-box in the cover of the valve casing, is attached by means of a small cross-head and side links, to the lever n. This lever is fast upon the transerse shaft $2 n$, which has its bearings immediately under those of the parallel-motion shaft in the framing D. On the oppoite end of the lever n, is fixed a weirdat q, sufficiently heavy to counterpoise the weight of the valses. This weight is connected with the shaft S , called the starting-shefft, by two shall levers s. These levers are fist upon the shaft S, but are flexibly comected to the axis of the weight ℓ, ly two shert connectimg-rods jointed to cach. The shaft s is carried on pedestals fixed upon the checks of the din gonal framing C' C, and has a short lever crank keyed upon the end projecting to the inside of the engine. A long lever is fitted to this fixed piece by a hallow boss which passes upen the tail, but, being reguired only uceasionally, it is not fixed, that it may be removed when nut in tese, and for that reavon it is not shown in the drawins; but suppoing it applied, it is plain that by moviner it toward the bight and carrying the shaft S with it in the same direction, the balance weight q will be elevated and the valves depresed. The reverse action will produce the reverse effect by again lowering the weight and raising the yalves. Now, oberving in the sectinn that the lower stean-port of the cylinder is open to commmication with the condenser, and that the upper pont commanicates only with the interior of the casing, if the weight of be raiecd until the valves descend through a space equal to the Dreadth of the faces, it is clear that the conditions will be revereved, and that the upper purt will be upened to communication with the condenser, through the passage J, and that the lower passege will be shut, and the lower port will communicate with the interior of the casing.

Upon one end of the traverse-shaft $2 n$, is a crank-arm, upon the pin of which a gab formed in the cmel of the comperund rod $l l$, called the cccentric rod, rests. This rod, which consists of two bars of malleable irum stiffened by diagomal braces, is attached at its base to the two oppo-ite lugs of the recentrie ring R , which woiks freely upon the ecceatric embraced by it, and which revolves with the crank-haft of the enrine; conserguently, suppoint the crank th revolve, the rod $l l$ will at the same
 traver-e-shaft m, will catee the ends of the dever n alternately to atsental and desechel. But the valvespimbles beiner attacheel to thi lever, its motion will be trandered to the valves, which will thas be
 strengeh to the shaft S. This is the action necesary womantan the motion of the cog gine, ins will be explained.
 links oo, arrangel ats in the commen parallel motion of atationary engines. The radins ronts are at

 linkis to pass when the ongine is in netion.

 or rhatlac muply of myectron.

attached over the opening, which, throwing the water over the edge of the partition into the hody o! the condenser, prevents it, from accumulating in the passage, and at the same time renders the water o more avail than if it had been allowed to strike against the side of the condenser.

The air-pumps and valves.-The condenser communicates at bottom by a valve, called the footvalve, with the air-pump V, the barrel of which is $4 \frac{1}{2}$ inches, clear of the sole-plate, thereby leaving space for a body of water to enter it from below. The barrel of the pump is bored and lined with a thin cylinder of brass turned to fit within it. A strong flange is cast round it at 11 inches from its lower end, which is fitted water-tight, and bolted to the margin of a circular opening cast in the upper division of the sole-plate, for the reception of the lower end of the barrel, as shown in the section, and also in the plan of the sole-plate.

The bucket consists of a ring connected to the eye at the centre, into which the rod is fitted by four arms. The under side of the ring has a flange cast upon it of one inch breadth, between which and the projecting ledge of the junk-ring, bolted on the upper side, a packing of hemp is retained. But before applying this packing, both the flange and the junk-ring are turned to work easily in the barrel. The pump-rod is sheathed also with brass, to prevent corrosion by contact with the water. To apply this sheathing, the rod, which consists of malleable iron, is first roughly turned; it is then thoroughly eleaned and taken to the brass foundry, where the corering of brass is cast upon it, of somewhat more than the required thickness. It is again put into the lathe and turned to the requisite diameter. The rod, which thus possesses all the advantages of strength and diminished liability to corrosion, is retained in the tapered eye of the bucket by a cotter. and passes through a packed stuffing-box in the cover of the pump. The bucket-valve is of that kind technicaly known as the pot-lid value, in contradistinetion to the butter-fly ralve, which consists of two hinged flaps. The pot-lid valve consists of a circular plate, which slides rertically on the pump-rod by means of a bored eye at its centre; the plate is strengthened by ribs radiating from the eye, and terminating in a narrow ring on its circumference, which is faced, and fits water tight upon the similarly faced edge of a ring projecting round the plane of the bucket.

To understand the action of this valve it is only necessary to conceive the under part of the barrel to be filled with water, and the bucket to be forced to descend in it; it is then obvious that the water passing between the arms will meet the under surface of the valve, and prevent it descending with the bucket; for being inelastic, and also being prevented from returning into the condenser by the foot-valve, it must force a passage at the least resisting point; but the only resistance which the valve offers being its own weight, the water will bear it up and force a passage at its circumference, over the ring of the bucket, and will continue to ascend relatively in the barrel so long as the bucket continues to descend; but when the bucket has attained the lowest point of the stroke and begins to return, then the valve, being of greater specific gravity than the water, will shut by its own weight, and will carry whatever water is above it to the height of its own ascent. The water thus carried up is ejected by the valve called the discharge-valve, into the hot-well X , so called because the water thus thrown into it by the air-pump, being that employed in condensation, has its temperature proportionally increased.

It may be observed that the bucket and ralve are of brass, as are also spindles which form their axes. The box-framings of these valves are formed of cast-iron, faced with brass, and fitted water-tight into their seats, where they are each retained by two long copper keys, one at each side, inserted from above before the covers are put on. The covers are likerrise fitted water-tight and bolted down.

The valves are prevented from opening beyond the requisite distance, by projecting bridges situated before them, as shown in the section.

The hot-uell.-The hot-well, as already observed, is situated above the condenser. The part marked X, with the vertical part of T, of the upper exbaust passage, is formed of a single casting, fitted watertight to the top of the condenser. In one side of the well, as shown in the section, is a rectangular recess covered by a door, through which admission can be obtained to the interior; and in the side adjacent to that of the vessel, as shown in the elevation, is a circular opening to which the discharge-pipe Y is bolted. Through this latter the excess of water beyond that required for supplying the boilers, is discharged into the sea. The pipe consists of a single length outside of the condenser, to which it is fitted by an expansion joint, to compensate for the spring of the vessel when at sea; and has also a valve in it capable of opening outwards, but which being shut resists the pressure of the water inwards.

An air-vessel Z is placed over the hot-well and fitted to it air and water tight. The object of this vessel is to create an elastic pressure by means of the air contained within it, to assist in ejecting the water through the discharge-ralve should the hot-well from any cause become surcharged. The pressure thus brought into action by continuing to increase with the exigency of the case will, under all ordinary circumstances, prevent accumulation of water in the well to any detrimental extent.

Feed and bilge pumps.- The same cross-head u by which the air-pump is worked, serves also to work two other pumps of smaller dimensions. These are the feed-pump, by which water is supplied from the hot-well to the boilers, and the bilge-pmop, by which leakage water is withdrawn from the hold of the ressel. These are very nearly identical in construction with the bilge-pump. The barrel is formed of cast-iron, but the plunger, which is made hollow for the sake of lightness, is formed of brass. It is comected to the cross-head by a cotter, a portion of the end being made solid for that purpose.

This pump communicates with the hot-well by a pipe projecting from the side of the barrel, a portion of which is shown in the general elevation, where it is marked W. The feed-box is bolted upon the side of the part of the hot-well formed in the condenser, at the position marked w^{\prime} in the plan of the soleplate, by square flanges upon the face. In the side of the hot-well are two square holes corresponding to the two openings in the feed-hox, and these being made to coincide, the pipe from the feedpump is attached to the lower of the two circular openings in front of the box corresponding to the lower of the square openings, and the upper communicates by a copper pipe with the boilers. This
zonnection being effected, and a clack valve, opening towards the pump, bein's placed in the lowet division of the box, and a similar valve, opening reversely, being placed in the upper division, if the plunger be made to aseend in the barsel of the pump, leaving a correspouding space unoccupied, the water will How from the hot-well, by its own gravity, into the pump; but on the plunger begianing to deseend the valve in that division of the feed box will be closed by the pressure of the water tending to return to the hot-well, and consequently will be forced through the upper valve, and aloug the feedpipe, to the boilers. But if more water be drawn by the pump than is required for the boilers, it is smply ejected through the valve in the upper division of the box, and thus returned to the well. 'The pressure of water in the box is maintained by a loaded conical valve placed on the top: this can be adjusted at pleasure to suit the pressure of steam in the boilers.
Instead of being guided by parallel-motion bars, the pump cros-lhead is restricted in its vertical path, by two guide-rods $v v$ attached to the flanges of the feed and bilge pumps at their lower ends, and to the dingonal framing ahove; these pass through bu-hed eyes in the cross-liead which is thus contined at the same time that it slides freely upon the rods in its alternating ascent and descent.

The cross-head is connected to the sule-levers by the rods t, which are formed with solid busked eyes at their upper ends, and with butts and straps at their lower extremities.
Snifling-ralve. -The bottom of the air-pump well communicates by a pipe with a small conical valve, which is technically called the snifting-rulve. This valve is kept shit ly a seremed pin pasing through a malleable iron bridge made fast upon the mouth of the pipe. To the side of this pipe, above the valre, is cast a small return branch, by which the water passing through the valve is earried off.

The use of this ralve is to admit of the escape of the air within the condenser, air-pump, and stemupassarres, on starting the engine, and before these have been filled with stean. When about to start, the pin is simply unscrewed by hand, to permit the valve to rise and allow the air and water to eseape, and give place to the steam, which now flows onwards from the valve-casiug, occupying all the pasages and condenser, and finally begins to issue by the valve itself.

Blox-through value.-This ralse is situated at the position marked u^{\prime} in the plan of the sole-plate. It is placed in a chest fixed upon the steam-valse casing at the lower end, and has two openings, one above and the other below the packing port. The valve itedf is placed between these two apertures.
This value is used simultaneously with the snifting-valve, to allow the stean to fill the pas-arges and condenser, when preparing to start the engine, and thereby to displace the air and water which may be lodged in them, through the snifting-valve.
f'riming-ralecs.-These are two small valves, situated in the steam-ports of the cylinder, and are called priming-ratecs from their being intended to diecharge any water carried over into the eylinder with the stean, and which is technically termed priming. These valves are kept shut hy sprines acting against them externally, and of such strengeh as to resist the ordinary pressure of the steam; but shonhd Water lodge in the passages, owing to its non-elastic properties, it will be ejected through the valves by the action of the piston tending to compress it.

Expansion grer.-The expansion geer consists of an apparatus by which the amount of stean admitted during a stroke of the piston can be diminished at pleasure, when it is not required to work the engines to full power. The first part of the apparatus consists of a eam with five faces nawl on the crank haft, as shown in the elevation and plan of the engine. These faces are of diflerent lenothe, giving five ditient degrees of expansive action. They are so formed that the friction roller on bse end of the lever m, and bearing against any one of them, is thrown forward through the same space but the time of action varying as the length of the face, the effect will depend upon the particular face in contace with the roller; and this, according to its distance from the frame, may be made to bear against either one or other of the faces. The position of the roller, and comsequently of the lever to which it is attached, is regulated ly a serew and nut ; the lat is formed in the back lever x, which is forged of a piece with the weighted lever, and hat a long hallow boss working on a stal tixed in the framing. The serew has a handle upon the projectime end, which heine turned canses the lever o to adrance or reecde upen the bo-s of the domble lever in whidh it slides loy a mak ker. The roller is kept againt the face of the eam by the anction of the weighted lever; the weight emblag to de-
 the cant.

The lewer r is emmected by a joint with an adjustable rol, carried forward to the lever y, which is

 by flexille lank, with the spimble of the rexpan ion valve, whels is of the kin! kown by the name of

 be drawn down, and with it the end of the harizutal lever y^{\prime} to which it is attached; hent the laver !'

 the lever x, this lat will be projected forwatal, and the roller the wh out of contact whthe cam, and the emgine will receive the full sipply of oteath.

simply a disk of the same diameter as the inside of the pipe, with a rectangular eye cast in it to receive the spindle upon which it works.
The steam-ports of the cylinder being both shut by the ralves, and the blow-through and sniftingvalves open, the steam is allowed to pass into the value-casing by opening the throttle-yalre, partially at first, which fills the steam-passages and condenser, driving the air and water before it. When this has been accomplished, and steam alone issues by the snifting-valve, the blow-through valve is closed, and the injection-valye is opened; the cold water now rushing into the condenser effects the condensation of the steam with whith it was filled, and creates the desired vacuum. The eccentric-rod l being out of geer with the crank upon the traverse-shaft m, and a long lever, as before described, being applied to the starting-shaft S , the stean-valves are raised until the under port communicates by the passage with the condenser, and the upper port with the interior of the valve-casing, now full of steam, which, in consequence of this disposition, will flow into the cylinder above the piston and force it to descend. The next operation is to reverse the pressure upon the starting-lever and thereby to reverse the position of the valves, shutting off the communication of the upper port with the casing, and opening it to the condenser, at the same time that the communication of the lower port is cut off from the condenser and opened to the interior of the casing. This being done the steam will flow from the cylinder into the condenser, and encountering there a shower of cold water from the injection-pipe, will be condensed, and a racuum thereby formed in the cylinder above the piston. By that means the pressure over the piston is removed, and the steam flowing into the cylinder beneath it, forces it to ascend to the top of the cylinder.

But the piston being connected by the cross-head and side-rods, with the side-levers, carries these with it in its ascent and deseent, through an are, whose chord is equal to the length of the stroke of the piston; and the side-levers being connected at their opposite ends by means of the cross-tail and con-necting-rod, with the crank, the motion of the piston is thus transferred to the crank-shaft, and through it to the paddles, which are fast upon its extremities.
After two or three strokes of the piston the moving parts will have acquired a certain degree of momentum, and this is taken adrantage of to render the engine self-acting. The crank-shaft being in motion, if the cceentric-rod l be thrown into geer with the traverse-shaft, exactly the same effect will be produced upon the valves as by the lever applied to the starting-shaft S ; for by the alternating thrust and pull of the rod, communicated to it by the eccentric R, the crank of the traverse-shaft will be made to describe a certain portion of a revolution, proportional to the eccentricity of the eccentric, and the valve lever n being fast upon that shaft, the valses must consequently ascend and descend regularly with the revolutions of the erank-shaft; and these revolutions are performed uniformly with the alternating ascent and descent of the piston.

The water is drawn out of the condenser by means of the air-pump with the same regularity; for the air-pump cross-head being worked by the side-levers, it will snove simultaneously with them; the feedpump being also attached to the same cross-head, the boilers will be furnished with water in proportion to the speed of the engine, and consequently in proportion to the quantity of stean used.

Litcral references.

A, the sole-plate of the engine.
a a a, holding-down bolts by which the sole-plate is fixed to the keelsons.
B, the crank framing.
$b b$, spring-stays of the crank framing which work between face-plates on the paddle-beams.
C , the diagonal framing.
ec, stay-rods comnecting the framings of both engines.
D, the parallel-motion framing.
$d d$, flanges by which the diagonal framing is bolted to the cylinder:
E , the steam-cylinder.
F, the steam-ralve casing.
(x) the steam-pipe and expansion valve chest.

II, the steam-piston rod.
I, the cylinder cross-liead.
If J, the eylinder side-rods.
If K, the radius-bars of the piston-ro! parallel motion.
$f f$; the radius levers of the parallel motion.
gi, pinching-screws for acljusting the cuds of the radius-bars.
L, the parallel-motion shaft.
h, the parallel-motion side-rod attached to the lever f, and to
MM, the great side-levers of the engine.
H^{\prime}, the main centre.
$i i$, booses at the centres of the side-levers, through which pass the keys for tightening the bearings.
N, the comnecting-rod.
0 , the cross-tail of the connecting-rod.
j, the cross-tail links.
P P, the cranks.
QQ, the crank or padule shaft.
R , the eccentric for working the valves.
l, the eccentric-rod.
m, the traverse or valve shaft.
n, the ralve-lerer.
o, small parallel-motion for the valve-spindle.
p, a small framing to which are attached the ends of the radius-bars of the valve parallelmotion.
q, the back balance or counter weight of the valve.
r, the back balance or counter weight of the eccentric.
$s s$, levers by which the valve counter weight is attached to
S , the starting-shaft.
T and T^{\prime}, the upper and lower exhaust passages.
U , the condenser, cast of a piece with the sole-plate
V , the air-pump cylinder, lined with brass.
t, the air-pump side-rods.
u, the air-pump cross head.
", guides for the air-pump cross-head.
W, the feed-pump.
X , the hot-well.
Y, the discharge-pipe.
Z, the air-vessel.
u^{\prime}, (in plan of sole-plate) the part of the sole-plate to which the blow-through valve is bolted.
v^{\prime}, (in plan of sole-phate) a projection on the condenser, to which the expansion-valve casing is bolted
x^{\prime} ，（in fan of sole－plate）the part of the hot－twell to which the feed－chest is bolted．
x ，the movable lever of the expansiongeer．
x ，the fixed lever of the expan－ion－geer．
$y y^{\prime} y^{\prime}$ ，additioual lerers for working the expansior． valve．

American Marine Steam－Eingine．－Section and details of the engine of the Cinitel States Mail Steamer Pacific，built at the Allaire Works eity of New lork，after the design of C．W．Copeland，Eed

Dctails．

Fig．2717，longitudinal section of cugine
Fig． 271 S shows a plan of the bed－plate．
Fig．2719，a longitudinal projection．
Fig．2720，a transverse section，vertically of the bed－plate and condenser through the centre of the side－lever shaft bearing．
Fig．2721，transverse section of bed－plate through the centre of the sockets，for the support of the pillow－block columns．
Fig．2T22 shows a vertical eleration of steam cyl－ inder．
Fig．2i23，plan．
Fig．272 1 ，a vertical elevation of the air－pump．
Fir．2725，plin．
Fig． 2726 shows a longitudinal prajection of side－ lever．
Fig．27』ス，plan．
Fig．272s，a vertical section throuflı steam piston．
Fig．2709，sectional plan．
Fij．2730，side clevation of ontboard pillow－blocks．
Fif．2731，plan．
lig．278：2，plan of reservoir．
Fig．2733，end projection．
Fig．2734，side elevation．
His．2735，vertical section through man－hole open－ ing．
lige e736，longitudimal projection of main pillow－ block．
F゙ゥ 2737，plan．
Fig．2708，swetion througl socket for column．
Fir．2739，vertical projection of air column．
「їg．2741，plan．
1．ig．27．11，front view of upper steam－ehest．
Fig．2－12，culd view of upper steam－chest．
firs 2－ 43 ，front view of lower steamechest，with sife－pipes attached to upper chest．
Fig．른，cul viow of lower stam－cheets．
Fif．$\because 515$ ，vertical section through air pump cover．
Fíp ？？th，plall
Fig．2717，vertical section throngh air－pump bucket and valve．
Fir．2－14．plan．
Ifig．271：，vorticaltan of of cyin ler top and ful e cover．
Fig．2750，plan．
F 5.2751 ，bide vew of cut－of ecemtric．

Fir．2i5s，sulc vicw of steann eceentric．

F゙g．275月，vortieal section．
Fíg． 27.5 T ，plan．

Fig．2to0，elevation of force－pump plunger．
Fig．2761，side projection of furee－pump chest．
Fis． 2762 ，plan．
Fig． 2763 ，fiont riew of bounet to cloze over opening to adjust ralves．
Fig．2764，end vien．
Fi5． 2765 plan of bilge－pump ches 4
Fij．2：66，longitudinal projection．
Fig． 2767 ，end elevation．
Fig．a 208, plan of bonnet．
Fig．2769，end view of lennet．
Fig．2Tio，plan of bilge－pump 1 lunger．
Fig． 2711 ，vertical section．
Fig． 277 ，side view of centre－tuaring for mater－ wheel shaft．
Fig．2773，plan．
Fig．2784，water－wheel shaft．
Fig．2750，centre water－wheel shaft．
Fig． 276 ，side view of driven crank．
Fig．2ごに，plan．

Fir．2779，plan．
Fikg 2780 ，parallet－motion shaft．
lig．2781，cunt view of parallel－motion arn．
Fif．2782，plan．
Fir． 2788 ，side view and jlan of air pamp rods．
Fig．2784，side vicw and plan of radius rods for parallel motion．
Fig．2785．side view and plan of parallel－motiot： comnecting－rod．
Fig．2786，pillow－block columms．
rïg． 2787 ，side eleration of bush for hriven crank．
Fig．2788，plau．
Fig．2789，vertical clevation of croxs－tail，with sidu－ lever links attached．
Figs．2790，plan of（rosestail．
Fiz．2701，end view of side－lever link：
Fig．2792，plan．
Fis．279：，vertical projection of eylinder cros head．
Fir．2794，plat．
Fís．279．，piston roud．
 on the emats
Fis．2797，end view．
15．2TJら，side view ：n｜lan of main comecting rod．
1 ig．2799，side vi w ：und plan of＂glinder side－ link．
 Til．
 rod．
 115．＂4us，phan．

A，the heel plate，uron which the engime otanl
 Whicli is the lower t＂：um＂pratus．
C．crlinuler
D，tuan 1^{i} ton
Es pistun rod．

（：evlumelr sille ront：

 sleani to amd from the whaler．

II, steam-valres.
J J , valre-stems, on which are keyed the steamvalves.
K , parallel-motion shaft and standard.
L, lifting-rods, for lifting steam and exhaust ralres, worked from an eccentric on the water-wheel shaft.
M M, steam-toes, keyed to the lifting-rod.
IN, feet for lifting rod, attached to the roekshaft.
O, steam and exhaust side-pipes.
P , foot-ralves and scats.
Q , condenser, cast upon bed plate.
R, side-lever shaft, passing through and firmly keyed to condenser.
$c e$, pillow-block columns, keyed into sockats cast upon the bed-plate.
f, pillow-blocks for water-wheel shafts.
g, eranks.
h, main connecting-rod, connecting eross-tail and crank-pin.
i, cross-tail, attached to the side-levers by $t w$, short links, also the main connecting-rod.
j, main-braces from pillow-blocks to cylinder.
k, steam-valve lifters, keyed to the lifting-rods.
l, parallel bar for parallel motion.
m, parallel motion connecting-rod
n, eccentric-rod.
o, guide-rod for air-pump cross-head.
p, brace from pillow blocks to bed-plate.

S, side-levers.
'T, hot-well.
U, injection-pipe.
V , connection, from exhaust-pipe to condenser.
W, air-column, to receive the air arising from the waste water, thereby facilitating its discharge.
X, air-pump.
Y, air-pump piston.
K, air-pump rod.
a, air-pump cross-hend.
ζ, delivery valves and seats.
d, force-pump chest.
q, injection-valve.
r, rentre-bearing for rock-shaft.
s, brace from cylinder to bed-plate.
$t t$, cross-beams for pillow-blocks.
$u u$, studs and transverse braces.
\imath, nuts for securing pillow-blocks to columns.
x, bolts for holding down pillow-block caps.
$x x$, studs between columms and bolts, runuing transversely through each set.
y, braces from pillow-blocks to bed-plates, in the centre of each and between engines.
z, suifting-valve.

2737

9744.

Vol. II.-23

Eingines of the Golden Gate. Plate II. is the front elevation, and Plate III. the side elevation ans section through air pumps. a main shaft, b crank-pin, $c c c c$ cylinder; d trunnions on which the cylinder oscillates to accommodate itself to the motion of the crank; e stuffing box on the cylin-der-head. This is made as long as practicalle, to give as much bearing as possible for oscillating the cylinder. $f f f$ belt-passage connecting the trannion with $g g$ side-pipe. $h h$ valve-stems, connecting with the balance puppet-valves in $i i i$ valve-chests. The lower valve on the right or stean side is concealed by ijjj, air-pump; the air-pump bucket is provided with India-rubber valves, and is worked ly k, crank on the intermediate shaft. $l l l l$, condenser: there are two condensers and two airpumps; they are located between the cylinders and inclined towards each other, one only being represented.

The passage fff, together with the side-pipes, valre-chests, and appurtenances, are fixed to the cylinder, and oscillate with it, the steam being received through one trunnion and allowed to escape to the condenser through the opposite one. m is an injection-cock admitting the water upon a scattering plate in the condenser. These are the first oscillating engines to which balance puppet-valves have ever been applied; and the constructors, Messrs. Stillman \& Allen, deserve great credit for snccessfully carrying out so decided an improvement.

The valves are worked by the toes 00 in the usual manner. The rock-shafts p p receive motion partly from the movement of the cylinder, and partly from the eccentric. Levers are permanently attached to the trip-shafts $q q$, the ends of which work in a slotted piece curved to the centre of the trunnion. This piece is guided, as represented in the engraving, by vertical rods sliding in bushes attached to the fixed framing, and is connected by a rod to the starting lever r, ali the levers for working by hand being so balanced, that the engineer with one hand can work the engine up to the usual speed. The cut-off valve is placed outside the trumnion, and is a balarce puppet-valve, worked by the ordinary cam motion, and so arranged as to act either as cut-off or throttle, or both, the levers being placed within reach of the engineer when working the engine.
The Golden Gate lias four return tubular boilers-two forward and two aft of the engines. They are placed at the sides of the ship, leaving room for the fire-room in the centre. The furnaces are consequently athwart-ships instead of ranging fore and aft as usual.

The Illinois, plying between this city and Chagres, the John L. Stevens, the Augusta, plying between this city and Savannah, the Republic, the Agnes, a vessel constructed for the Spanish government in 1850 , the Arago of the Havre line, the Adriatic of the Collins line, are among the American examples of paddle-wheel steamers fitted with oscillating engines.

The Golden Gate is of the following principal dimensions: Length on deck, 26.5 feet; beam, 40 feet; depth of hold, 22 feet; tonnage, 2030 tons; diameter of cylinders, 85 inches; stroke, 9 feet; average revolutions, $18 \frac{1}{4}$; average pressure in boilers above atmospherc, 12 lbs. ; cut-off from commencement, 3 Leet; amount of fire surface, 12,052 square feet; tube surface, 8396 ; grate surface, 367 ; calorimeter of tubes, $61 \frac{3}{4}$ feet; paddle-wheels, diameter 31 fect; length of paddle, 12 feet; depth, 24 inches; number of paddles in each wheel, 30 .

Barrons' Double Acting Reversible Rotary Steam Engine.-Arranged for working steam expansively.
Plate IV. is a perspective view of two cylinders or engines fixed on one shaft for the expansive working of the steam. The cylinders are of equal diameter but of unequal length. The steam is first artmitted to the smaller: after doing its work in which, the greater part is admitted at a lower pressure to the larger cylinder. In this respect, working the steam through two eugines, it somewhat resembles the well-known Woolf engine, but with this difference, that the steam is taken from the first engine at such a point that it exerts no back pressure. This will be understood by examining Plate V., which represents a vertical and horizontal section of the smaller engine only. The larger engine resembles this, except in having but four instead of eight pistons, or leaves, and in having no outlets for the stam at the top and bottom, as in the smaller.
c is a pedestal of cast iron on which the cylinder rests, forming the whole of the frame of the engine; a is the cylindor, whose inner periphery is turned perfectly true, and whose ends are closed by heads $d d$, in each of whien heads is a groove $h k$, the form of which is best shown in fig. 5 by dotted lines, being that of a circle with segments cut off on opposite sides, leaving only two-fourths of its circumierence. On opposite sides of the cylinder are abutments $n n$, cast upon the steam-heads m n ; on either side of wich alutments are quadrangular openings $t t^{\prime}, u u^{\prime}$, connecting with the double three-way cocks $q q^{\prime}$. To the inside of the cylinder is fitted the steam-whecl ee ee e' e '. The ends of the steam-wheel are formed of two plates re, ce, of a diameter equal to the interior of the eylinaer, and secured by bolts $i i$, to a ring $c^{\prime} e^{\prime}$ of less diameter, which forms the bottom of the channel \dot{f}, in which the steam acts. Its axle j passes throngh boxes in the crlinder ends, macked with metallic packing, and lined with antiFriction rollers. The rollers may, no doubt, be omitted in practice, as a refinement of little use, if not positively productive of derangement. The peripheries of the two plates ec, ce, forming the ends of the steam-whecl, are made to fit steam-tight to the interior of the cylinder, by means of metallic packingmings let into the interior of their flanges as represented. The abutments $n n$ are packed with metallic pecking o to the bottom, and p to the sides of the channel f; the packing-pieces o and p being dovetailed torether, so that p will slide with o, bat at the same time slide outwards, independently of it as they wear. The steam acts in the passage f ' upon 8 slides or leaves $g g$, which we will term pistons, which revolve with the steam-wheel, lut are capable of sliding to or from the centre through slots in the ring $e^{\prime} e$. It will be seen that the sides of the chamel f are formed by the platesee, before dcscribed, so that the cha-nel is, in fact, wholly sunk in the rim of the steam-wheel. The pistons are inade a little wider than "he channel, and partially supported by shallow radial groores on the inside of the plates $r e$. The p^{\prime} tens are packed on their edges both to the inner periphery of the cylinder and to the groores the sideg of the chamel f. This packing is shown on the right hand of fig. ${ }^{2}$, Plate V^{r}., in section, the section bcing taken through the ecntre of the piston, and exlibiting the end and side packing dovetailea
loosely together in the same manner as already described in the packing of the abutments. The silots through which the 1 iston slides are also packed, as represented in fig. I. All the packing pieces are kept to their work by small helical springs at their backs. From the inner edge of each piston at each side, a square stud b^{\prime} projects through a radial slot f, in the plates ee, and at the end of each stud is a pivot g^{\prime}, carrying a friction-roller. These frietion-rollers trasel in the growes $h h$, inside the fixed cylinder head, and during the revolution of the wheel cause the pistons to alternately project and withdraw into the wheel. By the form of the groove, it will be seen that each piston will project across the channel f during two fourths of the revolution, while during the remaining two-fourthe, it will be wholly or in part withdrawn into the interior of the wheel. At the moment of passing either abutment $n \mathrm{r}$, the outer edge of the piston will coincide with the outer surface of the ring $e^{\prime} e^{\prime}$, so that the packing pieces on of the abutments have presented to them by the revolution of the steam-whecl simply a continuous cylindrical surfice.

The steam-heads or cocks $m \mathrm{~m}$, through which the stean is admitted to the cylinder, and which supply the place of valres, valve-gear, and reversing-gear in ordinary engines, are of peculiar construction, having six ways or pasiages in each. There are conical seats in each to receive the plugs $q q^{\prime}$, in which are passages to correspond with the ways in the steam-heads. The steam-pipe s, has two branches leading to the two steam-heads. Of the six ways or passages in cach steam-head, two $t t^{\prime}$ are steam-passages leading from the cock-seats into the channel f, the former above and the latter below the abutment, (sce the right-hand side of fig. 1, Plate V.) ; $n n^{\prime}$ are exlaust passages leadinis from the eylinder to the cock-seats, the former from above and the latter from below the abutments (see left-hand side of tig. 1, Plate V.). In addition to the four already described, one r leads from the steampipe to the cock-seat, and the remaining one r, fix. 2 , Plate V . is a continuation of the cock-seat, provided with a flange at its extremity for connecting to the exhaust-pipe. The vertical section, fig. 1 , is taken throngh the steam-passages on the right side, but through the exhaust-passages on the left. The plugs If have each two pasages, the first k, fig. . , being for the purpose of communication between the steam-pipe and either of the passages $t t^{\prime}$, and admitting steam on either the upper or lower side of its corresponding abutment, the other l, in a hollow part of the plug, being for forming a communication between the exhaust-passage r, and the opposite side of the abutment to that which is in communication with the steam-pipe. The two plugs τq^{\prime} are furnished with levers (see Plate IV:), by which they are turned to admit the steam on cither side of the abutment, and allow the escape of the exhaust from the opposite side, and the levers are connected, so that both are reversed at the same instant. Whatever relation, therefore, exists between the several passages in one steam-head and cock, tho opposite relation must exist between the passages in the other. In lig. 1, llate V., the cock on the right-hand side of the ligure is in such position, that steam is admitted through the passarge t above the abutment, the passage ℓ being effectually closed, while in the same cock the exhaust passage u', imperfectly represented by dotted lines as being more distant from the eye, is open, and admits the exhaust stean to escape from the lower side of the abutment into the hollow portion of the plug at its further end. In the other steam-head. the lower steam and the upper exhaust are supposed to be open, the dottel stemm-passages $t t$ being ou this site nearer the eye thun the exhaust passages $n n^{\prime}$, through which this section is taken.

It will be recollected that there is no movement of these cocks, except in reversing, all the passuges being full open, and the steam exerting its full force in every possible position of the whecl. The arrows indiente the movements of the steam, and also the direction in which the whecl revolves, every particle of steam expended being effective in driving the wheel, without lows by filling any eavities uselesily, as in the valve passages and clearance of every variety of reciprocating engiur.

It now remains to describe the provision for renderine available seme purtion of the expansive power of the steam. The spares in the channel f betwren each piston appear as if fillel with stean of full pressure, which is carried aloner by the revolition of the wheel, and diseharged into the exhaust passage of the opposite steam-heal. This would be the case but fir the pasewes z^{\prime} u', milway between tho steamhearls, through whicln a larere portion of the steam thus contined expands itself into the seenud or mate rherine, which is of similar construction, but containing only four insteal of cipht pistons. Tha channel in which the stram works in the second engine may also bo deeper, and any desired ratio may subsist between the eapacities of the two engines. Suppose the boiler pressure to be folbs. per square inch, and the cupacity of tho second cogine he twien thit of the first, at an from the biler at fio Ibs: above the atmoshere, or T a lbs tetal pressure, is expanded in passing the passage w into thren times its origimal space, two volumes geiner over into the second engine, while one wolume remains in the first. The pressure will thus be reduced, according to the haw oic Boyle mul Marriote, th about $7_{3}^{3}-2.5 \mathrm{lbs}$ total, or 10 lbs above the atmospliere. The ndditional furco, therefiore, due to the existenere of the secomb engine will be that of 10 lb . per inch uphat domble arm, or comethird that of the first engine $[10 \times 2]$ $=80 \times 1]$ It the engines are emblensing, and exhmist into a profect vacum, the power of tho seconl

 of the secoml will he ond-half the first, when hoth "xhanse inton vacmum, or a lithe more than om-

 Sbs. The inwortor profers a seconl cylindar of about twice the capacity of the first.

A con-i lerable alvantage to be derived un lor wome cir cumbtanes from the existence of two engime

pressure of steam from the boiler. Both might be thus worked so long as the boiler could generate sufficient supply of steam.

Engines of the Vaguero, (Plate YI.) The Vaguero may be considered one of the best specimens of a modern ausiliary propeller. The hull was modelled and built by George Steers, Esq.; the engines were designed and constructed at the Faron Iron Works, East liver. The vessel is 145 feet keel, 155 feet on deck, 24 feet 4 inches breadth of beam moulded, and 10 feet depth of hold. She draws, with 175 tons of coal and stores on board, 8 feet of water. The engines are remarkable only for the extremely small space occupied, and novel metlod of obtaining the valve movement. The cylinders are oscillating, with slide-valves and the usual cut-off, and inclined to an angle of 36° when on their centres. They are 20 inches diameter, 28 inches stroke, and geered, by the internal geer represented, in the proportion of $2 \frac{3}{8}$ to 1 . The view given in the plate is a front elevation, the stout timber-frame being removed on one side to allow a fair section of the cylinder port, hehind which appears the after and similar frame. Both frames, and a portion of the dcad wood, as also a portion of the flange on the large geer-wheel, are represented as broken through at a lower point, to allow a view of the pinion and shaft of the propeller.
The valve motion is derived principally from the oscillation of the cylinders, the comnection being to cranks of about 2 inches throw on the shaft of the hand-wheel in the centre. The latter shaft is in line with the main shaft, and is carried round with it by means of arms and adjusting screws, which meet the extremity of the crank-pin, extended for the purpose. There are two arms on the shaft, making with each other an angle of about 140°, the extra arm coming into play on reversing the engines.

The valve receives its motion immediately from a geered segment on a shaft traversing the valve-chest. The arms on the end of this shaft are in fact one picce, with a curved slot, for the convenient transfer of the connection from one arm to the other. This transfer is cffected by moans of a small geer-wheel taking into a rack near the side of the slot. The connecting-pin, and consequently the small geer-wheel, \approx turncd by a small hand-wheel on its extremity. This wheel is omitted in the plate.

Behind the poit cylinder is dotted the pump-shaft and arm, worked by connection with a crank on the after end of the driving-shaft. From arms on this shaft are worked the air and feed pumps, which are placed horizontally on the starboard side, and sccured to the condenser. The condenser and hot well are cast in one piece, the capacity of the former being 20 and the latter 8 cubic feet. The air-pump is 23 inches diameter, and 18 inches stroke, with solid piston. The feed-pump is $4 \frac{1}{2}$ inches diameter and 14 inches stroke. The thes of the air-pump are of India rubber, and of the usual construction. The boiler is a single ascending return-fue, $21 \frac{1}{2}$ feet long; diameter of shell, 8 feet; width across the front, 9 feet; Two fumaces present each 20 square feet of grate surface; and the whole heating surface of the boiler is 1,000 square feet. The consumption of anthracite is estimated at about five tons per day; number of revolutions under steam alone, from 30 to 35 ; pressure of steam, about 25 lbs ., cntting off at half stroke:

The propeller is of brass, 3 bladed 8 feet in diameter, 16 inches long, and weighs 2,100 lbs. The pitch is 10 feet, expanding to 11. Working-surface, exclusive of hub, 24 square feet. The diameter of the propeller-shaft is $6 \frac{1}{2}$ inches-the thrust of the propeller being taken by 6 collars, working in a corresponding box of brass.

The Vaguero is owned by an Havana company, and is designed especially for freighting between that place and the southern ports on the island. A two-way cock is provided for the extinguishment of fires, by turning which a volume of steam from the boiler may be turned into either the coal-bunkers or the hold. On the starboard side of the engine-room, which is also the fire-room, is a small vertical steamengine, working a double-acting force-pump for extra feed, and an apparatus for hoisting goods or coal. The fire-annihilator, i.e. the steam-cock alluded to, is worked from the deck.

Marine Eigines, designed by Mr. Joseph IIall of Munich, and fitted in a boat on the Upper Danube.
The arrangement is rery fully detailed in the engravings. Fig. 2804 is a side elevation of one of the engines, with hoiler and paddle-wheel, as fitted in the vessel. Figure 2805 is a corresponding transverse section through the ressel, showing both engines, with various parts in section. The riew on the right of the centre line represents sections through the paddle-box, air-pump, feed-pump, crank shaft journals, condenser passage, and the barrel of the boiler-the cylinders not being shown. On the left, the air-pump and paddle-wheel are in elevation, the cylinder being in section through its exhaust passage, as in connection with the blast-pipe. Figure 2806 is a plan of the combined engines, one being in horizontal section. The boiler and the fire-box A B, are constructed just as in a locomotive. At C C are two parallel frames of double boiler plate, filled in with timber, rumning along the boiler, and riveted fast to it. D D are two similar frames, standing up from the bottom of the boat; and these four lines of framing carry, at one end, the four inner journals of the paddle-shaft, and at the other the pair of steam cylinders E E. The steam is admitted in the usual way by a regulator in the dome, through the pipe \mathbf{F}, to the steam-chest G. The expansion-rale spindle 11 , has a riglit and left-hand serew at 11, each screw having a plain cut-off slide, commanding the steam ports J, leading into the second steanchest K, and fitted with piston-valves worked by the spindle L. The cut-off spirdle II, is worked by the outside eccentric M, the rod of which is linked to it direct. The variation in the expansion is effected by the light shaft N, passing alongside the engines to the enginecr's hand, and laving a bevel pinion O, gearing with a similar pinion 1 , on the transucre shaft Q, passing across between both engines. In this way the shaft N, commands the valves of botll engines through the two pairs of bevel pinions I I - the result of turning the shaft N to the right or left being to expand or approximate the two cut-off slides by the right and left screws, and thus increase or diminish the degree of expansion without affecting the lead. The cylindrical, or piston-valve chest, has three valves $\mathrm{S} T \mathrm{~T}$ and U , on the same rod V ; and, as represented in the horizontal section, the engine is upon its botton centre, and steam is entering between the valves U and T; the valve U being on the point of opening to admit steam to the cylinder-the waste steam of the previous stroke having escaped by the opening east in the middle of the eylinder, and through similar receses formed in the valve T, into the blast-pipe W. Now it is to be remembered that the valve U must travel downwards until jts port leading into the eyl-
inder is full open; and, as the whole three ralres are on one rod, as U is opening to admit steam to the cylinder, T is closing the communication between the cylinder and the blast-pipe. So soon as the porta

Scale if feet to 1 inch.
In the blast-pipe-which are only half the width of the valve-are closed, the other valve S opens, and the remaining vapor esenpes through the pipes \mathcal{X}, east on the steam-chest, to the pipe \mathbb{Y}, leading to the condeneer Z. As the expansion at ench stroke commenees at the fuce of the cut-off slides, whatever amount of stearn tanay be in the piston-valve chest at the time is also expanded; therefore, to diminish U.is quount as muel as possible, two additional pistons S^{\prime} ' ${ }^{\prime}$, are fitted upon the valve-rod, for the pur-

pose of diaplacing the stom which wonh otherwien eublert ut "ach atome in tho vilve che t. The aip-

the eduction-port or blast-pipe when the piston is $1 \frac{3}{\text { ths }}$ inch from the end of its stroke. The valve S opens to the condenser when the piston has travelled $1 \frac{8}{4}$ ths inch from the commencoment of its stroke -the full length of stroke being 30 inches-so that the cylinder is open to the condenser when the pis ton has travelled $\frac{1}{17}$ th of its stroke.

At f and g, tro cocks are placed upon the pipe Y, leading to the condenser, and these cocks are su arranged that when one is open the other is shut. The injection-pipe h, is placed between the airpump and the cocks f and g, so that by reversing the latter by means of the rods and levers $k k$, the engine will work with the condenser or without it. When working without the condenser, the cylinder is open to the atmosphere throughout the entire stroke, as in the common ligh-pressure engine, and under euch circumstances, the pipe l is open to the feed-pump, for the boiler supply. The pipe m, leads to a emall steam pump not seen in the drawing, and the pipe n, conveys the water from the steam pump to the boilcr. The pipe o is the blow-off pipe.

MATCIES. The contrivances in which sulphur matches were inflamed by immersion in phospho. rus (phosphorous matches) were first supesseded by the so-called chemical matches, which consisted of sulphur matches, with a coating of chlorates of pota-h. This salt, when brought into contact with concentrated sulphuric acil in the cold, is decomposed with explosion and the production of fire, into bisulphate of potish, perchlorate of potash, and chlorous acid, and by the two latter (one of which is re solved into chlorine and oxygen, and the other into chloride of potassium and oxygen) intammable matters of all kind=, as sulphur, metallic sulphurets, resin, gum, de., are intlamed, when within the imenediate reach of its action. The sulphur ends of the matches are covered with a composition of chlorate of potash, flowers of sulphur, colophony, gum, and cinnabar, (as a coloring matter:) on dipping this into a bottle containing asbestus, previously moistened with sulphuric acid, it quickly becomes iriflamed. These matches are now superseded by the more simple lucifer matches, which intlane without the aid of acid, or any thing of the kind, by mere friction; an inrention, the history of which, notwithstanding its novelty, is already lost, partly on account of its simplicity, and from the rapid iniroduction of similar processes.

Lucifer matches,-These, like the last, are sulphur matches, to which a separate inflammable conspound has been added. The primary coating of sulphur cannot be dispensed with, because the inflammable compo-ition burns much too rapidly to set fire to the wood. The flame produced by the combustible mixture is, therefore, first communicated to the sulphur, and from it to the wood. The mixture at first contained chlorate of potash as an essential ingredient, and the production of fire depended upon the power of this substance of inflaming the sulphur. phosphorus, de., with explosion, the effect being produced even by shaking or friction. Thus phosphorus was mixed with mucilage, at a temperature of $104^{\circ} \mathrm{F}$, so as to form an emulsion, to which the chlurate of potash was then added. The phosphorus was sometimes replaced by sulphuret of antimony. The operation of mixing the ingredients in the dry state is at all times dangerous. The unpleasant noise which occurred whenever a matel was inflamed, and a certain amount of danger from fire, rendered it desirable to replace the detonating action of the mixture by a slow combustion, and this has been accomplished in the noiseless lucifer matches. None of those compositions which inflame without explosion contain chlorate of potash, but nitre and phosphorus in-tead; the latter of which burns at the expense of the oxygen of the former. The general priuciple concerned in the action of these matches is, that substances (as phowphorus) having a great aftinity for oxygen, are mixed with a large amount of it, comdensed into a small space, (in the nitre, so that the slightest cause is sufficient to effect their combination. The peroxides of lead and manganese, which abousd in oxygen, are often mixed with the nitre ; they act in the same way when they have once attained a red heat.

As the thickness of the match, and the quantity of the composition upon it, must always hear a certain proportion, both because the latter is expensive, and burns with a disagreeable odor, the matehes require to be cut by machinery, or planes constructed for the purpose; they are thus obtained thin, sufficiently strong, perfectly uniform, and of an elegant appearance. Moist poplar wood is best suited for this purpose. The round or angular matches are dipped in bundles into melted sulphur, and then coated with the inflammable composition: sixteen parts of gum-arabic, 9 parts of phosphorus, 14 parts of nitre, and 16 of finely divided peroxide of manganese, form a good composition, which must be worked up with water to avoid danger. The mixture then forms a thick paste, into which the matches are separately dipped and then dried. Occa-ionally, smalt and similar matters are added, to produce certain colors, or to increase the eflects of friction. After repeated trials, the indammability of the composition has been gradually diminished to such an extent, that it only inflames when stromgly rubbed against rongh surfaces, but not readily by pressure or shaking, especially when the matehes are preserved in closed boxes; hence they are much less dangerous than might be anticipated. The slow combustion of the sulphar, with the emission of sulphurous acial, forms a great oljoction to these matches, as this gas is injurious to re-piration. Natehes have consequently been introduced into comineree which have been first dipped into fused stearine, instead of sulphur; these, howewer, frequently miss fire.

Accorling to U're, the followin'r process answers well:

Convert the ghe, with a little watur, hy a gentle hat, into a smonth jolly ; put it into a slightly warm porcelain mortar to liguify: run the phophorus hown through this gelatine at a temperature of about
 form paste. 'To make writing paper matches, which barn with a bright thane, and diffuse an agreeablo odor, mointon cach side of the paper with tincture of benzom, dry it, cut it into slys, and smear one of their ends with a little of the abowe pase log mente of a hair pencil. On rubling the saidend after it is dry against a rough surface, the paper will take fire without the intervention of sulphar.

 abreve viecid prate. When elry, they will hindte rathly by frimion.

blank space between them, otherwise the plate would afford too great resistance to the passage of the wood. By this construction, the whole area of the block of wood may be compressed laterally into the countersunk openings, and forced through the holes, which are slightly countersunk to faror the entrance and separation of the wooden fibres. A convenient size of plate is three inches broad, six inches long, and one thick. The mode of pressing is by fixing the back of the plate against a frrm resisting block or bearing, having an aperture equal to the area of the perforations in the plate, and then placing the end of the piece or pieces of wood in the direction of the grain against the face of the plate within the area of the perforated portion. A plunger or lever, or other suitable mechanical agent, being then applied to the back or reverse end of the piece of wood, it may be forced through the perforations in the plate, being first split as it advances by the cutting edges of th holes, and afterwards compressed and driven through the perforations in the plate, coming out on the opposite side or back of the plate in the form of a multitude of distinct splints, agreeably to the shapes and dimensions of the perforations.
MATERIALS, properties of, used in the mcelanic arts. The following tables show, in a condensed form, the characteristics of materials.

Experiments on the dircet Cohesive Powers of various Materials.

Names of Materials.	Cohesive powers reduced to a sq inch rod.	Experimenters.	Quoted from.
WOODS.	lbs.		
Oak	17,300	Muschenbroek.	Introd. ad Phil. Nat.
do.	13,950	Rondelet.	L'Art de Batir, iv.
do. dry English from...............	$\left\{\begin{array}{r}12,000 \\ 8,000\end{array}\right\}$	Barlow.	Essay on the Strength of Timber.
Beech	17,709	Muschenbroek.	Introd. ad Phil. Nat.
do.	11,500	Barlow.	Essay on the Strength of Timber.
Alder.	14,186	Muschenbroek.	Introd. ad Plil. Nat.
Chestnut, Spanish....................	13,300	Rondelet.	L'Art de Batir, iv.
Ash, very dry, from.................	$\left\{\begin{array}{l}17,850 \\ 15,784\end{array}\right\}$	Barlow.	Essay on the Strength of Timber.
do.	12,000	Muschenbroek.	Introd. ad Phil. Nat.
Elm	13,489	do.	do.
Acacia	20,582	do.	do.
Mahogany	8,000	Barlow.	Essay on the Strength of Timber.
Walnut	8,130	Muschenbroek.	Introd. ad Phil. Nat.
Teak	15,000	Barlow.	Essay on the Strength of Timber.
Poplar $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$	$\left\{\begin{array}{l}6,641 \\ 4,596\end{array}\right\}$	Muschenbroek.	Introd. ad Phil. Nat.
Fir from	\{ 13,448 \}	Barlow.	Essay on the Strength of Timber.
a do.................... do.....................	$\left\{\begin{array}{c}11,000 \\ 8,506\end{array}\right.$	Muschenb	Introd. ad Phil. Nat. i.
Scotch Pine..............................	7,818	do.	do.
Norway Pine.........................	7,287	Rondelet.	L'Art de Batir, iv.
Larch	10,221		
Cedar.	4,973	Muschenbroek.	Introd. ad Phil. Nat. i
METALS. steel.			
Cast-steel previously tilted	134,256	Rennie.	Phil. Trans. for 1813.
Cast-steel not tilted	68,110	Brown.	Barlow's Essays, de.
Blistered steel reduced per hammer	133,152	Rennic.	Phil. Trans. for 1818.
Sheer steel reduced per hanmer..	127,632	do.	do.
iron wire.			
\| Iron wire	113,077	Sickengen.	Ann. de Chime, vol. 25.
do. 1-10th inch diameter	98,964	Teltord.	Barlow's Essay, p. 245, 2d ed.
	85,797	Buffon.	Eurres de Gauthey, ii. p. 153.
mallearle iron in bars.			
German bar, mark B R, highest results	93,069	Muschenbrock.	Introd. ad Phil. Nat. i. 426.
Swedi-h bar, highest result........	88,972	do.	do.
German bar, mark L, highest result	85,900	do.	
Liege bar, highest result	82,839	do.	
Spanish bar.........................	81,901	do.	do.
Oosement bar, highest result......	76,697	do.	do.
Swedish bar reduced per hanmer.	72,064	Rennie.	Phil. Trans. 1818.

Names of Materials.	Cohesive powers reduced to a sq inch rod.	Experimenters.	Quoted from.
Common round iron	$\begin{gathered} \text { lbs. } \\ 66,309 \end{gathered}$	Tclford.	Barlow's Essay, p. 230.
German bar, marked L	69,530	Muschenbroek	Introd. ad Phil. Nat. i. 4 ¢6
Common Staffordshire bar	64,580	Telford.	Barlow's Essay, p. 230.
Common German bar	69,133	Muschenbroek.	Introd. ad Phil Nat. i. 126.
Swedish bar	68,728	do.	do.
Oosement bar	68,728	do.	do.
Welsh bar.	62,079	Telford.	Barlon's Essay, p. 230.
Bar of the best quality............	66,000	Rumford.	I'hil. Mag. x. p. 51.
A bar of Welsh, oue of Swedish, and one faggoted serap iron, each gare a result of The Swedish iron broke at a flaw.	60,413	Telford.	Darlow's Essay, p. 290.
Liege bar	62,369	Muschenbrock.	Introd. ad Phil. Nat. i. 4@6.
Staffordshire bar	57,289	Telford.	Barlow's Essay, p. 299.
German bar, marked B R	61,361	Muschenbrock.	Introd. ad Phil. Nat. i. 12 C
Nar (mean of 33 experiments).....	61,041	P'errounet.	Curres de Gauther, ii. 15.
Russian old sable, mark C C N゙...	64,230	Brown.	Barlow's Essay, p. ${ }^{\text {a }} 33$.
Engli-h bar reduced per hammer.	55, 872 ?	Rennie.	Phil. Trans. for 1818.
Welsh bar (3 experiments)	60,238	Brown.	Barlow's Essay, p. 233.
bar of good quality	55,000	Itumford.	Phil. Mag. vol. x. p. 51.
cast-tron.			
Bar, specific gravity r-SuT.........	68,205?	Musehenbrock.	Introd. ad Phil. Nat. i. 417.
do. c:1st vert:cally	19,458	Rennic.	Phil. Trans. for 1818.
do, eart herizontally.......	18,656		Burlow's E. ${ }^{\text {do }}$
do. Wel-h peg (a)ppile.	17,565	Brown.	Barlow's Essay, p. 235.
Wirc.	41,228	Sickingen.	Ann. de Chimic, xxw. 9.
Wrought eopper redueed by the liammer	33,192	Rennic.	Phil. Trans, for 1818.
Cant, I Barbary, spec. grav. $8 \cdot 18=$ do. Japan, do. do. s.726. to.	$\begin{aligned} & 22,570 \\ & 20,272 \\ & 19,072 \end{aligned}$	Muschenbroek. do. Rennie.	Introd. ad Phil. Nat. i. 117. do. Phil, Trans, for 1818.
platincy.			
Ilatinum wire, spec. grar. 20.847 . do. do. silver.	$\begin{gathered} 56,473 \\ 52,987 \end{gathered}$	Morveau. Siekingen.	Ann. de Chimie, xxv. 8 . do. p. 9 .
Silver wire.	38,257	do.	do.
Silver cant, spec. graw. 11.091...... GOLD.	40,902	Mucelienbrock:	Introd. ad. 'hil. Nat. 417.
Giohl wire	30,883	Sickingen.	Aun. de Chinie, xxy. 9.
Cold cant, spec. grav. 19225	20,150	Muschenbrock.	Introul. al Ihil. Ňat. i. 117.
zıs.			
Zinc wire	20,551	Murveam.	Ann. de Chimin, lxxi 194.
do. sheet	16,500	Treiticold.	Phil. Mare vol. i. p. 42\%.
do. cast	2,649	Muschenbrock.	Introel ad Phil. Ait. i. 107.
T1s.			
Tin wiru.	7,129	Marvesu.	
Emehth block, cant.......	6 6,io		Latroil. al lhil. Nat. i. 11\%.
Comblinlo spec. grav. 7-95	5,802	(d).	
C:art	1,4513	Remuic.	Phil. Trams fur 151s.
Bamea tin cast, sper. frav. 7×16. Malacea tin cant. dr. 61200°.	$\begin{aligned} & 3,679 \\ & 3,=11 \end{aligned}$	Mathmatroch. (t).	Introd. millhil. N.it. i. .11\%. do.
1.1:31)			
Milled theet, wrec. [rav: 11/107	8,329	'Tralyold.	Lhil. Mar. vol. i. p. 4\%e.
Wiro..............	\%,111;	Mum hamberck.	Intron. willil. A:st. i. 15,
do. sinc. grav. 11-35	3.541		- do.
do.	$\underline{2}: 17$	Murveath.	Amm. Ju ('himic, hai 1:1.
Cunt lad.	1,8:1	16.01\%	[lal. Trams, fur inls.
C:ast, Lingli-h, pere.grav. 11.79..	M.	Auscheniornets.	thitrol. and lhal. Nat. i. Sis?

Exporiments on the Resistance of different Metals to Pressurc.

Experiments on the Resistance of Cast-iron to Pressure.

Size of prism.		specific gravily.	Crushing weight.	Mean from each sct.	Remarks.
Size of base.	Height.				
inch.	inct.		1 ls .	lbs.	
1-Sth.	1-Sth.	7033	1,45:) 1,1401	These specimens were from one
do.	do. do.	do. do.	1,416 1,449	\} 1,140 \{	block.
do.	$\underline{2}$-Sths.	697\%	1,922)	
do.	do.	do.	2,310	$\}^{2,11}$	ron fr
do.	$3-8$ thes.	do.	2,563		
du.	4-Sths.	do.	2,005		
do.	5. Sthis.	do.	1,407		
du.	6-8this.	do.	1,743	$1,755\{$	These specimens were from the same block.
do.	7-8ths.	do.	1,394		
do.	8-sths.	do.	1,439		
1-4th.	1-4th.	do.	10,561		
do.	do.	du.	9,596		
do.	do.	do.	9,917		These specimens were from the
du.	do.	do.	9,020	2,610	same block as the above.
do.	do.	7013	12,665		
do.	du.	do.	10,720		
do.	do.	do.	10,605	10,114	These specimens were from hori-
do.	do.	do.	8,699	10,117	zoutal castings.
do.	do.	7074	12,665		
do.	do.	do.	10,950		
do.	do.	do.	11,085		These specimens were vertical
do.	do.	do.	19,44	1-1,136	eastings.
do.	do.	do.	11,096		
do.	1-2d.		9,455		
do.	do.	$\}^{110}$?	9,37.4	\} $0,11$.	Horizontal casting.
do.	do.	\} 707.14	9,938	\} 9,982	Yertical casting.
do. do.	$\begin{aligned} & \text { do. } \\ & \text { 3-Sths. } \end{aligned}$	\int_{7113}^{107}	$\begin{array}{r} 10,027 \\ 0,006 \end{array}$	\}	Fertical ans.
do.	$\begin{aligned} & \text { 3-Sths. } \\ & \text { 5-Sths. } \end{aligned}$	do.	$\begin{aligned} & 9,006 \\ & 8,845 \end{aligned}$		
do.	6-8ths.	du.	8,362		Horizontal castings.
do.	7-8ths.	do.	6,430		
do.	8-Sths.	do.	6,321		
do.	3.8ths.	7074	9,328		
do.	5 -Sths.	do.	8,385		
do.	6-sths.	do.	7,896		Vertical castings.
ds.	7-sths.	do.	7,015		
do.	8.sthes.	du.	6,430		

The İxperimental Strength of varions species of Timber opposed to a Transterse Strain.

Kinds of Wood.	Speciffe Giravity	Length in fuet.	$\begin{aligned} & \text { Brendh } \\ & \text { in } \\ & \text { inches. } \end{aligned}$	Hepthin inches.	$\left\|\begin{array}{c} \text { Deflect } \\ \text { bion at } \\ \text { the lime } \\ \text { or imac- } \\ \text { or ture- } \end{array}\right\|$	Breaktur weisht in 115.	$\begin{aligned} & \text { Vinue of } \\ & \text { constant } \\ & \text { strength. } \end{aligned}$	Authoritics.
Oak, Enislish, young tree.	818, 3	\because	1	1	$1 \cdot 87$	182	2892	'Tredydyld.
Do. old ship timber	-872	\because	1	1	$1 \cdot 5$	261	1950	do.
10. from old tree	6×5	2.	1	1	$1 \cdot 38$	218	1308	d.
1) d madium $_{\text {quality }}$	718	$\because 5$	1	1		251	9180	Ebhels.
1). green	$\bigcirc 6.3$	2.5	1	1		219	1711	du.
)!, do...	1.063	$11 . \%$	55	8\%	32	21512	1\%5.5	Buftion.
Weech, mediun quality	694)	25		1		271	9081	Eblers.
Alder.	-555	$\because 5$	1	1		212	1590	(b).
l'ane tree	61.3	$\because 5$	1	1		243	1821	(1).
Sycamore	-590)	$\because 5$	1	1		211	1805	do.
Cherstent tree	85	$\because 5$	1	1		1511	1:151)	dis.
Anh, from yourg tre	- 11	$\because 5$	1	1	2.5	8.1	-1:11	Tred mht
10. medum quality.	-6!1)	-j	1	1		254	19145	tibluds.
Ahh	$\checkmark 55$	25	1	,	2.4	$: 311$	28.5	'trei rold.
Elin, common	-311	$\because 5$	1	,		216	16:0	l:hbels.
Do, weych, green	76.3	$\because 5$	1	1		102	1410	do.
Acacin, green	**)	\because	1	1		219	146	小o.
Mahozany, Spanih, swasomed.	85:	25	1	1		171)	1:2\%	Tru-1-1.1.
Du. Hunduras, seasoned.........	\cdots	25	1	1		235	1011	du.

Exhiliting the Experimental Strength of various Species of Timber, etc.-Continued.

Kinds of Woort.	Specific Gravity.	Length in teet.	$\begin{gathered} \text { Breadth } \\ \text { in } \\ \text { inclies. } \end{gathered}$	Depth in inches.		$\begin{aligned} & \text { Break- } \\ & \text { ing } \\ & \text { weight } \\ & \text { in lbs. } \end{aligned}$	Value of constant strength.	Authorities.
Walnut, green	$\cdot 925$	2.5	1	1		195	1461	Ebbels.
Poplar, Lombardy	-375	2.5	1	1		131	981	
Do. Abele	- 511	$2 \cdot 5$	1	1	1.5	228	1710	Tredgold.
Teak	$\cdot 744$	7	2	2	$4 \cdot 00$	820	2151	Barlow.
Willow	$\cdot 405$	2.5	1	1	3	146	1095	Tredgold.
Birch	$\cdot 720$	2.5	1	1		207	1551	Ebbels.
Cedar of Libanus, dry	-586	2.5	1	1	2.75	165	1236	Tredgold.
Riga fir	$\cdot 480$	2.5	,	1	1.3	212	1590	do.
Menel fir	-555	2.5	1	1	$1 \cdot 15$	218	1635	do.
Norway fir from Longsound	-639	2	1	1	$1 \cdot 125$	396	$\bigcirc 376$	do.
Mar forest fir	715	7		2	5.5	360	945	Barlow.
Scotch fir, English growth	-5ั2	2.5	1	1	175	233	1746	Tredgold.
Do. do.	- 460	$2 \cdot 5$	1	1		157	1176	Ebbels.
Christiana white deal..	512	2	1	1	$\cdot 937$	343	2058	Tredgold.
American white spruce	- 465	2	1	1	1.362	285	1710	do.
Spruce fir, British growth	- 555	25	1	1		186	1395	Ebbels.
American pine	- 460	20	,	1	$1 \cdot 125$	329	1974	Trectoold.
Larch, choice specimen	-640	2.5	1	,	3.0	253	1896	du.
Do. medium quality.	-622	2.5	1	1		223	1671	do.
Do. very young wood.	-396	2.5	1	1	1.78	129	966	do.
English oak.....	-934	7	2	2	$8 \cdot 1$	637	1672	Barlow.
Canadian do.	-872	7	2		6.0	673	1766	do.
Diantzic do.	$\checkmark 756$	7	2	2	4.86	560	1457	do.
Adriatic do	$\cdot 993$	7	2	2	$5 \cdot 73$	526	1383	do.
Ash	$\cdot 760$	7		-	$8 \cdot 92$	772	2026	do.
Beech.	-696	7	-	2	$5 \cdot 73$	593	1556	do.
Pitch pine	$\cdot 660$	7	\bigcirc	2	$6 \cdot 00$	622	1632	do.
Red pine.	$\cdot 657$	7	2	,	$5 \cdot 83$	511	1341	do.
New England pine...	-553	7	2	2	$4 \cdot 66$	420	1102	do.

Of Experiments on the Stifness of different Woods.

Kinds of Wood.	Specific Gravity.	Length in feet.	$\begin{gathered} \text { Breadth } \\ \text { in } \\ \text { inches. } \end{gathered}$	Depth in inches.	Defleciion.	Weight which prodnced deHection.	$\begin{aligned} & \text { Value of } a \\ & \text { from } a= \\ & \frac{40 b d^{3} \delta}{l_{3} \mathrm{~W}} \end{aligned}$	Authorities.
Ash, young tree, white colored	-811	2.5	1	1	0.5	141	-009	Tredgold.
Do. old tree, red colored753	2.5	1	1	0.5	113	-0113	do.
Do. medium quality	-690	$2 \cdot 5$	1	1	$0 \cdot 5$	78.5	-0163	Ebbels.
Ash	-60	7	2	2	$1 \cdot 27$	225	$\cdot 0105$	Barlow.
Beech	-688	7	2	2	$1 \cdot 025$	150	-0127\%	do.
'I'eak	$\cdot 744$	7	$\stackrel{\square}{2}$	2	1.276	300	-0076	do.
Elm	-540	2.5	2	2	1.42	125	$\cdot 0212$	do.
Elm.............................	-544	2.5	1	1	0.5	99.5	- 0128	Ebbels.
Cedar of Libanus	-486	2.5	1	1	0.5	36	-0355	Tredgold.
Maple, common	-625	2.5	1	1	0.5	65	-0197	do.
Abele	-511	2.5	1	1	0.5	84	-0152	do.
Willow	- 405	2.5	1	1	0.5	41	-031	do.
Horse chestnut	-483	2.5	1	1	$0 \cdot 5$	79	-0162	do.
Lime tree	$\cdot 483$	2.5	1	1	$0 \cdot 5$	84	-0152	do.
Walnut, green	-920	25	1	1	0.5	62	-020	Ebbels.
Chestnut, Spanish................	- 895	$2 \cdot 5$	1	1	0.5	68.05	-0187	do.
Acacia.	-820	2.5	1	1	0.5	125	-0102	do.
Plane, dry	-648	$2 \cdot 5$	1	1	0.5	99.5	-0128	do.
Alder, do.	-555	2.5	1	1	0.5	80.5	-0159	do.
Birch, do.	720	2.5	1	1	0.5	90.5	-0111	do.
Wych elm, green	-663	2.5	1	1	0.5	92	-014	do.
Lombardy poplar, dry	$\cdot 37.1$	2.5	1	1	0.5	56.5	-0224	do.
Nahogany, Honduras....	-560	2.5	1	1	0.5	118	-0109	Tredgold.
Do. Spanish	-853	25	1	1	0.5	93	. 0137	do.
Sycanmere	$\checkmark 590$	25	1	1	0.5	76	-0168	Ebbels.
Pear, green	${ }^{7} 92$	2.5	1	1	0.5	59.5	- 0215	do.
Cherry, do.	-690	$2 \cdot 5$	1	1	$0 \cdot 5$	92.5	. 0138	do.
Beech, dry........................	. 696	2.5	1	1	0.5	97.5	$\cdot 0131$	do.

Of Experiments on the Stiffness of Fir．

Kinds of Fir．	Specifle Gravily	Lenyth in feet．	$\begin{aligned} & \text { Breadth } \\ & \text { in } \\ & \text { inclies. } \end{aligned}$	Depthin inches．	$\begin{aligned} & \text { D flec } \\ & \text { lion in } \\ & \text { inclues. } \end{aligned}$	Weight pruducin＇s He dee Alection in 1bs．	$\begin{aligned} & \text { Value of }{ }^{\text {Val }} \\ & \text { from } \\ & \frac{40 h d \delta}{\beta W} \end{aligned}$	Authorities．
Fir，Riga，yelluw medium		1.8	\because	7	025	103	． 0015	Treitiguld．
Do．Norway．．．．．．．．．．．．．．．．	． 6398	2	1	1	105	261	－1095\％	
Do．Risa，yellur	$\left\{\begin{array}{l}480 \\ 465\end{array}\right.$	2． 5.5	1	1	115	123	－10102	Du．
No．Hion，yellow	$\{464$	\cdots	1	1	105	116	． 0110	Lubers．
Do．Nemel medium	） 553	0.5	1	1	105	145	－00ng	＇Tredghld．
	\｛ 460	2	1	1	195	237	－0105	
American pine	$\{\cdot 407$	3	1	1	05	69	－0112	
White spruce，Christiana	－512	2	1	1	0.5	261	－0095	Do．
Do．Quebec ．．．．．．．．．．．．．．．．	465	\because	1	1	10.5	1 S0	－0130	Do．
Pitcls pine	712	7	\because	2	1.33	150	－0164	Barluw．
Fir，Nell England	－560	7	2	\because	$\cdot 90$	1.50	－0121	Do．
Riga fir	$\cdot 765$	7	$\stackrel{2}{2}$	\because	$\cdot 912$	150	． 01137	$1) \mathrm{O}$
Mar forest，Scotland．	$\cdot 715$	7	2	\because	1．560	125	0233	Do．
Larch，Blair，Scutland，dry	－622	2.5	1	1	14.5	93	． 0137	Tredguld．
Do．seasoned medium	\｛ 644	2.5	1	1	105	101	． 0126	Do．
Do．very youner wood	－554	\bigcirc	1	1	105	119	－0111	Etueds．
Scots fir ．．．．．．．．．．．．．．．．	－529	2.5	1	1	115	89	． 01437	Do．
Spruce，British	$\cdot 555$	2.5	1	1	（1）5	93	－01－4	Ebuels．
Fir，（bois－dislrin）		$\bigcirc 1.3$	10.45	10.45	102	4.959	－0115	Girard．
Do．do．		10.65	10.55	1045	0×25	4122	－0220	I）

Experiments on the Resistance of rarious Jfaterials to a Crushing Furce．

Names of Materials．	Suecilic Gravity，	Crushin： weish．
1．Elm，cube of 1 inch		Thes. 1201
2．American pine，do．		1606
3．White deal，do．		1928
4．Engli－h oak，do．		34 tio
5．I＇ortland stone， 2 inches long．		sus
i．Statuary marble， 1 inch		3216
7．Craigleith，do．		8688
8．Challk，cube of $1 \frac{1}{2}$ iuch		11：7
9．Brich，pale red，do	2085	1265
10．Rive－stone，Gluuecstershire，du		1119
11．Red lirick，da．	2168	1817
12．Do．Hammersmith pavior＇s du．		2051
13．Murnt do．		8：13
14．Fire brick，do．		3sbl
15．Nerby grit，do．	2316	\％0：0
16．Jo，mother specimen，do．	$\because 128$	976
17．Killaly white freestone，du．	$\because 4.3$	10261
18．Portame do．	212	10281
19．Craigleith white free tunc，do．	$\because 15:$	123.16
20．York hire paving with the strata，do．	－507	1 \because ¢5
21．Do，do agrimet matata，do．		12350
22．White stabuary marble，do．	2660	1：482\％
23．Mramley Fall sand－tonce，de．	2516	186：3
\because－Do．agrainst strata，du．		1ニ゙ゥッ
25．Cornish granite，do．．	2fe\％	11：32
26．Wundee samhtone，dis．	$\because 5.30$	11：115
27．Jorlin l，a two inch cubre	2123	11018
\＃4．（＇raygleith，with thre strat： 1 f in ls cube	$\because 15:$	15：30
29．Devonlire reat marble．		115：32
30．Compact limestomi．	2581	17：351
81．（iramite Perterhead．		146.8
32．Black compact limestors	－5，	109：1
33．Purbect	20：9	20til）
34．Prenatume，very hard	\％ 304	$\because 1021$
35．Black Bralamit marlice	2697	こいで，
36．White luhtan marlha	2？ご	21ヶn
87．Gramte，Aburdean，Mhe hish	20：5	2185

Of Experiments on the Stifinness of Ouk.

Kinds of Oak.	Specific Gravity.	Lengrth in	$\begin{aligned} & \text { Breadu } \\ & \text { in } \\ & \text { inches. } \end{aligned}$	Depth in inches.	Deflectwonlus incles.	Weight 1roducing the de- 月ection in lus	$\left\{\begin{array}{l} \text { Values of } \\ a \text { riom } \\ \frac{40 b d^{2} \delta}{b} \frac{1 W}{} \end{array}\right.$	Authorities.
Oi:l ship timber	88	$\because 5$	1	1	0.3	127	.00995	Tredgold.
Oak from young tree, King's Larcley, Herts	- 868	‥	1	1	0.5	237	-0105	Do.
Oak from Beaulieu, Hants	-16	$\therefore 5$	1	1	0.5	78	-016t	Do.
Wo., another specimen	- 78	2.5	1	1	0.5	65	-0197	Do.
Oak from old tree	-625	?	1	1	0.5	103	-0こ40	Do.
Dak, Rima	-689	\because	1	1	0.5	233	$\cdot 0107$	Do.
Do. English.	960	7	\because	\because	1\%75	270	-0119	Barlow.
Do. Canada.	867	7	\because	\bigcirc	1.07	025	-009	Do.
Do. Dimtzic.	$\because 8$	7	\because	\because	$1 \cdots 6$	208	-0105	Do.
Do. Adriatic	\bigcirc	7	\because	\because	1.55	150	-0193	Do.
i) 0 . green..	-763	2.5	1	1	0.5	96	$\cdots 138$	Ebbels.
Do. Dantzic seasoned	$\because 55$	$\because 5$	1	1	0.5	145	-008	Tredgrold.
Do. do.		128	$3 \cdot 19$	$3 \cdot 19$	$)_{1}^{1 \cdot 60}$	268 808	. 008	\} Aubry.
Do. green		$6 \cdot 8$	$5 \cdot 3$	$5 \cdot 3$	-438	-5s	-005	Buffun.
Do. do.		23.55	53	5%	$\therefore 7$	700	-0095	Do.
Do.		5.5	$5 \cdot 0$	(6)	0.709	$414{ }^{\circ}$	-0013	Girard.
Do. (bois-disbrin)		16.00	10.60	11\%3	0.67	4559	-0215	Do.
Oak.		2	1	1	$0 \cdot 35$	149	-0117	Tredgold.
Do.		\because	1	1	085	16.1	. 0104	Do.

Experiments on the Resistance of" Sasonal Oat: Beams to Fores pressing in the direction of their lengthes.

On the Elasticity of various Woods, as computed by Mr. Tredjold.

Kinlo of Woorl.	$\begin{aligned} & \text { Chasticity } \\ & ==< \end{aligned}$	Finds of Wuod.	$\begin{gathered} \text { Liasticity } \\ =\text { e. } \end{gathered}$
Euglish oak.	$0 \cdot 0015$	Mahogany, Hunduras	9)(19161
Buech	0.00195	Teak	$0 \cdot 01115$
Idder	000 ± 3	C'edar, Lebanon	0 (1153
Che-tnut, green	(0.00267	Riga tir	(-1015 ${ }^{\text {(1) }}$
A-h	0.00163	Memel fir.	
Elu	0.00151	Norway spruce	0.00112
Acaci:	0.00152	Weymouth pine	$0 \cdot$ (xu15
Mahogany, Śpani-h	000205	Larch	())(0)19

MEAN. A middle state between Lwo extremes; thus we say, arithmetical mean is half the -um of any two quantities: as $\frac{a+b}{2}=$ arithmetical mean betreen a and b.

Geometrical mean is the square root of the product of any tro quantitics; that $i=\sqrt{ } a b$ is the gedmetrical mean between a and l.
MEASURE. Measure denotes any certain guantity with which other homogencuus quantitie are compared.-See Weigits and Measures.
MECHANICAL YOWERS. Power is a compound of ucight, multiplied 15 its reitcity ; it caraot he increased by mechanical mean:

The weight is the resistance to be overcome, the power is the requisite force to orercome that resintance. When they are equal, no motion can take place.

The poners are thrle in number, vize, Lever, Inclined Plane, and Pulley.
Tote.-The wheel and axle is a continual or revolving lever, the wedge is a doble in line 1 plane, and the screw is a revolving inclined plane.

Lrver.- When tiec fulcrum (or support) of the lever is ictucen the weight an the jrower.
liu'f.-Divide the weight to be raised hy the power, and the quotient is the differnce of leverage, or the distance from the fulcrum at which the power supports the wejoht.
Or, multiply the weight by its distance from the fulcrum, and the power by its di-tance from the same point, and the weight and power will be to each other as their products.

Example.-A weight of 1600 lb : is to be raised by a foree of oo lus.; required the lengeth of the longe-t inm of the lever, the shortest being 1 fout.

$$
\begin{gathered}
\frac{1600 \times 1}{80}=20 \text { fect, Ans. } \\
1600 \times 1=1600 . \\
80 \times 20=1600 .
\end{gathered}
$$

 of the lever nan the fulcrom be placel?
 913 inches, the di tance of the fuleran from the weight.

Sirample.- 1 wight of 401 Has, is phacel 15 inches from the fulcrum of a leser; what firee will rai e it, the length of the other arm being lo feet?

$$
\frac{4019 \times 15}{1211}=50 \mathrm{lbs} ., .14 \mathrm{~s} .
$$

Autr.-Pressure upon ful rum equal the shan wif weight and power.
IWhon the fulirum is at oue ostrmity if the lever, and the pereer, or the veright, at the othe r.
 weight or poum and falurum, wit the whe the the powne or the poocer the the effer.
 rulerimin?

$$
\bar{j}+2=7: 2:: 1500 \cdot 1245711+114 .
$$

 multipilid by ita distance from the fulerma.

Let P be called the power, W the weight, p the distance of P from the fulcrum, and w the distance of W from the fulerum; then
$\mathrm{P}: \mathrm{W}:: w: p$, or $\mathrm{P} \times p=\mathrm{W} \times w$;
and

$$
\begin{array}{ll}
\frac{\mathrm{W} \times w}{p}=\mathrm{P} . & \frac{\mathrm{P} \times p}{w}=\mathrm{W} . \\
\frac{\mathrm{W} \times v}{\mathrm{P}}=p . & \frac{\mathrm{P} \times p}{\mathrm{~W}}=w .
\end{array}
$$

If several weights or powers act upon one or both ends of the lever, the condition of equilibrium is

$$
\mathrm{P} \times p+\mathrm{P}^{\prime} \times p^{\prime}+\mathrm{P}^{\prime \prime} \times p^{\prime \prime}, d \mathrm{c} .,=\mathrm{W} \times w+\mathrm{W}^{\prime} \times w^{\prime}, \& c
$$

In a system of levers, either of similar, compound, or mixed kinds, the condition is

$$
\frac{\mathrm{P} \times p \times p^{\prime} \times p^{\prime \prime}}{w \times w^{\prime} \times w . . . ~}=\mathrm{W} .
$$

Let $\mathrm{P}=1 \mathrm{lb}$., p and p^{\prime} each 10 feet, $p^{\prime \prime} 1$ foot; and if w and w^{\prime} be each 1 foot, and $w^{\prime \prime} 1$ inch, then $\frac{1 \times 120 \times 120 \times 12}{12 \times 12 \times 1}=\frac{172800}{141}=1200$; that is, 1 lb . will balance 1200 lbs . with levers of the lengthe above given.
Note.-The weights of the levers in the above formulæ are not considered, the centre of gravity being assumed to be over the fulcrums.
If the arms of the lever be equally bent or eurved, the distances from the fulcrum must be measured upon perpendiculars, drawn from the lines of direction of the weight and power, to a line running horizontally through the fulcrum; and if unequally eurved, measure the distances from the fulerum upon a line running horizontally through it till it meets perpendiculars falling from the ends of the lever.
Wheel axd Axle.-The porver multiplied by the radius of the wheel is equal to the weight multiplied by the radius of the axle.
As the radius of the wheel is to the radius of the axle, so is the effeet to the power.
When a series of wheels and axles act upon each other, either by belts or teeth, the weight or veloeity will be to the power or unity as the product of the radii, or circumferences of the wheels, to the product of the radii, or circumferences of the axles.

Example.-If the radii of a series of wheels are $9,6,9,10$, and 12 , and their pinions have each a radius of 6 inches, and the weight applied be 10 lbs ., what weight will it raise ?

$$
\frac{10 \times 9 \times 6 \times 9 \times 10 \times 12}{6 \times 6 \times 6 \times 6 \times 6}=75 \mathrm{lbs} . \text { weight. }
$$

Or, if the 1 st wheel make 10 revolutions, the last will mate 75 in the same time.
To find the power of cranes, de.
Rule-Divide the product of the driven teeth by the product of the drivers, and the quotient is the relative velocity, which, multiplied by the length of the winch and the foree in lbs. and divided by the radius of the barrel, will give the weight that ean be raised.

Exumple.-A force of 18 lbs . is applied to the winch of a crane, the length being 8 inches; the pinion baving 6 , the wheel 72 teeth, and the barrel 6 inches diameter.

$$
\frac{6}{72}=12 \times 8 \times 18=1728 \div 3=576 \text { lbs. weight. }
$$

Let vo represent length of winch,

r	"	radius of barrel,
P	"	force applied,
v	"	velocity,
W	"	weight raised.

$$
\begin{aligned}
& \frac{v w \mathrm{P}}{r}=\mathrm{W} . \\
& \mathrm{W}^{2}=v \imath \mathrm{P} . \\
& \frac{\mathrm{W} r}{v w}=\mathrm{P} .
\end{aligned}
$$

Example. - A weight of 91 tons is to be raised 360 feet in 15 minutes, by a foree the relocity of which is 220 feet per minute; what is the power required?

$$
\begin{aligned}
\frac{360}{15} & =24 \text { feet per minute. } \\
\frac{24 \times 94}{220} & =10.2542 \text { tons. }
\end{aligned}
$$

In a wheel and axle, where the axle has two diameters, the condition of equilibrium is

$$
\begin{array}{r}
\mathrm{W}: \mathrm{P}:: \mathrm{R}: \frac{1}{2}\left(r-r^{\prime}\right) ; \\
\text { or, } \mathrm{P} \times \mathrm{R}=\mathrm{W} \times \frac{1}{2}\left(r-r^{\prime}\right) ;
\end{array}
$$

that is, the weight is to the power as the lever by which the power works, is to half the difference of the radii of the axle;

$$
\begin{aligned}
& \text { In representing radius of wheel, } \\
& r \\
& r^{\prime} \quad \text { " }
\end{aligned}
$$

Inclined Plane,-Rule.-As the length of the plane is to its height, so is the weight to the power.

Example.-Required the power necessary to raise 1000 lbs . up an inelined plane 6 feet long and 4 feet high.

$$
\text { As } 6: 4:: 1000: 666 \cdot 66 \text {-Ins. }
$$

Let IV represent weight,

$$
\begin{aligned}
& \frac{W \times h}{l}=\mathrm{l}^{\prime} \\
& \frac{\mathrm{I} \times l}{h}=\mathrm{W} \\
& \frac{W^{\prime} \times b}{l}=r^{\prime}
\end{aligned}
$$

Tiv find the length of the base, height, or length of the plane, when any thoo of them are given.
Rule.-For the length of the base, subtract the square of the height from the square of the length os the plane, an! the square root of the remainder will be the length of the base.

For the length of the plane, add the squares of the two other dimen-ions together, and the square rout of their sum will be the length required.

For the height, subtract the square of the base from the square of the length of the plane, and the equare root of the remainder is the height required.

Exumple.-The height of an inclined plane is 20 feet, and its length 100 ; what is its base, and the pressure of 1000 lbs upon the plane?

$$
\sqrt{20^{2}-100^{2}}=9600=9.98 \text { the base. }
$$

As $100: 20:: 1000: 200 \mathrm{lbs}$. necessary power to raise the 1000 lbs , and $\frac{1000 \times 97.98}{100}=079.8$ the pressure upon the plane.

If two bolies on tro inclined planes sustain cach other by the aill of a corl orer a putley, their weights ure divectly as the lenythes of the plancs.

Example.-If a budy of 50 lLs , weight, upon an inclined plane of 10 feet rise in 100 , be sustained by another weight on an upposite plane of 10 fieet rise (1) 90 of an inclination, what is the weight of the latter?

$$
\text { As } 100: 90:: 50: 45 \text {, the answer. }
$$

When a bady is supported by two plencs, and if the weight be represente l by the sine of the angle between the two planes. The pressures upon them are reciprocally as the sines of the inclinations of those planes to the horizon, viz.:

The reight, $\quad\{$ Sine of the angle between the planes.

Thus, if the angle between the planes was 90°, of one plane 60°, and the other $: 00^{\circ}$-since the natural sines of $90^{\circ}, 60^{\circ}$, and 30° are $1,-866$, and 500 -if the body weighed 100 lbs , the pressure upon the plane of 30° would be 86.6 lbs , and upon the plane of $60^{\circ}, 50 \mathrm{lbs}$, , the centre of gravity being in the centre of the body.

H'hen the power dues not act parallel to the phene, draw a line perpendicular to the direction of the power's action from the end of the base lins, (at the back of the plane, and the intersection of this line on the length will determine the length and height of the plane.

Fote- When the line of direction of the power is parallel to the plane, the power is least.
The space which a body describes upon an inclined plane, when deseending on the plame by the foree of gravity, is to the space it would freely fall in the same time, as the height is to the longth of the flane; and the spaces being the smme, the times will be inverely in this proportion.

Erample.-If a body be phaced upon an inclised plane 300 feet long and ory feet ligh, what apace will it roll C^{h} wn in one secund by the force of eravity alone?

$$
\text { is } 500: 25:: * 16 \cdot 4 s: 1 \because 3 \text { fect, } 1 n s
$$

If a bolly be projected down an inclined plane with a given veloeite, then the distance which the body will be from the point of projection in a given time will lee $t \times v+\frac{i}{l} \times 16 \operatorname{la}^{2}$; but if the hody be frot

The foree which accelerates a boly down an iaclined plane is that fractional part of the force of gravity wheh is represented by the lacight of the plate divi lad ly its let eth.

Leet h represent the height of the plate, l its lensth, t the time in sceomed; s the space whicha body will move through in a given time, v the weluty, amb i the amgle of inclination $\left(\right.$ inn $:=\frac{l_{t}}{t}$).

$$
\begin{gathered}
t=\frac{2 s}{v}, \text { or } \frac{l v}{32 \cdot 16 h}, \text { or } \sqrt{ } \frac{l s}{16 \cdot 08} h^{\prime} \text {, or } \frac{v}{32 \cdot 16 \sin \cdot i} \text {, or } \sqrt{ } \frac{s}{16 \cdot 08 \sin \cdot i} . \\
\frac{h}{l}, \text { or } \sin . i=\frac{v}{32 \cdot 16 t}, \text { or } \frac{s}{16 \cdot 08 t^{2}} \text {, or } \frac{v^{2}}{64 \cdot 3 s} .
\end{gathered}
$$

The accelerating force on the plane is to the accelerating force of gravity as v^{2} is to $64.3 \times s$.
If $\sin . i=\frac{1}{2}$, it shows that the length of the plame is twice its height, or $\frac{1}{2}=30^{\circ}$.
If the proportion which the length of the plane bears to the height be given, substitute these pro portions for the length and height in the above rules, and the conclusions will be equally true.
Wedge.- When two bodies arc forced from one another, in a dircetion parallel to the back of the wedye. Rule.-As the length of the wedge is to half its back, so is the resistance to the force.
Example.-The length of the back of a double wedge is 6 inches, and the length of it through the middle 10 inches; what is the power necessary to separate a substance having a resistance of 150 lbs ? As $10: 3:: 150: 45 \mathrm{lbs}$, $A n s$.
When only one of the bodies is movable.
Rule.-As the lengtl of the wedge is to its back, so is the resistance to the porrer.
Example.- What power, applied to the back of a wedge, will raise a weight of $15,000 \mathrm{lbs}$, the wedge being 6 inches deep, and 100 long on its base ?

$$
\text { As } 100: 6: .15000: 900 \mathrm{lbs},{ }^{*} \text { Ans. }
$$

Note-As the power of the wedge in practice depends upon the split or rift in the wood to be cleft, or in the body to be raised, the above rules are only theoretical where a rift exists.

Scraw, - As the screw is an inclined plane wound round a cylinder, the length of the plane is found by adding the square of the circumference of the screw to the square of the distance between the threads, and taking the square root of the sum, and the height is the distance between the consecutive threads.

Rulc.-As the length of the inclined plane is to the pitch or height of it, so is the weight to the power.

When a wheel or capstan is applied to turn the screw, the length of the lever is the radius of the curcle described by the handle of the wheel or capstan bar:

Let P represent power,

R	"	lengrth of lever,
W	"	weight,
l	"	length of the inclined plane,
p	"	pitch of screw or height of plane,
x	"	effect of power at circumference of screw,
r	"	radius of screw.

Then, by the above rules,

As $l: p:: \mathrm{W}: \mathrm{P}$,	$\mathrm{P}: \mathrm{W}:: p: l$
$l: \mathrm{W}:: p: \mathrm{P}$,	$r: \mathrm{P}:: \mathrm{P}: x$,
$\mathrm{W}: l:: \mathrm{P}: p$,	$\mathrm{P}: x:: r: \mathrm{R}$,
$p: l:: \mathrm{P}: \mathrm{W}$,	$\mathrm{R}: r:: x: \mathrm{P}$.

Example.-What is the power requisite to raise a weight of 5000 lbs . by a serew of 12 inches circum ference and 1 inch pitch ?

$$
\begin{gathered}
12^{2}+1^{2}=145, \text { and } \sqrt{ } 145=12 \cdot 04159 . \\
\text { Then, } 12 \cdot 0416: 1:: 8000: 664 \cdot 36 \text { lbs., Ans. }
\end{gathered}
$$

And if a lever of 30 inches length was added to tho screw,

$$
12 \div 3 \cdot 1416=3 \cdot 519 \div 2+30=31 \cdot 9095, \text { length of lever. }
$$

Then, as $31 \cdot 9095 \times 2 \times 3 \cdot 1416: 12 \cdot 0416:: 66436: 39 \cdot 9$ lbs., Ans.
Or, let C represent the circumference described by the power; and we have

$$
\begin{aligned}
& \mathrm{P}: \mathrm{W}:: p: \mathrm{C}, \\
& \mathrm{C}: p: \mathrm{W}: \mathrm{P} \\
& \mathrm{P} \times \mathrm{C}=\mathrm{W} \times p
\end{aligned}
$$

When a hollow screw revolves upon one of less diameter and pitch, (or the differential serew, the effect is the same as that of a single screw, in which the distance between the threads is equal to the difference of the distances between the threads of the two screws.

If one serew has 20 threads in an inch pitch, and the other 21 , the power is to the weight as the difference between $\frac{1}{2 \pi}$ and $\frac{1}{2 \pi}$, or $\frac{1}{4} \frac{1}{2} \overline{0}=1$ to 420 .

In a complex machine, composed of the serew, and wheel, and axle, the relation between the weight and power is thus:

Let x represent the effect of the power on the wheel,
If " the radius of the wheel,
p " the pitch of the screw,
r " the radius of the axle,
C " the circumference described by the pormer.

[^8]Then, by the properties of the screw,

$$
\begin{aligned}
& \mathrm{P} \times \mathrm{C}=r \times p \\
& x \times \mathrm{R}=W \times r
\end{aligned}
$$

and of the wheel and axle,
Ifence we have

$$
\mathrm{P} \times \mathrm{C} \times x \times \mathrm{R}=x \times p \times \mathbb{W} \times r .
$$

Omitting the common multiplier, x,

$$
\begin{aligned}
& \mathrm{P} \times \mathrm{C} \times \mathrm{R}=W^{*} \times p \times r ; \\
& \text { or } \mathrm{P}: \mathbb{W}:: p \times r: \mathrm{C} \times \mathrm{R}^{\prime}, \\
& \text { and } p \times r: \mathrm{C} \times \mathrm{R}:: \mathrm{l}^{\prime}: W^{\prime} .
\end{aligned}
$$

Exumple. What weight can be raised with a power of 10 lbs . applied to a crank 32 inclies locg, turning an endless screw of $3 \frac{1}{2}$ inches diameter and one inch pitch, applied to a wheel and axde of 20 and 5 inches in diameter respectively?

Circumference of $64=201$.

$$
1: \underline{0} 1:: 10: 2010
$$

Radii of wheel and axle, 10 and 2.5.

$$
\begin{aligned}
& 25: 10:: 2010 \text { : } 8010 \mathrm{lb} \text { :., Ans. } \\
& \text { or } 25 \times 1: 201 \times 10:: 10: 8040 \text {. }
\end{aligned}
$$

And when a series of wheels and axles act upon each other, the weight will be to the power as the continued product of the radii of the wheels to the continued product of the radii of the asles;

$$
\begin{aligned}
& \text { thus, } \mathbb{W}: \mathrm{P}:: \mathrm{R}^{3}: r^{3} \\
& \text { or, } r^{3}: \mathrm{R}^{3}:: \mathrm{l}^{1}: \mathrm{W}^{2}
\end{aligned}
$$

there being three whecls and axles of the same proportion to each other.
Eirample-It an endless screw, with a pitch of half an inch, and a handle of 20 inches radius, be turned with a power of 150 lb s., and geered to a to thed wheel, the pinion of which turns another wheel, and the pinion on the second wheel turni a third wheel, to the pinion or barrel of which is hung a weight, it is required to know what weight can be sustained in that position, the diameter of the wheels being 18 , and the piniun $=2$ inches!

$$
\begin{array}{r}
p \times r^{3}: \quad C \times R^{3}:: P: W^{*} ; \\
\text { or } 5 \times 1^{3}: 125 \times 6 \times y^{3}:: 150 ;
\end{array}
$$

which, when extended, gives

```
`5: 91562.1 : : 150 : 24468720 lus., Ans.
```

Sot - The diameter of a screw is not a necessary element in determinng the weight it will support, when the point at which the power is applied is given.

P'cleey.- When only one cord or rope is used.
liulc.-Divide the weight to be raised by the number of parts of the rope engared in supporting the lower or movable block.

Efample. - What power is required to raise 600 lbs , when the lower block contains six sheaves and the end of the rope is fastened to the upper block, and what power when fastened to the lower block?

$$
\begin{aligned}
& \frac{600}{6 \times 2}=50 \mathrm{lbs.} \text {, 1st Ans. } \\
& \frac{600}{6 \times-1}=1615 \mathrm{lbs}, 2 \mathrm{~d} \mathrm{ins} \text {. } \\
& \text { or } W=n \times P \text {, }
\end{aligned}
$$

n surgifying the number of parts of the rope which sustain the luver block.

When more than one rope is used.

In a tronish buton, where there ate two ropes, two movable pulteys, and one fixed and one stationary pulter, whithe ends of one rope fantencil to the support and upper mowhle pulley, and the

And in one where the couds of one roper are fastemed to the support and the power, and the ends of the other to the lower and upper hoeks, the werght is to the pewer as 1 to 1 .

In a systom of pulleys, with any tuunture if ropes, the embls bein!! fastencel to the support,

$$
\Pi=2^{n} \times 1
$$

nexprening the mumber of ropers.
Jiscmple.-What weight will a power of 1 lh, -11 tain in a $s y$-tem of 4 movalule pulleys und t ropes $1 \times \because \times \because \times \because \times \because=161 \mathrm{hs}$. , 1 ns .
IHien fired pulleys are used in the pitare of hnoks, to altwith the cuds of the rope to the support,

$$
\mathbb{W}=:^{n} \times 1^{\prime} .
$$

$$
5 \times 3 \times 3 \times 3 \times 3=10511,4,-1 n s
$$

"17un the creds of the rope, or the fis d pulleys, wre justenct to the tecighte,

$$
\begin{aligned}
\mathbb{W} & =(\because-1) \times[\\
\text { und } & =(\therefore-1) \times 1
\end{aligned}
$$

which wutld give, in the abowe exampley,

$$
\begin{aligned}
& 1 \times 2 \times: 2 \times 2 \times 2=10-1=15 \mathrm{lhw}, \\
& 5 \times 3 \times 3 \times 3 \times 3=105-1=101164
\end{aligned}
$$

MECHANICAL POWER OF STEAM. Under the head of Crank, in the first volume of this Dictionary, reference is made to this article for an elucidation of the theory of its movement, as also for an explanation of the mechanical laws of stean. These last should be sought under their proper head "Steam," while the theory of the crank will be explained in this place, as reference has been made to it under this head.

If we consider the rotatory engine with revolving piston apart from the practical objections agairst its application, it is a perfect engine, and is capable of giving out all the effect of the steam. An impression has, howerer, widely prevailed that this is not the case with the common reciprocating engine with its comecting-rod and crank. Several scientific writers on the steam-engine have pointed out the error of this conviction, so that all the better-informed class of engineers are well aware that the crank, like all other picees of machinery, fully transmits the power which is communicated to it. There are others, however, who cannot understand this: they cannot set out from the great fundamental principle of virtual velocities, and satisfy themselves with asserting the truth as a simple and inevitable deduction from it. They are continually asking the question, "How is it that, in the common crank, we are able to show that, at two given points in its revolution, the position is such that an infinite power would produce no effect at all; that there are only two positions in which the force and effect are equal; and that, at every other position, the effective pressure given out by the comnecting-rod to the crank is less than the original pressure of the steam on the piston-the remainder of the pressure of the steam producing only it uscless pressure on the cranks-how then can the crank be conceived to transmit the whole mechanical effect of the steam ?' In the present remarks we intend to give an answer to this question. We intend to examine, at considerable length, the action of the crank, and to show that the great fact upon which the whole science of mechanics has rested eser since the time of Galileo, still obtains in all its gencrality in this particular case. For the purpose of clearly elucidating the subject we intend to consider it at first in a very simple and practical manner, and then to examine it in a more theoretical point of view.

Before proceeding further it is necessary to have a clear conception of the meaning of the term "power." It is obvious that it must be different from the term" force" or "pressure;" for, if its meaning were the same, it would be absurd to say that the crank always transmits the whole "power," since in some positions it does not transmit any of the pressure of the stcam at all. The term "power," as generally used by writers on the steam-engine, means the mechanical power of the steam, or its mechảnical effect. In estimating the mechanical effect we have to consider two things: 1st, the load or force raised, and 2 d , the distance through which it is raised; and the mechanical effects are considered to be equal when the product of these two are equal. For example, suppose two different machines constricted in such a manner that in the one 1 lb . of steam is made to raise 10 tons through 8 feet, and that in the other 1 lb . of steam is made to raise 15 tons through 6 feet; we say that the mechanical effect of the steam is the same in these two machines, because $10 \times 8=15 \times 6$. This principle may be expressed in the form of a rule:-"Mechanical effects are equal when the weights raised are inversely proportional to the distances through which they are raised." This law is useful for comparing the mechanical effects of different machines; our purpose, at present, however, is to compare the mechanical effects of different parts of the same machine. It will not be difficult so to modify this law as to suit our purposes. When it is different machines that we are comparing, the time for developing the mechanical effects may be different, but in the same machine the time must necessarily be the same. From this equality of time we infer that the spaces through which the load is moved are directly proportional to the uniform velocity with which they are described. Hence the law may be expressed as follows: "The mechanical effects of the different parts of the same machine are equal when the weights or pressures raised are inversely propertional to the velocities with which they are raised." The product of a weight or pressure into its velocity is called the "momentum of the weight or pressure." After this definition, our rule may be expressed as follows: "Mechanical effects of the different parts of the same machine are equal when the momenta are equal." Adopting the principle that the momentum measures the mechanical effect, or, as it is usually called, the power, it is a recognized principle, proved by all writers on mechanies, that however complicated machincry may be, still, making allowance for the resistances arising from friction, the mechanical effect remains the same. Our intention at present is only to show that it obtains in the particular case of the crank. The crank-pin moves through a greater space than the piston; and when the piston is moving very slowly the crankpin is moving very quickly, so that the ultimate effect is the same at every moment. By multiplying the pressure into the velocity, it will be found that the same quantity of steam produces the same amount of power at crery part of the stroke.

Suppose the velocity of the piston to be uniform, then the motion of the extremity of the connecting-rod will be uniform also. The extremity of the crank always moves irregularly, but as it moves over a greater space than the extremity of the comnectingrod, its mean velocity must be greater. The proportion is obviously es follows:

Velocity of piston : mean velocity of extremity of crank : : twice the length of stroke: circumference which the extremity of the crank describes.

Let l denote the length of stroke, and π the ratio of the circumference of a circle to its diameter; then we have the proportion,

Velocity of piston : mean velocity of extremity of crank ::2 $l: \pi l:: 2: \pi$, and, therefore, mean velocity of extremity of crank $=\pi \times$ velocity of piston $\div 2$. Since the mean velocity of the

arank is greater than that of the pi-ton, then, according to our law, in order to produce the same mechanical effect, the mean effective pressure must le less, and that in the same proportion. We may approximate to the mean efiective presure by calculating it for a great many equidistant prsitions, and taking the average. Thus let Fig. 2not represent the circle which the extremity of the crank describes. Divide it into 20 equal parts. Suppose the comnecting-rod to remain always in a parallel direction, and the constant pressure in it to be 100 . The efiective pressure at any point P will be 100 sin. POE. From this we have the following table:

Puints in the Figure.	Pressure in the Direction of Revolution.
At 0 and at 20	$100 \times$ sin. $0^{\circ}=0.00$
19	$100 \times \sin .18^{\circ}=30.919$
218	$100 \times$ sin. $36^{\circ}=5578$
817	$100 \times$ sin. $54^{\circ}=80.90$
± 16	$100 \times \sin .700=95.11$
515	$100 \times \sin .90^{\circ}=100.00$
614	$100 \times \sin .105^{\circ}=95.11$
713	$100 \times \sin 126^{\circ}=80.90$
812	$100 \times \sin .144^{\circ}=55.78$
911	$100 \times \text { sin. } 162^{\circ}=30 \cdot 90$
1010	$100 \times \sin .180^{\circ}=0.00$
	Mean pressure $0 \dot{\circ} 11$

From this we learn that the mean effective pressure is to the pressure at piston in the proportion of about 63 to 100 . This is very nealy the same proportion as 2 to π; for $110 \div 63=1 \cdot 6$ nearly, and $-\div 2=1 \cdot 7$. Hence we have the propurtion, prescure at piston: mean effective pressure at extremity of crank : : mean velocity of extremity of crauk : velocity of piston. This shows, accoriling to our law, that the mechanical effeet of the pressure at the piston is wholly tran-mitted to the crank.

We have said not only that the mechanical effect is the same ultimately, but that it is the same momentarily; that is to say, that the product of the effective force at any point, and the velocity at that point, is constantly equal to the product of the preseure at the piston, and its velocity at the cor-re-ponding position. It is more difficult to illustrate this in the same manuer, on acconnt of the difficulty of calculating the relative velocity of the crank and piston. It is very easy to show, however, that at what is called the "position of the centres" no loss of power can really take place. This happens for this very plain reasen, that there is no power exerted at that time. It onght to be remembered that at that time the communication which supplies the steam from the boiher is cut otf. The steam on one side having done its work, only waits to be released from its chamber, and escapes at the opening of the eduction valve, and at the same instant is in the act of being permitted to enter on the opposite side for reversing the motion. Hence at these points all application of force lias ceased, and arrangements are making for reversing the motion; besides which, when the engine is on the centre, the piston has not any motion.

Ifith regard to the remaining prints of the circle, at which it is said power is lost, the velocity imparted to the erank is always an exact "quivalent for the force which is apparently lost. At present We wish only to illustrate this fact, for its rigid dentenstration requires rather abstract considerations. The following table presents the results of the calculations of the power and velocity. The numbers 1, 2, dec, refer to Fig. 280 !.

Position of Trank.	Jressure in lirection of licuolution.	Velocity of Crank divided by lelucily of Piston.
At 0 and at 20	$15 \cdot 110$	Infinite
119	31930	
12	5-7	1\% 61
317	4090	1-2:35
116	51.111	1.0 .51
515	10000	$1 \cdot 000$
(i) 1.4	95.11	$1 \cdot 0.51$
713	S $11!10$	1-2:8
< 12	54.75	1\%い1
1111	:31.30	$3 \cdot 23+$
11111	(1) (1)	Indinite

 actly true in fromice: The rame haw himbe, uletmeht the preatre on the pit ton in tariable, and alen ita

 Wheh in thit work woutd be olat of phace:

MEERSCHAUM. This form of silicate of magnesia is employed in manufacturing the celebrated tobacco-pipes known under this name, and its composition is as follows, differing but little from steatite or soapstone ; but, unlike the latter, may be artificially produced:

It is found in the native state on the shores of the inland seas of Europe. That found in Morocco contains, in addition to the above ingredients, 52 of potash. It is light and soft, and is employed in the Turkish dominions as fuller's earth. In Germany it is extensively used in the manufacture of tobaccopipes, which are prepared for sale by being soaked first in tallow, then in wax, and finally by being polisherl with shave-grass. Imitation meerschaum pipes are sold in large quantities, and the greatest caution is necessary to guard against deception. To the connoisseur, the best criterion is the beautiful brown color which the genuine meerschaum assumes after being smoked some time.
mensuration-Of Surfaces. To find the area of a four-sided figure-Rule.-Multiply the length by the breadth or perpendicular height; the product will be the area.

T'o find the area of a triangle.-Rule.-Multiply the length of one of the sides, by a perpendienlar falling upon it from the opposite angle; half the product will be the area.

To find the length of one side of a right-angled triangle, when the lengths of the other two sides are given.-Rule 1.-To find the hypothenise, add together the squares of the two legs, and extract the square root of that sum.
livele 2.-To find one of the leas, subtract the square of the leg, of which the length is known, from the square of the hypothenuse, and the square root of the difference will be the answer.

To find the area of a regular polygon.-Rule.-Multiply the length of a perpendicular, drawn from tue centre to one of the sides, (or the radius of its inscribed circle,) by the length of one side, and this product again by the namber of sides; and half the product will be the area of the polygon.

To find the area of a trapezium.- Piule 1.-Draw a diagonal line to divide the trapezium into two triangles; find the areas of these triangles separately, and add them together.
liule 2.-Divide the trapezium into two triangles, by a diagonal, and let two perpendiculars fall on the diagonal from the opposite angles; then, the sum of these perpendiculars multiplicd by the diagonal, and divided by 2 , will be the area of the trapezium.

To find the area of a trapezoid.-Rule 1.-Multiply the sum of the tro parallel sides by the perpendicular distance between them, and half the product will be the area.

Role 2.-Draw a diagonal, to divide the trapezoid into two triangles; find the areas of those triangles separately, and add them together.

To find the arca of an irregular polygon.-Rule.-Draw diagonals, to divide the figure into trapeziums and triangles; find the area of each separately, by either of the rules before given for that purpose; and the sum of the whole will be the area of the figure.

To find the arca of a long irregular figurc.- Rrie.- Take the breadths in several places, and at equal distances from each other; add all the breadths together, and divide the sum by this number, for the mean breadth; then multiply the mean breadth by the length of the figure, and the product will be the area.

In find the eircumference of a circle when the diameter is given ; or the diameter when the circumfercnce is given.-Rule 1.-Multiply the diameter by $81+16$, and the product will te the circumference; or divide the circumference by 3.1416 , and the quotient will be the diameter.

Rule 2.-As 7 is to 22, so is the diameter to the circumference;
As 22 is to 7 , so is the circumference to the diameter.
Rule 3.-As 113 is to 355 , so is the diameter to the circumference;
As 355 is to 113 , so is the circumference to the diameter.
To find the area of a circle.-Rule 1.-Multiply the square of the diameter by 7854 ; or the square of the circumference by 07958 ; the product, in either case, will be the area.
Rule 2.-Multiply the circumference by the diameter, and divide the product by 4.
Iele 3.-As 14 is to 11 , so is the square of the diameter to the area;
Or as 88 is to 7 , so is the square of the circumference to the area.
To find the length of any are of a eircle.-Rule 1.-From 8 times the chord of half the are, subtract the chord of the whole arc; one-third of the remainder will be the length of the are, nearly.

Rule 2.-As 180 is to the number of degrees in the arc;
So is 3.1416 times the radius to its length.
Or, as 3 is to the number of degrees in the are;
Su is $\cdot 05236$ times the radius to its length.
To find the arca of a scetor of a circle. - Mule 1.-Multiply the length of the are by half the length of the radius; the product will be the area.

Rime 2.-As 360 degrees is to the number of degrees in the are of the sector; so is the area of the circle to the area of the sector.

To find the area of a segment of "circle.-RuLe 1.-To the chord of the whole are, add the chord on nalf the are and one-third of it mor:. Then multiply the sum by the versed sine, or height of the segment, and fur-tenths of the produc. will be the area of the segment.

Rere 2.-Divide the height, or versed sine, by the diameter of the circle, and find the quotient in the column of versed sines, in the table of areas of segment:
Then take out the corresponding area in the next column on the right-hand, and multiply it by the equare of the diameter, for the answer.

To find the arca of a circular zone.-Rule 1.- When the zone is less than a smicircle, to the area of the trapezoid, formed by connecting the extremities of the zone by straight lines, add the area of the circular segments beyond those lines; the sum is the area of the zone.

RCLE 2.- Ithen the zone is greater thun a semicircle, to the area of the parallelogram, formed in liko manner as above, add the area of the circular segments, at its extremities; the sum is the area of the zonc.

To fird the area of a circular ring, or space, included brtueen two coneentric circles.- Rule.-Find the areas of the two circles separately; then the difference between them will be the area of the ring.

To find the circumjerence of an ellipse.-Ruce.-Square the two axes, and multiply the square root of half that sum by 31416 ; the product will be the circumfercnee, nearly:
To find the area of an ellipse.-Wele.-Multiply the transverse diameter by the conjugate, and the prorluct by -is51.

To find the arca of an elliptic segnent.-Ruen.-Diside the height of the segment by the axis of which it is a part, and find, in the table of segments of circles, a circular serment having the same versed sine as this quotient. Then, multiply the segment thus found and the t tro axes of the ellipse continually together, and the product will give the area required.

When the transverse, the conjugute, and the abseisse are given, to fird the ordinate.-Rule.-Multiply the abscisse into each other, and extract the square root of the product; this will give the mean between them. Then, as the tramserse diameter is to the conjugate diameter, so is the mean to the ordinate required.

When the trunserse, the conjugate, and the ordinate are given, to find the abseisse.-Rule.-From the square of balf the conjugate, take the square of the ordinate, and extract the square root of the remainder.

Then, as the conjugate diameter is to the transverse, so is that square root to half the difference of the two ab=cisie.

Add this half difference to half the transverse, for the greater abscisa; and subtract it for the less.
When the trusecrse, the ordinate, and the tho abseisse are giren, to find the comjugate.-Rule.-As the square root of the product of the two abseisse is to the ordinate, so is the transicese diameter to the cunjurate.
Wote.-In the same manner the transverse diameter may be found from the conjugate, using the two abscisse of the conjugate, and their ordinate perpendicular to the conjugate.

IThen the corjugate, the ordinate, and the abscissce are given, to finel the transerese diameter.-RureFrom the square of half the conjugate subtract the square of the ordinate, and extract the roat of the remainder. Add this root to the half conjugate if the less abseissa be given; but subtract it when the greater ab-cisca is given.

Then, a* the square of the ordinate is to the rectangle of the abscissa and conjugate, so is the reserved sum, or difference, to the transverse diameter.
I'o find the arca of a parabola.- Rece.-Dlultiply the base by the height, and troothirds of the preduct will be the area.
T) find the aren of a frustum of a parahola.-Rele.- Multiply the difference of the cubes of the two ends of the fru-tum by twice its altitude, and divide the product ly thrice the difference of their squares.

To fimel the abscissis or ordinate of the parabolu.-Kule.-The abicisse are to each wher as the equares of their ordinates; that is, an any abecissa is to the square of its ordinate, su is any other abscissat to the square of its ordinate.
Or, at the -quare root of any ab-ci-sat is to it- ordinate, so is the square roet of another ab-cisat th its ordin:te.

 will give the length of the curve, nearly:
 ter; multiply the sim by the alsaisil, amd extract the square root of the product. Then, multiply the transverse dianeter by the nb-cis-a, and extract the square rowt of that product.

Then, to $2 I$ times the firet ront add I times the seomel root; multiply the sum by double the probluct

 the transerer, and maltiply each of thene smm ly the nb in a.

 ordinate repuisand.
 ubscias subtracted from the axis, gives the les.

 :um,
 absec .ac.

To this half sum add half the transverse diameter fur the greater abscissa, and subtract it for the less.

When thic transverse diancter, ordinate, and abseisse, are given, to find the conjugate.-Rule.-As the square root of the product of the two abseisse is to the ordinate, so is the transverse diameter to the conjugate.

When the conjugate diameter, the ordinate, and the two abseissce, are given, to find the transverse diameter.-Rule.-To the square of half the conjugate add the square of the ordinate, and extract the square root of that sum.

To this root add the half conjugate when the less abscissa is used; and subtract it when the greater abseissa is used; reserving the sum or difference.
Then, as the square of the ordinate is to the product of the abscisse and conjugate, so is the reserved sum, or difference, to the transverse.
Mensuration of Solids.-To find the solidity of a cube.-Rule.-Multiply the side of the eube by itself, and that product again by the side; the last product will be the solidity of the given cube.

To find the solidity of a parallelopipcdon.-Rule.-Multiply the length, breadth, and depth or altitude, continually together, or, in other words, multiply the length by the breadth, and that product by the depth or altitude, and this will give the required solidity.

To fiud the solidity of eylinders and prisms.-Rule.-Multiply the area of the base by the height of the cylinder or prism, and the product will give the solid content.

To find the convex surface of a cylinder. - Rule.-Multiply the circumference by the length of the cylinder; the produet will be the convex surface required.

To fiud the convex surface of a right cone, or pyramid.-Rule.-Multiply the perimeter, or cireumference of the base, by the slant height, or length of the side of the cone, and half the product will be the surface.

To find the convex surface of a frustum of a right cone, or pyramid.-Rule.-Multiply the sum of the perimeters of the two ends by the slant height or side of the frustum, and half the product will be the surface required.

To find the solidity of a cone, or myramid.-Rune.-Multiply the area of the base by the perpendicular height, and one-third of the product will be the content.

To find the solidity of the frustum of a cone.-Rule.-Divide the differenee of the cubes of the diameters of the two ends by the difference of the diameters; this quotient multiplied by 5854 and again by one-third of the height, will give the solidity.

To find the solidity of the frustum of a pyramid.-Rule.-Add to the areas of the two ends of the frustum the square root of their produet, and this sum, multiplied by one-third of the height, will give the solidity.

To find the solidity of a wedge.-RuLe.-To the length of the edge of the wedge add twice the length of the back; multiply this sum by the height of the wedge, and then by the breadth of the back; onesixth of the product will be the solid content.

To find the solidity of a prismoid.-Rele.-Add into one sum the areas of the two ends and four times the middle seetion, parallel to them; then, this sum multiplied by one-sixth of the height, will give the content.

Note.-The length of the middle section is equal to half the sum of the lengths of the two ends; and its breadth is equal to half the sum of the breadths of the two ends.

To find the convex surface of a sphere, or globe.-Rule.-Multiply the diameter of the sphere by its eireumference.

Or, multiply 3.1416 by the square of the diameter; the produet will be the convex surface required.
Note.-The convex surfaee of any zone or segment may be found, in like manner, by multiplying it height by the whole cireumference of the sphere.

To find the solidity of a sphere or globe.-Rune.-Mnltiply the eube of the axis by 5 -536; the product will be the solidity.

To find the solidity of a spherieal segment.-Rule.-To three times the square of the radius of its base add the square of its lieight; then, multiply the sum by the height, and the produet by $5 \geq 36$.

Io find the solidity of a spherical zonc or frustem.-Rule.-To the sum of the squares of the radius of each end, add one-third of the square of the height of the zone; this sum, multiplied by the said height, and the product by 1.5708 , will give the solidity.

To find the solidity of a spheroid.-Rule.-Multiply the square of the revolving axis by the fixed or shorter axis; the product, multiplied by '5236, will give the eontent.

To find the solidity of a segment of a spheroid.-Rule 1.- When the base is circular or parallel to the revolving axis, multiply the fixed axis by 3 , the height of the segment by 2 , and subtract the one product from the other; then multiply the remainder by the square of the height of the segment, and the produet by 5236 .

Then, as the square of the fixed axis is to the square of the revolving axis, so is the last product to the content of the segment.

Rule 2.- When the base is perpendioular to the revolving axis, multiply the revolving axis by 3 , and the height of the segment by $\stackrel{2}{ }$, and subtract the one from the other; then, multiply the remainder by the square of the height of the segment, and the prolluct by 5236 .

Then, as the revolving axis is to the fixed axis, so is the last product to the content.
To find the solidity of the middle frustrm. of a spheroid.-liwle 1.- IWhen the ends are emouar, or frarallel to the revolving axis, to twrice the square of the revolving axis, add the square of the diameter of either end; then, multiply this sum by the length of the frustum, and the product again by 2618 ; this will give the solidity.

Rule 2.- Ihhen the cads are elliptieal, or perpendieular to the revolving axis, to twice the product on he transverse and conjugate diameters of the middle section, add the product of the transverse and
monjugate of either end; multiply this sum by the length of the frustum, and the product by wels; this will give the solidity:
To find the surfuce of a circular spindle.-Rule.-Multiply the length of the spindle by the radius of the revolving are. Multiply also the said arc by the central distance, or distance between the centre ot the spindle and centre of the revolving arc. Subtract this last product from the former; double the remainder; multiply it by 3.1416 , and the product will give the surfice of the spindle.

Nute. The same rule will serve for any segment, or zone, cut off perpendicularly to the chom of the revolving are; but, in this case, the particular length of the part, and the part of the are which describer it, must be used, instead of the whole length and whole arc.
To find the soli lity of a eirculur spindle.-Rcle.-Multiply the central distance, as above, by half the area of the revolving segment. Subtract the product from one-third of the cube of half the leagth o! the spindle. Then, multiply the remainder by 12.5061 , or 4 times 3.1 .11 G , and the product will be the solidity required.

To find the solidity of the frustum, or zone, of a circular spindle.-Rele.-From the square of halt the length of the whole spindle, take one-third of the square of half the length of the frustum, and multiply the remainder by the said half-length of the frustum. Nultiply the central distance by the revolving area, which gencrates the frustum. Subtract the last proluct from the former; and the remainder, multiplied by $6: 2832$, or twice $3 \cdot 1416$, will give the content.
To find the sulidity of an elliptic spindle.-Rcue.-To the square of the greatest diameter, add the square of twice the dimmeter at one-fourth of its length; multiply the sum by the length, and the froduct by 1309 , and it will give the sulidity, very nearly.

To find the solidity of a frustum or segment of an elliptic spinlle.-Rule-Procecd, as in the last rule, for this, or any other sulid, formed by the revolution of a conic suction about an axie, namely:

Add torether the equares of the greates: and lenst diameters, and the square of double the diameter in the niddle between the two; multiply the sum by the 'ength, and the product by 1809 , and it will give the solidity:

Vote-For all such solids this rule is exact when the boty is formed by the conic section, or a part of it, revolving about the axis of the section; and it will always be very near the truth, when the tigure revolves about another line.
To, fine the solidi!! of a parabolic conoil- Liewe-Dultiply the square of the diameter of the base by the altitude, and the product by 5927 .

To find the solidity of a fratum of a paraboloid- Rele.- Multiply the sum of the squares of the diameters of the two ends by the height of the frustam, and the produet by $\because 9.2$.

To find the solidity of a parabolic spindle- - Rele:-Multiply the square of the midde diameter by
 the content.
To find the solidity of the middic frustum of a parabolic spindle.- Rune.- Add together $\&$ times the square of the greatest diameter, 3 times the :quare of the least diancter, and 4 times the product of these two dianeters; multiply the sum by the length, and the product by U5D3t, (which is ' of $\because 1416$;) this will give the solidity.
To find the convex surface of a cylindrical ring.-Rte.E. To the thickness of the ring add the inner diameter; multiply this sum by the thickness, and the product by 9.5696 , (whel is the square of 314159,) and it will give the superficies required.

I' find the solidity of a cylindrieal ring.-Rue.-To the thickness of the rine adl the imner diancter ; then multiply the sum by the square of the thickness, and the product by $2 \cdot f 6 i \cdot t$, (which is one furth of the square of $3 \cdot 116$.) and it will give the solidity.

I's fint the superficies or solidity of any regular borly.-lithe 1. - Ilultiply the tabular surgace by the square of the linear ellge, and the product will be the superficies.
Ruee 2.- Multiply the tabular sulidity by the cube of the linear edge, and the product will be the Boldity:

Tuble of the Surfuens and Su'tlities of the Ingulur Borlies ment it the linear wlye is 1.

Tenacity distinguishes a number of the metals, and is not possessed in any great degree by othet bodies; hence arises their malleability and ductility. Some of the metals are neither malleable not ductile. Both these quaities are greater in combinations of the metals than in the individual metals. Metals are the best conductors of caloric; their expansibilities are varions, and are probably nearly in the order of their fusibilities. Mercury melts at so low a temperature, that it can be obtained in the solid state only at a very low temperature; others, as platina, can scarcely be melted by the most intense heat which we can excite. Netals may be volatilized; at the degree of 600 quicksilver may be volatilized, and zine and arsenic at a temperature not very remote from this. Metals are the best conductors of electricity.

Tuble of the Propertics of the Metals.

Name.	When discovered.	By whom.	Color.	Specific gravity.	新			艺	
Gold...........)		Pure yellow.	19-057	5337	1	1	$68 \cdot 216$	8
Silver..........			White.	10.4\%4	3677	2	2	$85.06 \geq$	6
Iron	Known from	-	Blue-gray.	7.788	17977	4	8	269.659	3
Copper	the earliest	Red.	8.895	4587	5	3	157.399	5
Mercury	ages.		White.	13.568	39	\cdot	None.
Lead			Plue.	$11 \cdot 352$	594	8	6		14
Tin			White.	7.291	442	7	4	24×00	12
Zinc	1541	Paracelsus.	Bluish-white.	6.661	700	6	7	12\% 220	9
Bismuth.........	1590	Agricula.	Ycllowish-white.	982	476	7
Antimony	XVth cent.	B. Valent.	Bluish-white.	6.702	932	10
Arsenic..........	1723	Brandt.	Gray.	$8 \cdot 308$		\cdots	\ldots	13
Cobalt...........		do.	Gray-white.	8.538	1667%	\because	-		11
Platinum ${ }^{\text {a }}$	1741	Wood.	Bhish-white.	21500	G. B. P.	3	5	$124 \cdot 000$	4
Nickel	1751	Cronstedt.	White.	$8 \cdot 279$	21077	9	9
Manganesc	1754	Scheele. I'Eihuyart	Gray-white.	5.850	G. ${ }_{\text {do. }}$.	.	\ldots	2
Tellurium	17*)	Mnller.		6.600 6.115	G. B. P.	\cdots	.	..	1
Molybderium	do.	Ijelm.	Gray.	$7 \cdot 400$	G. B. P.	\ldots
Titanium .	17.1	Gregor.	Red.	\cdots	do.
Uranium	17-9	Klaproth.	Gray.	9.000	do.	.	.	\ldots
Chromium.	1797	Vauquelin.		do.
Columbium...	1202	Ilatehetl.			do.			\cdots
Palladium	1803	Wollaston.	Bluish-white.	$11 \cdot 300$		10	10	\ldots	1
Rhodium........	do.	do.	Grayish-white	G. B. P.	\ldots
1ridium \ldots.........	do.	Descotils.		\ldots	do.	\cdots	\cdots	\cdots	\cdots
Osmium......... ${ }^{\text {Cerium. . }}$,	do.	Tenant. Berzelius.	Bluish-black. Gray-white.	\ldots	do.	\cdots	\cdots	\ldots	\ldots
Potassium......)			do.	0.865	136	\ldots	\cdots	\ldots	100
Sodium			do.	0.97	194	.	\cdots	100
Barium	1807	Dary.	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots
Calcium........			\ldots	\cdots	\ldots
Cadmium	1818	Stromeyer.	White.	8.604	11	11
Lithinm.........	do.	Arivedson.		\ldots.
Silicium.........	124	Berzelius.		
Zinconium	…)	do.	\ldots	\cdots	.	\ldots	
Aluminum	18.8)	Wrohler.	\ldots	\ldots	.	\cdots	
Glucinum	\cdots	do.	\ldots	\cdots	.	\cdots	\ldots	
Yttrium	…)	do.	\ldots	
Thonitm	1×39	Berzelius.	\ldots	\ldots
Magnevium	do.	Bussy.	\ldots	\cdots	\ldots	\ldots
Varadium	1×30	Sefistrom.	\ldots	\ldots	\ldots
Lantanium	1840	Hosander.	\ldots	\cdots	.	\ldots	

Antimony* is of a silvery white color, brittle and crystalline in its ordinary texture. It fuses at about 800^{4}, or at a dull-red heat, and is volatile at a white heat. Its specific gravity is 6.712 . (Hatchett, 1'hi!. Trans. 1803. Brande, 819.)

Antimony expands on cooling; it is scarcely used alone, except in combination with similar bars of other metals for producing thermo-electricity: but antimony, which in the metallic state is frequently called "regulus," is generally combined with a large portion of lead, and sometimes with tin, and other metals. See Lood and Tin.
"Antimony and tin, mixed in equal proportions, form a moderately hard, brittle, and very brilliant alloy, capable of receiving an exquisite polish, and not easily tamished by exposure to the air; it has leen occasionally manufactured into speculums for telescopes. Its sp. gr., according to Gellort, is less than the mean of its constituent parts."-Aikin's Dictionary.

Bismuth is a brittle white metal, with a slight tint of red; its specific gravity is 0.82Ω. (Hatchett, Phil. Trans. 1803.) It fuses at 476°, (Crichton,) 507°, (Rudberg,) and always crystallizes on cooling. Aecording to Chaudet, pure bismuth is somewhat flexible. A cast bar of the metal (see Rennic) onetenth of an inch in dianeter, supports, according to Muschenbroek, a weight of 48 pounds. Bismuth is volatile at at high heat, and may be distilled in close ressels. It transmits heat more slowly than most other metals, perhaps in consequence of its texture. (Drande, 861.)

[^9]Bi-muth is scarcely used alone, but it is employed for imparting fusibility to alloys, thes:
8 bismuth, 5 lead, 3 tin, con-titute Newton's fusible alloy, which melts at 2120 F .
2 bismuth, 1 lead, 1 tin, Rose's fusible alloy, which melis at $201^{\circ} \mathrm{F}$.
5 li-muth, 3 lead, 2 tin, when combined melt at 199°.
8 bi-muth, 5 lead, 4 tin, 1 type-metal, constitute the fu-ible alloy used on the Continent for producing the beautiful casts of the French medals, by the clichec process. The motals should be repeatedly melted and poured into drops until they are well mixed. Nr. Chanles V. Walker substituted antimony for the type-metal, and strongly recommends this latter in preference to the first-manel fusible alloy Electrotype Manipulation, Part II. p. 9-11, where the clichice process is described.

1 bismuth and 2 tin make the alloy Mr. Cowper found to be the most suitable for rose-engine and eecentric-turned patterns, to be printed from after the manner of letter-press. He recommends the thin. plates to be cast upon a cold surfice of metal or stone, upon which a piece of smooth paper is placed, and then a metal ring; the alloy should neither bur nor crumble; if proper, it turns suft and silky; when too erystalline, more tin should be added.

2 bi-muth, 4 lead, 3 tin, $\}$
1 bimmuth, 1 lead, 2 tin, $\}$ constitute pewterer's soft solders.
All these alloys must be cooled quickly to avoid the separation of the bismuth; they are rendered more fusible by a small addition of mereury:

Copper, with the exception of titanium, is the only metal which has a red color; it has much lustre, is very malleable and ductile, and exhales a peculiar smell when warmed or rubbed. It melts at at bright-red or dull-white Eeat; or, according to Daniell, at a temperature intermediate between the fusitig points of silver and gold $=1926^{\circ}$ Fahr. Its specific gravity varies from 8.86 to 8.89 ; the former being the least density of cast copper, the latter the greatest of rolled or hammered copper: (Brande, s12̈)

Copper is lised alone for many important purposes, and very extensively for the following : namely; sheathing and bolts for ships, brewing, distilling, and culinary vessels. Some of the fire-boxes for lecoimutive engines, boilers for marine engines, rollers for calico printing and paper-making, pates for the use of engravers, de.

Copper is used in alloying gold and silver, for coin, plate, de., and it enters with zine and nickel into the composition of German silver. Copper alloyel with one-tenth of its weight of arsenicis so simitar in appearance to silver, as to have been substituted for it .

The alloys of copper, which are very numerous and important, are principally inchuded under the general name Pruss. In the more common acceptation, brass means the yellow alloy of copper, with abrut half its weight of zinc ; this is often called by engineers "yellow brass."

Copper alloyed with about one-ninth its weight of tin, is the metal of brass ordmance, which is very generally called gun-metal; similar alloys used for the brasses or bearings of machinery, are called by enginecrs hurd brass, and also gm-metal; and such alloys, when employed for statues and medals, are called bronze. The further addition of tin leads to bell-metal, and speculum-metal, which are named after their re-pective u-es; and when the proportion of copper is excedingly small, the alloy constitntes onc kimd of pewter.

Cupper, when allowed with nearly half its weight of leal, forms an inferior alloy, resembline grm metal in color, but wiry much softer and cheaper, lead being only abont one-fourth the value of tin, and wed in much larger proportion. This inferior alloy is called potmetal, and also cock-metal, becanse it is ued for large yo..els and measures, for the large taps or cocks for brewers, dyers, and distillers, and thone of smaller kinds for honsehold use.
Gienerally the coppre is only alloyed with one of the metals, zime, tin, or lead; occasionally with two, and sometimes with the three in various proportions. In many cases the new metals are carefully weighed according to the qualities desired in the alloy, but random mixtures more frequently osedr, from the ordinary practice of filling the erucible in ereat part with varous picees of whe metal, of urknown proprotions, and adding at certain quantity of new metal to bring it up to the color and harduese reepured. This is not done riely from motives of economy, but also from an impressinn which appeare to ber very generally entertaincol, that such mixtures are more homorenenus than thuse comporea entirely of new metals, fused tore ther for the first tume.

The remarks we lave to wher on these enpper alloys witl he arranged in the tabular form, in fime groups and, to make them as practical as pmonhe, thay will be staterl in the terms commonly wed in
 fi to 8 oz of zine, (to every promed of emper beiner implied.) In -peaking of gum metal, he woukl met

 alone namenl.
 frimed of coplper.

 of coper.

 rolled; they may lae therefiere unel turenter when reguired.

B to 4 oz . Bath metal, pinchbeck, Mannheim gold, similor, and alloys bearing various names, and re. sembling inferior jeweller's gold greatly alloyed with copper, are of about this proportion: some of them contain a little tin ; now, however, they are scarcely usell.
6 oz. Brase, that bears soldering well.
3 oz . Bristol brass is said to be of this proportion.
8 oz. Ordinary brass, the gencral proportion; less fit for soldering than 6 oz, it being more fusible.
8 oz . Emerson's patent brass was of this proportion, and so is generally the ingrot brass, made by sim ple fusion of the two metals.
9 oz . This proportion is the one extreme of Muntz's patent slienthing. See $10 \frac{9}{3}$.
$10 \frac{2}{3} \mathrm{oz}$. Muntz's metal, or 40 zinc and 60 copper. "Any proportions," says the patentee, "between the extremes 50 zinc and 50 copper, and 37 zinc 68 copper, will roll and work at the red heat; ; but the first-ramed proportion, or 40 zinc to 60 copper, is preferred.
The metal is cast into ingots, heated to a red-heat, and rolled and worked at that heat into ships' bolts and other fistenings and sheathing.
12 oz . Spelter-solder for copper and iron is sometimes made in this proportion; for brass work the metals are gencrally mixed in equal parts. See 16 oz .
12 uz. Pale-yellow metal, fit for dipping in acids, is often made in this proportion.
16 oz . Soft spelter-solder, suitable for ordinary brass-work, is made of equal parts of copper and zinc. About 14 lbs. of each are melted together and poured into an ingot-mould with cross-ribs, which indents it into little squares of about 2 lb . Weight; much of the zinc is lost. These lumps are afterwards heated nearly to redness upon a charcoal fire, and are broken up, one at a time, with great rapidity on an anvil, or in an iron pestle and mortar. The heat is a critical point; if too great, the solder is beaten into a cake or coarse lumps and becomes tarnished; when the heat is proper, it is nicely granulated, and remains of a bright-yellow color; it is afterwards passed through a sicve. Of course, the ultimate proportion is less than 16 oz of zinc.
16 oz . Equal parts is the one extreme of Muntz's patent sheathing. See $10 \frac{2}{3}$.
$16 \frac{1}{2}$ oz. Hamilton and Parker's patent mosaic gold, which is dark-colored when first cast, but on dipneng assumes a hea tuful golden tint. When conled and broken, say the patentees, "all yellowness must cease, and the tinge vary from reddish-fiwn or salmon color to a light purple or lilac, and from that to whiteness." The proportions are stated as from 52 to 58 zinc to 50 of copper, or $16 \frac{1}{4}$ to 17 oz . to the pound.
:2 oz., or 2 zinc to 1 copper, a bluish-white brittle alloy, very brilliant, and so crystalline that it may be pounded cold in a pestle and mortar.
128 cz, or 2 oz of copper to every pound of zinc; a hard crystalline metal, differing but little from zine, but more tenacious; it has been used for laps or polishing disks.
Remarks on the alloys of copper and zine.-These metals seem to mix in all proportions.
The addition of zinc continually increases the fusibility, but from the extremely volatile nature of zinc, these alloys cannot be arrived at with very strict regard to proportion.

The red colur of copper slides into that of yellow brass at about 4 or $\overline{5}$ oz. to the pound, and remains little altered unto about 8 or 10 oz .; after this it becomes whiter, and when 32 oz . of zinc are added to 16 of copper, the mixture has the brilliant silvery color of speculum metal, but with a bluish tint.
These alloys, from about 8 to 16 oz . to the pound of copper, are extensively used for dipping, as in an enormous variety of furniture work; in all cases the metal is amealed before the application of the scouring or cleaning processes, and of the acids, bronzes, and lackers subsequently used.

The alloys with zinc retain their malleability and ductility well, unto about 8 or 10 oz . to the pound; after this the crystalline character slowly begins to prevail. The alloy of 2 zinc and 1 copper, before named, may be crumbled in a mortar when cold.
The ordinary range of good yellow brass, that files and turns well, is from about $4 \frac{1}{2}$ to 9 oz . to the pound. With additional zinc, it is harder and more crystalline; with less, more tenacious, and it hangs to the file like copper; the range is wide, and small differences are not perceived.

Alloys of copper and tin only.-The marginal numbers denote the onnces of tin added to every pound of copper.

Ancient Copper and Tin Alloys.

${ }^{\frac{3}{4}} \mathrm{oz}$. Ancient bronze nails flexible, or 20 copper, 1 tin . (Ure.)
13 oz. Soft bronze, or 9 to 1 .
2 oz. Medium bronze, or 8 to 1 .
$2 \frac{1}{2} \mathrm{oz}$. IIard bronze, or 7 to 1 .
According to Pliny, as quoted by Wilkinson.
Ancient weapons and touls, by various analyses, or 8 to 15 per cent, tin; medals from 8 to 12 per cent. tin, with 2 parts zine added to each 100, for improving the bronze color. (Ure.)
6 to 8 oz . Ancient mirrors.

Modern Copper and Tin Alloys.

1 oz . Soft gun-metal, that bears drifting, or stretching from a perforation.
11 oz. A little harder alloy, fit for mathematical instruments; or 12 copper and one very pure grain th
$1 \frac{1}{2}$ oz. Still harder, fit for wheels to be cut with teeth.
$1 \frac{1}{2}$ to 2 oz . Brass ordnance, or 8 to 12 per cent. tin; but the general proportion is one-ninth part of tin 2 oz Hard bearings for machinery.
$2 \frac{3}{2}$ oz. Yery hard bearings for machincry. By Muschenbroek's tables it appears that the proportion 1 tin and 6 copper is the most tenacions alloy; it is too brittle for general use, and contains $2 \boldsymbol{2}$ oz. to the pound of copper.

For some other alloys wed in machincry, see alloys of copper, zinc, tin, and lead, p. 354
3 oz . Soft musical bells.
$3 \frac{1}{2}$ oz. Chinese grongs and cymbals, or 20 per cent. tin.
\ddagger oz. House bells.

1！oz．Large bells．
5 oz ．Largest bells．
Th to $8 \frac{1}{3} \mathrm{oz}$ ．Speculum metal．Sometimes ene onnce of brass is alded to every nound as the meang of introducing a tritling quantity of ame；at other times shizall proportions of silver are auder？， the employment of areenic was strong＇y adrocated by the liev．Joim Edwards．Lord Oxman－ town，now the Earl of Rosee，says，＂tin and copper，the materinls employed ly Nowtun in the first reflecting telescope，are preferable to any other with which I am acguainted；the be－t 1 ropertions being 4 atoms of copper to 1 of tin，（Tumer＇s nambert；）in fact， $12 e^{\circ} 1$ parts of copp per to $5 \mathrm{~S} \boldsymbol{y}$ of tin．＂－Trans．Royal soc：1810，p． 544.
The object agreed upon by all experimentalists appears to loe the exact saturation of the eopper with the tin，and the propertionate quautities difior erry matcriutly（in this and all other alloys cetordiny in the respectioc dearces of purity of the metals：for the most perfect alloys of this group，swedish cop－ per and grain tin should be used．
Mr．Ross says：＂When the alloy is perfect，it should he white，glassy，and tlaky．When the enmper is in excess，it imparts a red tint easily detected；when the tin is in exees，the fracture is gramblaterh and also less white．＂His practice is to pour the melted tin into the tluid copper when it is at the low est temperature that a mixture by ctirring can be effected；then to pour the mixture into an ingot，and to complete the combination by remelting in the most gradual manner，by putting the metal into the furnace as soon almost as the fire is lighted．Trial is made of a little piece taken from the pot inme－ diately prior to pouring．
23 oz．of tin to 1 lb ．of copper make the alloy called by the pewterers＂temper．＂which is added it small quantities to tin for some kinds of pewter，called＂tin and temper，＂in which the copper is fre quently much less than 1 per cent．

Remarks on the alloys of coppre and tia coly．－These metals seem to mix in all proportions：
The addition of tin continually increases the fusibility，although when it is added cold it is apt te make the copper pasty，or even to set it in a solid lump in the crucible．
The red culor of the copper is not greatly impaired in thoce proportions used liy the encincer，namely up to about $2 \frac{1}{2}$ oz to the pound；it becomes grayish white at 6 ，the limit suiable for bells，and quite white at about s ，the speculum metal；after this，the alloy becomes of a bluish cast．
The tin alloy is scarcely mallealle at 2 oz，and soon becomes very hard，hrittle，and sonoroms；ane when it has ceased to serve for producing sound，it is emplowed for retlecting light．
The tough，tenacious character of copper under the tools rapilly gives way：alloys of $1 \frac{1}{2}$ cut easily －$\frac{1}{2}$ assume about the maximm hardness without being crystalline；after this they yieh to the tile by crumbling in fragments mather than by ordinary almaion in shred＊，until the tin very greatly predenif nates，as in the pewters：when the alluys becone the more flexible，suft，malleable，and ductile，the less eopper they erntain．

Alloys if copper and lead only．－The marginal numbers denote the ounces of lead atded to every pound of cerpper．
2oz．A red－colored and ductile alloy：
4 uz ．Less red and ductile；neither of these is so much used as the fullowing，as the object is to emp－ ploy as much lead as possible．
Goz．Urdinary pot－metal，called dry pot－metal，as this quantity of lead will be taken up without sep－ arating on cooling；this is brittle when warmed．
7 oz ．This alloy is rather short，or disposed to break．
8 oz．Inferior pot－metal，called wet Inot－metal，as the lead partly oozes out in cooling，especially when the new metals are misel；it is therefore always amal to fill the cracible in part with ohd metal，and to adh new for the remainder．This alloy is wery brithe when dightly warmed More lead can seare ly be uired，as it separates on coolines．
Remarks on the alloys of copper and leel onl！l－These metals mis in all proportiens until the lead amounts to nearly half；alur this they separate in cooling．

The addition of lead greatly increases the furbility．
The re 1 color of the copper is senn dealenes hy the load；at abonat 1 wz．to the pmand the work has a bluish leaden hue when tirat tamed，hat hanges in an hour or so to that of a dull gran－metal character．

When the leal does not execol about 1 whe．the mixture is tulerably malleable but with more la ad it ＊oon beomes very britthe and rotten；the alloy is gratly inforior to ram metal，and is principally used on aceomet of the eheaphe－s of the mixture，and the fachlity wit！．Which it is turned and tiled．

Alloys of copp＂r，zime，tin，and letel，we．－This group rifors principally to gun metal alloys to which bore or hes zine is alded by many mernere；the quantity of tin in every pumb of the alloy，which is

Keller＇s statues at Versaills are fomm ats the mata of four malyses，to consint of

「吅的号	$21 \cdot 10$	！	117	chateres．
\％anc	5.58	＂	1	＂
＇Tin	$1 \cdot 7$	＂	\％	＂
lead	1\％\％	＂	1	＂

Las 100 parta $\begin{aligned} & \text { ar the } 16 \text { ounces．}\end{aligned}$

 partw in each low of zine，to improse the color．
＇Ihe modem soralled bromze medials of our mint are of pure engper，mal are ufterwaty lanemel atrertintally．

\(\left.\left.\begin{array}{lllll}1 \frac{7}{2} oz. tin 2 oz. brass 16 \& "

1 \frac{3}{4} \& " \& 2 \& " \& 16

2 \& " \& 17 \& " \& 16\end{array}\right\} $$
\begin{array}{l}\text { " }\end{array}
$$\right\}\)| For wheels to be cut into teeth. |
| :--- |
| For turning-work. |

2	a	$1 \frac{1}{2}$	"	16	"	For turning-work.
$2 \frac{1}{4}$	"	$1 \frac{1}{3}$	"	16	For nuts of coarse threads, and bearings.	

The engineer who uses these five alloys recommends melting the eopper alone: the smal. quantity of brass is then melted in another crucible, and the tin in a ladle; the two latter are added to the copper when it has been removed from the furnace; the whole are stirred together and poured into the moulds without being run into ingots. The real quantity of tin to every pound of copper is about one-eighth ounce less than the numbers stated, owing to the addition of the brass, which increases the proportion of copper.
$1 \frac{7}{8} \mathrm{oz}$. tin, $1 \frac{7}{8} \mathrm{oz}$. zine, to 1 lb . of copper. This alloy, which is a tough, yellow, brassy gun-metal, is used for general purposes by a celebrated engineer; it is made by mixing $1 \frac{1}{3} \mathrm{lb}$. tin, $1 \frac{1}{2} \mathrm{lb}$. zine, and 10 lbs . of copper: the alloy is first run into ingots.
$2 \frac{1}{2}$ oz. tin, $\frac{1}{2}$ oz. zine, to 1 Ib . of copper, used for bearings to sustain great weights.
$2 \frac{1}{2} \mathrm{oz}$. tin, $2 \frac{1}{2} \mathrm{oz}$ zine, to 1 lb . copper, were mixed by the late Sir F. Chantry, and a razor was made from the alloy; it proved nearly as hard as tempered steel, and exceedingly destructive to new files, and none others would touch it.
1 oz . tin, 2 oz z zinc, 16 oz . brass. Best hard white metal for buttons.
$\frac{1}{2} \mathrm{oz}$. tin, $1 \frac{1}{2} \mathrm{oz} . \mathrm{zine}, 16 \mathrm{oz}$. brass. Common ditto. (Phillips's Dictionary.)
:0 lbs. tin, 6 lbs copper, 4 lhs . brass, constitute white solder. The copper and brass are first melted together, the tin is added, and the whole stirred and poured through birch twigs into water to granulate it; it is afterwards dried and pulverized cold in an ron pestle and mortar. This white solder was introduced as a substitute for silver solder in making gilt buttons. Another button solder consists of 10 parts copper, 8 of brass, and 12 of spelter or zinc.
Remarks on alloys of copper, zine, tin, lead, de.-Ordinary yellow brass, (copper and zine,) is rendered very sensibly harder, so as not to require to be hammered, by a small addition of tin, say $\frac{子}{4}$ or $\frac{7}{2} \mathrm{oz}$. to the lb. On the other hand, by the addition of $\frac{子}{4}$ to $\frac{7}{2} \mathrm{oz}$. of lead, it becomes more malleable and casts more sharply. Brass becomes a little whiter for the tin, and redder for the lead. The addition of nickel to copper and zine constitutes the so-called German silver.

Gun-metal (eopper and tin) very commonly receives a small addition of zine; this makes the alloy mix better, and to lean to the character of brass by increasing the malleability without materially reducing the hardness. The standard measures for the Exchequer were made of a tough alloy of this kind. The zine, which is sometimes added in the form of brass, also improves the color of the alloy, both in the recent and bronzed states. Lead, in small quantity, improves the ductility of gun-metal, but at the expense of its hardness and color; it is seldom added. Nickel has been proposed as an addition to gun-metal by Mr. Donkin, and antimony by Dr. Ure.

Pot-metal (copper and lead) is improved by the addition of tin, and the three metals will mix in almost any proportions: when the tim predominates, the alloy so much the more nearly approaches the condition of gun-metal. Zine may be added to pot-metal in very small quantity, but when the zinc becomes a considcrable amount, the copper takes up the zine, forming a kind of brass, and leaves the lead at liberty, and which, in great measure, separates in cooling. Zinc and lead are also very indisposed to mix alone, although a little arsenic assists their union by "killing" the lead as in shotmetal. Antimony also facilitates the combination of pot-metal; 7 lead, 1 antimony, and 16 copper mixed perfectly well the first fusion, and the alloy was decidedly harder than 4 lead and 16 copper; and apparently a better metal. "Lead and antimony, though in small quantity, have a remarkable effect in diminishing the elasticity and sonorousness of the eopper alloys."

Gold is of a deep and peculiar yellow color. It melts at a bright-red heat, equivalent, aceording to Daniell, to 2016 of Fahrenheit's scale, and when in fusion appears of a brilliant greenish color. Its specific grarity is 19.3 . It is so malleable that it may be extended into leaves which do not exceed the one two hundred and eighty-two thousandth of an inch in thickness, or a single grain may be extended over 56 square inches of surface. This extensibility of the metal is well illustrated by gilt buttons, 14.4 of which are gilt by 5 grains of gold, and less than even half that quantity is adequate by giving them a very thin coating. It is also so ductile that a grain may be drawn out into 500 feet of wire. The pure acils have no action upon gold. (Brande, 972.)

Gold, in the pure or fine state, is not employed in bulk for many purposes in the arts, as it is then too soft to be durable. The gold foil used by dentists for stopping decayed teeth is perhaps as nearly pure as the metal can be obtained : it contains about six grains of alloy in the pound troy, or the onethousandth part. Every superficial inch of this gold foil or leaf weighs $\frac{3}{4}$ of a grain, and is 42 times as thick as the le if used for gilding.

The wire for gold lace prepared by the refiners for gold-lace manufacturers, requires equally fine gold, as when alloyed it does not so well retain its brilliancy. The gold, in the proportion of about 100 grains to the pound troy of silver, or of 140 grains for double-gilt wire, is beaten into sheets as thin as paper; it is then burnished upon a stout red-hot silver bar, the surface of which has been seraped perfectly elean. When extended by drawing, the gold still beang the same relation as to quantity, namely, the 57 th part of the weight, becomes of only one-third the thickness of ordinary gold-leaf used for gilding. In water-gilding, fine gold is amalgamated with mercury, and washed over the gilding metal, (eopper and tin;) the mereury attaches itself to the metal, and when evaporated by heat, it leaves the gold behind in the dead or frosted state: it is brightened with the burnisher. (See Technological liepository, vol. ii., p. 361: 1828.) By the electrotype process, a still thinner covering of pure gold may be deposited on silver, steel, and other metals. Mr. Dent has introduced this method of protecting the steel pendulum-springs of marine chronometers and other time-pieces from rust.

Fine gold is also nsed for soldering chemical vessels made of platinum.
Gold alloys.-Gold-leaf, for gilding, contains from 3 to 12 grams of alloy to the oz, but generally e
grains. The gold used ly respectable denti-ts, for plates, is nearly pure, but necessarily contains about t grains of eopper in the oz troy, or one eightieth part; others use gold contaming upwards of onethird of allor: the copper is theu very injurious.

With corper, gold furms a ductile alloy of a deeper color, harder and more fusible than pure gold: this alloy, in the proportion of 11 of gold to 1 of copper, constitutes standard gold; its den-ity is 17.157 , being a little below the mean, so that the metals slighty expand on combining. One troy pound of this alloy is coined into 40_{40}^{9} sovereigns, or 20 troy pounds into 935 sovereigns and a half. "The pround was formerly coined into 4.4 guineas and a half. The standard gold of France consists of 9 parts of gold and 1 of copper. (Brande, 979.)

F'or Gold Plate the Frencl have three different standards: 9 parts gold, b copper; al-o st gold, it cupper ; and 75 grold, 25 copper.

In England, the purity of gold is expressed by the terms 29, 18, 16 carate, de. The pound troy is supposed to be divided into 21 parts, and the gold, if it could be obtained perfectly pure, might be called 24 carats fine.

The "Old Standard Gold," or that of the present currency, is called fine, there being 2.2 parts of pure gold to ? of copper.

The "New Stimdard," for watch-cases, dec., is 18 carats of fine gold, and 6 of alloy. Nor gold of inferior quality to 15 carats, or the "N゙ew Standard," can receive the 1 Lall mark; and gold of lower quality is generally described by its commercial ralue, as 60 or 40 shilling gold, de.

The alloy may be entirely silver, which will give a green color, or entirely copper fur a red culor ; but the copper and silver are more usually mixed in the one alloy according to the taste and judgment of the jeweller.

The following alloys of gold are transcribed from the memoranda of the proportions employed by a practical jeweller of cousiderable experience.*

First group. - Different kinds of gold that are finished by polishing, burnishing, de., without nece:sarily requiring to be colored:

The gold of 22 carats fine, or the "Old Standard," is so little used, on account of its expernse and greater suftuese, that it has been purposcly omitted.

15 carats, or New Standard gold, of yellow tint:* 15 dwt. (1 grs. gahl.
\because dwt. 18 grs. silver.
2 divt. 6 grs. copper.
20 dwt. 0 grs.
18 carats, or New Standard gold, of red tiat:*
15 divt. 0 grs. gold.
1 dist. 18 grs silver.
3 dwt. 6 grs. copler.
20 dwt. 0 gra.
16 earats, or Spring gold: this, when drawn or rolled very hard, makes springs little inferior to those of atcel :

sos. gold of yellow tint, or the fine gold oi the jer ellers; 16 calrats mearly :

1 oz .0 dwt. geld.
7 dwe silver.
5 dwt. culper.
$1 \mathrm{uz} .1 \ddot{2} \mathrm{dwt}$.
G0s. gold of red tint, or 10 carats:
1 oz . 0 dwt. gold. 2 dwt silver. 8 dwt. copier.

1 oz. 10 dwt.
40 s gold, or the uld-fishinned jewellers' gold, akout 11 carats thue; bou lomger used:

1 oz .0 dwt. gold.
12 dwt silser.
10 dwot. copper.
2 oz .1 dwt

Sicoul gramp.-Cindorel grolds; theae all require to be submitted to the procras of wet-colurimg, which will be explained: they are need in much smather qumetites, and remuire to be very exactly groprortioned.

[^10][^11]Blne gold; scarcely used:
5 dwt. gold.
5 dwt. steel filings.
10 dwt .

Antique gold, of a fine greenish yellow color:
18 dwt. 9 grs. gold, or 18.9

21 grs silrer,
18 grs. copper,
20 dwt. 0 grs.
20.0

Third group.-Gold solders: these are generally made from gold of the same quality and value as they are intended for, with a small addition of silver and copper, thus:

Solder for 22 carat gold :
1 drst .0 grs of 22 carat gold.
2 grs. silver.
1 gr . copper.
1 dwt. 3 grs.
Solder for 18 carat gold :
1 dwt. 0 grs. of 18 carat gold.
2 grs. silver.
1 gr . copper.
1 dwt. 3 grs.

Solder for C0s. gold: \%
1 dwt. 0 grs. of 60s. gold.
10 grs. silver.
8 grs. copper.
1 dwt. 18 grs.
Solder for 40s. gold ; but middling silser solder is more generally used:

1 dwt. fine gold.
1 dwt . silver.
2 dwt. copper.
4 dwt .

Dr. Mermstadt's imitation of gold, which is stated not only to resemble gold in color, but also in specific gravity and ductility, consists of 16 parts of platinum, 7 parts of copper, and 1 of zinc, put in a crucible, covered with charcoal powder, and melted into a mass.

Gold alloyed with platinum is also rather clastic, but the platinum whitens the alloy more rapidly than silver.

Sead appears to have been known in the earliest ages of the world. Its color is bluish white ; it has much brilliancy, is remarkably flexible and soft, and leaves a black streak on paper: when handled it exhales a peculiar odor. It melts at about 612°, and by the united action of heat and air, is readily converted into an oxide. Its specific gravity, when pure, is 11.445 ; but the lead of commerce seldom exceeds 11:35. (Brande, 833.)

Lead is used in a state of comparative purity for roofs, cisterns, pipes, vessels for sulphuric acid, dc. Ships were sheathed with lead and with wood from before the Christian era to 1450 , after which wood was more commonly employed, and in 1790 to 1800 copper sheathing became gencral; of late years, lead with a little antimony has likewise been used, also Muntz's sheathing, an alloy of copper and zme and galvanized shect-iron. The most important alloys are those employed for printers' type, namely, about

3 lead, 1 antimony, for the smallest, hardest, and most brittle types.
4 lead, 1 antimony, for small, hard, brittle types.
5 lead, 1 antimony, for types of medium size.
6 lead, 1 antimony, for large types.
7 lead, 1 antimony, for the largest and softest types.
The small types generally contain from 4 to 6 per cent. of tin, and sometimes also 1 to 2 per cent. of copper; bnt as old metal is always nsed with the new, the proportions are not exactly known.

Stereotype plates contain about 4 to 8 parts of lead to one of antimony.
Baron Wetterstedt's patent sheathing tor ships consists of lead with from 2 to 8 per cent. of antimony; about 3 per cent, is the usual quantity. The alloy is rolled into sheets.

Similar alloys, and those of lead and tin in various preparations, are much used for emery-wheels and grinding-tools of rarious forms by the lapidary, engineer, and others. The latter also employs these readily fused alloys for temporary bearings, guides, screw-nuts, de.

Organ-pipes consist of lead alloyed with abont half its quantity of tin to harden it. The mottled or crystalline appearance so much admired shows an abundance of tin.

Shot-metal is said to consist of 40 lbs . of arsenic to one ton of lead.
In casting sheet-lead, the metal was poured from a swing-trough upon a long and nearly horizontal table, covered with a thin layer of coarse damp sand, previously levelled with a metal rule or strike. The thickness of the fluid metal was determined by running the strike along the table before the lead cooled, the excess being thus swept into a spill-trough at the lower end of the table; but the sheet-lead now more commonly used is cast in a thick slab, and reduced between laminating rollers; it is known as "milled lead."

The metal for organ-pipes is prepared by allowing the metal to escape through a slit in the trough, as it is slid along a horizontal table, so as to leave a trail of metal behind it; the thickness of the metal is regulated by the width of the slit through which it runs, and the rapidity of the traverse; a piece of cloth or ticken is stretched apon the casting-table. The metal is planed to thickness, bent up, and soldered into the pipes.

Lead pipes are cast as hollow eylinders and drawn out upon triblets; they are also cast of indefinite

[^12]length without drawing. A patent was aken out for casting a shath of tin within the lead, but it hata been abanduned.
Lead shot are cost by letting the m etal rum throurh a narren slit, intor a pecies of eolanier at the top of a lofty tower; the metal ceapes in drops, which, for the mot part, anme the sherical form before they reach the tank of water into which they fall at the fout of the tower, and this prevents and being brui-ed. The more lofty the tower, the larger the shot hat can be prowheel; the enel and hed
 is sliythty wriegled; the true or round thot run te, the bottom, the imperfeet ons stip, by the way, ant are thrown adile to be remelted; tha shat are afoerwar ls rillled or sitel for size, and chromed in a Garrel with black-had.
Mr. Joseph Manton to ${ }^{\text {k }}$ wut a patent for :amal pamatine thas surface of leallon she with mern ary One pound of mercury was abled to wery ewt. of shot; they were churned twecther in a reswhin farrel nearly full of water, until the shot astamed a silvery cost. These shot were statel to foul he. barrel of the gun in a less degree than others, and alan to be les ingurious to the game after it hat been killed.
 "rgentum ciem, an l quicksilner. It has been known form very remote aqes. It is liquid at all emmon temperature ; solil and malleable at - $40^{2} \mathrm{~F}$... an 1 contracts con-iderably at the moment of
 atate its density execed; 11 . The specific gravity of mereurial rapor is 6.9%. (Demss, 1 nm . de (\%.d Ph, xxxiii., l'r"tule 92e.)
Hereury is used in the thuid state for a rariety of philosuphical instruments, and for preseure gaza
 usel with tin-foil for silvering looking ghasses, and it has been employed as a substitute for water in hardching stecl. Mercury forms amalrams with bismuth, copper, rold, lead, palladium, silver, tin, and zine:
Mercury is commonly used for the extraction of gold and silver from their ores by amalyamation, an 1 alow in water-gilding. see fiold.

Sickel is a white, brilliant metal, wheh ants upon the marnetie: ne dile, an 1 is iteclf capable of hat amming a marget. Its murnetism is more fectule than that of irom, and vani-hes at a heat =omewhat

 temparature, bat whon heated in the ar it aceques varims tints, like sted ; at a rel hat it beconas coated hy.a graty wide. (Birande, su!.)
Nuckel in searcely u-ed in the smple state; Mr. Brande mentions, however, that he has seen a lawarian coin that had been -truck in it; but it is principally wed together with copper and zine, in alloys that are rembered the hater and whiter the mere nickel they contan; they are kemon under the names of albata, briti-h plate, wectrom, German silver, palifong, teutanarg, dec. : the proportions dilfir much, nccording to $ן$ rice ; thus the

> Cummonest are 8 to 4 parts nickel, 20 copper, and 16 zinc.
> best are 5 to 6 parts nickel, 20 copper, and 8 to 10 zine.

About two thirds of this metal is usel for articles resembling plated gouds, an 1 some of which are abo phated, (see silerr ; the remainder is empheyed for harness, furniture, drawing and mathematical in-trument: ; pectacles the tongues fur aceordions, and numerous other small work:-
The erbite roppre of the Clineer, which is the same as the German silver of the present day, is compoed, accordine to the malysis of Dr. Fy fe, of

$$
\begin{aligned}
& \text { 17.15 " " } 5: 30 \text { " } 1 \% 0 \text { " } 0 \text { "riclis Imitution silner }
\end{aligned}
$$

The white copper manufactured at Sutil, in the durlyy of sase Ilibburghamem, is sail by hefersteir.

 a minute quantity is mot projudicial.

Iron and steel have beca allowel with, nickel; the formor, the same as the meternic iron which
 that re-pect than sted not alloyeal.

- Gollablime is a soft metal, hut its alleys ane all harder than the pure metal. With silver it forme

 afterwarilo malle:able am ductile:"- It: 'ral:

 mere fiur $1 \times 1 \mathrm{l}$.

 for. $11 .-2.3$
and air. It varies in density from 21 to $21 \cdot 5$, according to the degree of mechanical compression which it has sustained; it is extremely ductile, but cannot be beaten into such thin leares as gold and silver: (Brande, 4th Ed. p. 82..)

The particles of the generality of metals, when separated from the foreign matters with which they are combined, are joined into solid masses by simple fusion; but platinum being nearly infusible when pure, requires a very different treatment, which was introduced by Dr. Wollaston, and is now conducted in the following manner by Messrs. Johnson and Cock, of London, the celebrated metallurgists.
The platinum is first dissolved chemically, and it is then thrown down in the state of a precipitate; next it is partly agglutinated in the crucible into a spongy mass, and is then compressed whilst cold in a rectangular mould by means of a powerful fly-press or other means, which, in operating upon 500 ounces, converts the platinum into a dense block about 5 inches by 4 , and $2 \frac{1}{3}$ inches thick. This block is heated in a smith's forge, with two tuyeres meeting at an angle, at which spot the platinum is placed amidst the charcoal fire; when it has reached the welding point, or almost a blue heat, it receives one bow under a heavy drop, or a vertical hammer, somewhat like a pile-driving engine; it then requires to be reheated, and it thus receives a fresh blow about every 20 minutes, and in a week or ten days it is sufficiently welded or consolidated on all sides to admit of being forged into bars, and converted into sheets, rods, or wires by the ordinary means.

The motive for operating upon so great a quantity is for making the large pans for concentrating sulphuric acid, in only two or three pleces, which are soldered together with fine gold. In France, 2,000 ounces are sometimes welded into one mass, so that the vessels may be absolutely entire, a practice which is considered in this country to be unnecessarily costly. For small quantities the treatment is the same, but in place of the drop, the ordinary flatter and sledge-hammer are used.

Platiuum is exccedingly tongh and tenacions, and "hangs to the file worse than copper," on which account, when it is used for the graduated limbs of mathematical instruments, the divisions should be cut with a diamond point, and which is the best instrument for fine graduations of all kinds, and for ruling grounds, or the lined surfaces for etching.

Platinum is employed in Russia for coin. This valuable metal is used in various chemical and philosophical apparatus, in which resistance to fusion or to the acids is essential.

The alloys of platinum are scarcely used in the arts: that with a small quantity of copper is employed in I'aris for dental surgery. For alloys of platinum and steel, see Quarterly Journal of the Royal Inst., vol ix., p. 328. The alloy of equal parts of steel and platinum is therein highly spoken of as a mirror.
"Dr. Von Eckart's alloy contains platinum 2.40, silver 3.53 , and copper $11 \cdot 71$. It is highly elastic, of the same specific gravity as silver, and not subject to tarnish; it can be drawn to the finest wire from $\frac{1}{8}$ th of an inch diameter, without anmealing, and does not loze its elasticity by annealing. It is highly sonorous, and bears hammering red-hot, rolling and polishing."

Mr. Ross alded to silver one-fourth of its weight of platinum, and he considers that it took up onetenth its weight. The alloy became much harder than silver, capable of resisting the tarnishing influences of sulphur and hydrogen, and was fit for graduations.

An alloy of platinum with ten parts of arsenic is fusible at a heat a little above reduess, and may therefore be cast in moulds. On exposing the alloy to a gradually increasing temperature in open vessels, the arsenic is oxidized and expelled, and the platinum recovers its purity and infusibility.-T'urner's Chemistry.

Tin also so greatly increases the fusibility of phatinum, that it is hazardous to solder the latter metal with tin solder, although gold is so uscd.

Platinum, as well as gold, silver, and copper, are deposited by the electrotype process ; and silver plates thus platinized are employed in Smee's Galvanic Battery.

Rhodium is a white metal, very difficult of fusion; its specific gravity is about 11 :. it is extremely hard. When pure, the acids do not dissolve it. (Brande, 1001.)

Rhodium was discovered in 1803, by Dr. Wollaston, and has been long employed for the nibs of pens, which have been also made of ruby, mounted on shafts of spring gold; these kinds have had to cendure for the last 7 or 8 years the rivalry of "Hawkins" everlasting Pen," of which latter, the author from many months' constant use can speak most favorably. "The everlasting pen," says the inventor, " is made of gold, tipped with a natural alloy, which is as much harder than rhodium as stecl is hader than lead; will endure longer than the ruby, yields ink as freely as the quill, is as easily wiped, and if left unwiped is not corroded." See also Mec. Mag., 1810, p. 554. Mr. Hawkins employs the natural alloy of iridium and osmimm, two scarce metals, discovered by Tennant anongst the graius of platinum; the alloy is not malleable, and is so hard as to require to be worked with diamond powder. The metals rhodiun, iridium, and osmium, are not otherwise employed in the arts than for pens, although steel has been alloyed with rhodimm. See also the Quarterly Journal, Royal Inst., vol. ix.

Silver is of a more pure white than any other metal; it has considerable brilliancy, and takes a high polish. Its specific gravity raries between 104 , which is the density of cast silver, and 10.5 to 10.6 , which is the density of rolled or stamped silver. It is so malleable and ductile, that it may be extended into leaves not excecting a ten-thousandth of an inch in thickness, and drawn into wire much finer than a human hair. Silver melts at a bright-red heat, estimated by Mr: Daniell at 1873° of Fihrenheit's scale, and when in fusion appears extremely brilliant. (Brande, 953.)

Silver is but little used in the pure unalloyed state, on account of its extreme softness, but it is generally alloyed with copper in about the same proportion as in our coin, and none of inferior value can receive the "Hall mark." Diamonds are set in fine silver, and in silver containing 3 to 12 grs. of copper in the ounce; the work is soldered with pure tin.

The shect metal for plated works is prepared by fitting together very truly, a short stont bar of copper and a thinner plate of silver; when scraped perfectly clean, they are tied strongly together with
binding wire, and united by partial fusion without the aid of solder. The plate 1 metal is then rolled out, and the silver always remains perfectly united, and of the same proportional thickness as at first Adtlitional silver may be burnished on lot, when the surfaces are scraped clean, as explained under gold; this is done either to repair a defect, or to make any part thicker for cugraviug upou, and the unifumity of surface is restored with the hammer. In addition to its use for articles of luxury, the important service of copper plated with silver for the parabolic retlectors of lighthouses must hut be owertooked; these are worked to the curse with great perfection by the bummer alone.
Platel-poons, forke, harness, and many other irticles, are made of iron, copper, brase, and Geman an silver, cither cast or stamped into shape; the objects are then filed and scraped perfectly clean ; and fine silver, often little thicher than paper, is attached with the aid of tin solder and heat; the silver is rubbed close upon every part with a burnisher.
The electrotype process is also used, under Flkington of Co's patent, for plating several of the metal: with silver, which it does in the mo-t unifurm and perfect manner; the silver added is charged by weight at about three times the price of the metal; the German silver, or albata, is generally used for the interior substance, as when the silver is partially worn through, the white alloy is not so rembly detected as iron or copper.
Sileer alloys.-Mr. Brande says, "The allcy with copper constitutes plate and coin ; by the addition of a small proportion of copper to silver, the metal is rendered harder and more sonorous, while ite color is scarcely impared. Evers with equal weights of the tro metals, the compound is white; the maximum of hathess is obtained when the eopper amounts to one-fifth of the silver. The stamderi silece of this comtry consists of $11 \frac{2}{2 \pi}$ pure silver, and $\frac{18}{20}$ copper, or $11 \cdot 10$ silver, and 0.90 copper. A pound of troy, therefore, is composcd of 11 oz . - dwts. pure silver, and 18 dwts of copper. Its density is 10%; its calculated density is 105 , so that the metals dilate a little on combining. The French silver coin is constituted of 9 silver and 1 copper." (Drunde.) The French billon coin is 1 silver and 4 copper. (liclly.)
"For silver plat", the French proportions are $9 \frac{1}{2}$ parts silver, $\frac{1}{2}$ copper, and for trinkets, S parts silver, - copper."

Silver solders are made in the following proportions:
Hardest silver solder, 4 parts fine silver, and 1 part copper; this is difficult to fuse, but is oecasionally emploved for figures.

Harl silver solder, ${ }^{3}$ parts sterling silver, and 1 part brass wire, which is added when the silver is unclted, to aroid wasting the zinc.
Soft silver solker for seneral uke, 2 part fine silver, and 1 part brass wire. Dys some few, $\frac{3}{}$ part it arsenic 15 added, to render the solder more fusible and white, but it becomes less malleable; the arse mic must be introduced at the lant moment, with care to aroid its fumes.

Silver is also soldered with tin solder, (2 tin, 1 lead,) and with pure tin.
Silver and mercury are used in the plastic metallic stopping for teeth.
Tin hats a silvery-white color, with a slight tint of yellow; it is malleable, though sparingly duetile. Common tin-foil, which is obtained by beating out the metal, is not more than 1-1000th of :in inch in thickness, and what is termed white Ifutch metal is in much thimer leaves. Its specific gravity iluctuates from $7 \cdots 8$ to $7 \cdot 6$, the lightest being the purest metal. When bent it occasions a peculiar crackling noise, arising from the destruction of cohesion amongst its particler.

When a bar of tin is rapilly bent backwards and forwards several times successively, it becomes so het that it camot lee held in the hand. When rubbed it exlales a peculiar odor. It melts at 4120 , and by exposure to hoat and air is gradually converted into a protoxide. (Dromed.)
Pure tin is commonly used for dyers hettles; it is also sometimes employed for the bearings of hoenmotive carriages and uther mathinery. This metal is beaten into very large shects, some of which measure 200 by 100 inches, amd are of alnout the thichness of an ordinary card; the small-sized foil is stated not to exceed one thousamblh of an inch in thickness. The metal is first laminated between rollers, and then spread one shent at a time unon a large iron surface or anvil, by the direet blows or hammers with very lone handles; treat skill is required to avoil beating the sheets into holes. :The

 pu-rs. The antalgan used for chectrical mathines, is 7 tim, 3 zine, and 2 mercury.
Tim in drawn into wire, which is soft and capable of being bunt and umbent many times withot lreaking ; it i moderately tomacinas and completely inelatic. 'Tin tube is extensively used for gas

 sulid sulstances and flaiks, requited to be hermetieally seated, with the pawer of ubstracting small quantities.

Tia phate is an ald, reviation of times iron phate; the phates of charcoal iron are semmed bright,

 1s Illiny.

 taina a considerable pertion of ohd metal, to when mew metal is adiled hy trial.

Ins order to regulate the quality of pewter wares, the Pewterers" Company published in 1 亿ל2 " Λ Table of the Assays of Metal, and of the Weights and Dimensions of the several sorts of Pewter Wares," and they threatened with expulsion frem their guild, sn:y who departed from the regulations given in this now scarce and disregarded pamphlet.

The assay is made by casting as small button of the metal to be tried in a brass mould, which is so proportioned that the button, if pure tin, weighs exactly 182 grains; ali the metals added to the tin beine heavier than the latter: the buttons or assays are the heavier the less tin they contain, and at page 14 of thie pamphlet the following scale is given:

Assay of pure tin				82	grains.
Ditto of fine or plate				183 $\frac{1}{2}$	+ "
Ditto of trifling metal	31		"	. $185 \frac{1}{2}$,
Ditto of ley metal	$16 \frac{1}{2}$	*	*	.198 $\frac{1}{2}$,

End it may be added, although an unauthorized addition, that equal parts of tin and lead are about Efly grains heavier than tin, or 232 grains.

Some pewters are now made nearly as common as the last proportion: When cast they are black, shining mal soft; when turned, dull and bluish. Other pewters only contain 1-5th or 1-6th of lead ; these when cast are white, without gloss, and hard; such are pronounced rery good metal, and are but little darker than tin. The French legislature sanctions the employment of 18 per cent. of lead with 82 oi tin, as quite harmless in vessels for wine and rinegar.
The finest pewter, frequently called "tin and temper," consists mostly of tin, with a very little copper, which makes it hard and somewhat sonorous, but the pewter becomes brown-colored when the copper is in excess. The copper is melted, and twice its weight of tin is added to it, and from about $\frac{1}{2}$ to 7 lbs . of this alloy, or the "temper," are added to every block of tin weighing from 860 to 330 pounds.

Antimony is said to harden tin and to preserve a more silvery color, but is little used in pewter. Zinc is employed to cleanse the metal rather than as an ingredient ; some stir the fluid perter with a thin strip, half zine and half tin; others allow a small lump of zine to float on the surface of the fluid metal whilst they are casting, to lessen the oxidation.

Dritannia metal, or white metal, is said to consist of $\frac{21}{2}$ crrt. of block tin, 28 lbs . antimony, 8 lbs . copper. and 8 lbs . brass; it is cast into ingots and rolled into very thin sheets. This manufacture was in troduced in about the year 1770 , by Jessop and Hancock.
Tin solders are very much used in the arts, and according to Dr. Turner,

> 1 tin 3 lead, the coarse plumber's solder, melts at about 500 F .
> 2 " 1 " the ordinary or fine tin solder "" "" 360 F .

Zinc-A bluish-white metal, with considerable lustre, rather hard, of a specific gravity of about 6.8 in its usual state, but, when dram into wire, or rolled into plates, its density is augmented to 7 or $\mathrm{T} \cdot \mathrm{a}$. In its ordiuary state at common temperatures, it is tough, and with difficulty broken by blows of the hammer. It becomes very brittle when its temperature approaches that of fusion, which is abont 773°; but at a temperature a little above 212°, and between that and 300°, it becomes ductile and malleable, and may be rolled into thin leaves, and drawn into moderately fine wire, which, however, possesses but little tenacity. When a mass of zinc, which has been fused, is slowly cooled, its fracture exhibits a lamellar and prismatic crystalline texture.-Brande, 770.

Zine, which is commercially known as spelter, although it is always brittle when east. has of late years taken its place amongst the malleable metals; the early stages of its manufacture into sheet, foil, and wire, are stated to be conducted at a temperature somewhat above that of boiling water; and it may be afterwards bent and liammered cold, but it returns to its original errstalline texture when remelted. It has been applied to many of the purposes of iron, tinned-iron, and copper; it is less subject to oxidation from the effects of the atmosphere than the iron, and much cheaper, although less tenacious, ductile, or durable than the copper. The sheet metals when bent lengthways of the sheet, (or like a roll of cloth,) are less disposed to crack than if bent sideways. In this respect zine and sheet-iron are the worst: the risk is lessened when they are warmed.

Zinc is applied as a coating to preserve iron from rust.
Zine mixed with one-twentieth its weight of speculum metal, may be melted in an iron ladle, and made to serve for some of the purposes of brass, such as common chucks. The alloy is sufficient to modify the crystalline character, but reserves the toughness of the zine; it will not, however, bear hammering, either lot or cold. Four atoms of zine and one of tin, or $133 \cdot 2$ and $57 \cdot 9$, make a hard, malleable, and less crystalline alloy:
biddery ware, manalactured at Biddery, a large eity, 60 miles N. W. of Myderabad in the East Indies, and aloo at Denares, is said by Dr. Ieyne to consist of copper, 16 nz ; lead, 4 oz ; and tin, 2 oz.. melted together: and to every 3 oz . of this alloy, 16 oz of spelter or zinc are added. The metal is used as in inferior substitute for silver, and resembles some sorts of pewter.

The foregoing alloys are mostly derived from actual practice, and although it has been abundantly shown that alloys are most perfect, when mixed according to atomie proportions, or by multiples of their chemical equivalents, yet this excellent method is little adopted, owing to varions interferences.
For example, it is in most cases necessary, from an cenomic view, to mix some of the old alloys, (the proportions of which are uncertain, along with the new metals. In most cases also unless the fu-ion and refusion of the alloys are conducted witl considerably more care than ordinary practice ever attains, or really demands, the loss by oxidation completely invalidates any nice attempts at proportion; and
which profortion; can be alune exactly arrived at, when the combined metals are nearly or quite pure.

Herdness, fricture, and color of alloys. -The object uf this division of our article is to explain, in at gencral way, some of the peculiarities and diferences amonet alloys, in the mamer of a supplement to the list; prior to enteriug on the means of melting the metals, without which proces alloys cannot be made: ret notwithstanding that the list contains the greater number of the abloys in ordinary use, and many others, it is merely a small fraction of those which might be made, for, says l)r. Turner," It is probable that each metal is capable of uniting in one or more proportions with every other metal, and on this supposition the number of alloys would be execerlingly numerous."*

It is also stated by the same distingui=hed authority, that ". Metals appear to unite with one another in every proportion, precisely in the same manner as sulphuric acil and water. Thus there is no limit to the number of alloys of gold and copper." The same might be said of many other metals, and when the alloys compounded of three, futr, or more metals, are taken into account, the conceivable mumber of alhys becomes almo-t unlimited. "It is certain, however, that metals, have a tendency to combine in definite proportion; for several atomic compounds of this kind occur native." "It is indeed pussible that the variety of proportions in alloys is rather apparent than real, arining from the mixture of a fow definite compounds with each other. or with uncombined metal; an opinion not only sugiested by the mode in which alloys are prepared, but in some measure supported by observation." \dagger

It appears to be scarcely possible to give any sufficiently general rules by which the propertics of allors may he safely inferred from those of their constituents; for although, in many eases, the working qualitio and appearance of an alloy, may be nearly a mean proportional hetween the nature and quan tities of the metals composing it; yet in other and frequent instances the deviations are exces-ive, as will be seen by several of the examples referred to.
Thus, when lead, a soft and malleable metal, is combined with antimony, which is laad, brittle, and erystalline, in the proportions of from twelve to fifty parts of lead to one of antimony, a flexible alluy is cobtained, resembling lead, but somewhat harder, and which is rolled into sheets fur sheathing shiph. cix parts of lead and one of antimony are used for the large soft printers types, which will leend slightly, but are con-iderably harder than the foregoing; and three parts of lead and one of antimony are employed for the smalle-t types, that are very hard and brittle, and will not bend at all : antimony heime the more expensive metal, is used in the smallest quantity that will suflice.t The difference in specific gravity between lead and antimony constantly interferes, and unless the type metal is fre(quently stirred, the lead, from being the heavirr metal, sinks to the bottom, and the antimony is dispos irationally used from the surface. S'

In the above examples, the differences arising from the propurtions appear intelif rible enongh, at when the soft lead prevals, the mixture is much like the lead; and as the hard, brittle antimony is inereased, the alloy becomes lardened, and more brittle: with the proportion of four to one, the frace ture is neither reluctant like that of lead, nor foliated like antimony; but assumes very nearly the grain and collor of some kinds of sted and castiron. In like manner when tin and lead are alloyed, the former metal imparts to the mixture some of its hardness, whiteness, and fusibility, in proportion to its quantity; as seen in the various qualities of pewter, in which however copper, and sometimes zine or antimons, are found.

The same agreement is not always met with; as nine parts of eupper, which is red, and one part of tin, which is white, each ecry malleable and ductile metals, make the tough, rigid metal used in brass ondnance, from which it obtains its modern name of gun-metal, but which nether admits of rolling nor drawing into wire; the sane alloy is described by Pliny as the soft bronze of his day. The contintal ahdition of the tin, the softer molut, produces a gradual inerease of hardaess in the mixture; wifh abmut mo--ixth of tin the alloy asumes its maximum hardness consistent with its appleation to mechanical hase; with one-fourth to one third tin it becomes highly elastic an! sonorous, and its brittheness tather than its hardeness is greatly increased.

When the coppro becomes two, and the tin one part, the alloy is so hard as mot to admit of beine chit wilh steel terls, but erumble wher their action; whon strwk with at hammer, or even stadenly narmel,

 atnl wher in-trumetits, fur which purper it is alone tiverl.

 cett anil tiled.

[^13]metal, called pot-metal, or cock-metal, from its employment in those respective articles. This alloy is much softer than brass, and hardly possesses malleability; when, for example, the beer-tap is driven into the cask, immediately after it has been scalded, the blow oceasionally breaks it in pieces, from it, reduced cohesion.

Another proof of the inferior attachment of the copper and lead, exists in the fact that if the moulds are opened before the castings are almost cold enough to be handled, the lead will ooze ont, and appear on the surface in globules. This also oceurs to a less extent in gun-metal, which should not, on that account, be too rapidly exposed to the air; or the tin strikes to the surfuce, as it is called, and makes it partieularly hard at those parts, from the proportional increase of the tin. In easting large masses of gun-metal, it frequently happens that little hard limps, consisting of nearly half tin, work up to the surface of the runners or pouring places, during the time the metal is cooling.

In brass, this separation scarcely happens, and these moulds may be opened whilst the castings are red-lot, without such occurrence; from which it appears that the copper and zine are in more perfect chemical union, than the alloys of copper with tin, and with lead.

Molleability and ductility of alloys.-The malleability and ductility of alloys are in a great measure referable to the degrees in which the metals of which they are respectively composed possess these eharacters.

Lead and tin are malleable, flexible, ductile, and inelastic, whilst cold, but when their temperatures much exceed about half way towards their melting heats, they are exceedingly brittle and tender, owing to their reduced cohesion.

The alloys of lead and tin partake of the general nature of these two metals; they are flexible when cold, even with certain additions of the brittle metals antimony and bismuth, or of the fluid metal mereury; but they crumble with a small elevation of temperature, as these alloys melt at a lower degree than either of their components, to which circumstance we are indebted for the tin solders.

Zinc, when east in thin cakes, is somewhat brittle when cold, but its toughness is so far increased when it is raised to about 300° Fahr. that its manufacture into sheets by means of rollers is then admissible; it becomes the malleable zinc, and retains the malleable and ductile character, in a moderate degree, even when cold, but in bending rather thick plates it is advisable to warm them to avoid fraeture; when zinc is remelted it resumes its original crystalline condition."

Zine and lead will not combine without the assistance of arsenic, unless the lead is in very small Guantity; the arsenic makes this and other alloys very brittle, and it is besides dangerous to use. Zine and tin make, as may be supposed, somewhat hard and brittle alloys, but none of the zine alloys, exeept that with copper to constitute brass, are much used.

Guld, silver, and copper, which are greatly superior in strength to the fusible metals above named, may be forged either when red-hot or cold, as soon as they have been purified from their earthy maters, and fused into ingots; and the alloys of gold, silver, and copper are also malleable, either red-hot re cold. \dagger
Fine, or pure gold and silver, are but little used alone; the alloy is in many eases introduced less with the view of depreciating their value than of adding to their hardness, tenacity, and ductility; the processes which the most severely test these qualities, namely, drawing the finest wires and beating gold and silver leaf, are not performed with the pure metals, but gold is alloyed with copper for the red tint, with silver for the green, and with both for intermediate shades. Silver is alloyed with copper only, and when the quantity is small its color suffers but slightly from the addition, although all its working qualities are greatly improved, pure silver being little used.
The alloys of similar metals having been corsidered, it only remains to observe that when dissimilar metals are combined, as those of the two opposite groups-namely, the fusible lead, tin, or zine, with the less fusible copper, gold, and silver-the malleability of the alloys when cold is less than that of the superior metal; and when heated barely to redness, they fly in pieces under the hammer; and therefore, brass, gun-metal, de., when red-hot, must be treated with precaution and tenderness. Muntz's patent metal, which is a species of brass and is rolled redhot, appears rather a contradiction to this; but in all probability this alloy, like the ingots of cast-steel, requires at first a very nice attention to the force applied. It will be also remembered the action of rollers is more regular than that of the hammer; and soon gives rise to the fibrous character, which, so far as it exists in metals, is the very element of strength when it is uniformly distributed throughout their substance. This will be seen ly the inspection of the relative degrees of cohesion possessed by the same metal when in the conditions of the casting, sheet, or wire, and to which quality or the tenacity of alloys we shall now devote a few lines.

Strength or colesion of alloys.- The strength or cohesion of the alloys, is in general greatly superior to that of any of the metals of which they are composed.

All nice attempts at proportion, are, however, entirely futile, unless the metals are perfectly pure; for example, it is a matter of common observation that for speculums, a variable quantity of from seven and a half to eight and a half ounces of tin is required for the exact saturation of every pound of eop per, and upon which saturation the efficiency of the compound depends; bells of exactly similar quality sometimes thus require the duse of tin to vary from three and a half to five ounces to the pound of copper, according to the qualities of the metals.

Fusibility of clloys.-In concluding this slight view of some of the general chamaters of alloys, it remains to consider the influence of heat, both as an agent in their formation, and as regards the degree in which it is required for their after fusion ; the lowest a vailable temperature being the most desirable in every such case.
"Detals do not combine with each other," says Dr. Turner, "in their solid state, owing to the influence
ot chenical affinity beiner counteracted by the foree of cohesion. It is necessary to liguefy at least one of them, in which case they always unite, providen their mutual attraction is energetic." Thus, brass is formed when pieces of copper are put into melted zine; anl gold unites with mercury at common tem. peratures by mere contact."

The agency of mercury in bringing about triple combinations of the metals, buth with and withont heat, is also very curions and extensive. Thus, in water-gilding, the silver, colper, or crilling metal, when chemically clean, are rubbed over with an amalgam of gold containing about eifht parts of mercury; this immediately attaches iteclf, and it is only necessary to evaporate the mereury, which repuires a very moderate heat, and tho gold is left behind. Hater-silecring is similaly accors-pli-hed.

C'ast-iron, wrought-iron, and steel, as well as copper and many other metals, may be tinned in a -imilar manter. An amalgam of tin and mercury is made so as to be soft and just friable; the mutal to be timned is thoroughly cleaned either by filing or turning, or if only tarnished by exponere, it is cleaned with a piece of emerr-paper or otherwise, withont oil, and then rubbed with a thick eloth moistened with a few drops of muriatic acil. A little of the amalgam then rubbel on with the same ras, thoroughly coats the cleanct parts of the metal by a process which is described as cold-timnin!; other pieces of metal may be attached to the timed parts by the orlinary process of tin-soldering.

In making the timned-iron plates, the seoured and cleaned iron plates are immersed in a bath of pure melted tin; covered with pure talluw, the tin then unites with every part of the surfaces; and in the ordinary practice of timing culinary vesels of copper, pure tin is also nsed. The two metals, however must then be raised to the melting heat of in ; but the presence of a litte meremy enables the proces: to be executed at the atmospheric temperature, as above explained.

In Mr. Mallett' = recently patented "procesees for the protection of iron from oxidation and corrosion, and for the prevention of the funling of ships," une proceeding consists in covering the iron with zithe.

The ritss or plates for iron ships are immersed in a "cleansing bath" of equal parts of sulphuric or muriatte acid and water, used warm; the works are then hammered, and scrubbed with emery or sand, to detach the scales and to thoroughly clean them ; they are then immersed in at "preparing bath" of equal pats of saturated =olutions of muriate of zinc and sal ammoniac, from which the works are transferred to a fluid "metallic bath," comisting of 20: parts of mereury and 1292 parts of zinc, hoth by weight;* to every ton weight of which alloy is adhed about one pound of either potassimm or sudium. (the metallic bases of potas and soda.) the lattor being preferred. As soon as the cleaned iron work have attained the melting heat of the triple alluy, they are removed, having become thoroughly coated with zine.

The affinity of this alloy for iron is, however, so intense, and the peculiar circumstances of surface as induced upon the iron presented to it by the preparing bath are such, that care is requisite lest by too long an immersion the plates are not partially or wholly dissolved. Indeed, where the articles to be covered are small, or their parts minute, such as wire, nails, or stall chan, it is necesary before immersing them to permit the triple alloy to dissolve or combine with some wrought-iron, in order that its aftinity for iron may be partially sati-fied, and thas diminishel. At the proper fusim, temperature of this alloy, which is about 680° Fahr., it will dissolve a plate of wrought-iron of an eighth of an ineh thick in a few seconds.

The palladiumizing process.-The articles to be protected are to be first cleansed in the same way as in the case of zineiner ; namely, by means of the donble salts of zine and ammonia, or of mangane and ammonia; and then to be thinly eonted over with palladimm, applied in a state of amalgam with mercury.

In the opinion of eminent chemists and metallurgists, all the metals, even the mot refractury, which meaty or guite refine tu melt in the crucible when alone, will gradually run down when surombed by some of the more fusible metals in the hluid state; in a mamer similar to the sulution of the metals in mercury, as in the amaleans, or the solutions of solid salts in water. The surfices of the stum rime metals are, as it were, diseolved, wa-hed duwn, or reduced to the state of alloys, layer by layer, matil the entire mass is liquefierl.
 copper, and whilst it gives whiteness and hardnese, it alob renders the mixtme lese furible: Ilatinum combines very ratlily with zinc, areenic, and aloo with tin and other metals; so monh st, that it is
 molder, which fusce at a very low tomprature; although phatmun is com-tanty soldered with tize godd, the melting foint of which is very high in the seale. Again, the ciremmetances that some of the fu-phle hismuth alloye melt below the tomperature of teriling water, or at leas than half the meltime heat of tm.

This much, lowever, may be safoly adrameal, that the alloys, without exeption, me mome canils

 parts.

it seems to be a natural conclusion that each surface of the iron becomes alloyed with the copper; and that the two alloyed surfaces are held together from their particles having been fused in contact, and run into one film. It is much the same when brass or spelter solder is used, except that triple alloys are then formed at the surfaces of the iron, and so with most other instances of soldering.

And in cases where metallic surfices are coated by other metals, the latter being at the time in a state of fusion, as in timed-iron plates and silvered copper; may it not also be conceived, that between the two exterior surfaces which are doubtless the simple metals, a thin film of an alloy compounded of the two does in reality exist? And in those cases in which the coating is laid on by the aid of merenry, and without heat, the circumstances are very similar, as the fluidity of mereury is identical with the ordinary state of fusion of other metals, although the latter require higher temperatures than that of our atmosphere.

When portions of the same metal are united by partial fusion, and without solder, as in the process described as burning together, and more recently hnown as the "autogenous" mode of soldering, no alloy is formed, as the metals simply fuse together at their surfices.

Neither can it be supposed that any formation of alloy can oceur where the one metal is attached to the other by the act of buruishing on with heat, as in making gilt wire, but without a temperature sufticient to fuse either of the metals. The union in this case is probably mechanical, and caused by the respective particles or crystals of the one metal being forced into the pores of the other, and becoming attached by a species of entanglement, similar to that which may be conceived to exist throughout solid bodics. This process, almost more than any other in common use, requires that the metals should be perfectly or chemically clean; for which purpose they are scraped quite bright before they are burnished together, so that the junction may be next approaching to that of solids generally.

And, lastly, when metals are deposited upon other metals by chemical or electrical means, the addifion frequently appears to be a detached sheath, and which is easily remored; indeed, unless the metal to be coated is chemically clean, and that various attendant circumstances are favorable, the sound and absolute union of the two does not always happen, even when carefully aimed at.
METALLURGY. A word derised from the Greek, signifying the art of working metals, or the art by which metals are produced from their ores.

Metals constitute a well-known class of substances, distingnished by characteristics which every one recognizes. They are considered as elementary matter by chemists, because chemistry has failed, up to the present time, to resolve any one of them into more simple forms of matter ; they may, therefore, be regarded as an aggregation of elementary atoms, held together by the force of cohesion. Metals are popularly recognized as heary matter, of great tenacity; of a peculiar metallic lustre, which it is difficult to describe, but which is easily recognized. With one exception, namely, quicksilver, all the metals are solid at ordinary temperatures; they are all capable of liquefaction, and even volatilization, at higher temperatures, the degree of heat being a different one in every instance. Metals, as a clase, are characterized by a higher specific gavity than almost all other matter; they are distinguished by opacity, from which rule only gold and silenium are excepted. The capacity of conducting heat and electricity is possessed by metals to a high degree of perfection.
Malleability is the property of metals to change their form permanently, under a certain pressure, The most important considerations for our present purposes are, the chemical qualities, the fusibility of metals, their affinity for other matter, and their affinity among themselves.

Fusibility.-The degree of heat at which metals assume the solid or the fluid state is their fusibility.

Mercury melts at	39°	Silver melts at.		18600
boils	600°	Gold		19830
Tin melts "	420°	Cast-iron"	"	2700°
Lead	600°	Platinum "	"	4561°

The affinity of the metals for oxygen forms a rery important item in our investigations. The oxides of mercury, silver, gold, platinum and the platinum metals, part with their oxygen by the mere application of heat. The following oxides of metals retain their oxygen at any temperature; they reguire the addition of carbon or hydrogen in order to expel their oxygen: lead, copper, bismuth, antimony, chromium, arsenic, nickel, cobalt, iron, tin, zinc. Most of these oxides may be deprived of their oxygen by carbon only, others by carbon and hydrogen, and some may be reduced by hydrogen only. Hydrogen reduces all these oxides, but with most of them the point of reduction is so low as to leave the metal in the form of a fine poorder, which oxidizes as soon as it is exposed to the atmozphere. Iron, eopper, nickel, chromium, and other metals cannot be reduced by hydrogen, on account of the low heat by which the process is accomplished. Antimony, arsenic, tin, zinc, lead, mercury, and ail the alkaline metals may be reduced by hydrogen. The facility with which metals oxidize is also of importance in metallurgical operations. Lead, copper, bismoth, antimony, chromim, and arsenic do not decompose water at any temperature, but are casily oxidized by atmospheric air. Nickel, cobalt, iron, tin, zine, manganese, decompose water easily at a red lieat. All the terrifiable metals, such as aluminum, and we may add silicon, are easily oxidized at a ligher leat, ant their oxides readily reduced in the presence of carbon, and of such other metals as these metals can combine with. The alkaline metals oxidize most readily muder all conditions, and their oxides are easy of reduction in the presence of other metals, such as lead, antimony, an I others with which the alkaline metals may combine. Besides the combination of the metals with oxygen, their union with other matter, such as sulphur, phosphorus, carbon, ife, $i s$ of high interest. Most of the metals combine readily with sulphur, such as iron or lead; others are not so easily di-posed to enter into that combination, as zine and gold. The affinity of sulphur for the metals and carbon, and the mode and conditions under which these eombinations may be separatei, forms a rery important part of the metallurqist's knowledre. Of the same importance as the sulphur combinations are those of posphoms; which combinations are in most cases mons
difficult of eparation than all other or similar compouncts. Of equal importance to the smolter of metals, is the relation of the metals among themselves; it is not so much the nature and qualities of these combinations, as the conditions under which the metals combine and separate, which interes him

Tlee art of =melting consists in the knowledge of the mature of metals, their fu-ibility and relation to other matter. It is not so much the specific qualities of metals which interest the metallurgi-t, as the mode of manuacturin; the metals from their native ores. To produce metal from ore, the first conse tion is to expuse the ore wowh a high heat as will melt the metal. Gold, mercury, and the phatimm metals may be produced in this way to a certain extent. All or most of the netals in nature are coubined with other matter, such as oxygen, sulphar, phosphorus; to remove the oxyeren, we add to the ore matter which has a greater aflinity for oxygen than the metal, at or uear that denree of heat by which the metal melts: carbon is the moit generally in use, hydrogen serves in some cares, and metals in other:. Metals and sulphur, or other matter, may be roasted, and the metal resolved into an uxide, but if such process is not practicable, the sulphuret or pho-pharet, de., is melted along with thother metal, such as sulphuret of lead or copper with metallic iron, where alwarys that condition is complied with, mamely, that the newly furmed metal is more fusible than the newly formed sulphuret. Detallic ores are in must cases a mechanical mixture of the metal in its pure state, as gold ores ; or it mixture ut the oxi le of metal and other matter, such as is the case in chay-iron-stone: or the ores are a chemical combination of one sulphuret of metal with other sulphurets of metal, as copper-pyrites in eomection with iron-pyrites, to which, frequently, silex or clay is added in admixture. 'The prevailins principle in all metatlurgical operations 1-, with but few exceptims, the transformation of all ores intometallic oxides, and the reduction of these oxides by carbon. Where the metallic oxides are incorporated with matter, such as silex, alumina, or lime, which cannot be reduced at those temperatures and under theses conditions by which the metals melt and are reduced themselves, that matter would prevent the arghlutimation of the metallic globules, and permit but a small portion of the metal to separate from it, even if all other conditions of the redncing process are fulfilled ; this foreign matter forms an inelosure to the metallic particles. This inelosure is to be destroyed, which, in many eatecs, can be done by heat simply; such is the case with some expper ores, where a certain portion of iron is present. In other ease it requires the addition of such matter to the ore which will combine with the impurities of it , melt with it, and libcrate the metal. This later part of the science of metallurgy is the most difficult to obtain, and exerts the most influcnee upon the practical realts of the operation. This branch of our insestigation it is beyond the limits of this artiele to cxplore fully, we c:m furnish but a falint outhe of the prineiples iuvalved.

The formation of fu-ible siars is accomplished by smelting an oxide of one metal torether with the oxide of another, or these oxiles torether with silex. These combinations are subject to the laws of affinity developed by chemistry. Thery depend upon the quantity of the oxides, their degree of oxidation, their relative position in the scale of affinity, and the conditions mader which the oxides meet. The mont prevalent in these combinations are the silicates, or a vitrification of a metallie oxide with silex. Bithor mixed to a silieate, ur ene mixed to the other, are frequently found the carbmates, chlordes, sulphates, Huates, and uther salts, which form in all case's a more or less fusible slay. The mature of the operation requires the formation of a fusible slaty ats most advantageous to the process. In practice, this primeiple is frequently modified, on account of the quality of the metal to be produced, or, more eremedally, for reasons of economy. Silex and alumina are the most pervading admixtures to metallie ores; theee are vitritied loy all the alkalies and alkaline earths, by protuxides of metals, and the oxides of metals. The fu-ibility of these combinations is in the fullowing order: alkalies, alkalinc-earthe, protoxides, amb peroxides. A mixture of various oxides or alkalies is more fusible than that of but one alkali or axide, with silex or alumina; the greater the number of these vitrifying elements, the more fusible and homogencous is the slarg the greater the aflaity between the componing parts of a slar, the easier it molts. The laws involved in this question may be abstracted from domiotry, always, howewer, with due regard to the fomperature ly which the operation is performed.

Propuratury metallumpal operations.-Sume metallic ores may be made to yield their metal hy
 without any prepuation or aldition of thases; to this chass belone a larqe portion of the copper ores,

 into the prepration of fuel, proparation of ome and smelting. 'Tho first we eomsider as tow extonted for

 chinery calle I a stompine mill.

 pwir. Thu.

to $2 \frac{3}{4}$ ewts. each. These stamper-heads are made of the finest and hardest kind of cast-iron, such iron as chilled rollers are made of, and are cast in heavy iron chills, so as to harden the whole surface of the head. These heads are fastened to the wooden helve by a wrought-iron tang of two inches square iron, cast in into the head and sunk into the centre of the wood, where it is secured by wrought-iron

hoops laid around the lower end of the helve. The 30 stampers are divided into 3 sets of 5 each; these 5 stampers work into one trough-that is, the whole length of the trough is divided into 6 compartments, of which each forms a set or battery. Each battery has its own feeding apparatus; this is a large, wooden, fixed hopper, as showu in Fig. 2807. Into this hopper the ore is carried as it comes from the hive. It discharges the ore in the middte of the battery or set of fire stampers, the middle stamper drawing as much ore as, with the assistance of the two stampers on each side, it can crush. The bottom of each trough is provided with a castiron plate; the stampers, however, never touch this plate. Upon this bed-plate a bed of quartz is laid. and kept so that always from 2 to 4 inches high of partly crushed quartz is in the bottom of each battery. This bottom of rocky matter protects the iron bottom, the stampers, and the whole machinery against premature destruction. Each battery is inelosed by a trough made of cast-iron plates, reaching about 7 inches high above the bottom plate. The woodwork to which these plates are fastened is higher, and reaches up to 12 or more inches. Each battery is provided with two sieves, or grates, shown by Λ; these are made of sheet-iron, or sheet-copper, pierced with holes, or they are made of brass-wire gauze, tweeled, in which wire and spaces are each about $\frac{1}{2}$ 號 of inch. Round holes punched in plates ought to be $\frac{1}{12}$ or $\frac{1}{16}$ of an inch in diameter. These sieves are 8 inches square, fastened vertically at each end of the trough, about 4 inches or $3 \frac{1}{2}$ inches above the bottom. The size and form of the holes in the sicves decide the size of the grains of sand made, for all grains which cannot pass these holes are returned to the stamps.

This stamping-machine crushes and washes the ore in the mean time, each stamper receiving $2 \frac{1}{2}$ gallons of water per minute. Where ores are stamped dry, the breast-plate and sieves at each battery can be dispensed with. The yield of the machine is about 1000 bushels of quartz converted into fine sand fit for amalgamation in 12 hours, each pestle making from 90 to 100 strokes per minute, having 10 or 11 inches lift. The water in the trough ought to be always high enough to prevent splashing, and loss of good mineral. There is a diversity of opinion respecting the construction of stampingmachines, many machines being now built entirely of cast-iron. We are not aware that any superior results have been achieved by east-iron machines. It is against the practice and principles of mechanics to build machines which work by concussion of an almost inelastic material such as cast-iron. Wooden machines of this kind are, in the first place, cheaper, and, if well built, are more durable and of greater effect than cast-iron structures.

Gold ores are stamped to liberate the metallic gold inclosed by rocky matter. Lead ores, copper ores, silver ores, de., are stamped to wash off the gangue. Rocky matter is of a smaller specific gravity than the metallic ores generally are, particularly the sulphurets. When an ore is pulverized, and a current of water passed through the trough containiug it, the sand and clay, limestonc, de., will pass off readily in coarse grains, because its gravity is greatly diminished in water: such grains are carried of by the slightest current. Metallic substances more heavy than quartz or rocky matter, will not move until reduced to a certain size, when the particles will follow the current by adhesion, or be so inconsiderable as to be carried off by the wash water. The current of water issuing from the stamps wlll earry the rocky matter further than the metallic granules, and if the water and sand from the stamps is led into a long wooden trough, the lightest particles will be found furthest off the stamps, and the ineaviest matter nearest to the mill. The size of the grains is regulated in the mill, chiffly by the height of the grating or sieve above the bottom of the trough or stamper-bed; further by the size of the
holes in the sieve; by the amount of water; by the lift of the stamps, weight of stamps, and particularly by the kind of bottom u-ed. If the botton is too lard or thin, the mill stamps coarsely; and if the rock bottom is too thick, it stamps too fine.

Other means of grinding or cru-hing ore are millstones, of considerable weight and size. In Fig. 2508 a mill of this kind is represented. A vertical shaft, to which a cross shaft and two mill-tones of 4 or 5 feet diameter are appended, revolven slowly around itself, making from 3 to tive revolntions per minute. This shaft carrices with it the two head stones, which revolve around the vertical axi=, and in the mean time around their own axis, ruming upon a third millstone, which is laid horizuntal, and fixed tpon the floor of the millhouse. These stones are of hard materiah, either of granite, gneise, trap, of some other tenacious hard rock. Such mills are chiefly used for grinding clay, fire-clay, or kaolin in por

celain manufactories. Similar mills are exclusively employed in North, Carolina for cru-hing gold ores, aloo to some extent in Virginiat they are there entircly constructed of iron, or at least the facing, or grinding part of it is made of cast-iron; and are here called Chilian-mills. These mills show one advantage to the stamper-mills; that is, they may be made to grind the ore very time; and where that is necesary, as it is with many gold ores, these mills are advantageous. But there is one serims drawback to these machines: they require much power in proportion to their effect, and much romm. A strong mill of this kind requires from 4 to 6 horse-power, with which it will grind from 40 to 50 bushels of ore in 12 hours, that $i=$, ten bushels to a horse-puwer. One horse-power will drive one stamper in a stamp mill, and that stamper will cru-h at least 30 bushels in the same time, -a consideration which is of importance where wages, power, and time are valuable. Other cru-hing apparatus, such as common: mills, in the form of grist-mills, crushing rollers, and similar machinery, are not in wee in this country, at leant not to any extent.

Wershing of ores.-Ores which contain a convilerable amount of clar, lime, saml, ame other impuritios which may be ingurions to the smeltimg operation, are washed in an aboulance of water, so as to carry off the light partiches and retain the heary metallic matter. The simplest form of a wathing appar atus. sweh as is used fir washime impure iron ores, is repreented in Fig. aso\%. A is a long wooden trough of Ironn 20 to 50 feet long, 12 inches wifle in the bentom, and if or 8 inchers hich. This trongh is a little inelined to the harizon, wo as to atherl a erentle current. At the nipper end a stroner current of water is let intu it, from a weir or an clavatel resersoir, which thows down the chamel at at rapinl rate. At the entrance of the watcr a laborer throws in, at intervalo, at showelfull of unclean ore, mind the coment from the - pont of the peal. The water in falling upon the are moses fir-t the small and light particlea, which are carrime
 light, tloating particles are carrial wor
 these valves, mand nre dicharroyl at

 ore sul purifying it so far int ween ary.

is the case with iron ore, or it is performed after the ores are cru-hed, which is the way of working sil ver ores in North Carolina. The principle involsed in this operation is to drive off all that volatile matter from the ore which may be dissipated by heat; such as water, carbon, sulphur, phosphorus, chlorine, arsenic, zinc, ©c. The consequence of this operation, if well performed, is in all cases, with bat few exceptions, the oxidation of the remaining metals to their highest degree; a condition in which the oreare most easily worked, and reduced by carbon to the metallic state. Roasting is performed in this country almost exclusively in the open air ; experiments made on roasting ovens met in but few instances with success. There is no doubt but that roast ovens are more economical in the use of fuel than leaps in the open air, but the ovens require more labor; and as fuel is cheap with us, labor high, the reverse of what they are in Europe, it appears to be natural to follow those modes of working which tend to lessen cost, and do the work in the cheapest way. In Fig. 2810 a roast-heap is represented in section. These heaps are often round, but in most cases are mounds of from 25 to 50 and more feet lons. The operation consists in spreading over an area of a certain length, and from 8 to 20 feet wifoBticks of fire-wood, which may be of an indifferent kind and form. The spaces between the sticks are filled up by small wood, chips, or any kind of fuel, providing, however, sufficient spaces for the access of air from below. The coarser pieces of ore are now spread over this grating of wood, and a layer of from 8 to 12 inches levelled over it; on this ore fine charcoal, braise, is spread about 2 inches thick. lnstead of fine charcoal, mineral coal slack may be used to adrantage, or wood chips, or in fact any
 fuel free of injurious matter, such as sulphur, phosthorus, \&e. Ore is now piled again upon this coal, and the operation of laying coal and ore in successive layers repeated until that height of the heap is reached which is calculated to be most advantageous in this particular instance. One inch thick of coal is generally considered snfficient for one foot high of ore, exclusive of the foundation of wood. The ore is broken into uniform sizes, of from 2 to 3 inches thick. Fire is kindled in the lower parts of the heap, which to conduct to advantage requires considerable skill, sagacity, and industry. The chief object in this operation being the dissipation of volatile matter, it is evident that the melting of any particles of the ore is to be preventell, for from such melted ore no degree of heat will separate the injorious matter effectually. The conducting of the degree of heat in the roasting heap is therefore an operation liable to injure the ore instead of benefiting it. Ores which melt readily, such as impure iron ores, silver and lead ores, pyrites of all hinds, require more than common watchfulness to insure sticcess in the operation.

Fig $2 s 11$ represents the section of a reverberatory furnace for roasting schlicch of lead ore in Cermany. These ores contain much sulphuret of zine, and resemble our silver ores in Virginia and North

Earolina, for whel reasons we allude particularly to this furnace. Firs. 2812 js the drawing of an elevation of that furnace, showing it to be a double furnace ; and Fig. 2813 is the plan of half the furnace, or one single furnace. In these several figures, a is the furmace or fireplace: b, a chimney leading to
the conden-ing clambers $e c$, in which the evaperated metals, as zins, arsenie, de., are cumbucted; d is the stack for the escape of the burnt gaces and smoke; e^{\prime} is the charging duer ; f the drying chandur for expellines the water firm the ore ; In the hopper of charging wition; ha the hearth of the furmace; i channels fin the eseape of moisture from the grond; $x x^{\prime}$ are apeninge leading to the condensinf chambers. In cach of these furnace nearly half a ton of ore is chatged at at time, whidh takes from is

 iagly well, but require a great deal of labom:

Is remarked before, roasting orens are more eommatiol in the wee of fucl than heaps in the "pen
 to do imperfect work; the access of air, which is the chiel uxidizing argent, is ant su freely almittel an in heapis. In orens the adrantageons aceess of watery rapors is out of the quation, which, ats in the ca-e of heaps, are derived from the ground in such quantitics and in stich complitions as to be most adsantareous to the operation. Wiatery vapors afford in rositime the triple adrantage of beine a fowertial oxidizing element, in the mean time carrying off sulpher in the form of sulphretted hydrogen, and anins in kecping the heat more unifurm than it can be done without these vapus. The roastin? in heal ${ }^{3}$ may be more expensive in omme cases; it certanly is more correct in principle than rasting in went.
limasting in reverberatory funace may be cunsidered an adrantigeous operation where ouldar, arenic, and such volatile matter is to be expelled which camnt well lo removed in the yard by reatmor in heaps. These furnaces apply particularly where arsenie is to be driven off; but as no arsenceal ores are smelted in the Union, there is little use fur reverbemary rast-wnens. At the copper ameltwork roasting is done to a ecertain extent in the reverberatory, but it is not practi-ed in any other instance. This furnace suffers under the same disadrantage as the roast-oven; the work performed by it is expensive, because of the lator it requires to stir and hovel the ored.

Dhast machines are amsiliaries in metallargical operations. We refer to the artiche on "Inson" for information.

Assuy of ores is a very jmportant operation in smelt-works. Assayine is not only performed here te ascertain the quantity of metal contaned m the ore; it is cmployed lonth for that purpese amb fin anay mer the metal to inguire what hind of metals and how mudn of each is contained in the samples pros duced in the smelting-furnace. As*ays of gold ores are eronerally made by pouding the ruck, consert-

 and the quickilver expelled by heat, or, if the quantity is laree say one fram or mone, it is weighel in its native state. Experiencel gohlwahers will joble very near corretly Low much one hashel ef ore will contain in goll by making one or more pan-wn-hes.

Aseays for ascertainin the quantity of a certain kind of metal in a specimen of ore, are in this instance chidfy made in the dry way. If an ore is to be assayed for its content in gold or silver, tha ore is finely powdered, sieved, and mised with its there or formfold weight of litharere. '1 his litharese mu-t be free firm any other metal but lead ; the common hop litharge is mot quite sate in this respect, and in case a correct as-ay is required, it is advi-able to dry and roa-t sugar of lead; the litharge derived from it may be considered pure. The fine litharge amel fine ore are wed mixed, to which a very little carbomate of ada may be added. If mot much grold of siber is expected, but little lead is redueen in this proce-c, which is reculated by the ruantity of eastron mixed with it. In mose eanes, hati

 charcoal powder with the above mixture of ore and litharge. The mixture is put in a dry mod warm
 to a rapiel heat in an ar-firmace. One half homes heat will diai-h the operation ; the cracible is comber broken, and the Juttom of had removed, wa-hed, and cupelherl. This hattur of had, of half an mance
 benc-the-w, which, when the lean is heated in it, and in the mean time oxidizent, it ahontes the oxide of

 all uther metals will be oxidized and abombel by the cupel, white goh and ilver remmin in their pure

 b. 1 or silver.

may be gathered together from all the smeltings and melted along with some black flux, which will produce a small bitton of crude copper; this is added to the first after it is refined, or added by approximatng its value in copper. This last grain contains generally a great deal of iron, and looks like iron.
Other ores than those mentioned are commonly not as*ayed in the smelt-works. Iron, lead, zine, \&e., are of too little value; they camot bear these expenses. Tin we are not yet smelting, and in so far have no need of assaying it.

Assaying forms a very important branch of the smelting estallishment. In this country, owing to the youth of metallargieal operations, most of the smelt-works are connected with the mines; from this rule the copper smelt-works are only excepted. For these reasons, the assay nccessary to ascertain the value of ore, in order to establish its price, is not in extensive u-e. When smelt-works shall be carried on in their proper form, assaying of ore will be more generally executed. At present the assays of ore are only used to ascertain the value of ore specimens, by which assays, as they allude but to a small and in most cases a selected part of the ore, many illusory prices of ore are furnished, which deceive the unwary. All assays mate in the dry way are incorrect; they always furnish a smaller amount of metal than the large operation; if, however, the assays are conducted with uniform precision, the loss in each case will be the same, and may be represented by a per-centage of the whole. The second feature of the utility of the dry assay is its affording indications of the amount and nature of the foreign admixtures to the ore: it furnishes a guide to the smelter at the furnace. Experiments as to the mode of smelting an ore to the best advantage, can be made in the crucible with less expense and greater facility than in the smelting furnace. A third adrantage arising from the assay laboratory \approx the analysis of the manufactured metal in respect to its purity and contents of precious metals.

Assay in the humid way.-The chemical amalysis of ore, or the assay in the humid way, is not of much practical use to the metallurgist. If this assay is well performed, it furnishes an exact table of the contents of an ore, of slags, and of metals; but it requires more science and experience than com. monly is at the disposal of the practical man, to make that use of an analysis which frequently is expected from it. The humid analysis furnishes the facts, the elements for the science of metallurgy ; but the application of these facts is subject to more difficulties than at a superficial glance appear: it is moreover a means of inducing young, speculative minds to a waste of time and money which may be better employed than in chemical analysis. This department belongs to the scientific chemist : it is of no use in the smelting-house. There is no doubt but the humid analysis furnishes the most correct estimate of the contents of an ore, slag, and metal, but in all instances it is advisable to verify these results by the dry assay, for there are innumerable instanees where the portions of metal obtained in the analysis cannot be yielded by the ore in the most perfect smelting operations. The assay comes nearer to the practical result than the amalysis. We cannot deny that the analysis furnishes prineiples upon which improvements are and may be exented, but these principles and facts are only useful in the hands of a scientific and experienced metallurgist.
The manufucture of metals.- In this part of our labors we shall omit the allusion to iron, because a valuable contribution is furnished under the proper head; we shall further limit ourselves to those metals which are actually manufactured, or are likely to be manufactured in the United States.

Gold.-Germ. gold; Fr. Or ; Lat. Aurum. Gold is found almost over the whole globe, but in most cases in small quantities compared with other metals. At the present time California afords the largest amount of this metal in the world. Virginia, North Carolina, South Carolina, Georgia, and Alabama, in the United States, afford gold in considerable quantity. The production of California amounted in the year 1850 to about $\$ 40,000,000$ worth of this metal; the other States of the Union together about $\S 2,000,000$. Next to the United States, the largest amount of gold is furnished by Russia, from the Ural Mountaius. It is found extensively in the South American States, near the Equator, in Africa, Asia, and Europe. Gold is chiefly found in its native condition, in a metallic state, alloyed with silver, and sometimes with tellurium, as is the case in Tirginia and North Carolina. In California it is found chiefly in alluvial ground, bedded upon rock in most cases; it is also found inclosed in quartz rock, apparently in veins ramifying the rocks of an extensive mumtain range. This California gold is obtained chiefly in large grains, and often in lumps of several pounds weight. In the other States of the Thion the gold is in very minute fragments, often invisible to the eye if not aided by a lens, only to be detested by crushing and grinding the rock and washing of the debris. This gold is apparently derived from the decomposition of iron and copper pyrites, chiefly the first; which assertion camot be objected to, because it is founded in principle that almost all iron pyrites contain gold, that the gold ores of that region are rocks which are colored by iron, and that this iron is evidently derived from the decomposition of the pyrites. Pyritous ores of this kind are worked which contain no visible gold, or which do not yield gold at the first crushing and washing, but which furnish gold in a succession of amalgamations, performed after regular intervals of exposure to the air in a fine powder. Gold is also furnished by the silver ores of North Carolina and Tirginia.

A splendid yellow color and brilliant metallic lustre characterizes gold distinctly from other metals; its specific gravity being 193 to water, is another quality casily appreciated by the senses. It in preemmently ductile, which qualifies it for an extensive nse in the arts. One grain of gold may be drawn into a wire 500 feet long; silver may be coated with gold, of which the thickness is only the twelvemillionth part of an inch, and still the microscope camot detect the slightest indication of an interruption of the gold coating. I'ure gold requires more heat for melting than either silver or copper, but as all native gold is alloyed with some other metal, it may be considered more fusible than those inctals. If, in cupelling gold, the hot globule shines with it greenish light, we may consider the gold rot much adulterated; if it contains 10 per cent., or from there to one-third of silver, the color of the grold is in the hot cupel white as silver. Pure gold is not very wolatile, and may be exposed to a strong heat for a long time without loss of metal ; but if gold is alloyed with rolatile metal, such as lead, zing and antimony, it is liable to be carried off by their vapors."Gold has a considerable cohesion, whicu
melines it to crystallization. Its crysul form is an octahedron ; it is often foumd in fragments of erystale imbedded in fuartz, of which fine specimens are found in Califurnia, and :al-o in the gold region of the Southern States. In metting gold alone with pure borax it assumes a whith color, as if adulteratea with silver ; in mehting it again with salpetre, or common salt, it recorers it rich yellow color.

The geolugical position of gold is in the primitive rock. It is fomel in granite, dissemmated in grain- and spameles through the mass of rock. In the luited states gold is diectly foumd in the stratifed transition series; in California it appears to be dis-eminated through this rock, imbedded in quartz. Most of the gold, the Califumia gold exclusively, is found in alluvial ain. In the suuthern woll region this smurce is mach exlmusted, and the gold is here obtained from regular, well-dereloped reins, rumine parallel with the general direction of the reck strata, sumbwe-t by urtheast. The plane of inclinaton of these veins is aboo parallel with the plane of inelination of the general formation It appears from this that the gold-bearimg veins are of a simultancous origin with the ruck; at leas, they have been introduced when the rock was in a phastic con lition. In Xirginia and Sorth Carolinat the grold-bearing veins are a ferruginots talcose slate, often inelined to mica slate. In Nouth Carolinat this slate is found to be very hard in many instances, showing a compact solid mass of rock, apmarenty the same slate, but having been under the influcnce of a consdotable heat, it is hardened. In Virginia this slate is more soft, the fissures open more readily, and the whole vein slows the appearance vi soft -late. This slate is impregnated with small quartz veins, from one-eighth to ome-hali an inch, and often two inches thick. Where these quartz veins are thin and in great numbers, the ore is alway iound to be riche-t in gold. This feature of the ore is well developed throughout Virginia, and at fajdhill, North Carolina. The vein-stone of the gold-bearing reins is strongly impregnated with oxide of iron, showing evidences that this iron is derived from pyrites, becane the oxide appears in dut or flowers, and groups of duts. Many of these veins have been traced to that depth where the provites are not oxidized; here they appear in their perfect crystal furm, and are profuecly distributed throngh the sate. The oxidation of these pyrites appears to depend on the penetrability of the rock by atmosfherie agents; where the slate is suft we find it oxidized to the depth of from 50 to 150 feet; where the slate is hard, as is the case at the Sawyer mine, North Carolina, the oxidation reaches hardly ten or twenty liet deep, and is in many places, such as bluts, not developel at all. At the bitter spots the pyritcs are in their original form, untouched by oxygen. Where the pyrites are not wadized the extraction of gold is comected with considerable more expense than it is from soft shate and oxidized pyrites. The crushing of the hard late ik in the first place more expen-ive; the sulphur of the prites destroys a large portion of quicksilver in analeamation, and the gold canot be all extractem: the largest portion of it remains inclosed by the sulphure of iron, which can only be liberated he deatreying that envelope.

When we con-ider the great exten-ion of the Southem gold formation, which is at lemst $50 n$ nile long; the breath of the gold-bearing strata in which the veins are inbedded, and wheh is finm 5 to OO miles wide; further consider the depth of these veins, which may be arsumed to be 2000 fect, the buly of gold ore in these regions is certimly to be regarded as an inipurtant source of national wealth. There is, however, one drawbek to the rapid extraction of ghol from these deposits- the ores are all, without exception, prritou- in greater depth, and to work these sulphenets to adsamtare mo progrese hationemade up this time. Various experiments tending to accomplish this purperes, and adfinding means of extraction, have been trie l, hut none of thees -uceeded so far as to work the peorer elase of ores. At tienthidl, N. C., where the ores yich from $\$ 1.50$ to $\$ 3$ of fold in 100 prounts or ome buthel of we, the prritous wes are ground, amakimatel, and a certain portion of esold extractent. The cru-hed ore, buw in fine sand, is expmed the intluence of the atmo-phere for one year, after which the proces of errmbine and amalgamation is repeatel, and amother portion of gold, alinost equal to the first, is ext racted. She exusure of amother year furni-hes anther crop of gold, which operation may be repeated four or five thmes without extracting all the metal from the saml. This way of working is tedmus,

 -atud contanimg the gold and immer-d in water; in tirring it gently hy hand the dity and light sand

 and fluating evell it lont.

Gold inclosed in rocky matter cannot be washed with suceess in the foregoing described manner ; the rock must be crushed, and is, in this operation, transformed into more or less fine sand. The bulk of this sand is removed by washing, and the rest, with the gold, reserved for amalgamation. The crushing is performed in the stamp-mill, Fig. 2808; the sand, including gold, conducted over hides, which retain the gold, and the sand is floated away. The gold and saud from the hides are removed, when the latter are filled, to an amalgamating machine, which combines the grold with quicksilver, and admits the sand to flow off. Instead of hides, woollen blankets are also used for gathering the gold, and there is a diversity of opinions as to the merits of either. Blankets, it is contended, are more expensire than hides, but they have the advantage of working more uniform. Hides are cheaper, but they lose their hairs or wool very soon, and are then not fit to do good work. Hides of short, curly wool are selected; these are spread on the ground, and over these the water, sand, and gold are led in a broad sheet. In other instances shakiug-tables are suspended at the discharge of the stampers, which gather the gold and some sand. Shaking-tables are wooden platforms of 8 or 10 feet long, and from 3 to 4 fect wide, made of 0 -inch plank well joined together, and the whole smoothly planed. Around the edges of the table are projecting ribs, which prevent the water from flowing over the edges. In suspending this table, a little inclined to the horizontal, leading the sand and water over it in a broad shect, and applying a gentle shaking motion to it, the gold will sink to the bottom and move gently down the plane ; it is arrested at the lowest end of the table by a projection on the table. In either of the above cases the gold is brought to the amalgamating machine for amalgamation.

Nost of the gold-mining establishments are provided with Chilian mills for erushing the ore. We furnish a description of it in its simplest form in Fig. 2808, in which form most of these machines arc erected. Still, there are some machines of this kind in North Carolina, which work by four or five runners or crushers in one trough.

In Fig. 2815 is such a machine represented as it is in operation at Goldhill. It is a cast-iron circuar trough of about 16 feet diameter, 10 inches wide, and 6 inehes deep; the trough is firmly fixed upon the floor of the mill. In this trough five travellers or head-stones are moving, of 3 feet diameter and fi inches thick, rounded on the edge, made of east-iron. These travellers are fixed to the revolving shaft in the centre, and are moved by it. The circular trough is supplied with coarsely broken ore and a constant current of water, which latter washes off all the light impurities, and leaves the gold in the trough. At the close of erery day's work the trough is supplied with some quicksilver, which is worked in it for $\frac{1}{4}$ or $\frac{1}{2}$ hour's time, in which time it absorbs the gold, and is then removed as amalgam. The water from these mills is generally conducted into other machines, in which some of the tine gold which passes from the first machine is gathered. In most cases a shallow round basin, of about 4 feet diameter, is appended, in which a rake moves around with a vertical axis, gently stirring the sediment which may settle from the passing water. It retains only the heavy particles. In other instances, Sullivan bowls (a small machine which derised its name from the inventor, residing in North Carolina) are appended; these gather the heary parts which may escape the previous machines.

A Sullivan bowl is represented in lig. 2 217 . A vertical woolen shaft of about 18 inches long and 2 inches square carries on the lower part a shallow wessel or bowl B, about 2 inches deep and 18 inches in diameter. This bowl is formed of a wooden bottom and shect-iron periphery. This bowl receises the water from the other machines at or near its circumference, and discharges at the centre. By the lever A, the machine is set in a rocking motion, cansed by a crank connected with the same. This machine gathers a great deal of fine gold, but it is an expensive machine, because they work but little water, and it requires many machines to do the work of a small establishment.

The gold from the various machines, mixed with some sand and other impurities, is carricd to the Chilian mill for amalgamation, in case there is no other machine for doing that work. This is an imperfect machine for amalgamation, and camses losees in quick ilver and gold. In most cases separate
machines are used for amalgamation : in North Carolina the cradle is gen rally emphoyed. The cradle is made from the trumb of a tree hollowed ont so as to form a round truagh, cl ced att ine end and open at the other, as represented in $\mathrm{Fi}_{5} 2516$.

Ifere is a battery of 5 eralles represented : as many as that are frequ ntly e nuected an 1 moved by a little boy. A cradle is from 10 to $1:$ feet long, halowed out of a truk of at least 21 inch s diancter. The
 or more gronses carred in the botem; in ench of these groovea froms to ± 1, mh , of quick-hliver are put. At the farthest end sam i is shovelle 1 in am. I w...er le 1 upon it, the erndles being a latle in lin- I towards the diecharge. A gentle current of water will have a ten lency to wa-h and an! erey thisfol-e down the trongh, the trough being. in the mean tine, iu a recking motion, which at is the watur in wa-hing niï every thiner. The quick-ilver in the groves is also in contamt motion, ly vihich the havy gran-
 not attracted, and pass over the mercury. Theec michines are very elfetive, Lut work $=$ low, :n 1 lowe nuch of the fine suspen led gold. Other amalgamating machine bave recenly been put in operat tion; their efficacy is, however, not sett:ed, and we hesitate to describe th in la Nurth Carolm: the German barrel amalgamation has been introduced within a few months, but we are motinfomed of the results. In Virginia, amalgamating machines of novel patterns have bedn tried, but we are not acfuainted with their eflects.

All ama! gamating machines suffer uuder at common evil,-they canot work all tice water as it i-sthes from the crubhing machines to adrataige. In all instame's half the golden cont ofs of the we are lust. This is owing partly to the clayi-h condition of the ore, which clay inclo-es particles of gold an 1 carries it off, aud partly to the extreme division of the groll in the ores of these re_ions, particularly in Nurth Carolima. This minute divivion causes the goll to be suspended in water, and in that condition it is carriel away by the current. A grod amalyanatins apparatus, which will work the water directly from the crushurg machines, rub off elay and other matter fom the particles of gohl, so an to malee it athere to the quick, oilver, aud which dous not lose any yui ksilver, is still a de-i houtum in the Suthern gold-mining districts.
tiold, gathered by quick ilver, forms a white amal gan. In the amalgamating machime a surplas uf quick-ilver is nsel to sucure the tluility of the mercury; for if it gets slimy, or still weree, platic, like
 lather or a pice of chan cancas, the remove the smpertaons mercury; after which a solid amalgam, callell quick, remtins in the bur. The quelsilser which pasts through the beg rutans always =ume grold in sulution, the quantity of whin varies aceur ling to the stuff through whi h it has lem symeezen. The amal fam thes obtained eontains from 30 to 70 per cent. of gold, accurding to the mode of working :ml the yality of the ore. The quick from the Chilian mills gencrally contains I ut fom ${ }^{\circ} \mathrm{O}$ tu 40 per sent. of gold, while that from stampers contains seldom less than 40 , and in most cases from 50 to die per cent. of gold. This cireumstance appears to speak in favor of the stamps; the diterence in the contents of coll, in the amalgam, is owing to its elivision; the finer the gold the less of it the amalgam ehtoins. 'The dry amalgam is distillet in an irun retort, lined with elay; a red hatat will drive unt the mercury, which is comdensed by leading it intu cohd water. The grohl remains in the retort in the form of a juwaler, whech is collected, melted in a crucible alung with sume saltpetre, and cast into irens moshle, forming square bars of about one pound weisht each. Une pemymeiflat of gold of the Virginiat mines is generally worth from 50 to ! ! - cents. Forth C'arolina gold contains more silver than the first, and at pennyweirht is schom more than 90 , and in the majonty of cases, fiom SU to dU cents to the

 in Aorth Cirfolin:, which operite; 12 or mom Chifian mill:, works ore which yills 10 cente of goht to

 protit. There are in shamble stare of goll ore in the southeri stater; it rewnire bothing hut inflintry to make it probluction profitable.

 the smlpherets of men t chere in tats.

Vol. 1I.-2:
principles, and as the operation at the Washington mine may be corsidered one of the most difficulf cases, on accomnt of the composition of its ore, we will describe the operation in this instance.
The ore at this establishment consists chiefly of brown sulphuret of zinc, which is largely mised with galena, copper, and iron pyrites; it contains silver, gold, and other metals. The ore as it comes from the mine is broken into coarse fragments, and roasted in heaps in the open air, in the manner described before. The roasting is performed altogether by wood and wood charcoal. After the first roasting the piles are picked over for such ore which is well roasted, and that which is too much roasted. This is brought to the stampers, crushed into a fine powder, and washed, so as to carry off all the oxidized zine and quartz. If the pre, after its being crushed, is found to be imperfectly roasted, it is returned to the yard and once more subjected to roasting. That part of the ore which is rejected in the yard is piled and roasted along with some fresh ore from the mine. In this way it may happen that some of the ore is exposed to several heats. The roasting operation is not considered to be finished until all the sulphuret of zine iz destroyed; that is, until the zinc is deprived of its sulphur and converted into oxide of zine, in which form it may be washed away by the water at the stamping-mill.

The finely powdered ore consists now chiefly of galena, or, in ease the roasting operation is well performed, of oxide of lead, oxide of iron, oxide of copper, silver, and other matter. This ore is brought to the smelting-furnace, called a high-furnace, and here smelted along with some fluxes by charcoal. In Fig. 2818 such a furnace is represented; it is a solid work of masonry, calculated to retain its heat if once thoroughly heated. The fire is urged by cylinder bellows, driven by a steam-engine; the air to the furnace is supplied at the tuyere m. In consequence of the alternate charges of coal and ore, the basin or hearth g is regularly supplied with metal, which is removed at certain intervals of time, so as to afford room for fresh metal and cinder. In this manner about one ton of lead is obtained in 12 hours, which is removed and put aside for refining. The composition of the ore, which makes its perfect roasting difficult, renders it necessary to make large additions of iron ore to the posts of ore. The iron oxide, which is reduced in presence of carbon in the furnace, will absorb the sulphur from the other metals in case there is any sulphur left after roasting. This circumstance renders the operation tedious and slow. It camot be avoided but by perfect roasting, which may be considered practically impossible in this instance. The presence of zine is what renders the operation tedious and expensive. If the zine is not removed to a large extent, it will, in smelting the ore, carry off by evaporation much of the other metals, gold and silver not excepted. The sulphurets of zine and lead are very fusible if in contact. In roasting the ore these two sulphurets will invariably melt together, which causes the roasting process to be either very expensive or imperfect. All experience with a similar ore in other parts ot the world are confirmatory as to this operation being expensive.

The lead from these blast-furnaces is transferred to the refining-furnace. Formerly the English re fiaing-furnace was used as it is represented in Fig. 2819, in a longitudinal section. Here is a double, or two furnaces represented, which, as is shown, are reverberatory furnaces. The fireplace a throws the flame over the hearth or cupel into a chimney, which is provided with a sliding door at $f f f$ to shut off the draft and prevent the fumes of metal from escaping through the stack. The cupel is formed of several layers of bone-ashes, mixed with wood-ashes; this mass is rammed into an iron hoop when in a moistened condition. The form of this cupel is represented in Fig. 8800 ; from above it is a concare egesbaped di-h, of about 5 inches thick, the largest diameter being 4 feet, the smallest 2 feet. When the furnace and cupel are heated, the lead, previously melted in at iron pot, is cast into it; and now the oellows, which are represented in Fig. 2821, are set to work, a gentle current of air is thrown over the not surface. The action of the blast is here twofold: it oxidizes the lead and forms litharge of it, and drives by its force the melted litharge to the opposite side of the blast, or the tap-hole, where it flow: out and falls into an iron basin, from whence it is carried back to the smelting furnace. The level of the lead is in this way gradually reduce 1 if not kept up to a certain height; this is done by easting in melted lead, which is always ready melted in an iron pot. This process is carried on until a certain grantity of learl has been coneentrated so far that a little more than one weight of lead is combined is ith an equal weight of silver; this rich lead is taken out and refined in in properly prepared cupel. If sufficient rich lead is ready to make from 500 to 1000 ounces of silver, it is refined in a new cupeh
and the silser melted into a cake. The operation is carried on as before, with the only difference, that no fresh lead is added.

The Wishington mine has more recently introduced the German refining furnace represented in Fig. 2S29, with what success we are not aware. This fumace is larger than the above Englislo furnace, the cupel being at least 6 feet diameter. The drawing shows a section of the furnace, in which the fireplace y, the tuycres $n n$, and the door q, into which the lead is charged, are shown. In Fig. 2823 is a ground plan of the furnace shown. Here is the flue 2 viible, which leads to the stach, ant which servec in the mean time to clear off from the surface of the melted lead some of the seum. The cupel of this furnace is made entirely of wood-ashes, which are the refuse ashes from the soap-works, and in this respect the furnace has an advantage over the English furnace. The floor or hollow surface of it i- well pounded by wonden mallets, to make it solid and smooth. About four tons of lead are charged for one heat ; it is carcfully laid upon the bottom, and at first gently beated, so a* not to injure the fresh bottom

and dome. When the lead is melted, and all ebullition ceases, the blast is thrown in at the tuyeres $n n$ by setting the bellows at playing on the surfice of the melted metal. At first no litharge is made, but a dirty froth of oxydized metals is raked off, to facilitate which furmation of froth, fine charcoal dust is thrown on the surface. When all the impurities of the lead are renosed in this way, the formation of litharge begins, which fluws off at the the x. The separation of the litharge from the lead must be assisted by a hook, because the blast is generally not strong enough to move the fluid oxide of lead over the large surface of the molten mass. The cupellation of four ton of metal lasts from 15 to 20 hours. Towards the end of the operation some silver is carried off with the litharge, which portion of litharge is therefure carefully pre-ersed, to be remelted by itself or along with other ore. The silver is, in this operation, obtained pare in the first heat; it is melted into the form of a eake in a cavity prepared for its reception in the centre of the hearth.

In all these refining operations there is an inevitable loss of metal, disappearing in the form of fumes, through the chimney. This losis is variable, and may be moditied by the skill of the workman ant the purity of the leail; it amounts on an average to from 4 to $\overline{7}$ per cent. of the lead melted.
$\because 423$.

The extraction of silwer from itw ore ley amal gamation is not fraction in the I mited states; this

carried to a reverberatory furmace; here the ore is heated to redness, caleined, and in that state fiom a to 5 per cent. of common salt is added to the ore; the whole liept in that degree of heat, and stirred by iron bars for some hours. The object of this operation is to transform the silver contained in the ore into chloride of silver, which is so much more easy, as silver has a predominating affinity for chlorine. If the operation of heating is perfected, the red-hot ore is dramn from the furnace and thrown hot inte a boiling concentrated solution of common salt. The hot salt solution will dissolve the chloride of silver, and it is kept in solution so long as that solution is boiling-hot; it is therefore necessary to filtrate it in this condition. To the hot and filtrated solution a little muriatic acid is added, and then some coarse picces of crude copper; which latter precipitates all the silver in a metallic state, in the form of a fine powder : this is gathered and melted in a crucible; it is pure silver. This process is, to all appearances, simple, and is in fact so ; but it requires an expert chemist to execute the operation. If there is only copper, ironi, and silver present in the ore, the operation is simple; but if there is gold, lead, or quicksilver in the ore, the case is not so easily managed; for the gold will not pass with the silver into the solution, and the chlorides of lead and quicksilver, which are soluble in the same manner as chloride of silver, are precipitated by the same means. The application of this process to our Southern ores is difficult, but it may be an extremely useful process in applying it to the argentiferous stamp-work of the Lake Superior copper ores.
The silser ores of the Southern gold region, such as are smelted at the Washington mines, yield from 200 ounces to 800 ounces of silfer in a ton of lead; the ore itself contains on an arerage S per cent. of lead; the oulier matter is zinc, iron, copper, tin, and chiefly sulphor. The silver is worth $\$ 1.80$ the ounce, because it is alloyed with a large portion of gold, which raises its value to double the value of pure silver.

Copper:-Germ. Kupfer; Fr. Cuivre; Lat. Cuprum. Copper was known to the ancients long before iron; most of the metallic instruments of the era preceding ours were made of copper, alloyed with tin and other metals. The ancient nations on the old continent, as well as the inhabitants of America lefore European inrasion, understood the art of hardening copper as well as we now understand hardening steel. This art is now lost, and we doubt its tatility if it were recovered. Copper is profusely distributed all over the globe; its ores are found everywhere. Native copper is particularly found in this country and in Russia. The ores of copper are chiefly sulphurets, of which the yollow sulphuret, or copper pyrites, forms nine-tenths of all the ore used in the smelt-works. Besides this ore, there is the gray sulphuret ; there are carbonates, arseniates, phosphates, silicates, oxides of copper, and others; all these ores are of more interest to the mineralogist than to the metallurgist. The bulk of ore, particularly in this country, are the yellow pyrites; besides which, the native copper forms an important source of metal to the smelter. The whole amount of copper produced in the world annually is about 33,000 tons, of which Europe produces 25,000 tons; the rest is American copper.

In the United States there are four large copper smelt-works, and some smaller. At Boston, New York, Baltimore, and Pittsburg are smelt-works, working on the English plan; smaller furnaces are in Missouri, Wisconsin, and Michigan. At present most of the smelt-works are stopped for want of ore. If all the furnaces in the Union could be kept in operation, we should produce more copper than we want, and have some for export ; for the smelt-werks have a capacity of 18,000 tons. The works along the Atlantic coast depend chiefly upon ores from Cuba; Pittsburg and Boston are supplied from Lake Superior. All the States along the Atlantic coast furnish copper ores, but there must be causes which prevent a regular supply to the smelt-works. Our ores are not particularly rich, still there are mines in New Jersey, Pemsylvania, Virginia, and all the Southern States, which will pay handsomely if carried on properly. There is a deposit of native copper in Virginia which will furnish stamp-work equal to Lake Superior. The chief difficulty in our copper-mining business is, that some of these mines have been carried on by ignorant persons; in other cases, swindlers lave abused the confidence of the community. If copper-mining in either of the Atlantic States is carried on with discrimination, industry, and not over-sanguine expectations, there is no doubt as to its being a safe and paying business. Many of our copper mines would be, and could be carried on by farmers, or the owners of the soil, it their lnowledge of mining and preparation or concentration of the ore were sufficient to make the operation profitable. Ia these respects the smelt-works cim assist a great deal in developing the resources of the country, if they will furnish such instrnctions to the owners of the mines as will facilitate their operation; for it must be presumed the smelt-works are more qualified to fumish practical information on that subject than any other person or persons can do. Ores do not come now on consignment, because the owner of the ore does not like to run the risk of a sale which appears to lim arbitrary. Our Atlantic smelt-works have to exert themselves in developing the sources of ore, and export copper, or they are to stop operations. Lake Superior promises to fumish 6000 tons of enpper this year; this will supply nearly the demand of the Union; there is, therefore, littlo w no choice for the Atlantic works, hut to smelt for export. Here are means, that is, ore and fuel, to go into competition with Europe: it requires some industry to make these means available.

The smelting of copper ores in all of our smelt-works is carried on in fumaces resembling the Einglins furnaces at Swansea. The operation of smelting is also similar to the English process, all of which claborate deseriptions are furnished in Ure"s Dietionary of Manufactures and Mines. The operation of emelting is divided chielly into preparing, or washing and crushing of the ore, calcining, smelting and refining. The washing of these ores is performed at the mines, and also the crushing or concentration, und does not differ from similar operations performed on other ores. The furnaces used in the varions operations at the smelt-works are all of the reverberatory lind, and fired ly bituminous coal, or by wood. Fig. 2824 shows a calcining-furnace in clevation, Fig. 2825 the same furnace in section, and Fig. 2827 shows the ground-plan of the furnace. A is the fire-place, B is the hearth, C an arch into which the ore is drawn; E E are stationary hoppers, or feeders, and $b b b b$ four work-doors. The ore in this calcuing operation is not fused; it is heated merely to sueh a degree of heat as will evaporate sulphur and arsenic, and oxidize the metallic ores. These calcined ores are exposed to a second heat
either in the same furnace, or, as in most cases, in a separate or smelting-furmace. Such a furunce is repreented in Fizs. 2832, os 833 , showing the plan and section of it ; here $A 15$ is the hearth, C the fireplace, L the hopper, and $K M$ a receiving-pot filled with water, in which the copper is granulated. In the second operation, or snelting, some copper is produced along with the matt ur slag, which is separated and treated in a peculiar way. The matt, which contains but little copper, is returned to the calcined ore, and smelted aloner with it. In this operation fluxes are added in cate the ore does not contain sufficient flux for smelting. Iron forms the best flux, and for these reasons: copper pyrites, which always contain more or less iron pyrites, are the most profitable ores in the smelting operattion. Other fluxes are the metallic oxides of mangancee, lead and tin, besides which, lime, fluor-spar, or other fluxey are used.

The copper obtained in the first smelting operation is inpure, and classes not higher than a rich matt er melted ore; its granules consist of copper, iron, sulphur, de. This matt or coarse metal is once none calcined in the calcining-furnace, and then subjected to another smeltins, by which. operation a more refined metal is obtainel. The hatter product is, however, not jet fine copper ; it is niatt, which contains 60 per cent. of copper; it is granulatel and roasted as before, and once more smelted, by which a richer matt is obtained. These alternate operations of roasting and omelting are repeated from seven to eight times before line copper is obtainet. The cause of this delay, or repetition of catcising, is found in the great affinity of copper for sulphur and arsenic, which it requires repeated fire ard cooling to expel successfully.

The refining of copper is dune in the smetting furnace, or a refining-furnace kept for the purpoee. The melting of the pios is conlucted slowly, so as to calcine the copper, in case any impurities are left in the fine copper. When the copper is melted, its surface is eosered by finely broken charcoal, which operation is repeated as the charcoal consumes. This refining process lasts for 20 hours, and longer, for one heat of from S to 9 tons, after which time the eopper is ladled out by means of iron ladles coated with clay:

The Cermams, and all other European mations, alwo the new copper smolt-work in Baltimore, smelt their copper ores in furnaces similar to those represented in Figs. $2 s .28$ to 2×31. The operation is similar th that of smeltiag lead, silver, or iron ores. In these furnaces, which are about 15 feet high, and 8 fect wide, are two tuseres C' C', and a cinder tap-hole in the line Gr HI. The copper is tapped into the ba-in i, where it is chilleal on she surface amd forms rosettes, or it is cat into pist fur retinneg. The latter proenss is performed in reverberatory furnaces, similar to thoze deseribed.

Thu"ntive "oper uccurring at Lake Superior, in V'irginia, and elewhere, contans a lare purtion of silver, which at pre ent is lont; to extract this silver ly ligution is expensiw, and injurions to the guality of the metal; to do it hy amakamation is expensive, and hardly woth pay the troulde. There are, howewer, ore which whait more than one per cent. of silver to the edper, and we maty asume

rertical and horizontal section. About one ton of ore, along with one ton of slag from the previous beats, forms one charge. The whole is thoroughly heated by closed doors and suffocated coribustion, so as to produce carbonic oxide gas in the furnace, for reducing as much lead from the slags and ore as possible. When in this way most of the lead is extracted, the doors of the furnace are opened, more heat is given, and the mass, ore and slags, thoroughly melted, with the addition of some pure quicklime, which is occasionally thrown into the melting mass, and well stirred along with the ore. Most of the lead is yielded by the ore in this operation, still there is more than 25 per cent. of it lost in the slags; these are resmelted in a blast-furnace. Reverberatory furnaces are heated by dry wood, and produce in -4 hours from three to four tons of metal.

More general than the foregoing are the blast-furnaces for smelting lead. These are furnaces resem oling a cupola in which iron is smelted, more than any thing else; they are generally built in a rough manner in appearance, but the inside of the furnace coincides with a cupola; it is generally from six to eight feet high; the blast is introduced by the nozzle h to the tuyere y. The lead, in gathering in the bottom f, is frequently tapped, so as to hare but little metal in the furnace at a time. The cinder, or slag, is kept as high as the tuycre, and if it reaches too high some of it is tapped at a tap-hole in the front of the furnace. One blast-furnace will produce in 24 hours about two tons of lead, for which it consumes 6000 lbs of galena, 25 bushels of charcoal, and about a quarter of a cord of wood. In this operation, as in the reverberatory, a great deal of metal is lost, which in most cases amounts to 20 per cent. or more. The slags contain most of this loss, still a large portion of it is destroyed by eraporation. The blast-furnace has the advantage over the reverberatory so far as regards economy, but it does not furnish so much metal in the same time as the latter.
The slags from the blast-furnace, the reverberatory, and the slags from the old Scotel furnaces, now no longer in use, are gathered, broken into coarse lumps of about two inches, and are then subjected to another smelting in the slag furnace. The slag-furnace is similar to the above blast-furnace, but it is lower; its extreme height is only four feet, and in many instances it is only three feet high. The slags are here smelted by charcoal, with the addition of some lime and iron ore, by which about two-thirds of the lead contained in the slags is obtained; one-third of the metal in the slags, or 10 per cent. of the ore, is therefore irrecoverably lost. These furnaces are the same in principle as that represented in the above drawing; the work in it cliffers somewhat from the smelting of ore. The lead and slags flow here continually, the first into a basin nearest the taphole in which it gathers; the latter flows from this basin into a somewhat distant rescrvoir of water, where it is cooled and thrown away. A slagr furnace will smelt in 21 hours about two tons of metal; this, howerer, depends upon the richmess of the slags; it will make more if the slags are rich, and will make less if poor.

The conditions of the lead business are not very cncouraging at present; the profits are so small that the smelting of lead i reduced to an occupation which hardly pays the trouble of carrying it on. If an Illinois smelter, who carries on one furnace, can make ten dollars a day, he does rery well. When we consider the risk of bad debts, accilents, and stoppages for want of ore or hands, we find that the smelting of lead pays worse than any other trade.

Zinc.-This metal was known to the ancients, who melted oxide of ziuc, called galmei by the Germans, together with copper, and formed brass of it. A similar process is performed with the red oxide of zinc in New Jersey. The Chinese have known this process longer than historical reports reach. The most abundant ores of zinc are the :alphurets, blende; these are found in Virginia and North Carolina
m inexhaustible quantities，along with galena，silver，and the sulphurets of iron and enpper．Anothes ore is the oxide of zine，ealamine，which is combined with earbonic acid，or silex，or both of these mat－ ters．Large deposits of this kind of ore are found in New Jersey，Pennsylvania，and some of it along the northwestern lakez．
Zine is a brittle metal，of a bluish white color and considerable lustre；it is soon tarni－hed with an insoluble coating of protuside of zine．Its fracture is crystalline and short，and it malleability not remarkable．American zinc，manufictured by the New Jersey Company，is remarkable for its tenacity． line wires may be drawn of it，which possess great strength，a beautiful silvery lu－tre，and tine ap－ pearance．The specific gravity of zinc is 6.9 to 7.3 ；it melts at about 700° ，and som burns with a bluish－white light，forming bright white flowers of zine，a floceulent matter resembling cotton－wool，or snow－flake－it is oxide of zine．

In the Linited States mot much zine is manufactured in its metallic state at present ；the low price of the European zine will not admit of working our own ores，Some zine is manufactured in New Jersey，but the quantity is small in comparison to that imported．Considerable use，however，is made of the red oxide for the manuficture of brass．An important business could be done in the Sonthern States by working the silver blende for zine，and extracting the silver in the mean time，either before or after the zine is manufuctured from it．The Silesim proces of working zinc ore is the best adapted for working this kind of ore，for which reason we shall describe this operation in preference to other pro－ cesses．
The ore，in this operatim，is roanted in a reverberatory furnace，similar to that in which copper ores are roasted，and which have been represented befure．After the ore is well roasted，which operation is tedious on sulphurets，it is mixed with an equal volume of culm，that is，bituminous eoal－slack，and some small charcoal，in case the ore is fine，to make the misture porous．The roasted ore，well mised with its ingrelients，is now introduced in lots of 50 pounds of ore into a muttle，which is carefully made of good fire－claty，such clay as fire－bricks are made of－the Mt．Savage，Maryland，and Johnstown，Pa．， clay is，for this purpose，the best．Nuftles are round pipes；they must be slowly dried，and are then baked in a particular furnace．They are，when red hot，inserted into the reducing－furnace，which is a reverberatory，shown in section in Fig．2४34，and in plan in Fig．2835．A range of muttles is laid on the

hearth，a ，of the furnace，reaching to the fire－bridge，b ，their month extending tor．The mumbes are closed by a clay slab at the numth，in which there are two openings，one at the bettom for the charge and dischare of the ore，an！one at the top for inserting an irm pipe which is to conduct the vapors of the distilled zine th the comben－ing vesacl．The vapors of zinc are conducted into cold water，in which it condenses and forms grains；these are afterwards remelted in an iron put．One reverberatory combins five mulles，and a double furnace ten．To prodnee one ton of metal，to，and from that to in，fons of bituminous coal are eotsumed，and one mufle will lat for making mearly one ton and a half of zine：

Zine is a urful metal，if it can be obtainad at reatomable prices；it is in lispensable in the whemical laboratory，and is yery useful in arehitueture for rembing and fine ornaments．fis mont important applt－ cation is，howeser，ia combination with chpprer，as bran，of which a great sariefy of shades of the gellow color are pro liectl．

 しゃにった。

Fig. 2836 shows a scetion of a furnace paraltel with the front elevation represented in Fig. 2837 zaa are iron retorts; the whole furnace contains 9 of them. I is the fireplace, designed either for coal or wood. The upper retert is protected against the direct contact of the tlame by fire-bricks. K F

shows the flues for the escape of the burnt gases. The whole arrangement is shown in Fig. 2838 very distinctly. The tro ends of the retort, a, are shut by two iron lids, secured by cross-bars and screme. bolts, luted with clay. The one end of the retort is provided with an iron pipe b, which leads into a long

condenser ρ, and from thence into the receiver D, c. The hole L is designed for the introduction of an iron wire, in case any disturbance should happen in the pipe b, where dirt from the ore may accumulate and obstruct the passage of the mercury vapors. The pipe, c, is atways partly filled with quicksilver, and kept cool by water contained in a trough which surrounds it.
The retorts are kept in constant ignition, and a charge is worked 'in three hours' time, each charge consisting of 5 cwts. of ore. The ore is finely broken, and mixed with a portion of quicklime or porous magnetic iron ore, and, if it can be had, with both mized together. The quantity of lime or iron depends upon the quality of the ore; pure ore requires more of it than impure ore. The quantity of quicksilver made in one retort per day depends also on the richness of the ore: the California ore ought to produce at least 600 lbs . in 24 hours in one retort, which will be for 9 retorts nearly 2 tons and a half per day. The retorts are clarged and disclarged from behind, so as to leave the condensing apparatus undisturbed.

Tin.-Germ., zinn; Fr., etain; Lat., stanum. Tiu las been known for ages, and was used by the ancients long before our era. Tin ore is found chiefly as an oxide of tin:
 it is, in fact, the only available ore. England, Germany, and the East Indies, furnish almost all the tin in market-some is brought from South America, but it is of an inferior quality. In the Thited States tin ore is found in Connecticut, and there is said to be a good deposit in Mi-sonri ; a small quantity is found in the silver ores of the Southern States. Tin is a beantifut metal, and, next to silver, the whitest of all the metals. Its specific gravity is 7.29 . It is a little harder than lead, and emits a pe. culiar sound, in-ery, when beat, but the addition of a small quantity of lead diminishes the strength of that sound. Tin is more fusible than lead; it melts at 440°. It is very volatile, and burns in open fire, forming oxide of tin, or purty of tin. The most extensive use of tin is in the manufacture of tin plate, for which purpose a very pure tin is required; it is further employed for making pewter, bronze, bell-metal, de., for which purpose it is alloyed with other metals, such as lead and copper.
The metallurgy of tin is simple, but it requires experience to sueceed well ir ameltius. The ores are
first concentrated ly stamping and mashing. which is so much the more easy as tin ores are of a hirh epecific gravity, almost equal to galena. The roasting is invariably performel in a reverberatory fur mace, which is a tedious operation, and requires from 15 to 20 hours work for me heat: if this uperation is not well perfurmed, much trouble and luss is met with in smelting. Thin is the mo-t profitably smeltenl in a blat-furnace, sueh as copper or situer ores are smelted in. In Englame, the reverberatory is employed for smeltiar some kindi of ore, but the best metal i- made in the tirst furnace. The clarges in the blast-furnace consist in chareoal ore, and lime, lead ore or iron ore as thaxes. In the reverberatory, the ore is charged alon's with lime, and culm, or mincral coal slack, as the in ans of refuction. At the tap-hole of the furmace a receiving ba-in is moulded, into which the thuid metal is tapped at certan intervals, the fluid slarg bein's conducted to some other reservoir and grathered, to be smelted enee nume.

Tin, directly from the smelting furnace, is always impure. It contains all the mutals with which the ores are adulterated, and it absorbs, also, metals from the flux. The metal is retined in a revormeratury furnace by eliquation, which process is based upon the ready fusibility of tin. In charging the blueks of tin near the tire-bridee, the hearth being sloped towards the flue, a gentle hat will melt the tin first if all other metals, and it will flow down the hearth, leaving the other metals in the form of skeletons of the original blocks. The pure metal is removed by tapping it at the flue, and then the heat inereased and the other metals melted down : these are kept separate. The tin thus obtanel is once more subjected to refining, fir which purpose it is melted in an iron kettle, and stirred with stiek of green wool. The stean cmitted from that wood oxidizes all other metale, and purifies the tin from them; the former form a light scum on its surface, which is removed, and the metal cast in block; it is now ready for the market. The whole amount of tin mannfactured in the world may be estimated at about 10,0 ou tuns, of which Encland furnishes the one half.

MCROMETER. An intrument applied to telescopes and mieroscopes for meatring very small distances, or the diameters of objects which subtend yery small angles. A great number of contrivance: of various kinds, and depending on ditherent principles, have been employed for this purpuse; but i: will be sufficient to give a general description of some of the most ueful or remarkable ones.

Hire micrometer. This instrument, when placed in the tube of a telescope, at the foens of the object glase, presents the appearance represented in Fig. 2339 . A a is a spiders web line, or very tine wire fixed to the diaphragin; and $\mathrm{B} b$ and $\mathrm{C} c$ are similar wires stretched across two fork, each connected with a milled-hemed screw. By means of these screws the two wires, $\mathrm{B} b \mathrm{am}$ C c, which are exactly parallel to each other, are movable in the direction perpendicular to $A u$; and in order that the wire Λa may be placed in any direetion relatively to the meridan, there is an adjusting serew, which work intu: an interiur touthed wheel, and turns the apparatus round in its own plane perpendicular to the axis of the telescope.

The method of uning the mierometer is as follows: Suppose the object to be accomptished were the measurement of the angle of position and distance of two very close stars; the telescope being set and kept on the object., the micrometer is turned by its adjusting serew until the spider line A a coincides with the line joining the two stars, or therads them buth at the same monent. The milled heads of the screws, which carry the two movable wires, are then turned
 until B 6 bisects one of the two stars, and $\mathrm{C} c$ bisects the other. The obeersation is now compheted, and it only remains to ascertain the position and distance indicated ly the mierometer. l'or the first of these purposes, the circumference of the micrometer is divided into degrees ind minuter, and rand by two vermers: this rembing gives the position of A a in respect of the horizontal and rertical phanes, and connequently the angle of position of the two stars. To dind their distance, the heal of the sirew which carries one of the movable wires, for instance $\mathrm{C} e$, i : turned until Ce conciles with $1: \ell$; and the momber of rewolutions, and parts of a revolution, repuired to edhect the coincilence, gises the disance of the stars when the value of the solate of the mierom ter is known that is to say; "hen the mumber of ser-

'I he value of the ecale, or of at resohation of the serew, is ubtained in the forhwing mamer : set the

strument is called the suspended annular micrometer. The adrantage of this construction consists in the accuracy with which the moment of ingress or egress is determined, from the body being seen in the field of view befure it comes up to the celge of the steel ring. The amnular micrometer is conveniently used for comparing the place of a small star or a comet with that of a known star in nearly the same parallel of dechination.

Divided olject-glass, or doutle-image micromenter.-This instrument is formed by dividing the objectglass of a teleseope or microscope into two halves, the straight edges being ground smooth, so that they may easily slide by one another. A double inage of an object in the field of viow is produced by the scparation of the segments; and, by bringing the opposite edges of the two images into contact, a measure of the diameter of the object is obtained in terms of the extent of the separation. From its being used to measure the diameter of the sun, this is usually called the heliometer. Insteal of a divided object-glass, Ramsden preferrel a divided leus in the cye-tube, which form of the instrument is called the dioptric micrometer. The double-image micrometer was suggested by Roemer, about 1678 , but first bronyht into use by Bouguer, about 1748.

MICROSCGPE. An optical instrument which enables us to see and examine objects which are too minnte to be seen by the naked eye. Microscopes are single or compound, aceording to the nature of their construction; a single microscope being one throngh which, whether it consists of a single lens or a combination of lenses, the object is riewed directly; and a compound microscope one in which two or more lenses are so arranged that an enlarged image of the object formed by one of them is magnified by the sccond, or by the others, if there are more than two, and seen as if it were the object itself.

Single microscope.-This instrument i , for the most part, simply a lens or sphere of any transparent substance, which refracts the rays of light issuing from a small body placed in its focus, and gives them such a degree of convergency as is necessary for distinct vision. In order that the rays of light issuing from the several points of a very small body may produce a sensible impression on the retina of the eye, it is necessary that the object be brought very near the eye; but when this is done, the rays coming from its different points are so divergent as to produce only a confused image. Now, if a convex lens be interposed between the object and the cye, and so placed that its distance from the object is a little less than its focal distance, the diverging rays issuing from the object are refracted by the lens, and enter the eye placed behind it, either parallel, or so nearly parallel as to afford distinct vision. The object is then scen in the direction of the refracted rays, and at the distance at which it could be distinctly seen by the maked eye, and consequently magnified in the ratio of the distance of distinct vision to the focal distance of the lens. This ratio is called the magnifying power of the lens; hence, for single microscopes, the magnifying power is equal to the distance at which a small object can be seen distinctly by the naked eye, livided by the focal distance of the lens; and, as the distance of distinct vision is constant, (at least for the same individual,) the magnifying power is inversely as the focal distance. If we suppose the distance which limits distinct vision, in respect of minute objects, to be 5 inches (which is about the average for good eyes) and the focal distance of the lens to be 1 inch, the object will be magnified 5 times in linear dimensions, and 25 times in superficial. If the focal distance is one-tenth of an inch, the magnifying power will be 50 in linear extent, and 2500 in superficial.

A single microscope may be obtained very casily by piereing a small circular hole in a slip of metal, and introducing into it a drop of water, which will assume a spherical form on each side of the metal. The substance commonly used for microscopic lenses is plate glass; but they are sometimes formed of rock crystal, which is better. Flint glass, by reason of its great dispersive power, is unfitted for the purpose. The precious stones, as the garnet, ruby, sapphire, and diamond, have been proposed; but the momerous and skilful attempts of Mr. Varley and Mr. Pritchard have proved that the advantages arising from the greater refractive power of those substances are more than counterbalanced by their color, reflective power, double refraction, and heterogeneous structure. The crystalline lenses of minnows and other small fishes give a very perfect image of minute objects.

When the object to be examined is of such magnitude as to subtend an angle of some degrees, the requisite distinctness cannot be given to its whole surface by an ordinary lens, in consequence of the confusion occasioned by the lateral rays; unless, indeed, the rays are only permitted to enter the lens through a very small aperture, whereby the quantity of light is greatly diminished. In order to remedy this iuconvenience, Dr. Wollaston contrived a form of lens, to which he gave the name of periscopic lens. Its construction is as follows: two plano-convex lenses or hemispheres are ground to the same radius, and between their plane surfaces a thin plate of metal, with a circular aperture, is introduced. The aperture which appeared to give the most distinct, image was about $\frac{1}{5}$ of the focal length in diameter; and, when the aperture was well centered, the visible field was as much as 20° in diameter. A lens of this kind possesses the double advantage of having a very short focal distance, and very little spherical aberration. Dr. Wollaston's contrivance may, however, he improved upon in varinus ways; tor example, by filling up the central aperture with a cement of the same refractive power as the lenses, whereby the loss of light from the double number of surfaces is avoided; or by gronting away the equatorial parts of a sphere of glass, so as to leave a deep groore all romm it, in the plane of a great circle perpendicular to the axis of vision, and filling the groove with opaque matter. This last construction is called the Coddinyton lens, (from the name of its proposer,') and When exccuted in gamet, and used in homogeneons light, it is consilered by sir Davil Brewster to be the mast perfect of all lenses, either for single mieroscopes, or the object lenses of compounc ones.

In using a single lens as a maguifier, it is always necessary that the light be made to pass through a very small aperture, in order that the object may be seen distinctly and without disturtion. This necessity arises, both from the spherical aberration and the chromatic dispersion of the light falling on the surface of the lens under an angle of considerable obliquity; and the consequence is, that the quantity of light admitted to the eye is so much diminished that the object camot cleally be seen

Tu remedy this inconvenience, Dr. Wollaston proposed a combination of two lenses, called, in consu quence, a microsmpic doullet, the optical part of which may be descrabed at follows: M and N, Fig 2841, are t wo planoconvex lense, whose focal lengths are in the ratio of 3 to 1 , or wearly so and placed one over the other se that their plane sides are towards the whject. The adjustment of the distance between the lenses is best aceomplished br trial; and they must, aceordingly, be so mounted that the distance may be varied at pleasure. A I) is a diaphragni or stop for limiting the aperture. Though it dues not appear that the stop was contemplated by Dr. Whollastun, whomakes no allu-ion to it, the performance of the microsope depends moch on its nice adjustment. It is obvious that as each of the pencils of light from the extremities of the object is rendered eceentric by the etop, and made to pas through the two lenses on opposite sides of the common axis, they are affected by opporsite errors, which, in some derree, serve to counteract each other. This doublet, when correctly made, i_{s} infinitely superior to any single lens, and will transmit a peneil of from 35° to 50° without any very sensible crrors. The original description by Dr. Wollaston is given in the Philosopheal Trunsactions for $1-29$.
The above construction has been improved upon by substituting two plano-convex lenses for N in the duablet, the plane side of the one being in contact with the convex side of the other, and the stup being retained between them and the third. This combination is called a triplet; and its advantase is, that the errors of the doublet are still further reduced by the greater appreximation to the object, in consequence of which the refractions take place nearer the axis.

When the magnifying power of the lens is considerable, and, consequently, its focal distance very small, it requires to be placed at the proper distance from the object with great precision; and as it cannot be hehd in the hand with sufficient steadiness for any length of time, it requires to be mometed in a frame having a rack and serew, by means of which its distance from the olject can be adju-ted with aceuracy. Jirrors fur collecting the light and throwing it upon the object are also necessary fur many purposes.

Compourd microsrope. -The simplest kind of compound mieroseope is formed by the combination of two converging lenser, whese axes are placed in the same strablit line. The arrangement of the konkes, and the path of the rays, will be readily understool from the annexed diapram, Firs aste. II S is the ohject-ghas, which hats a very shont focal distance, and P (! the eye-ghass. A small object, ab, being placed before the object-phase, a little further from it than the focus or parallel raye a re-
 at surh a di-tance trom MI Nat its primeipal focus is in the line at $a^{\prime} b^{\prime}$; comsequently the rass of light from every point of the image $a^{\prime} b^{\prime}$ emorge nearly parallel from $P(Q$ and to the 'rye at E, the
 limits of distinct vision, which, as ctated alowes, is alout 5 inches.
 place, if we a-nume d to dombe the di-tamee of the first inare $a^{\prime} b^{\prime}$ frem M, and f the distance of

 propurtion, buing multiplind torncther, give a" $b^{\prime \prime}=\frac{d y}{j f}$ which, therefore, it the magnify ing power of

 or the marnitying jwwor is "on.

 betwem the imaten a' b^{\prime} and the oljoue olaw

ceivel. Suppose MI N, Fig. 2343, to be a coneave speculum, and a small object to be placed before it at f. Λ retlected image of the object will be formed at F , where the rays issuing from each point of the object intersect each other, and magnified in the proportion of F M to $f \mathrm{M}$. If the image at F is viewed with the maked eye, the instrument is a single reflecting microscope ; but if the image is viewed throngh a refracting lens P^{\prime} (, (or a comkination of lenses forming an eye-piece,) by which the rays are made to converge towards the eye at E , it becomes a compound reflecting microscope.

The reflecting mieroscope was first proposed by Sir Isaac Newton in the form now described; but on accomnt of the impracticability of illuminating the object, it was long disused. It has, however been recently revived, under a modified form, by Professor Amici, of Modena, who places the object outside the tube of the microscope, below the line N F ; and, in order that an image may be formed in the speculum, the rays issuing from the object fall upon a small plane mirror placed at f, inclined to the axis of the speculum in an angle of 45°, whereby they are thrown upon the speculum in the same mauner as if the object itself were placed at f. By this means the object can be illuminated with per fect facility. The concare speculum MIN is ground into an ellipsoidal surface; the diagonal mirror is placed at the nearest focus f, and the image is consequently formed at the other focns \vec{F}. The image it \mathfrak{F} is riewed with a single or donble eye-piece, as in other microscopes.

Solar and oxyhydroge microscopes.-The solar microscope is composed essrntially of a mirror and two converging lenzes. The plane metallic mirror C D, Fig. 2844, reflects the sun's rays upon the lens $M N$, by which they are concentrated upon the object abplaced in its focus. The object being thus strongly illuminated, is placed before a second lens PQ, (a little before the primeipal focus,) by which the rays are rendered still more convergent, and produce a magnified image of the object upon a sereen suitably placed at a distance of some feet behind the lens. The ubject is here supposed to be transparent; if opaque, the light must be thrown upon it in such a mamer as to be reflected by it to PQ. The mirror and lens M N are placed in the hole of a window-shatter in a darkened room; and the mirror must be movable, in order that the sun's rays may always fall upon it under a proper angle to be reflected to the lenses. But the solar microscope is now almost entirely superseded by the oxyhydrogen mieroscope; so called because the illumination, instead of being produced by the sum's rays, is produced by burning a small piece of lime or marble in a stream of oxyhydrogen gas. In this case the plane mirror C D becomes umecessary; and instead of the lens MN a concave speculum is employed, in front of which the ball of lime is placed, and an intense light thus thrown upon the object $a b$, the rays from which are brought to focl upon the screen by the lens PQ. For full details respecting the management of this apparatus, which forms a rery popular exhibition, the reader is referred to Goring and Pritchard's Jicograplea. For descriptions of the various kinds of micro scopes see Brewster's Trcatise on Tew Plitosophical Instruments ; or Ency. Brit., art. "Microscope."

Mille. A long measure, equal to 1760 yards. See Weigirs and Meisures, for miles of difterent countries.

MILL. The term is most commonly applied to machines for grinding corn, but it is likewise used in a more loose sense to denote machines intended for other purposes, as the grinding of bark, for felling wood, for preparing flax, cotton, ice. Sec Water-wheels, Geering, and the various processes of manufacture commonly classed under this head.

MhLLSTONE, or Burr-Stone. This interesting form of silica, which occurs in great masses, has a texture essentially cellular, the cells being irregular in number, shape, and size, and are often crossed by thin plates, or coarse fibres of silex. The burr-stone has a straight fracture, but it is not so brittle as flint, though its hardness is nearly the same. It is feebly translucent; its colors are pale and dead, of a whitish, grayish, or yellowish cast, sometimes with a tinge of blue.

The burr-stones usually occur in beds, which are sometimes continuous, and at others interrupted These beds are placed amil deposits of sand, or argillaceous and ferruginous marls, which penetrate between them, filling their fissures and honeycomb cavities. Ibur-stones constitute a very rare geological formation, being found in abundance only in the mineal basin of Paris, and a fers adjoining districts. Its place of superposition is well ascertained : it forms a part of the lacustrine, or firesh-water formation, which, in the locality alluded to, hies above the fossil-bone gypsum, and the stratum of sand and marine sandstone which eovers it. Burr-stone constitutes, therefore, the uppermost solid stratum of the crust of the globe; for above it there is nothing but alluvial soil, or diluvial gravel, sand, and loam.

Bur-stones sometimes contain no organic forms, at others they scem as if stuffed full of fresh-water shells, or land shells and vegetables of inland growth. There is no exception known to this arrangement; but the shells have assumed a silicious nature, and their cavities are often bedecked with erys tals of quartz. The best burr-stones for grinking com, have about an equal proportion of solid mater and of vacant space. The finest guarry of them is upon the high ground near La Ferte-sous- Jouarre The stones are quarried in the open air, and are cut out in eylinders from one to two yards in diameter, by a series of iron and wooden wedges, gradually but equally inserted. The pieces of bur-stones are aftcrwards cut in parallelopipeds, called panes, which are bound with iron hoops into large millstone These pieces are exported chiefly to this country and England. Good millstones of a bluish white tolor, with a regular proportion of cells, when six fect and a halt in diameter, feteh 1200 francs a-piece, or $£ 18$ sterling. A coarse conglomerate sandstone or breccia ${ }_{i s}$, in some cases, used a a substitute for burrstone, but it is a poor one.

IINERAL KINGDO3I, ant rials fiom, ust in the mochanical an lornamental art: The materishs from the mineral kingelon bay be cividen, so fir as resards these pare, into two eroup ; the eartly, and the metallic.
The earthy materials, whon cmployet in the meedanichl and weffatarts, are gencrally thed in the ir nattural states.
 hase, such as shex, chay, or sulf her, wheh we the mest commom mineralis. is; the eche-ion of the mans lats in gencral to be overeme L y heat, which destroys the athinity of the comp chent parts, and allons : of the seraration of the metals in various wats. Of the proce ses the anthor will live sareely any
 uffer.

 from the following table:

Tuble of IItrdness, cir.

1. Tale
2. Compact (iyp-um.
\%. Calcareous spar....
3. Fluor par.
4. Apatite.
(8. Fenspar:
5. Silex.
s. Tupaz..
6. Surphire
7. Ditmon :
Lead, sieatite on Soapstone, Meerschnum. 23
Tin, Ivory, Potstone, Figure-stun", Camel-conl, Jet, de. :11
f Gohl, sitver, and Copper, when fure; aft Brass, Serpentine, Mar-bles, Oriental Alabaster, de.$\div 1$
I'latinum, Cun-metal. 5:
soft Iron. 1;
Soft Stecl, Porphyrs, (ilass 5:
Hardenem Steel, Inartz, Flint, Arate, Granite, sandstemb, Sinl -4
Harde sted. i;
liuly and Corunhum 1
Cuts all sulvitheres. 1

The above table exhilits the relative despes of hardness of the sureral subatances in the estimation

 als, metals, and other substances of sinilar derret of hardness amb the list column contans the man ber of minerals which, in repect to hardnes, are rankel nader eath of the ten erad $\%$.

In the several practices of working the momerous substances, structure must alkn be talken into accont, of the mode in wheh their sepnrate particles are combined; the hadened -tee l, quartz eranice, and samdetome, are each included mader the number 7 . The partiches of the stecl however, are mak more fimbly unted than tho of of the glassy crystalline quartz, which is far more hrithe; and will nome so than the aggre gations of erystals in the granites; the hat may be wromgh ly shappometel pielis. and chisels of hard steel, which eru-h and detach, rather than cut ihe erystals; and ablhe ush amblome consits almot entirely of partieles of silex cemented with silex, still, its the grains of the sumbtone are but lonely hed torether, it may he turned with considerable facility with the tools wed for tum-

 cryatals of filhpar imbeded in a base of fel-par, camot be tumed with sted teois att all.

 1! 1 .atheri.

[^14]are used, and pitch also enters into the composition of other kinds. Shellaé, either alone or mixed with half its weight of finely powdered pmice-stone, is sometimes employed; and fine sealing wax which is principally shellac, is used, as well as many other kinds of cement. The stone is in general warmed to the melting point of the cement, but sometimes the hatter is melted by friction alone.

Clay.-This matcrial is only worked in the soft and plastic state. In pottery, it is attached to the potter's wheel or horizontal lathe, by its own adhesiveness alone, and is turned by the hands and blunt wooden tools; it is also pressed into moulds of metal and plaster of Paris, some of which are mounted ou the lathe when the objects are smoothed within and moulded without. Lathes with vibrating mandrels, or possessing the movement of the rose-engine, are likewise employed for the production of some works in pottery and china. The artists who model in clay, use blunt instruments, mostly of wood, which are rounded at the ends; and all artisans cut or divide this material with a stretched pack-thread, or a metal wire. The clay for superior pottery works and modelling, often called pipe-clay, is decomposed felspar-it is mostly obtained from Comwall and Devon; and the importance of the Stourbridge, and some other refractory clays, in the construction of crucibles and firebricks for a variety of other purposes in the arts, must not be overlooked.
Meerschaum-Amber.-These are principally used for smoking-pipes. Previously to being turned, the meerschaum is soaked in water ; it is then worked with ordinary tools, and is described "to cut like a tmmip." After having been dried in a warm rom, it is polished with a few of its own shavings, and rubbed with white wax, which penetrates its surface. Sometimes the pipes are dipped into a vessel containing melted wax.

Jet, camel coal, dc.-Jet is found at Whitby, Scarborough, and Yarmouth, and is also imported from Turkey, but it is not generally met in large pices. It may be tumed with most of the tools for the soft and hard woods, and worked with saws and files, all used in the ordinary way. Jet, unti] polishel, appears of a brown color, and is manufactured by the lapidary into a variety of ornaments, such as neeklaces, ear-rings, and crosses.

Cannel coal is principally obtained in England from Yorkshire, Shropshire, Derbyshire, and Cumberlanc. It is also found in parts of Scotland and North Wales. It occurs in seams, generally about three inches, but occasionally one foot thick, amongst ordinary coal; sometimes, as at the Angel Bank Colliery, near Ludlow, it constitutes the entire bed. Compared with jet it is muel more brittle, also heavier, and harder; it is less brown when worked, less brilliant, but more durable when polished; neither of them are at all influenced by acids or moisture, although they temporarily expand by heat.

Cannel coal may be thought to be a dirty and brittle material, but this is only partially true; it is far better suited to the lathe than might be expected, although a peculiar treatment is called for in the entire management, which commences with the selection of pieces free from flaws, of a compact grain, and of a clean conchoidal rather than flaky structure.

All the tools for camel coal are ground with two bevels exactly like the chisel for soft wood turning, but they are held horizontally; a small gouge, from one-quarter to three-eighths of an inch wide, also slightly bevelled off from within, is used for ronghing out, or rather bringing the work as near as possible to the shape, to save the finishing tools: these should be ground with thin and very sharp edges, ot herwise they burnish instead of serape the work. The ordinary tools for irory and hard wood, if employed, must be held downwards at an angle of about twenty degrees. These tools are sometimes used with a wire edge tumed up in the mamer of a joiners scraper.

The plankway surfaces turn the most freely, and with shavings much like those of wood; the edges yield small chips, and at last a fine dust, but which does not stick to the hands in the manner of common coul. Flat objects, such as inkstands, are worked with the joiner's ordinary tools and planes; but with these likewise it is also better the edge should be slightly bevelled on the flat side of the iron. The edges of cannel coal are harder and polish better than the flat surfaces.

Alabaster.-This is a sulphate of lime or compact gypsum, which oceurs in various places; in England the finest is found near Derby, where the pure white is employed for the purposes of sculpture, but the finest white alabaster is from Italy ; the variegated kinds are turued into vases, pillars, aud other ornamental works.

The Italian alabaster, when first raised, is semi-transparent like spermaceti; it is wrought in this state. The works are generally rendered of a more opaque white by placing them in a ressel upon little fragments of the stone, so that they may be entirely surrounded by the cold water, which is then poured in and very slowly raised to nearly the boiling temperature; this should occupy two hours. The ressel is then allowed to cool to 70° or 80° Fahr:, the object is taken out, closely wrapped in a cloth, and allowed to remain until dry. The alabaster at first appears little altered, but it gradually assumes the opaque white; for the first six months it is considered to remain softer than at first, but to become ultimately somewhat harder from the treatment.

Alabaster readily absorbs grease and dirt of any kind, but it is eleaned by the Italians very dextermaly; some use weak alkaline and acid solutions. Soap and water are not to be recommended, as the unpoli-hed parts absorb the oil of the soap.
There are but fuw kinds of tools employed in turning alabaster, namely, points for roughing out, flat chisels for smonthing, and one or two common firmer chisels, ground convex and concare for cursed lines. The point tools used in Derbyshire are square, and deacribed under marble; the Italians prefer a triangular point, as an old triangular file driven into a handle and ground off obtusely at the ond. The carred parts are done by hand with small gouges, chisels, and scorpers of various forms and kizes; chrills, files, and saws are also employed, and the surface, unless polished, is finished with fishbkin and Dutch rush.

The fibrous gypsum, called from its brilliant appearance satinstone, is much softer; it is turned into necklaces and small ornaments by a sharp, flat chisel, held obliquely; a square point would pplit of the fibres. All the above kinds of alabaster or gypsum produce, when calcined, the well-known plaster of Paris, a sulstance used for cementing together such of the vases as are made of dutached
parts: plaster of Paris also remders other and far more important serviees in a variety of the nsefu ard ornamental arts.
Oriental alabatier is at very different substance from the above; it is a stalagmitic carbonate of lime, compact or fibrous, gencrally white, but of all colors fom white to hrown, and rumetimes veined with colured zome; ; it is of the same hardoess as marble, is used for similar purpenes, and wrought by the same means.

Slate.-The common blue and red slates consist of chas and silex in alont equal parte; the larmet shate quarries, perlats in the world, are at lamgor in Wiales. The blocke, when quaried, are splis into sheets, sometimes exceeding cieght feet by four, by means of long, wile, and thin chisels, applied en the edge, parallel with the lamine, and struck with a mallet on hammer. The sheets are sawn inte rectangular pieecs and slabs, by urdinary cirenlar saws with teeth, mowed rather slawly ; ambl the en are afterwards plancel fot billiard-tables, de., in machines nearly resembline the enginecers phamemathines for metal, but with toels applided at about an angle of thirty degrees with the perpendicular. The process of sawing slate appears rather erushing than cutting, of a trial of strength betweets the tool and the slate, as the latter is carried up to the saw by machanery, and cannot recede from tha instrument; the saw is sharpened about fone times a day, amb is worn out in about twombas. The planime tonls for common slabs are six incles wide, and when made of the leent east-steel amb properly tempered, they lant a day and a half without being sharpened; the jambs for chimney pieces and uther mondings, atot exceeding about six inches wide, are flamed with tigured tow of of the full width.
Slate is also turned in the lathe with the heel or hook, teols nsed for irct, and also with ordinary tools, used with or without the slide rest, which are, however, rapidy- blunted when applied superlicially ; it is much tougher at the conds or edges of the lamina than at the flat sides. slate has been recemly worked into chimney pieces, and a variety of objects for internal decomation, which are ormamented by at patent proces, in the maner of mipior meche and chima; innitatinns of marbles and granite are thas made at about one-third the prices of marble. Some of the subtances kuow to mineralogists as slates are excedingly hard, and vary from the harduess $2 t$, to that of fliut or 7 . Many varictics, including the Turkey oilstones, are ued for sharpenime tools; and this family alar includes the touch-tones formerly u-ed in a-saing pohl.
siorprotine, potstone, steatite.-These ate natural compunde of magneia and silica. They are generally worked immediately un bemy miaed, being then much softer ; but with the erapmation ot their mointure they a-sume the general hardass of marble. The serpentime and ateatite are fom! abundantly in Cornwall; serpentine is often called green marble, and loy the Italinn Fevede proto. It is much used; but some of the serpentines will mot prolish well.
lot-tone is an inferior variety of sopentine; in (iermany it is abondantly turned into varion* dome-tic articles in common use, whenee its name.

Steatite is called soap-tome, from its smoth, unetums feel, and when firet raised it may he serateched with the finger-nail; but it becmes nearly a* hand as the others. A varicty of steatite is carved hy
 suppoed to be a preparation of rier. Steatite enters into the composition of purectan.

Harbles, limestomes-The term marble in applien ly the manon to ang of the materials that he empluys which almat of being poli-hed; but the mineralogist designates the ereby the compact carbomates of lime variondy colored. The principal kinds workel in the ornamental arte, are the white or statuary marble from Italy, a variety of colored marhw, primipally from Dewonlire and Derby shire, and the black lituminons marble from Deqle-hire, Wales, mal variou- part o of lreland.

The marbles are turned with a bar of the best cast-ateel, abont two feet hong and five eighthe of an inch =quare, drawn down at each end to a taper point, about two inches lons, and fomperid toa strawrolur: this point is rubled on two opposite sides in a sambtome, and hell to the marble at an angle of

 eighth of an incle wide, after which, it will reguire ilrawime out agan. For entting in the moublines a
 at :lll.
 not realily admit of bewe peli-hed of then may he wotiond the hathotome and other onlites, which

 - Mriace of the work. 'The mily toed unal is the aten If int.

The blue color of fluor is often so intense that the worles cannet be wrought thin enough to show it. When this is the case, the stone is rery gradually heatel in an owen until it becomes nearly red-hot, when the blue changes to an amethystine color. Great care is required, for if suffered to remain too long the color would entirely disappear. The white and lighter kinds of fluor are not worth one-tenth of the ralue of the blue, but are wrought in the same manner for commoner works.

Frecstones, sandstones.- Freestone is a term commonly applied by the mason to such of the sandstones used for building purposes as work fircely under the tools; mamely, the stone-saw, a smonth iron blade, fed with sand and water, and the ordinary picks and chisels, which are too familiar to require more than to be named. The freestomes are frequently turned into balustrades, pedestals, and vases. The term is used in this country to designate the sandstones used in building.

Sandstones, from their relatively slight cohesion, may be turned with the point tool used for marble, although, in the workshop, the grindstone is commonly turnel with an old file drawn down for some two or three inches to about one-cighth of an inch square, and held downwards upon the rest at the angle of 20 or 30 degrees. It is rolles over and over, which continually produces a new point ; the stone is then smoothed with a flat piece of iron or steel, or rubbed with a broken lump of anothen grindstone.

Porphyries, cleans, granites.-The division and preparation of the softest of the former materials, namely, clay, can be accompli-hed by the hands alone; in others, as alabaster and slate, with the ordi-- nary toothed saws; and fur those of a harder nature, the stone-saw, fed with sand and water, is an conomical mode of dividing them with great exactness and little waste, from their original forms to those in which they are ultimately required, and which is greatly facilitated by the structure of such as occur in stratificd beds; but the use of the stone-saw may be considered to cease with the sandstones.

Different and far more troublesome methods of working are necessary with those matcrials now to be considerel, that are much harder, and in which the existence of stratification is considered but rarely and imperfectly to exist; namely, in the compact and cemented porphyries, principally from Egypt and Sireden. 'The erystalline granites, and some other varieties, appear to merge from the porphyries to the granites, are used for similar purposes, worked by the same means, and ask for an intermediate position.

In detaching the masses of granitic rock from their natural beds, the points of least resistance are first determined by an experienced eye, and holes are sank at those points, vertically or inclined, as circumstances may require: the diameters of these holes vary according to the mass and the amount of resistance, and their depths according to the thickness of the blocks to be detached.

The holes are made with an iron rod, terminating at foot in a chisel-formed edge of hardened steel; the tool is held by one man, who changes its position at every blow received from sledge-hammers worked by other men who stand around. When the holes are thus made sufficiently deep, they are charged with gumpowder, in order to effect a separation of the mass by blasting; the ordinary process of tamping confines the porder, and the fuse communicates the blast. The art of the quarryman consists in placing the blast (or shot) where the smallest amount of powder will remove the largest mass of rock with the least lreakage, simply dislodging or turning it over ready for converting.

In converting the rude masses of granite to their intended forms, the line of the proposed division is first marked, and holes from two to three inches deep, and four to six inches asunder, are bored upon this line, by means of an iron rod, terminating at each end in chisel-formed edges of hardened stecl, with a bulb in the middle to add weight; this tool, called a jumper, is made to fall on one spot. It rebounds, and is partially twisted round to present the edge continually in a different angular position. In this mamer a very expert workman will bore abont a hundred holes a day. Erery one of the holes is then filled with two halfround pieces of iron, called feathers, with an iron-pointed wedge between them; the wedges are progressively and equally driven until the stone splits, and the fissure will be in general moderately flat, even should the mass be four or six feet thick, although in such cases the holes are sometimes continued round the ends also.

The scouters, the next class of men, employ the jumpers' feathers and medges for remoring any large projections, by boring holes sideways, and thus casting off large flakes; the spallers employ heavy axeformed or mucklc-hammers, for spalling or scaling off smaller flakes; and the seablcrs use heavy pointed picks, and complete the conversion, so far as it is effected at the quarry, ready for the masons employed in crecting the buildings for which the biocks are used, who eomplete their formation on the spot. Ali these materials are likewise used in the ornamental arts.

Forphyry is workel in the lathe with remarkable perfection, and many excellent specimens from sweden, of vases, slabs, pestles, and mortars, and bearings intended for the gudgeons of heary machinery, may be seen in London. These objects are first worked as nearly as possible to the required forms with the pick, are then mounted in lathes driven by water-power, and finished by grinding them with other lumps of porphyry, supplied with emery and water; the machinery is kept going day and night, and the gangs of men relice one another at certain intervals.

Granite is incapable of being turned in the lathe; it is therefore treated like porphyry, that is, shaped with heary picks, and finally with smaller pints used with a hammer; it is afterwards ground with circular or reciprocating motion, according to the figure, by means of iron phates fed with sharp sand, next with emery, progressively finer and finer, upon wooden rubbers, the endways of the grain: and lastly, the polish is perfected with felt rubbers and crocus. The process is tedious and difficult from the unequal hardness of the particles; in this respect granite is inferior to porphyry.

Of late years numerous vases and other circular and ornamental objects have been admirably executed in polished granites and elvans, which occur of various colors and degrees of hardness ; when decomposed they are friable, and furnish the chima stones extensively used as one of the materials for porcelain and china, and also for making very refractory crucibles.

Agate, jasper, chealecdomy, carnclian, de, are all composed of silex nearly pure; they break in general
with a eonchoidal fracture, and to divile them into plates it is neens-ary to resort to the lapidary proces. 'They may be slit with emery, but it is far more economical to emphy diamon I powder, as the time then required is only one-thirl of that called for when emery is used; these stone; are always ground with emerer, and polished with rotten-stone.

Agate is u-ed is the bearing planes fo: the knife-edges of delicate balanees, for pestles an I mortars, burni-hers for silders, and bookbinders, and also for some other purposes in the meehanical arts; the whole of the stones in this group are largely employed for the purposes of jowelry, the handles of knives, snuff-boxes, and a variety of ormaments.

Jopaz, sapphire, ruby,- These may be split with plane surfaces through their matural cleavages, and Which meihod is continually employed; otherwive, they can be only stit with the dhamon? poweler. The first and similar stones may be smoothed with emery, but emery being in hardness coly equal to 9, produces but little effect upon topaz, upon sapphire and ruby it is almost inert, and on diamon! quite so) the sapphire and rubs, and also diamonds, are therefore always polished with diamond powder:
On account of the peculiar interest attached to the mechanical applications of the hard geme, it is propesed to depart a little from the subject and order of these pages, to advert to sme few of their uses, which may not be generally un lerstood. The sapphire, the ruby, and also the dimmond, are enmmonly used for the construetion of certain parts of the Lest time pieces and watches, such as the pivertholes, pallets, and other parts of the escapements.

The jewelling consists mostly of two stones: the one, commonly sapplife or ruby, is turne a convex above and coneare beneath, of two different sweepe, to thin it away at the part where it is to be piereed with the hole, ond which is made a little smaller in the mi lde to lessen the surface bearing.
The other, which is called the "top-stone" or "cnd-etone," is generally a ruly, in the form of a planoconvex lens, or else it is a diamond cut into facets; the flat side of this touches the end of the pivot.
Each stone is burnished into a brass or steel ring, like some of the lenses of telescopes, and the two stones (separated a slight distance fur the reteution of oil by capillary attraction) are maid in a counter-sunk recess in the side-plate, or other part of the watch, and retained therein by two sideserens, allhough minpurtant variations are made by difierent artists in the shapes and proportions of the partz.

The delieary of these jewelled holes will be imarined, when it is adderl that in the axis above referred to, the pivot is the one two-humbedth part of tan ineh diameter.

The wire for making the pendulum springa for chronmeters is sometimes dratw through a pair of flat rubies with rounded edges; the stones are cemented into the ends of motal slides having seres: alju-tments. sometimes two pairs of rubies are placel one before the other, to constitute a rectangular hole of variable dimensions, for equalizing the wire Loth in with and thickness.
linhjes and other gems are drilled with holes conieal from both siles, for draw ing the slemer sher gitt aud silver wires used in the manufacture of gold and silver lace; the wires are atterward flattened, wotind spirally upon silk, and then woven into the lace. Ruby holes are also emplogel for rounding the lends of everpointed pencils; but fur this we they are chamfered from the cole side only, and the load is pu-lied through from the small side, the ruby is then used as a cutting toul ; whereai the bole in the draw-plate is slightly rounded upon the ridge, and acts more as a burni-her or compresser; the action of the wire, which is pulled through in the direction of the arrow, tends to drav the stone more firnly into its seat. The finest holes of all are made by barely allowing the point of the drill to penetrate into the apex of the conical hole, previously formed on the opposite side of thee rubs.

All the-e applications are adopted on account of the very great hardness of the stone, but they could searely exist were there not one substance still harder than the ruby to sorve for the touls by which these several forms are wrought, and the briof en-ideration of which will now le proceeted with.

Jicamond - The diamond io the harele-t sulstance in uature, and in common with some oflore erystalline bodies it is harder at the matural angles and edges, and aloo at the matural eon or skin of the stome than whin, or in its gemmal subtance: Its pernliar harduess is probably alturgether due to its lishly erystahline form, as by analysis the damond, charcoal, and phmbago, are linmil to be nearly infentical ; the fint is atsolutcty pure cartum, the others are nearly wo
The principal use of the diamme is fir jewehry its preparation for which will be touched upon in

 manner lig other thenats.

 not rempured, the stume is tixed in a ball of ermeth, atomet as laree as π walnut, the lane of divisome is

 are lus small for jewelry, are calla. I datm m / har'.

 withe bex, mal is thare cullected

 We will new proeed th the aplications of the damond as tonds.

Vinn II.-27

The incaluable instrment, the glazier's diamond, although employed for a considera? le period, was for the first time investigated scientifically by Dr. Wollaston, in 1816, who pronomeed its operation te depend upon a peculiarity of crystallization in the diamond, the facets of which are frequently round instead of that, and therefore the edges are circular instead of straight. The rounded edge first indente the glass, and then slightly separates its particles, forming a shallow fissure, with a splitting rather than a cutting action, none of the material being removed.

The primitive form of the diamond is that of a regular octohedron; it is like two square pyramids joined base to base; the four sides of the prramids meet at the angle of 90°, their bases at the angle of 109° or thereabouts. Many of the diamonds merge from the form of the octohedron into that of the sphere, or a very long egg, in which cases although a disposition to the development of the six points, each formed by the meeting of four surfaces, exists, they are curiously twisted and contorted. The Count de Bournon has published uprrards of one hundred forms of erystallization of the diamond, but the irregular octohedrons with round ficets are those proper for glaziers' diamonds.

The extreme point of any diamond may be employed to scratch glass with a broad white streak, and detach its particles in a powder, but such glass will break with difficulty, (if at all,) through such a scratch; whereas the almost invisible fissure, made when the rounded edge is slid orer the glass with but slight pressure and almost without causing any sound, is that which produces the effective cut; and the cut or split thus commenced will be readily extended through the entire thickness of the glass, when the extremities of the sheet are bent with the fingers or appropriate nippers.

If we could obtain a diamond in the form of a circular button, the edges of which were turned to the angle of 90 or 100 degrese, it would be the perfection of the instrument, as there would be then no point to interfere with its action, and any part of its edge might be used. But as the nutural diamond, unatered by the artisan, is always employed, it must be so applied upon the glass, that one of its curved edges bears upon the intended line of division of the glass, and with the extreme point just out of contact: this, in so small an object, necessarily confines the position within very narrow limits.

The patent swisel diamoml insures the one condition, by placing the edge of the stone upon the line of the cut, and a few trials at different elerations, generally from 70 to su degrees, will soon give the other porition. At the commencement a slight force is applied, until the stone appears to bite or hang to the glase, it is then drawn steadily along, with but little pressure, and the good eut will be scarcely either seen or heard.

To show that the diamond possesses nothing in itself that should adapt it to cutting glase, beyond its peculiar form and hardness, Dr. Wollaston succeeded with great labor in gising the same form to the ruby, the spinel ruby, topaz, and rock crystal, with all of which likewise he effected the cutting of glass, but they were of course far less economical than the natural angle of the diamond itself. which requires no such tedious preparation, and lasts rery much longer.

It must not be suppoied, however, the diamoud endures forever; the ordinary painter and glazier may use one diamond throughout his lifetime, by having it reset to expose other angles; but in some glass-works, where emomons quantities of this necful material are cut up, the consumption of diamonds, amounts to one and two dozen or upwards cerry wock, as the sides from being convex, become rapidly concare, and the principle is lost.

The following figures represent, say two or three times magnified, the forms of diamonds that would be most proper for various tools; but it will be remembered they are only sclected as near to the respective shapes as they can be found, either amongst imperfect diamonds, or from fragments split of good stones in the first stage of their manufacture for jewelry; these pieces are known as diamond bort. The diamonds are mostly fixed in brass wires, by first drilling a shallow hole for the insertion of the stone, which is imbedded slightly below its largest part, and the metal is pinched around it. Shellac is also used for cementing them in, and spelter or tim solters may be fused around them with the blow-pipe, but pinching them in amealed brats is preferred.

When diamond toots larger than those made of crystals or thin splinters are required, diamond powder is applied upon motal plates and tools of variou: forms, wheh serve as vehicles, and into which the particles of diamond powder are imbedded, either by slight blows of the hammer, or by simple pressure.

In the eonstruction of the jewelled holes, and in similar works, the mbies and sapphires, although sometimes split, are more commonly slit with a plate of iron three or four inches diameter, mounted on a kathe, and chared on the edge with diamond powder and oil. When sliced they are gromm paralled one at a time on a flat plate of copper, (generally a pemy-piece, momed on the lathe, and into the tumed face of which suall fragments of diamond have been hammered; this is called a roughing-mill. A similar plate with fincly wished diamond powder is used for polishing them.
The rubies are afterwards cemented with shellac, on the ent of a small brass chuck, turned cylindrical on their edges, and bevelled for buminhing into the metal rings. They are also turned concave and convex on their respective faces, the turning tool beine a fragment or spinter of diamond, fixed in a brass wirc. Fig. a reprecents the that riew, and Fir. b the edge riew of such a tool, but of the
 the circular end beine used with the flat suface upwards; the watch juweller t:- - any volnter having an anryular curner.

The conece surfaces of the rubies are polished with concave grinders of the sane swepls; the first of copper, the next glats, and the lant pewter, with three sizes of diamond powder, which in ubtaned principaily from llolland, from the men who cut diamonds for jewelry, an art which is more extensively followed in that country than eleewhere. The watel jewellers wath this powder in oil, atter the same mamer that will be hereafer exphaned in restrd to emery.

In drilling the rubies they are chucked by their edges, and a splinter of diamen l, ak-o mounted in a wire, is used. Should the disil be too conical, the back part is tumed away with a diamond toul to reduce it to the shape of Fige c, and from the crystalline nature of the stone, some facets or angles always exist to catiee the drill to cut. The holes in the rubies are commonly dritled ont at two procenes, or from each side, and are afterwards puli-hed with a conical steel wire fed with dianond powder.
In producing either very small or very deep holes, a fine steel wire, Fir. d, is used, with diamond powder applitel upon the end of the same, the limit of fineness being the diameter to which the steel wire can be reduced.

In drilling larger hole; in china and glase, triangular fragments of diamond are fixed in the eleft extremity of a steel wire, as in Fizes. c :ul f, either with or without shellac. Another common practice of the glass and chima members, is to sclect a tolerably square stone, and mome it as in lyig. ! in the end of a taper tin tube, which wears armay arganst the side of the hole so as to become very thin, and by the pressure to embrace the stone ly the portions intermediate between its angle-
The stone is, from time to time, released by the wearing away of the metal, but these worken are Bexterou- in remountine it ; and that the process is neither difficult nor tedious to those accustomed to it, is provel by the tritling sum charged for repaimig articles, even when many of the su called rivets or rather staples are cemented in; they empluy the upright drill with a cruss staff.

A similar diamond drili momeded in brass was mee l by Mr. Ellis, with the ordinary drill-bow and brear-phate for drilling rut the hardened steed nipple of a gun, which had been broken short off in the barrel; the matemat diticuley was experienced, athourh the tone appared to be so slenderly hedd.
For larger hules, metal tubes such as Fig. h, ted with diamond powder, are used; they grime out an amular reces, an I remuve a sold core; eorper amd other touls fed with emery wr sand may be the wed for glass, marble, and varions other subatances. The same mode has been adopted for coutherg ont stone water-ppes from within one another by the aid of stemm machinery.
Fig. i represents the conical dianoml usel by engravers for the jurpose of etehing, either hy ham I or with the various machines for rulime etching grounds; for ruling medals and other work. Conical diamonds are turned in a lathe by a fragment of anther dimond, the outside skin or an angle bimg used, but the tool sulfers atmost as moch abrasion as the conical point, from their nearly egual hardues; therefore the process is expenive, although when properly managed contirely suceesful.

To conclude the notice of the diamond tools, Firs. k and l show the side and comb views of a ${ }^{1}$ plinter suitable for cutting fine lines and divisons upon mathenatical in-trunchts. The similitude between this and the ghazer's dimmon will be remarked, but in the present case the splinter is selected w:in a fine acute edre, as the natural angle would be tom ubtuse for the purpose.

Mr. Rioss, with a diamond peint of this kiml, was emabled to graluate ten circles bon platimm, atch of gree subelivided into four parts; at the end of which tane the diammat, aldhomb apparenty none the worse, was the lentally broken. A -teel point would have sulfered in the graduation of only ane-thirl of at ingle circle upon platimm, so as to have called for alditionat presure with the progress of the work, which in so debiate ath operation is of coure highly oljectimable.
 be drament. Where the mine is sitmated on the top or side of a hill, a shaft is led from the bottom of the mine th the nataret valley, atal the water ran off in this way withut the application of pumps. wronght by tean-wgines. Where the mine is sitnated in a level conatry pumping becomes neces-

of wood, iron, or other substance, an inch square and a foot in length, would be extended or diminished ny the force f; and let l be any other length of a bar of equal base and like substance; then

$$
1: l:: \varepsilon: \Delta \text {, or } l \varepsilon=\Delta \text {, the exteasion or diminution in the length } l \text {. }
$$

The modulus of elasticity is found by this analogy: as the diminution of the length of any substance is to its length, so is the force that produced that diminution to the modulus of elasticity. Or, denoting the weight of the modulus in lbs. for a base of an ineh square by m; it is

$$
\epsilon: f:: 1: m=\frac{f}{\varepsilon} .
$$

And, if w be the weight of a bar of the substance one inch square and one fout in length; then, if M be the height of the modulus of elastieity in feet, we have

$$
\frac{\dot{f}}{w \varepsilon}=\mathrm{M}
$$

When a force is applied to an elastic column of a rectangular prismatic form in a direction paralled to the axis, the parts nearest to the line of direction of the force exert a resistance in an opposite direction; those partieles, which are at a distance beyond the axis, equal to a third proportional to the depth, and twelve times the distance of the line of direction of the foree, remain in their natural state ; and the parts beyond them act in the direction of the force.

The weight of the modulus of the elasticity of a column being m, a weight bending it in any manner f, the distance of the line of its application from any point of the axis D , and the depth of the column d, the radius of curvature will be $\frac{d^{2} m}{12 \mathrm{D} f}$.

If a beam is naturally of the form which a prismatic beam would acquire, if it were slightly bent by a longitudinal foree, ealting its depth d, its length l, the eireumference of a circle of which the diameter is unity c, the weight of the modulus of elasticity m, the natural deviation from the rectilinear form Δ^{\prime}, and a force applied at the extremities of the axis f, the total deviation from the rectilinear form will be

$$
\Delta^{\prime}=\frac{d^{2} c^{2} \Delta m}{d^{2} c^{2} m-12 l^{2} f}
$$

Scholium.-It appears from this formula, that when the other quantities remain unaltered, Δ^{\prime} varies ia proportion to Δ, and if $\Delta=0$, the beam camnot be retained in a state of inflection, while the denominator of the fraction remains a finite quantity: but when $d^{3} c^{2} m=12 l^{2} f, \Delta^{\prime}$ becomes infinite, whatever may be the magnitude of Δ, and the force will overpower the bean, or will at least eause it to bend so much as to dcrange the operation of the forces concerned. In this case $f=\left(\frac{d c}{l}\right)^{2} \cdot \frac{m}{12}, .8225 \frac{d^{2}}{l^{2}} m$, which is the force capable of holding the beam in equilibrium in any jneonsiderable degree of curvature. The modulus being known for any substance, we may determine at once the weight which a given bar nearly straight is eapable of supporting. For instance, in fir wood, supposing its height $10,000,000 \mathrm{feet}$, a bar an inch square and ten feet long may begin to bend with the weight of a bar of the same thickness, equal in length to $8225 \times \frac{1}{120 \times 120} \times 10,000,000$ feet, or 571 feet; that is, with a weight of about 120 pounds; neglecting the effect of the weight of the bar itself. In the same manner the strength of a bar of any other substance may be determined, either from direct experiments on its flexure, or from the sounds that it produces. If $f=\frac{m}{n}, \frac{l^{2}}{d^{2}}=8225 n$, and $\frac{l}{d}=\sqrt{ }(.8225 n)=.907$ $\sqrt{ } n$; whence, if we know the force required to crush a bar or column, we may calculate what must be the proportion of its length to its depth, in order that it may begin to bend rather than be crushed.
The weight of the modulus of the elasticity of a bar is to a weight acting at its extremity only, as four times the eube of the length to the product of the square of the depth and the clepression.

If an equable bar be fixed horizontally at one end, and bent by its own weight, the depression at the extremity will be half the versed sine of an equal are in the circle of curvature at the fixed point.

The lieight of the modnlus of the elasticity of a bar, fixed at one end, and depressed by its own weight, is half as much more as the fourth power of the length divided by the product of the square of the depth and the depression.
The depression of the middle of a bar supported at both ends, produced by its own weight, is firesixths of the versed sine of half the equal are in the cirele of least curvature.

The height of the modulus of the elasticity of a bar, supported at both ends, is 3^{5}. of the fourth power of the length, divided by the product of the depression and the square of the depth.
From an experiment made by Mr. Leslie on a bar in these cireumstances, the height of the modulus of the elasticity of deal appears to be about $9,328,000$ fect. Chladni's observations on the sumds of tir wood afford very nearly the same result.
The modulus of clasticity las not yet been ascertained in reference to so many subjects as could be wished. Professor Leslie exhibits several, however, as below. That of white marble is $2,150,000$ feet, in a weirht of $2,520,000$ pounds a voirdupois on the square inch; while that of Portland stone is only $1,570,000$ feet, corresponding on the square inch to the weight of $1,530,000 \mathrm{lb}$.

White marble and Portland stone are fuund to have, for every square inch of section, a cohesive nower of 1811 lb . and 857 lb .; wherefore, suspended columns of these stones, of the altitude of 1542 and 945 feet, or only the 1894 th and 1689 th part of their respective measure of clasticity, would be torn asunder by their own weight.
Of the prineipal kinds of timber employed in building and carpentry, the annexed table will exhiby
their respective modulus of elasticity, and the portion of some of them which limits their cohesion, of which lengel-wise would taar them asunder.

		feet.		tect.
Steel	9,300,000	Resewood	3,600,000
Bar-iron.	9,000,000	Oik, dry	5,100,000
Ditto		8,450,000	Fir buttom, 25 years old	7,400,000
Yellow pire		9,150,000	Petersburg deal.	6,000,000
Ditto		11,840,000	Lancerwood	5,100,000
Finland deal .		6,000,000	Willow	6,200,000
Mahogray.		7,500,000	Oak	4,350,000
	Teak	. 6,040,0	000 feet.	
	Oak.	4,150,0	000 feet.	
	Sycamore	3,860,	000 fect.	
	l3eech	$4.180,0$	000 fect.	
	Ash.	4,617,	000 feet.	
	Elm	. 5,680,000	,000 feet.	
	Memel fir	- 8,292,	000 feet.	
	Christiana deal	- 8,118,	,000 feet.	
	Larch	. 5,096,	,000 feet.	

Annexed we give a table of the modulus of colesion, or the length in feet of any prismatic substance required to break its colesion, or tear it asunder.
feet. fect.
Tanned cow's-kin 10, 250 Garden matting 27,000

MOMENTUM, in mechanics, i, the same with impetus, or quantity of motion, and is generally estımated hy the product of the velocity and mass of the bolly. This is a subject which has lea to various controversies betwean philosopher-, some estimating it by the mass into the velueity, as stated above, while others mantain that it varies as the mass into the square of the velocity. But this difference seems to have ari-en rather from a misconception of the term, than from any other canse. Those whu maintain the former doetrine, understanding monentum to signify the monentary impact; and the lattor, at the sum of all the impulses till the motion of the borly is ilestroved. S.e Fonct:

MOKTAR. A mixture of slaked lime in th. - atte of pa-te with sund; it prosessens the property, When spreal in than lithers between bicks, of grathatly hardening to the consistone of limestone, mid thus cemmeng the brichs together. In order to umberital the principhes upn which mortar is minad.

porous and will not bind, yet the action of moisture is essential to make it harden in the air. Lastly, the free access of air is also absolutely necessary to the setting of mortar:
Proportions of mixture. - When these facts are borne in mind, the rules to be obsersed in mixing mortar will be obvious. Although many linds of stone in the form of coarse sand are applicable for making mortar, as limestone, for instance, yet quartz-sand is always most easily obtained; the grain of the sand, however, is a matter of some importance. Very fine sand renders the mortar too dense, and impedes the free access of air; sand in grains of the size of lay-seed, particularly if it is angular or sharp, is very good; the interstices become too large to be entircly filled with lime if very coarse sand is employed. It is then adrantageous, particularly when irregularly shaped building-stones are used, to mix two kinds of sand together, coarse and fine. Fine sand can only be mixed with the lime when the mortar is intended for a thin coating upon the surface of walls, dc. The more irregular the sand is, the better. The proper proportion of sand and lime is a most important point in preparing mortar; and the good quality and solidity of the mortar are more influenced by it than by any thing clse. Errors committed in the mixing can never be subsequently corrected.

As a general rule, the lime should be sufficiently fine to cement all the grains of sar. 1 together, but should form at the same time the thinnest possible stratum between them. The surfaces of the grains of sand, or the interstices between them, should therefore be only just covered with the line in a halfliquid state, and no more. The rule might be laid down in the following terms: let as much lime be mixed with the sand as it will take up without having its volume increased. Practically, about 3 to 4 cubic feet of sand (or 6 times the weight) are added to 1 cubic foot of half-liquid lime, provided the lime be fat, or very fat; poor lime, which may be viewed as already containing a certain portion of sand, will not bear the addition of more than $2 \frac{1}{2}$ cubic feet of sand to 1 cubic foot of lime. The sand should be pure, i. e., it should not contain too much iron or clay, and least of all, bog-earth, or vegetable matter.

Hardening or setting-time requircd.-Although mortar sets sufficiently in a few days, or weeks, to enable a wall to withstand pressure and the like, yet the hardening proceeds so slowly and gradually, that it only attains its maximum (in which case a wall appears as if constructed of one piece of stone) after years, or even centuries. The apparent superiority of mortar in olden times over that in the present, is solely attributable to the longer time which has been allowed it to harden and set, as no essential difference can be traced in the mixture of the ingredients. Although we see, on the one hand, that old buildings can only be destroyed with the aisl of powder, yet it must not be forgotten on the other, that in some buildings the direct converse is observed, and that the durable portions only have been enabled to withstand the ravages of time, while the weaker and less durable parts have long since disappeared. In the same manner, it is probable that some buildings erected in our own age will stand forward to posterity as patterns of solid architecture, just as those of the middle ages and of the ages of Greace and Ronse appear to us at preseut.

C'ause of settiny.-I'he hardening of mortar upon exposure to the air is not so easily explained as would at first appear. It has even been disputed whether it is the result of mere physical (mechanical) or only of chemical agencies. And it appears probable, when every thing is taken into consideration, that the hardening cannot be attributed to any one cause in particular, but to all collectively, and in such a manner that the formation of a silicate of lime and crystallization are the causes of the durable solidity and conversion into stone, while the absorption of carbonic acid induces the rapid setting of the mortar.
The hydraulic mortar employed in building the Eddystone lighthouse was mixed by Smeaton from equal proportions of lime, slaked to powder, and Puzzolana. Trass and Puzzolana are generally mixed with one-half their weight of lime, as was the practice amongst the Romans. It is desirable to ascertain the best proportions by experiment in all cases where no certain knowledge of the nature of the two substances cau be obtained.

Good hydranlic mortar, whether made from natural limestone or composed of lime and cement, should not show any tendency to crack when hasdened under water, even when no sand is mixed with it. It then forms a very dense and solid mass, which, in a short time, neither suffers water to permeate it, nor is attacked by the water, but aequires a considerable degree of hardness. For this reason, it is well to use nothing but hydraulic mortar for those parts of walls which are constantly under water. If the mertar is not only required to harden, but also to bind well, a very important point must never be neglected, and that is to moisten the surfaces of the stones to which the mortar is to be applied. When this is not done, the surface of the stone (by its power of absorbing moisture) (ries the mortar, and prevents proper adhesion from taking place; the joint then remains open to a greater or lesser extent.

It does not by any means follow, that because hydranlic mortar is the only durable material for building under water, it camot consequently be used for dry walls. It is, on the contrary, of the greatest service wherever protection is required against the infiltration of moisture and damp; and dwelling: or buildings ean often be rendered very much less damp, by a judicious application of a hydraulic coating; a layer of this kind, when once hardened, is not calculated, like ordinary mortar, to attract moisture and allow it to pass through. The hydraulic mortar must, of course, when used for covering dry walls or otherwise, be kept moist and watered, until it has acquired its proper degree of hardness. If this is not attended to, a soft, friable, useless coating is the certain result. If moisture enters from below, for instance, between the wall and the coating of mortar, it will continue confined there in consequence of the impenetrability of the latter, which, on the occurrence of a frost, will most certainly peel off and he destroyed. Care must also be taken that the mortar does not dry up of itself immediately in the air, in which cave it contracts and cracks. It is, therefore, necessary to add sand or some other substance which obriates the shrinking. Hydraulic mortar will bear a very considerable quantity of sand without injury to its hardness, even as much as one and a half times its own weight and more. This addition, therefore, is inportant in an economical point of view. The grain of the sand employed, however, requires attention, as was the case with ordinary mortar; sharp, angular sand is decidedly preferable to blunt, raunded sand, and it is better to use a mixture of coarse with fine sand, than that the sand should be
all of the same sized grain. The sand should likerrise he as free as possible from earthy particles and dust. In mortar composed of lime and cement, the rule is, to proportion the sand to the quantity of cement used. Slakel lime will not bear more than a certain quantity of these sub-rances, which quaritity must not be exceeded, the cement itself being for the greater part inactive, and ylaying the part of sand.

Hydraulic mortar that sets with sufficient rapidity, and to which a proper proportion of sand has beer: added, may be employed for eating tolerably mas-ive objecte, which are not subject therack when dry This enable hadraulic mortar to be employed for architcetural urnaments which then combine great Eharpness with durability, are very light as compared with similar figures of sandstone, and have the great adsantage of being easily multiplied.

A similar applieation is that for ci-ting water-pipes, on the spot where they are required, as pror posed by (iasparin. The mould employed is a linen hose, like those attached to the fire entimes a tew meters in length, which is filled with water and elosed at both ends. A thick kind of boleter is thes probueed, over which sand is sifted, and it is then laid upon a deponit of hydraulic lime and covered, by pourine ore the same substance. When the whole has hardened, the hose is drawn formards, about the leugth of one foot being left inserted in the tube, and a fre-h lengeth is cast. Water-course; thus constructed mu-t, however, have a certain amount of fall, or the sand cannot be wathend ont, and will impede the detivery of the water.

When hedraulic lime is mixed with small stones, or with shingles from the bed of a river, or the sea, walls ean be directly eonstructed of it, and a mass is obtained which resembles the erections with ordinary mortar, and is ealled beton by the French.

It Toulon a mixture waz used for the con-truction of the harbor consisting of 3 parts lime, 4 Puzzolama, I smithy ashes, 2 sand, and 4 parts of rolled stones or shingles.

The great strength of walls constructed with hydraulic mortar is most elearly shown by the experiments undertaken with a view to break beams construeted of brick-work. A $\vdots 5$ feet long nad $2 \frac{1}{2}$ feet wide beam, eonstructel] with 19 layers of bricks, bound together lyy Roman eement, in which, here and there, parallel strips of iron were inchased, was capable of bearing, when supported at both ends, a weight of 22 toms, suspended from the middle, before it showed signs of tracture.

Mr. Frederick Ram-ome has lately taken a jatent for preparing different articles with a kind of vitrified cement. The fillowing is the principle of his proeess

Flints are suppented in wire bakets in a hoiker of enustie alkali, which is heated to nhout 3000 Fulhr, under a pressure of $\bar{y} y$ to $s 0$ pounds per square inch. A solution is thas obtained of silicate of soda 0 pota-h, (of a specific eravity if from about 1.3 to $1 \cdot 6$.)

This is the cementing substance, the composition of which is sail to be

Silica.	$20 \cdot 43$
Sudat	27.0
Water	525 5 2*

One part of thi- liquill ecment is ground up with one part of pipe-clay and one part of powdered t!me, which are well mixed in a purg mill with 10 parts of sand or road-drift. The mixture is preseed into, plaster moulds, and is then dried in the air on that surfaces, to prevent warping. It can now be handled, and is - fove-dried previously to being placed in a potter's kiln, where it is leated slowly for 21 hours, and up to a fair redhent for 24 hours more, aml then gradually cooled during 5 days.
Thi, gradual amealing is esential, beeause the silicate of sodn, during the firing, takes up more silica and alumina from the flint and clay, formine a true insoluble ghass, which would crack if not properly ammatoal. The stome is nut affeeted by boiling in nitric aed, which proves that an insuluble ghas hat been formed.
 vith componitom madr of han and silicate of ewla.
 shfficient is urat th fill up all the intertices betwen the grains of :amd, the stome will he impervinu-

 permone ones, and it is therefore seill a gument wher ther stone will rexint the action of ar and ram

 Cathedtal have beentue very mud decayed.

Nr. Buckwell has also proposed a plan for making large masses, slabs, and pipes from stone and sement; but his invention does not apply to the manufacture of cubical blocks.

He nses frayments of stone as large as will go freely into the monld, mixed with other smaller fragments, of various sizes, to fill up the interstices as moch as possible, the remaining space being occupied by the cement, composed of chalk and Thames mud burnt together.
One part of this cement is mixed with eight or more parts of fragments of stone, and wetted with the smallest quantity of water sufficient to moisten the whole; a portion of the mixture is then put into the mould to a depth of $1 \frac{1}{2}$ inch, and rammed down by hammers or monkeys; another $1 \frac{1}{2}$ inch is then added and rammed down, and so on. The mould is perfurated, and, although so little water has been used, it oozes ont at all parts, showing that the effect of the ramming is to bring the particles of stone into much closer contact than could be done by any simple pressure. When taken out of the mould, the stone is hard enough to ring, and is fit for ase in two days; it locomes still harder by exposure to air or water for some months.

New Portland stone fragments cannot be used for this conglomerate, because they crush into powder onder the hammer; old Portland stone, which has become hardened by exposure, answers very well, and makes an artificial stone of greater specific gravity than Portland stone itself. The cement is harder than the Portland stone. Flaws, repaired by the mixtore laid in with a trowel, are much softer than the cement in the body of the stone which has been consolidated by the ramming. The moulds are made of metal and are very expensive, which prevents the material being applied to ornamental purposes.

Separate picces of stone can be joined by well ramming or caulking in the composition between them. For this purpose, of course, the picces should be firmly fixed before beginning to caulk between them. Mr. Buckwell states that he could execate entirely in his artificial stone the ordinay system of sewage, with improvements, at the same cost as the present mode of executing it in brichs. It may, therefore, be doubted whether it would be advisable to employ it. A new arrangement of sewage, which he proposes, would cost $\$ 12$ in his stone, for what would cost $\$ 75$ in brick-work; but it does not as yet appear why, in one case artificial stone sloould cost as much, and in the other only one-sixth the price of brick.

An illustration of the effect of percussion in consolidating materials may be taken from the fact that concrete, a mixture of gravel and lime, sets harder and better the greater the height from which it is allowed to drop into its place: in building the Royal Exchange, it was shot in from a platform 30 feet above the foundation. It seems probable that concrete might be rendered still harder by mixing it with rather less water, and ramming it well in its place. In Malta the roofs of the honses consist of fig-stones placed in a nearly horizontal position; over the flag-stones a bed of fragments of stone and a little clay is laid, which is moistened with water, and beaten and rammed until nearly dry; it is then covered with a layer of cement, formed of 4 parts of lime to 3 of Puzzolana, moistened with water, aud well beaten down antil it begins to dry; this again is covered with a layer of dry stone fragments to prevent the sun from cracking it, which being swept off after a few days, a fine smooth impervious roof is obtained.

Hydraulic fresco-painting. - In conclnsion, we must notice a discovery of Fuchs and Schlotthauer, which was lately commonicated to the Academy at Munich, and which has reference to a new mode of fresco-painting. While the fixing of the colors in the antique as well as in the modern fresco-paintings is due to the hardening property of caustic lime, when exposed to the atmosphere, the colored surface upon this new method is converted into a silicate of lime. The two older methods stand, therefore, in the same relation to the new one, as ordinary to hydraulic mortar. While fresco-paintings of the former kiud are not very durable, (except in cases, as at Pompeii, where their preservation is dua to the entire exclusion of light and air;) and artists have reason to mourn over the destruction of the greatest master-pieces; those obtained upon the n. w principle are capable not only of withstanding the action of water, weak acids, and alkalies, but also the great changes of climate during a severe derman winter without injury to the frealmess of the coloring; and the colors are so firmly attached to the ground that they exhibit no tendency to separate from it themselves, nor can they be removed by mechanical agency. The particulars of the proces have not been made known, but it appears probable that it is dependent upon the silicification of the lime mortar, by means of a solution of an alkaline silicate, of which we have previously spoken under soluble glass.

MORTISING MAOEINE. Fig. 2816 represents a mortising machine insented and patented by A. Swholes, formerly of Texas, now of Boston.

A A are the legs, B the bench: C is a set-serew for the out-and-in morement of the bench, and D for the lateral, in any kind of work. E is a hub to be mortised; it is mounted on centres turned by
 the handle F, and there is a retaining ratchet and wheel H on the nigh side. There is a rest below the Lub, operated by a steadying set-screw I. J, inverted, is a hollow augur, or rather hollow chisel withir:
which is the augur; and the movement of the latter is followed by the box-haped chisel, so that the result is a square hole or mortise. The angur inside recejes a very rapill motion from a bevel-wheel geering into a pinion which dries the spintle k of the ausur. a is ia pulley to drive the wheel O. II is a lever, and by flanges the spindle is made steady so the back of the frame, and works down in guidecollars. When the hub, or whatever it may be, is in a correct position, the sinille k of the angur is set in motion, and the operator gently brings down the weighted lever II, cutting ont the rectangular mortise. There is but little work for the outside chisel of the ausur to perform.

The lever rests on the top of the spindle, and it (the spindle) works by father and groove to rum down through its geer-pinion, to follow the cut to the bottom of the mortise. 'These machines are highly recommended by those who have used them.

 1. Instom, Nowark, N. J., and from the simplaty of its I lam it is much has linble to set aut of onder than uthere of a more compdiate character.
The artion of the machane is sufliciently , obvion s.
Jolfox, in mechanics, is a cham of olaw, on it is that atfection of matto ly which it pates fom

Table of the Analysis of Motion.

Rectilinear motion continued in	$\begin{aligned} & \text { Rectilinear }\left\{\begin{array} { l } { \text { Continued ... Figs. 1, 2, 3, 1, 5. } } \\ { \text { Alternate } } \end{array} \text { Circular... } \left\{\begin{array}{l} \text { Figs. 6, 7, 8, 9, 10, } \\ \text { Continued }\left\{\begin{array}{r} 11,12,13,14, \\ 15,16,17,18,19 . \end{array}\right. \\ \text { Alternate ... Figs. 20, 21, 22, 23, 24. } \end{array}\right.\right. \end{aligned}$
Circular motion continned in.	

$\left.\begin{array}{l}\text { Alternate circular motion con- } \\ \text { tinued in....................... }\end{array}\right\}$ Cireular alternate............ Figs. $87,88,89,90,01$.
Supplement
$\{$ Figs. 92, 03, 94, 05, 96, 97, 98.

号
(2)
\therefore. $\overbrace{1}^{5}$ $\left[=-\frac{29}{29}=0\right.$

31.

in.

Bil. re.
63.

?

:0.

MOULDING MACIIINE. This invention consists of certain mechanical arrangements for producing architectural, cabinet, or other mouldings. Our engraving represents an end clevation of the machine which, with the aid of the letters of reference, will be readily understood. Λ, is a cast-iron bed-piece with V grooves, and constructed in some respects similar to planing machines now in use for planing iron, de., having a driving-screw placed in the centre of the bed-piece, so as to gire a slow altermating motion to the travelling table, when power is applied, thereto. The ordinary reversing geer is employed, the construction of which is well known ; B is the bed or traversing-table which is chown in section, for the purpose of more clearly representing the varions arrangements in detail, such as the sunde of fastening the planks of wood to the table by the means of lateral elamps inserted in their rides; J J the position of the driving screws together with the inverted V rail, and standards KK ; \mathcal{C} is the driving-screw, also shown in section, and which passes longitudinally through the machine from end to end, in geer with the bed or table by a nut, or any other suitable means usually applied to such purposes when reversing. There are two vertical standards, supporting in bearings the bridge E, with the cutter-bars, or mandrils, attached, Each of these standards contains a spring of the same pitch geering into, and attached to the bridge, so that by turning the horizontal bar F, both screws are male
to rerolve at the same rate, and the bridge is thereby caused to aseend and descend as may be re quired; G is a horizontal bar, which revolves rapidly in its bearing $H 1$, and carries a number on cutters or chisels, each having its cutting edige so slaped as to produce the required mouldings, or any parts thereof, which ean be produced by revolving cutters on a horizontal slait. Motion is communicated to this axis by bands from an overheal power-wheel. Its course, after leaving the power-whect,
291%.
 is first directed down to a tightening pulley, wheh is clamped on to a part of the standard fratme un one vide, having a vertical slut therein for the purpese of enabling the operators at any time to dotain the requisite ten-ion; it then pases up and orer the upper half of one groove of the cutter-pulley, duwn again at the back, and wer thet drivinepulley: it is then pressed in at the starting point to make the endless band. I I are the chiects or cutters, Which are mounted upon the lorizontal shaft (f, which arlmit of being arranged and set up in any convenient or necessary form and number suitable to the groduction of compoun I mortises ; each chisel being of the most simple form and construction, having its cutting edge shaperl to form the numerous mouldings, either simple or compoun? by either using them separately or in conjunetion with eati (ther, as the case may require; $L \mathrm{~L}$ are bosses cast on the standard on each side and on each end, on a level with the surface line of the bed or table 1 B . These bosseas are bured to receive a vertical rol through each, the lower end of which has a thread run upon it, in geer with a met and a hand-wheel MII, whilet the upper cont forms a hackle or forkel head, (but which is not shown in the above view.) it being readily understeod to constitute merely a single bearing to earry a horizontal shaft from one side of the machine to the other transzersely, on which clastic friction rollers are mounted: the object of such bearings being that when a diferent moulding is to be substituted for the one in the crurse of formation, the slaft containing the corre-pon ling hape $\frac{\text { friction rollers by the mouldings lat completed may eavily be exchanged fur that }}{}$ of any other, by removing it from the forked head in which it revolves. At the back of the bridge F , a horizontal and vertical slide is fixed, having a slut parallel to the bed of the machine, for the purpose of carring two traver-ing cutter-heads, affixed to which, thromg the intervention of revolving mandrils, are the cutters which work at any angle to the bed or table, as well as on the same surface level, as the cutters I I. The cutters thus referred to receive their direct motion from the pawer-wheel over head, independently of other parts of the machine, by an endless rope or chain passing romed the whee mounted in the cutter-heads in such a maner that when this part of the apparatus is not requirel to work in connection with the other it can be thrown out of geer at any time, even while the rumning mouldings are in action.

quired extent, without altering the depths of the wheels in geer. On the projecting ends of thesa कhalte, the rollers D E are put, with which the mouldings are to be formed; the lower roller is in one piece only, but the upper roller is made in one or more parts transversely, as may be best adapted in form the required mouldings, as shown in the enlarged figure: the which parts, when more than one, are made to approach each other by being slid along the shaft B^{\prime}, which is hollow, by means of a screw F that acts within on the back part of the top roller D by means of a cotter, which passes through the shaft and the screv, and on the front part by a nut f, which is serewed, from time to time, by hand.
The advantage of making the rollers in two or more parts is, that it allows the metal to be gradually compressed sideways as well as vertically, and aroids puckering. The curved mouldings shown in the engraving were made on the first machine of the lind that was constructed, and the straight monldings on a similar machine subsequently made. Aỉmost any degree of currature can be given to the moulding, by means of the third roller H ,
 which, with its shaft and sliding bearings J. is lowered by the gecring h, Fig. 2951 , in front of the pair of rollers to produce the required curvature.

The engravings A, Fig. 2951, and A', Fig. 2953, are representations of two pair of rollers for forming simultaneously the cap mould of each of the two brass domes for locomotive engines; the rollers A, Fig. 2951, being for the purpose of creasing the metal, and the rollers A^{\prime} for finishing the two cap-moulds, which may be afterwards divided in the middle by a lathe or with a saw. Two mouldings are in this case made together, owing to the peculiar form of the moulding rendering it more facile to do so than to make one separately.

Fig. 2950 and 2954 show two pair of rollers for forming the "astragal," to which the upper and lover plates of the chimney of a locomotive are riveted; the rollers $\mathrm{B}^{2} \mathrm{~B}^{2}$ are used in the order the drawings are lettered.

Fir. 2953 shows a pair of rollers for forming the "base mould," and Fig. 2949 for forming the body of the brass dome of the locomotive engine, one pair of rollers only being used in both these last mentioned cases.

MULE. A machine employed in spinning cotton and other fibrous materials. For producing fine threads, a process analogous to that perfornied with carded cotton, upon a common spinning-whecl, and called stretching, is resorted to. In this operation, portions of yarn, several yards long, are forcilly stretched in the direction of their length, with a view to elongate and reduce those parts of the yarn which have a greater diameter and are less twisted than the other parte, so that the size and twist ef the thread may become uniform throughout. To effect the process of stretching, the spindles are mounted upon a carriage, which is moved backwards or forwards across the flonr, receding when the threads are to be stretched, and returning when they are to be wound up. The yarn produced by mill spimning is more perfect than any other, and is employed in the fabrication of the finest articles. 'The sewing-thread, spun by mules, is a combination of two, four, or six threads. Threads have becu wroluced of such fineness that a pound of cotton has been caleulated to reach 167 miles.
 cotton and other fibrenz subtances, stands first in the first class of machines.

Fig. ${ }^{2} 956$ is an clevation of the mul ant carrase Fis 2957 an elevation of the other sile. Firs 2959 a plan. Fig. 2960 an elevation. Fig. 2961 a lungitulinal rortical section, taken through the lime X X of Fig. 2959. Fis. 2963 a front ele vation. Fig. 2962 a section throurg the friction-clutch. Fis 2958 a sejarate view of the seroll or volute cam. Fig. 296 a cruss , ation of the heme. The same letter, indicate like parts in all the figures.
i^{3} represents a frame properly adapted to the uperative parts of the lacal; the carriage is mot represented, as it is similar to those of other mules.

A $\Lambda^{\prime} A^{\prime \prime}$ three puileys of equal diameter, placed situ by sile on the main shaft B^{\prime}. λ is the fir-t fast pulley attached to and turning with the shaft B. A^{\prime} is the second fast pullere, carrsins a pimion D, and turning frecly on the shaft B. $\Lambda^{\prime \prime}$ a loose pulley placed between the other two, and turning; fredy on the shaft. A driving-belt passes over these pulleys, and is guided to cither of them hy it thipper-lever \mathbb{C}, that vibrates on a stud-pin \mathbb{L}^{\top}, and enmected with a weighted halamee-lewer (${ }^{-3}$ be Which the belt is movel from one of the pullers to either of the other t wo. It the commencenant it the first serics of operations, the belt runs on the first first puller A^{\prime}, to give the tirst serjes of matime. The pinion J, on the shaft 1 , communicates a poritive aml regular motion to the shaft ((wheh is in comection with the draw collars in the usual manner) ly means of the first train of whech K L I , an ? from the shaft \mathcal{G} by the secomd train of wheel $\mathcal{N O P R S X}$, to the line shaft \mathcal{I}^{-}that drives the car riage by means of entless chains Z, connected with the carriage by one of the link=, Z_{3}^{3}. There is lut one of these chains represented in the drawings, and the shaft is shown broken off, as the comectims with the carriage preant nuthing new, and therefore need not be represented. The sjimbles at the same time rotate by the usual band T, driven by the pulley O^{\prime}, on the same prifey that R. This completes the first series of motions, namelr, drawing out the carriage, turning the draw rollera and spinilles to draw out, spin, and twi-t the threads. Near the en 1 of the rumbingont motion of tha carriage, the belt is shippeal from the first fast pulley ito the lonse pulley $A^{\prime \prime}$, which removes the driving power from the-e motions. The shiftime of the helt is thins effected: the werghted halamedever C 3 is jumted to the Ahper-lurer at 2 , above the stud-pin 8 , on which it vilmates. The lower ent at this balace-lever is Troberd, and one of its short arms is joine 1 ber a link 4 , with a shore lever a that turns on the stuldini 6 . This lever is also comected ley a link d, with another lever p, tat
 pin c, on a vibrating arm Li, on the haft F^{\prime} of the wheel that carries the comecting foul hey which the carriage i ron in. The balane-lever is ly this means carrind a little hevom the vertion line and then carried emtrely over by the weifht of the lever ('3. On this shaft, \mathcal{K}^{\prime}, and on the "promen side of the frame, there is annther arm Il^{\prime}, provided with a pin wh when at the same time cheprous another lever $N^{\prime \prime}$, connected by mans of a jointed roul h, with an ethow-lever 7 , that mover :
 molles aud the second train of wheds that commencate motion to the carriage from the part- that drive the spindtes. The clutch Xl is held upen motil the belt is arain carriad to the tirst fart pulley at the end of the third series of motions by a pin j, on one arm of the babace-fever (33 which hars arainet one side of the arm of the clateh-lever \bar{t}, for the lever N^{\prime}, that moves the cluth-lewer, $\mathrm{i}=$ providen with a helical c^{\prime} attached to it and the frame, for the purpee of formine the ehateh the moment that the pin j of the balance-fever C^{3} liberates the cluteh hever ${ }^{\circ}$. "The ham the that carriow

 When this hafi "! is moved in one directinn, the pulley P' is elatchend to it hy the frietion of the

by the side of the ratchet-wheel, there is a cam-plate t, that also turns frely on the shaft, and which is carried in one direction by the ratelset-whed, when the catch or haml r, which is jointed to the camplate, takes into the tecth of the ratelet, the two turning independently of each other in the reverse direction, or in the same direction when the catch or hand is lifted out of the teetl. When the rack is drawn by the momentum of the spindle in the direction of the arrow, the chain m attached thereto

plate, the ten-ion of the spring increases the friction of the brake on the periphery of the cam-plate, which gradually arrests the motion of the parts in connection with the rack W, and of necessity the spindles. When these parts are arrested the rock-shaft n is turned in the opposite direction, and carries with it the cam-plates, ratchet-whect-, and spur-wheel by the pressure of the brake, and of nece-sity reverses the motion of the rack and spindles to uncoil the threads from the spiadles. At the end of this motion the catch v of the cam-plate is liberated from the ratchet-wheel H^{2}, by a sur x, of a lever $?$, jointed at $14, \mathrm{by}$ the arm F^{3}, of the rock-shaft n, the spur being forced on to the back end of the catch by the rotation of the rock-shaft ; the lever ! having a slot in it which turns and slides on a permanent rod z. This reversed motion of the rock-shaft n is effected by a crank motion in the following manner, viz. The pinion D , on the second fast pulley Λ, commences motion by the train of wheels B , C, and R^{2}, to the wheel Q^{2}, in the direction of the arrow, and this wheel carries a crank-pin h^{\prime}, that works in a slot h^{2}, of a connecting-rol O^{2}, jointed to a curred arm K^{2}, that vibrates on a fixed stud-pin $i 5$, and this arm has a slot in it which works a slide e', for the purpose of graduating the backingrof motion and to this slide is jointed another connectingrod J^{2}, the other end of whech is jointed to tho

 whid takes phae whint the manentum of the a pintle propares the parts for the hackingoff motion,

by the catch-lever U^{2}, the crank-pin h^{\prime} can revolve freely, the slot in the comnecting.rod O^{2} admitting of this. When the backing-off apparatus is liberated it falls back to the position indicated in the drawings by the weight of the coping-rail and the other parts attached to the rock-shaft; and to prevent jat this return motion of the parts is cased off by the connecting-rod O^{2} coming against the crank-pin h, at the point h^{3}, the power required to turn this train of whecls in the reverse direction being sufficient to ease off and gradually arrest the moring parts without jar. This return motion of the backing-off apparatus at the same time arrests the second fast pulley A, and the train of wheels in comection with it by means of a brake j^{\prime}, comnected by the arm T^{2}, and link S^{2}, with the arm K^{2}, of the backing off apparatus, and the trmin of wheels and the comection of the brake are so regulated as to stop the crank pin h^{\prime} at the point l^{3}, where it is required to be when the second series of motions is commenced. The link S^{2}, and the comecting-rod J^{2}, are provided with adjusting-screws for the proper adjustment of all these parts. As the backing-off motion must be gradually decreased as the cop is formed and increased in lensth, the vibrating motion of the rock-shaft is gradually shortened by means of the slide e^{\prime}, in the $\operatorname{arm} \mathrm{K}^{2}$, to which the connecting-rod J^{2} is jointed. For this purpose the slide is attached to a chain d, which passes over the upper end of the arm, and is gradually wound up on the arbor $e^{\prime \prime}$, of a cog-wheel L^{2}, that geers into a pinion L^{\prime}, of a ratchet-wheel N^{2}, which reccives motion from the arm K^{2}, of the baeking-off apparatus by a hand or catels MI^{2}, jointed thereto at z^{\prime}. It will be evident that as the slide is drawn up by the chain towards the axis of motion of the arm K^{2}, the motion of the connecting-rod J^{2} will be diminished, ant with it the motion of the backing-off apparatus. This completes the second series of motions, and the mule is then in a condition to commence the third series.

When the clutch D^{2}, at the end of the backing-off motion, clutches the pinion F^{\prime}, It begins to turn, which communicates motion to the cors-wheel F on the shaft K, or to the periphery of this wheel at G is jointed a combecting-rod at H ; the other end of which at I is jointed to a horizontal slidingrack V , that runs on ways W that carries by means of the pinion U the train of wheels that communicate motion to the carriage. The wheel F is carried but part of a revolution (nearly one-half) in one direction by its connection with the second driving-pulley A when the clutch D^{2} is closed, which gives by the crank motion, in consequence of the comncetion above pointed out, the peculiar ruming-in motion to the carriage, as pointed out in the dezeription of the general characteristics of this invention; and as the carriage appronches the end of its run-ning-in motion, the pinion E is unclutche! by the reversed action of the slipper-lever C^{3}; this reversed motion of the shipper and its appendages being effected by the pin e on the arm L of the shaft K of the wheel F^{\prime}. this pine bcing on the side of the shaft K opposite to the pin a which first slips it, The unclutching the pimion E leaves the wheel F free to be turned back by the reversed motion of the rack V by the train of wheels which runs out the earriage in the first serics of motions.

As the carriage is run in by the mreans just described, the spindles must be turned to wind up the threads which have been spun during the first series of motions, and this is effected by means of the top sliding-rack W, by which the backing-off motion is given, and which is placed on top of the main rack V; the comnection of this rack W with the spindles by means of the friction-clutch having been described, it is only necessary to the mamer in which the winding-on motion is communicated to it by the main rack V, and the manner in which this motion is ravied and regulated to correspond with the varring size of the cops as they are formed. To the upper rack W, and near one end of it, is jointed a lever m, to the short arm of which is attached a chain l^{\prime}, which thence passes around a pulley k : that turns on a stud-pin projecting from the side of the main rack V, the other end of the said chain being attached to the smallest diameter of a scroll-eam u^{\prime} connected with the end of the main rack V. From this arrangement it will be obvious that if the cam n be precented from turning on its axis, the motion of the main rack V will carry the top rack in the same direction, and with the same rarving relocity, which would give to the spindles a winding-on motion, corresponding to the ronning-in motion of the carriage, such as would be required if the cops were to be formed cylindrical and dif not vary in diamcter; but such is not the case, as clearly pointed out in the general description. To give the varying motions required, and fully pointed out above, the seroll-cam n^{\prime} is attached to and turns with a wheel η^{\prime} on the stud-pin I on the main rack V , and to this wheel at w is attached a chain x^{\prime}, which, after passing around a portion of the circumference thereof is attached by a link y^{\prime} to a slide $z^{\prime \prime}$ that travels on a acrew $a^{\prime \prime}$ that turns in the arm V^{2} of a rock-frane V^{3}, the lower ent of the said arm being jointed is
another arm of equal length W^{-2} that vibrates on the stud-pin I, will whel turn the wheel v^{\prime} and the $3 a m n$, so that when the slide $z^{\prime \prime}$ is at the lurer end of the arm $V^{3 \prime}$, the ond of the chain x^{\prime}, which is attached to the slide during the movements of the main rack, will not communieate motion to the whed x^{\prime} and cam x, lewace the mostions of the $t w o$ rach V and W will corre-pond and give to the spindles the motion required for winding the threads on the naked spindles, and its the bave of the cop= is increated in diameter, the -lide $z^{\prime \prime}$ is drawn up towards the axis of motion of the arm γ^{22} to decreate the motion of that end of the chain x^{\prime} attached 10 it, wheh will caluse the wheel and eam to turn on their axis, and thes give out the chain l^{\prime}, thereby giving to the top rack $W^{\prime \prime}$. and censeguently to the -pindes, a gralually reduced motion relatively to the main rack to comrespotd with the increatel diameter of the bate of the cops. The motion required is given to the sliste $z^{\prime \prime}$ her the sibrations of the reckframe ${ }^{\prime 3}$, the screw $u^{\prime \prime}$ that operates the slide heing commected by at train of cos-whect $b^{\prime \prime} b^{\prime} z^{\prime} h^{\prime} i^{\prime \prime} j^{\prime}$ vith a horizontal ratchet-wheel $l^{\prime \prime}$ which tums frecly by the rocking motion of the frame \int^{-3} in cue directinn, and which therefore dons not turn the screw, but which is prenented from turnins in the "pposite direction, during the ruming motion of the carriage, ly a catch or pawl $r^{\prime \prime}$ to turn the said acrew. Whenever the temsion of the theads in winding on is ton great it bears down the counter-filler, (not reperente ! in the drawings, the arm of which in motion of the carriage strikes an arm S^{\prime} of what is termed a butterily, that turns un a stal-pin $q^{\prime \prime}$, on which the cateh or hand $r^{\prime \prime}$ of the ratchet-wheel $/^{2}$ also turnz, and with which it is comected by a spring u^{2}, Fis. 2956 , and throws it into the tecth of the ratehet-wheel; the wheel beige thus held, the further vibration of the rock-frame turns the sorew and carries up the =lide to reduce the motion of the spindle, and on the return motion of the carriage the hand or catch $r^{\prime \prime}$ is thrown out of the teeth of the ratchet-wheel by the arm of the counter-faller, which then comes in eontact with another arm t^{2} of the buttertly, the end of which extend lurer down than the arm S^{2}, and low enough to be struck by the arm of the comerefaller when it is not under the action of the tension of the thread. The cateh or hand then remains out until the ten-ion of the threads again requires tie motion of the epindles to be reduced. The butterlly is comected with a hand-lateh lever m^{2} that turns on a stulp pin x^{2}, by which the attendant can throw the butterfly in and out of phay. Eosoon as the base of the eops have been formed the scroll form of the cam n^{\prime} gives the revular varying nutions to the spindles to wind the cone of the cops, as fully peintel out in the general deseriptent.

It has been sate I that in tinishing the cops the threads are wound on harder at the paint of the cops;

 a link r^{\prime}, a chan p^{\prime}, the wther en 1 of wheh is jointed by a link O^{\prime} to a long arm of the lever m^{\prime}, which firm-the entnectien I -twen the top rack W^{\prime} and the chain t^{\prime}, which furms the cun ectien between the top and the main rath - This -haft, as heretofore decribed, is comsected with the ratchet-wheed N^{2}. "hich is operated by the catch or hamd= JF^{-}of the lever K^{2} of the backingenff appazatus, and the chan $p^{\prime} \mathrm{i}$ of such length that it is womed up by the rotation of the shaft until towards the completinn of the cops, at which time it is dawn stiliciently tight to strike against a permanent arm u' tuwards the con I of the windingern motion, which causes the lever m^{\prime} to turn on its axis, and by its connection to draw up the chain l, and hence to incrase the velocity of the rack W , and therefore the rotation of the -pindles, which winds the threads on tifhter. This operation gradually increases to the completion wif the enps.

 with the contruction of selfatimg mules, and which therefore meds not to he descriled. This eompletes the whole series of motions; but it will be obvious that when one set of enps have heen completed

 that wimds the elain p^{\prime} to increatse the tembion of the thereads in timishing the puint of the cop, and aten ther ratehet-whel t^{2} wheh giscras the motion of the - li le $z^{\prime \prime}$ on the arm $V^{\prime 2}$, by wheh the wimeline an
 original peition by the att in lant, preparatury th commencins a new set of cops.

chain and seroll-eam, or their equivalents; by means of which combination, in connection with the form of the cam, the motions of the spindles so correspond with that of the carriage as to wind the threads on the conical form of the cops, as deseribed. ©th. The method of varying the winding-on motion of the spindles to form the base of the cops, by means of the slide and chain which vary the motions of the wheel that is attached to and which rotates the scroll-cam, substantially as described, whether the slicle be operated by the vibration of the arm on which it slides, or by any other means substantially as herein described. Tth. The method of regulating the motion of the slide that varies the motion of the scroll-cam of the winding-on motion, by means of what is termed the butterfly and its appendages, when this is acted upon by the counter-faller, operated by the tension of the threads, substantially as described. And Sth. The method of winding on the threads tighter at the points of the cops when finishing them, by means of the apparatus which gives to the top sliding-rack an increased motion towards the end of the operation; the said apparatus consisting of a chain, which is connected with a chain that forms the connection betwen the main and top racks, and which is gradually wound up and strikes against an arms towards the end of the operations of the mule to shorten the connection between the two racks, and thus increase the winding-on motion of the spindles, as described.

NAIL-MACIIINE. The manufacture of cut nails is entirely an American invention, and was born

in our country, and has adranced, within its bosom, through all the rarious stages of infancy to manhood; and no doubt we shall soon be able, by receiving proper encouragement, to render them superior to wrought nails in every particular.

The nail-machine now extensively in use in this country for all sizes of cut-nails is exhibited in the following figures, and is the machine in operation at Z. B. Crooker's Nail Works, in Brooklyn, L. I.

Fig. 2965 represents the front elevation of the machine.

Figs. 2966 and 2967 side clevations.

Fig. 2968 side and end elerations, showing the method of turning the nail-plate.

Fig. 2969 a general plan of the machine.
$a \cdot a$, frame of the machine; b, main-shaft for carrying the cams, driven by a belt over the pulley c, and provided with a flywheel d; c, guide which eonsists
 of a metal tube through which passes the nail-rod, holding by means of pincers the nail-plate Λ, Fig U967. and sularged view A, Fig. 296s.

In order to give the wedse-shape required in the brad or cut-nail, the cutter is set oblique to the direction of the nail-plate, which is reversed after each cut, by which means each and every nail has a uniform taper. The reversing of the nail-plate is effected by means of a rocking-shaft r, which receives its motion from the shaft through a geering f, and crauk, producing an alternating motion to the serg ments τ, Figs. 2967 and 2968 , which is communicated to the guide-tube c, ly a belt and pulley, the nailnlate being fed to the cutter by means of a weight m, as shown in Figs. 2967 and 2908 , the nail-rod with its attached plate vilrating freely within the guide-tube c.

The cutter, laving the width of a nail-plate, is adjusted by screms to the cutting-block p; the nail-plate A, lying livetween guides, rests on the iron hhock k, and bearing by the action of the weight m against the face of the cutter. The vibratory movement of the latter is effected by means of the crooked lever l, worked by an eccentric on the main-shaft-the cutterbluck p, furming the short arm of this !ever, has a short circular movement alrout their common centre. The lever b, cutter-block p, and the asle arms or trunnions upon which they work being all cast in one piece, are shown in Figs 2965, 2966 , 2967,2969
y, Fig. 2965 , shows the lever of the heading-die, which is worked by a crank-pin and rod i, attached to a wheel q, on the main-shafe.
To prevent the nail falling from its phace before the completion of the

stroke, a small pair of nippre, operated hy means of a cam t on the main-haft, are placed below and in front of the cutter-bleck; theer are workenl ly the rould z.

Fhe working of the matchine is as follows:
The mail plate rasts nganet the frame of the cutter, the lever l rexing on the point of the cam or ece
 and abonabse the nail plate; the later, ly the antion of the we ight m, is thrown forward bubler the

 length of the wilth of the atailplate; this is werzed at the same imstant hy the nippers helhew the chater

the steel is larought into the state of fine wire before it can assume the furm of needles. The needlemakers are not wiredrawers: they do not prepare their own wire, but purchase it, in sizes rarying with the kind of needles which they are about to make, from Sheffield or Birmingham, or some similar town We will suppose, therefore, that the wire is brought to the needle factory, and is deposited in a storeroom. This room is kept warmed by hot air to an equable temperature, in order that the steel may be preserved free from damp or other sources of injury. Around the walls are wooden bars or racke, on which are hung the hoops of wire. Each hoop contains, on an average, about twelve or fourteen pounds of wire, the length varying according to the diameter. Perhaps it may be convenient to take some particular size of needle, and make it our standard of comparison during the details of the process. The usual sizes of sewing needles are from No. 1, of which twenty-two thicknesses make an inch, to No. 12, of which there are a hundred to an inch. Supposing that the manufacturer is about to make sewing needles of that size which is known to sempstresses as No. 6-then the coil of wire is about two feet in dianeter ; it weighs about thirteen pounds; the length of wire is about a mile and a quarter ; and it will produce forty or fifty thousand needles. The manufacturer has a gage, con sisting of a small piece of steel, perforated at the edge with eighteen or twenty small slits, all of different sizes, and each having a particular number attached to it. By this gage the diameter of every coil of wire is tested, and by the number every diameter of wire is known.

A coil of wire, when about to be operated on, is carried to the cutting-shop, where it is cut into pieces equal to the length of two of the needles about to be made. Fixed up against the wall of the shop is a ponderous pair of shears with the blades uppermost. The workman takes probably a hundred wires at once, grasps them between his hands, rests them against a gage to determine the length to which they are to be cut, places them between the blades of the shears, and cuts them by pressing with his body or thigh against one of the handles of the shears. The coil is thus reduced to twenty or thirty thousand pieces, each about three inches long; and as each piece had formed a portion of a curve two feet in diameter, it is easy to see that it must necessarily deviate somewhat from the straight line. This straightness must be rigorously given to the wire before the needle-making is commenced; and the mode by which it is effected is one of the most remarkable in the whole manufacture. In the first place, the wires are annealed. There are provided a number of iron rings, each from three or four to six or seven inches in diameter, and a quarter or half an inch in thickness. Two of these rings are placed upright on their edges, at a little distance apart; and within them are placed many thousands of wires, which are kept in a group by resting on the interior edges of the two rings. In this state they are placed on a shelf in a small furnace, and there kept till red-hot. On being taken out, at a glowing heat, they are placed on an iron plate, the wires being horizontal, and the rings in which they are inserted being vertical. The process of "rubbing" (the teclmical name for the straightening to which we allude) then commences. The workman takes a long piece of iron or steel, perhaps an inch in width, and, inserting it between the two ringe, rubs the needles backwards and forwards, causing each needle to roll over its own axis, and also over and under those by which it is surronded. The noise emitted by this process is just that of filing: but no filing takes place; for the rubber is smooth, and the sound arises from the rolling of one wire against another. The rationale of the process is this:-the action of one wire on another brings them all to a perfectly straight form, because any convexity or curvature in one wire would be pressed out by the close contact of the adjoining ones.
Our needles have now assumed the form of perfectly straight pieces of wire, say a little more than three inches in length, blunt at both ends, and dulled at the surface by exposure to the fire. Each of these pieces is to make two ncedles, the two ends constituting the points; and both points are made before the piece of wire is divided into two. The pointing immediately sncceeds the rubbing, and consists in grinding down each end of the wire till it is perfectly sharp. This is the part of needle making which has attracted more attention than all the rest put together. The surprising manipulation by which the needles are applied to the grindstone; the rapidity with which the grinding is effected; the large earnings of the men; the ruined health and early death which the occuvation brings upon them; the efforts which have been made to diminish the hurtfulness of the process; and the resistance with which these efforts have been met-all merit and have received a large measure of attention. Let u first notice the process itself, and then the peculiar circumstances attending it.

Sume of the necdle-pointers work at their own homes, while some work at the factories; but the process is the same in either case. The pointingroom, generally situated as far away as practicable from the other rooms, contains small grindstones, from about eight inches to twenty inches in diameter, according to the size of needle to be pointed. They rotate vertically, at a height of about two feet from the ground, and with a velocity frequently amonnting to two thousand revolutions per minute. The stone is a particular kind of grit adapted for the purpose ; but sometimes it thies is pieces, from the centrifugal force engendered by the rapid rotation, and in such eases the results are often fearful. The workman sits on a stool, or horse, a few inches distant from the stone, and bends over it during his work. Orer his mouth he wraps a large handkerchief, and, as he can perform lis work nearly as well in the dark as in the light, he is sometimes only to be seen by the rivid cone of sparks emanating from the steel while grinding. The vivid light reflected on his pale face, coupled with the consciousness that we are looking at one who will be an old man at thirty, and who is being literally "killed by inches" while at work, renders the processes conducted in this room such as will not soon be forgotten.

The needle-pointer takes fifty or a lmudred needles, or rather needle wires, in his hand at once, ana holls them in a penliar manner. He places the fiugers and palm of one hand diagoually over those of the other, and grasps the needles between them, all the needles being parallel. The thumb of the left hand comes over the back of the fingers of the right, and the different knuckles and joints are so arranged that every needle can be made to rotate on its own axis by a slight morement of the hand, without any one needle being allowed to roll orer the others. He grasps them so that the ends of the
wire (one end of eact:) project a small distance beyond the edre of the hand and fingers, and these ends he applies to the grindtone in the proper pusition for grinding them down to at point. It will easily be seen that if the wires were heht fixembe the ends would merely be bevelkel atf, in the manner of a gratwer, and would mot give a symmetrical point; but ly cansing each wire to rotate while actually in contact with the grind-tome, the pointer worke equally on all shlu ot the wire, and briugg the point in the axis of the wire. At intervals of every few seconds he adjusts the nemelles to a proper position, against a stune or plate, and dips their ends in a little trough of liguid betwen him an the
 opposite to that at which the workman is placed. Sis rapil are his movenonts that he will puint seventy or a han lred neefles, furming whe haml harasj, in half a minute-thus getting throngh ten thousaind in an hour!

The circumstance which renders this operation so very destructive to health is, that the partiches of steel, separated from the body of the wire by the friction of the stone, float in the air for at time, amd are then inhaled by the workinn and the same remarks apple to this destructive oceupation as to fork-yrindines.

The realer will batr in minl that the state of our embrou nedle is simply that of a piree of dull straight wire, about three inches lons, (suppoing 6 's to be the size, and pointed at both couls. Tha next proces is one of a series by which two eyen or holes are pierced through the wire, near the centre of its length, to form the eyes of the two needles which are to be fashioned from the piece of wire. A number of very curious operations are connected with this process, involving mechamicat and manip)uhative arrangements of great nicety. Those whare learne 1 in the qualities of needles-as that they will not "cut in the eye," de.-will be prepared to expect that much delicate workmanship is involve" in the proluction of the eyes, and they will not be in error in so supheing. Dhet of the inprowements Which have from time to time been introduced in needle-making relate more or lesk to the probluction of the eve. In the commoner kinds of needles many processes are omitted which are essential to the proluction of the finer qualities, but it will show the whole nature of the operations better for us to take the case of those which inwdse all the various processes.

After being examinel whon the pointer hat done his portion of the work to them, (an examinatinn which is undergone after every single proees throughout the mandacture, the wires are taken to the stamping-hop, where the first germ of an eve is given to eath half of every wire. The stamping machine consists of a heary bhock of stone, supporting on it: upper surface a bed of iron; and on this bed is phacel the under half of a die or stamp. Abewe this is su-pended a hammer, weiphine alame thirty poumle, which has us. its lower surface the other hatf of the die or imprese. The hammer is governed by a lever moved by the font, so that it can be brought down exactly upen the iron bed. The ferm of the die or stamp maty be be-t explaned be statime the work wheh it in to perform. It is (1) promere the gutter, or channel, in which the eye of a needle is situated, an! which is to gruile the thread in the process of "threading a needle."

But be-ides the two chamels or gutters, the stampers make a puforation partly tl rough the needle, as a mean of marking exactly where the eye is to be. The device on the two hatres of the die is consequently a raised one, since it is to produce depressions in the wire. The workman, holdins in his hand several wires, drops one at a time on the b, liron of the machene, adjusta it to the the, brings down the upper ,lie upon it by the action of the foot, and allows it to fall into a little di-h when done. This he does with such rapidity that ane stamper can stamp four thousand wires, equivalent to eight

Th, this prenees sumeneds another, in which the eye of the needle is piereed diremph. This in edfeetad by beys, each of whon works at a small han! pres, and the operation is at onece a minute and inge-
 them flat on as smail iron led or slat, haline one ont of each wire in his left ham, and hriuging the midhle of the wire to the midhte of the preas. To the upper arm of the prese are atlixed than hard.

 di-fance on each -ide of the exact centre of the wire. The wire beine placed beneath the paints, the

bends and works the comb between his hancs in a peculiar way, until he has broken the comb ints two halves, each half spitted by one of the fine wires. The needles have arrived at something like their destined shape and size: for they are of the proper length, and have eyes and points. In Fig. 2971 we can trace the wire through the processes of change hitherto undergone.

In Fig. 2971, A is the wire for tro needles; B the same, pointed at one end; C pointed at both ends; D the stamped impress for the eyes; E the eyes pierced; F the needles just before separation. def, Fig. 2972, enlargements of DEF.
But althongh we have now little bits of steel, which might by courtesy be called needles, they have rery many processes to undergo before they are deemed finished, especially if, in accordance with our previous supposition, they are of the finer quality. There are very many workshops which we have yet to glance through, the first of which is that of the soft-straightener. The filer and his two spitters (who together get ready abont four thousand needles in an hour) are very likely to bend in a slight degree the needles under operation; and, indeed, so are likewise the stampers and the cye-makers. To restore the straightness of the wire is the office of the soft-straightener, who is frequently a female.

The soft-straightener is seated in front of a bench, near the front edge of which is placed a smani steel plate. On this plate the needles are placed, parallel or nearly so; the straightener employed is a steel bar, from a foot to half a yard long, an inch or two in width, and perhaps a quarter of an inch thick. It is turned upwards a little at the two ends, so as to be somewhat convex at the lower surface, and is held by both hands at the two ends. By a curions management of this instrument, the koft-straightener separates each individual needle from the gronp of which it forms a part, and rolls it over two or three times with the lower surface of the instrument, pressing it against the iron plate, and thus working out any curvatures or irregularities which may have been given to it by the previous operations. So quickly is this done that three thousand needles can be thus straightened in an hour by une person.

The needles are by this time pointed, eyed, and straightened; but before they ean be brought to that beantifully finished state with which we are all familiar, it is necessary that they should be hardened and tempered ly a peculiar application of heat. After being examined, to see that the preceding processes are fitly performed, the needles are taken to a shop provided with orens or furnaces. They are laid down on a bench, and by means of two trowel-like instruments, spread in regnlar thick layers on narrow plates or trays of iron. In this way they are placed on a shelf or grating in a heated furnace When the proper degree of heating has been effeeted, the door is opened, and the needles are shifted from the iron tray into a sort of colander or perforated vessel immersed in cold water or oil. When they are quite cooled, the hardening is completed; and if it has been effected in water, the needles are simply dried; but if in oil, they are well washed in an alkaline liquor to free them from the oil. Then cusues the tempering processes. The needles are placed on an iron plate, heated from beneath, and moved about with two little trowels until every needle has been gradually brought to a certain desired temperature.

Notrithstanding the soft-straightening which the needles underwent after they were pointed and fyed, they have become slightly distorted in shape by the action of the heat in the processes just deseribed, and to rectify this they undergo the operation of hammer-straightening. A number of females are seen scate? at a long bench, each with a tiny lamaner, giving a number of light blows to the nee
diles; the needles being placed on a small steel block with a very smooth upper surface. This is rathei a tedious part of the manufacture, the workwoman not being able to straighten more than five humbed needles in an hour, a degree of quekness much less than that which we have had hitherto to notice.

We leare the tinkling hammers, and follow the necdles to the only part of the manufacture which in volves apparatus other than of a very small size. This is the scouring process, pertormed by machines, lonking like mangles, or, perhaps more correctly, like marble pulishing-nachines-a square slab or rubber working to and fro on a long bed, stone, or bench. The object of this process is to rub the needles one against another for a very long period, till the surfaces of all have become perfectly smooth, clean, and true. This is effected in a curious manner. A strip of very thick canvas is laid out open on a bench, and on this a large heap of nechles, anounting to perhaps twenty or thirty thousand, is laid, all the needles being parallel one with another, and with the length of the cluth. "The needles are then dgently coated with a mixture of emery and oil, and tied up tightly in the canvas, the whole forming a compact roll about two fect long and two inches in thickness. Twenty-four rolls of needles being thus prepared, comprising probably six hundred thousand needles in all, they are placed under the rubbers of the scouring-machines, two rolls to each machine. A stean-cngine or a water-wheel then gives to the rubbers, by connected mechanism, a reciprocating or backward and forward motion, pressing heavily on the rolls of needles, and causing all the needles of each bundle to roll one over another. liy this action an intense degree of friction is exerted among the needles, whereby each one is rubbed smouth ty those which surround it. For eight hours uninterruptedly this rubting or scouring is carried on; sfter which the needles are taken out, washed in sude, placed in new pieces of canras, touched with a new portion of emery and oil, and subjected to another cight hours' frietion. Again and again is this repeated, insomuch that for the very finest needles the process is performed five or six times over, each time during eight homr' continuance.

The needles are examined after being scoured, and are placed in a small tin tray, where, by shaking and vibrating in a curious manner, they are all brought into parallel arrangement. From thence they are remored into tlat paper trays, in long rows or heaps, and passed on to the "header," generally a little girl, whose office is to turn all the heads one way and all the points the other. This is one amoner the many simple but curious processes involved in this very curious manufacture, wheh surprise us by the rapidity and neatness of execution. The girl sits with her face towards the window, and has the needles ranged in a row or layer before her, the needles heing parallel with the window. She draws out laterally to the right those which have their eyes on the right hand, into one heap; and to the left those which have their cyes in that direction, in another.

About this time too the needles are examined one by one, to remove those which have been broken or injured in the long process of scouring; for it sometimes happens that as many as eight or ten thotisand out of fifty thousand are spoiled during this operation. Mont ladies are conversant with the merits of "drilled-eyed needles," waranted "not to cut the thread." These are produced by a modern improvement, whereby the cye, produced by the stamping and piercing processes before deseribed, is drilled with a very fine instrument, by which its margin becomes as perfectly smooth and brilliant as any other part of the needle. To effect this the needle is first "blued," that is, the head is heated so as to give it the proper temper for working. Then the eye is counter-sunk, which consists in bevelling off the eye by means of a kind of triangular drill, so that there may be no sharp edge between the eye itself aind the cylindrical shaft of the needle. Next comes the drilling. Seated at a long bench are a momber uf men and boys, with small drills working horizontally with great rapidity. The workman takes up a lew needles between the finger and thumb of his left hand, spreads them ont like a fan with the eyes uppermost, brings them one at a time opposite the point of the drill, governs the handle or lever of the drill with his right hand, and drills the eye, which is equivalent to making it circular, even, smonth, and polished. He shifts the thumb and finger round, so as to bring all the needles in suceession under the netion of the drill; and he thas gets through his work with much rapidity. The preparation of the drills, which are small wires of poli-hed steel three or four inches long, is a inatter of very great nicety, and on it dependy much of that beauty of production which constitutes the pride of a modern menthemanufacturer.
'The needhes are next applied to the edges of Jittle wheels revolving with great rapidity, some in tended for what is termed "grinding" the needlea, and some for polishing. The men are seated on lows stools, each in front of a revolvine whecl, which is at a height of perhaps two feet from the gromal The grinding-wheels are very small, not abowe tive or six inche in diancter; they are made of grit ntone, and are attached to a horizontal axis. The grinding here alhaded to is not such as might be suy, phend, relating to the points of the nemilles, but has reference simply to the heads, which have not yet hal a rounded form given to them. The workm takes up a layer or row of meedere between the fin Frs and thumbs of the two hands, mad applies the luends to the stones in such a mammer as to grind down may small aso parities on the surface. As the samall grimbtomes are rewolving three thousand times in a minate, it in phain that the ste⿻ may som be sutliciontly wom away hy a slight contact with the periphery of the sions.

The grimbers and the poli hers sit ar ar torether, sa that the luter take up the serime of operations at mon at the former have lini-hal. The peli-hing-wherly comsint of womat comend with butr leather, whene surface is olightly touched with polish.
 attes, applying every part of the cytindrical surfare in suce tsion; firat holding them by the puinted and, mend then by the
 eye end. Abome a thomant in :mben can thas be folathed

of the eye in different states will assist these details. a, Fig. 2973, represents a needle with the eye aud head rough; b, the head filed and formed; c, the eye countersunk; d represents a needle drillec and finished.

NICKEL. Λ white metal, ductile, malleable, attracted by the magnet, and which, like iron, may be zendered magnetic. Its specific gravity when hammered is about 9 . It is rather more fusible than pure iron; is not altered by exposure to air and moisture at common temperatures, but is slowly oxidized at a red heat. It is found in all meteoric iron; but its principal ore is a copper-colored mineral found in Westphalia, and called kupfernickel, nickel being a term of detraction used by the German miners, who expected from the color of the ore to find that it contained copper. The salifiable oxide of nickel consists of 30 nickel +8 oxygen. Its salts are mostly of a grass-green color, and the ammoniacal solution of its oxide is deep blue, like that of copper. See Metals and Alloys.

NONAGON. A fignre of nine angles and nine sides. The angle at the centre of a nonagon is 40°, the angle subtended by its sides 140°, and its area when the side is $1=6.1818242$, consequently the square of the side $\times 61818242$ will give the area of the figure.

NORMAL. A term sometimes used for perpendicular. In the geometry of curve lines, the normal to a curve at any point is a straight line perpendicular to the tangent at that point, and included between the curve and the axis of the abscissa.

Nut-Cutting MaCiifNe-By A. Milafe, Glasgow. This is a very convenient tool in works

Where the chief business is the construction of the more finished quality of machinery. In these the nuts are usually dressed to correspond with the other parts of the work. It is not commonly employed by millwrights, although its use would often be a material saving of time in the fittingshop, and especially in out-door work, in reducing the nuts, and consequently the number of keys required, to a few definite sizes.

Fig. 2974 is a side elevation. Fig. 2975 an end elevation. Fig. 2976 a general plan of the machine.
a is the main-spindle, having a spur-wheel u, and the cutter x, keyed on it.
k, the driving-shaft, carrying fast and loose pulleys, and having the pinion p keyed on it, and which geers into the wheel w.
r, the nut-holder: the nuts are screwed on a pin which is tightened by a nut on the under side, seen in Fig. 2074, by a countermut; different sizes of these mandrel-pins or serews are of course required for different sizes of muts.
b, a hand-wheel, upon the end of a slide-fever for carrying the not across the end of the cutter:
c, a shaft earrying a set of grooved pulleys, connected by a cord, with a corresponding set on the shaft k.
s, an endless screw on the shaft c, and working into the wheel h, on the slide-screw, to render the machine self.acting.

m, a handle to disengage the selfacting feed when desired. The upper part of the slide on which dee nuts are fixed turns rouni, and is held in the position required by the hamde n, the end of which is presed, by a spring, into notehes on the rim of the table. See Fig. 2976.
y, a screw for moving forward the head carrying the cutter, so as to adjust it to the size of mut to in sut. 'This operation is accomplithed by hand.

OCTAGON. In geometry, a plame figure contained by eight sides, and consequently having eight angles. When the sides and angles are equal, it is a regular oetagon. If a dente the site of a regular octaron, the area is $a^{2} \times \because$ tan. $6 i_{2}^{\circ}=u^{2} \times 4.825427$.
OC'TOHEDRON. In geometry, une of the five regular solids, or Platomic bodies, contained under eight equal and equilateral triangles. Let

$$
\begin{aligned}
& A=\text { the linear edge or side, } \\
& B=\text { the whole surface, } \\
& \mathrm{C}=\text { the solid content, } \\
& \mathrm{I}=\text { radius of circumscribed sphere, } \\
& r=\text { radius of inseribed sphere; then } \\
& A=r \sqrt{ } 6=R \sqrt{ } 2=\sqrt{ }\left(\begin{array}{l}
1 \\
6
\end{array} \mathrm{~B} \sqrt{ } 3\right)=\sqrt{ } \sqrt{\frac{3}{2}} \mathrm{C} \sqrt{ } 2 \text {, } \\
& \mathrm{B}=12 r^{2} \sqrt{ } 3=4 \mathrm{R}^{2} \sqrt{ } 3=2 \Lambda^{n} \sqrt{ } 3 \text {, } \\
& \mathrm{C}=4 r^{3} \sqrt{ } 8={ }_{3}^{4} \mathrm{I}^{3}=\frac{1}{3} \mathrm{~A}^{3} \sqrt{ } 2 \text {, } \\
& \mathrm{R}=r \sqrt{ } 3=\frac{1}{2} A \sqrt{ } 2=\frac{1}{2} \sqrt{ } \mathrm{~B} \sqrt{ }:=\sqrt{2} \mathrm{C} C, \\
& r=\frac{1}{3} \mathrm{~K} \sqrt{ } 3={ }_{6}^{1} \mathrm{~A} \sqrt{ } 6=\frac{1}{6} \sqrt{ }(\mathrm{~B} \sqrt{ } 3) \text {. }
\end{aligned}
$$

ODOMETER. An instrument attached to the wheel of a carriage, by which the distance passed over is ineasured.
OHAs. The term oil is applied to two dissimilar and distinct organic products, which are watly called fixed oils and rolutile oils. The fixed or fitt oils are either of vegetable or animal origin; they are compounds of carbon, hydrogen, and oxygen; the relative proportions vary but little in the several *pecies. The foltowing analyses of olive and spermaceti oil may be asmmed as types of the rest:

	1) live sil.	Spermancli uil.
Carbosi .	77	TS11
1lydroeren	12:	115
1)xyculy	4.5	1112

few of them are extensively employed in the arts as rehicles for colors, and in the manufacture of war nishes; this is especially the case with oil of turpentine.

Linseed, rape-seed, poppy-seed, and other oleiferous seeds were formerly treated for the extraction of their oil, by pounding in hard wooden mortars with pestles shod with iron, set in motion by cams driven by a shaft turned with horse or water power; then the triturated seed was put into woollen bags which were wrapped up in hair-cloths, and squeezed between upright wedges in press-boxes by the impulsion of vertical rams driven also by a cam mechanism. In the best mills upon the old construction, the cakes obtained by this first wedge-pressure were thrown upon the bed of an edge-mill, ground anew, and subjected to a second pressure, aided by heat now as in the first case. These mortars and press-boxes constitute what are called Dutch mills. They are still in very general use, and are by many persons supposed to be preferable to the hydraulic presses.

In extracting oil from seeds two processes are requred-ist, trituration; ed, expression; and tha steps are as follows:

1. Bruising under revolving heary-edge mill-stones, in a circular bed or trough of iron, bedded on granite.
2. 1Ieating of the bruised seeds, by the heat either of a naked fire or of steam.
3. First pressure or crushing of the seeds, either by wedges, screw, or hydraulic presses.
4. Second crusling of the seed-cakes of the first pressure.
5. Heating the brnised cakes: and 0. A final crushing.

The seeds are now very generally crushed first of all between two iron cylinders revolving in opposite directions, and fed in from a hopper above them; after which they yield more completely to the triturating action of the edge-stones, which are usually hooped round with a massive iron ring. A pair of edge mill-stones of aboui ' 1 or $7 \frac{1}{8}$ fect in diameter, and 25 or 26 inches thick, weighing from 7 to 8 toms, can crush, in 12 hours, fro $2 \frac{1}{2}$ to 3 tons of seeds. The cdge mill-stones serve not merely to grind the

Eec ls at first, litt to triturate the cakes after they hase been cru-hel in the press. Dld dry seeds some. times require to be sprimkled with a little water to make the oil come mere freely away; but this practice requires creat care.

The apparatue for heatirg the Lrmised seeds consists In-ually of ea-t iron or copper |an-, with stirrere moved by madimery. Fige. 2977 , 2978,2979 , and 2950 represent the heaters by haked fire, as mounted in Messr. Jaudsley and Field's seed-crushing milhs, on the wedge or Dutele phan.

Fig. 293 is an chesation or side view of the fireplace of a naked heater.
Fig. 2978 i a plan in the line U U of Fig. 2977.
Fig. 2979 is an cleration and section paralled to the line V V of Fir. 2978.
Fig. nuS) is a plan of the furnace, taken abore the grate of the fireplace.
A, tireplace hat at top by the eat-iron plate B, called the fire-plate. C, iron ring an an, re ting on the phate B, tor holding the sceds, which is kept in its place by the pins or bolts a. 1), fumels, לritichen, nito which, by pulling the rinereaze c by the handles $b b$, the seeds are made to fill, from which they pass into hags suipended to the hooks c.

Fi, Jïn. 29t:, thestirrer which proventa the sends from beiner bumed by continued contact with the

 bectly rai ed to a proper harint.

 wioler.

 a". carsw of stampers.

Vot. II.- $\because=J$

When in the course of a few minutes the bruiscd seeds are sufficiently heated in the pans, the double door FH is withdrawn, and they are received in the bags below the aperture G . These bags are made of strong twilled woollen eloth, woven on purpose. They are then wrapped in a hair-cloth, lined with .eather.

The first pressure requires only a dozen blows of the stamper, after which the pouches are left alone for a few minutes till the oil has had time to flow out; in which interval the workmen prepare fresla bars. The former are then unlocked, by making the stamper fall upon the loosening wedge or ley m.

The weight of the stampers is usually from 500 to 600 pounds; and the height from which they fall upon the wedges is from 16 to 21 inches.

Such a mill as that now described can produce a pressure of from 50 to 75 tons upon each cake of the following dimensions: 8 inches in the broader base, 7 inches in the narrower, 18 inches in the height; altogether nearly 140 square inches in surface, and about $\frac{3}{4}$ of an inch thick.

Adultcration of oils.-M1. Heidenreich has found in the application of a few drops of sulphuric acid to a film of oil, upon a glass plate, a means of ascertaining its purity. The glass plate should be laid upon a sheet of white paper, and a drop of the acid let fall on the middle of ten drops of the wil to be tried.

With the oil of rape-seed and turnip-seed, a greenish-blue ring is gradually formed at a certain distance from the acid, and some jellowish-brown bands proceed from the centre.

With oil of black mustard, in double the above quantity, also a bluish-green color.
With whale and cod oil, a peculiar centrifugal motion, then a red color, increasing gradually in ment sity ; and after some time it becomes violet on the edges.

With oil of cameline, a red color, passing into bright yellow.
Olive-oil, pale yellow, into yellowish green.
Oil of poppies and swect almonds, canary yellow, passing into an opaque yellow.
Of linseed, a brown magma, becoming black.
Of tallow or oleine, a brown color:
In testing oils, a sample of the oil imagined to be present should be placed alongside of the actual oil, and both be compared in their reactions with the acid. A good way of approximating to the knomledge of an oil is by heating it, when its peculiar odor becomes more sensible.

OIL TEST. The most valuable quality in an oil intended for the lubrication of machinery is permaunt fluidity. That oil which will for the greatest length of time remain fluid in contact with the iron or brass is, without doubt, the most useful for the purpose. Hence the necessity of including the clement of time in any experiment on the comparative value of such oils.

Some idea may be formed of the importance of having the means of arriving at correct conelusions on this subject, when we know that in some spinning establishments there are upwards of 50,000 spindles in motion at the rate of 4000 or 5000 revolutions per minute! The slightest defect in the quality of the oil in such a case, by its becoming viscid, tellis in the most serious way upon the quantity of fuel consumed in gencrating the power required to maintain at this high velocity snch a multitude of moving parts. The slight increase of fluidity consequent on the rise of temperature, caused by the lighting of the gas in the rooms of a cotton-mill, makes a difference of several horses-power in the duty of the engine of an extensive establishment.

The oil test re have now to describe, and which is an invention of Mr. Nasmyth's, consists of a plate of iron 4 inches wide by 6 feet long, on the upper surface of which six equal-sized grooves are planed. This plate is placed in an inclining position, say 1 inch in 6 feet. The mode of using it is as follows:Suppose we have six varicties of oil to test, and we are desirous to know which of them will, for the longest time, retain its fluidity when in contact with iron and exposed to the action of the air; all we have to do is to pour out simultuneously at the upper end of each inelined groove an equal quantity of each of the oils under examination. This is very conveniently and correctly done by means of a row of small brass tulues. The six eils then make a fair start on their race down liill; some get ahead the first day, and some keep ahead the second and third day, but on the fourth or fifth day the truth begins to come out; the bad oils, whatever good progress they may have made at the outset, come soon to a standstill by their gradual coagulation, while the good oil holds on its course; and at the end of eight or ten days there is no doubt left as to which is the best ; it speaks for itself, having distanced its competitors by a long way. Jinseed oil, which makes eapital progress the first doy, is set fil-t after having travelled 18 inches, while second-class sperm beats first-class sperm by 14 inches in mine days, having traversed in that time 5 feet 8 inches down the hill. The following table will show the state of the oil-race after a nine days' run:

Results of Oil Tist.

Duscription of Uit.	First.	second.	Third.	Fourth.	Fif 4.	Enth.	二iventh.	Lighth.	Ninth.
Best spern wil	$\begin{array}{ll} \mathrm{f} . & \text { in. } \\ \mathrm{g} & 8 \frac{1}{2} \end{array}$	fl. in. ± 2	f. in. - 54	ft. in. 46	f1. in. 18	it. in. 4 is	f. in. -1 (i)	$\begin{aligned} & \text { ft. in. } \\ & \text { stit. } \end{aligned}$	it. it.
Commen sperm	17	39	463	111	5 $1 \frac{1}{2}$	5) 1	5) ti?	5 \%	5 S
Galiopoli oil	($10 \frac{1}{4}$	127	1 is	$1{ }^{1} 12$	17_{1}^{5}	1 ¢ ${ }^{3}$	19	191	$1 \quad 1 \frac{1}{2}$
Lard oil	() $10 \frac{1}{1}$	$010 \frac{1}{3}$	(1) 103	0 103	0113	Stat.			
lape oil	$12 \frac{1}{2}$	1 6i	17	1 ¢!	$17+$	1 1孝	$17 \frac{1}{1}$	17%	Stat.
Linseed oil	$15 \frac{1}{2}$	16	13^{3}	$16 \ddagger$	$16 \ddagger$	$16\}$	163	St.it.	

Fur nice machinery nothing has been found to equal the best spermaceti oil, an! it is a mistaken economy which applies inferior oil to good machinery.

29-4

OMNIBLS CANE, Invented by S. W. Franciv of New York, to enable a passenger at the extremity of the stage to pass up lis fare to the driver without incommoding others. The cane is a common serviceable stick. Firg 2992 represents the lower ent of the cane; m is the receptacte for the coin, hre, three cent pieces, which are put in by removing the botton d, and the spring i and fullower j, which, after the insertion of say 41 coin, are replaced. At the upper ent of the cano is a small stul b, whin on being depressed gives a longitudinal motion to the rod or wire a, which withdraws h from the opening c, graged to the thickness of two coins, which are thrnst ont hy the bell-crank g. The small spiral spring, as the stud is relieved, presses h against the coin till taken ont by the driver.

OPSIOMLETER. In instrmment for measuring the extent of the limits of distin trision in ditferent indiviluals. The prineiple of M. Lehot's contrivance depends on the appearanee presental by a strairht line placed very near the eye, in the direction of its axis; :nI the principle is carried into practice by placing a thread of white silk on a narrow rule eovered with black velvet, and furni-hel with a suitable apparatus fur marking the exact points at which the thread begins and ceases to be distinctly seen, when held in a certain position with respect to the eye.

ORDLNATE: In genmetry, a straight line drawn from any point in a curse perpendicularly to nother straight line, which is ealled the abseiss. The absciss and ordinate together aro called the coordinates of the point.
 the French service, are 8 and 12 ponders, 18 calibres long, and weirlit of metal 1.50 times that of the thot. The Enerinh fiell ar:illery is almost entirely 9 pounders, 17 calibres long, and werirht of metal 1 (is times that of the slat. The I'ru-cian service use ti and 12 pumbers, 15 chlibres long, and weight of metal 11.5 times that of the shant. The common charge is $\frac{3}{3}$ of the weifht of the bull.

 tion of the charge, of less enlibre than the bre of the pinee. Howitzers nere shatt if ces, intended to throw Shell at ath elcuation of from $\left[0^{\circ}\right.$ to 30 , atd are lixnt on carriages. Mortars are zill shorter pieces fived

 Its pronerty is derival from the intorection if a cursilinemr line nt two puints lyy tho cirentar tran it

 by the wifted hewl h.

the observation, as at A in tlo Ziagram, fig. 2986 , or until the ray appears within the double line at at A, fig. 2987. In either case, note the hour, minate, and second, when the ray is at A; Iearing the in. strument undisturbed, the sun's ray will traverse the plate in the direction of the arrow until it arrives at the point A^{\prime}, when the time is again to be accurately noted. Add the results of the two obserrationo

together, and divide by 2 ; the difference between this result and 12 hours will show the error of the clock as compared with solar time, which being corrected by the necessary eqnations, (of which very complete tables are given in the descriptive pamphlet which accompanies the instrument,) will give either mean or siderial time, as may be desired.

OSCILLATION, CENTPE OF. The centre of oscillation is that point in a vibrating body into which, if the whole were concentrated and attached to the same axis of notion, it would then vibrate in the same time the body does in its natural state. The centre of oscillation is situated in a right line passing through the centre of gravity, and perpendicular to the axis of motion.

OYSTER-OPENER, Picault's. Amongst the extensive collections of the products of industry, agriculture, and manaficctures of 1849 , exhibited in Paris, is a peculiar mechanical contrivance for opening oystras, which we have engraved, fig. 2988, to show how judiciously mechanical talent may be exercised in the improvement of articles of an humble class. The instrument, which is the invention of M. Picarlt, consists of two levers bent semicircularly at one end, and hirged together. In the curved portion of one of these levers is a narrow recess, of a size sufficient to reccive the edge of an oyster, as shown; and on the other lever, exactly opposite to tinis recess, is fixed an oblique knife, which, on drawing the two straight ends or handles of the levers together, enters the joint of the shells, and divides them at once.

PACKLNG, METALLIC. Patented by Messrs. Allen \& Noyes in 1849. By an examination of the accompanying drawing, its principle will be easily understood. Fig. 2989 A is the cylinder cover, B is a matrix of cast-iron, c c \&ec., a series of rings, and d a piston-rod. Its application is very simple: the bottom of the inside of the stuffing-box, instead of being curved in the usual way, is turned square with the rod on which the east-iron matrix is fitted and ground on steam-tight; the diameter of the lower part of the stufing-box and the inside of the gland is made some what larger than the rod; and the stuffing-box the same amonnt larger than the outside of the matrix; the rings are made of a composition softer than Bablitt's metal, and are cast in two pieces, as shown in fig. 2990. It will be observed, the npper ring in which the gland screws enters the matris abont an eighth of an inch, and the top is left the same diameter as the top of the matrix on the inside.

In its operation, as the matrix is ground on the cyliuder cover, and the inside of the rings matde the same diameter as the rod, it is lept steam-tight; the rod working through the rings, and being so much the harder metal, keeps perfectly smooth; the rings are kept from being worn by any irregularity of motion, by the play allowed in the stufling-box for the matrix. In screwing down the gland, which must be done lightly, as the rings are conical and left open, they will all press towards the rod, and in time the uppor will take the place of the lower ring. In a stuffing-box of any kind, the great desideratum is
 to keep it tight, taling care not to cause the packing to seratch the rod, as it always does more or les in using hemp, nor to create an unnecessary amount of friction. This packing effectually accomplishes these, and gires the angineer little or no trouble.

PAPER, MANCPACTURE OF. Till within the lat thirty years, the linen and hempen rags from which paper was made, were reduced to the pasty state of comminution requisite for this manuacture by mashing them with water, and setting the mixture to ferment for many days in close vessels, whereby they underwent, in reality, a species of putrefaction. It is easy to see that the organic structure of the fibres would be thus unnecessarily altered, nay, freciuently destroyed. The next method employed was to beat the rags into a pulp by stamping-rods, shod with irun, working in strong vak mortars, and moved by water-wheel machinery. so rude and ineffective was the apparatue, that forty pairs of stamps were required to operate a night and a day, in preparing one hundred weight of rase. The pulp or paste was then diffused through water, and made into paper by methods similar to those still practised in the small hand-mills.
About the middle of the last century, the cylinder or engine mode, as it is called, of comminuting rags into paper pulp, was invented in Hollind; which was soon afterwards adopted in France, and at a later puriod in England.

The first step in the paper manufacture is the sorting of the rags into four or five qualities. At the mill they are surted again more carefully, and cut into shreds by women. For this purpose a tableframe is covered at top with wire-cloth, containing about nine me-hes to the square inch. To this frame a long stecl blade is attached in a slanting position, against whose sharp elpe the rags are cut into equares or fillets, after having their dust thoroughly shaken out through the wire-cluth. Each picce of ray is thrown into a certain compartment of a box, according to its fineness; seven or eight sorts being distinguished.

The sorted rags are next dusted in a revolving eylinder surrounded with wire-eloth, about six feet long, and four feet in diameter, having spokes about 20 inches long attached at right angles to its axis. These prevent the rags from being carried round with the case, and beat them during its rotation; so that in half an hour, being pretty clean, they are taken out by the side door of the cylinder, and transferred to the engine, to be first washed and next reduced into a pulp. For fine paper, they should be previously boiled for some time in a caustic ley, to cleanse and separate their filaments.

Wrigley's rag-machine is shown in Figs. 2996, 2997, 2993, and 2999 . Fig. 2996 is a side eleration ; Fig. 2997 a transverse section, taken lengthwise through nearly its middle; lis. 2998 a plan view of
396.

the apparatus detached upon a lareer scale; and Fir. 2092 is an elevation. The vessel in which the rars are placed is bown at a a, and in about the centre of this vesiel the beating or triturating roll 66 is phaced; it is surremeded with the blades or ruth-bars ce, Fieg 2997. The roll is moment upon a shaft dal, one end of which is placed in a pedatal or bearing on the further side of the chamber a, and the other in a bearing upon the arm or lewel $c c^{*}$. lïs. 2996 , which is supported by it = fulerm, at the emd ${ }^{*}$, in one of the standards $f f$, and at the other end hy a pin fixed in the connecting.rod $g g$. At thas

the required number of revolutions for beating; and to be raised and retained, as required, for the finai purpose of clearing the pulp. The upper or working edge of this cam is to be shaped exactly according to the action required by the engine-roll; as, for instance, suppose the previous operation of washing to be completed, and the time required for the operation of the rag machine to be three hours, one of which is required for lowering the roll, that, or the first division of the working surface of the cam $k k$, must be so sloped or inclined that, according to the speed at which it is driven, the rollers upon the crosshead shall be exactly that portion of the time descending the iacline upon the cam, and consequently lowering the roll upon the plates n, Fig. 2997 ; and if the second hour shall be required for the roll to Leat up the rags, the roll revolving all the time in contact with the plates, the second division of the eam $k i$ must be so shaped (that is, made level) that the roll shall be allowed to remain, during that period, at its lowest point; and if the third portion of the time, or an hour, be required for raising the roll again, either gradually or interruptedly, then the third division of the cam k must be suitably shaped

or inclined, so as to cause the cross-head to lift the roll during such interval or space of time; the particular shape of the inclined portions of the cam depending on the manner in which the manufacturer may wish the roll to approach to or recede from the bottom plates during its descent and asceut respectively.

Its mode of comection and operation in the rag-engine is as follows: supposing that the rags intended $\mathbf{v} \boldsymbol{0}$ be beaten up are placed in the vessel a, Fig. 2997, and motion is communicnted from a steam-engine or other power, to the further end of the shaft d, the roll b will thus be caused to revolve, and the rags washed, broken, and beaten up, as they proceed from the front weir m, over the bottom phates n, and again mund by the back weir o. There is a small pulley p, upon the near end of the shaft d, round which a band q passes, and also round another pulley r, upon the cross-shaft s; upon this shaft is a worm t, geering into a worm-wheel u, fixed upon another shaft v, below; upon the reverse end of which is a pinion w, geering into a spur-wheel x, upon the end of a shaft y; and upon the centre of this shaft y there is another worm z, geering into a horizontal worm-wheel 1 , upon which the cam $k k$ is fixed. Thus it will be seen that the requisite slow motion is communicated to the cam, which may be made to perform half a revolution in three hours; or it will be evident, that half a revolution of the cam $k i k$ may be performed in any other time, according to the calculation of the geering employed. The shaft may also be driven by hand, so as to give the required motion to the cam. Supposing, now, at the beGiming of the operation, the cross-head bearing the lever and roll to be at the highest poiut upon the cam $k k$, as its revolution commences, the roll will revolve for a short time on the level surface of the cam, and will then be lowered until the cam $k k$ has arrived at that point which governs the time that the roll remains at the lowest point, for the purpose of beating the rags into pulp, and as the cam $k k$ continues to revolve, and thus brings the opposite slope upon the third portion of its working surface into action upon the cross-head, the roll will be raised in order to clear the pulp from knots and other imperfections, and thus complete the operation of the engine. In order to raise the cross-head and roll to the height from which it descended without loss of time, or to lift the cross-head entirely from off the cam when requisite, a lever 2 , or other suitable contrivance may be attached to the apparatus, also a shaft may be passed across the rag-engine, and both ends of the roll may be raised instead of one only, as above described.

In the paper machine of Messrs Bryan Donkin \& Co. in Bermondsey, on Fourdrinier's principle, each machine is capable of making, under the impulsion of any prime mover, all unwatched by a human eye and unguided by a human hiand, from 20 to 50 feet in length, by 5 feet broad, of most equable paper in one minute. Of paper of arerage thickness it turns off 30 feet.

Fig. $3000,3000^{2}$ is an upright longitudinal section, representing the machine in its most complete state, including the drying steam-cylinders, and the compound channelled rollers of Mr. Wilkes, subsequently to be described in detail. The longer figure shows it all in train, when the paper is to be wound up wet upon the reels E E, which, being movable round the centre l of a swing-bar, are presented empty, time about, to receive the tender web. The shorter figure contains the steam or drying cylinders, the points OO of whose frame replace at the points P P 'he wet-recl frame F F P.

A is the rat, or receiver of pulp from the stuff-chest. B is the knot-strainer of Ibotson, to clear the pulp before passing on to the wire. G is the hog, or agitator in the vat. The arrows show the course of the currents of the pulp in the vat. I is the aprou, or receiver of the water and pulp which escape through the endless wire, and which are returned by a scoop-wheel into the rat. b is the copper lip of the rat, orer which the pulp flows tw the endless wire, on a leathern apron extending from this lip to about nine inches over the wire, to support the pulp and prevent its escaping. cc are the bars which bear up the small tube rollers that support the wire. dd are ruler-bars to support the copper rollers
over which the wire revolses. K is the breast-rolier, round which the endless wire turns. N is the point where the shaking motion is given to the machine. H1 is the gride-roller, having its pivots movable laterally to aljust the wire and keep it parattel. L is the pulp-roller, or "dandy," to press out water, and to set the paper. r is the place of the sccond, when it is used. If is the first or wet prese, or couching rollers ; the wire leaves the paper here, which latter is conched upon the endless felt p; and the endless wire oreturns, passing round the lower couch-roller. By Mr. Dunkin's happy invention of placing these rollers obliquely, the water runs frecty anay, which it did not (h) when their axes were in a vertical line. ce are the deckles, which form the edpes of the sheet of paper, and prevent the pulp pas-ing away laterally. They regulate the width of the endless sheet. ff are the revolving deekle trapls. If is the deckle-guide, or driving pulley. g g! are tuberolle ofer which the wire pas-es, wheh do net partake of the shaking motion; and h / h are movable rollers fur stretching the wire, or bra-s carnanes for keeping the rollers g g in a proper position.

C is the second prese, or dry press, to expel the water in a cold state. Kik, de., are the steancylinders for trying the endles sheet. $i i$ are rollers to convey the paper. $j j$ are rollers to conduct the felt, which serves to support the paper, and prevent it whinking or beconing cockled. 1) D are the hexagonal expanding reels for the stean-dried paper web, one orly being used at a time, and made to suit difterent sizes of sheets; l is their swing-fulerum. FFFF is the frame of the machene.

The deckle-straps are worthy of particular notice in this beautiful machine. They are composet of many layers of cotton tape, each one inch broad, and together one-Lalf inch thek, cenented with caoutchoue, so as to be at onee perfectly flexible and water-tight.

The upper end of each of the two carriages of the roller L is of a forked shape, and the pirots of the roller are made to turn in the eleft of the forked earriares in such a manuer that the roller may be prevented from having any lateral motion, while it posseses a free vibratory motion upwards and duwnwards; the whele weight of the roller L being borne by the endless wel) of woven wire.

The greatest difficulty formerly experienced in the paper mandacture upon the continuous system of Foundrinier, wats to remove the moisture from the pulp and condense it with sufficient rapidity, so as to prevent its becoming what is called vater-galled, and to permit the web to proceed directly to the drying eylinders. Hithertu no invention has answered so well in practice to remove this difliculty as the eltanelled and perforated pulp-rollers or dandies of Mr. John Wilks, the partner of Mr. Dunkin. Suppose one of these rollers (sce L, Fig. 8000 , and MM, Fi. 3905) is required for a machine which is to make paper $5 t$ inches wide, it must be about (i) inches long, so that its extremities (see Figs. zool and 3002) may extend over or beyond each edre of the sheet upon which it is haid. It diameter may he 7 inches. About 8 grooves, each 1-16th of an meh wide, are made in every inch of the tube; and they are cut to half the thickness of the copper, with a rectangularly haped toul. A suceestion of ribs and grooves are thms formed thronghout the whole lengll of the tube. A similar succesion is then made across the former, but of $2 t$ in the inch, and on the oppusite suriace of the metal, which, by a peculiar mode of manarement, had been prepared for that purpose. As the latter grooves are cut as deep as the former, those on the invite meet those on the outsite, erussing each other at ritht anters, anit thereby producing so many square holes; leaving a stries of straight cupper ribs on the int terior surface of the said tube, traversed by another series of ribs coiled round them on the outside, forming a eylindrical sieve made of one piece of metal. The rough edges of all the rilss mast he rounted ulf with a smouth file into a semicircular form.
 Fig. Bunl the interior surface; $b b$ and $b b$ show the plan part at each of the cmds, where it is made that to the brass rings by rivets or serews. CC are the rings with arms, and a centre-picee in each, for fixing the irm pivot or shaft 13 ; whe such piven is fixed by riveting it in each of the eentre piecers of the ringes, as thenw at co fig. 3001 ; so that both the said pieces shall be concentric with the rings, and have one common axis with wath other and with the roller. At a a growe is turned is each of the pivets, for the purpore of suspentiner a weight ly a book, in order to increase the presure upon the paper, whenever it may bofotmh necesary.

 of that perforateel rother, ant the little roller bower which it lies, is such that the nxis of la is at lithe
 the vat emb. Hence, whenever the wire web is set in preseresive motion, it will canae the ruller L , th

 to endure the action of the wet pres rollere 1111 , mad ahan aequires the appearane of parallel hese, ne if made by hated in a lat mouhl.
 at the dotted limen i it.

latter an internal view. Ifere we see that the external tuibe is the rill ? perfrated one already deseribed; the holes in the inner tube being made in rows to eorres pond with the erroves in the outer. The holes are so distributed that every hole in one row -hall be opposite to the midtle of the space left between two holes in the next row, as will appear from inspeetion of the firure. The diameter of each of the punched holes somewhat execeds the width of each rit in the in-i le of the cuter exlinder, and wery inside groore of this tube coinciles with a row of holes in the former, which construchin permits the free transudation or perculation of the water out of the pulp. At each can of this dumbera-e cylinder a part is left at $\mathcal{N} \mathrm{K}$ plain without, and grooved mevely in the inside of the outer tube the smoth surface allows the brass ends to be securely fixed; the outer eulge of the brasio, rime fits tight into the in-ite of the end of the cylinders.

Un the inside of each of these rings there are fotr pieces which project townals the eentre or axis of the crlinfer, two of which pieces are shown at a a, lig. 3005 , in sectien. b b is a brass rime with four a:ms c cce, and a boss or centre piece dd. The outer edge of the last-menthoned ring is also turned cylindrical, and of such a chameter as to fit the interior of the former ring oo. The two rings are securely hed together by four screws. ec is the hollow iron asle or shaft upon which the eylinder revolves. Its outside is made truly eylindrical, so ais to fit the cireular lules in the hosese d of of the rimes and arms at each end of the cylinder. Hence, if the hollow shaft be so fixed that it will not turn, the perforated cylinder is eapable of having a rotatory motion given to it round that shaft. This motion is had recourse to when the vacuun apparatus is employed. But otherwise the cylinder is made fat to the hollow axle by means of two screw-clamps. To one end of the eylinder, as at p, a toothed wheel is attached for communicating a rotatory motion to it, so that its surface motion shall be the same a that of the paner web; otherwise a ruthing motion might ensue, which would wear and injure beth.

The paper stuff or pulp is allowed to flow from the vat A, Fig. 3000, on to the surface of the enllesa wire-web, as this is moving along. The lines oo, Fig. 3000, show the course of the motion of the weh, which operates as a sieve, separating to a certain degree the water from the pulp, vet leaving the latter in a wet state till it arrives at the first pair of pressing-rullers II H, between which the web with its sheet of paper is squeczed. Thick paper, in passing through these rollers, was formerly often injured by beconing water-gallecl, from the greater retention of water in certain places than in others. But Mesers. Donkin's cylinder, as above described, has ficcilitated vastly the discharge of the water, and enabled the manufacturer to tum off a perfectly uniform smooth paper.

In Fig. 3000, immediately below the perforated cylinder, there is a wooden water-trough. Ahong one side of the trourl a copper pipe is laid, of the same length as the eylinder, and parallel to it; the distance between them being about one-fourth of an inch. The sitle of the pipe faciny the eylimeler is perforated with a line of emall holes, which transmit a great many jets of water against the surface of the eylinder, in order to wash it and keep it clean during the whole continuance of the process.
The principle adopted by John Diekinson for making paper, is different from that of Fourdrinier. It consists in causing a polished hollow trase cylinder, perforated with holes or slite, and cosered with wirecloth, to revolve over and just in contact with the prepared pulp; so that by comecting the cylinder with a vessel exhausted of its air, the film of pulp, which adheres to the cylinder during its rutation. becones gently pressed, whereby the paper is supposed to be rendered drier, and of more unifirm thickness, than upon the horizontal hand-moulds or travelling wire-cloth of lourdrinier. When subjected merely to agitation, the water is sucked inwards through the cylindric cage, leaving the textile tilaments so completely interwoven as, if felted among each other, that they will mot separate withont breaking, and when dry they will form a sheet of paper of a strength and quality relative to the mature and preparation of the pulp. The roll of paper thus formed upon the hollow cylinder is turned off com-tinum-ly upon a secomed solid one covered with felt, upon whith it is comensed by the presure of a third revolving cylinder, and is thence delivered the thyiner rollers.

Mr. Ilots m, of loyle, paper manufucturer, obtained a patent, see 13, Fig. Sono, which has proved very
 bars of ghametal, hat in the hestom of a box very chenely turether, so that the upper surfaces or the

 wery fine llexible filmes of hemp, flax, cotton, dre, mixerl with water, amb as, even in the pulp of which

 the jomering *ereent of corn mills.

 mandine

united are carricd formards by the felt over a guide-roller, and onwards to a pair of pressing-rollers where, by contact, the moist surface of the pulp are made to adhere, and to constitute one double thick sheet of paper, which, after passing over the surfaces of hollow drums, heated by steam, becomes dry and compact. The rotatory movements of the two pulp-lifting drums must obriously be simultancous, but that of the pressing rollers should be a little faster, because the sheets extend by the pressure, and they should be drawn forwards as fast as they are delivered, otherwise creases would be formed. Upon this invention is fonnded Mr. Dickinson's ingenious method of making safety-paper for post-office stamps, by introducing silk fibres, de., between the two lamine.
The folloring contrivance of the same manufacturer is a peculiarly clegant mechanical arrangement, and consists in causing the dilute:l paper pulp to pass between longitudinal apertures, about the hun-dred-and-fifteenth part u^{f} an inch wide, upon the surface of a resolving cylinder.

The pulp being dilated to a consistency suitable for the paper machine, is delivered into a vat, of which the level is regulated by a waste-pipe, so as to keep it nearly full. Fromin tiis vat there is oub other outlet for the pulp except through the wire-work periphery of the revolving cylinder and thence out of each of its ends into troughs placed alongside, from which it is conducted to the zachine destined to convert it into a paper web.
The revolving eylinder is constructed somewhat like a squirrel cage, of circular rube, or an endless spiral wire, strengthened by transverse metallic bars, and so formed that the spaces between the ringz are sufficient to allow the slender fibres of the pulp to pass through, but are narrow enough to intercept the knots and other coarse impurities, which must of course remain and accumulate in the vat. The spaces between the wires of the squirrel cage may vary from the interval above stated, which is intended for the finest paper, to double the distance for the coarser kinds.
It has been stated that the pulp enters the revolving cylinders solely through the intervals of the wires in the circumference of the cylinder; these wires or rods are about three-eighths of an inch broad without, and two-cighths within, so that the circular slits diverge intemally. The rods are one-quarter of an inch thick, and are riveted to the transverse bars in each quadrant of their ievolution, as well as at their ends to the necks of the cylinder.

During the rotation of the cylinder its interstices would soon get clogged with the pulp, were not a contrivance introduced for creating a continual vertical agitation in the inside of the cylinder. This is effected by the up-and-down motion of an interior agitator or plunger, nearly long enough to reach from the one end of the cylinder to the other, made of stout copper, and hollow, but water-tight. A metal bar passes through it, to whose projecting arm at each end a strong link is fixed; by these two links it is hung to two levers, in such a way that when the levers move up and down they raise and depress the agitator, but they can never make it strike the sides of the cylinder. Being heavier than its own bulk of water, the agitator, after being lifted by the levers, sinks suddenly afterwards by its weight alone.

The agitator's range of up-and-down movement should be about one inch and a quarter, and the number of its vibrations about 80 or 100 per minnte; the flow of the pulp through the apertures is suddenly checked in its descent and promoted in its ascent, with the effect of counteracting obstructions Letween the ribs of the cylinder.
The sieve-cylinder has a toothed wheel fixed upon the tubular part of one of its ends, which works between tro meta! flanches made fast to the wooden side of the vat, for the purpose of keeping the pulp a way from the wheel ; and it is made to revolve by a pinion fixed on a spindle, which, going across the vat, is secured by two plummer-blocks on the outside of the troughs, and has a rotatory motion given to it by an outside rigger or pulley, by means of a strap from the driving-shaft, at the rate of 40 or 50 revolutions per minute. 'This spindle has also tro double eccentrics fixed upon it, immediately under the levers, so that in every revolution it lifts those levers twice, and at the same time lifts the agitator.

The diameter of the sicve cylinder is not very material, but 14 inches have been found a convenient size; its length must be regulated according to the magnitude of the machine which it is destined to supply with pulp.

Aetal flanches are firmly fixed to the sides of the rat, with a water-tight joint, and form the bearings in which the cylinder works.

Mr. Dickinson obtained a patent in 1840 for a new mode of sizing paper continuously, in an air-tight ressel, (partly exhausted of air,) by unwinding a scroll of dried paper from a reel, and conducting it through heated size; then, after pressing out the superffuous size, winding the paper on to another reel.

A longitudinal section of the apparatus employed for this purpose is represented in Fig. 3006, where a is the air-tight vessel; b, the reel upon Which the paper to be sized is wound; whence it proceeds beneath the guideroller c, and through the warm size to another guide-roller d. It thence ascends between the press-rolls off, (by whose revolution the paper is drawn from the reel b, and is wround upon the reel $\%$ A float h is suapended from the cross-bar i of the vessel a, for the purpose of diminishing the surface of size expo-ed to eraporation; and bencath the bottom of the vessel is an inclosed space j, into which steam or hot water is introduced for maintaining the temverature of the size.

PAPER MACHINES, regrutation off. It is found in practice to le dithic alt to regulate the monjom of the Foudrinier, and other machines, in common use, for the mandacture of endless pighe When the flow of pulp upon any machine is uniform, an acceluration of its mation wall make the paper thin, whilst a retardation will make it thick. Hence it i of the utmot importance, in corder to mabe paper of even weight and thicknese, that when the thow of the pulp is mithrm, the machine shall move uniformly at the same speed. But if, by any eontrivance, the tlow of the pulp could be anfonented, or checkel, just in the same proportion as the machine moves slower or fi-t, r, it is wilent that the necessary relation between its speed, and the quantity of pulp thrown on, might be effected and mointained. Con-equently, two modes of whaining the requisite miformity in the thicknes and weight of the endless slecet of paper sugerest themselves.
I. 'lo regulate the speed of the motur driving the machine.
II. To regulate the flow of pulp unon the mathine.

The attention of constructors has usually been directed chiefly to the first method; and herice we find the machine-wheel of paper-mills are very frequently tuf-uhcels, wa-tiner a large amount of wather but nevertheless selected amb used on aceount of the regulaity of their motion. With this whect also it is almost invariably the practice here to employ an independent wheel to drive the paper machine alone.
Some attempts lave recently been made in this combtry to regulate entless paper mathene by the second method, and accordingly "pulp regulators" have been applied with considerable suceess in several important mills.
It being, in fact, a desideratum to procure some unobjectionable means of effecting the regulation referred to, we have translated from J. B. Viollet's Journal des U'sines an accomt of a meehanical contrivance devised in Frauce for this object.
liegulator for jecding machines making endless paper, by Messrs. S.nvdrond an! Varrabin mochanical cnyincers of Paris.-W hatever care may be taken to render uniform the speed of the motors which drive endless paper machines, and notwithstanding we usually establish for each of these machincs a separate water-wheel, constructed of iron, in the best provided works, it has long been imposible to obtain a regularity of motion, and a harmony between the movement of the endless cloth and the feeding on of the pulp, so that the paper may pussess uniformly the same thickness.

From this resulted a serions imperfection, consisting of a narked inequality between the different parts of the long band of paper, and consequently, between the sheets intu which it is cut. We conceived that this inequality wais not only a fault, but also that it exposed the manufacturers to di-jutes not arising from any fault on their part.

In fact, to cause the velocity of the machines, and eonsequently, the strength of the paper to vary, it was enough that the resi-tamees opposed by the materials were not constant, or that the stream of water happened to be disturbed.

It is to avoid these difficulties and inconveniences that Sandford and Varall bare invented tho apparatus represented in Figs. 3007 , :3018, $3004,3010,3011$, and 3012.

This principle established, the following are the details of the ingenious apparatus of Sandford and Varall.
R , as we have said, is the regulating wheel, provided with scoopseec; this wheel is confined in a drum 13, which the pulp enters from the reservoirs A A by the large stop-cocks $r r$, kept entirely open, so as to maintain sensibly in the drum B the same level as in the reservoirs $A A$. It is of little importance, moreover, if this level be not rigorously equal, nor even if it varies notably in the reservoirs A A; for, provided the pulp arrives in sufficient quantity, and we must take care that it be always so, each of the scoops, every time they issue from the pulp, only withdrats the same quantity of material.

We casily conceive how advantageous is this property of the apparatus, since, notwithstanding all the variations of level of the liquid pulp in the reservoir, or stuff-chest, it assures regularity in feeding on the pulp-a regularity which would often be compromised if made dependent solely or this lerel.

It is necessary that the relation which exists between the number of revolutions of the scoop-wheel R and the velocity of the endless cloth may be varied, when we wish to alter the strength of the paper.

To obtain this effect, Sandford and Varrall have controlled the scoop-wheel R by the two parallel cones C and C^{\prime}, which carry the belt d : the cone C^{\prime} receiving its motion from the latcral shaft established alongside the paper machine, and on which is all the geering which moves the encless cloth, and the other movable parts of the machine.

3012.

It is sufficient to move the belt laterally, (along the cones,) in order to retard or accelerate the rotice - kion of the scoop-wheel, without altering the angular velocity of the other movable parts, and thus, conscqueatly, to change the relation in question, and of course the thickness of the paper made.

 it proceeds through a pair of drawing or feeding rollows c, which carry it into the cutting machine.

Cpon a table a d, firmly fixed to the floor of the buiding, there is is series of chi-e lededel knives eec, placel at such distanecs apart as the dimension of the cut shects of papre are intembed to be theee linives are made fast th the table and again-t thens a series of circular cutters fif montel in a swinging frame $g ~ g$, are intended to act. The length of p poer being brought along the table over ilf. dede of the knives, up to a stop h, the cutteri are then swung forwards, and by pa-ing or or the paper

The frame g g, whieh carries the circular cutter $f f f$, hangs upon a very elevated axfe, in order that its pemblulus swing may move the cutters as nearly in a horizontal line as possible; and it is male to vibrate to and fro by an eccentrie or crank, tixem upon a horizontal rotary shaft exten ling over the drum b, con-iderably above it, which may be driven hy any convenient machinery:

The workmen draw the paper from between the rollers c, and bring it up to the stop h, in the intervals between the passing to an fro of the swing-cutter:

The following rery ingenious apparatus for cutting the pajer web transversely into any desired lenuthe, was made the sulject of a patent by Mr. E. N. Fourdrinier, in June, 1831, and has since been performing its duty well in many e-tabli-hments.
Fig. $801 . t$ is an clevation, taken upon me -ide of the machine; and Fis. suls $i \rightarrow$ a longitudinal section. a a a a are four reels, each covered with one continuous theet of paper; which reels are supperted apon bearings in the framework $b b b$. $c c c$ is an endless web of felt cloth paseen over the rollers $d d d d$, which is kept in close contact with the umber sille of the drum $c e$, seen best in Fig. sults.
The several parallel hayers of paper to be cut, being pascod between the drumer and the endle-a felt r, wall be drawn ofto their reapective rects and find into thin machine, whenever the driving-band is slid from the loose to the fast pulley upen the rad of the main thaft f. Buit since the probrewive advance of the Paperwels must be arrentel derin. the. lime of making the crosserut throush it, the following aplaratus becomes becon sary. A lisk ! which carries the pin or stail of a crank i, is mate foet the the embl of the driviner-alaft f. This pin is set its an alljutable stidin - piece, which may lo. comtinal ly a serew within the bevillad
 davk !, ut sariable di-tames from il. uxis, wheret, the enemtriaty of the stal i, and if cothen the throw of the cratk, may ler en ath rably varmel. 'It
 fwow rine cursilinen rack $\%$, whicha tahen intu the tonthand wherll that tame fienly

 whiels work in the teeth of the grat ratchet whech oo, monnted upen the haft of the drum c.

The crank-plate g being driven round in the direction of its arrow, will communicate a see-saw movement to the toothed are k, next to the toathed wheel l in gecring with it, and an oscillatory motion tc the arms $m m$, as also to their surmounting pall n.

In its swing to the left hand, the catch of the pall will slide over the slope of the teeth of the ratchet roheel o; but in its return to the right hand it will lay hoid of these tecth and pull them, with their attached drum, round a part of a revolution. The layers of paper in close contact with the under half ot the drum will be thus drawn forward at intervals, from the reels, by the friction between its surface and the endless felt, and in lengths corresponding to the are of ribration of the pall. The knife for cutting these lengths transverscly is brought into action at the time when the swing are is making its inactive stroke, viz., when it is sliding to the left over the slopes of the ratchet-teetlo o. The extent of this vibration varies according to the distance of the crank-stud i from the centre f, of the plate g, because that distance regulates the extent of the oscillations of the currilinear rack, and that of the rotation of the drum e, by which the paper is fed forwards to the knife apparatus. The proper length of its several layers being by the above-described mechanism carricd forward over the bed r of the cutting-knife or shears $r v$, whose under blade r is fixed, the wiper s, in its revolution with the shaft f, lifts the tail of the lever t, conserguently depresses the transverse movable blade v, (as shown in Fig. 3015 ,) and slides the slanting blades across each other obliquely, like a pair of scissors, so as to cause a clean cut across the piles of paper. But just before the shears begin to operate, the transeree board u descends to press the paper with its edge, and hold it fast upon the bed r. During the action of the upper blacte v against the under r, the fall-board u is suspended by a coril passing across pullers from the arm y of the bell-crank lever t. Whenerer the lifter cam s has passed away from the tail of the bell-crank t, the weight z, hung upon it, will cause the blade v, and the pinching board u, to be moved up out of the way of the next length of paper, which is regularly brought forward by the rotation of the drum c, as above described. The upper blade of the shears is not set parallel to the shaft of the drum, but obliquely to it, and is, morcover, somewhat curved, so as to close its edge progressively upon that of the fixed blade. The blade v may also be sct between two guide-pieces, and have the necessary moticu given to it by levers.

PARALLEL MOTIONS. Tre following figures exhibit a variety of forms of parallel motions, such as are employed to maintain tite rectilincal direction of the piston-rod of a steam-engine, under the constantly rarsing angular direction of the beam. Contrivances of this kind are required in other circumstances of the conversion of rotatory and alternating angular motion into rectilincal motion, and the converse: but the absolute necessity there is of guiding the path of piston in the steam-engine, has called forth more attention to the principles and mechanism of paralkel motions than would otherwise, in all probability, have been awarded to the subject for other purposes. In the first place, the principle naly be briefly indicated.

Hig. 3016. Given $\Lambda \mathrm{B} D$ a right angle: it can be demonstrated that if the end A of the right line $\Lambda[$ aescend from A to B along the line A B, while the end D moves along the line B D produced, a point C in the middle of the line will describe the circle $\mathrm{C} G$. Hence, if a beam $\Lambda \mathrm{D}$ has one end sliding in a groove at D, and is connected or jointed at the middte C in a guide BC of half its length, this guide also moring on a joint at B, then in every position of the beam the point C will describe the circle $C G$, and the point Λ of the beam will more in a straight line.

Fig. 3017. In practice, it may be more convenient to have the or 1 D of the beam fixed to the eni
of a movable bar, as $\mathrm{D} N$, of some feet in lemgth, than to slide in a groow; for, thoush the are deweriben by the end D will deviate a little from a straight line, yet the croor produed thereby will le so very Emall that it can bate no bad effect, or even be discovered in practice.

In the steam-engme there are various modes adop ted by mean- of jointed rouls, de., different from that deseribed above, for eatu-ing the piston-rod, attached to the end of the beam, to move in at staight line, which, althourg not mathematically correct, are still so very near the trath as to an-wer the phrpose wanted excecdingly well; such a system of jointed rods is generally umbed by enginects at porallel motion.

Firs 3019 . In the heam a 1 , which is shown in its three pritions, viz, at the middue and the twa extromites of the stroke, the verace sine ab of the are formed by the extremity of the bean, is termed the vibation, and a piston-rot attached to the beam is mate to move in a time bi-ceting this sibration; thas, if it pi-ton-rol were attached to the beam aff, c dis the line in which the rent on fhe tor move.

Fige. 3019 is a gencral mode of finding the length of the madius-rod Gic, and shows the principle ugen Which parallel motions formed by jointed roth are founded; a b is the beam, ac a $=$ trap, whe cold of which is attached to the beam, and the pisten-rod is attached stmewhere abomt the midille, a- at l ; the beam is then put in it three positions, and white the point l to which the piston-rol is tised is kept in the straight line, bisecting the vibration, the positions of the lower end e of the stap are carefully marked, as at $c c c$; then the centre (i of the circle pasing throngh these point will he the puim to which the radius-rod ($\mathrm{r} e$, ennmeted to the strap at c, should be fixed. and the ratins of the cirele will be the length of the rod. If the puint b be taken exactly in the middle of the stratp, the lemgth of the radius-rod $\& c$ will be equal to the portion of the beam $\alpha \mathrm{F}$.

 1.) "heh it slowhlal be fixal.

pumps: the lever F has the eentre of motion at o in the up standard s, fixed upon the cover of the pump D is a cylindrical rod, also fixed to the top of the pump, and set quite parallel to the pumprod R ; g is a cross head attached to the top of the pump-rod, having a projecting arm h terminating in a socket f which moves on the rod D ; the lever F is comneted to the cross-head y_{y} by two straps, one of which: is shown at c; upon moving the lever F it will be quite clear that the piston-rod R must move parallel to D.

Fig. 3022 is a drawing of a walking-beam for a twelve-horse engine, with parallel motion attached The point B to which the inner strap is fixed, is rery often taken exactly in the centre, betwist Λ and e and when that is the case, the length of the radius-rods is equal to the same distance, or, in other words, equal to the fourth part of the whole length of beam.

When the inner strap is suspended from any other point than in the middle of the distance $A c$, the position of the centre and length of the rod ef would be found as described in Fig. 3019: keeping the point a to which the piston-rod is attached always in the same straight line in which at ought to more, and carefully marking the points assumed by the lower end of the strap f.

The point b to which the air-pump rod is fixed should be exactly in the middle of the strap, when the beam is divided into four equal parts, which will also inswre a parallel motion for the bucket of the air-pump.

Fig. 3028 is a mode of causing the piston-rod to describe a straight line by the use of the two frictionwheets IV W confined betwixt the guides G G ; this plan is often used in small engines, when the crank to which the connecting-rod P is attached is immediately above the cylinder.

Fig. 3024 is a plan of parallel motion usually employed in marine engines; the manner of finding the length and position of the radius-rod g is precisely the same as in Fig. 3019 ; this motion is, in fact, the ammon parallel motion modificd to suit the circumstanees in which it is placed. The lengith of the radius-bar $e f$ is easily found in practice, by supposing the piston-rod to more in a right line, and finding three points through which a point in the side-rord A, assumed at pleasure, would pass, in the highest, middle, and lowest pasitions of the piston-rod; then a circular are passing through these points will give the radius and centre sought; and the point e assumed in the side-rod will be the point of connection of the radius-bar.

Now, in order that the point P of connection of the siderod and piston-rod may describe a right line, the point f must describe an are of curvature sufficient to neutralize the curvature which would be transmitted to it by the travel of the side-lever; to determine this are $f f f$, it is only necessary to describe from the middle point of the stroke, taken in the straight line $c e c$, a right line $e g f$ equal in length to the length of the radius-bar, and perpendicular to it; also the highest position of the radiushar forming the same angle with of f that the radius-bar forms with that line in its lowest position; then the three points $f f f$ being thus found, at circular are drawn through them will determine the fixed centre g, and the length of the parallel har $g f$.

The length of the side-bar c from f to its comection with the side-lever, must of course be equal in length to the side-rod Λ, from eto the point also of its comnection with the side-fever. These rols will remain during the working of the engine parallel to each other, and conse-
 quently the radius-rod will continue parallel to the axis of the side-lever in all positions of the stroke. It must, however, be remarked, that the parallelism is not absolutely correct, but. is true only within certain though narrow limits, giving an approximation sufficiently near fur common practice.

Fis. 3025 shows a forn of parallel motion sometimes alopted in handerges of the sm:aller chan It is suscentible of great accuracy, and admits of several modinatims.
In this figure A is hie erlinder of the engine, B the beam, supperted on a mo kisp-har lavity a movable centre at D. The radins-bur has its fixed centre at a attached to tho framine of the entrine and is rentreal to the beam at a point c equiditant from the main centre f and the poim of attachment th the piston-rod. Siow, the radius-rol beiny equal to hald the radius of the beam, and the radiu-bar having :a fixed centre at a, the point c of the beam must of necesity deacribe the ate c e derine eadh :troke of the piston. Siur, in dee ribius this are it is phain that the main centre f of th. blam mast describe -imultaneously an are about the centere D upun which it is camiel. But (ho ra lius fill licine great in comparisua to raliifce an $a c$, the motion of the main centre may be supposed, witho at susble error. to be in a right line, as if it were free to slide in a herizontal grove. But the ecntre j beinf enn trabed to move horzontally throurh a given space during a stroke of the pitun, the end a if the bean will travel horizuntally throwgh an equal space in the same direction, and will therefore, in-tead of describins an are alout the centre f, describe the chord a es of that are, parallel to the churd of the are $c e c$, whels is the thing wanted.
This motion and its modifications are founded on the principle that if the are of a semicircle be made to slide argaist a fixed point p, Fig. Bugu, while one of its extremities x is con-trainell to move in a :traifht line $x^{2} p$, the other extremity y will describe another straight line $p y$ at right angles to the first.

To exhil it this pinciple in a practicable furm, let $m n$ be a rigid har, haring the ond n gruided in a
 bar jointed to the former at $\%$ and having a fixed eentre at p. Let this bar be hatf the lenerth of the bar $m n$, anl let $m q=u q$; it is then evilent, from the pineiple stated above, that, as the sromer at n and the fixed eentre at of control the motion of the bar $m n$, the end m is constraned to move in a straight line mprat right anghes to $p^{\prime \prime} n$, which is the con lition to be fultillerl.

In life sones, in-tuad of the -hat at x tho main centre is allowed to travere : small are, which deviating very litthe from a right line, fultila, the combtion woth com iderable exactne : The same principhe may ber applir I in varions way-

 sittee of the necelertus fime of thr tral rasty

Von.. II.-:30

According to the theory of falling bodies, (See Gravity,) the time t in which a body falls through the space s, by the accelerating force of gravity, is given by the equation $t=\sqrt{\frac{2}{g}}$. Let $2 s=l$; then $t=$ $\sqrt{\frac{l}{g}}$. But the time T , of the oscillation of a pendulum whose length is l, is $\mathrm{T}=\pi \sqrt{ } \frac{l}{g}$; therefore $T: t:: \pi: 1$; consequently the time of the oseillation of a pendulum is to the time that a heary body would fall freely by the force of gravity through half its length, as the circumference of a circle to ita diameter.

If we suppose the time to be expressed in seconds, and make $\mathrm{T}=1$, we shall have $g=\pi^{2} l$. Captain Kater found the length of the simple pendulum at London to be 39.13029 inches, and we know that $\pi^{2}=9.8696$; therefore $g=9.8696 \times 39.139=386.29$ inches, or $g=32.2$ feet. It follows, therefore, that the space through which a body falls freely at London in a second of time is 16.1 feet.

Compound pondulum.-The simple pendulum, as above defined, is only a theoretical abstraction, for the oscillating body can neither be so small that it may be regarded as a mathematical point, nor can the rod be entirely devoid of weight. When the body has a sensible magnitude, and the suspend-ing-rod a sensible magnitude and weight as they must have in all actual constructions, the apparatus is called a compound pendulum; and instead of being supported by a single point it is supported by an axis, or by a scries of points situated in the same straight line. According to this definition, any heavy body oscillating about an axis of suspension is a compound pendulum.

In every compound pendulum there is necessarily a certain point at which, if all the matter of the pendulum were collected, the oscillations would be performed in exactly the same time. This point is the centre of oscillation. (See Cextre of Oscillation.). It is situated in the vertical plane passing through the centre of gravity of the pendulum, and at a distance from the axis of suspension, (the axis being always supposed horizontal,) which is determined by the following formula: Let $d m$ be the element of the mass of the compound pendulum, r its distance from the axis of rotation, and x the distance of the centre of oscillation from the same axis; then

$$
x=\int r^{2} d m \div \int r d m ;
$$

that is, the distance of the centre of oscillation from the axis of suspension is equal to the moment of inertia of the oscillating body divided by its moment of rotation. This value of x is the length of the isochronous simple pendulum, and is what is always to be understood by the term longth of a ponduluin

The centre of oscillation possesses a very remarkable property, which was discovered by Huygens; namely, that if the body be suspended fron this point, or a lorizontal axis passing through it parallel to the former axis of suspension, its oscillations will be performed in the same time as before; in other words, the axis of suspension and oscillation are interchangeable. This property furnishes an easy practical method of determining the centre of oscillation, and thence the length of a compound pendulum.

Applications of the pendulum.-The most important application that has been made of the pendulum is to the measurement of time.

- Compensation pendulum.-The value of the pendulum as a regulator of time-pieces depends on the isochronism of its oscillations; which, in its turn, depends on the invariability of the distance between the points of suspension and oscillation. But, as every known substance expands with heat and contracts with cold, the length of the pendulum will vary with every alteration of temperature, and the rate of the clock consequently undergo a corresponding change. To counteract this variation numerous contrivances have been employed. The principle is, however, the same in all; and consists in combining two subatences, whose rates of expansion are unequal, in such a manner that the expansiou of the one counterants that of the other, and keeps the centre of oscillation of the compound body always at the same distance from the axis of suspension. A brief clescription of the two compensation pendulums in most common use - the mercuriut pendulum and the gritiron peutulum-will sofficiently explain the means by which compensation is obtained.

Mercurial pembum.-This was the invention of Mr. George Graham, a celebrated watehmaker, who subjected it to the test of experiment in the year 1721. The rod of the pendulum is made of steel, and may be either a flat bar or a cylinder. The bob or weight is formed by a cylindrical glass vessel, about 8 inches in length and 2 inches in diameter, which is filled with mercury to the depth of about $6 \frac{1}{2}$ inches. The cylinder is supported and embraced by a stimup, formed also of steel, through the top of which the lower extremity of the rod passes, and to which it is firmly fixed by a nut and serew on the end of the rod. Now the effect of an increase of temperature on this apparatus is evidently as follows: In the first place, the rodexpands, and the distance between the axis of suspension and the bottom of the stirrup is increased. In the second place, by the expansion of the mercury in the eylinder, its column is lengthened, and the distance of its centre of gravity from the bottom of the stirrup consequently increased. But, as the expansion of mercury is about sixteen times greater than that of steel, the height of the mercurial column may be so adjusted by trial that the expansion of the rod and stirrup shall be exactly compensuted by that of the mercury, and the centre of oscillation of the whole suffer no change. This pendulum is, perhaps, the most perfeet of all compensators; but, as its adjustments are attended with considerable difficulty, it is seldom used exeepting in astronomical observatories.

Gridiron peululum.-This was contrived by Mr. Harrison, the inventor of the chronometer. It consists of a frame of nine parallel bars of steel and brass, arranged as follows: The centre rod, of stecl, is fixed at the top to a eross-bar connecting the two middle brass rods, but slides freely throngh the twe tower cross-bars, and bears the bob. The remaining rods are fastened to the eross-pieces at both ends, and the uppermost cross-piece is attached to the axis of suspension. It is easy to see that the expmsion of the steel rods teuds to lengthen the pendulum, while that of the brass rods tends to shorten it; consequently, if the two expansions exactly comnteract each other, the length of the peasculum will remaiu unchanged. The relative lengths of the brass and steel burs are determined by the expansion: of
the two metal;, which are found by experiment to be, in general, nearly as 100 to 61 . If, then, the lengths of all the tive steel bars added together be 100 inches, the sum of the lengiths of the four brasy bars ought to be 61 inches. When the compensation is found on trial nut to be perfect, an adjustment is made by slifting one or more of the cross-pieces higher on the bars.

Application of the pendulum to the ditermination of the relative juree of gravit, at different places.There are two methods of determining the relative intensity of gravity by means of the pendulum. According to the first, the absolute length of the simple penduhn which nakes a certain humber of oseillations in a given time is accurately ascertained at cach of the places, and the comparative force of gravity is then given by the formula $g^{\prime}=\frac{l^{\prime}}{l} g$. According to the other method, an invariable pendu. lum is swung at the different places, and the number of its oscillations noted at each, when the relative gravity is given by the furmula $g^{\prime}=\frac{N^{\prime 2}}{\lambda^{2}} g$. Each of these methods has been fullowed in the delicate experiments which have been made for the purpose of determining the figure of the earth; but though the results of both appear to be nearly equal in point of accuracy, the latter method, on account of its affurding greater facilities in practice, is now generally adopted. See Watchmaking.

1'ENS, STEEL, manufceture of. The manufactory, at Birmingham, of Mesers. Minks, Wells, \& Co, a few years ago consinted of a small house on one side of the strect. Nuw the establishment has become an immense manufactory, giving employment to $\overline{6} 61$ hards, consuming $2 \frac{1}{2}$ tons of steel per week, turning out 35,000 gross of pens weekly, or $1,520,000$ grozs in a year.

The metul in its crude stalc.- This consists of the beet quality of cast-steel, made from Swedish iron, its granular structure dense and compact. It is in sheets $4 \frac{f}{2}$ feet long ly 18 inches wide, which shects are elipped across into lengths from $1 \frac{3}{4}$ to $4 \frac{1}{2}$ inches wille. These strips are yacked into cast metal boxes, and placed on what is technically called a meffe, or large stone oven, heated to a white heat ; there the process of annealing takes place. After twelve hours of this roasting, the strips are placed in revolving barrels, where, by the friction of metallic particles, the scales caused by the annealing and the rough edges are removed. They are now ready for the rolling-mill. The rollers consi-t of metal cylinder: revolving upur each other. A man and boy attend at each. The first introduces the strip of steel between the opposing surfaces, and the boy pulls it out considerably attenuated. From the first pair of rollers it paseses through several others, until it finally assumes the requisite tenuity. Such is the prow-ure employed, that the steel, in passing through, becomes hotter than it is sometimes convenient for unpractised hauds to touch. The strip of steel is now preciscly the thickucss of a pen, is quite tlexible, and has increa-ed in length from 15 inelies to $4 \frac{1}{2}$ feet.

It is now ready for the "cutting-ont room," where the pen first begins to assume a furm. Alung this room a number of women are seated at benches, cutting out, by the aid of hand-presses, the future pen from the ribbon of stecl. This is done with great rapidity, the average product of a good hand being 200 grose, or $2 S, 400$, per day of ten hours. Two pens are cut out of the wilth of the steel-the broad part to form the tube, and the points so cutting into each other as to leave the least possible amount of waste.

From this room the blanks are taken to be pierced. The flat blanks are placed suparately on a steel die, and, by a halfecircular action of a lever turning an upight serew, a fine tool is pressed upon the steel, and forms the delicate eentre perforation, and the side slits which give flexibulity to the pen.

All this time the metal is coft, bending in the fingers like a piece of head. It becomes necessary, however, that it should be rend orel still sufter. The pens are ensegnemtly phaced in the heated oven, and a steond time annealed. Procecling with these softened pens to the " markingrooms" upon each side and down the middle of the romin are arranged a multitule of young women wo work, eath of whom raises at weiflat by the action of the foot, amd sudtenly allows it to tall on the pen. The rapidity of this process is cyual to that of cutting out the blanke, each girl marking many thonsamde of pens in the day. When it leaves the hatel of this operator, the hack of the pen is stamped either with the name of a retail dealer at home or abroad, a mational emblem, de., accordine to the fithion.

The next proces is the raising. Lutil now the pen is that; and by being faced in a groove, mad a convex toul dropped upon it, fercing it into the grower, it is bent into it tube of the requiral shape.

 prevent the grang of a motallie shatane. 'The tir t preparatory prowes atter the pens leave the
 with lids, and heated to a white heat. They are them dratw out and suddenly thrown into a hare tank

 after the fablion whe whentee is ria tel. Tha action of the heat gradually chanese the color of tha

part of the metal, the point where the slit is made has a tendency to cohere, and so to form a good pen. The pen is simply caught up by a pair of nippers, and held on a revolving bob, and so ground.

The pens are now taken to the "slitting-room." This work is very light, for the pen is simply placed on a press, and the handle being pulled, a sharp steel tool descends, and the pens are perfect. To secure uniformity of quality, the pens are now looked over, by the points being pressed against a small piece of bone placed on the thumb, and they are then thrown into heaps according to their quality of good, bad, or indifferent. They are next rarnished with a solution of gum, and are ready for affixing to cards, or boxing, the latter mode of packing being almost nniversally adopted.

PERCUSSION. The centre of percussion is that point in a body recolving about an axis, at which, if it struck an immorable obstacle, all its motion wonk be destroyed, or it would not incline cither way

When an oscillating body vibrates with a given angular velocity, and strikes an ubstacle, the effect of the impact will be the greatest ii it be made at the centre of percussion.

For, in this ease, the obstacle reccires the whole revolving motion of the body; whereas, if the blow be struck in any other point, a part of the motion will be employed in endeavoring to continue the rotation.

If a body revolving on an axis strike an immorable olstacle at the centre of percussion, the point of suspension will not be affected by the stroke.

Pericussion-cap Machine, by Richard M. Bouton, of West Troy, New York. Fig. 3028 is a front elevation; Fig. 3029, a right-hand profile elevation; Fig. 3030, four views of the transter apparatus, full size; Fig. 3031, the star-punch, with its picker, lower die, and thimble, all in section, full size ; Fig. 3082, the forming-punch and its die, in section, full size.

This machine consists essentially of two vertical punches, of which one cuts the star or blank, of which the capsule is formed; and the other forms the capsule by compression These punches are at their upper ends attached each to its respective arm on the same end of a double-headed kever, and consequently both move at the same time; and their operations are combined in effect by mechanism, which transfers the star or blank from its punch to the forming-punch. To emable other practical mechanics to make and use my invention, I will proceed to describe its construction and operation.

A A, \&c., is the bed-plate, on which are fixed the frame of the machine and a pedestal, (not shown,) which supports the right hand end of the branch arbor C C, to which the power is applied.

B B, de., the frame of the machine, to which most of the working parts are attached.
L L, main lever, or double-headed lever, by which the punches are worked. Its long arm is, by a connecting-rod and crank-pin, connected with the crank of the crank-arbor. h / h are the short arms or double head, to which are attached
$R R^{\prime}$, the two rumers which carry the punches. 1234 are the guides through which the rumers work. These runners may be operated by cams on an arbor passing over their upper ends or through openings or offsets in the middle of their lengths. In this case the main lever and crank-arbor can be dispensed mith, and power be applied to the cam-arbor direct.

K K K , bench or shelf, projecting from the frame, on which are the die-beds F and F^{\prime}. The righthand half of this bench is elevated higher than the left-hand half of its length, in order that the stardie on this part shall be higher than the forming die on the left-hand half, and that the groore or way of the director $d d$, \&c., which rests on this part, may be on a level with the face of the forming-die V .

F, die-bed of the star-punch. This is a square abore the bench, and has a round shank passing domn into the bench, to which it is fixed by a screw from below. The star-die U has a round hollow shank passing down into this bed, and is supported by a flanch X, Fig. 3031, at its upper end, resting on the top of the die-bed. Within this shank of the star-tie is a conical steel tube or thimble $v v$, Fig. 3031, the lower end of which rests on the director and transfer slide, it reaching up to the cutting part of the star-die. Its internal diameter is exactly equal to the diameter of the star or blank, which, falling from the star-punch through it, is conducted to its proper position on the transfer. The star-punch, with its picker, die, and thimble, are seen in section, full size, in Fig. 3031.
F^{\prime}, die-bed of the forming-punch. This is round and has a shank passing down through the benel, to which it is fixed by a screw-nut on it below; through the axis of this shank, and of the forming-die, operates the elevator c. In a socket in this bed stands
V^{\prime}, the forming-die; its upper surface is on a level with the way of the director $d \mathrm{~T}^{\prime \prime \prime}$. This die is seen in section, full size, in Fig. 3032, V, as is also

Z Z ', the forming-punch, which is compound, having an outer shell z, which planishes the flanch of the capsule, and an internal or centre punch Z^{\prime} ', which forms the inside. This centre punch has a shank passing up through the axis of the shell z, and is secured by a cross-key near the bottom, or by a countersunk nut at the upper end. This arrangement, by equalizing the thickness of the several parts, allows a better temper, and consequently insures a more perfect operation and more durability.

T T'T', Fig. 3030, three views of the transfer, full size. T, slide, with lower face upward; b, the bows in which the pin i of the connecting-link l works. T' shows the plate and link in profile, and $\mathrm{T}^{\prime \prime}$ shows it in working position with the connecting-link l attached to it, slides in the way (groove) of the director d ' N . The transfer is operated by the lever or arm $t t$ applied to the pintle i. It will be seen in Figs. 3028 and 3029 that the director $d^{\prime} T^{\prime \prime \prime}$, de., with its transfer, pass through the bed F of the star-die; it passes immediately below the star-die and its thimble, in order that the star may fall from its punch throngh the thimble upon the transfer slide.

U, lig. 8031, the star-punch. This punch, with its pieker, and the star-die, with its included thimble are shown, full size, in vertical section, where q is the pieker with its spiral spring above it, and $v v$ the thimble. The ofiice of the picker is to prevent the adhesion of the stars to the face of the punch.
CC, crank-arbor, to which the power is applied. On this is the collar and flanch D D, on which is the feed-cam c, which operates the feed-lever f, and through the double hands P P', works the ratehets
$r r$ of the feel-rollers. On the oppo-ite face of this collar is the cam c^{\prime} of the elevator lever E E, whech, through the rockingrarbor E ' and arm a, raises the elevatur c, lifting the cappsule out of the furming-die; it is returned by the spiral spring sas, Fig. 30ns. Nis the anvil ou which the clevator rests while a capsule is being [ressed; it han an adjustinir serew and unt.

G (i, de., cam lewr of the tram for :

u is the gage, a cap of steel over the head of the forming-dic, with semicircular notch in its edge against which the star is driven by the transfer and held concentric with the forming-die until seized by the forming-punch.
$y y$, the driver, a slender lever suspended by its upper end thrown forward by a spring y^{\prime}; its lowes pnd is hent forward over the face of the forming-die, somewhat in form of a human foot and leg, Fig

3029. It is operated by a pin in the runner R' pressing against a tumbler, and holding it behind the punch while a capsule is being forne i , and releasing it instantly when the capsule is raised by the chevator above the gage u.
$n n$, feed-rollers. There is a similer mair behind the punch to continue the progress of the ribbon after

It has pased the front rollers. m is a lever to open and cloze the feed-rollers. All these parts are attached to a movable plate K , covering the front of the bench K , de.

Operation. -The material is cut in ribbons of such width as will admit of two rows of blanks or star being cut from each lengthrize; but the machine may be so constructed without departing from it. principles as to work from ribbons of any width.

One end of a ribbon being inserted between the feed-rollers $n n$, is by them drawn in, while a row of stars is successively cut near one edge throughont its length. When not enough surface remains for another star or trigger, (not shown, which has ridden upon its surface, drops off at the end, and by mechanical connections, stops the machine. Each star, as soon as cut, is projected liy the pieker q dowe through the thimble $v v$, Fig. 3031 , upon the face of the transfer, whels at this instant is holding a previous star against the gage u under the formine punch z^{\prime}; on its return its operatiner end passes beyont the thimble, which consequently sweeps the star deposited in it off of the tram-fer into the weay of the director, and the next stroke of the tran-fer drives it to the forminerdic while another star is being dropp I from the star punch, so that only one star is in the thimble at the same time.

While the formine-pmeh rises out of its die, the clevatore e raises the eap ate after it abmet the gage, whenee the driver y kieks it into the menth of is receiving tube, mot shown. which convers it to the reewoir. The devator wow sinks, the driver retires behind the funch, ans 1 all i char for another stur.
 hich fini han! in a state proper to receive the primin:

 what I da chan at my invention, anl teire th ceture by litters

 with the puncla.

The lower portion of the magazine is funnel-shaped, and opens into a rectangular tube in which the charge E is accurately fitted, and frecly slides back and forth.

A circular aperture is furmed in the under side of the tube at the distance of an inch or two from the magazine, exactly corresponding in size with the aperture at the bottom of the magazine, and with the aperture in the charge E .

A reciprocating movement being imparted to the charger, the aperture in the same, in passing back nud forth under the outlet of the magazine, will receive the charge of composition for a cap and will discharge the same as the charger is drawn back into a cap brought immediately under the aperture, by the movement of the wheel Λ upon its axis, in the manner hereinafter set forth.

N is the main-shaft, from which all parts of the machine receive motion. Motion is imparted to the

ratchet-wheek A and to the charger E by means of the vibrating lever C, suspended by and vibrating on the arm (z^{\prime} projecting from the end of the machine, the cam B on the main-shaft, the cord t connected to the upper end of C and passing to the rear over a loose pulley on the axle S^{\prime}, and suspending the weight 'T' at its extremity. A vertical arm Frises from the front ond of the charger \mathbf{E}, having a vertical slot near its upper end, through which passes an adjustable pin projecting from the lever C br which it is operated. A pivot at the lower extremity of the lever C takes into an aperture in the ratchet D , which communicates motion to the wheel A . The ratchet D works in the fuiding-box t, and is kept in contact with the teeth on the periphery of Λ by the spring s^{\prime}.

The cam B is of such a form that it will force back the upper enil of the lever (: and therohy wili carry formards the ratchet D and the charger E , and move the periphery of the wheel A the distance
of the lemeth of : tooth, an I in that position will retain them during one-half of the revolution of tho
 censes to press bate the upper end of $(\mathbb{C}$, and receding towards the shatt permit- the weight 'T' is draw forwards the upper end of C and carry back the matchet D and the dharger F . The chargor, in passing back to its starting place, deposits a charge in a cap, as before described. In this mamer the metallic caps placed in the series of apertures in the ratchet-wheel A receive their respective charges. The apertures in A correspond in number with the ratchet-tecth on its periphery, and are so arramed that eacla forward movement of the ratelet D will place one of the apertures in 1 directly wnler the aperture in the tube, in which the charger E traverses batk and forth, a* Defore described.

The eomporition is furced into the caps in the following mamer: On the opposite si le of the whed A trom the magazine two arms project from the standard $\Lambda^{\prime \prime}$, wheln arms embrace journals at the en Is of a vertical tube R. The tube R serves ats a guide and supporter to the shat of the punch whichs foree the composition into the caps. The shatt is compoind of two cylindrical parts, which rotate with and play frecly up and down in the tube 12 . The respective parts of the shat are connected to each other and to the tube R. ce are arms secured to the inner ends of the re-pective parts of we thatt, projecting out through rertical sluts in the sifes of the tube. The extremities of the armse are. connected to each other by the screw bolts or rols $b b$; the blank portion of the bults play frecly in the apertures in the armi c through which they pass.
A stiff and powerful helical spriner embraces the middle portion of the tube l, the enls of which bear arginst the arms $c c$ within the bolts $b b$. A ring a lonsely encireles the lower end of tube \mathbb{R}; !" is a helical spring encircling the lower end of the tube between the lower supporting arm and the ring is. which, acting against the luwer arm c, forces up the punclu-shaft.

A rotary motion is imparted to the tube I and the punch by means of the bevel pinion, made fint to the uppre ent of R , and workine into a bevel eog-wheed O on the man-shalt. The pumeh is of such at shape ats to fit accurately into the caps: the wheel A in depth exactly corresponds with the depth ot the eaps; the wheel A revolves upon a journal y^{\prime} made fast to the platform, anl pas-ing up, throurh it, centre. The edge of the wheel immediately under the punch passes over and slightly rests upun the surfice of a metallic block.
is is it cam on the main-shaft, immediately over the shaft of the punch: the eam S is of such a form that it will press down and hase a contmuns action upro the punch during about three-fisurtho the the revolution of the main-shaft. The cam strikes against the upper end of the purch-shaft, and forees down the sune, pres-inr the punch with great foree into a cap, immediatuly after the cam B hats ated on the lever $($, the ratchet 1 , the charger E , and wheel A , as before describel; during the time that the punch is pressed upon the composition in a cap, four revolutions, more or lesa, are imparted th the punch by me:ns of the guiding-tube I , the pinion P , and eng-whe I U , whidh perfects the solidification of the composition, and gives it the requisite athesion to the caps.

Durimg the action of the punch the ratehet D and the charger E arre drann back hy the le ver C and Weight ' I^{\prime}, and immediately thereafter the form of the cam S allows the spring y, on the luwer pristinn of $R, t n$ elevate the punch out of the cap, and retain it in an devated positoon while the cam 13 :and lever \mathcal{C} again operate upon the ratehet D, charger \mathcal{B}, and wheel Λ, ats lefure tescribed. It will be perceivel that the presure exerted upon the upper portion of the punch-whft is commmicated th the lower portion of the same and to the punch through the mediun of the spring. The ohject of this arrangenent is to give an clantic bearing of the punch upon the composition in the eap, ou that should it explode from any cause the pench em yich and give back, and mo injury will be dome the mat chine or attendant.

 the eap, from turnime whate the pmel is uperating: the ean 'T' alsw retains the arhe uphe the fhath of the capt till the purch is clesated, and then allows the retaining am to be chevatul liy the epring encircling \mathbb{C}, to allow motion to bor inparted to the wheel.

The caps are chown ont of the apertures in the whed A after the copenation of darerine he fore

 remptimld

same; the feeding hand on the front end of the arm I is then placed upon them, and draws thers down the groove matil the formost one is caught between the scolloped edged whols $n n$, located on each side of and projecting into the groove. The concavities in the peripheries of $n n$ are ares corresponding with the tubes of the caps, and embrace nearly their entire circumference when the caps are drawn between them. One of the wheels n phays freely on its axis; the points radiating from the other wheel n are operated upon by a retaining spring. The spring partially retains the wheel n, on which it acts. As the caps are drawn down the groove, should the foremost one strike against a radiating point of the loose wheel n, it will revolve the same sufficiently to bring the cap between opposite concavities of both wheels. The elastic feeding-finger, connected to the front end of the arm J, is so operated that it is placed in a cap while it (the cap) is retained between the wheels $n n$, and draws it forwards and deposits it in an aperture in the wheel A. As the cap is drawn from between the wheels $n n$. it causes a partial revolution of the wheels; the spring passes over a radiating point in one of the wheels, and, striking on the next point in succession, retains the wheel in the proper position for the reception of another cap.

The teeding-hand on the front end of the arm I has a soft face that rests but slightly. upon the flanches of the caps; the front end of the arm I, when the hand is acting upon the caps, rests upon the roller which traverses upon the edges of the groove. The feeding-finger passes through an aperture and is secured to the spring-plate projecting from the under side of the front end of the arm J; it is steadied and kept in a vertical position by passing loosely through the plate projecting from the upper side of the front end of J, and to give additional elasticity to the finger it :s inclosed in a helical spring. The arms I and J are jointed to and receive motion from the upright vibrating levers $I^{\prime} \mathrm{J}^{\prime}$; the levers $\mathrm{I}^{\prime} \mathrm{J}^{\prime}$ are jointed to and suspended by the curved standard K ; the standard K^{\prime} rises from the rear side of the platform, curves forwards over the centre of wheel A , and descends vertically to the top of the axle g, to which it is connected. 'To the upper ends of the levers I' J' the cords $s s$ are connected, which pass to the rear over loose pulleys on the axle S^{\prime}, and suspend the weights $\mathrm{U}^{\prime} \mathrm{U}^{\prime}$ at their extremities: causing the upper end of I^{\prime} to bear against the cam L, and the upper end of J^{\prime} to bear against the cam MI on the main-shaft.

If is a vertical vibrating-lever, placed in the guiding-box u^{\prime}, and working on a joint-pin passing through the sides of the same.

Angular arms f and g project from the upper portion of H; the angular extremity of f passes to the right over the arms I J, the extremity of g passes to the right under the arms IJ. G is a horizontal Tibrating-lever jointed to the standard e^{\prime}. The end of G , to the right of the standard e^{\prime}, passes immediately in front of the lower cord of the lever II; the opposite end of G turns at right angles to the rear, and is brought directly opposite and in contact with the head of the ratchet D.

When the ratchet D is drawn back by the lever C, it vibrates the lever G, causing it to throw back the upper end of H, and thereby to elevate the front ends of the arms IJ by the arm g at the moment that the arms I J are elevated. The form and position of the cams L II permit the weights $\mathrm{U}^{\prime} \mathrm{U}^{\prime}$ to draw the upper ends of the levers $\mathrm{I}^{\prime} \mathrm{J}^{\prime}$ to the rear, and carry the arms I J forwards; the moment the ratchet D is carried forwards again, the arms I J descend, placing the hand h upon the flanches of the caps in the groove P^{\prime}, and the finger k in the cap held between the concavities of the wheels $n n$, as before described. Λ s soon as the arms IJ descend, the cams LM commence acting upon the levers $I^{\prime} \mathrm{J}^{\prime}$ and arms I J, causing the hand to carry forward the caps in the groove, and the finger to place a cap in an aperture in the wheel A, as before described. The moment atter the finger has deposited a cap in an aperture in A, the arms I J are again elevated and carried to the front in the mamer before described.
'The rotating brush $[\overline{1}$ ' is driven by the band passing around a pulley on the main-shaft N. The rotating brush in the rear portion of the machine acts upon the upper surface of the wheel A near its periphery, for the purpose of remoring any of the percussion composition that may chance to be deposited upon the wheel or flanches of the caps. "This brush is driven by a band passing around a pulley on the main-shaft.

PERPETUAL MOTION. In mechanies, a machine which, when set in motion, would continue to move forever, or, at least, until destroyed by the friction of its parts, without the aid of any exterior cause. The discovery of the perpetual motion has always been a celebrated problem in mechanies, on which many ingenious, though in general ill-instructed, persons have consumed their time; but all the labor bestowed on it has proved abortive. In fact, the impossibility of its existence has been fully de monstrated from the known laws of matter.

In speaking of the perpetual motion, it is to be understood that from among the forces by which motion may be produced we are to exclude not only air and water, hut other matural agents, as leat, atmospheric changes, \&c. The only admissible agents are the inertia of matter, and its attractive forces, which may all be considered of the same kind as gravitation.

It is an admitted principle in philosophy that action and reaction are equal, and that, when motion is communieated from one body to another, the first loses just as much as is gained by the second. but every moving body is continually retarded by two passive forces, the resistance of the air and friction. In order, therefore, that motion may be continued without diminution, one of two things is necessary cither that it be maintained by an exterior force, (in which case it would cease to be what we understand by a perpetual motion,) or that the resistance of the air and friction be amililated, which is physically impossible. The motion camot be perpetuated till these retarding forces are compensated, und they can only be compensated by an exterior foree; for the force communicated to any body cannot be greater than the generating force, and this is only sufficient to continue the same quantity of motion when there is no resistance. To find the perpetual motion is, therefore, a proposition equiralent to this-to find a force (either an attractive force like that of gravitation or magnetism, or atn clastic force, that of a spring, for example) greater than itself.

But it may be argued that, by some arrangement or combination of mechanical powers, a force may
ne gained equal to that which is lost in cwercoming frirtion and atmorperic rev-tavec. Thas motion at first mention appears phan-ible, and is, in fact, that by which most spectators have been leal a-tray: It is, however, entirely erroneous; for by no multipliention of furces or powers by mechanical agents can the quantity of notion be increased. Whatever is gained in purrer is lost in time ; the quantity of motion transmited by the machine remains maltered.

PEIESLAN WHEEL. In mechanics, a contrivance for raisins water to some height above the level of a stream. In the rim of a wheel turned by the strean a rumber of strong pins are dixeld, froma which buckets are su-pended. As the wheel turns, the buekets on one side go down into the tream, where they are filled, and return up full on the other side till they reach the top. Ifere an obstacle is phaced in such a position that the buckets successively strike against it and are overset, and the water emptied into a trough. A s the water can never be raised by this means higher than the dhameter of the wheel, it is obvious that this rude nachine is capable of only a very limited application. Sometimes the wheel is hade to raise the water only to the heighte of the axis. In this citse, intead of buckets, the spokes are made hollow, and bent into such a form that when they dip into the water it runs into them, and is thus conveyed to a box on the axle, whence it is cmptied into a cistern. Such wheels are in common use on the banks of the Nile, and elsewhere.

PIIOTOGRAPIY. Plotograplyy, or sumpainting, is disided, according to the methods used to pror duce the picture, viz.-Dagucrreotype, C'ulotype, Chrysotype, C'yanotype, Chromaiupe, Einorgiatype, Airthotupe, and Amplitype.

The principal instrument used in the Daguerveotype process is the camera obscura, and the images from the lenses are thrown on prepared metal or other surfaces and tixed. The processes for the retention of the picture belong rather to chemical than mechanical science. This art is frequently employe 1 by mechanics and architects in making copics of drawings. Sce Cycloredla of Drawing.

FIIOTOMETER. An instrument for measuring the mtensity of light, or of illumination.
PILEDRIVER-Fasmyth's patent stcan. This is a machine of great power, and one destined undoubtedly to take a prominent place among the improvements of the age.

Fig. 3034 is a front elevation of the entire machine, shown in full operation driving a pile.
Fig. 3035 is a corresponding general side elevation.
Fis. 3036 is a general sectional plan of the machine.
Fig. 3037 is a transverse section of the stage or plat form, taken on the line 1- 2 , in Fig. 3086.
Fig. 3038, an enlarged elevation of the steam-chest and safety-valve geer.
Fig. 3039, a section corresponding to the above.
Fig. 3040 is an enlarged section of one of the joints of the fle xible stean-pipes, for conveyint steam to the hammer-cylinder.

Fig. 3041, a plan corresponding to the above.
Fig. 3042, a sectional elevation of the hammer-cylinder and pile-case with all their appendaras. In this view the hammer is supposed to have just effected a blow upon the head of the pile, and the various parts of the valve-geer are represented in the positions they oceupy at the commencement of a fresh struke.

Fis. 3013, a front view of the lammer-cylinder and pile-ease, with their various attachments.
Fig. 30t1, a sectional clevation of the same parts as are represented in Fig. 3042, with the driviz: apparatus and valve-geer shown in the positions they ocenpy when the hammer is ahout to fall.

Figs. 3015 and 3016 , enlarged views of the trigger and parallel motion of the valve-geer detached. these views are drawn to a scale of twice the size of the other tigures.

Pis. 3017 is a section of the hammer-block and hammer.
Firs. 3018 is a sectional plan of the pile-ease, taken on the line 3-1, in Fig. 3018.
Fij, 30-19, a sectional plan of the pile-cave and hammer-block, taken on the line $5-6$, in Fg . Bote
Gencral description.-There are two important features of novelty which serve to distin rui-h the datent Steam Pile-Driving Engine from all such as had previously ben emphoy for the same purpuse. Theee con-i-t: First, in the direct manner in which the stean is employed as the arent by whels the block of iron which strikes the lead of the pile is raieed to the required height ; and, Fecondly, in the peculiar mode in which the pile, while being driven into the gromen, is cmployed to surport that part of the apparatus which is directly concerned in drivine or forcine it into the scil-ther appara-
 chanery khall follow down with it until it hat reached the repuired depth.

 and preci-ion, so that no one shall twist or swerve in the shighest denree from the geamal lime or from
 withont any sacritice of power from the friction of hamb, or other nphlianes u-nally emphoyed for that

 pmated in forcing it further intes the wit.

sions and weight to give the requisite stability and firmness to the entire structure, and to afford rom for the steam-boiler, the workmen, and all that is necessary for the accomplishment of the proposed object. The great vertical guide-pole C C, on which the driving apparatus slides, is securely bolted te. one side of the platform, the boiler being situated towards the opposite side, to counterbalance thu weight of the former, and to afford an abutment for the diagonal timber supports D D, firmly bound ts both by plates of iron and numerous bolts; the entire frame work of the machine is further secured by the four adjustable tie-rods or stays $b 6 b b$, attached to the four corners of the stage and to the top it

the upright. This latter is surmounted by a cast-iron socket-frame, supperting the trackets E E , which carry a chain-pulley, over which works the great chain $c c$, one end of which is passed round a barrel worked by a small steam-engine, as will be hereafter described, while the other end is attached to, and sustains the weight of, the pile-driving apparatus.

This consists of a stem-eylinder F , with all the necessary appendages of piston, valyes, \&ec, as will be more particularly specified below ; the lower flange of the cylinder is firmly bolted to the pirt-case

G G, which is a species of rectangular fox of a square section, con-truted of phates of wromphtiron,
 casc sirve to guide the lammer-hlock in its vertisal mution, and it is it-alf gride 1 alort the ereat upribht C Cl, he the pieces del, whieh are fittel to emhtrace the projecting slijs of iron ece, bulted to the front of the upright throughont its entire lenerlh. The low em ent of the pile eave is ripen, 10 adn it the head of the pile, and is furni-hed with cartiron jaws or reting picce-ff eec Firs. :010 and 3011.) bolted to its interior surfaces; these are so formed as to rest ump the shoulters of the pite It, whith, if we sumpre the great chain-larrel to be left free to revolve, thus beconte the shle sump for the weighe of the whole mase of the driving apparatus. Diy these arrargensents it will be scenthat a- the pile is, ly succe-ive :tep: firced into the gromd by the action of the hammer, (the chan larral han, thrown out of geer with its driving aparatus during the procese, the pile-ca-e with all its a malace weienting about three tons, is left at perfect liberty to bear upon the shouklers of the pile, and billuw down alung with it, while at the same time, and by the same means, the pile itecle is suid a in to a -trictly virtical and true course

lar in the details of its construetion to those of the direct action steam-hammer. For fuller information on these points, see Steam-Haymer.
F is the steam-eylinder, within which the power necessary for raising the hammer to the required elevation (three feet) is generated.

L, the steam-valre chest, bolted to the lower side of the cylinder, within which the valve k is fitted to work upon a face cast with the cylinder. The steam, after having accomplished its work, is permitted to escape into the atmosphere by an oblong aperture l, formed in the cylinder-face; and, to obriate the rist of aceident from the piston rising too high, a number of small round holes $m \mathrm{~m}$ are formed near

the top of the cylinder, so that the steam may blow ont intu the air when the piston "ises abore their edges. It may here be remarked that the efficacy of the blows of the hammer. and the security from: damage to the parts of the machinery, are in this case, as in that of the stean forge-hammer, materially nugmented by the recoil of the air or steam inclosed above the piston.

M, the piston, formed of wrought-iron, and fitted with a single packing-ring.
N the piston-rod, hariug a cylindrical bos or enlargement n, at its lowe: extremity, for the purpose
of affording means for securing a slightly elastic comnection, by hard-wool wa-hers, betwech the joitunrod and hammer-block.

O, the hammer-block, consisting of a rectangular mas of cast-iron, weishing 80 cwt , adapted to slide freely but withont much play, within the pile-case GG. It is furnishel with shatable reces-es for the securing of the hammer, piston-rod, de., and for enabling it to rise clear of the cylinder stuffing-bux; and at its upper extremity a recess in the form of a species of inclined plane $0^{\prime \prime}$, is provided, the the parpoie of acting upon the valvelever so as to permit the cecape of the steam, after it has rateal the framer tu a sufficient height.
P, the hammer : a cylindrical block of cast-iron, furmed with a slightly concave face, fitted into the hammor-block, and fistened thereto by a wroughtiron key o, which at the sane tinee forves to secure the connection of the piston-rod.
(2, the latel-lever working in a recess in the hammer-bluck, (ece Fig. 8049.) The action of this part of the apparatus is fully described in the account of the steam-hammer.
p, a small solid piston working in a cylindrical part of the valve-chest, and attachen to the valve by a -hort comectingrod. Its under surface is constantly acted upon by the pressure of the steam within the valvechest, so as to cause the steam-valve to assume the position indicated in Firg 301 , unless counteracted by a superior force.
I, the valve-xpindle, produce 1 downwards and worting in statabic bearings, so as to bring it under the action of the trigger at the temmation of the struke.

 ahni-a se of than inte the cylinder durine the deveent of the hamer bleck.
t, the parallel har, again-t ibhich the latch-here acts at the termination of the streke, for the purpose
 troke.

attend:nt to throw the small chain-barel into geer with the driving apparatus or disengage it at pleasure ; the remaining details of this part of the prosess will be fully understood ly reference to Fig. 303., where a. pile H' is shown suspended from the chain d, ready to come under the action of the driving machmery. To adjust the pile-case orer the head of the pile at the commencement of the driving, it is of course necessary that one or two men should be raised to the summit of the machine. A rope c^{\prime} passed over a pulley at the top of the great upright, and wound round the barrel of a winch U , serves to accompli=h this object.

The locomotive geer is exceedingly simple, anl will be at once understond by referring to Figs. 8051 and 3037. A berel-wheel f^{\prime}, fixed to the outer end of the shaft T, geers with another of equal diameter working loose upon the shaft V , to which a pair of the locomotive wheels a os are fixed. When it is required to move the platform, with its superincumbent machinery, along the line of rails, a slidingcluteh g^{\prime} is thrown into geer with the last-mentioned bevel-wheel, and is disengaged when the machine has arrived at the desirel position.

Action of the machine.-The pile having been raised by means of the hoisting apparatus, and its point having been set into the proper position, the pile-case $G G$, with its attached machinery, is lowered down over the head by reversing the small engine R , so that the jaws ff rest upon the shoulders of the pile, which sinks down into the ground by the effect of the superincumbent weight, till it has reached soil sufficiently firm to support it ; this is indicated by the chain co becoming slack. The pinion y is then thrown out of geer, and the steam is admitted into the driving-eylinder F by turning the handle i. The hammer-block O is by this means raised till the inclined plane $o^{\prime} o^{\prime \prime}$, coming in contact with the end of the valve-lerer r, causes the valve k to assume the position represented in Fig. 3014. The steam which had served to raise the hammer is thas allowed to blow out into the air, and the hammer descends and discharges its momentum in the form of an energetic blow upon the head of the pile. During the descent of the hammer-block, the stean-valve is retained in its proper position by the action of the trigger s, but by the effect of the concussion upon the head of the pile, the valve-spindle is released from contact with the trigger, and the steam-ralre assumes the position indicated in Fig. 3042, in which circumstances the stean is allowed to act freely under the piston, for the purpose of again raising the hammer.

Such is the rapidity with which these various movements and functions of the driving apparatus are accompli-hed, that the machine may be casily made to perform 80 strokes per minute. Some idea may be formed of the vast efficiency of this system of driving piles, when it is stated that, in ordinary ground, piles of $1 t$ inches square are driven at the rate of upwards of 10 feet per iminute !

At the conclusion of the driving of each pile, the action of the hammer is arrested by turning the handle i, which cuts off the supply of steam. The great chain-barrel pinion is then thrown into geer with the wheel on the barrel-shatt, and the small engine R is started, which rapidly raises the apparatus off the head of the pile to the top of the great guide-pole C. In the mean time the locomotive action is applied, and the machine brought opposite the next pile, when the process just described is repeated.

PILE-DRIVING MACHINE-THE AMERICAN STEAM. The following is a description of the American steam pile-driving machine, and the operations for which it is applicable.

The machine consists of two pair of leaders, similar to the common hand machine, placed 6 feet from centre to centre, and firmly bolted to a strong horizontal framing, and supported by two oblique ladders. The frame is 9 feet wide to the outside of the framing, and 28 feet long; it carries at one end a locomotire boiler 11 feet long and 2 ft . 6 in . diameter, calculated to bear 120 lb . per square incl pressure, but generally worked at 80 lb . per square inch, and about 100 strokes per minute. Under the boiler is placed the supply cistern. In the centre of the framing, and on each side of the boiler, is a pair of inclined cylinders $5 \frac{1}{2}$ inch bore, with solid pistons working well without packing, and 14 inch stroke, which act oa right-angled cranks, and the geering, drums, icc., described in the motions of the machine; the shaft centres are $1^{\prime} 3^{\prime \prime}$ apart, the spur-wheel has 56 and the pinion 19 tecth; bevels 101 and 40 tecth; saw-pulley $1^{\prime} 9^{\prime \prime}$ and $10 \frac{1}{2}$ inches diameter. The ram is generally raised from 4 to 5 times a minute, the steam being at 80 lh . per square inch.

For river work the machine is made much more compact, the apparatus is placed on each side and over the boiler, so that the stage is little more than half the length of the machine shown in the engraving, and it is also sometimes made with an apparatus for driving one pile only, consequently requiring smaller power.

In the drawing, Fig. 8050 is a side clevation of the machine; Fig. 3051 elevation in front of leaders, showing saw, de.; lig. 5052 a section taken in front of geering, de.; Fig. 3053 a plan of geering end with leaders and ladders removed, and showing saw in plan; similar letters refer to similar parts in each figure.

Tuking up the pilc.-The ran A being secured by placing the stop B under it, ly means of the small ropes altached to the latter, and passing orer the small pulleys C C , to within three feet of the stage. The dogs 1) are made fast to the pile, Fig. 3052, the rope attacher to which passes upwards through the small guide-pulleys and over the outer pulley E, passes downwards and is coiled round the pulley Fixed on the shaft G, which being made to revolve raises the pile to its place between the leaders, and is then secured by the loose stay II and the iron work IH' placed round it for guiding it perpendicularly.

Jricing the pile.-The stop i; being withdrawn from under the ram Λ, the ram is raised by a rope, which, being secured to a staple on the top journal, passes down under the pulley I, then upwards over the pulley Ki, and ngain downwards to the drum I_{2}, upon which the rope is coiled. The drum is plateed o: the shaft G, which is made to revolve by the spur-wheel N working in the pinion O on the lower shaft I', which shaft revolves by the action of two cranks Q, Figa. 3050 and 3052 , placed on each end of the shaft P ; the cranks are set at right angles to each other, and are worked by the connecting-rods I attached to the piston-rods, which are fumined with slide parallele, as shown in Fig. 3050. The slidevalves of the piston are worked by the eccentric V on the end of the shaft P. Steam is supplied to the eylinder hy the pipe S from the hoiler T ; the boiler is supplied with water from the cistern M, Fig. 050 , by the pump W, which is werked by the eccentric rod X fixed on the spur nare at Y, or by
the handle at Z; the supply of stem is regulate lly the handle a acting en a valre in the steam-pipe S. The drum L, consi-tiof if fixed and a looze cerlin ler, the latter revolving by the frictin of the former, (fixed, and is brought into or out of contact by the han l-lever I, fis. 80.51 an $1: 3053$, which hat a fulcrum attached to the standiurl.

The follower $t^{\prime \prime}$ is furni-hel with a pair of tungs or clippers, which take hal of a taple fixe 1 on the ram and carries it to the top of the frame; then, when the tep of the tones is pressul clower together by coming between the emtractel cherks $e^{\prime} e^{\prime}$, the luwer 1 art opros and allows the ram whatl.

For working the apparatus, the engine-temder stands at the valve s, and a man at the lever y of ea h machine. Fur rai iny the ram the man turns on the steam at the valve κ, which ets in motion the apparatus of exch machine, coils the rope romd the droms, and, at the came time, rain- the ram; as som as the latter reaches the top of the leaders, the ram is detached and deeenk; at the same moment the engine-tender turns of the steam, and the men at the levers y throw the drunt at at feer, which allows the clippers and chain to descend again and lay hold of the ram, when the drum is again thrown into geer, the stean turned on, and the ram again raised, and so the operation is comemmed until the pile is driven.

Iraring a pile. - Chain tackle is secured to the pile and passud over the top palley to the drum I_{4} and is then dramn by applying the power to turn the drum of the apparatus.

 the pulleys i amd j and hand $/$ which work the aw h. The operation of saw ing oft the emb of a gil takea leas than at mimnto.

Vi11. II.-31

For the steam machine it requires to work the engine and apparatus for driving two piles at one time, with a ram weighing 16 ewt., the following men: an engine-tender, one man for throwing each apparatus in and out of geer, and one man to attend to each pile, making altogether five men for driving two piles For the ordinary machine it requires four men to work the crab-engine for lifting a ram of the same

weight, and one man to attend to the driving of the pile, making five men for each pile, or 10 men for two piles. With the steam machine the ram is lifted four or five times in a minute, thereby the operation of driving the pile is very short in comparison with the ordinary machine. The cost of the steam machine, with an engine of ten horse-power, tubular boiler and apparatus, is about $\$ 3500$, and the cost of the ordinary pile-driving machine, with crab-engine, is about $\S 350$.

PILING MACHINE. Fig. 3054 represents the side eleration, Fig. 3055 the front elevation, Fig 8056 the plan, and Fig. 3057 a section of a pile-driver used at the construction of the Dry Dock, Bronk

lyn Navy Yard, drawn to a sca? of S fect to an inch. Fig. 3085 is a plan of the hammer, weighing 4050 pounds.
Figs. 3061,3059 , and 3060 are plan, clevation, and section of the nippers.
Fig. 3062, plan and elevation of head-pulley.
These machines were operated by steam; the fall passing throngh the leading-blocks to the drum o: a steam engine.
PILE, SCREI AND SCREW MOORING. To Alexander Mitehell, Esq., of Belfast, Ireland, the profession is indebted for this disenvery, by means of which we are now able to construct permanent foundations in deep water, on shoals of sand, mud, clay, or gravel, or in fact on any bottom, excepting solid rock, and to moor shipping of the largest class with a degree of sceurity never before attained.

The plan which appeared best adapted for obtaining a firm hold of soft ground or sand, was to insert to a considerable distance beneath the surface a bar of iron, fig. 3063 , having at its lower extremity a broad plate, or disk of metal, in a spiral or helical form, on the principle of the screw, in order that it should enter the ground with facility, thrusting aside any obstacles to its descent, without materially disturbing the texture of the strata it passed through, and that it should at the same time offer an extended base, either for resisting downward pressure, or an upward strain.

Whether this broad spiral flange, or "ground-screw," as it may be termed, be applied to the foot of a pile to support a superincumbent weight, or be employed as a mooring to resist an upward strain, ita holding power entirely depends upon the area of its disk, the nature of the gronnd into which it in inserted, and the depth to which it is foreed beneath the surface.

The proper area of the screw should, in every case, be determined by the nature of the gromer in
rihich it is to be placed, and which must he ascertained by previous experiment. The largest size nitherto used has been 4 feet in diameter ; but within certain sizes, prescribed by the facility of manafacturing them, the dimensions may be extended to meet any case, anl may be said to be limited only by the power availalle for foreing them into the ground.
Either the screw-pile or the screw-mooring can be employed in every description of ground, harl rock alone excepterl f for its helical form enables it to force its way among stonec, and even to thrust aside medium-sized boulders. In ports, larbors, estuaries, and roadsteads, rock is, however, sehom met with, except in detached masses, the ground being nsually an accumulation of alluvial deposit, which is well adapted for the reception of such foundations, and is also that in whieh they are generally most reqnired.
The ground-screw has been already extensively used for several purposes, and its applicability to many others will be erident from a succinct account of its present employment.
The fixed or permanent moorings at present most commonly used are of two kinds-the span-chain mooring, and the sinker, or mooring-block.
The former of these consists of a strong chain of considerable length, stretched alone the ground (across the river), and retained by heavy anchors, or mooring blocks, at cither end, and to the middle of the ground-chain the buoy-chain is slaackled.

The other kind. which is more generally employed, consists of a heavy sinker, to which a strong chain is attached, extending to a buoy shackled at the other end (fig. 306t). This sinker, which is a block of stone or iron, is either laid upon the surface of the ground, or is placed in an excavation prepared for its reception. As a simple, effective, and at the same time an inexpensive mode of holding the buoyclain down, Mr. Mitchell adopted a modifieation of the serew-pile, fig 306.5, beeause it offers great facilities for entering the ground, and when arrived at the required depth, it evidently afforls greater holding power than any other form.

Wery description of earth is more or les adhesive, and the greater its tenacity, the larger must be the portion disturbed, befure the mooring can be displaced by any direct forec. The mase of gronnt thus affected, in the case of the serew-mooring, is in the form of a frustrum of a cone, inverted; that is, with its base at the surfuce, the brealth of the base being in proportion to the tenacity of the groumd; this is pressed on by a cylinder of water equal to its diameter, the axis of which is its depth, and the water again bears the weight of a column of air of the diameter of the cylinder.

It is crident, therefore, that if a cast iron serew, of a given area, be forced into the earth to a certain depth, it must afford a firm point of attachment for a buoy-chain in every direction (fiz. sofij), ant wili oppose a powerful resistance, even to a vertical strain, which generally lures fatal to sinker moorings, depending (as they do) chiefly on their specific gravity.

The first trials were upon a comparatively small seale; but their success was so decisive that the merits of the mooringr, were acknowledged, and their use soon became extended.

The depth to which these moorings have been serewed varies from 8 to 18 feet; the former is deep enough where the soil is of a firm and unyielding description, and the lateer depth is found to give sufficient tirmness in a very weak bottom. It is evident from its form, that every part of the serew-mooring is so far beneath the surface, as to prevent a vessel from receivinf injury from grounding immediately above it, the mooring chain alone protruding from the ground; and it is also obvions that anchors, dropped in the neighborhood, cannot be hooked into or get foul of the chain, one end alone being attached to the ground.

- In fixing theee moorings in the ports and harbors where they have been used, the persons hitherto engrged in the operation lave been generally compelled to avail themselves of any means within their reach, for the construction of a floatimg stage, or platform, on which the men could execute the work. Barges, lighters, and pontoons have been thercfore indifterently employed; those that were without decks being plankel over for the purpose. 'Two such vessels being lashed brombide to each other, with a "ertain space between them, are securely moorel over the spot, mod the serew-mouring luwered, with tho chain attached to the shatckle, from the centre of the stare, to the level of the water, and as it descembs to the bottom the lengths of the apmarates fir serewing it into the ground are suce sively attached.

power. It consisted of a jointed rod 30 feet long, and $1 \frac{1}{4}$ inch in diameter, having at its foot a spiral flange of 6 inches diameter. It was moved round by means of cross levers, keyed upou the boring-rod and upon these levers, when the screw was turned to the depth of 27 feet, a few boards were laid, form ing a platform sufficiently large to support twelve men. A bar was then driven into the bank at some distance, its top being brought to the same level as that of the boring-rod. Twelve men were the placed upon the platform to ascertain if their weight, together with the apparatus, in all about one ton sufficed to depress the screw. After some time the men were removed, and the level was again applied but no sensible depression of the screw could be observed.

The inference from it was, that if a screw of 6 inches in diameter could support one ton, one of 4 feet diameter was capable of supporting at least 64 tons, the comparative area of their surfaces being as the square of their diameters; but this experiment was nothing more than an approximation to the truth, a continuous surface possessing a much greater sustaining power than the same area in detached portions.

In fixing the foundation piles for the Maplin Sand Lighthouse, a raft of 36 feet square was used as a stage, or platform, upon which the men worked, as barges would have been too high from the surface, and "it was necessary to ground the raft itself," before the piles could be screwed down to the required depth, their heads being only a short distance above the bank. The raft was constructed of balks of American timber bolted together, leaving an aperture of two feet in width from one side to the centre, by which the pile was brought to its position.

A screw-pile lighthouse of iron has been constructed on the Brandywine Shoal, in Delaware Bay, under the orders of the Bureau of Topographical Engineers. This work being very much exposed to the action of fields of drift ice during the winter months, it was deemed prudent to protect it by an exterior work that should serve as an ice-fender : this consists of 30 screw-piles of wrought-iron of 5 inches diameter. These 30 piles are placed in symmetrical order, so as to form an oblong hexagon, 75 feet on the largest diameter, and 45 feet on the shorter. The piles are framed together at their heads by ties of δ-inch round iron, keyed into cast-irou sleeves fitted to the pile-heads. A similar system of ties connects the piles at the plane of low water. The nine piles that form the foundation of the lighthouse are inclosed in this system, which has been found, during a series of winters, a most effectual protection against the heaviest drifts of field-iceno injury whatever having thus far been sustained by any part of the work.

Under the same Bureau, a screw-pile lighthouse of great size has been commenced on the Florida Reefs at Sand Key, and the foundation already completed. This work is quite peculiar, and has many novel features. The principal one is, however, the modification of the form of the screw, into something like a screw auger, enabling the engineer thereby to penetrate through solid masses of coral, of which these reefs are entirely composed. This invention enables the government to erect a chain of lights along the whole reef (upwards of 250 miles long), and right on the edge of the Gulf stream.
Previously it was thought impracticable to locate any permanent structure on these reefs, as in hurricane seasons they are deeply submerged, and exposed to a tremendous sea from the Gulf stream. By means of the screw-pile, as modified for this locality, all dilficulties are now surmounted, and it is supposed that within a few years the whole reef will be illuminated, and rendered safely narigable.
The superintendent of the United States Coast Survey has adopted this modified screw-pile to establish, on the Florida Reefs, his marks of triangulation, the old form of tripod being annually washed away, and their replacement attended with a great expense. To the screw is attached a tube of cast-iron 8 fess long; by means of this tube, which takes the place of the ordinary pile, the screw is inserted into the reef 4 or \% feet deep. A long signal pole, with a cone or ball on top, is then inserted in the iron tube, and will stand erect during the heaviest storms. The number of wrecks on these reefs has greatly dininished since the operations of the Coast Survey were commenced.

Three beacons have been erected by Mitchell \& Son for the Dublin Ballast Board, on the Kish Bank, the Arklow Bank, and the Blackwater Bank, which are parts of the same shoal. These have all bee
put down with the intention of placing lichthouses on their sites, should thes appear eventually to suffer no change by the action of the sea. All these beacons are similar in furm and principle (itg. 306s) each consisting of a single pile of wrought-iron in two joints, connected by a strong serew-coupling and measuring, when together, $G 3$ feet in length; their diameter at the surface of the groun $\mathcal{A} S$ inches, diminishing from thence both up and down.

The incompressible nature of the sand offering considerable opposition to the de-cent of the pile, screws of only 2 feet in diameter were used, and on the top of each pile, when fixed, a ball was placed of 3 feet 6 inche; diameter. The screws used for the Blackwater and the Arklow beacons were forged of malleable iron, and tumed in the lathe, at great expense; but that will probably never again be necessary, as they can generally be quite as well made of cast-iron, and at much less cost.

One of these beacons was fixed in June, 1843 , the other two in the sunmer of 1846 , and are atl standing, though two of them diverge considerably from the perpendicular, having been frequenty struck by vessels in heary weather.

The engineer of the Great Portland Breakwater, which the British government have ordered to be constructed as a harbor of refuge for the Channel flects, has applied the screw-pile in a novel and eliicient manner. On the axial line of the breakwater a viaduct of screw-piles is crected, bearing a railway, which extends inland to the quarrics, and is prolonged seaward as fast as the growth of the work requires. The stone of which the breakwater is to consist is thus brought direct from the quarry by rail, to the site, and there dumped into the water. The screw-pile viaduct is of course buricd up in the mass of the breakwater; but an enormous saving has been effected by this arrangement, when compared with that pursued at the Plynouth Works. An extensive railway viaduct was erected on serew-piles over the tens of Linconshire in 1849 , by Mr. W. Cubitt, and other similar structures are now in progress.

Messrs. Ransomes and May (of Ipswich, England) have constructed several kinds of cast-iron screwpoints, shown in firz. $3069,5070,3071$, and 3072 .

Fig. 3069 shows the largest size, weighing ewt. 3 qrs. 14 lbs , adapted for whole timber piles. which are often so splintered and shattered, and even set on fire, by the rapid blows of the steam pile-driver, when traversing compact ground, and where wrought-iron shoes are generally crubhed into the timber even in ordinary ground, with the force of the common pile-engine. The small screw-point opens the way for the conical part, and the larger screw not only draws the pile domn, but, when it has penetrated to a sufficient depth, affords an extended brise for preventing further depression. Thus several feet of timber must be saved, and the general length of the pile can be reduced, as it will bear a greater weight and offer a more solid base when introduced to a less distance, than when it re-ts upon the ordinary sharp, wrought-iron peinted shoe.

The cast-iron screw socket-points, fig. 8069, have recently been very successfurly applied for the sup purting posts or columns of timber-sheds and buildings for railway stations and other purposes.

Fig. 3072 shows the applicability to smallerobjects, and a tent-pin has been selected as the most famil iar example, as it requires to be removed so frequently, and shows the uss that may be made of the screw for the standards of fencing, and for an infinite number of agricultural and other purposes.

The diagram given below represents four lighthouses that have been erected on the "skeleton frame tower system," with screw-pile foundations. The whole of these structures are drawn to one scule, sc that at a glance their comparative magnitudes in elevation and area of foundations are immediately visible. The Brandywine Lighthouse is crected upon the shoal of that name at the mouth of Delaware

Coral reef. Bay, and was lighted in 1851. It stands upon mine piles of $5 \frac{1}{2}$ inches diameter, tapering from the serew (which is 3 feet diameter) to the top, where the diameter is reduced to t inches. The diameter of the foundation is 42 feet. and the height of the superstructure above the shoal is 70 feet. There are twc scries of tension braces. The keeper's house is entirely of cast-iron, circular

Comparatice Mragnitude of Lighthouses erccted on the Screx-Pile system.
Scale 50 feet to 1 inch.

Sand Key, 1851.

Drandywiue, 1849.

Maplin, 1840.

Fleetwood, 1889.
in form, and consists of two stories. The prevalence of vast fields of ice in the Delaware in winter, rendered it advisable to protect the frame of the tower by surrounding it with a system of thirty 5 inch screw-piles, arranged in the fom of a hexagon of 75 by 45 feet, the longer axis of the polygon being parallel to the thread of the current. This ice-breaker has proved perfectly efficient after a trial of seven winters.

The screw-pile lighthouse at Sand Key, constructed by I. W. P. Lewis, is different in design and detail from all that bave preceded it. On reference to the diagram, it will be seen that the base is square. It was fonnd while constructing the Brandywine and Carysfoot lighthouses, that there was a want of righlity in the frame-tower, and that the application of any external force produced a vibratory movement about the central axis of the frame. Sceondly, it was observed that in tying all the horizontal framing to a common centre, there was a very uncqual distribution of metal and strength-the centre pile Learing 6 or 8 times the load borne by any one of the angle piles. Both these important defects are entirely remedied by adopting the square base. The tower at Sand Key requiring to be of the first class, it was decided to increase the number of piles to 16 , and one auxiliary pile in the centre to bear the weight of the stairease. The foundation thus is formed of 17 serew-piles of 8 inches dianeter, armerl with a modified form of serew 2 fect in diameter. A survey in 1850 by the enginecr, euabled him to design a form of serew, similar in principle to a centre-bit auger, which shonld with a very slow motion eut its way through the coral. This serew was entirely suceessful; being slowly turnel by powerful machinery, it descended through the coral about 2 inches for each revolntion.

The screws are bored 12 feet into the recf, and the pile-heads being framed and braced together as thown in the diagram, a perfectly rigid and firm foundation is obtained.

The superstructure of the frame-tower consists of six series of cast-iron tubular columns, framed together with wrougbt-iron ties at each joint, and braced diagonally on the faces of each tier, as scen in the diagram ; the rigidity of such a system of pillars and braces can be easily estimated.
The keeper's house rests on a floor of east-iron, supported upon cast-iron girders and joist, at the height of 20 feet above the plane of the foundation top; this is higher by 15 feet thau the great hurri-
ene tide of 1846 , and beyond the rench of any sea that could rise there, the surrounding coral res forming a perfect breakwatur.

The foundation of Sand Key Lighthouse measures 50 feet on the eill of the s puare anl its tuta height is 132 feet, or 120 teet above high-water level. The site is a small hank of calcareous sand thrown up by the combined effects of wind and tide, to the height of t fect above mean hifly water, and in depth about? feet below low-water level.

PIN-MAKING MACIINE. An improved method of making pins, by Joms J. IIume, of Ni, ve Haven, Connecticut. The wire having been properly straightened and placel in a coil upon a suitable reel, and havin, one of its ends introlucel in a proper maner into the machine, js, in succes-ive portions, drawn in and converted into pins, by the action of the machine; each pin so male hy the machine con-isting of a single piece of metal or wire, the head of the pin being upeet or raised, aisl formed at one end, and the other end being sharpened in a suitable manner, to form the pint. The fulluwing is a full and exact ilescription thereot, and of the manner of constructing and using the same, relerence beiner had to the accompanying ficures.
The individual parts of the machine are marked in the drawings with capital letters, with anall letters, and with numbers respectively; and the same marks of reference refer in all cares to the same or similar parts.

Of the driving-pouer.-The machine is put in motion through a driving-- haft F, which has its bearings formed in the portion AT of the fixed frame, shown in Fig. 3064 . The shaft F is placed ai right andes to the main-shaft B, and buth of said shafts are in a horizontal position in the sime plane with eath other.
On the outer end of the shaft F are fixed a fast pulley 1, a loose pulley ${ }^{2}$, a fy-whed 3, and a pulley 1, for driving the shaft I , which carries the pulleys 45 for driving the pointing mills, and on the imer end of said haft F is fixed a bevel-pinion f. The aforesaid bevel-pinion (r works into the bevel-wheel K, which is tixed on the shaft B, said wheel having four times the number of teeth of the pinion (r, so that four revolutions of the driving-haft Fermmunicate oue revolution to the shatt I, The horizontal =haft I is connected with the vertical shafe e by Level and spur geering, so that buth the said shafts resolve in the same time in the direction indicated ly the arrows on the refoective shate, as is shown in Firs. 3 mbe The mitre bevel-wheel II on the shaft IS works into the mitre bevel-wheel II2, which has its axis placed perpentieularly beneath the shafe 13. On the axis of the bevel-whed 11: is fixed a spur-wheel LO, which work into a similar spur-wheel fixed on the vertical shalt c.
The pulley 4, Jire. 3067, is connected by a belt to the pulley 5 on the shaft L, for the prorpoow of communcating an accelerated rotary motion to the shaft L. On the shaft L are the pulle's 4^{5}, which are respectively commected by bands it with the pulleys 43 , Fig. 3063 , on the arbors or ${ }^{\circ}$-pindles of the mills or revolving circular files $3 s$, for the purpuse of commmicating the necessary rapil rotary motion to said mills, by which the points of the pins are ground and sharpened.

Of the fieding and cuttiny apparatus-Fig. 3ucy is a perspective view of the cumbined appratus for feeding in and cutting off the wire, with a portion of the semicircular horizontal part of the frame. to which the principal parts of said apparatus are attached. Other views of said apparatus are represented in Figs, 3063 and 3064 . The tixed portion of the feedins apparatus con-ists of a horizontal part su and two arms, $S b$ and $S c$, depending in a perpendicular direction from the under side of sath horizontal portion. The horizontal portion da has an oblong opening through it, extemding in a horizontal direction from within towards the shaft c outwards. The two vertical surfaces of said prortion, bou are dresed straight and parallet with each other, and the two sides of the afore caid obhomp opming atre also dressed straight and parallel with eath other. A slide ! ${ }^{\text {d }}$, which rests arainst the from rertieal face of the prortion Sa , is comected through the said opening in 8 a with a eap, which rots uzamet the lack vertical face of the pertion $5 a$, and the protion by which the slide ya is commected whl the
 backwarel, but not to turn or mose in any other direetion. 'The slike 9a has : stud ine - tanding out horizontally at right angles to and near the centre of its face. There is a small hole made homantally
 parpoee, near each mol of the slide, the wire is introhed in a horizontal direction from right to left.

 plate $11 /$

A gage-screw 15 is fitted into the exterior end of the portion $8 a$ of the foeder-frame, against the point of which the slide of the feeder stops, when it is carried back in the manner above described by the spring 14. By turning the aforesaid gage-serew 15 out or in, the length of the portion of wire intro duced at each operation of the feeder may be graduated according to the proposed length of the pin

When in the rotation of the cam a its rib $a 1$ comes against the plate $11 b$ of the lever 11 , it crowds the lower end of said lever back in the direction of the length of the shaft B, so as to press its upper ot forked end agaiust the cap 10, pressing said cap against the wire, so that the wire is cmbraced and firmly held between said eap 10 and the face of the slide 9 , and while the wire continnes to be held the
rising face on the periphery of the cam a comes against the stud $11 d$ of the lever 11 , crow ling the luw it end of said lever back in a direction at right angles to the length of the shaft B , and cunseguently carrying forward the upper or forked end of said lever, which, holding on to the - tud ace of the feeder l,y the fork in its end, carries forward the feeder, holding the wire in the maner atove described.

In the regular operation of the machine, where the wire is carried formard by the feeder, the end of the wire enters one of the pointing chucks hereinafter described, which is in readiness to receive it ; and in order to insure the entrance thereof a guide is placed near the extremity of said chuck: said guide is in the form of a hollow cone, having its apex directed towards the clack, and its base towards the feeder. There must be a perforation at the apex of the conc to allow the wire to pass through in a straight line from the feeder to the chuck; and there must also be an opening made in its side to allow the chuck to carry the pin, or wire, out laterally: said guide may be attached to the cutter-stand or any convenient part of the fixed frame.

Before the concentric face a3, lefore dumeribed, of the cam d, leaves the stud $11 / \mathrm{l}$, the ribe of of sam ann will have the plate 11%, on an to allon the apring $1 t$ to retract the forked ond of the lewor 11 from

the portion $S d$ of the feeder-frame, furnishing in front towards the vertical shaft c (or the centre of the revolving table D) a rertical plain surface at right angles to the line in which the wire is fed into the machine. To the aforesaid vertical face of the portion $16 d$ of the cutter-stand is fitted a steel plate This plate has a hole through it of a suitable size and in a proper situation to let the wire pass through it in a straight line from the feeder to the pointing chuck, into which chuck the wire enters, previous to a portion of it being cut off to form a pin. A stecl cutter 18 is fitted into a groove or socket in the cutter-stock 19, so as to admit of its being adjusted and fixed therein by screws, and to cause the cutting edge of said cutter to lie flat against the plate. The cutter-stock 19 is jointed to the vertical portion $16 d$ of the cutter-stand by means of a centre-screw 22 , so that 19 forms the short arm of which 19 d forms the long arm.

A small projection or plate $19 c$ extending from the edge of the arm $10 d$ of said lever rests upon the periphery of the cutter-cam b, and a stud standing out laterally from said arm 190 at right angles to the plane of its motion on its centre 22, rests against the side of said cam b, on which side the acting parts of said cam are formed. The cam b is circular and concentric with the shaft B on which it is fixed, and has its acting paits formed on the side of it next to the aforesaid stnd of the lever 19. 31 is a recess or low part, which is connected by an inclined portion at one of its extremities to the raised part $b 2$, and at its other extremity to the tooth or pirot $b 3$; the portion or face $b 2$ is a plain surface coinciding with the plane in which the cam b revolves; and the tooth $b 3$ is a wedge-shaped projection raised upon one extremity of the face $\not 2$. A spiral spring 235, which connects the extremity of the arm $19 d$ with the fixed frame, serves to draw said arm in a direction contrary to that in Which it is moved by the action of the cam b, and to retract the cutter immediately after its action
in cutting off the wire. The cain b, must be aljusted on the -haft B, in reference to the foeder caun d, se that its reces or bow part 61 will be opposite the stud of the lever 19 during the time in which the said cand d is engagel in carrying forwards the feeder to feel in the wire; and while the cam d enntimues to holl the teeder in its adranced position, and before the feeder relawe its hold upon the wire, in the maner lefore esecribed, the face $l \boldsymbol{2}$ of the cutter-cam mest arrive at the stud of the lever 10, , so as to camer the chitur 15 to close upon the wire and hold it withont cuttine it off; and while the fane L2 of the cutter-cam is pasiag the stud, and before the tooth 63 reaches said stud, whe feder mut relax its era-ip on the wire; amil then before the feeder begins to advance, and while it remain- -tationary in its retracted position, the tonth 63 of the cutter-cam must pass the stud, by which the cutur 1 b will be sublenly firther admaned to cut off the wire close to the face of the plate, anainst which the flat side of the cutter plays, and by the reaction of the spring 205 the stud will be drawn again-t th.

low part $b 1$ of the cutter-cam, so as to retract the cutter 18 out of the way, to allow the feeter to in'roduce another succeeding portion of wire. The leurth of wire fed in and cut off at each opreration ot the feeding and cutting apparatus is equal to the length of the pin to be made, and a portion of wire sufficient, by being raised or upset and properly condressed between suitable dies, to form the heond of the pin.

Of ihe pointing-chucks and revolving table, and cther parts accessory to the cir movements.- In the por cess of sharpening the points of the pins made by the machine herein de-cribed, the piece of wire is leld and turnet round by a cluck furmed at the extremity of ar revolving axis, in a manmer similar to that in which a piece of work is held and turned in the chuck of a tuminer-lithe; but the end of the wire is reduced to the requisite tapering and pointed form by the grinding action of cireular revolving

tically downwards, which is divided at its lower edge into eight equal divisions or teeth, similar to saw teeth, as is shown in Fig. 3068. In said Fig. 3068 the above-described rim is represented in section with all the other parts of the table removed, in order to show the aforesaid divisions or teeth, which are marked in the figure D 1 to 8.

There is a semicircular groove formed around the circumference of the aforesaid rim, above the bot foms of its teeth, to receive the clip-band ef. The clip-band eff is formed of a band of round iron or wire of a size to fit the aforesaid groove. The ends of said rod e (being straight) are passed through: eyes in the yokes f, and are secured in that situation by nuts which are screwed on to said ends of the

rod e. The yoke f is placeu in a horizontal position, and presents totvards the table D a concave side, which is fitted to the groove in the rim of said table. Said yoke f has a vertical shot formed through it, the longitudinal centre of which is in continuation of a right line extending horizontally outwards from the centre of the axis c. By means of a stud 23 which extends upwards in a perpendicular direction through the aforesaid shot in yoke f, from the end of the lever g to which said stud is attached, a connection is formed between said yoke f and said lever g, so that when said lever g is moved horizontally

to the right or left hand, it communicates a corresponding movement to said yoke. The lever g 19 connected by a vertical axis 24 to the fixed frame, as is shown also at 24 in Figs. 3063 and 3064 : it has a broad part in which is a slot or opening of sufficient dimeusions to allow the shaft c to pass through it, and to allow said lever to move forwards and backwards to a certain extent around its axis 24. A stud 25 is attached to the broad part of the lever g, in a snitable position to receive the action of the cam h, which is fixed on the vertical shaft c. The cam h has two eccentric faces on its periphery, viz., the longer face $h 1$ which extends around three-fourths of the circle of the periphery ; and the shortev
face $h 2$ which oecupies one-fourth of said eircle. A spring 26 eonnects the end of the lever g with the fixed frame, and draws said lever in such a direction as to incline the stud 25 of said lever inwards towards the vertical axis c.

In the machine herein described the eam h is placed beneath the lever 9 , and the stud 25 is aflixed to the under side of satid lever. In Fig. 3068 said eam h is represented above said lever, and the stud 25 rffised to its upper side, in order to show the action of said cam upon said stum.
There is a springeatch 27 attached to the girt A6, which allow's the table D to more round freely in the direction of the arrow, by yielding under the inclined faces of the teeth D of said table; but which prevents or arrests a retrograde movement of said table, by springing up behind the perpendicular faces of said teeth and eatching against one of said perpendicular faces it an effort be made to move said table in a retrorrade direction. The table moves forwards around the axis a in the direction indicated by the arrow marked on the rim d of said table, as shown in Fis. S0ts, one-eighth of a revolution at each revolution of the shaft c. It oceupies one-fourth: of the time of a revolution of the shaft c in making said morement, and it remains at rest during three-fourths of the time of a revolution of said thaft c. The aforesaid alternate periods of motion and rest of the table I) are produced by the above-described combination, which is marked in the figures referred to in the foregroing deseription with the following letters and figures: $\mathrm{C}, \mathrm{D}, d,(1$ to 8.$)$ c, $f, 23, g, 21, \Lambda 1, A 4, \Lambda 6,27 h,(1$ to 3,$) 25, ~ \varrho 6$, in the following manner: that is to say, sul:pming all the parts of the aforesaid combimation which are shown in the figures to be in the positions relatively to each other in which they are represented, and that the shaft c and the cam h are in the act of revolviug in the direction indicated by the arrows; the face $h 1$ of the can h adrancing against the stud 25 of the lever g, will carry
 baek said lever, and with it the clip-band $f e$; but the table D will be prevented from moving back along with the clip-band cf in consequence of the tooth of said talde leing arrested by the catch 27 ; comsequently the clip-band will slip round in the growe of said table 1), and satil table I) will remain stationary.

PIPE MADHINE, LEAD. Until 1820 lead pipe was mamfactured hy easting amI drawing something smilar to the process of wire-drawing. In 18:0, lhorr tow out a patent in Eugland on the following phan: (in these figures, so much of the machine is representen us is essential

to illustrate the principle of its action, without aiming at aceuracy (f detail.) A hollow eylinder c, of east iron (fig. 8077) is furnished with a steel die d, of the shape and dimensions of the outside of the proposed pipe. A solid piston or ram ne, of cast iron, fits this hollow cylinder as sumgly as possible, without friction. Tio the bottom of this piston is affixed a stecl mandril or core m, of the length of the cylinder, and of the diameter of the bore of the proposed pipe. When this piston is withdrawn from the cylinder, the point of the mandril is just within the die at the bottom of the eylinder. The erlinder is then filled witli melted lead, which is allowed to sct. By the action of a hydrostatic press the eylinder is then raised between guides, or the piston lowered (it matters not which), and the solid lead is forced by the aetion of the piston through the dic, and enveloping the mandril runs off the point of the latter as leac pipe. This action continues until the piston has reached the bottom of the cylinder, when the mandril projects nearly its whole length through the bottom of the eylinder.

This was a great improvement on the old method of drawing, but yet accompanied with some objections, one of the most prominent being that, for small pipe, the mandril lacked stiffness to preserve itself from derangement, and the pipe in consequence was irregular in its thickness.

To obviate this, Hanson took out a patent in Aug., 1837, the principle of which was, that the mandril was short, and instead of being fixed to the bottom of the piston or ram, as before, was fixed within the cylinder, and a few inches from the die to a plate or diaphragm, stretched across the cylinder a (fig. 3078). The mandril in this ease being immovably fixed coneentrie with the die. To enable the lead to arrive at the die and mandril, this diaphragm or "bridge" was perforated by four large holes, shown in plan fig. 3079 , throngh which the lead in a solid state was forced by the action of the ram, but united again after passing the bridge and before reaching the die and mandril point.

By this means, it is true, the irregularaty of the action of the man-
 dril in Burr's plan was avoided, but at a great expense of power, and the pipe made was inferior, the lead not uniting after passing the bridge so perfectly, but that the pipe manufactured by this machine would split at the points corresponding to the divisions of the " bridge."

To overeome this difficulty, as well as that of Burr's, was the object of the patent of Tateham, dated Oct., 1841, in which the piston is truly bored from end to end, and a larger mandril or shaft (fig. 3080) fitted within, nearly of the length of the cylinder, into the bottom of which is fixed the short core or mandril for the bore of the pipe, the mandril remaining as in Hanson's plan, fixed just within the die.

As the hollow piston descends* upon the lead (the mandril shaft rising meanwhile within it), the latter is foreed around the shoulder of the mandril, and so through the die into pipe.

At first sight, and in model, this plan would appear to be very effectual, but in practice it is attended with some oljections, the principal of which is the difficulty of preserving the smooth, and at the same time tight action of the hollow piston, and the mandril shaft moving within it.

It will be readily forescen that the great power necessary for the manufacture of pipe, will foree the lead between the mandril shaft and the bore of the piston, increasing the frietion to a very great extent.

Cornell's improvements consist simply in making the pipe from that part of the lead subjected to the action of the power, and not to move the mass of compressed lead through the cylinder to the die. This is effeeted by making the piston or ram a die holder, and hollow, and affixing the mandril to the bottom of the cylinder, and extending it to the die in the piston bottom (fig. 3081). The effect is evident.

The instant the piston commences its movement, pipe is formed at the die, at one half the expenditure of power necessary when the mass of lead is moved through the cylinder.

PISE-WORK. A method of constructing very durable walls of kneaded earth. Any kind of earth that will sustain itself with a small slope, is adapted to the purpose; but that best suited to it is clay, containing small gravel of sufficient consistence to be dug with a spade. It is first well beaten, then screened to separate stones larger than a common hazel nut; after which, it is wetted suffieiently to enable it to retain the form given to it by kneading between the fingers. It is now fit for use, and in applying it to build a wall, a sort of movable box or mould is made for the intended wall, of deal planks puttogether with their joints plonghed, and tongued, and strengthened with elamps on the outside. These frames rest on cross pieces or putlocks, which pass through the thickness of the wall, and near the ends are mortices, into which are placed upright pieces, sceured by wedges at the bottom, and tied with ropes. These uprights are set to the intended thickness of the wall, which is about ≤ 0 inches at bottom, and gradually diminishes upwards. The frames are steadied at the top by means of cross sticks or struts, and the ropes are made tight by twisting them with a small picee of wood placed between the fulds. The frames being properly fixed, the earth is thrown in, and worked like conerete or mortar; to allow the putloeks to be readily withdrawn, the parts shout them must be well wetted. In commencing a wall, the first frame is put at one of the extremities, and the end of the frame closed by planks secured by iron cramps; at the other part, where there is no end, the wall is to be sloped off at an angle of about 60°, for facility in joining on the next piece. In commencing the work, the bottom being well cleaned and sprinkled with water, the laborers bring the masons the prepared earth, and tread it with their feet into a bed 3 or t inches thick; they then ram it down with a rammer. In ram-

[^15]ming, it is turned rounl at each stroke, so as to make the work more compact, and unite it with that previonsly fone. I;y means of the rammer, the first later is redseel in thickeus abont one lazli, and on this compresed liel ancther layer is spread out, and Leaten in the sane maner, an? an on, until the ease is fillel. The frame is then taken down, and movel further on, an that tlie! la. F entidely covers the inclined port. Liatels are placed over all the apertures, and the fou hel prow ar left for some months to dry. Tlie surface may then be crated with platire, and the wall is ful h. I.

 the level of the soill ; they must be carried yp at several times and not be hurre l. Aith cach ad lition the sides are carefully pareel down with an iron cob parer, which resembles a baker's perl. When dre; it is coated with fine stucco or plaster, and it kept dry at its top and foundation, it is viry darable.

Walls similar to piecwork are sometimes made in this cumtry with eement of lime or cement mortar, and small st mes or sereenings; the interior plastering being laid directly on the walls, the outir 1 cing usually left in its rourg cast state; the timbers for the flcors are inserteit as the well progranes.
PISTOL. Sce Girs.

PLANES AND (IIILELS. If we drive sun ase, or a thin wedge, into the centre of a block of won], it will split the same into two parts through the natural line of the fibra, leaving rongh meven surfees, and the rigidity of the mass will cause the rat to precede the elige of the tool. The same effent will partially oceur, when we attempt to remove a stout chip from off tle sile of a bleck of wool with the hatechet, adze, paring or drawing knife, the paring chis l, or any similar tool. S) long as the chip is too rigid to bend to the edge of the tool, the rent will precene the edge; an? with a maked too', the splitting will only finally cease, when the instrument is so thin and slarp, and it is appliell to so small a quantity of the material, that the shaving ean bend or ply to the tool, amd then only will the work be cut, or will exhilit a true enpy of the smooth edre of the instrument, in opposition t its being split or rent, and consequently showing the natural disruption or tearing asunler of the fibres.

The axe or hat het with two bevils, is intemded fur lewing and splittirg, when applicl to paring the surface of a block, must be directel at the angle, which would be a much hess convenient and less strony position than that of the side hatchet with culy one chamfer; but fir paring either a very larie or : nearly horizontal surface, the side hatchet in its turn is greatly inferior to the adze, in which the handl. is elevatel at some 60 or in 10 degrees from the ground, the preference being given to the horizontal position for the surface to be wrought. The instrument is hell in buth lands, whilst the nepator stanla upon his work in a sto ging position, the handle being from twenty-four to thirty inclos long, and the weight of the blade from two to four pounds.

The chisel admits of being very carefully placed, as to position, and when the tool is strong, very fat, and not tilted up, it produces very true surtices, as seen in the moutls of planes. The chisel when applied with percussion, is struck with a wooden mallet, but in many cases it is merely thrust forward l,y its handle. The paring-knife, exhibits also a peculiar but most valuable arrangenent of the chisel, in which the thrust obtains a great increase of power and control; and in the drawing-knife, the narro: transverse blade and its two landles form three sides of a recturgle, so that it is actuated hy trution, instead of by violent percusuinn or steady thrust.
The chisel, when inserted in one of the several forms of stoeks or guiles. becomes the plane, the genernl objects being to limit the extent to which the bade can penetrate the wood, to provide a definitive guide to its path or direction, and to restrain the splitting in faver of the entting action. In qeneral, thic sole or stock of the plane is in all respects an accurate comaterpart of the firm it is intended to produce. Although conve: surfaces, such as the ont-ide of a hoop, may le wronght by any of the straight planes, applieel in the direction oft a tangent, it is obvions the concave plane would be more convenient. For the inside of the hoop, the relius of curvature of the plane, must not exceed the radius of the work. Fur the convenience of applying plames to very small circles, sme me make very marrow or short, anl with transwre handee, such as the phane fir the haml-rails of stareases. The sections
 momblines, but we lave priacipally to conder ther nore common fatures, namele, the ciremmstane s

 contain the ordinary mannren of smrtheins pha...

[^16]

The succession in which they are generally used, is the jack plane for the coarser work, the trying plane for finer work and trying its accuracy, and the smoothing plane for finishing.

The mouth of the plane is in the narrow aperture between the face of the iron, and the rear, or face of the mortise; the angle between these should be as small as possible, in order that the wearing away of the sole, or its occasional correction, may cause but little enlargement of the mouth of the plane ; at the same time the angle must be sufficient to allow free egress for the shavings, otherwise the plane is said to choke. In all the bench planes the iron is somewhat narrower than the stock, and the mouth is a wedge-formed cavity; in some of the narrow planes the cutting edge of the iron extends the full widtl of the sole, as in the rebate plane.

The amount of force required to work each plane is dependent on the angle and relation of the edge, on the hardness of the material, and on the magnitude of the shaving; but the required force is in addition greatly influenced by the degree in which the shaving is bent for its removal in the most perfect manner. The spokeshave cuts perhaps the most easily of all the planes, and it closely assimilates to the penknife; the angle of the blade is about 25 degrees, one of its planes lies almost in contact with the work, the inclination of the shaving is slight, and the mouth is very contracted. The spokeshave works very easily in the direction of the grain, but it is only applicable to small and rounded surfaces, and cannot be extended to suit large flat superficies, as the sole of the plane cannot be cut away for such an iron, and the perfection of the mouth is comparatively soon lost in grinding the blade. Plane irons are usually ground at the angle of 25°, and sharpened on the more refined oilstone at 35°, so as to make a second bevil or slight facet; the irons so ground are placed at the angle of 45°, or that of common pitch; it therefore follows, that the ultimate bevil, which should be very narrow, lies at an clevation of 10° from the surface to be planed. In the planes with double irons, the top iron is not intended to cut, but to present a more nearly perpendicular wall for the ascent of the shavings, the top irom more effectually breaks the shavings, and is thence sometimes called the break-iron. Now therefore, the shaving being yery thin, ind constrained between two approximate edges, it is as it were bent out of the way to make room for the cutting edge, so that the shaving is removed by absolute cutting, and without heing in any degree split or reut off.

Some variation is made in the angles at which plane irons are inserted in their stocks. The spokeElave is the lowest of the series, and commences with the small inclination of 25 to 30 degrees; and the general angles, and purposes of ordinary planes are nearly as follows. Common pitch, or 45 degrees from the horizontal line, is used for all the bench planes for deal and similar solt woods. York pitch, or 50 degrees from the horizontal, for the bench-planes for mahogany, wainscot. and hard or stringy woods. Middle pitch, or 55 degrees, for moulding-planes for deal, and smoothing planes for mahogany, and similar woods. Inlf pitch, or 60 degrees, for moulding planes for mahogany, and woods dificult to work, of which bird's-eye maple is considered one of the worst.

Boswood, and other close hard woods, may be smoothly scraped, if not cut, in any direction of the grain, when the angle constituting the pitch entirely disappears; or with a common smoothing-plane, in which the cutter is perpendicular, or even leans shightly forward; this tool is called a scraping plane, and is nsed for scraping the ivery keys of piano-fortes, and works inlaid with ivory, brass, and hardwoods; this is quite analogoius to the process of turning the hard woods. The cabinet-maker also employs a scraping-plane, with a perpendicular iron, which is grooved on the face, to present a series of fine teeth instead of a continuous edge ; this, which is called a toothing plane, is employed for roughing and scratching venecrs, and the surfaces to which they are to be attached, to make a tooth for the better hold of the glue. The smith's-plane for brass, iron, and stecl, has likewise a perpendicular cutter, ground to 70 or 80 degrees; it is adjusted by a vertical screw, and the wedge is replaced by an end screw and block.

It is well known that most pieces of wood will plane better from the one end than from the other, and when such pieces are turned over, they must be changed end for end likewise. The plane working with the grain, would cut smoothly, as it would rather press down the fibres than otherwise; whereas, against the grain, it would meet the fibres cropping ont, and be liable to tear them up. The workman will apply the snootling-plane at various angles across the different parts of such wood according to his judgment; in extrene cases, where the wood is very curly, knotty, and cross-grained, the plane can scarcely be used at all, and such pieces are finished with the steel scraper. This simple tool was originally a piece of broken window-glass, and such it still remains in the hands of some of the gun-stock makers; but as the cabinet-maker requires the rectilinear edge, he employs a thin picce of saw plate. The edge is first sharpened at right angles upon the oilstone, and it is theu mostly burnished, either square or at a small angle, so as to throw up a trifling burr, or wire-cdge. The scraper is held on the wood at about 60°, and as the minute edge takes a much slighter lold, it may be used where planes cannot be well applied. 'The scraper does not work so smoothly as a plane in perfect order upon ordinary wood, and as its edge is rougher and less keen, it drags up some of the fibres, and leaves a minute roughess, interspersed with a few longer fibres.

We may plane across the grain of lard mahogany and boxwood with comparative facility, as the fibres are packed so closely, like the loose leaves of a book when squeezed in a press, that they may bo sut in
all directions of the grain with nearly equal facility, both with the flat and moulinge planes. But the weaker and more open fibres of deal and other soft woode, cannot withatand a cutting elpe applied to them parallel with themselecs, or laterally, as they are torn up, and leave a rough unfinished surface. The poiner uses therefore, for deal and soft woods, a very keen plane oí low pitch, and slides it aemss obliquely, so as to attack the fibre from the one end, and virtually to remove it in the direction of itw length; so that the furce is divided and applied to each part of the fibre in surcession. The moulding planes cannot be thus used, and all mouldings made in deal, and woods of similar open solt grain, are consequently always planed lengthways of the grain, and added as separate pieces. Is however many cases oceur in earpentry, in which rebates anl grooves are required directly across the grain of deal, the obliquity is then given to the iron, which is inserted at an angle, as in the skew-rebate and fillister, ani the stock of the plane is used in various ways to guide its transit.

Moulding planes.- 111 the planes hitherto considered, whether used parallel with the surfaces as in straight works, or as tangents to the curves as in curved works, are applied minder precisely the same circumstances as regards the angular relation of the mouth, because the ellge of the blade is a right line parallel with the sole of the plane; but when the outline of the blale is curved, some new conditions arise which interfere with the perfect aetion of the instrument. It is now proposel to examine these conditions in respect to the semicircle, from which the generality of mouldings may be eonsilered to be derived.

A small central portion may be considered to be a horizontat line; two other small portions may be considerel as parts of vertical duttel lines, and the intermediate parts of the semicircle mer ere from the horizontal to the vertical line.

The reason why one moulding plane figured to the half-round cannot, under the usnal construction. be made to work the vertical parts of the moulding with the same perfection as the horizontal, exists in the fact, that whereas the ordinary plane iron presents an angle of some to to 60 degrees to the sole of the plane, which part is meant to cut, it presents a right angle to the sill of the plame, which part is not ineant to cut. Thus if the parts of the iron of the square rebate plane, which protrude through the sides of the stock, were sharpened ever so keenlv, they would only scrape and not cut, just the same as the seraping plane with a perpendicular iron. When, however, the rebate plane is meant to cut at the side, it is called the side-rehate plane, and its construction is then just reversel, that is, the iron is inscrted perpendicularly to the sole of the plane, but at an horizontal angle, or obliquty to the side of the plane, so that the cut iz now only on the one side of the plane, and which side virtn:lly beeomes the sole. A second plane sloped the opposite way, is required lior the opposite side, or the planes are male in pairs, and are used for the sides of groores, and place inaceossible to the ordinary rebate plane. The square rebate plane, if applied all around the semicirele, would be everywhere etlective so loar as its shaft stood as a radins to the curre, as then the angle of the iron would be in the rimht direction in each of its temporary situations. lbut in this mode a plane to be effeetive throughout, demands either numerous positions of the plane, or an iron of such a kind as to combine these several positions. Theorstically speaking therefore, the face of the cutter suitable to working the entire semicircle or bead. would become a cone, or like a tube of steel bored with a hole of the satme eliamerer as the beal, turned at one end externally like a cone, and split in two parts.

As all the imperlections in the actions of moulding-planes occur at the vertical purts, there is a genrral attempt to aroid these diflicalties by keeping the moullings flat, or nearly without rertical lines. For example, concave and convex planes, callel hollows and rounds, inchude generally the tith or sixth, sometimes about the third of tho circle; and it is principally in the part betwe on the thirl and the semicircle that the dramerim is fond to exint; and therefore, when a largo part of the circle is wante 1 , the plane is applied at two or more positions in succession. In a similar manner large emplox mondingzolten require to be workel from two or more positions with different plames, cven when none of their parts are undercut, but in which latter ease this is of course inlispeasable. And in nearly ull mouldings the plane is not plavel perpenticularly to the moul ling, hat at an angle so as to remove all the nearly vertical parts, as far towaris the lorizontal puition as cir"umstanes will a lmit.

Ildaning Muchine for It vord.-In wiur hambetobls, the instrument rats immediately unon the twe of the work under formation; and in repeating thy one reant, the sume eareful attention is train re-
 more readily, by running cither the work or the tewl, upon at ataifht slide, an avis, or other guide, the Ierfection of whith has Been carefully mljnsted in the first formation of the machine ; an the slide or movement eopies upon the work, ita wan riktive dagren on' periection. "Tho economy of theno applientiong is therefire generally wery great, amb they are frequently those interenting, on ace wat of the
 in others with contiderable chanere in the gemeral m the of prowelare.

 in the back strohe t., remose the friction neraine the , neser.

weights, and dragged along by a rope and windlass, the projection of the iron determines the thicknesi of each shaving or seale-board. This construction is also reversed, by employing a fixed iron, drawing the wood over it, and letting the scalc-board descend throngh an aperture in the beuch; eaci of thesn modes is distinctly based on the common plane.
The late Mr. Joseph Bramah tonk out a patent in 1802 for a plauing machine for wood; one of which may be seen in the Gun Carriage Department, Woolwich Arsemal. The timber is passed under a largo horizontal wheel, driven by the stoam engine at about nivety revolutions per minute; the face of the vheel is armed with a series of twenty-eight gouges, placed horizontally and in succession aromed it: the first gouge is a little more distant firom the centre, and a little more elevated than the next, and se on. The finishing tools are two double irons, just like those of the joiner, but without the adrantage of the mouth.

In France, planing machines for wood were patented as early as 1817-18 by M. Roquin, and M. Mameville in 1835. The first was intended for planing, grooving, and tonguing, and moulding for the purpose of ornamant. The Board was placed on a platform or caariage, adjustable by serews to suit different thicknesses, to which the boards or planks are desire to be reduced. The planes were "cylindrical rotating planes." In Manneville's, feed rollers were introduced, and the tonguing and grooring was performed by circular saws.

In this country the most successful machine for planing woch, is the invention of Mr. Woodworth, patented in 1828 , and reissued in 1845 ; it consisted of a rotary cylinder on which were fastened the blades or cutters, phaced above or laterally to a carriage on which was placed the board to be planed, which was moved forward by rack and pinion. The cylinder revolved opposed to the movement of the board, and rollers were introduced bearing upon the upper surface, so as to prevent the board being drawn up to the cutter. The following is the claim of the reissue patent:
"What is chamed therein as the invention of Wm. Woodworth, deceased, is the employment of rotary planes substantially such as herein described, in combination with rollers, or any analogous device to prevent the boards from being drawn up by the planes, when cutting upwards; or from the reduced on planed to the omplaned surface as described."
And afterwards,
"The effect of the pressure rollers in these operamons, Deing such as to keep the boards, ete., steady. and prevent the cutters from drawing the boards towards the centre of the entter wheels, whilst it is moved through ly machinery. In the planing operation the tendency of the plane is, to lift the boards directly up against the rollers; but in the tonguing and grooving the tendency is to overcome the friction occasioned by the pressure of the rollers."

Woodworth also united the tonguing and grooring machine to the planer, by which both operations were performed at one and the same time.

Woodworth's planer has been a fruitful source of litigation. The only norelty seens to lave been in the pressure rollers to keep down the board, and the union of the tonguing and grvoving with the planing.

Previous to the machine of Woodworth, Mill's machine was constructed, consisting of a rotaly entter :imilar to Woodworth's, but placed beneath the bench; the board was pressed down oa the bench by means of rollers; in this machine boards were planed but not reduced to an uniform thickness. To obviate this, an improvement was made on this machine in 1850 by N. (i. Norcross. He las made the cutting cylinder movable, vertically, which it was not before, and has comected it with his rest, that is with the pressure roller, so that when the latter is forced upwards by the increased thickness of the board, it draws the cutter upwards with it, which thereby is made to cut just as much more from the under side of the board, as the roller is pressed up by the increasel thickness. By this concontrivance the edge of the cutter is kept in a fixed relation to the rest, or in other words, the pressure roller, the space between them being always the same, whereas in Hill's, and also in Woodworth's the edge of a kinife had a fixed rotation to the bed, and not to the pressure roller. To obriate the use of the rotary cutter and continuous feed, which by many wore supposed to be inventions of Woodworth and covered hy his patent, many machines with stationary cutters or planes were made, beneath which the board to be planed was forced, one of which is here introduced; but the rotary catter is by firr the simplest and most ceonomical in regard to power. The Woodworth planer still contiuues to ie the one in common and general use for the planing of boards or thin plank, but for the planing of timber, the Daniells' planer is generally preferred. This machine consists essentially of two arms revolving parallel with the face of the timber to be planed, near the extremities of which are inserted two narrow planes or gouges, the timber lies upon a carriage, and the feed is effected by a rack and pinion. Upon the shaft to which the arms are attached, is a long arum or pulley, to which motion is given by moans of a narrow belt: the shaft can be raised or depressed, even whilst the machine is in operation, by which means a thimer or thicker chip or shaving may be taken off, or successive shavings may reduce the timber to the thickness required. A machine somewhat similar to this, is sometimes used for the planing of iron, but it does not leave a fimished surface.

Tonguing and grooving is usually performed by revolving cutters; the cutter irons being generally of the hook form or duck bill. The same form of cutter is used in setting mouldings; they are roughed by cutters and then foreed through stationary irons with entting edges, corresponding in form to the moulding required. Ware mouldings, such as are used in cars and on furniture, are finished on a machine somewhat similar to the iron planer, the wase motion being given by a pattern on the carriage, which in its passage ribrates an arm comected with the tool.

Planing Muchine, Wood. J. I'. Woonsury's patent. A Fig. 3076 is the frame that contains the machinery. B is the travelliug platiorm, which is formed of lags, and linked together similar to some of the well-known horse powers, the uper part of which runs on ways or rollers, which sustain it perfectly level. C is the rollers over the platform, which serve to aid the lower platform to carry the board under the stationary eutters. D is the pulley where the power is to be applicd to drive the hoard
through the machine. It operates and turns the chain-wheels and shafts M, thereby moving the patform, and making an endless feeding power. Eis the stocks or cat-iron beds to which the conters are attache 1. Sail entters are similar to those of a conmon plane, and are firmly screwed to the beds which extend across the machine, and uttached at each end to the cast iron frame \mathbf{f}, where they are each aljusted and held by set-screws, F is the yiehling-bar moutlipiece, which also extenils across the machine, and is held down by springs under the same. This bar is as near the cutting edge as possible, and it serves to hold the grain of the wood together just at the cutting edgn, which wholly prevents splitting or tearing the wool. It adapts itself to the inequalities of the board or plank without clogging, and thereby produces a perfect surface. G is the frime that holls the cutters, stocks, and month-pieces in their proper places, and is to be raised or lowered to suit the diffirent thicknesses of material. II is the crank with the geering attached to raise and lower the frame (i, which bolls the cutters. I is the geer-wheels. that connect the feeding rollers C to the endless travelling platform B. J is a serics of rollers, which hohl the board over the entters, to plane the under side of the board, if required. L is atheel attached to a serew to move a horizontal slide on which rests the frame that holds the rollers J, and to which is attached four wederes. The wheel and screw L move the horizontal slile, thereby raisin: and lowering the rollers to admit of different thicknesses of material. II is the chain-wheels on which the endese platform revolves. The board is enterel between the platform B and the rollers C, aml carried throurl, under the stationary cutters E , which plane and reduee the board to a unitiorns thickness. It then moves forward between the rollers J and under the cutters K, which plane the unler sile, if required.

The above described machine proluces a mont excellent surface, and does the work with great rapidity.

The patent includes planing, tonguing, and grooving machinery.

> Machines for Plening Iron.

I'laning Machine, IIand. The following fignres represent three views of the machine: Fig. 3076 is a front elevation, Fig. 3078 is a side elevation, and lige 3079 a plan. The same parts are denoted by the same letters in all the firneses.

A A the surporting legs of the machine, on which reats 13 l' the bed frame. To this is bulted the upright frame for carrying the slides.
©, the vertical slide. On this are cast profecting pieces a, throngh which the carrying serews ff pase. Hey these serews tho slide is raised and depressed it pheasure by the gecring at their upper extremitic.
1), the horizontal slide, which is carriel aeress the slik. (c by a screw $b b$, whieh has its hearings in the shile co, which has between it and 1 a stile-carrier $d d$, almitting of a small nmonent of circular motion on the stm- bolts h / h. Theren pass throngh cireular sluts in the plate, and aro provilod with pinching-nuts to retain the slide in the pasition de-sired. liy th is provision the slilo may bo at at mey required

 the 12 nall way:

 at | Mon-ure.

M, the travelling rack, made fast to the table and worked by the pinion F . The form of the rack: is shown in transverse section in Fig. 3077, and an elevation and plan are shown in Firs. 307 s and 3079.
o, a balance-weight on the end of a lever projecting from the same small shaft on which the crankever is fixed. On the opposite end of this small shaft is fixed another lever, placed so that it is depressed by the tapet S , when the travelling table is mored towards the back of the machine; by this the cranklever n is depressed and the weight oraised at the same instant.
S is a tapet on the travelling table, and which may be shfted to any required position and fixed there by a pinching-screw with which it is provided. The position of this tapet is regulated according to the length of the travel of the table at the time.

V' V Y' Y, funr bevel-wheels, geered pair and pair, for turning the screws $f f$ to raise or lower the rertical slide CC, to suit the work upen the table. Two of the wheels are fast upon the upper ends of the serews, and two are in like manner made fast on Wr a cross-shaft, on which are two of the bevelwheels I' I fon working the elemating screws, $f f$. This shaft has a square at one end to receive the cye of a crank handle or hand-wheel. It has its hearings in two bored pieces which rest on the upper ends of the screws, and arainst the eyes of the wheels keyed on them, and are retained in their places by check-pins in the usual way.

PlaNiNG MaChine, by Arcmbald Mybee, Glasgow. This machine has some peculiarities which render it worthy of a place among the higher order of tools of the same kind.
lig. 3080 is a side clevation, and Fig. 3080^{2} a front elevation of the entire machine, with the same references.
k is the bedframe of the machine, carried on legs or supports i. The bed-frame is formed of one rasting, with two projecting edges of a Λ shape, which are planed true, and fitted to corresponding V-shaped grooves in the under side of the travelling table m, contrary to the usual arrangement in planmer machines.

F is the upright frame for carrying the slides; and m the sliding talbe for carrying the work to be phanel. The work is fixed to the table by bolts with dovetail heads, which slide in grooves of corre-- ponding form, runing the length of the table. The upright frame l ' is furmed of two side bracketa bolted down to strong flanges cast on the brd frame k; and joined together at top by ab cross pisece, which gives to the frame the necessary rigidity and strength. The fares of these checks and cross piece are phaned true and polishad. This is requisite in rebpect of the vertical faces, ats unon thene the vertieal slife a e moves when it is clevateland depresed by its serews u a and the cruss pisee is pulished to avoil unseemly contrat of apmarance.

A is the driving-belt for the forwand motion of the table, passing mand a lar fe palley, as shown u: Firs. 3080.

B, a crons-belt driving a smaller pulley for the return motion of the talde, which is thus mate puicks:
 fige :30n0, in which they are shewn upen their loonse pulley.
1), a pinion fast on the pultey shaft.

 racky on the under side of it, blown me the emil eheration. The e two racks (or chublde rack) hase the teeth of the one opposite the spate of the wher, me ne tor rember the motion smonth mind mif mon.

I, a double hever keyod on a hollow slate which worka fredy on the driving haft.

 donble leverg

II, a traverse-shaft comected ty a lever with the haft to which the lover 1 is motheded.

J, a lever fast on the shaft M; and C, Fig. 3080^{2}, a guide for the belts connected with the lever J which has one of its ends flat to prevent it from turning round, and at the same time to allow it to slir lengthwise and shift the belts from the fast to the loose pulleys.

The machine is set in motion by moring the belt-guide torrards the off-side of the machine, by which the lelt is shifted on the narrow pulley, which is the driver. The sliding table is thus put in motion and moves torrards the back part of the machine, until the tapet n, eatching one of the legs of the

Sever g, turns it over, throwing outward tho weight r, by the connecting-rod x, which is worked by a rever fast on the hollow shaft with g.
The weights $r r^{\prime}$. and lever t, being fast on the same shaft and connected by a ini whe M, the whole
s simultaneously put in motion, and the upper weight r being thrown off the balance, the belt-guide is pulled by the lever J until the belt A is shifted to the lonse pulley, mal the crosselte B to the thet pulley, to froduce the return motion. (In the return of the table the tipeet u^{\prime} turns over the lever? in the opposite direction, and the reversine motion is prodncel in the same manner. The tapet x^{\prime} stands further out than n, so that each of them can only touch one lers of the lever \% They are alos made to slide in dovetail grooves, and have pinching serews to tix them, to suit the length of work and its position on the table.

The lever t, which moves with the meights $r r^{\prime}$, communicates motion to the slides on the frame 1 : A section of these slides is shown at Fig. 30s1, and detached parts in Figs. 8us? to binnt, the stune ler ters being used to denote the same parts on all the figures.
a, the vertical slide attached to the upright frame of the machine by four serewed pins, which pase, pair and pair, throurh long grooves in the cheeks of the frame F, and the slide being set at the requisit: haight by the screws u u, it ean then be tightened by jam-nuts on the ends of the pins agramet the fitees of the frame, and retamed in the required position.
b, the crosis-side which moves across the breadth of the machine, upon the face of the vertical slide u. Motion is communicated to it by a serew wheh has it: bearines s s in the ends of the vertical slide, and thich passes through a nut attached to the hack of the slide b, as shown in Fig. Bust. The slide is guided, and aloo securely retained, on the slide a by dovetail faces formed on the back, and which correspond to dovetails formed on a. The upper dovetail is made adjustable, Fig. zusi, to alluw for any wear of the surfaces which may take place. On the face of the slide is a graduated are to regulate the setting of the slide carriage c, which is attached to it by fixines serews and nuts, Fig. 3080 . The screws have dovetail heade, which slide in an annular groove, Fig. eus?, and pass through two holes in the circular pieces cast on the edges of the carriage c. The bolts are put in from the back of the slide b through a recess cast in it for that purpoee. The earriage thus admits of being placed and set at any required angle with the slide b, ats shown by Fig. 3087, and the details of the mode in which this is eflicted is explained by Figs. 3082 and 3053 , and partially by Figs. 3081 and 3080 .

In the carriage, c is a serew with bearing at its two extremities, in the metal of the carriage. It is kept from mowing emiwas by a ruff on its upper end, ow which pasee a ring of malleable irom, fixul to the carriage l, setewal pins tapped into the metat. On the hower end of this serew is fixed a smatl bevel-wheel, which geer- with one of a pair checked and bolted together, so that motion e:mmot be

 the face of the athle il.

 little mation of the joint is reppuivel to altom th tomb to atome the went

The mode of fixing the tool is by T-headed bolts and glands, as shown in Figs. 3080 and 3086. In this last the tool and glands ire removed, but the fixing bolts are dotted in their positions.
$u u$, screws revolving in the projecting ends of the top rail, and working into nuts on the back of the slide a.
o, handle to turn the screws by means of a system of bevel-wheels, in order to raise or depress the slide a to suit the work to be planed, the slide a having fixing bolts to secure it to the planed faces on the frame at the required height.
u, a lever with a spring-catch which may be geered iuto the wheel y.
r, a rod connecting the lever t with the lever u. The spring-catch being in geer, the wheel y receives motion from the lever t, and being geered with a pinion on the end of the cross slide-serew, which re volves in bearings $s s$, it communicates its motion to the screw and cross-slide b. The amount of feed is adjusted by shifting the studs in the slots of the levers t and w; and the direction in which the sliche is wanted to be moved is regulated according as the spring-catch is geered above or below the axis of the lever w.

This selfacting feeding motion is also communicated to the down-cutting slide d by shifting the pinion from the end of the screw to the end of the small shaft which works in the bearings $q q$, Fig. 30 so On this shaft is a small bevel-wheel shown at Figs. 3081 and 3082, which is carried round by having a sey projecting into a groove continued the whole length of the shaft. This wheel is carried along the shaft by a projecting piece on the slide b, Fig. 3082, and its motion is communicated to that on the end of the slide-serew in c, Fig. 3081, by means of two similar intermediate whecls placed in slide b, as above described.

The front slide f is not commonly attached to planing machines; but it is valuable where work is tc be done which requires two or three different angled surfaces to be planed, and which can be done with this machine by arranging the slides before starting, no shift being afterwards required.

Fig. 3087 shows the slides set at different angles.
PLANING MaChine, SELF-aCTING COMPOUND, by Nasmytu, Gaskell \& Co. The machine represented in Figs. 3088, 3089, 3090, and 3091 is remarkable for compactness and elegance of arrangement, and for the accuracy and dispatch with which a description of work that, previously to the introduction of such machines, could only be intrusted to the most expert and skilful mechanic, but which can, by its means, be executed by workmen of the most ordinary capacity. It is especially applicable to the finishing of the numerous small levers used in locomotive engine and tool-making, and is admirably adapted, not only to the planing of the sides and edges of such levers, but also to the finishing of their rounded ends, which otherwise could only be accomplished by the rude and tedious process of chipping and filing.

Fig. 3088 is a side cleration of the machine.
Fig. 3089 is a view of the front end or face.
Fig. 3090, a general plan ; and
Fig. 3091, a transverse section through the principal working parts.
Gencral description.-The frame upon which the machine rests, and which is used for the purpose of raising it to a convenient height, is composed of two cast-iron cheeks A A, strengthened by flanges, and held together at the lower end by two stay-rods $a \boldsymbol{a}$. These frames are disposed at an angle to each other, in order to give greater stability to the structure. The main body of the machine consists of a cast-iron table or box B bolted to the frames by internal flanges, as shown in the section, Fig. 3091, and on the upper side of this table are cast the bracket C , carrying the driving-spindle, and the rectangular chamber 1), furnished with bearings for the other working parts of the machine. The square cast-iron sliding-bar E, which carries the tool-holter, is accurately planed, and fitted into a recess in the upper portion of the piece D. It is of essential importance that the slide E should move accurately and without play in a rectilinear and horizortal direction, and for this purpose it is secured laterally by the adjustiug serews $b b$, and vertically by the wrought-iron plate or cover c, fixed to the frame by the six countersink screws $d d d$.

On the front end of the square slide E is cast a flat rectangular plate, which serves as the fixed point of resistance to the various motions of which the tool-box is susceptible. The first of these is a rotary motion, which is impressed upon it by a foothed quadrant plate e, worked by an endless screw on the axis f. This arrangement enables the workman to set the tool at any required angle to the work. On the upper edge of that part of the tool-box marked F, is fixed a nut, through which works a serew g g surmounted by a handle or small hand-wheel This screw is used for raising or depressing the tool. and
thereby adapting it to the diameter or height of the work to be executed, as well as for regulating the depth of cut. The part G, which is thus acted upon by the screw g, is furnished with two parallel cheeks accurately dressed on their internal surfaces, and fitted to recejve the tool-hohler h. The toot itself is inserted into a square hole pasing through the piece h, and fixed firmly to it by two pinching. screws. The tool-holder h is so formed as to admit of a small amount of rotary motion round two centre serews passing through the checks of the piece G, and by this means accidents arising from the friction of the tool against the work in the return struke are prevented.

The mode in which motion is communicated to the tool-box is as follows: The extremity of the square slide E opposite to that on which the tool-box is nixed, is travered by a lungitudinal slut or groove i, adapted for the reception of a bolt-head. as thown in the transverse section, Fis. 309 ? The projecting part of the bolt passes through a hole in the end of the connecting-rod H, the opposite end of which is attached by another bolt te a rectangular cant-iron piece I, fixed to the end of the drivingspindle, and acting as a crank for comverting the rotary into a rectilinear motion. The crank 1 is traversed throughout its whole length by a slot i, the form of which, as well as of that in the slide E , is shown in the section, Fig. 3024. By means af these slots the length of the stroke and the prostion in the tool may be easily and accurately adjusted to suit the work, as will be sufficiently obvious by inspection of Fig. 30s8. The driving-spindle works in two bearings, one of which, as before mentioned, is cast on the bed of the machine 1 , and the other is formed in the extremity of a bracket bolted to the side of it. The velocity of the driving-spindle is varied and regulated by means of the cone-pulley J and lly-wheel K .

The planing of circular surfaces is effected, in this machine, by means of a hollow cylindrical cast-iron nandrel L, liga. 3091 and 3092, accurately turned and fitted into the body of the machine, the centre being exactly under that of the square slide E. This mandrel is provided with a conical bearing on the fiont end, and is traversed lyy a malleable iron bolt l, seeured to its opposite extremity by a nut. The liead of the bolt l is formed into a cylindrical socket, into which, by means of a cotter, is fixed another bolt, having two conical pieces $m \mathrm{~m}$, one of which is immovable, and forms part of the bolt, while the other slides upon it, and is adjusted by means of the nut n. These pieces are wed for the purpose of fixing the work M, upon which the machine is to operato; and from their conical form, adapt themselves to any required dianeter, so as to insure, without any tronble in setting, the concentricity of the onter surface with the cye.

The motion of the mandrel L , with its appendages, is effected by means of the worm-wheel \mathbb{N}, which is tixed to its inner end by a large circular nut serewed to the cast-iron mandrel itself, independently of the bolt l, which passes through it. The worm wheed N geers with an enulless serew int the horizninal axis n, working in two bearinge, one of which is formed by a small matleable iron piece bobted to the body of the machine 1), and the other extends considerably leyoud the table, and is supported by the
 nim which we are about tu doscribe, is provided with a hamdle, hy which it can at phasure be mowed hy the attemdant workman. The self acting gere, which, in Fig. 30 is3, is shown detached from the madhen, consists of an eccentric l^{\prime}, fixed upon the drivingeppindle, and by meme of the rod $p p^{\prime}$, commmatating is reciprocating motion to the slotted lever (?, which motion is nogan convered by the rod r o the

 on theoe contrey they are fitted to move lowely withont turning them. The slots which traseron bur
 communicated to the er axes by the donhle pawle if and 8 , which work reapectiocly into the whea lis
 peculiar form given to the pawh, they may be made to mone mither backwads or furwards ly maply reversing the direction of the pawls.

For the purpmes of phaning that suffares with this machine, it is providel with a cant irm face phata

by the mechanism above described, and which, having a bearing at each end of the slide V. passee along a recess cast in its surface, and works into a brass nut fixed on the back of the face-plate U. The traverse serew v is provided with a handle w, for the purpose of setting the work into its proper positiou under the tool, before lringing the self-acting mechanism into geer.

Plate-bending machine, by Robert Napier, Glasgow. This species of machine, criginally confined to the tinsmith's shop, has recently-enlarged in its dimensions and rendered more eomplete is its mechanism-become indispensable in the operations of boiler-making and iron-ship building, in which plates are required to be bent to various degrees of curvature. The example given is the design of Mr. Elder, the manager of Mr. Napier's works, and is one of the largest yet made, being intended principally for use in the building yard, where plates of greater thickness come under operation than those required in boiler-making.

Fig. 3038 is a side elevation of the machine, and Fig. 3099 an end view towards the driving-geer.
Fig. 3100 is a plan corresponding to Fig. 3098.
General deseription.-The frame of the machine consists of two very strong end standards A A, east with soles to admit of their being bolted down to a solid stone foundation. They are braced together by four strong rods of malleable-iron a a a, the screwed ends of which pass through projections on the standards, of such thickness that the nuts by which they are secured are nearly flush with the outside of the frames, thus obviating the necessity for having the geering far overhung.

The three rollers BCD are solid; the dimensions of each being 12 inches diameter, and 10 feet long within their bearings. The two rollers B and C are placed in the same vertical plane; but the third roller D moves in a plane inclined at an angle of thirty degrees to the vertical plane. On one erd of the roller B is keyed a strong pinion E , which geers with another pinion of the same size markel G on the end of the lower roller \mathbb{U}. On the opposite end of this last is fixed a large spur-wheel H into which works a pinion I on the shaft J, which has a bearing in each of the two standards, and carries on its other end a large spur-wheel K, commanded by a pinion upon the driving-sliaft L. One end of this Shaft is carried in a bearing in the adjacent standard of the machine, and the other in an indepentent standard M boltel to the foundation. It carries four pulleys, two of which, $\mathrm{N} O$, are fast upon the shaft, and the other two, P (2 , of double the breadth of the former, are loose. On these are two belts, the one aross and the other open, so that the rollers may be driven in either direction aceording as the motion is commmuicated by the open or the cross belt. The belts are shifted on their pulleys by means of the hand-bar 1 , on which are the guide-arms S T, so placed that in reversing the motion of the machine, the belt thrown out of action shall have passed entirely from its fast pulley before the other shall have passed from its loose pulley to the fast one. This arrangement obviates the injuriou= effect so common in machines furni-hed with this species of driving-geer, of the one belt acting against the other during a part of the time of shifting, thereby oceasioning much umecessary tear and wear of the belts.
The upper roller B is adjusted to the thickness of the plate to be bent by two strong set-screws U U. , which work in hexagonal brass nuts inserted into recesees in the standards. These serews bear agains ${ }^{1}$
a steel plate resting upon the brass block in which the roller revolve, and which is of moree placed o-er the journal, the preswre being upwards; and thus the soller is kepte presee l duwn uph the phate, 33 it prases through the machine in the operation of bending.

The roller D is adjuted to the required perition by the double hand-arank on the upper end of the vertical spindle $b l$, which communicates by means of a phe of small bevel-wheds ee with the screxs d d, working into long brass nuts e e in-erted in receses of the frame. The upper conds of thene muts support the bearings of the roller, which may consequently be raised and lowered at phestre, aceor line as the spingie is tirned in one direction or the other. The nuts ce are prevented from turnins somat with the eerews ly feathers upon the baek of the brasses finting into grooves on the en! fo the nith

 wher.

This roller being put in motion, communicates an equal velocity to the upper roller B by means of the pinions E and G which geer together. The roller D , the position of which determines the degree of curvature of the plate under operation, is only driven by the iriction of the plate against it as it passer between the two other rollers.

Literal references.

A Λ, the end standards of the machine. u a a, stay-rods, 2 iuches diancter, fur connecting the two standards.
B, the upper roller, 12 inches in diameter, and 10 feet long between its bearings, which are $5 \frac{1}{3}$ inches in diameter.
C, the lower roiler, of the same dimensions.
D, the shifting-roller, of the same dimensionb, the upright spindle for setting the roller D. c, small bevel pair worked by the spindle b.
d, a screw, 25 inches diameter, and $\frac{5}{8}$ inch pitch. e, brass nut into which the screw d works.
E , a pinion on the end of the top roller B ; pitch $2 \frac{1}{2}$ moches, number of tecth 16 .
f, a similar pinion on the lower roller C.
H , a large spur-wheel on the opposite end of the roller C; pitch 1_{4}^{3} inch, number of teeth 100 .
I, a pinion of 13 teeth, working into the spurwheel II.
J, a wrought-iron shaft conveying mution to the piniou I from
K, a spur-wheel at the opposite end of the machine; pitch $1 \frac{1}{2}$ inch, number of teeth 75.
L, the driving-shaft of the machine.
M, a standard for supporting the exterior end of the driving-shaft.

N OPQ, fast and locse pulleys for seting in mo. tion, stopping, and reversing the machine.
R , the hand-bar for shifting the belts.
S T, guide-arms fixed on the hand-bar R.
U U , screws for alljusting the top roller.

PLATINUM. (So called from the Spanish word plata, silucr, on account of its color.) A metal of a white color, exceedingly ductile, malleable, and dificult of fusion. It is the heaviest substance known, its specific gravity being 21.5 . It undergoes no change from air or moisture, and is not attacked by any of the pure acids; it is dissolved by chlorine and nitromuriatic acid, and is oxidized at high temperatures by pure potossa and lithia. It is only found in South America and in the Uralian Mountains: it is usually in small grains of a metallic lustre, associated or combined with palladium, rhodium, iridium, and osmium ; and with copper, iron, lead, titanium, chromium, gold, and silver; it is also usually mised with alluvial sand. The particles are seldom so large as a small pea, but sometimes lumps have been iound of the size of a hazel-nut to that of a pigeon's egg. In 1826 it was first discovered in a vein associated with gold, by Boussingault, in the province of Antioquia, in South America. When a perfectly clean surface of platinum is presented to a mixture of hydrogen and oxrgen gas, it has the extraordinary property of causing them to combine so as to form water, and often with such rapidity as to render the metal redhot: spongy platinum, as it is usually called, obtained by heating the ammonio-muriate of platinum, is most effective in producing this extraordinary result; and a jet of hydrogen directed upon it may be inflamed by the metal thus ignited, a property which has been applied to the construction of convenient instruments for procuring a light. The equivalent of platinum is about 98. It is precipitated from it* nitromuriatic solution by sal anmoniac, which throws it town in the form of a yellow powder, composed of bichloride of platinum and sal ammoniac.

PNEUMATIU'S. The science which treats of the mechanical properties of elastic fluids, and particularly of atmospheric air.

Elastic fluids are divided into two classes-permanent gases and vapors. The gases cannot be converted into the liquid state by any known process of art; whereas the vapors are readily reduced to the liquid form by pressure, or diminution of temperature. In respect of their mechanical properties there is, however, no essential difference between the two classes.

Elastic fluids, in a state of equilibrium, are subject to the action of two forces; namely, gravity, and a molecular force acting from particle to particle. Gravity acts on the gases in the same mamorr as on all other material substances; but the action of the molecular forces is altogether different from that which takes place among the elementary particles of solids and liquids; for, in the case of solid bodies, the molecules strongly attract each other, (whence results their cohesion,) and, in the case of liquids, exert a feeble or evanescent attraction, so as to be indifferent to internal motion; but, in the ease of the gases, the molecular forces are repulsive, and the molecules, yielding to the action of these forces, tend incessantly to recede from each other, and, in fact, do recede, until their further separation is prevented by an exterior obstacle. Thus, air confmed within a close vessel exerts a constant pressure against the interior surface, which is not sensible, only because it is bahanced by the equal pressure of the atmosphere on the exterior surface. This pressure exerted by the air against the sides of a vessel within which it is confined is called its clasticity, or clastic force, or tension.

Conditions of equilibrium. - In order that all the parts of an elastic fluid may be in equilibrium, one condition only is necessary; namely, that the clastic force be the same at every print situated in the same horizontal plane. 'This condition is likewise necessary to the equilibrium of liquids. 3 nd the same
circunstances give rise to it in both eaves ; namely, the mobility of the partheles, and the action of gravity upon them. Conecive a close vessel to be filled with air, or a \&ats; anl lett a and b be two molecules situated in the same horizontal plane. It is evident that if the iwo molecules are in a state of equilibrium, the furce with which a repels 1 must be exactly connteracted by that with which b repels a for otherwise motion would take place. The same thing takes place in respect of every horizontal section of the gas; but the pressure on each section varies with its altitude. Suppree c and d to be two moleceles situated in a horizontal section, lover than that in which are a and b. It is evilent that the molecules c and d sustain a greater presisure than a and b; for, in the first place, the whale of the preset re on a and b is transmitted to them by the principle of the equality of pressure in all directions; and, in the second place, they sustain a new pressure. arising from the weight or grasity of all the molecule -itnated between the two horizontal planes ab and cd .

The prineiple which has just been explained is proved experimentally by the diminution of the prenpure of the atmosphere at greater altitudes. A column of air reachins from the ground to the top of the atmosphere exerts a pres-ure egual to the weight of a columm of mercury of the same dameter, and whoee height is equal to that in the barometric tube. Sow, on carrying the barometore to the top of at monntain, for example, the mercurial column is observed gradually to become shorter as we areend ; and the diminution of the columm, and consequently of atmorpheric pressure, is connected with the increave of altitule ly a certain constant law, which enables us to deduce the one from the other, and to apply the barometer to the very important purpose of determining the relative altitudes of places un the surfice of the earth.

The volumes of ateses are innersely as the pressures which they support. -This fundamental property of elastic fluids is called the Lau of Mariofle, from its having been discovered by that philosupher in France. It has been rerifed in several ways, on all the known gases; and, in the case of dry air, its verification has been pushed, by MMI. Dulong and Arago, to pressures equivalent to twenty-seven atmospheres. (Lame Eorers de Physique.) It also holds true in respeet of vapors or steam, subjected th a smaller degree of presure than that which is neessary to reduce them to the liquid state ; and even for mixtures of different gases. It is important, however, to obeerve, that it is supposed no variaten of temperature has taken place during the experiment.
The density of bolies being inversely as their volumes, the law of Jariotte may be otherwise exprosed, by saying, the density of un clastic fluid is dirnctly proportional to the pressure it sustuins. Tuder the presure of a single atmo-phere, the den-ity of air is about the Thoth part of that of water: whence it follows that, under the pressure of 760 atmosheres, air is as dense ats water. Thus, the averare atmospheric presure being equal to that of a column of water of about 82 feet in altituch, at
 water; and though it should still remain in a gaseous state, it woth be incapable of ri-ing to the surfice.
Sificets of hat on the elusticity of the gases.-The repul-ive energy of the molecules of the abst Ruids is greatly augmented by an increase of temperature ; and it is of the utmot inpurtance in many physical inguiries to a-certain the relation between the temperature and the elatic force. If the an and several ofler gates, sustaming the same constant prease, are expmed to an increase of tempratture whichaffects all of thelre equally, it is proved, by observation, that they all undergen an equal ex-pan-ion; that is to say, the increase of volume of all the sases is the same for equal angmentations of temperature, and proportional to theoe augmentations. Experience ahos -hows that, withan a con-ideratble range of temperature, the indications of the air thermometer differ very little from thane of the mercurial thermoneter; so that, with this range, the expmosion of any gats whatever is propmotional to the increase of temperature indicated ly the degrees of the ordimary themometer. From the temperature ,f multerg ice to that of boiling water, or from \%ero to 100° of the centigrade thermometer, Gaty-hasate fromel the expan-ion of air suljected to a entetant presure, to ln in the ratio of mity to 1375 ; which

$$
V^{\prime \prime}=V^{\prime}(1+u t)
$$

and the den-ity benirg inver-cly at the rohme, wh hawe ulst,

$$
\Gamma=\frac{11}{1+u i}
$$

Now, suppose the presure to he varia I withont any dambe of the tomperatere, mad let p denute the new pressure, and dhe corropmotint do ity; the law of Marinte hives

$$
r: 1 r^{\prime}:: \rho: d, \text { иhпни } p=\frac{I^{\prime} d}{11^{\prime}}
$$

$$
p=1 \cdot d 1+a l \mid
$$

Of the motion of the gases.- Elastic fluids, in escaping from a vessel by a small orifice or tube, into a vacuum, observe, like liquids, a law first discovered by Torricelli; namely, that the velocity of the mole cules, when they escape from the orifice, is equal to that which they would have acquired by falling through a height equal to the height of a vertical column of uniform density, producing the same pressure as is exerted by the gas at the level of the orifice. Thus, it has just been shown that the pressure of the atmosphere, when the barometer stands at 30 inches, and the temperature is that of freezing, is equal to that which would be produced by a column of air of miform density extending to an altitude of 26155 feet. Now, putting $g=$ the accelerating force of gravity $=32$ feet per second, the velocity which a heary body would acquire by falling in a vacuum from a leight of 26155 feet, is $\sqrt{ }(2 g \times$ $26155)=8 \sqrt{2} 26155=1294$ feet in a sccond; which, therefore, is the velocity with which air rushes into a racuum. If the temperature varies, the velocity will vary also, and will become $120+\sqrt{ } 1+a t$). For example, if the temperature were 16° centigrade, (about 61° of Fahrenheit,) the velocity would be 1332 feet per second.

Since the densities of the gases are proportional to the pressures they support, air will always rush into a vacuum with the same velocity, whaterer its density may be in the ressel from which it escapes; for the homogeneous column of the same density, and exercising the same pressure as the air in the vesicl, must, in all cases, have the same altitude.

The velocities with which the different gases enter a vacuum are inversely as the square roots of their densities; for they are proportional to the square roots of the altitudes from which the molecules are supposed to fall, and these altitudes are inversely as the densities. Thus, hydrogen gas, the lightest of all the gases, and whose density is only 0.0688 of that of air, would enter a vacuum with a relocity of 4933 (= 1294 divided by the square root of 0.0688) feet in a second. It is to be remarked, however; that all those laws relative to the flow of gases, are rather inferences from theory than truths demonstrated ly direct experiment.

In the case of air or any gas flowing into a space containing a gas of an inferior density, the velocity will be the same as that of an incompressible liquid of similar density with the eflluent gas, and capable of exercising a pressure equal to the difference between the pressures of the tro gases. Taking, for example, the case of a gas flowing from a gasometer into the atmosphere: let h denote the height of the barometer, and $h+H$ that of the column of mercury exercising a pressure equal to the elasticity of the eflluent gas, so that H is the difference of the two pressures. Also, let Δ denote the density of rnercury, d that of the gas in the gasometer corresponding to the pressure $h+H$, and v the velocity per second; then

$$
v=\sqrt{ }\left(2 g \mathrm{H} \frac{\Delta}{d}\right)=8 \sqrt{ }\left(\mathrm{H} \frac{\Delta}{d}\right) .
$$

Now if, in the formula $p=k d(1+a t)$, we substitute the pressure in the gasometer $(k+H) \Delta$ for p, and also for k its value as above deternine 1 in feet, this expression will become,

$$
v=129 \pm \sqrt{ }\left\{\frac{H}{h+11}(1+a t)\right\}
$$

where v is expressed in feet. If, therefore, Λ denote the area of the orifice in feet, the volume or number of cubic feet discharged in a second will be v A. It is to be observed, that the rolume thus determined is the volume of a gas of the same density as in the gasometer; if it were required to find the number of cubic feet, at a different density, corresponding to the pressure of a mercurial column whose height $=h^{\prime}$, it would be necessary to multiply the above expression by the ratio $(h+\mathrm{H}) \div h^{\prime}$.

From the experiments of D'Aubuisson, it has been ascertained that air, in passing through an orifice pierced in a thin plate, forms a vena contracta, whose area, as in the ease of a liquid, is 0.65 of the area of the orifice. The application of cylindric adjutages increases the quantity issuing through the orifice to 0.93 , and a conical tube to 0.95 . The length of the adjutage may be 20 or 30 times the diameter of the orifice before the disclarge begins to be diminished by friction. If, therefore, we suppose the gas to flow through a cylindric tube, and assume the multiplier 0.93 ; and also express the area of the orifice in terms of the diameter of the tube, which we shall suppose $=m$ feet; then, observing that $4 A=$ $3 \cdot 1 \cdot 1159 \mathrm{~m}^{2}$, the formula for the number of cubic feet discharged in a second, the density being measured by $\hbar+\mathrm{H}$, will become

$$
945 m^{2} \sqrt{ }\left\{\frac{11}{h+H}(1+a t)\right\} .
$$

POLARIZATION OF LIGHT. Light which has undergone certain reflections or refractions, or been subjected to the action of material bodies in any one of a great number of ways, acquires a certain molification, in consequence of which it no longer presents the same phenomena of reflection and transmission as light which has not been subjected to such action. This modification is termed the polarization of light; its rays being supposed, according to particular theoretical views, to have acquired poles (like the magnet) or sides with opposite properties.

The polarization of light may be effected in various ways, but chiefly in the following: 1. By reflection at a proper angle from the surfaces of transparent media, as glass, water, de. 2. By transmissioni through erystals possessing the property of double refraction. 8. By transmission through it sufficient number of transparent uncrystallized phates placed at proper angles. 4. By transmission through in number of other bodies imperfectly erystallized, as agate, mother of pearl, de. The sacelarometer lately invented is based upon this property of light.

POTASSIUAL. This extraordinary metal was discovered by Davy, in the year 1807, and was one of the first fruits of his researches into the chemical powers of electricity. Its properties are so remark able, that it was for a time doubted whether it could with propriety be placed among the metals; but the progress of discovery has removed all difficulty upon that point, by making us acquainted with
other metallic substances, the properties of which are, as it were, intermediate between those of potassum on the one hand, and the common metals on the other. One of the striking peculiarities of potassium is mechanical rather than chenical, namely, its low specific gravity, it being the lightest known solid; another is its intense aflinity for oxygen, ind its con-equent energetic action when placed upon water, where it immediately takes fire. 'The specific gravity of puta-sium is 865 at the tentperature of $6 u^{\circ}$; it is sulith at the ordinary temperature of the atmosphere; at z u° it heromes soft, and at 150° is perfectly liquid; at $3 \because^{\circ}$ it is brittle, and hav it crsialline texture. In colnr and lustre it resembles mercury. Its attraction for oxygen is such inat it immediately loses its lrilliancy on ex po-ure to air, and becomes converted into pritas.s.

PRESS. Under the head of hydrostrtic press will be found a full description of l3ramahis most neefnl invention, and this is in general nse for the baline of goods for slipment, for the preming of paper among printers ard lithographers, for the corrugation of iron and metals. It was und ly se phenenn for raising the tubes of the Conway and Menai Bridges, and he Bruncl for the launching of the Leviathan. It is the most compact of all machines for the tran-fer and multiplication of power, but is slow in its operation, as usually the speed when driven by power is the same with and without the maximum lead.

To obviate this difficulty, a steam press has been invented ly llilos D. Tyler, called the lroomssuve Lever. Steis, lGth January, 1Stir, which is extensively used in the baling of cotton.
2099.

3100.

Louking to the fact that at the commeneement of the operation the resistance is very small, searesly perceptible, and gradually increases as the density of the cotton increases under the netion of the prese
 lower of the prese, what are kinemon mechanies an progre ive lewers; that is, hevers an arranged that at the commencement of the operatinn, when the re itance fre cated hy the costom is at its minmam,

 shortest.

Vin. 11.-8:3

There are various modes of applying the principle of this invention, for there are various modifications of the progressive lever, all if which may be employed to form the connection between the piston and the follower of the press, on the principle invented by Mr. Tyler; but the arrangement selected and adopted by him is represented in the accompanying engravings, in which Fig. 3099 is a front, and Fig. 3040 a side elevation.

In this arrangement the bed a is inverted and attached to the under side of a beam b of the frante, oo the upper side of which beam is secured the cylinder c, of the steam-engine, to avoid undue strain on the frame; for in this way the beam is simply exposed to a crushing force.
Within the eylinder there is a piston of the usual construction, the rod d of which is provided on op posite sides with cogs $c c$, to form two racks which engage the cogs of two sector-racks $f f$, that turn on fulcrum-pins $g g$. As the fulcrum-pins of these two sectors have to bear the lrunt of the power applicd, the boxes in which they turn are secured at the angles formed by a cross-beam h, and the sides $i i$ of the frame, and from the under side of this cross-beam, there are tro diagonal braces which extend down to, and rest on the beam b, each side of the steam-cylinder.

The sectors are connected with the follower l of the press by means of four connecting-rods $l l l l$, two oli each side.
The steam-cylinder is provided with the requisite steam and discharge pipes and valves, by means of which the attendant admits steam from a boiler to the under side of the piston, and, at the end of the operation, permits it to escape.

From the foregoing it will be seen that when steam is admitted the piston is forced up, which causes the two sectors to vibrate, and by reason of their connections to draw up the follorrer, forcibly compressing the cotton between its upper surface and the under surface of the bed until the cotton is compressed into a bale m, of the required density, which is then tied up in the usual way.

It will be observed that the line of action of the piston-rod on the two sectors is always at the same distance from their fulcra, so that these two will be constant levers during the entire operation, but the connecting-rods attached to the follower being jointed to the sectors, as these vibrate upwards, the lines of the rods gradually approach the fulcra; hence the leverage of these comections gradually decreases during the operation; and from this it follows that the leverage power with which the piston acts on the follower, gradually increases in the ratio of the increasing resistance of the cotton.
This is a good form of press, both from the soundness of the principle on which it rests, and the simplicity of the mechanical arrangement employed to carry out that principle. In practice it is found to economize fuel and labor, and is so easily managed by ordinary hands that it will superseds many other presses for this purpose.

A piess similar in principle to this, but worked by hand instead of power, is used in many of the smaller cotton factories for the baleing of goods.

PRESS. Dick's Anti-Friction Cam. For punching and shearing iron and metals, a new principle of press has been introduced by Mr. Dick of Meadrille, Pennsylvania, called the anti-friction cam: the machincs are extensively made at Holyoke, Massnchusetts. The principle of their construction will be readily understood from the following cuts and description :

Fig. 3102 reprents the eleration, Fig. 3103 a section, and Fig. 3104 the combination of cams on a larger scale of one form of these presses intended for a punch. A A are two eccentric wheels; B is a roller between; cc are two pairs of sectors, constituting the burings of the axes of the eccentric

wheels; D D are sections of the follower and bearing of the sectors. The axes of the sectors are angre lar or edge shaped.

The centre roller B is made to revolve by means of the winch or levar L., which earries by its tractive qualities the two eccentric wheels A A, the axes of which having their bearing on the face of the sectors.

are transferred the length of their faces right and left; and as the sectors are edge shaped at their centre of motion oo, they necessarily revolve free from the impediment of rubbing surfaces, and consequently without friction.

When the eccentric wheels have made their revolution, the follower will have moved the sum of two ececntrics. When the press is constructed so that the follower moves down, a epring G may be used to return the moving parts to their places when the press is relaxed.

Another combination consisting of eccentric sectors with a centro roller, or it may he made witt. plansectors and eceentric roller, constitutes another form of the prefs which is well ndapted to purpoms requirime but litto movencut or traverse of thu follower.
 ocaring. lig. Blog is an c.
stituting the axes of the sectors. Fig. 3107 is a view of the same as it is set in the frame, with one silfe of the frame removed. Fig. 3108 is an edge view of the same with frame and lever all complete.

For further illustration of mechanical devices which may be ranked among presses, see Enbossines Machine, Puncimeg and Simaring Miciune, Printing Prese, etc., etc.

PRINTING MACIIINE, S. W. Francis' Patent. The principal feature of this invention consists is arranging a row of hammers in a circle, so that, when put in motion, they will all strike the same place, which is the centre of the said circle. The paper is not touched by the operator till the page is finishel, ${ }^{1}$,eing worked by means of a spring and catch, so connected with the keys, that it moves the paper the distance of one letter whenever a key is struck. On the face of each hammer a letter is cut in relief, in such a position, that its impression on the paper is parallel with those of the others. When within four letters of the end of the line, a little bell rings, giving notics to the opeator that the word, if of more than one syllable, must be divided by a liyplen. At the end of each line, the "ear," which. carries the paper, is drawn back, and the paper is moved the distance of two lines, in a direction perpendicular to the printed line, by means of a catch hereinafter described. The keys are comected with actions sumewhat similar to those used in pianos, by meaus of wires and bell-cranks, which antnate the hammers. There is also an arrangement for rendering the simultancous action of two or more hammers impossible. It is obvious that by causing two or more hammers to strike against each other, serious in--ury would be caused-rendering machines, where kev-boards are used, practically useless.

Fig. 3109 represents a top or plan riew of the machine (in part); fig. 3110 a detailed section of an action and hammer, and fig. 3111 an open and front view of the stop-bolts beneath the keys, for the purpose of preventing the downward motion of more than one at the same time.
(Fig. 3109). B is one of the sides, which together with the cross-oars F and C, fig. 3110, furms part of the frame to which all parts of the mechanism are secured. Fig. 3110. The keys $K^{2} L, K^{\prime \prime} L$, are disposed in a longitudinal series under the cross-bar C. They all carry a counter weight M, which brings them by gravity to rest against the board A. Their downward motion is checked by a cross-bar into which the screw R enters- two $;-$ act as guides for each key. Under and between the keys, (fig. 3111,) a row of vertical stop-bolts $P Q, P^{\prime} Q^{\prime}, P^{\prime \prime} Q^{\prime \prime}$, are pivoted by screws $R, R^{\prime}, R^{\prime \prime}$, and are in contact with each other; the tops are bevelled on both sides, and are lodged in corresponding recesses of and between the keys. The recesses are made twice as large as the tops of the stop-bolts $P Q, P^{\prime} Q^{\prime}$, which enter them. By this arrangement it is impossible to bring down more than one key at the same time; for supposing a ley K^{\prime}, depressed, the stop-bolt $P Q$, placed on the left side of the key, with all the other stop-bolts on the same slide is pushed simultaneously in the same direction. The same effeet is produced on the right side beginning with stop-bolt $P^{\prime} Q^{\prime}$, and so on. If, however, it is attempted to bring down two keys at once, all the stop-bolts between them, being equally pressed to the left and right, will keep their places directly inder the spaces between the keys, whereby the two keys which are acted upoa, are prevented from coming more than $\frac{1}{15}$ of an inch.
(Fig. 3109.) The keys are connected with the "actions" by meaus of wires $V, V^{\prime}, V^{\prime \prime}, S, S^{\prime}, S^{\prime \prime}$, and bell cranks $T, T^{\prime}, T^{\prime \prime}$. These actions and the hammers are attached to a circular frame Y, (in fig. 3110 , which is fastened to central opening of the board A, (fig. 3110). Each action is composed of a rocker p movable on a fulcrum, of a pawl p, having its fulcrum attached to the upper end of the hammer at Z. When a key K, is depressed, that part of it to which the wire S is attached at $o^{\prime \prime}$, pulls upon the rocker p^{\prime}, moving the pawl p, and thereby causing the hammer V^{\prime} to strike the stul Pl.
(Fig. 3109). An arm k projects, from which hangs a stud, fig. 3110, against the end of which all the hammers are made to strike. This arm moves on a cam, and is turned up on either side, while the paper is put in the car $g^{\prime} d c^{\prime}$, which moves on rails c, b^{\prime}.

The inking is effected by a silk band p, which is carried on four pulleys similar to l, secured on twe sliding brackets similar to $z u$. The brackets may be elerated when the band is inked-it retaining ink for four days. The paper is carried upon a "car," sliding between two rails $c b^{\prime}$; this car consists of a quadrangular frame $d^{\prime} e^{\prime} f^{\prime \prime} g^{\prime}$, supporting two rollers $h^{\prime} i^{\prime}$, and the heavy flat bar J^{\prime}, to which the latter is united by means of levers $p^{\prime} q^{\prime}, n^{\prime} n^{\prime}$, and rod m^{\prime}, in such a manner, that when J^{\prime} is raised from the frame, along a circle the centre of which is at n^{\prime}, the roller i^{\prime} is equally raised by moving round the axis $p^{\prime} q^{\prime}$. The paper to be printed is first placed upon the roller h^{\prime}, the roller $i^{\prime \prime}$ is then brought down upon it, and the weight of the bar J causes the rollers to hold together.

The car is propelled by a spring power, which consists of a spiral spring pulling the car by means of string s^{\prime} passing over pulleys in a direction contrary to the lines to be printed. To the opposite end of the car is attached a cord a^{\prime}, which, passing over a pulley, winds around a barrel $b^{\prime \prime}$; the latter is firmly mounted upon ar romd dise $c^{\prime \prime}$, which is furnished with a row of pins near the periphery thereof. d^{\prime} is a catch; on the under side it has a notch, through which the pins may pass in one direction only; this is effected by means of a spring which causcs the opeming by the pressure of the pins against it, thus establishing a bar against the passage of the said pins; bence, against the revolution of the dise in that direction. The eatel is comected by a proper system of leverage with the frame $g^{\prime \prime} h^{\prime \prime}$ and the side of the cascing. The frame bears against a stud by means of a spring, but when acted upon by either of the levers L, (fig. 3110 ,) it will also actuate the catch by withdrawing the spring from the said pressure of the pins. The spring thus relaxed allows the passage of one pin, but backs against the next following one. These are the means employed to feed the "car," and consequently the paper, the distance of one single letter, until the whole line is completed.

The knob $q^{\prime \prime}$, is then pulled so as to bring the stud Pl ., (fig. 3110,) to bear against the first letter of the next following line. The moving of the paper in a direction perpendicular to the lines is effected by means of a spider-wheel $r^{\prime \prime}$, made fast to the shaft end of the roller $i^{\prime \prime}$, and by means of a lever $S^{\prime \prime}$, and epring u. When the car is pulled to the right, one of the spokes of the spider-wheel v^{n} is pressed against the inclined side of the lever $S^{\prime \prime}$, and is turned the distance of two lines; but when the car goes back, the spring u plays and the position of the spider-wheel $v^{\prime \prime}$ remains unchanged. The putley similar to l is

free on the shaft of the band pulley, and carries a ratchet so arranged in relation to a ratchet wheel upon the shaft, that when the car is moved to the right the pulley turns frecly, and when the ear moves to the left, the pulley carries the other pulley with it; the band is thus caused to follow the movements of the car, and every letter strikes it in a different place. The band is placed between two pieces of paper, a thick one below and a thin one above; by this means two copies are printed at the same time and with equal facility.

The above description with the cuts, explains fully the construction of a machine necessarily somewhat complicated, but not necessarily liable to derangement by nse. On examining the above ent or perspective vicw of the complete machine, it will be seen to resemble a piano in its general form and arrangements, in its finger-board, and in the position of the manascript or rather proof. The keys respond as easily to the touch, and the letters appear on the paper in front of the operator. The average size of this portable machine is two feet square, not much lurger than a writing desk.

IRINTING-PRESS, LITHOGRAPHIC. Fig. 3109 is a front elevation of a lithographic printing press, by William Saiart, of London. The principle of it consists in the whole of the press-work, with the ex-

ecption of the operation of laying on and taking off the paper, being performed by a series of movementa resulting from the first motion given to the machine, and not requiring the aid of hand labor to perform the work as heretofore. A portion of the standard frame is removed at one end. A A are the standard and body frames of the machine. BE is the driving-shaft and pinion, receiving motion from steam or any motive agent, and communicating the same to the wheel C, which takes into and geers with D, thereby giving motion to the wheel G, which drives the pinion F. Keyed on the main shaft with the
pinion l' is a large toothed wheel H. moving luo ely on its ren're or shaft, the periphery of which is perforated with the stud holes at the side, of sufficient size to emable the stads, wheh haralht in contact with them, to enter into and take holl of the whel 11 ; for this purpoee al rim; or diak of metal keyed to the main shaft with the projecting studs is employed, so that by any lateral action, catued by a shifting cluteh-box on the main -hatt, the wheel If may be couphed with the tixel li-k by the stul) entering into and uniting the two together, amb revolve with the main shaft; monned, aloo. upon this shaft, there is a concentric double-action motion rack I, in which a pinion takes into, fir-t on the outside thereof, thereby causing the toothed wheel II to be thrown in play during the pintinr proces- in one direction; and secondly, on the inside, ly pasing throurh an up.ring in the periphery of the rack, and reversing the whee. J is a horizontal rack, mons lompitudinally in the direction of a machime in a suitable iron bed, in geer with the large tonthel whed 1 . Kis a wonden bel or slewper fixed to the
 surplus bead standards carrying the wetting and inking appatatus; this part of the improvement consists in giving motion by means of the endless strap from the driving rirger on the man shate to the doctor ink-roller, which revolves at rightangles with the supply an l distrimutins rollers situated underneath, in the moner represented by the figmes $1,2,3,4,5,6,7,8,9 ;$ for example, by the rewhtions of the ruller-2 ? moving on the face of the doctor they receive ink therefrom and coney it, through the intervention of wher rollers, to the stone, thereby completine the proces of inking in the manoer de-
 tube pase ns throurh the buttom of the box with their upper ents abwe the strace of the water, Whist their lower ents communcate with the sponge. A wap of cotton is place 1 in the upper ents of the tubes, an allowed to descenl into the trourh helow the water, which canser, be capillary attraction, the water contained in the trough to pasi down the tubes in connection with the -pouge, and sup: hy it with water withont overcharging it. This box is brought down on the curface of the stome when pacing un hor for the purpme of wetting and remain* until the subsegrent proceso of inking is performe i, when, upon the stone returning to the entre of the machine from which it stante 1 , weceise the paper, the action of a cam, so operatine upon a verical rod in comection with it, cusces the box to be rais i an l the - tono to pras out in readiness for the next operation. () is a small framine momute 1 on the boly standards A, for carving the seraper and tympan-roller I'. Q i- the serap re fixel to at atom cros-heal, which is regulated to an. height by the sermen in the centre s is the trmpan-elath. which is fixel at one end to a bar T; the other end is cuile 1 round a roller P, on the shaft of which a pulley-wheel is fixel, having a eord or mpe baring on it in such a manner that he the effect of this rope passing over another pulley, suspended at a di-t:nce apart, as shown, it shall calls', by the action of a weight at one emb, the tympan eloth to be kept stretched, wo that when the tranorine frame with: the store, is paising moler hie scraper, it may eately hold of the bar 'T, and by the onward motion of the traversing frame unwin! the tympan-eloth an! hav over the stone until it shall have pascol under the scraper ant completed the printine operation. When, by the presure beme with drawn from anderneath the stone, the weirlat suspalad fon the end of the corl in ennection with the pulley P in Hen the medium throngh which the bed and stone is driven back into the contre of the mathine realy for the mext operation, by reason of the weight acting in such a manner that when the tympan-clut) has been unvound and place. 1 on the surface of the stone, the mole of agatin winding it up is only effectel by the proxinity of the bar T to the roller I ' producing the diminution in the space from the contraction of the tympan-eloth. To apply the power to the seraper and the traversitif-frame, a pressume roller is employed, actuated by a cam prolucing prosure at giventimes, such th when the stome is pas-ing unfor thescraper ; but as soon as it has performeal such operation the pressure will be withfrawn, and the means comployed to assist its retum ren lerel free to act. 'There is an arancement
 - Lhes of the frame-work, and touches the bose of the cam-wheel V , to which is attachel a concentric

 laterally within the limita of it- halerum by the rotation of a sam placed on the sides of the temethel

which it is taken by a ducter roller an 1 tran-fered, by a vibrating distribucing roller, to the evfindrical distributing table; the fountain-roller reveives a slow and continums rotary motion, to carry up the ink from the fountain.

The large eylinder being put in motion, the form of types thereon is, in succe-ion, carried to fuar or more corresponding lonizontal impression cylinders, arranged at proper distmee around it, to give the impression to four or more shects, introduced one by each impression cylinder. The fly and feed boardof two of the impresion cylinders are smilar to those on the well-known double-cylinder prese; on the other two, the sheet is fed in below and thrown out above. The sheets are takin directly from the feed-board by iron fingers attached to each impresson cylinder. Between each two of the impression cylinders there are two inking-rollers, which sibrate on the distributing surface while takimg a supply of ink, and at the proper time are caused to rise, by a cam, so as to pars were the form, when they again fall to the distributing surface. Wach pare is lucked up upon a detached serment of the lare "ylinder, called by the compositurs a "turtle", and this constitutes the bel an I chase. The column-rules run parallel with the shafts of the cylinder, and are consequently straight; white the head, adrerti-ing. and dash rules are in the form of segments of a circle. A cross-section of the columm-rules would present the form of a wedge, with the small end pointing to the centre of the erlinder, so as to bind th. types near the top; for the types heing parallel, instead of radiating from the centre, it is obvious that if the column-rules were also parallel, they must stand apart at the top, no matter how tight they were pressed together at the base; but with these wedre-shajed column rules, which are held down to the bed or turtle by tongues, projecting at intervals along their lengel, and sliding in rebated grooves ent crosswise in the face of the bed, the spice in the growes, between the column-rules, beine tilled with sliding blocks of metal, accurately fitted, the outer surface level with the surface of the bed, the ends next the column-rules being cut away mederneath to receive a projectio: on the silde of the tongese, and screws at the end and side of each page to lock then torether, the types are as secure on thit eyinder as they can be on the old that bed.

Fig. 3112 represents a press with four impression eylindere, capabie of printing 10,000 impressions per bour. Four persons are required to feed in the sheets, which are thrown out and laid in heaps liy self. acting flyers, as in the ordinary cylinder presses. A press with eight impresolion evlinders will print 16,000 or more impressions per hour.

 and the equality of the werli de mel.

Single small-cylinder printing-machine.-Fig. 3114. In this press the form of types is placed upon a flat bed, and the impression taken upon the paper by means of a eylinder, while the form is passing under it. The small size of the cylinder allows the machine to be constructed in a very compact manner, so as to shorten the distance which the bed travels, thereby considerably increasing the number of moressions in a given time, beyond the single large-cylinder press.

This machine is of convenient height for use. One person only is required to feed down the paper whose position is but a step from the tluor. It will give from 2,000 to 3,000 impressions per hour, with perfect safety to the machinery. The printed sheets are thrown out by a fly-frame in a miform pile. Register suffieiently accurate for newspaper and job work is obtained by the patent feed-guides, which are attached to each press. When required, a registering or pointing apparatus is furnishen, and the press may then be weed advantageously for book-work.
The press is made in the same manner as the double-eylinder press deseribed above, with buffers similarly arranged to prevent noise.
Double-cylinder printing-machine.-Fig. 3115. In its arrangement this press is similar to the single small-cylinder machine ; except that it has two impression cyluders each alternately giving an impression from the same form. The sheets are supplied by two atten lants, and, if requred to print short eflition: of varions sizes, it will be neceszary to have a boy at each end of the press to receive the printed sheets; but where large editions or forms of uniform size are worked, not requiring frequent changes of the tape-wheels, the self sheet-flying apparatus is very efficient and coonomical, placing the printed shects in heaps with precision, and dispensing entirsly with the two boys otherwise required for that purpose.

The large amount of printing ordinarily done on these presses, and the consequent speed required. have rendered necessary greatly increased strength and weight of material in all the part-, together with

simplicity in the mechanical arrangements, and the utmost perfection of workmanship. The noise and annoyance occasioned by the concussion of the bed against the springs, which are placed at each end on the machine to overcome the momentum of the bed, has been removed by means of adjustable indiarubber buffers placed at the points of contact, which in no way interfere with the hively and certain action of the spiral springs.

Patent machine card-press.-Fig. 3116. For printing cards and small circulars, this machine is not surpassed. It is worked by either a crank or treadle, and will print from 1,000 to 1,500 cards per hour and may be used also for printing note-paper and small circulars. Its feeding apparatus for cards is self-acting. Size of chase inside $6 \frac{1}{4}$ by 5 inches.

Improvel lithographic-press.-Fig. 3117 . This is believed to be the best press in ase for lithographic printing. The side-rods and top beam are made of wrought-iron; the bed and stone are raised to the scraper by a lever and steel cam, working on a steel friction-roller; the impression is reg.lated by a

alagle screw through the top beam; the scraper is hung on a pirot, that it may accommodate itself to incgualities in the surface of the stone; the bed is made of the toughest ash. plated with iron, with iron
ranners, which run on friction-rollers; the tympan-frame is wrought-irca, with screws and nuts for st etching the tympan. The larger sizes are gecred, so as to enable the pinter to take an impression from the largest stone with ease.

Coprerplate-press-3118. The side-frames, cylinders, and belare made of cast-iron; the cylindera are turned and the bed planel perfectly true. The shafte throwgh the eytuders, the braces, arms, and screws, are of wrought-iron, the bearings of corupo-ition.

PROJECTION. Projections arte of varine kink a cording to the wituations in which the eye is supposed to be placed in re-pect of the body and the plane on whirh it is to be projected; but there are three which, by rea*on of the frequency of their wee, are particulaty decerving of attention, namely the orthographic, the sterengraphic, and the central or snmontic:

1. Orthoyraphic projection.-In this projection the rye is supposed to be at an infinite distance, and the plune of prejection, i. a, the plane wh which the representation is made, perpen licular to the dires. tion of the rays of light, which are all parallel to each other. The latws of this projection are earily de luced. 1. Any j) int in spare is projected ly drawine a straight line from it perpendieular to tha
 A *traight line parallel to the phane of prejection is projected into an ergual staight line; and a memight line inclined to thes plane of propection, it prejectel mes a stratight lime which is shonter than the firet in the propertion of the csume of the angle of inclimation to radine 3. A plane surfore perpendientar to the platne of projection is proje to I intuat raight lise. I. A cirche parallel to the phane of projections

 that diameter multiplient by the ro ine or the ohblemite.
'The erthegraphic projection hat a mulutule of ngiplica ions. The plans and sertions by which arti

 right and oles to cmbly whar.

 form the pmitum of the eye.

2. Cimomonic or central frojection In this projeet on the rye is aita tel at the contre of the phare

point of contact is called the principal point; and the projections of all other points on the sphere are at the extremitios of the tangents of the ares intereepted betreen them and the prineipal point. As the tangents inerease very rapidly when the ares exceed 45°, and at 90° become infinite, the central projection cannot be adopted for a whole hemisphere.

PROVING MACIIINE, IIYDROSTATIC, for proving chain-cables. Figs. 3119, 3120, 3121 a.b J 3122 represent a machine designed and constructed by Wa. M. Ellis, cngineer, United States Navr Yard, Washington.

A Λ, plan, lig. 3119, water cistern, with three force-pumps

13, hydrotatic cylinder. C C, wrought-iron cross-heads. D D, wrowht-iron bars, comnecting cros* lacals C'C. F, granite sill.

H, screw-wheel, for forcine back the ram.
1., Fig. 3120, compound fevers, for ascertaining the strain: proportion, 1 to 200. Fir. 3120, section.

which forces outward the ram or hammer E, which, when released from the cam, a powerflal helical spring which is inserted into a cavity in the outer end of the ram throws forward against the loop of iron and upsets it-the opposite end of the loop, or ball, or bloom being supported against the heavy flanch F, which is east upon one of the bed-rollers, and serves as an anvil against which to upset or hammer the blooms. G, spur-wheel on the end of the shaft that supports the cam A. H, spur-pinion on the drivingshaft I. This piniou works into two others of corresponding size, one on the end of each bed roller. This driving-pinion II being interposed between the two on the bed-rollers and the spurwheel G, gives the peripheries of all the rollers and the cam a direction the reverse of the periphery of the ball C , and all being in motion no waste or abrasion of the hot iron can ensue, as the ball must necessarily revolve upon its axis and be retained in proper place between the rollers and compressers I, shipping-bar. J, shaft communicating with the driving power.

Advantages.-1. Great expedition in shingling puddters iron, one of these machines being sufficient to do the work for 25 pudding furnaces. \because. The almost entire saving of shinglers' wages. 3. No waste of iron-turning out the blooms while very hot, enabling the roller to reduce them to very smooth and sound bars. 4. Searcely no expense for repairs. 5. A very small amount of power re quired to operate it. 6. The ends of the blooms being thoroughly upset.

PULLEY. Sce Mechanical Powers.
PUMPS.-The common pump. Fig. 3123 represents a section of the common suction pump. AC is a cylinder or barrel, in which a piston P is moved up and down by means of a piston-rod R, attached to the extremity of the lever, RH , of the first kind. In the piston is a valve v liftingo upicards; and at the bottom of the barrel is another valve Y, also lifting upwards. A B is a pipe, passing from the bottom of the barrel into the well from which the water is to be raisel.

In the downward stroke of the piston, it plunges amongst the water in the barrel of the pump; the valre V closes, and the valve v opens, and allows the water to pass to the upper side of the piston. In an upward stroke the valve v closes, and the valve V opens, and, by the pressure of the atmosphere, the water follows the piston in its ascent, whereas the water abore the piston is pushed before it, and thus the fiuid is discharged in a stream at the mouth C of the pump; and so on to any number of strokes.

If a perfect vacuum were formed by the piston as it ascends, the water would be raised, on an average, to the height of 34 fect above the level of the water in the well, which is the height of a columu of water calculated to balance the average pressure of the atmosphere.

The common forcing mump. - This pump, Fig. 312t, raises water from the well into the barrel on the principle of the suction pump just described, Fig. 3123, and then the pressure of the piston on the water elevates it to any height that may be required.

Here 1 ' is a solid piston working up and down in a barrel: Y a valve, lifting upwards, placed at the top of the pipe descending into the well ; v a valve, also lifting upwards, placed in a pipe D, which conveys the water to the cistern.

In a descending stroke of the piston, the valve V eloses and the valre v opens, and the water, being pressed before the piston, is forced up the pipe D to the higher level required; on the contrary, in an ascending stroke, the valve x cluses by the pressure of the external air and the water in the pipe D; the valve V opens, and the water rises into the barrel of the pump by the pressure of the atmosphere on the water in the well; and so on to any number of strokes.

The forcing pamp with an air-chamber.-This engine, Fig. 3125, merely differs from the preceding one by having an air-chamber ce? comected with the vertical pipe \mathbf{D}. This air-chamber is a closea vessel, having the pipe D deveending into it, and a valre \boldsymbol{v}^{\prime} opening and closing its commmication witb the barrel of the pump. When the piston P ' leseends, the water is forced through the ralve ? inter the air-chamber, so that as soon as the water rises above the lower orifice of the pipe \mathbf{D}, the air in the upper part of the chamber is contracted or compressed; and this compression of the air causes it to
evert a continuous presure upon the surface of the water in the clamber, which forces the fluil ui the pipe 1), and thus a constant discharge into the cistern is sustained. In the common forcin' pump, the water is only di-charged at each duwnward stroke of the piston, whereas, in the presont case, the pressure of the air in the chamber sustains the discharge through the vertieal pipe () during the intervals taken up by the upward strokes of the piston.

The great defeet of this engine is as follows:-after the pump has been sume time in action the air in the chamber beemes absorbed by the water passing through it, so that at lengit it is fund that nearly all the air at first in the chamber has passed away with the water discharged hy the pump.

Doubli-acting pump.-This pump, Fig. 312 Q , is designed to remedy the defect of the precedingone. It is simply a double acting forcing pump. P is a solid piston which moves u_{j} and down in a crlinder; the rond of this pieton pasees throurh a stutling-box at S for the purpoee of keepine the ertinder air-tizht. On
 CD convers the water to the reservoir. There are four valves abecopany anl clusins, as the cate may be, the communcation of these pipes with the cylin ler. These valves all lift in the same direction, that is, to the right. Suppose the cylinder and pipes filled with water, then in an upward stroke of the piston, the valves a and c arc opened, and c and l are closed; the water is furce t by the piston through the valve e and then up the vertical pipe C D ; at the same time the water, by the atm sheric pressure, rises up the pipe A, and opening the valve a follows the piston in its ascent : on the contrary, when the piston descends, the valves a and e are closed, and c and b are openet; the water is then fored through the ralse c, up the vertical pipe C D, and the water from the well waters the eylinder through the valve b, and follors the piston in its descent ; and so on to any numh r of s. rolkes.
 "ach stroke has therefore mo fef rence to the eapacity of the cylinher. howew lar ge that part of one of thee pumper may be, for the liquid di phacel by the pistom cam moly le eq ath to. that part of the lat Ser that enters the eslinder. It is immateral at what part of the cylim ler the fireme or is comeline pipe is attached, whether at the bottom, near the tup, or at any intermediate phare simal pumpe of th is

 tion by slingo.
This is one of the inust valuable merlifications of the forcing pump. The frice ion of the pistum is mot

 punp and is driven up in liku mamocr.

Von. 11.-3: 1

Fig. 3129 is a pump to raise water without any frietion of solids; making use of quicksilver instead of leather to keep the air or water from slipping by the sides of the pistons. One form of it is represented by the figure. A is the suction-pipe, the lower end of which is inserted in the water to be raised. Its upper end terminates in the chamber C, and is covered by a valve. The forcing-pipe B, with a valve at its lower end, is also connected to the chamber. Between these valves a pipe, open at both ends, is inserted and bent down, as in the figure. The straight part attached to it is the working cylinder of the pump, and should be made of iron. Another iron pipe, a little larger in the bore than the last, ard of the same length, is made to slide easily over it. This pipe is closed at the bottom and suspended by chains or cords, by which it is moved up and down. Suppose this pipe in the position represented, and filled with mercury-if it were then lowered, the air in the cylinder and between the valves would become rarified, and the atmosphere pressing on the surface of the water in which the end of A is placed, would force the liquid up A till the density of the contained air was the same as before; then by raising the pipe containing the mercury, the air, unable to escape through the lower valve, would be forced through the upper one; and by repeating the operation, water would at last rise and be expelled in the same way, provided the elevation to which it is to be raised docs not excced thirteen times the depth of the mercurial column around the cylinder; the specific gravity of quicksilver being so many times greater than that of water. When the depth of the former is 30 inches, the latter may be raised as many feet in the suction-pipe and forced up an equal distance through the forcing one, making together an elevation of sixty fect; but if water be required higher, the depth of the mercurial column in the movable pipe must be proportionably increased. To make a small quantity of mercury answer the purpose, a solid piece of wood or iron that is a little less than the cylinder is secured to the bottom or the movable vessel as shown in the centre: this answers the same object as an equal bulk of mercury.

These pumps have their disadvantages: they are expensive; and however well made, the quantity of quicksilver required is considerable-the agitation consequent on the necessary movement soon converts it into an oxide and renders it useless. Great care is also required in working these machines: it

the movements are not slow and regular, the mercury is very apt to be thrown out; to prevent which the upper end of the ressel containing it is dished or enlarged. For the reasons above stated, they have never been extensively employed in the arts.

If a common atmospheric pump be inverted, as shown in Figs. 8130 and 3131, its cylinder immersed in water, and the valves of the upper and lower boxes reversed, it becomes a forcing, or, as it is sometimes named, a lifting pump; because the contents of the cylinder are lifted up when the piston is raised, instead of being driven out from below by its descent. In a lifting pump the liquid is expelled from the top of the cylinder-in a forcing one from the bottom: it is the water above the piston that is raised by the former; and that which enters below it, by the latter. The piston-rod in the figure is attached to an iron frame that is suspended to the end of a beam or lever. The valve on the top of the piston, like that at the end of the cylinder, opens upwards. When the piston descends (which it does by its own weight and that of the frame) its valve opens and the water enters the upper part of the cylinder, then as soon as it begins to rise its valve closes, and the liquid above it is forced up the ascending pipe. Upon the return of the piston the upper valve is shut by the weight of the column above it, the cylinder is again charged, and its contents forced up by a repetition of the movements. Machines of this description are of old date. They were formerly employed in raising water from mines.

Lifting pump. -The modern form of this pump is represented in Fig. 3132. The working cylinder being generally metal, and having a strong flanch at each end: the upper one is covered by a plate with a stuffing-box in the centre through which the polished piston-rod moves; and the under one her mother to which the suction-pipe is attached, and whose orifice is covered by a valve.

The fire-ongine.-This engine, Fig. 3133, is simplr a combination of two forcing pumps, having a common air-chamber II, and the same suction-pipe F descending to the water intended to supply the engine. The beam A B, turning on its centre of motion K , works the two pistons C and D ; so that while the one is deseending the other is ascending, thereby keeping up a continuous flow of water into the air-chamber II. A tlexible tube E, of leather, called a hose, is attached to the discharge-pipe, to enable the engine-man to direct the stream of water upon any particular sput. The degree of compression attained by the air in the chamber regulates the velocity with which the water is projected from the nozzle L of the hose.

If, for example, the air be compressed to one half its original bulk, then it will act upon the surfuee of the water in the chamber with a jressure equivalent to that of the atmosphere, and the water would be raised in the pipe E to the height of about 34 feet, or it would be projected from the nozzle L with a velocity equal to that which a body would acquire in falling frecly, by the foree of gravity, from this beight.

The chain pump.-This engine, Fig. 8134, consists of a continuous chain A BC, to which are attached a series of pistons or buckets for raising the water. This chain passes downwards through the wooden tule E, and returns upwards throzgh C, extending over two sprocket wheels (! and J. The arms ir teeth of the upper wheel Q, acting upon the notches or teeth cut upon the links of the chan, put the chain of pistons or luckets in motion. The lower portion CD) of the ascending tube is lined with a brass barrel, in which the pistons or buckets are fitted; so that whilst they are ascending through this barrel, the water is lifted and diseharged at the tup A of the tube. The nineed Q is turned by a winch. a shows the shape of the links forming the clain, b the seetion of the pinion or buckets.

Rotury pumps. -Two erere wheels, the teeth if which are fitted to work accurately into each other, are inctosed in an melliptical case. The sites of these wheces turn cluse to those wf the case, so that water cannot enter between them. The asle of one of the wheds is continued through one side of the case, (which is removed in the firure to shan the interinr,) and the arening made tight by a stuthing. box or collar of lather. A crank is applied to the cond to tum it, and as one whed revelves, it ane. ceswarily turns the other; the direction of their motions beine indiated ly the arrows The water that chters the lower part of the case is swop up the rals by cach cong in rotation, man as it cammet return betwe+n the whels in conserpunce of the cons being there mand in contact, it munt medes warily riee in the asending or forcing pine. The mathine is, therefore, both a sucking and forcing one. Of rotary pmone this is not only ons of the oldent, but ome of the best. Fire orgine made on the samas
 kiad in this comntry.

Rotary pumps may be divided into elasen meording to the forms of and methonta of werking the
 abtained. It is this last that receiven the force of the water whon impelled forwards by the pisten it also presenta the liquid from being swept le the latter entirely round the eylinder or enteriar anse
 in rotary pumpe. In sume the lontmona mre movalle pieces that are made to draw hack tuallow the

passing with them. In other pumps the butment is obtained by the contact of the peripheries of $t w e$ wheels or cylinders, that roll on or rub against each other. Fig. 3135 is of this kind: while the teeth in contact with the ends of the case act as pistons in driving the water before then, the others are Bitted to work so closely on each other as to prevent its return. Fig. 3136 exhibits another modification of the same principle.

Eve's patent rotary stcam-engine and pump.-Within a cylindrical case a solid or hollow drum A, Fig. 3136, is made to revolve, the sides of which are fitted to move close to those of the case. Three projecting pieces or pistons, of the same width as the drum, are secured to or cast on its periphery: they are at equal distances from each other, and their extremities sweep close ronnd the inner edge of the case, as shown in the figure. The periphery of the drum revolves in contact with that of a smaller cylinder B , from which a portion is cut off to form a groove or recess sufficiently deep to receive within it each piston as it moves past. The dianeter of the small cylinder is just one-third that of the drum. The axles of both are continued through one or both sides of the case,and the opening made tight with stuffing-boxes. On one end of each axle is fixed a toothed wheel of the same dianeter as its respective cylinder; and these are so gecred into one another, that when the crank attached

to the drum-axle is turned (in the direction of the arrow) the groove in the small cylinder receives successively each piston; thus affording room for its passage, and at the same time by the contact of the edge of the piston with its curved part, preventing water from passing. As the machine is worked, the water that enters the lower part of the pump throngh the suction-pipe, is forced round and compelled to rise in the discharging one, as indicated by the arrows. Other pumps of the same class have guch a portion of the small cylinder cut off, that the concave surface of the remainder forms a continuation of the case in front of the recess while the pistons are passing; and then by a similar movement

Na that used in the figure described, the convex part is brought in contact with the periphery of the drum till the piston's return.

All rotary pumps are both sucking and forcing machines, and are generally furnished with valres in both pipes, as in the ordinary forcing pumps. The butments are always placed between the apertures of the sucking and forcing pipes.
There is another class of pumps that bears some relation-hip to the preceding ; one of these is shown in Fig. 8137. The butment consists of a curved flap that turns on a linge; it is so arranged as to be received into a recess furmed on the rim or periphery of the case, and into which it is furced by the piston. The concave side of the flap is of the same curve as the rim of the case, and when pushed Gack forms a part of it. Its width is, of course, equal to that of the drum, against the rim of which its lower edge is pressed; this is effected in some pumps by springs, in others by cams, cog-wheels, \&e, tixed on the axles, as in the last one. The force by which the flap is urged against the drum must exceed the pressure of the liquid column in the discharging pipe. The semicircular pieces on the outer edge of the case represent ears for securing the pump to planks or frames, de., when in use. The arrows in the figures show the direction in which the piston and water is moved.

Nearly a hundred years before the date of Watt's patent, Amontons communicated to the French Academy a description of a rotary pamp substantially the same as represented in Fig. 3137. It is figured and described in the first yolume of Machines Approun., p. 103: the body of the pump or case is a short cylinder, but the piston is elliptical, its transverse diameter being equal to that of the cylinder, hence it performed the part of two pistons. There are also two flaps ou opposite sides of the cylinder.

In other pumps the flaps, instend of acting as butments, are made to perform the part of pistons; this is done by hinging them on the rim of the drum, of which, when closed, they also form a part: they are cloned by basing under a permanent projecting piece or butment that extends from the case to the drum.

In Fig. 3139 the butment is movable. A solid wheel, furned into three spiral wings that act as [istons, is turned romed withon a celindrieal case. The butment IB is a piece of metal whose wheh is egual to the thicknes of the winge, ur the interior breadth of the eylimer ; it is mate to slide themegh a btuffing box on the top uf the case, and by its eceight to descend and rest upon the wings. Its uyper part terminntes in a rod, which, pawing between two rollers, preserves it in a perpondicular position. Aa the wheel i- turned, the phint of eath wing (like the cong of the whed in Fig e 135) pashes before it the water that caters the lower part of the eylinder, and drives it therogh the vatse intor the asconding pipe A; at the sane time the butment is gradually mased by the curve I surface of the wine

 beneath it ;) the pewor (or work this pump, is the fefore more than domble the amount which the water

Fig. 3140 represents another rotary engine. This is also a reinvention. Like many others, it con sists of two concentric cylinders or drums, the annular space between them forming the pump-chamber but the inner one, instead of revolving as in the preceding figures, is immovable, being fixed to the sides of the outer one or ease. The piston is a rectangular and loose piece of brass or other metal accurately fitted to occupy and move in the space between the two cylinders. To drive the piston, and at the same time to form a butment between the orifices of the induction and eduction pipes, a third cylinder is employed, to which a revolving motion is imparted by a crank and axle in the usual way. This cylinder is eccentric to the others, and is of such a diameter and thiekness that its interior and exterior surfaces touch the inner and outer cylinders, as represented in the cut, the places of contact preventing water from passing: a slit or groove equal in width to the thickness of the piston is made through its periphery, into which slit the piston is placed. When turned in the direction of the large arrow, the water in the lower part of the pump is swept round and forced up the rising pipe, and the void behind the piston is again filled by water from the reservoir into which the lower pipe is inserted. This machine was originally designed, like most rotary pumps, for a steam-engine.

In others the pistons slide within a revolving cylinder or drum that is concentric with the exterior one. Fig. 3141 is a specimen of a French pump of this kind. The butment in the form of a segment is secured to the inner circumference of the case, and the drum turns against it at the centre of the chord line; on both sides of the place of contact it is curved to the extremities of the are, and the sucking and forcing pipes communicate with the pump through it, as represented in the figure. To the centre of one or both ends of the case is screwed fast a thick piece of brass whose outline resembles that of the letter D; the flattened side is placed towards the butment, and is so formed that the same distance is preserved between it and the opposite parts of the butment, as between its convex surface and the rim of the case. The pistons, as in the last figure, are rectangular pieces of stout metal, and are dropped into slits made throngh the rim of the drum, their length being equal to that of the ease, and their width to the distance between its rim and the D piece. They are moved by a crank attached to the drum-axle. To lessen the friction and compensate for the wear of the butment, that part of the latter against which the drum turns is sometimes made hollow; a piece of brass is let into it and pressed against the periphery of the drum by a spring.
3141.

In Fig. 3142 the axis of the drum or smaller cylinder is so placed as to cause its periphery to rub against the inner circumference of the case. Two rectangular pistons, whose lengths are equal to the internal diameter of the case, cross each other at right angles, being notched so as to allow them to slide backwards and forwards to an extent equal to the widest space between the two cylinders. The case of this pump is not perfectly cylindrical, but of such a form that the four ends of the pistons are always in contact with it. An axle on the drom is moved by a crank. Fire-engines have been made on the same principle.

Rotary pumps are as yet too complex and too easily deranged to be adapted for common use. To make them efficient, their working parts require to be adjusted to each other with unusual accuracy and care: their efficieney is, by the unavoidable wear of those parts, speedily diminished or destroyed. The expense of keeping them in order exceeds that of others; and they cannot be repaired by ordi nary workmen, since peculiar tools are required for the purpose.
'This remark holds true of all the rotary pumps we have seen, including Gwynne's, which is nothing more than Dimpfel's fan, Fig. 1612, applied to raising water; it is without the merit of novelty in principle, and in practice will be found worthless for the reasons above given.

Reciprocating rotary pumps.- One of the obstacles to be overcome in making a rotary pump, is the passage of the piston over the butment, or over the space it occopies. The apparatus for moving the futment as the piston approaches to or recedes from it, adds to the complexity of the machine; nor is this avoided when that part is fixed, for an equivalent movement is then required to be given to the piston itself in addition to its ordinary one. In reciprocating rotary pumps these difficulties are avoided by stopping the piston when it arrives at one side of the butment, and then reversing its motion towards the other; hence these are less complex than the former. They are, however, liable to some of the same objections, being more expensive than common pamps, more difficult to repair, and upon the whole less durable.

Fig. 3143 consists of a close case of the form of a sector of a circle, having an opening at the botton: for the admission of water, and ano:her to which a forcing-pipe with its valve is attached. A movable
radius or piston is turned on a centre by a lever as represented; thus, when the latter is pulled down towards the left, the former drives the contents of the ease through the valve in the ascending pipe.
Fig. 3144 consists of a short horizontal cylinder; a portion of the lower part is separated from the rest by a plate where the suction-pipe terminates in two openinge that are covered by clacks c c. The partition A extends through the entire length of the cylinder, and is made air and water tight to both cads, and also to the plate upon which its lower edge rests. The upper elge extends to the under side of the axle to which the piston B is united. One end of the axle is passed through the cylinder, and the opening made tight by a stuffing-box; it is moved by a crank or lever. Near the clacks ce two other openings are made through the plate, to which the forcing-pipes are secured. These tubes are bent round the outside of the cylinder and meet in the chamber C , where their orifices are covered by clacks. Thus when the piston is turned in either direction, it drives the water before it through one or other of these tubes; at the same time the void left bebind it is kept filled by the pressure of the atmosphere on the surface of the liquid in which the lower orifice of the suction-pipe is placed. The edges of the pistons are made to work close to the ends and rim of the cylinder by means of strips of leather screwed to them. Modifications of these pumps have also been used in England as fire engines. Watt patented one in 1782 for a steam engine.

Centrifugal Pumps. If a common blowing fan be immersed in water, and put in operation, the water will be forced to the periphery of the wheel, and may be clevated in a rising main according to the velocity given to the fan. Fig. 3145 represents a side rim of Appold's centrifugal pump as exhibited at the World's Fair in
 London. It consists of a hollow disk or cylinder, 12 incles diameter and 3 inches wile on the rim, with a circular opening in the centre of 6 inches diameter. This cylinder is inclosed on both sides, excepting the central opening, and is entirely open all round the rim. The dish is placed vertically on a slaft passing throngh its centre, and on the end of this shaft is fixed a pulley for driving it. In order to raise the water, the disk is placed in the bottom of a vertical trunk, as shown in fig. 3146.

In the centrifugal pump, the velocity of the circumference must bo constant for ull sizes of pumps .or the sane height of lift; that is, a pump 1 inch diancter must make twelve times the number of revolutions fer stimute of one 12 inches dinmeter, und'both pumps will then raise the water to the sume beight, but the quantity of water delivered will be 141 times greater thun tho 12 inch pump, buing in propertion to the aren of the discharging orifices at the circmaference, of the square of tho dimmeter, when the proportion of breadth was helit the same, manely, one fonrth of tho dinmeter in ench case.

In Mr. Appold's punp, in velocity of 5on feet per minute of the circomference raised the water 1 fout high, med maintained it at that level withont discharging any; and a double velocity raised the water to eur times the height, as the centrifugal forre was proportionate to the square of the velocity; cansequently,

1,004)	"	،	"	1	"	'
$\because(\% \mu)$	"	"	"	16	"	"
4,0(0)0	"	"	"	[:1	"	

The greatest height to which the water had been rui ed, withont diaflarge, in the expertmenel whth the
 Lated height, owing probably to leakage with the greater presence.
 affect from the prower employed in raixing to the smone hight if fect, was ohtainal at the wocity of

1,678 feet per minnte, giving a discharge of 1,400 gallons per minute from the 1 foot pump. The additional velocity required to effect the discharge is 550 feet per minute; or the velocity required to effect a discharge of 1,400 gallons per minute, through a 1 foot pump, working at a dead level without any height of lift is 550 feet per minute: consequently, adding this number in each case to the velocity given above at which no discharge takes place, the following velocities are obtained for the maximum effest to be produced in each case:

Or, in general terms, the velocity in feet per minute for the circumference of the pump to be driven to raise the water to a certain height, is equal to

$$
5 \check{0} 0+\left(500 t^{\prime} \text { leight of lift in feet }\right) .
$$

In some situations where it is the most important consideration for a pump to be quickly and readily applied, that would discharge a very large quantity of water, the centrifugal pump is found very advantageous in such cases. In one instance, in putting in the foundations of harbor works at Dover, a large quantity of water of 2,000 to 3,000 gallons per minute was pumped out by one of these pumps. The centrifugal pump had another important advantage for such applications, from having no valves in action when at work, which enabled it to pass large stones, and almost any thing that was not too large to enter between the arms. The largest pump constructed at present on this plan was erected at Whittlesea Mere, for the purpose of draining, and has worked there nearly a year with complete success. The pump is $4 \frac{1}{2}$ feet diameter, with an average velocity of 90 revolutions, or 1,250 ieet per minute, and is driven by a double-cylinder steam-engine, with steam 40 lbs . per inch, and vacuum $13 \pm \mathrm{lbs}$. per inch; It raises about 15,000 gallons of water per minute an average lieight of four or five feet.

Mr. Appold considers the spiral form of the arms an essential point in lis pump, instead of the radial arms in the other centrifugal pumps. He at first tried straight arms inclined at 45°, but he found that the curved arms ending nearly in a line with a tangent to the outer circumference gave the greatest effect.

The comparative value of the different forms of arms was proved by the experiments at the London Exhibition mentioned before; the curved arms gave a duty of 68 per cent., the inclined arms 43 per cent., and the radial arms only 24 per cent.

The Spiral Pump. If we wind a pipe round a cylinder, of which the axis is horizontal, and connect one end with a vertical tube, while the other is at liberty to turn rourd and receive water and air in each revolution, the machine is called a spiral pump; it was invented, about $\mathbf{1 7 4 6}$, by Andrew Wirz, a pervterer in Zuriel, and was employed at Florence with Bernoulli's improvement, in 1779. At Archangelsky, near Moscow, a pump of this kind was crected in 1781, which raised a hogshead of water in a minute to a height of 74 feet, and through a pipe 760 feet in length. Eytelwein enters very minately into calculations of the effect of such a machine under different circumstances; and the results of the theory, as well as of experiment, recommend it for common use, instead of forcing pumps of a more complicated and expensive construction. The water-tight joint presents the only difficulty: the pipe may form either a cylindrical, a conical, or a plain spiral, and it appears to be uncertain which is the most advantageous; the vertical pipe should be nearly of the same dimensions as the spiral pipe.

The Screw of Archimedes, or the JVater-Snail, and the Water-screw. The screw of Archinedes consists, either of a pipe wound spirally round a cylinder, or of one or more spiral excavations, formed by means of spiral projections from an internal cylinder, covered by an external coating, so as to be watertight. But if the coating is detached, so as to remain at rest while the spirals revolve, the machine is called a water-screw. Eytelwein observes, that the screw of Archinedes should always be so placed, as to fill exactly one-half of a convolution in each turn; and that when the orifice remains constantly immersed, the effect is very much diminished. When the height of the water is so variable as to render this precaution impossible, Mr. Eytelwein prefers the water-screw; although, in this instrument, onethird of the water runs back, and it is easily clogged by accidental impurities. The screw of Archimedes is generally placed so as to form an angle of between 45° and 60° with the horizon, but the open water-screw at an angle of 30° only: for great heights, the spiral pump is preferable to cither.

Belidor's pressure engine, moved by water.-Fig. 3150: A conveys the descending column of water from its eource to the three-way cock F ; to one of the openings of which it is united. This cock is connected, at another opening, to the horizontal cylinder C, whose axis coincides with that of a smaller one D. Both cylinders are of the sanc length; and their pistons are attached to a common rod, as represented in the figure. Two valves are placed in the aseending pipe 1 -one helow, the other above its junetion with the cylinder D. The horizontal pipe H connects B and D with the third opening of the cocis. ly turning the plug of this cock, a communication is opened alternately between each cylinder and the water in A. Thus when the water rushes into C it drives the piston before it to the extremity of the sylinder, and consequently the water that was pre-

vionsly in D is foreed up the ascending pipe B; then the communication between A and C is cut (ff, (by turning the coek,) and that between A and D is opened. when the pistors are moved back towarls F by the fressure of the column against the smaller piston-the water previouly in C escaping throurh an opening shown in front of the cock and runs to waste, while that which euters 1) is necessarily forced up B at the lext stroke of the pistons. The cock was opened and clozed by levers, connected to the middle of the piston-rod, and was thens worked by the machine iteclt. liy the air-chamber the discharge from 13 is remilered continuous.

Suppose the water A has a perpendicular fall of thirty-four or thirty-five feet, and it was required to raise a portion of it to an elevation of seventy fect ubove F ; it will be apparent that if both pistons were of the same diameter, such au object could not be accomplished by this machine-fir both cy:inders would virtually be but one-and so woukd the pistons; and the pressure of the columen on boti sides of the latter would be equal. A column of water thirty-five feet high presses on the base that shstains it with a force of 15 pounds on every superficial inch; and one of seventy feet high, with is force of $: 0$ pounds on every inch; hence, without regarding the friction to be overcome, which arises from the rubbing of the pistons, from the passare of the water through the pipes, and from the necessary apparatus to render the machine self-acting, it is wovious in the cane suppecel that the aro:a of the piston in C must be more than double that in D , or no water could be disedarged throurh 13 . Thus in all cases, the relative proportion betreen the area of the pistons, or diameter of the evlinders, must be determined by the difference between the perpendicular height of the two columns. When the deseending one passes through a perpendicular -pace, greatly exceeding that of the ascendin; che, then the cylinder of the latter may be larger than that of the former; a amaller quantity of water in this case raising a larger one. It, however, descends like a small weight at the long end of a lever, through a greater space.

That the force which a running stream acquires may be made to drive a portion of the liquil above the source whence it flows, is obvious from several operations in nature.

The hydraulic ram raises water on this principle: a quantity of the liquid is set in motion throuch an inclined tube, and its escape from the lower oritice is made suddenly to cease, when the momentum of the moving mase drives up a portion of its own volume to an elevation mesh higher than that from which it desecmed.
The first person who is known to have raised water by a ram, de-igne l fur the purpoze, was Mr. Whitenurst, a watchmaker of Derby, in England. He erected a machine siunilar to the une represented in Fig. 3151, in 17T?.
-

A represents the spring or reservior, the surfuce of the water in which was of about the same level as the bottom of the eistern 13. The main pipe from A to the cock at the end of C , was ue:nty six lumired feet in length, and one and a half inell bore. The cock was sixten feet below A, and forri i led water for the kitelen ofliees, \therefore. When it was opene the liquid column in 10 wats put in motion, and anduired a welocity due to a fall of sixteenf feet; and as shon ats the cock was shut, the momentum of this hong colurn opered the valve, yen which part of the water ru-hed into the air vessed and up the vertical fie itan 13. This effere terk plate every time the eork was ned, amd as water
 the year," an abundance was raiged into 13 , withut ans exertion on "xpen-e.
 one just dencribed, its invention is believed to late been en mely indep ondent of the latter.

Fig. 3152 represents a simple form of Montgolfier's ram. The motive column descends from a spring or brook A, through the pipe B, near the end of which an air chamber D, and rising main F, are attached to it as shown in the figure. At the extreme end of B the orifice is opened and elosed by a valve E , nstead of the cock in Fig. 3151. This valve opens downwards, and may either be a spherical one, as in Fig. 3152, or a common spindle one, as in Fig. 3153. It is the play of this valve that renders the machine self-acting. To accomplish this, the valve is made of, or loaded with, such a weight as just to open when the water B is at rest; i. e., it must be so heavy as to ova:come the pressure against its under side when closed, as represented in Fig. 3153. Now suppose this valve open as in Fig. 3152, the water flowing through B soon acquires an additional force that carries up the valve against its seat; then, as in shutting the cock of Whitehurst's machine, a portion of the water will enter and rise in F: the valve of the air-chamber preventing its return. When this has taken place the water in \mathbf{B} has been brought to rest, and as in that state its pressure is insufficient to sustain the weight of the valve, E opens, (descends;) the water in B is again put in motion, and again it closes E as before, when another portion is driven into the air-vessel and pipe F; and thus the operation is continued, as long as the spring affords a sufficient supply and the apparatus remains in order.
The surface of the water in the spring or source should always be kept at the same elevation, so that its pressure against the valve E may always be uniform-otherwise the weight of E would have to be altered as the surface of the spring rose and fell.

This beautiful machine may be adapted to numerous locations in every country, and is coming much into use in the agricultural districts of this country. When the perpendicular fall from the spring to the valve E is but a few feet, and the water is required to be raised to a considerable height throngh F , then, the length of the ram or pipe B must be increased, and to such an extent that the water in it is not forced back into the spring when E closes, which will always be the case if B is not of sufficient length.

It a ran of large dimensions, and made like Fig. 3152 , be used to raise water to a great elcyation, it would be subject to an inconvenience that would soon destroy the beneficial effect of the air-chamber If air be subjected to great pressure in contact with water, it in time becomes incorporated with or absorbed by the latter. This sometimes occurs in water-rams; as these, when used, are incessantly at work both day and night. To remedy this, Montgolfier ingeniously adapted a very small valve (opening inwards) to the pipe beneath the air-chamber, and which was opened and shut by the ordinary action of the machine. Thus, when the flow of the water through B is suddenly stopped by the valve \mathbf{E}, a partial vacuom is produced immediately below the air-chamber by the recoil of the water, at which instant the small valve opens and a portion of air enters and supplies that which the water absorbs. Sometimes this snifting-valve, as it has been named, is adapted to another chamber immediately below that which forms the reservoir of air, as at B in Fig. 3153. In small rams a sufficient supply is found to enter at the valve E .

Although air-chambers or vessels are not, strictly speaking, constituent elements of water-rams, they are indispensable to the permanent operation of these machines. Without them, the pipes would soon ce ruptured by the violent concussion consequent on the sudden stoppage of the efflux of the motive column. See Ewbank's Mydraulics.

PUMPS, STEAM. Fig. 3154 and 3155 represent an independent steam pumping machine, patented in April, 1849, by Wortinngtov \& Baker, of the city of New York, and which is undoubtedly the best pump in use for heavy purposes.
The general principle involved in its construction is the combination of a pump with the steam-cylinfer that drives it by direct action, withont the intervention of a crank fly-wheel or any other device ior producing rotary motion. The steam-cylinder S is in all respects similar to that of an ordinary

aigh-pressure engine, with the parts as usually constructed for the admission and emission of the steam. The rod of the piston which traverses in this cylinder is prolonged and attached to the plunger P of a double-acting pủmp.

The arm \bar{A} is fastened to the middle of the piston-rod, and strikes the tappits or nuts on the valve-
rod at eachend of the stroke, in order to change the position of the stean-valve and admit steam to alternate sides of the piston. The necessary reciprocating motion of the pump-plunger is thus produced in a very simple war, with the least possible amount of friction and loss of power.

The brief space afforled in a notice of this description, will only allow of Ω glanee at the mechanical peculiarities of this machine, designed to overcome the difficulties incident to the direct application of steam, without availing of the controlling power of the crank for regulating the stroke nor of the eccentric for prodncing the proper motion of the steam-ralve. At low speed, more especially, the obvions terdency of the motion is to bring the steam-valve directly over the ports, and exclude the steam from either end of the cylinder. The patentees have obviated this serious difficulty in a manner at onee simple and effective. By a peculiar arrangement of the water passages in the pamp, the re-istance is reduced or relieved at or near the end of the struke, and thus a momentum is suddenly wenerated amply sufficient to throw the valve wide open. A modification of the ordinary slide-valve, which the patentees denominate a B valve, is shown in the drawing, and serves to admit the steam in the proper direction, without resorting to levers for changing the motion.

The pump shown at C , called the double-acting plunger pump, consists of a plunger or pluy P , work ing through a ring R, which may be made adjustable, if necessary.

The course of the water, as indicated by the arrows, is through a set of valves recting upon seat, that radiate from a common centre, and covered in by the cap $\mathrm{A}, \mathrm{Fig} .3154$, which is held firmly in it; place by the single bolt B. As all these valves are thus accessible at a moment's warning, a great source of danger from delay in relieving them from impediments is avoided.

This pump is in general use on board of steamboats, and in connection with stationary boilers, both on account of its value as an independent feed-pump, and also as a means of safety against accidents, having been found of great use as a bilge pump, and also as a fire engine.

This pump has also been employed for water supply in the city of Savannah, Ga., and Cambridge, Mass. The duty at the latter place almost comes up to that of tho best Consisil Engines. The engines consist each of two cylinders on the Wolf plan, with condensers. The cylinders are concentric, the smaller being interior, and the larger exterior; the piston of the latter being annnlar with two rods The whole machine is compact and economical, both in first cost and in working.

 two-horse portable high-pres ure boiler, complten in its if, mind weighing mider be cws.

Fig. 3157 is a front elevation of the pump and actuating steam-cylindcr, and Fig. 3156 is a corresponding side clevation or view, at right angles to the first figure. The steam-cylinder A is inverted upon the horizontal plate B , which is bolted to the top of the two-standards C , forming the framing of the machine. These standards spring from the chest D , which answers as the base of the whole, and contains the influx and efflux vessels for the water. The branch E conveys the steam to the slide-valve chest F , which is arranged in the simplest manner, the slide being worked direct from the eccentric G , on the crank-shaft H. The crank-shaft is carried in two bearings in the cross-piece of the side standards, and is connected to the piston-rod I, of the stcam-cylinder, by passing the cranked-portion, fitted with a steel slide J, thrungh the horizontal slotted cross-head K , of the piston-rod. 'The latter is prolonged below the cross-head, for the purpose of carrying
 the water plunger L, which is bored out and entered upon the rod, and secured by set screws. When the engine is not required for pumping, the plunges is disconnected by slackening these screws, and the pistonrod then works loose inside the plunger as a guide, the the power of the engine being then devoted to driving other machinery by a belt on the fly-wheel, or by connecting the crank-shaft with the machinery to be driven, by means of a link or universal joint, which, in the figure, is supposed to be broken away. The whole of the pump-work is shown by sectioned dotied lines in the base chest. The pump cylinder or barrel is at M, in the centre, and the passage N, at the top, forms the communication with the vertical influx watcr-passage O, governed by the conical lift-valve P. The bottom of this passage opens into an air-vessel Q , which, with the corresponding vessel for the discharge on the opposite side, forms the chief feature of improvement in the arrangement. The water is taken in by a pipe attached by a union joint at P , to the base chest. The discharge is by the opposite port, fitted with the lift-valve S , which opens into the tep passage Γ, communicating with the top of the discharge air-vessel U, which has a discharge pipe attached at V.

It is this neat combination of air-vessels, with the influx and efflux passages, which enables the pump to be worked at an cffective speed without injury to the different movements, whilst a constant and regular delivery is completely secured. Without a provision of this nature the barrel of the common pump is only partially filled at each stroke, and the ram is consequently driven against the surface of the water with a serious shock at each down stroke. On the other hand, in Mr. Carrett's pump, the lower ralve, at each ascent of the plunger, drains its water supply from the bottom of the induction air-vessel; which again is fully replenished by the suctional power from the reservoir. When the plunger descends, the water in the barrel is driven ibrough the upper valve into the discharge air-chamber, and makes its escape thence in a "continuous stream," under the pressure of the contained air. Thus, the pump lias a noiseless aud perlectly smooth action, with a unifurm delivery.

Our plate shows the old slotted cross-head movement as adopted for returning the plunger at each termination of its stroke, and for this purpose, as there is no great strain on the working parts, this simple plan has met with an apt application. For powers of pumps from three horses upwards, a connect-ing-rcd and vertical slide movement is substituted, and this of course is a much more suitable arrangement where the enginc is intended occasionally to exert its power through the crank-shaft.
The slotted frame is not, lowever, a mere aperture, as in the original plan adupted in steam-engines. A thin motal plate is bolted on each side, so as to provide projecting edges as guide flanges for the slideblock, and to retain the lubricating oil on the surfices where it is wanted.

Pumps like the preceding, with a fly-whecl, are better suited to constant work than to the wariable duty of feed-pump to a boiler. They must be run with sufficient velocity that the impetus of the flywheel may carry the valve sufficiently firr to open the ports. This difficulty, as has alrealy been explained, has been obviated in the Worthington pump, by relieving the pressure on the pump piston near the conclusion of the stroke. In Garrison's pump, also a direct action pump, this throw is cffected in the steam chest.
The motion is somewhat similar to the working motion of a planing machine, fig. 3080 . The roa x is the valve, and the weight r consists of a small pis'on working in a cylinder open at the upper cud to the steam pressurc, the other end connected with the exhaust. In this way the pressure of the steam is made to scrve for the weight; other direct engines have been constructed in which the valve is worked by another sma lengine.

PUMPING-ENGINE, crected at the new Dry Dock, Brooklyn Fary Yarl, Newe Fork. The pumping. engine of the new Dry Duck, at the Unitel States Namal Station, New York, is of the largest clase and possesses many interesting features. It was built at Kemble's West Point Foundry, and affords additional proof of the capabilhty of that establishment to execute the most mas-jve work in the highest degree of perfection.

 of the government dry doclis at Nuffle anl limion being the mot impertant. These, however, are of somerwhat antiquated contruction, and perses me remarkahbe gualities of excellence. The new dock nt New look buing the laren in the country, mid at the most extentive naval Etation, it wav deemed important that the machinery for exhanstins it shoulh l of the most perfect kimb, nud of great
 the tide.
 :ributed through dufirent heerghta, us follows:

110,000 cubic feet of water raised through an average height of $17 \frac{1}{2}$ feet.
110,000 " "

40,000
26
610,000
The commission appointed to devise a plan, unanimously adopted that shown in the accompanyng figures, a brief description of which is here given.

The pumps are two in number, of the kind denominated "lifting-pumps," each 63 inches in diameter of cylinder and 8 feet length of stroke. The suction-pipes (also 63 inches in diameter) are extended tc the bottom of the well, and terminate in suitable rose-picecs, with ample apertures in the sides for the

admission of the water. By this arrangement a staunch support is furnished for the insistent werght of the upper works of the pumps and the engine above. Each suction pipe is furnished with a capacious branch-piece, (63 inches diameter,) forming a connection with an air (or vacuum) chamber, situated centrally between the pumps, and extending up to the bottom of the upper (or engine) bed-plate. This air-chamber, in addition to the support received from the branch pipes, is upheld by a hollow cylindrical pillar resting on the bottom of the well. A continuation of this pillar is carried through the sentre of the air-chamber to the under side of the lower (or pump) bed-plate.

The pump-cylinders, suction and branch pipes, the air-chamber and its support, are of cast-iron,
flanged and ribbed, as represented in the figures, the pump-eylinders leing lined with composition metal.

The mouths of the pumps are placed at the level of mean low water, in a chamber formed of eastiron, 8 feet wide, 13 feet high, and 30 feet long, -the bottom of the clamber forming a support to the heads of the pump-cylinders, as well as a bed-plate for the air-pump and conden-er of the eugine: its sides, strongly ribbed, support the engine bed plate with the superstructure, and the top is itself a part of the engine bed-plate. A culvert from the bay leads up to one of the sides of this chamber, and ferves as a conduit for the water delivered from the pumps. Twelve of the panels of the side of the

 "penimp outwardly to present the raing tidn from thowng into the chanater. Four cant iren girdern of
 that chamber, and are held down to the manory liy mitable folle.

two sets of valves to each chest, and are divided into numerous apertures by norrow bat deep bars, crassing each other at right angles. This cross-barring forms a support for the fexible material of the valve, and obviates all the dificulty to be apprehended from the tendency ol the valve to collapse on being loaded. A perfectly tight and quiet-working valve is the consequence of this arrangement.
The pump-rods are double, and passing through stulfing-boxes in the floating covers with which the pumps are provided, take hold of cross-heads working in slides below the engine bed-plate. From these cross-heads, domble connecting-rods extend directly to the beam of the engine.

The engine is a double-acting condensing one, of 50 inches diameter of cylinder, and 12 feet length of stroke, with an independent aljustable expansion-geer, so arranged, that as the load won the engine is increased by the lowe ing of the water in the dock, a proportionate increased amount of stean is admitted into the cylinder.
The working beam is of cast-iron, 31 fect long between the "end centres," and 4 fect deep at the "main centre," strongly flanged and Lossed. The piston-rod is attached to the beam by a parallel motion; the main-pump and air-pump rols are connected to it by double rods and links, the air-pump rross-head working in slides attached to the columns of the engine-frame. The balance-wheel is of cast-iron, 25 feet in diameter, a cross section of its rim having an area of about 80 square inches. Its arms (cight in number, unite in a centre case, having compartments to receive the tapered ends.

The condenser is formed from a portion of the air or vacuum chamber before described, a partition being placed in that portion of it which extends above the engine bed-plate. The air-pump stands level with the condenser. The air-pump rod and hucket, foot-valve and seat, are of composition metal. The - length of stroke is 42 inches, the diameter of the cylinder 44 inches. The interior of the cylinder is lined with composition metal.
The pistra, cylinder-cover, and steam chests, side-pipes, valves, and valve-geering, are all nearly identical with those used in the best specimens of American steanbaat engines. The boilers are three in number, 26 feet long, and of 7 feet diameter in the waist, built on the "single return dron flue "plan. They are fed by the direct action steam-pumps of Worthington and Baker of New York.

PUMPING ENGINES. For the water supply of cities the Conxisir Exaixe (q; v_{0}.) for this purpose affords the highest rate of duty. We know of no others that are remarkable either in co-struction or duty, except the one at Cambridge, Mass., already spoken of, and one at Hartford, Comn. The peculiarity of the latter consists in the arrangement of the piston in the pump cylinders: there are two pistons in each cylinder, the piston-rod of the lower passing throngh that of the upper, and so arranged in their alternate movements, that the flow of water is nearly continuous. They are actuatel by cans, driven by a vertical steam engine, working very expansively.

PUMP, LEEGHWATER STEAM.-Drainage of the Haxlem Lake, IIolland. In order to aseertain the most approved method, and at the same time the most coonomical manner, of draining this lake, the Dutch government appointed a commission of engincers to report upon the best means, and to examine the various plans of drainage adopted in England. After examining a great variety of schemes and proposals, it was determined to adopt the plan submitted by Mr. Joseph Gibbs and Mr. Arthur Dean. It is proposed to have three engines of the same power, and three sets of pumps. The first of these engines is now in operation, and is shown in Figs. 3158 to 3161.

Description of the engines. The Leeghwater Engine, as shown in the figures, has two steam cylinders A and C, one within the other, united to the same bottom \bar{X}; but the inner one is not attached at the top, a clear space of $1 \frac{1}{2}$ inch existing between it and the cover, which serves for both cylinders. The large cylinder A , is 144.37 inches diameter, and $1 \frac{1}{2}$ inch thick; and C , the small cylinder, $81 \cdot 25$ inches diameter, and $1 \frac{8}{4}$ inch thick; both are truly bored out, and the small cylinder is also turnel on its onter circumference. B is a steam-jacket for the large cylinder, cast in 13 segments-which is arain enveloped in a wooden casing l, having 4 inches of peat ashes between them.
Pistons.-The small cylinder C is fitted vith a plain piston of 5474.81 square inches area, and tho large cylinder A is occupied by an annular piston of $10323 \cdot 36$ square inches area. The areas of the two cylinders, after deducting 472.8 square inches for the thickness of small cylinder, are as 1 to 2.85 . The internal and external packings of the pistons consist of hard cast-iron segments at bottom, with gasket above, pressed down by glands, also in segments; the open spaces in the pistons ccare filled with cast-iron plates, and the tops of the pistons have movable cast-iron covers.

Cap or cross-head.-The pistons are connected to the great eap or cross-lead G, by the main pistonroll \mathbf{Y}, of 12 inches diameter, and by four small rods y, of $4 \frac{1}{2}$ inches diameter, (Fig. 3158.) The great cap G has a circular body 9 feet 6 inches diameter, divided into eight compartments, which can be filled with east-iron weights; from its centre a guide-spindle z, passes through a stuffing-box placed in the centre of a great beam of timber 2 feet square, which passes across the engine-house, and is secured to its walls; there are two other guide-rods b, which pass through stuffing-boxes in the arms of the great cap G, and are secured to the upper and lower spring beams.

Plungers.-Suspended from the arms of the great cap are two 9 -inch plunger-poles F , working ir. plunger cases D ; attached to D are two valve-nozzles $d^{\prime \prime}$, connceted with stand-pipes d^{\prime}, by two branch pipes $d^{\prime \prime}$; the valye-nozzles are comected with each other and a hydrostatic equilibrium valre-nozzle 0 , from the hottom of which a branch picce is comected with the stand-pipes d^{\prime} by the pipes $d^{\prime \prime \prime \prime}$. The exterior surfaces of the planger-cases D are turned troly, so as to allow the rings ee to slide up and down freely; the rings are suspended from the great cros-heal by rods v, and are furnished with crossbearings, on which the jaws of the two air-pump balance-beams E rest: the inner ends of these balancebeams move in a perfectly vertical line, and the outer ends are furnished with rollers wrorking between guides, to allow for the variation of the beams during the up or down stroke.

Air-pump.-From the centre of the air-pump balances, the two air-pump plunger pistons n are sus. pended, (Fig. 3159 ;) diameter of planger pistons 40 inches, stroke 5 feet; the two air-pumps N are anited by a branch piece with the bottom of the condenser M. The condenser has an intermittent in
jection by a valre S inches diameter, and a constant injection by another valre of 8 inches diameter. R is the condenser cistern.

Pipes and values, L is the steam-pipe (2 feet diameter) from the boilers; in it is placend a duble beat governor-valve of 16 juches diameter.

The induction and equilibriun nozzles are each connected to a separate port cast in the cylinder's lenttom. The eduction nozzle is connected by a pipe J , $3 t$ inches dianeter, to the branch-pipe If of the condenser. The pipe M is also connected to the buttom of the cylinder, in which a port is eatt, which communicates with the space under the annular piston; by this arrangement a constant vacul.. is maintained beneath that piston.

 the outer ent of which is slotted nud worked by n pin on the hading ring c.

Vor. 11.-3.

The pump piston C is of a peculiar construction; it is composed of a wrought-iron centre-piece, 1 inch thick; firmly bolted to this piece are two double ellow frames of cast-iron, called "the cradles" the elbows are faced with gun-metal plates; the cradles serve to support two wrought-iron semi-elliptic ralves $c c$, which occupy the whole area of the pump when they fall out, and constitute in fact the piston. These ralves are edged with wood, having a piece of leather on the upper side secured by a wrought-iron gland; the valves are lung to the centre-piece at about 3 inches from their lower edges, so that when they open during the down stroke, any dirt or sand which has lodged on the bottom may fall through. Attached to the centre-piece are two plates of cast-iron, which serve as ballast to sink the piston; these ends are cast with a jaw, in which pieces of wood are secured to prevent friction against the sides of the pump, and to give steadiness to the piston. These pistons require a weight of 1.4 lb . per square inch of the area of the pump to sink them with the velocity required upon the down stroke. The pump pistons of the Leeghwater are not furnished with guides, as shown in Figs. 3160 and 3161, and work very well without them: but the pistons for the pumps of the Cruquius and Yan Lynden engines (now constructing for the drainage of the lake) will have guides, in consequence of the diameter of the pumps being increased to 73 inches.
Pump ralves.-The bottom valves have cast-iron seats secured to the windbore, the valve beats are of wood, and the valves are simply plates of wrought-iron, 1 inch thick; the valves are not hung on fiyed joints, but are each fixed to a bar, the ends of which are entered in cast-iron slot-pieces, allowing a rise of $1 \frac{1}{2}$ inch, so that the valve can rise altogether from its beat, and give a large water passage all round.
Power of engines.-The steam and pump pistons both perform a stroke of 10 feet in length: each pump by calculation should deliver 6.02 tons of water per stroke, or 66.22 tons for the eleven pumps; but by actual admeasurement of the quantity delivered, it is found to be 63 tons. The loss might be reduced, but probably at the expense of increased friction.

The engine-house is a massive circular tower, concentric to cylinders; on its walls are placed the eleven pump halances radiating from its centre. The eleven pump balances are so placed as in no way to disturb the equilibrium of the great cap of the engine, under which the inner ends of all the balances are concentrated. If any of the pumps require repairs, the opposite pairs can be easily detached, without causing more than a trivial delay to the working of the engine.

The artion of the engine is very simple; the steam being admitted into the small cylinder, the whole of the dead weight and pump-balance beams attached to the great cross-head are elevated with it, and the steam being cut off at such portion of the stroke as may be required, the remainder is effected by the momentum acquired by the dead weight and the pressure of the expanding steam upon the small piston, (the pump pistons at the same time make their down stroke;) at the end of the up stroke a pause of one or two seconds is requisite, to enable the valves of the pump pistons to fall out, so that upon the down stroke of the steam piston they may take their load of water without shock. During this time it is necessary to sustain the great cross-head and its load of dead weight at the point to which it was elevated by the up stroke, as otherwise it would fall back until the expanded steam under the small piston was compressed to a density equal to the pressure per square inch of the load lifted, or would cause a rery riolent shock upon the pump-valves by suddenly throwing them out against the sides of the pumps. To avoid these evils the hydraulic apparatus D F was devised.

Hydraulic apparatus.- When the engine makes its up stroke, the plunger-poles F (which form part of the dead weight) are lifted, and the water from the stand-pipes and reservoirs d^{\prime} flows through the valves $d^{\prime \prime}$, and follows $u p$ the plunger-poles as fast as they are elevated. At the end of the stroke the spherical valves instantly close, and the dead weight is suspended exactly at the point at which it had arrived-and, of course, if the ralves are tight, could be maintained there for any given period; in consequence of all strain being thus removed, there is no pressure to close the valves of the pump pistons beyond their own weight; therefore, they fall out without the slightest shock. To make the down stroke, the equilibrium steam-valve Q, and the hydraulic valve O are opened simultaneously: the water from beneath the plungers escapes to the stand-pipes and reservoirs by the pipes $d^{\prime \prime \prime \prime}$, and the steam from the small cylinder passes by the pipe q, round to the upper side of the small and anmular pistons, puts the pressure on the small piston in equilibrium, and presses upon the annular piston, (beneath which a constant vacuum is maintained, in aid of the dead weight now resting upon the inner ends of the pump balances: by the united effort, the pump pistons are elevated and the water discharged. Before the next stroke is made, the eduction-valve is opened and a vacuum formed over both pistons.
So well does the hydraulic apparatus just deseribed effect the object for which it was designed, that the Harlem-mer Meer Commissioners have decided to use only eight pumps, but of 78 inches diameter, for the other engines; the chief reason for the adoption of the 68 -inch pumps for the Leeghwater Engine having been the fear of the shocks to which such large pump pistons are ordinarily liable.
Boilers.-The Leeghwater Engine is furnished with five cylindrical boilers, each 30 feet long and 0 feet diameter, with a central fire-tube, 4 feet diameter: a return flue passes under the boilers to the front, and then splits along the sides. Over the boilers is a steam chamber, 4 feet 6 inches in diameter and 42 feet in length, communicating with each boiler; from thence a steam-pipe, of 2 feet diameter, conducts the steam to the engine. The steam space in the chamber, boilers, and pipe is nearly 1320 cubic feet, and as the engine draws its supplies from such an immense reservoir of steam, no " mimage" takes place, and a very uniform pressure upon the piston is obtained until the induction-valve closes These boilers have produced steam enough to work the engine to the net power of 400 horses. The Sruquius and Yan Lynden Engines will have boilers capable of working to 500 horses power if repuired.
The drainage.-Prior to the construction of the engine-house, dee, an earthen dam of a semivircular form was thrown out into the lake, to inclose about $1 \frac{1}{2}$ acres; after the water was pumped out frem
within the dam, a strong piled foundation was made, and the masonrs commenced at the depth of 21 fect below the surface of the lake: a small stean-cngine was erected to cracuate the water from the dam. When the Leeghwater was completed, the commissioners determined to tet its merits fully before deciding on the construction of the other engines upon the same model; and as they had the means of evacuating the water within the dam to any level required, the Lecylnater could be tried and worked continuously under any circumstances, precisely similar to those which will occur during the drainage of the lake, if, instead of discharging the water from the pumps into the upper canal, it was alluwed to fall back again to the level from whence it was derived.

The average depth of the lake is 13 feet below the general level of the surface water of the camal and water-courses conducting to the sea-sluices; when the communications between those waters and the lake are closed, the engine will at first have only the head of water caused by the discharge from the pumps, and the friction of the machinery, to overcome; in this state, all the fillines plates or ballast of the great cap and pistons will be taken out, and counter-balances added to the pump balance-beams "out of doors," so as to take up as much of the dead weight attached to the great cap as may not be required for working the engine : as the lift becomes greater, the dead weight "in-doors" will be gradu ally added. In this manner the engine was worked for a considerable time, to get all the parts in good working order. A sub-committee of the commission conducted a series of experiments, and sati-fied themselves that the Leeghwater will perform a duty of 75 million pounds, lifted one foot high, by the consumption of 94 lbs . of good Welsh coal, whilst exerting a net effective force of 350 horses' power With a lift of 18 fect, the engine easily worked the eleven pumps simultancously; the net load of water lifted being 81.7 tons, and the discharge 63 tons, te stroke.

When the bed of the take is cultivated, the surface of the water in the drains will be kept at is inches below the general lesel of the bottom; but in time of winter floods, the waters of the upper level of the country will be raised above their ordinary height: in which case, to keep the bed of the lake drained to the regulated height, the lift and head may be increased to 17 fect. To test the power of the engine under these circumstances, (and without regard to the consumption of fucl,) the whole of the 11 pumps were worked simultancously, and the extraordinary quantity of 109 tons net of water was raised per stroke to the height of 10 feet; but, in practice, it will be advisable to work a less number of pumps, and increase the number of strokes per minute.

After numerous and severe trials of the engine, the commissioners were eatisfied that it is capable of performing its work under the most difficult circum-tances that can arise; and immediately determined on having two more enrines constructed, of equal size, and on the same nodel-the only material alter ation being in the arrangement of the pumps; the number being reduced to 8 for each engine, but of 53 inches diameter, placed in pairs opposite each other, and the ends of the balance-beams projecting over the great cap of the engine, (instead of under as in the Leeghwater,) to which they will be connected by stout wrought-iron straps. The boilers also will be increased in number, and in power nearly 100 horses. All the feed-water will be filtered before passing into the boilers.

Advantages of two cylinders.-Many persons imagine that the engines are constructed with two cylin ders to obtain a greater expansiou of the steam than would be attainable in one eylinder; but such is not the case, as no greater economy of steam can be obtained by the use of two cylinders than by one although greater stcadiness of motion for rotatory engines, and less strain upn the pit-work of a mine pumping engine, may result from the use of two cylinders. In the Inarlem engines two cylinders are usel, becaluse if one cylimper only were employed it would sometimes be necessary to use a dead weight of 125 tons to overcome the resistance of the water load and friction of the engine and pumps; such at ma-s of iron or other heary material would be umanageable, and no alteration itn the force of the en gine could be cellected but by taking from or adding to the dead weight, which would be a suree of great ditliculty and inconvenience, when the varying claracter of the bad, during the dramage of tha balie, is con-idered; particularly as at times the water will be charged with so mudh foreign matter :4 greatly to add to the friction of the pumps. By the system adepted the maximum dead weighe whe vated by the small piston will oeddon exeed 85 tons, the additional power refuired being derived from the pressure of the return steam, at the donen stroke, on the ammatar piston; by varying the ex pramion and prowne of the stean in the small cylinder, the engineman can add tu, or ilminish the pressure uph the ammar piston, be ats to ment any case of variable re-iatance without the incombom Fnce and delay atemding an ateration of the deal weight; the lowl is therefore tander perfect com mand at all times.

 haym.
 luring 91 years show that the greaten quantity of ran wheti foll upen the urea of the lake in that

flows off on either side of the boiler-house, through sluice-gates, into the canals conducting to the sea sluices.

The great cost of the buildings, for whatever description of machinery might have been employed, rendered it an object of considerable importance to Jessen this expense by concentrating the power to drain the lake in three engines; in addition to which a considerable saving in the wages of enginemen, stokers, and others is effected, as these large engines require very little more attendance than an ordinary mine engine; this is an important feature in the economy of the charge for the permanent drainage of the "Polder," which will be formed by the bed of the lake.

The average consumption of the ordinary land-draining engines applied to scoop-wheels and Archimedian screws, may be taken at 15 lbs . of coal per not horse-povec per hour ; this quantity will be greatly reduced if the horses power of the engines be calculated by the pressure of the steam on the pistons, and not by the net delivery of the water; in a case where the water delivered by a large steam-engine working a scoop wheel, was measured during eight hours, the engine was found to exert a net force of 73 horses' power during the first hour, with a consumption of 15 lbs . of coals per net horsepower ; as the lift increased the power diminished, and the consumption of fuel increased, until at the eighth hour it was found that the engine only exerted a net force of 33 horses' power, and consumed 24 lbs. of coal per net horse-power per hour. The consumption of fuel by the Leeghwater is $2 \frac{1}{2} \mathrm{lbs}$. of coals per horse-power per hour when working with a net effective power of 850 horses.

No new principle has been developed in the Leeghwater, but important facts have been demonstrated which must have an immense influence on the progress of agricultural hydraulic engineering: it has proved that with proper attention to well-known principles, steam-engines of the rery largest class (the Leeghwater is believed to be the largest and most powerfal land engine ever constructed) may be employed to raise great bodies of water from low lifts for the drainage or irrigation of low lands with as great an economy of fuel as was hitherto gencrally supposed to be confined to the elevation of comparatively small quantities of water to great heights. To the Haarlem-mer Meer Commissioners belongs the merit of having ventured to carry out this bold experiment, and they will reap their reward by an economy of at least $£ 100,000$ over the cost of draining the lake by the ordinary system of steamengiues and hydraulic machinery employed to drain land; and of upwards of $£ 170,000$ and three years time over the cost of draining the lake by the windmill system hitherto generally employed in Holland.

The Leeghwater is named in honor of a celebrated Dutch engineer, who, from his great success in draining numerous lakes in North Holland, was popularly known by the name of "Leeghwater," or "the drier-up of water," and with him the first proposal to drain the lake originated in 1623.
The engines and pumps were manufactured at the establishment of Messrs. Harrey \& Co., of Hayle, and Messrs. Fox \& Co., of Perran, Cornwall.

PUNCH, REVOLVING SPRING. Invented by S. Merrick, of Springfield, Mass., and patented February 28th, 1848.
This tool is designed for punching leather and other like material, and contains four punches of vary ing size, either of which can be instantly brought into use.
In the drawings, Fig. 3162 denotes a side elevation.
Fig. 3163 an end view of the cylinder E, and the series of rotating punches FFFF, showing the right-angular shoulders b, on the punches.
In said Figures A denotes the bed-lever of the punches; B, the punch-lever, or that which supports or carries the series of rotating punches FFFF, which are sustained and revolve between spring-jaws D D. I is the bed or blank of copper, in conjunction with which the lower punch acts during the opera-
3162.

3163.

tion of punchimg; E is the cylinder to which the several punches are fastened: right-angular notehes are made in the lower side of the spring-jaws D, which notches are made to fit the projections or right-angular shoulders b, made on the sides of the punches; their object is to prevent the lower punch from being moved forward towards the extremity of the lever A during the operation of punching. Each punch of the series is fitted with like shoulders. The notches are made in cam projections, formed respectively on the spring-jaws. For the purpose of effectually discharging the little circles or cylinders of material separated from any article by the cutters, and which pass through the cutters and into the interior of the cylinder E , a cone is arranged with respect to the discharging mouths of the punches, so that after the pieces of leather have passed out of the punches they are forced against the cone, and by it directed laterally and out of the space. Without some such cor. trivance, the space is very liable so become filled or choked by the pleces which are cut away by the punches.

The remaining parts of the punch will be obvious withont further description.

PUNCHING MACHINE, STEAM.-By M. Cacé, Paris. Fig. 316t, eleration. Fig. 3165, end riew. Fig. 31e6, plan. Fig. S167, sectional plan of punching-frame. Fig. 316s, section of cutter adapted to machive for eutting plate. Fir. 3169 , elevation of the same. Fig. 31\%0, plan. Fig. 3171, eection showing the mode of keyiug the punch.

Literal Jirforences.
-.......-ryliater.
3. Ji mon and cro a hamb b^{\prime}
e, lid. wator, terenime niteruately the stom pont c^{\prime} mad what part $c^{\prime \prime}$, warked liy rould.
d slile rowl.
e, atemm !ipu.
f. Tunthilita laver, connected to the piaton bis the

[\%, punching ce limber, commeten to lear j liy than lanky ! $\%$
h. fromse for carrsin p patchine maclimous
 ly the pina j^{\prime}; it is worhoul by the latle $j^{\prime \prime}$ mad comaterlalunee $j^{\prime \prime}$ "

1, crank mul ataft.
m, fly-wheel.
n, punch.
n, dies.
p, stop.
q, plate being punched.
r, foundations.
s, aperture through which the iron plate punchec out falls.

PUNCHING AND PLATE-CUT"ING MACHINE. By Messrs. Nasmyth, Gaskell \& Co., Mas ehester Fig. 3172, front elevation. Fig. 3173 , side elevation.

a, tight and loose riggers.
b, fly-wheel.
c, spur-wheel and pinion.
d, frame for carrying machinery.
e, shaft and eccentric for raising and depressing slide.

f_{5} slide, the upper end having a stecl cutter y, and $\mid l$, rods, levers, and spindle for advancing the trav the lower end the punches h.
g, steel cutters.
\mathscr{h}, punches.
i, die frame.
i, stop for preventing the plate from rising.
\ddot{k}, travelling table for carrying plate to be punched. $\mid p$, earriage for supporting spindle.
elling table by means of tappet m, on spur-wheel m, tappet on spur-wheel.
n, rack-bar attached to brackets o of travelling table.
o, brackets fixed to table. •

PCNCHING ANO) SHEARING MACHINE. Dy CAInd d Co., Grecnock. These figures repre sent the form and general arrangement of a machine of great importance and utility in the manufacture of steam-engine builers. The present example is distinguished fur its mechanical elegance of design, eimplicity of construction, compactness and strength. Although the machine occupies only a very inconsiderable space on the floor of the factory, it is capable of punching and shearing plates of one inch in thicknes:.

Fig. 3174 is a general side elevation of the machine.
Fig. 3175 is a front clevation, looking upon that face of the machine which is adapted to the operis tion of shearing.
Fig. 3176 is a corresponding elevation of the opposite end at which the operation of punching is performed.
Fig. 317 Th shows the form of the main-shaft and section of the slides.
General description.-The framing consists of a single massive casting A A, having strong brackets BC and D E formed upon it at opposite sides. In the pieces B and D recesses are formed for the reception of the bushes of the shaft N, and of the slides $b b$, to which the shearing cutter and punch are attached respectively. The bushes of the shaft N are adjusted to the proper degree of tightness by the

sitters $I d$: and the extremitiog a a of the shaft, clow to these hearines, are formed ecrentrically, an
 Fuch is form as to allow the cerentrica to more frecly in n litemt ditection, white the full nomemt of their vertical motion is tranferred to the shates. The e ha-hes mer retained in their phaces by thin wromblat iroll covire ec.

cheeks; the upper end revolves in an independent bearing attached to any convenient beam. The power is transmitted to this shaft from the driving-shaft F , by means of the two bevel-wheels G and H. On the upper end of the same shaft J is keyed the fly-whicel K , for equalizing the motion of the machine under the irregular strains to which it is subject.
Action of the machine.-Motion being communicated to the eccentric-shaft N , the slides will be made to travel vertically through spaces corresponding to the eccentricity of the parts $a a$, thereby working the shears and punch alternately; the eccentricity of the two extremities being formed on opposite sides of the shaft, so that while the punch is descending, the cutter of the shears will be ascending, and vice versa. The plates under operation are shifted by hand, upon tables of wood erected at the proper levels, and usually with guides fixed upon them for insuring accuracy in the operation of cutting.

Literai References.

is A, the frame of the machine.
B , hollow bracket for the shearing-slide.
C, the fixed table for the same.
D, hollow bracket for the punching-slide.
E, the table upon which the hollow die is set.
$a \alpha$, eccentric ends of the shaft N .
$b b$, the shearing and punching slides.
$c c$, covers fixed upon the slides over the ends of the eccentries a a.
$d d$, cotters for adjusting the adjusting bearings of the shaft N .
ce, dovetail guiding pieces between which the slides move.
f, the shearing-cutter.
g, the punching-tool.
h, a cotter for fixing the punch in its socket.
i, an oblong hole over the socket of the punch for driving it out when required.
F, the shaft by which the power is led to the machine.
G, a bevel-wheel on the horizontal driving-shaft, geering with
H, a bercl-wheel on the vertical driving-shaft J.
K , the fly-wheel for regulating the motion of the machine.
L; a bevel-pinion on the vertical shaft J, geering with
M, a large bevel mortise-whecl fixed on
N , the main eccentric-shaft.

PYROMETER. An instrument for measuring the degrees of heat. The utrm pyrometer is generally understood to denote either an instrument intended to measure higher temperatures than can be measured by the ordinary thermometer, or an instrument for comparing the expansions of different metals.

Various contrivances have been employed for the above purposes. Musschenbroek, the original inventor of the pyrometer, adopted the following method: A prismatic rod (about six inches long) of the metal under trial being attached at one extremity to an immovable obstacle, and heated by lamps, the other end is necessarily pushed forward; and this being fastened to the end of a rack playing into a pinion, communicates a revolving motion to an axle to which a train of wheel-work is attached, whereby the minntest expansion of the heated bar is rendered sensible, and measured by an index on a dial. The principle of this apparatus is sufficiently simple; but the uncertainty attending the motion of so many loosely connected wheels and pinions must have rendered its indications of little value; and the method is liable to a still more serious objection, namely, that the temperature communicated to the bar by the lamps is entirely unknown. Desaguliers, and afterwards Ellicott, made several improvements in the construction of the instrument, tending to give it a more equable motion and to increase its telicacy. Graham substituted a micrometer screw for the wheels and levers that had formerly been employed; and on this principle Mr. Smeaton contrived an ingenious apparatus, which is described in the Phil. Trans,, vol. xlviii.

RAG AND WASTE PICKER-By C. G. Sargent. It has always been a desideratum, and hitherto unaccomplished in any practical degree, for the manufacturer to be able to reduce waste yarn and poor or worn fabrics to their original condition of fibre, and capable of being again worked into cloth. The above machine accomplishes this object, being capable of reducing 150 pounds of waste woollen yarns, so that they may be easily carded and spun anew. It was invented after trials of several modes, and after much consideration, by Mr. Charles G. Sargent, of Lowell, and he is now constructing them for most of the woollen-mills in that section of the comtry. The cost of one whose cylinders are 12 inches long, with full rights to use it, is about $\$ 800$.

The machine and its action may be described by reference to Fig. 3178 , which represents a longitudinal section of it. The frame being represented at A A A, dec, the easings at B B B, de., D being a slaft put in motion by some force, and from which motion is communicated to all moving parts. The yarn, cloth, or other material required to be picked, is spread upon a feeding apron E, which has a slow motion towards the roll F , which has a motion indicated by the arrows, and leing fluted or toothed draws in the material between itself and the iron shell G, and passes it forward to the roll F^{\prime}, which is similar to F, and has a caieker angular motion than it, thereby insuring that it may take all that is presented by the roll F , and at the same time tending to draw the threads or fibres to a position at right angles to its axis, the rolls F and F^{\prime} being so supported that they can rise and fall from and towards the shell (t, according as there may be large or small pieces between them and the shell.
The material is thrust out from between the roll F^{\prime} and the shell G, towards the first picking cylinder II. This cylinder is formed ly adding to a plain cylindrical pulley strips of metal, abont 1 inch by 3 inch, and of the same length as the face of the pulley. Parallel to its axis and upon the outer surfaces of these strips, are secured plates somewhat wider than the strips, haring fine tecth cut upon one of their edges, and set in such a manner that the points of the teeth will be somewhat further from the centre of the pulley than the other edge, and also projecting forward in the direction af the motion of
the pulley, and orerlapping the strips to which they are attached. This eylinder being so placed that the teeth of the serrated plates will, when the cyluder is in motion, barely clear the shell G, when the material is projected from between the roll F^{\prime} and the shell (f the part oo projected will be combed ang torn to shreds, while the twist of the yarn will be taken out by the rapid action of the serrated plates, while large and long pieces will be prevented from being passed through by being held between the rolls and the shells. The material is taken from the cylinder H by the brush I, which revolves nore rapidly, and at the same time is assisted by the fan R , which also keeps the bru-h clean. liy the current of air produced by the fan and brush the material, now partially picked, is blown upons the second feeding apron J, which has a slow movement indicated by the arrow, and is prevented from leaving this apron by the cylinder k, which revolves slomly, being carried by the apron. This cylinder is make by coscring a slight frame with wire cloth, thus allowing the air to pass through it and retain the malerial upon the apron, forming a lap.

The material now passes under the small roll L, which is a plain cylinder, and for the purpose, eading it to the second pair of feeding-rolls $M M^{\prime}$, the eylinder O, the bru-h l^{2}, and fan R, each of which acts respectively the same as the rolls F F', the eylinder H , brush I , and fan R , exept that the seeth of the cylinder O are finer than those of H, and that the material is now bluwn out of the machime picked, and arain ready for the card.

RALLROADS. The limits and scope of this work forbid enlarging upon the listury of railroals, or tracing their development from the rude tram-ways of the German mines, to their present highly ad. vanced state of perfection. A great deal has been written on this branch of the suljeect, easy of aceses ant the reader is referred to Wood, breese, Dempsey, and uthers on railroads. We have to do in this place with railroads in the light of machines, and as such descrive then as they are; the primeiples upon which they are projected and located, constructed and worked.

Railroads are roads upon which the carriages travel on iron rails, to which they are contined hy projections on their wheels, called flanges.

The principles which govern in the location of a railroad are the same as thoe of a common romd: the mothr in gencral uee on the furmer, however, minders necessary a more rigorma cobservance wh these principles.

 whil-t the formor are determiable entirely los experment ont the rond is gue tion or a -imalar one:

 d.pernhent of the imperfectioss of the romel.

 - ory dittienlt one.

pike road in England, and probably in the world, the following was found to be the force of traction, or the weight in pounds which, hanging over a pulley, would draw one ton on a level part of the roadthe road-bed as firm as most railways:

or a horse will draw from five to eighteen times as much on a good railroad as upon the best turnpike roads in use, and this is due to the smonthness of the surface alone.
This illustrates the extent of the first cause of resistance to motion on roads.
For the second, it may be sufficient to mention a circumstance within the writer's experience. A locomotive engine, built at Lowell, drew, on trial, on the Lowell and Boston Railroad, up a grade rising 30 feet per mile, the same load which it barely drew on a level part of the inferior railroad upon which it was subsequently worked. The surfaces in the two cases were the same, wrought-iron; but the one road-bed and rail was firm, and the other yielding.
The engine which could draw, say 300 tons gross, on a grade rising 30 feet per mile, the rail perfectly firm, would, in the same condition of rail, draw 475 tons on a level. This illustrates the value of a firm and unyielding road surface.

Location.- In the location of a railroad, the termini are in most cases fixed, and the engineer, having in consideration the nature and amount of the traffic anticipated on the road, must so adjust its alignment, both vertical and horizontal, as with the least expenditure in first cost and in subsequent working, to produce the greatest effect-in this case, the greatest return on the capital invested in the building maintenance, and working of the road.

The perfection of a railroad would seem to be a straight line and a level, and yet there may be controlling circumstances which would render a level road not desirable; such as a very heavy trade of coal, lumber, ores, \&c., in one direction: in fact, the trade may be such as to render the weight of the empty return wagons alone the data for limiting the steepness of the grade; and again, when the trade is well balanced, it would be desirable to have the acclivities and declivities balanced, and the profile to be an undulating grade, providing a level road could not be found. In general, however, let what will be the best grade in view of the weight of traffic or other circumstances, it is rarely that these conditions can be rigorously obtained, save at a cost which will defeat its own object; for it is undeniable that a good road may cost too much. For instance, a heavy trade in one direction with no return of freight would seem to call for a uniform descending grade, or a grade undulating between level and descending ; and yet to obtain these advantages ridges may require tunnelling, and expensive works encountered, to pay the cost of which would require tolls on the traffic for which the road was built, tending to throw the article out of the market in competition with other sources of supply. Between these limits of maximum acclivity and level the engineer is to make his selection, keeping always in view the conditions which he is aiming to fulfil, avoiding a hill here, cutting through a ridge there, again tumnelling in preference to adding to the length of line or to the cursature, or the reverse, increasing the length of the road very materially in some cases in order to avoid encountering heavy expenditures, \&c. After he has made a careful reconnoissance of the country between the termini, and an instrumental examination of such lines of route as appear to his judgment the best calculated to fulfil the conditions sought, it will usually be found that one of two things exist: either the true route is indicated beyond all doubt by the features of the country, in which case it remains but to improve the line within narrower limits, or else several lines offer, either of which may, to the unassisted judgment, appear to fulfil all the required conditions. In the latter case, after improving each line in detail in reference to balancing the material to be used, that is to say, where possible, making the cuttings furnish the material for the filling; reducing the amount of curvature as much as possible; selecting the proper crossings of rivers, swamps, ridges, \&c.; examining foundations of all kinds; ascertaining the fitness of the material to form banks; examining quarries, timber, price of labor and materials, and, in general, ascertaining the capabilities of the country on each route: the several routes are then compared in view of their first cost, maintenance, and working, and not unlikely a new element will appear of the varying amounts of the local or way business to be anticipated and provided for.

A treatise on railroad enginecring would of itsclf require more space than can be allotted to the whole sulject of railroads in a dictionary. This will account for the suppression of much of the detail which would be sought for in a complete treatise on railroad building. We must omit, therefore, the considcration of the preliminary operations of surveying and levelling, as well as the form and character of the respective works which make up the construction of a railroad; such as bridges, culverts, tunnels, foundations, dec., and which, in their principles of construction, are common to many branches of internal im. provement.*

In preparing the estimates of the several lines, plans in detail are made of all the mechanical structures from which their cost is deduced : profiles are made exhibiting the grades of the road together with

[^17]the cuts and fills，and tables exhibiting the cubical contents of the various sections of the work，as also the horizontal alignment，showing the relative amounts of straight line and eurves，and the claracter of the latter．The cost of construction having thus been obtained of the various lines，they are equated for their respective amounts of ascents，descent，and curvature，the ruling grade，or the grade which limits the effective power of the engines to be used，determined，and the lines of routes brougt：under one general view for comparison．

Equating for grades．－The result of experiments carefully conducted gives as the resistance to motion of one ton，moving on a well－built level railroad，about $8 \frac{1}{2}$ pounds，or the weight which hanging freely over a pulley will overcome the friction of one ton．This resistance to motion is a constant fraction of the weight moved，and is its $\bar{g}^{1} f^{\text {th }}$ th part．This is the friction of the luad．If now the plane be elevated from a level to a rise of $\frac{1}{2} \frac{1}{4}$ th its length，according to well－known mechanical larrs 1 pound will on this plane sustain 264 pounds，（Sce Inclined Plave and Mechavical Powers，）or St pounds will sustain one ton；and the fraction $\frac{1}{2} \frac{1}{6}$ representing a rise of 20 feet in a mile；it fullutrs that on this grade the effect of gravity is equal to that of friction，and in order to produce motion up this grade，trice the power must be applied that would be required were it on a level；and as it is a well－known mechani－ cal lav that the same amount of power is expended in raising a weight through a given height，what－ ever may be the angle of the plane upou which the motion is effected，it follows that for every 20 feet in height that we ascend on a railroal，we expend an amount of power eçuivalent to the transport of that weight over one mile of level；and this holds true whatever the grade may be．Equating for grades with a view to a comparison of lines，then，consists in aduling to the measured distance one mele for each and every twenty fect of ascent on the respective routes．

Equating for curves．－Direct motions on levels or inclines are affected less by disturbing causes than mation in curses；for in addition to the irregularities growing out of the imperfections of the curved track and the varying elements of the corved motion in practice，is to be added all the disturbing cau－es which exist in the first case．This has，as yet，prevented that rigorous solution of the latter problem， which is to be desired，and which is essential to a true comparison，a priori，of the cost of movement on curved roads．It is as yet entirely an empirical formula deduced from a few experiments，but has been used for the purpose of comparison of routes by distinguished engineers，and is the best we can offer with our pre－ent knowledge of the subject．

We find by the experiments referred to above，that a curve of 400 feet radius doubles the resistance． In propelling a train，then，through an entire cirenmference of such a curve，we expend twice the power that would be consumed in travelling an equal distance in a right line．

Taking，then，the analogy affurded by motion on ascents as eumpared with levels as a guide，and we conclude that the same fower would be expended in turning through an entire circle，achatever may be its radius，（this，of course，must be understood as confined to certain limits；）hence，for every circle of 360 degrees，we must ald for the expenditure of power on a right line of the same leugth，the circum－ ference of a circle de－cribed with the radius of double resistance，found by experiment as aboye to be 400 feet；this will be half a mile．Equating for curves consists，then，in adding to the measured distance one half mile for cach and every three hundred and sixty degrees of curvature on the respective rontes．
Haviug explained the principles which govern in reducing the several routes under comparison to a eniform standard in respect to their distance，currature，and grades，we will introduce an example from actual practice illustrative of the every－day operations of comparing routes preliminary to a selection of one fur con－truction．
The road in question was to connect two points some ninety miles apart，for which seven routes were examined，mowhere distant from each other more than seven miles，and the nature of the country and the anticipated traffic such as to reluce the question of a choice of routes to that of economy of con－ struction，maintenance，and working－independently of any local advantages which one route might possecis．

The cont of repairs per mile per year of roals as nearly similarly circumstanced as possible，and with a given traflic，havimg been obtained from their otlicial returns，as also the cost of working，the former amomaning to \＄600 per mile，was multiplied by the masural distances of the lines，and the latter， amontimy to \＄i50 per mile，was multiplicd by the distences resulting from cquatiny the lines for curca－ ture and gradis as alowe describen．

A capital which at b，pre cent．will furninh the first amount is shown in the sixth columm of the tablo below ；the capital to farnish the second is shown in the seventh column．

Tuble cxhibiting the monsural and equaterl Distances on the lurious Lines surveyal for Railroad，with
 Cupital roquisite at if per cent．to furnish an annual sum a liquate to maintan：arul rourk cath line．

Description of lates．	： 0.	Measharet di－Iaticis in miles mat decinuala．	1：yuntert dimbinera 11 चमा．4 mut decturala，	I：Mrmutiay （1） 1 以（0） atructions．	$\begin{gathered} \text { lypifate tat } \\ \text { capilal lo matu- } \end{gathered}$ 1::115.	L．t t）worl．	Craml hont．
Upper line	1	112 13	1801：	$\therefore 1,1 \because 7,171$	＊ $11026,375,10$		51.11051520
Lower line：	\because	41.10	157\％	1.1167 .8113	410， 5120.101	1，¢16，2号，ب5	$3.910,715.17$
I ower line 18	：	8：3 61	1：7111	1，115，01：	5：15，111，．017	1，917．5 2750	
lswer lime（：	1	（11） 17	15゙かり			1，437，51：7， 5	$8,416,2104611$.
lower line I）	5	！いこ！	10.597	1，17518， 14	（11） $2,155.111$	$1,919,711,5$	（1） $125,768.6 \%$
Iower lino V ：	6	9165	10：10\％	1，1：1．610：	016596,00	1．9131，116：－1	$11.65,50,100$
U＇puer line 13	7	23：5		$1,1: 20,193$	415，1 1 1111	$\because 109 \% 11$ \％	41171：1．74

Judging the lines by these tests, we find that No 1, or the upper line, stands 6th in order of direct ness, 6 th in point of value derive 1 from present actual outlay, 6 th in order of working, and of course 6 tt in the aggregate of them all.

Simplifying the matter as far as possible, we have four routes, No. 2, 3, 4 and 5, differing from each cther, in the extremes of the first respect, rather less than two per cent., and in the latter about $\frac{1}{2}$ per cent.

There seems no substantial reason at this stage of the case, fonnded upon such minute differences, for preferring one line over another, and we must therefore consider what improvements each is susceptible cf, when it comes to be definitely staked off for construction.

It is very rare, however, that so small differences appear in the comparison of several routes, but it is introduced here as an example in actual practice, and showing a very proper method of comparison.

The route having been determined on, we proceed to the construction.
Excavation and embankment.-Let A B C, Fig. 3179, represent a profile or longitudinal section of a portion of the line over which the railroad is to pass, and $a b c d$ the level at which the road is to be formed,

constitnting what is called the grade line. All those parts of the section abore the line $a b c d$ will require to be cat down, and are called euttings; and those portions below this line will require to be filled up, and are designated as embankment, or fillings.

Where a trifling variation in the general inclination of the line or of the grades is not of great imprortance, it is very advisable that the line should be so laid out that the quantity of carth, or matelial required for making the embankments, should not be greater than what is to be obtained from the excavations. There is, however, an exception to this in enttings or embankments of great lengths. Cases may occur where the distance between the catting and embankment is such, that the expense of con-

veying the earth from one part of the line to another is greater than the increased expense of borrowing material alongside the line of railway, or near the embankment, for the purpose of forming the embankment; and of depositing the earth from the cut, which onght to have formed the embankment, n!pon waste ground alongside such cut, in spoil bank. These are, lowever, eases to be judged of by the engineer of the work, and are entirely questions of comparative expense between the one mode and the ather.

Width of the railucay.-Fig. 3180 is a cross section of an excaration or cutting, and Fig. 3181 a cross section of an embankment; ab being the original surface of the ground, and g h the bottom level or ex treme depth of the excavation. The first question to determine is the width at the bottom level, as hy this thee whole of the operations are guided; and this depends upen two con-iderations: tir-t, the widh between the rails; and next, the width between the fwo lines, if the railway is intended to be a double line.

IVidth beticeen the rats.-The first public railway, of any extent, which was executed, was the stockton and Darlington Railway. The width between the rails of that railway was mate fuur feet eight inchos and a half, taking the Killingworth Colliery Railway as a standard. The Liverpool and Manchetter Railway, constructed by the same engineer, was furmed of the same width; and it was then made a standing order of the legislature in England that, in all public lines of railway, the width, hetween the talls, should be four feet cight inches and a half. In 1836 this standing order was suspended, and there is now, or was until lately, no standard of width whatever.

The following are the principal gages in use, ranging from 4 feet 6 inches to 7 feet: No. 1.-1 feet 6 inches, originally laid down in Scotland. No. $2-1$ feet $8 \frac{1}{2}$ iuches, the gage in most general u-e. No. 3.-uf 5 feet, formerly adopted for the Eastern Counties and Blackwall lines, in England. No. 4.-of 5 feet 6 inches, wed in Scutland. No. $5 .-T h e$ New York and Erie Railroad of 6 feet. No. b.- The Irish gage of 0 feet 2 inches; and No. 7, the Great W estern of 7 feet gare, in England.

The confusion actually resulting, and to be an-
 ticipated by this want of uniformity in the con btruction of the "arterial circulation," so to speak, of Great Iritain, led to the appointment lye govermmem of a commission to inquire into and report upon the most advantageous width to be adopted in the finturn con-truction of railroads in that conntry. The subject was examined with all the minuteness which its importance called for; every evidence was received from the friends of the several widths which it wat in their power to furni=h, and the result was at report from the eommision in favor of the "narrow gage," or fuur feet ejght and a half inches between the rails as affording all the advantages daimed for the "broad gage," and at a diminished expense. It is now the standard gage in that country, but in our own the matter is still left to the eaprice of individuals or companies.

We shall, then, assume the width between the rails to be four feet cight inches and a half. The breadth of the bearing part of the rails canot vary much; about two inches and a half seem to he the widh agreed upon by alno-t, if not all, engineers. The width between the outsite of the rails will, therefore, be five feet one inch and is half; or five feet one inch if the breadth of the rail itself be two inches and a quarter.

IVidth between the two tracks. -The next con-ideration is the width between the tracks of the railway. Upon the Liverpool and Manchester, the width was madu the same as that bet ween the rals, viz, fune feet eight inches and a half. On the Lombon and lirmindtam, and the (irand Jumetion Railways, the width is six feet; and less than this is met eon-idered alvi-able, and is the width almost miversally: adopted in this country.

Width on the outside of the rails.-The next que-tion to determine is the widh reynired on the ont side of the rails, or between the rails and the edje of the embankment, or nide of the exeasations. This i4, to a great extent, determined by what is nece-ary to keep the tice firm, te preserve the stability of the rails, and to efliet the pas-age of the engines and cariages along the railway with every pusibla security. Where ceonomy of construction has lwon a primary wioce, a widh of three foet mad a half from the rails to the outer elige of the cmanament or fimetpath of the exeavation, of from n to k; or 0 .
 blocke, or cross-ties and rails.

But there is another very important ohjeet th elfert,-the width neresary to secure the safety of the

 ralle, the nligment of the road, whether strai-ht or carved, de., all having more or lawa hame an

 arrived at by proctical ohservation ind ixperienee. A standard writer on railromblats culculatel blat

Supposing the width of gage to be 4 fect $8 \frac{1}{2}$ inches, or to outside of rails to be five feet one inch between the tracks six feet; and the breadth on the outside of the rails three feet on each side; we have, then, the width of the entire road, at the level of the rails, or, between k and l, Figs. 3181 and 3180, twenty-two feet two inches. The only remaining queations for consideration, are the slopes $g k$, $h l$, required for the filling of the road, and the width required for the drainage of the excavations. The depth of the filling is usually two feet or two feet three inches, and a slope of one foot horizontal, to one foot perpendicular, is found to be sufficient.

The width of the drainage $c g, h d$, Fig. 3180, will vary, according to the quantity of water required to be conveyed off; but one foot and a half on each side, at the bottom level, is generally found sufticient.
We hare, then, the width of the exearations at the botton level, as follows:

	feet. inches.
Two lines of railway, including rails	10 2
Width between the two lines	60
Width on the outside of rails	60
Width required for the slopes	40
Width for the drainage	30

$29 \quad 2$
which will be the width $f^{i^{\prime}}, c$ d, Fig. 3180.
And for the embankmente, or $l \mathrm{k}$, Fig. 3181 , which require no width for drainage, three feet less, or twenty-six fect. And where the slope of the embankments is one and a hals to one, the width at the bottom level, so called, (two feet three inches below grade,) is thirty-three feet nine inches.
Slopes of the excavations and cmbankments.-Having now ascertained the width, it is next necessary to determine the angle to be given to the slopes of the excavations and embankments. These depend, in some degree, upon the depth of the excavation, or height of the embankment; in the former, when the material is sand, gravel, or gravelly clay, a slope of one and a half horizontal, to one perpendieular, is quite sufficient; and in exeavations, up to thirty or forty feet, this slope has been found to stand very well. In some descriptions of elay a greater slope is given, sometimes as much as two to one. The embankments are generally made with the same slope as that of the excavations; and it is presumed that, with whatever slope the excavation will stand, the embankment formed of the material from such excavation will stand with the same angle of slope.
On the English railways the slopes are covered with a layer of soil, which is procured from the base of the embankments, or from the top of the cuttings; this layer of soil is spread over the face of the slope about six inches thiek, or of the thickness which the soil from those places will yield. It is of great importance to the security of the slopes, that the soil should be laid on as soon as possible, after the exeavation is made, or the embankment consolidated; and sown with grass or clover, or both, to get a turf upon it before the slopes are affected by the action of the weather. By doing so slopes will often stand, where, without the soiling and turf, or when exposed to the action of the weather, they will not stand. This is rery much neglected in this country, and the consequence is, the cuts are in general either badly drained, or a gang of hands are constantly at work to keep the diteh free from the wash of the slopes; and it is a good practice to sow the slope with some hardy grass-seed, or defend it from washing by loose stones thrown over the bank.
In these figures we have shown the slope of the excavation to run down to the bottom of the drain. In some cases, where stone is plentiful, and where there is an excess of cutting, side walls, similar to Fig. 318s,
 are built, to retain the sides of the excavation, the line $p q$ showing, in that ease, the line of the slope. In such eases, stone drains, similar to that shown at g, are made to still further diminish the width of the railway. The propriety of doing this is, however, entirely a matter of calculation.
Foundations for the cross-ties.-The line having been formed to the proposed inclination longitudinally, it is then levelled transversely. But, as the material constituting the base of the railway, in the excavations and embankments, is rarely a proper material for a road-bed, it is necessary to cover these surfices over with some material which will allow the water to drain off from the bottom of the ties, and which will likewise form a sufficiently firm foundation for the ties to rest upon. This is gencrally done by a layer or conting of broken stone, or clean gravel, whicherer is found the least expensive.

The drainage having been effected, and the under coating of broken stone having been all spreat upon the line, the next operation is setting the blocks or ties.

On all the excarations where stone blocks can be had at a moderate cost, and on the embankments which are perfectly consolidated, which, by the way, is never sufficiently the case on a new road, they may be used; but upon high embankments made of clay, and which are constantly settling down, it is found most advisable, in the first instance, to lay down wooden sleepers or ties, stretehed across from one rail to the other.
It has been the custom in Fngland to lay the rails on stone blocks, which rest on a layer of broken stone about nine inches thiek, and the whole filled in afterwards or "ballasted," as it is ealled, with gravel. If broken stone be used, about one foot in depth will be sufficient; but if gravel be used, it is eustomary to lay a greater depth, about two feet. This serves as a drain to take off the surface water and prevents its freezing at the bottom of the ties or blocks.
The American system, however, is beginning to prevail to a great extent; viz, the wee of eross-ties ot wood instead of stone blocks, upon which to rest the rail. In our country, where the frost is so severe,
the difficulty and expenie of setting and preserving the stone blocks is very great, and they have long since been abanduned for the wood ties; and even in England, some roads originally laid with stone blocks have been taken up and wood cross ties substitated in lieu of the stone blocks. And in fact, it the experience in this conntry be worth any thing, this may be considered the proper methud, as most modern works are now projected on this plan.

These wooden sleepers are made from eight to ten feet long, eight to ten inches broad, and about five inches thick.

When the blocks are set, or sleepers laid, as the case may be, the space between the blocks, and on the outside of the rails, is filled up to about three inches above the top of the blocks, or about the same depth below the top of the rails.

Seating the chairs upon the blocks.- A seat is first made upon the top of the block, perfectly level, and in the same plane as the base of the block, upon which the chair, of east-iron, and weighing from 20 to 40 pounds, is to be set. Holes are drilled into the stone, about two inches in diameter, intu which oaken plurs are driven, Fig. 3183 ; these plugs are then bored with a three-eighth inch auger, and the chair, having been properly seated upon the top of the block, an iron pin is driven through the be the chair into the wooden plug, and which, having a head, fastens the chair to the sleeper.

Feying the rails to the chairs.-Varios methods have been devincl for fastening the rail to the char. Iron wedyes, beys, and pins, and sometimes a union of all three, have in their turn had their advecates; bot all metal fa-tening; are objectionable, as all are found to work lowee. Wooden ker- or wedles are beginning to be in favor. Fig. 3184 is the rail used on the London and Birminghann lailway, and weifhs sixty-five pounds per yard; and which is the form of rail used upon the Grand Jantion lailw:y.

 is bevelled vertically, ngainat which the wedpe acta, and proming again-t the upper side of the hatce of tho rail, forece it dummards into the chair, while it, at the same time, forees the rail mainst the other

: N17.

therefore, the wedge, being quite dry, is driven between the rail and chair, and expanding by the damp of the atmosphere, it is very tightly compressed by the convexity of the chair, which produces a corresponding expansion at the ends, and thus fastens the wooden wedge so securely that no working takes place between it and the rail or chair. This key has, of course, no tendency, except the mere friction or pressure of its sides, to prevent the ends of the rails at the joint from separating.

Fig. 3186 represents the form of chair in use on the New York and Erie Railroad, in this State, which is found to answer a good purpose. The chair is complete in itself, and the rail fastened by means of it and the spikes to the cross-ties, independent of the oak wedge, which is driven in to prevent the rattling of the rail in its seat, from the vibration caused by the passage of the train. It will be perceived that the action of the wedge forces the rail down in the chair and firmly against its opposite cheek.

The effect of the expansion and contraction of the rails, by the rariation of temperature, amounts to about the fifteenth part of an inch in a rail fifteen feet in length. It has been attempted to obriate this shock by forming the ends into a half-lap joint, but with partial success only. The best thing that can be done at present is to preserve the parallelism of the upper surface of the rail; but the opening of the joint is ineritable, as, from the expansion and contraction of the rail, an open joint must be left. dependent in its dimensions upon the temperature at the time of laying the rails.

Fig. 318 t is a plan of rail laid down on some of the railroads in this country; with this rail chairs are dispensed with, the base of the rail being very broad, and being laid upon the longitudinal sills or cross-ties, is fastened to them by the brad-headed spikes c and d, which are driven into the sills. A noteh is cut near the end of the rail on each side, somewhat longer than the width of the spike which is driven through the notch, thus permitting the rail to expand or contract, while the flat head of the spike confines it firmly to the cross-ties. This has become a favorite mode of fastening rails in this country, and may be said to be universal, sometimes without any chair at the ends, and sometimes with a mere plate to prevent the ends of the rail from bedding themselves into the wood. This form of rail is now known in Europe as the "American rail." The following are a few of the various patterns of rail in use:

Fig. 3188 is the section of an experimental fish-bellied or elliptical rail, rolled by the Newcastle and Carlisle Railway Company, for the purpose of ascertaining the comparative rigidity of this hind of rail, and parallel rails of the same weight per yard; the weight of this rail was about fifty pounds per yard; the figure shows the extreme depth, and the dotted line $a b$ the smailest depth.

Fig. 3189 is the section of the parallel rail, rolled for the purpose above described, the weight of which was as nearly fifty pounds per yard as it could be rolled. The area of the wearing or top part of the two rails is precisely the same, as likewise the breadth of the base; but they differ in the depth and thickness of the middle part of the rail.

Fig. 3190 is the section of a parallel rail, nsed upon the Liverpool and Birmingham, or Grand Junction Railway, and weighing about sixty-two pounds per yard. The top and base of this rail are the same section.

Fig. 3191 is the section of a rail used on the Dublin and Kingston Railway, and which is a parallel rail, weighing about forty-five pounds per yard.
Fig. 8122 is a fish-bellied rail, made by Mr. Stephenson, and weighing about forty-four pounds per yard. The entire section on the drawing shows the extreme depth in the middle, and the line $a b$ the depth at the bearing parts. This rail does not swell out at the base, being intended to be keyed into the chair.

Fig. 3193 is the section of a parallel rail, of the weight of fifty pounds per yard, a few of which are laid down on the Liverpool and Manchester Railway.

Fig. 3194 is the seetion of a rail intended for the Great North of England Railway, the weight of which is about sixty pounds per yard. This is likewise a parallel rail; the mode of keying this rail differs from any of the preceding plans, and is shomn in Figs. 3195 and 3196 , Fig. 3196 being a section, and Fig 3195 a plan. One side of the chair is cast to fit the rail; on the other side of the chair a loose intermediate wedge slides between the cheeks of the chair, shown at e; this intermediate wedge is keyed against the rail by the driving-key f, which may be driven with any degree of tightness; the intermedate key prevents the vibration of the rail from loosening the key f. This chair, it will be seen, has four pins to fasten it to the block.

Fig. 3197 is the section of a parallel rail, laid down on the Liverpool and Manchester Railmay, and weighing sixty pounds per yard. In all the preceding figures of rails, both sides of the top or wearing part of the rail, whercon the wheels roll, is the same; but as it is only on one side of the rail that the flanch of the whecl rolls against it below the plane of the top of the rail, the wheel on the other side rolling along the plane of the surface, it is evident that there is no necessity to have both sides the same, In this case the side of the top, acted against by the flanch of the whel, is of the same outline as that part of the wheel; while, on the opposite side, the section is at right angles to the plane of the top. This plan, howerer, prevents the rail from being turned with the opposite side to the flaneh of the wheel, which it is sometimes found requisite to do.

Fig. 3198 is a section of the thirty-five pounds per fard fish-bellied rail, originally laid down upon the Liverpool and Manchester Railway; the entire figure showing the extreme depth in the middle, and the line $a b$ the depth in the bearing parts of the rail. The mode of keying this rail is shown in Fig. 3199.

Fig. 3200 is a section of a fifty pound per yard elliptical, or fish-bellied rail, laid down on the Liverpool and Manchester Railway: the section of this is nearly similar to the preceding figure, except in the area and weight; the keying is precisely similar; the line $a b$ shows the depth at the bearings.

Fig. 3201 is a parallel rail, weighing seventy-five pounds per yard, and laid on the London and lsirmingham Railway. The mode of keying is similar that shown in Fig. 3199 ; the distance of the supports, five feet.

Fig. 3202 is the section of the parallel rail, laid down upon the Liverpool and Manchester Railway, weighing serenty-five pounds per yard. The top of this rail is made of the shape explained in Fig. 3197.

Fig. 5203 is another sixty pounds per yard parallel rail, which has been latd down upon the Liverpool and Manchester Railway.

Fig. 3204 is the section of the rail laid down upon the Neweastle and Carlisle Railway ; it is an elliptical or fish-bellied rail, shown in Fig. 3205, with a convex projecting knob at the bearing points. The entire figur in the plate shows the extreme depth of section at $a^{\prime} b^{\prime}$, Fig. 3205 , and the line $a b$, Fig. 320.t, the depth near the knob, the latter swelling out the depth of half an inch inore within the chair. These rails weigh forty-two pounds per yard, and are haid in fifteen feet lengris, with five bearings of three feet each.

The compound rail, designed with a view to correct the defect experieneed in the simple rail at the joint, is now receiving a good deal of attention from enginecrs. Several plans have been derised, but all of them want the results of experienee before they can be recommended fur general adoption. Undoubtedly the defects of the joints are, to a great extent, remedied by the compound rail, but it is questionable if in this country greater evils wouk not result by increasing the number of parts of a machine already so complicated and difficult to keep in repair as a railroad.

Curves on the line of railway.-It has been usual to construet the wheels for railway carriages so that the outside rim is conical, or enlarged in diameter next the flanch; when, therefore, the carriages are passing round a curve, the wheels being comnected together by the axle, forms, as it were, a conical roller, running upon the rails with different radii; the larger radii being on the outside curve of the rail. This increase in the diameter of the wheel running on the outside compensates, to a certain extent, for the increased length of the outer curve of the rail ; and if the radius of the curve is not less than the line which the two whecls of unequal radii would deseribe, the wheels will travel along the line of the curve without rubbing against the flanches. But if the curve is more acute than such a line, then the flanches of the whects are the only guides to keep the earriages on the rails.
The degree of cone generally given to the tire of the carriage wheek is to make the diameter next the flanch one inch larger than the diameter next the outside of the tire, the brealth being $3 \frac{f}{f}$ inches. In practice, it is likewise usual to keep the wheels at such a distance from each other upon the axlee, that, when travelling upon a straight line, the flanches on rach side are about one inch from the rail. With a view to provide against the eentrifugal force of the earriages when ruming in a curve, it has beets enstomary to clevate the outer rat of the track.
The following table will show the elevation to be given to the out-ide rail, of ditferent radii, above that of the inner rail; so that the whole amount of centrifugal foree is balanced lyy that of the gravity of the load, towarts the inside of the curve.

Descriptton of wagon und witth of rulwuy.	Radina of the. ears. in feret.	Surplus of clevation in lnches, the velority in males [w.r hour teing:			
		10 miles.	15 miles.	20 milu*.	3) miles.
Diameter of wacon wheels of fret ; width of railway I feet s inel.; inchation of the tire of the wheed $\frac{1}{2}$ inch in the brealth, viz., $8 \frac{1}{2}$ inchew.	2511	$1 \cdot 1 i^{\circ}$	\%04	$5 \cdot 67$	$1 i ;$
	5110	54	1\%\%	2-sis	$10 \% 7$
	1004	-1!	-7i	$1 \cdot 12$	$3: 311$
	20100	-15	\because	$\bigcirc 1$	$1 \cdot 6$
	80) ${ }^{\text {(1) }}$	111	95	-17	$1 \cdot 10$
	(111)	117	$\because 11$	\% 31	¢ 3
	5000	-113	16	$\because 3$	$\cdot 6 ; 7$

It was a fow years back the custom in this conntry, as it still is to a great extent in Finghand, to sone, ns it is calleil, the tires of the whed with : view in present the rublane of the thathes of tho

 hut the passenger, expres, and freight mans, travelloge at very difterent revels whont the ir whechs

V゙っt. 11.-30
are coned at different angles-which in practice would te very inconvenient, if not wholly impractica-ble-the different elevations of the outer rail would not meet the necessities of the particular case as a speed of 30 miles per hour requires an elevation some 11 times greater than a speed of 10 miles. It is now, in this country, the custom to disregard this coning of the wheels to the extent which the theory would call for, and simply cone them to the amount of the draft (as it is called) of the casting, about $\frac{1}{8}$ inch on the tread of the wheel; and engineers differ very much as to the proper amount o_{4} elevation which should be given to the outer rail. The actual amount to meet a given speed is easily estimated; but whether it is expedient to give more or less than this, or to provide for the freight or passenger trains, is as yet an unsettled question.

As there can be no doubt that the ligher velocities of passenger trains, even with their less load, is productive of greater injury to a road than the freight trains, it would seem desirable to adjust the rail with the surplus elevation due the higher velocity; if the road were essentially a passenger road, or in other words, without the freight trains were largely in excess of the passenger trains, to suit the curves to the latter traffic, having in view the diminution of "wear and tear" of both wheels and rail, rather than an cconomy of motive power.

Great Western Railroad in England-Mr. Brunel's plan.-Figs. 3205, 3206, and 3181, (p. 519,) show a plan and different sections of Mr. Brunel's plan of railway. A BCDEF and G H are the longitudinal rails forming the railway; these longitudinal rails are 14 to 15 inches broad and 6 or \uparrow inches thick, and are made of American pine. $a b^{\prime} a b^{\prime}$ and $c d^{\prime} c d^{\prime}$ are double transverse ties or sleepers, which are each six inches in breadth and seven inches deep; and ef single transverse ties or sleepers, which are six inches in breadth and nine inches deep. These sleepers are stretched across the line of railway, and to them the longitudinal rails are secured. 12345 and 6 are piles which, in the cuttings, are from nine to fourteen feet in length, according to the nature of the material, and in the embankments 12 to 80 fcet, or of such a length as that they will reach from the base or formation line of the railway 6 to 8 feet into the original surface of the ground. The cross-ties are American pine, and the piles of beech.

The plan of construction, or of forming the railway, is as follows: the piles are driven at intervals of every fifteen feet, as shown in the drawing, and in the middle between the longitudinal rails. In cuttings, they are driven from eight to ten feet into the ground, below the level of the cross-sleepers; and on embankments they must be of such a length as to be driven about the same depth, or seven or eight feet inco the original ground. Upon an embankinent of three feet they must be, therefore, ten or twelve feet long, and so on, according to the height of embankment, and the kind of subsoil into which they are to be driven. These piles are always to be driven to the exact depth required; no part of the head is allowed to be cut off; but if the pile does not drive to the proper depth, it must be drawn and driven again. This is for the purpose of being certain that they have sufficient hold of the ground; near the head of these piles, as shown at 123456 , Fig. 3205 , and at $b b^{\prime} f$ and $d d^{\prime}$, Fig. 2206 , a square shoulder, of $1 \frac{1}{2}$ inch, is made on one side of the piles for the single ties, and on both sides of the piles 1250 for the double ties. The ties or cross-timbers are let into these shoulders, and they are firmly bolted to the piles, as shown in the drawings. The double cross-timbers are laid down thirteen inches, and the single timbers nine inches below the line of the rails. Between the double timbers, as shown at $g g$, Fig. 3205 , and also at all the other points where the longitudiual rails intersect the cross-timbers, a piece of wood is interposed, which is pimed to the cross-timbers, and upon which the longitudinal rails rest.

The longitudinal rails are then laid down upon the cross-timbers, the upper surface of which is three inches below the surface of the iron rails; they are bolted to the cross-timbers with serew-bolts and washers, as shown at $n n n n$, Fig. 3205, and by a larger scale in Fig. 3207, of being the cross-timber, and AB the longitudinal timbers; the latter, it will be seen, is let into the cross-timber a little, the single cross-timbers being deeper than the double cross-timbers. The head of the bolt and washer is countersunk into the upper surface of the longitudinal rail, as shown in the figure. One of these bolts is put in at each of the points of intersection of the longitudinal rails with the single cross-timbers, and two bolts at each of the points of intersection with the double timbers.

When the piles are firmly driven, the eross-timbers bolted to them, and the longitudinal timbers bolted to the cross-timbers, then sand, or finely screened gravel, is beat or packed underneath the longitudinal timbers, until a base or bed is made for them to rest upon, perfectly firm, solid, aud conpact.

Fig. 3208 shows a section of the rail used, which weighs from 4 , to 44 pouds per yard, and which
rests upon and is securel to the bard-wood plank and timbers of the longitudinal sills, and is of the de. scription known as the U or brilge rail.

As shown in the figure, the rails have a slight berel inwards.
The width or gauge of the railway is 7 freet $2 \frac{1}{2}$ inches, from centre to centre of the rails; and the width between the centres of the insile rails is 6 leet.
A few instances occur in this country of the wee of stone blocks for the support of the rail ; but they form the exception, it being found that the wear and tear of machinery on the stone track is much greater than on the wool, and in consequence, the nse of the latter material for the support of the rail has become universal. Upon this depends in a great measure the perfection of the road. The point in which our roads present a great inferiority when compared with the English, is in the want of complete preparation of the foundation. All the refinement of sciener, applied to the form and dimension of rails, chairs, engines, de., is useless, if the foundation be liable to be thrown by frost, or to displacement from any canse. To prevent this, too much care cannot be given to the nature of the material forming the road-bel, and to the position and preservation of the ditches. All material impervions to water shonld be excavated from the bed of the road to the depth at least of two fect. and its place surplied by clean gravel. The sleepers or cross-ties of chestnut, cedar, oak or other durable wood, according to the locality, are laid transversely, at intervals of about two fect. These ties should be at least 6 inches decp by \mathbf{i} or 8 inches wide, and for the narrow gauge 8 feet long. Upon these cross ties are to be spiked the iron rails.
The rail is usually secured in the chair by the brad-headed spikes which hoin the latter to the ties, the notch in the rail for the spike being elongated so as to permit the expansion and contraction of the rail, or else the chair is fastemed independently of the rail, and the latter prevented from rising out of the chair by the latter being made to confurm to the shape of the rail, so that it cannot be removed from its chair but by drawing it out in the direction of its length. At the intermediate cross-ties the rail is secured inside and out by the brad-headed spike driven into the tie on each side, and lapping orer the base of the rail. The rail may be further secured in the chair by a wooden wedge, sawn to a taper, and driven into the chair against the bottom, side, and top of the rail, one side of the chair being cast to receive it. It is not advisable, however, to make the fastening of the rail in the chair dependent antirely upon the wedge. The chair should be safe against accident, were the welge to drop out; out the use of the latter should be to perfect the joint, and prevent the small motion in the chair occasioned by the ribration of the rail, which in the end might prove the destruction of the chair. The spikes should be machine-made, with chisel points, and weigh at least half a pound each, and occupying in length the depth of the cross-tie. After the rails-we have supposed the H or U section, of about from 60 to 80 pounds per yard-are laid and spiked, and the line oi rails adjusted to their proper adjnstment, the ballast of clean gravel is bronght iuto the road and deposited between and aromed the cross-ties, packed well underneath them with the shovel and rammer, and levelled ofl to the plane of the bottom of the rail, nearly. This is the method, with some modification, which prevails pretty generally in the con-truction of the modern railroad. A longitudinal bearing under the rail, into which the crossties are framed something similar to the Western Railroad in Eugland, is occasionally adopted; but its want of simplicity, as well as other defects, has occasioned its disuse.

ROLLING STOCK. Under this term are included the locomotives and ears. The distinctive feature of the American locomotive will be found under its appropriate head. Our cars are still more peculiar. Whilst the langlish, adopting the stare coach as their motel, made their cars with compartments resembling coach borlics, generally three to each car, and supported on but two sets of wheels, we, adopring a new and distinet construction, have alopted a long undivided car, supported near the ends by trucks like the forward trucks of our lucomotives. Each truck has not less than two sets of whecls, somettimes three, aml in very rare instances four. I'ussenger cars are proviled with seats for from 40 to G0 passengers. Most of the cars are cutered at the ends from the end platforms, but in some, as in the Jersey Railroud care, the entrance for passengers is in the centre.
The freferht cars are in pencral eonstruction similar to those for pussengers, but shorter. On a few roads the Ghort four-wheeled cars are adherelt to, and when slow speeds are preserved they are more monomical, less deal weight in proportion to tho weight carried, mid easier moved at the stations. Freight ears are cither opeon or boxed ; ballast cars are usually two whecled, and arranged so as to the capable of bring dumped.

The chief oljection to our present system of cars, resulting in part from unnecessary speed, is the amonut of dend weight drawn in proportion to their freight ; and even this is di-proportionately inereased l,y the oftern unnecessary hanling of compty or fiar from fill cars. We annex the folluwing table from the Report of the New Y'urk C'ommisfiuners for 1-.tt.
The following tabular statement gives the averuge cont per mile, for building and manning the road ;

A yerage const per mile of reat,
en: "quival-nt singlo track,
Averuge cont of loomotive ent gines and tixtures,
Arerage cone of pasenger mat bayruge enr-
Average ent of' froiglit cars,
Average number of miles of roml
fur one lecomotive,
Averag number of n ilas of romi
fur one pasemy rear,
of roal . . 2
2.75

$36, \cdots: 3 ;$

2,011 8, 1 (931 5)
3. $1: 3$ unil.as

A rernace number of miles of rond for one freight car.
0.2 i mile

Averng mamber cars per tain. passengar, 1.5 freight, 18.2 Noragn mamber per train of pasemerers, . . . Tン.1; " tons 7t.2
Avarazo number per cor, if
 Treram number of tons of nom- pativg varbt prr

［Our lailroad history has had two cras－the first from 1820 to 1848 when there wns iuthe number of miles built an average increase of 265 miles per yenr；and the second，from 1845 to 1556 ， having an average inerease of 2350 miles per year．In many of the States，the development of the Railroad system is quite equal to the wants of the people；but in many others，kentueky being the most notable instanee，it is much less．］

	宮		烒
	范		
	䓢		－
	－		閏
	蓾		｜
	㔽		㗊
	宮		㦹
	嵒		咸
	$\stackrel{\stackrel{8}{\oplus}}{\stackrel{\circ}{\infty}}$		監
	哭		1980
	产		哭哭
	宮		－
	莌		－
	$\stackrel{\text { \％}}{\text { ¢ }}$		乭
	㵢		蓇
	笠	㤂	皆
	\＃		$\left.\right\|_{0} ^{\circ}$
	$\stackrel{\text { ¢ }}{\sim}$	\|	旁
	敛		膆
	安	\|옥	－
	空		－
	鶅		集
	\％		${ }_{\square}^{\infty}$
	产		연
	監		0
	宛	$\vdots \vdots \vdots$ 風	－
	茴		2
	骨		7
	宊	交洮 $\vdots \vdots \vdots \vdots$	\％
	－${ }_{\text {g }}^{\text {g }}$		¢
	恶		号

The great weight of the locomotive and of the carrying stock gencrally, has led to varions expedient. to avoid this difficulty. Rope railways, that is railways in which the cars were drawn by ropes or chains by means of stationary engines, lad long been nsed in mining districts to overcome steep gradients. This system was adopted with some ingenious modifications, to propel cars on a level track, on the London and Blackwall railway. But it was found uncertain and expensive and given up. In fact, at present there are but few inclines in this country worked by stationary power, it being found more economical to work with the locomotive on zig-zag or Y tracks to overcome steep gradients.

As an improvement on the rope railway, Clegg and Samuda introduced the atmospheric railway upon the Dublin and Kingstown road, where it worked so successfully for a series of years, that it was introdnced on the London and Croydon Railroad, but it proved a failure. As an expedient it was very ingenious, and may perhaps in some form be serviceable on very short lines. Suppose a large pipe to be laid down on a road, and that at one end of this pipe were placed an air-pump for withdrawing the air, -and at the opposite end a piston, working accurately in the pipe. On panpiug out the air from the pipe, the atmospheric pressure upon the piston would drive it along the tube. In order that the piston and the carriages might travel together, much in the same way as the short tube, or pencil-bolder inside a pencil-case, travels with the outer tube or ring, -some connection is necessary between the piston within and the cars without the tube. The arrangement employed on the line from Kingston to Dalkey, a distance of $1 \frac{8}{3}$ mile, is as follows:

In this railway the vacuum-pipe was about 15 inches in internal diameter; it was of east-iron, anm was laid down in the same way as the large water mains, between the two rails of the railway. After the pipes were cast, a cutter was passed through them in the direction of their length: they were then raised to the temperature of melting tallow, and a mop dipped in that material was passed through them, and being followed by a wooden piston, the inside became coated with a thin surface of tallow, which soon acquired great hardness. This was found to be an excellent surface for the piston to travel against. On the top of the tube was a narrow opening extending the whole length, closed by a valve so as to render the tube air-tight. This valve was a continuous flap of leather, on the upper and under sides of which plates of iron were riveted, the inner surface of the lower plate formed to the curve of the pipe, the upper plate and the leather being made a little wider than the opening or slot, and extenting over it on each side. This continuous valve was hinged on one side to a projecting rib, and the other edge fell into a groove containing a composition of wax and tallow, which, when melted, sealen up the pipe, and made it sufficiently air-tight for the working. A flap called the weather-ralve, protected the apparatns from the weather. The piston contained within the tube was furnished with a rod 14 or 15 feet in length, to which were attached rollers for opening the air-tight valve behind the piston as it advanced along the pipe. The piston was connected with the first carriage, or dricing-car, by means of a coulter: to the driving-car was attached a copper vessel, several feet in length, heated with coke, for the purpose of melting the wax and tallow when the valve had been pressed down by the apparatus.

It will be understood, then, that the train of carriages moved on rails as in the ordinary railway: but between the rails the tube with its enclosed piston was situated; and that an air-pump worked by a stationary steam engine exhansted the air in the tube in front of the carriages. The speed of the train would evidently be in proportion to the rapidity with which the air could be pumped ont. It was found that an exhanstion of 15 inches could be produced in about 2 minutes, and that a speed of 50 or 60 miles an hour conld be produced.

RAILWAY BAES.-On the manufucture and form of. The mass out of which the rail is rolled is called a "pile," and is composed of a number of plates cut from rolled bars to a length suitable to the convenience of handling, and the dimensions of the close-furnace in which the piles are placed to receive in welding heat. The piles have a bed and cap plate of double the width of the other plates, which keep the pile torether, and are mostly of superior iron . See Fig. 3196 , in which A represents the crosssection of the pile.

The firnace is clu as up to prevent the iron fiom huming on the surface before the midtle of the mano is brought to a weldang heat. It reguires mill and practice to jutge of the dogree of hat bece ary th

 For this reason a close and compersint superintembene of the monafacture is moch more important than the most careful inspection nfter the work is chome. It often hapyens that a eareful beadmon, whon man

 quality of the metal.

To obtain a more solid and durable surface on the top of the rail, it has been proposed to use a ham mered bar of double the usual thickness for the cap-plate of the pile, which would remain a solid material of considerable body after the rail is finished. See Fig. 3197, in which A represents the cross* section of the pile.

In the composition of the pile no scraps or short pieces should be admitted, for the reason that the process of rolling and extending the mass lengthwise is adverse to welding the cross-joints between the pieces, and so far the rail is diminished in strength and solidity. Scraps and trimmings had better be wrought into common bars, to be worked over again in the smith-shop. The heavy rail is a finished piece of work, and so expensive that its efficiency should not be endangered by the use of improper materials.
The pile should always be of sufficient weight to afford a surplus in length, so as to cut the rail of the desired length entirely clear of the fag-ends. Rails are often defective and give way at the ends while other parts remain sound, for the want of due attention to this matter.
3199. - Double-headed rail, to be reversed.

Set in a east-iron chair.
3200.-II-rail.

Great care should be taken in the straightening and trimming; and the first step is to see that the large cast-iron plate upon which the rail is laid while hot from the rolls is straight and out of wind -as the rail, being lifted and slammed down while soft, will conform to its surface, and retain a twist when cold if the plate should be in wind. This is a most mischievous fault, and can never afterwards be perfectly corrected. Though the surface may be brought to a line longitudinally, and the base adjusted on the bearings, the pressure on the top, varying from side to side, will produce a rocking action, tending constantly to loosen the rail.

Close attention should also be paid to accurate straightening, as even a slight undulation on the surface will produce, at the ordinary velocity of the train, (30 miles per hour,) a sensible vibration, unpleasant to the passenger, and injurious to the road and train.

To prevent rails haring these defects from being brought into use, a severe inspection should be applied to then. Each rail should be placed on a strong bench, in length equal to that of the rail, and the surface plated with iron in several places; these plates shouk be dressed to a correct line and out of wind, which will at once detect any twist or crook that may be in the rail.

The circular saw is now generally used in trimming, which is a great improvement over the chisel, as it leaves the section of the rail undisturbed-a very important matter in making even joints,
In considering the form of the railway bar, it may be first observed that the more simple and compact the section, the more sound will be the rail. It is obvious in viewing a section of the pile, (see Fig. 3196 ,) that there are a number of joints between the plates to be welded, and that each plate must of
aecessity be reduced to a thin lamina in extending the mass to the length of a rail, and that the strair. on the weldings and materials, will be much less in one form of section than another; therefore, in de signing a form, it is well to give to this matter its due consideration.

The \mathbf{T} or edge rail, set in chairs, and the double-headed rail, Firs. 3198 and 3199 have been exten sively used in Europe; but it is said that the II, and bridge or U rails, American designs, are coming into favor there. They have long been the farorite patterns in America, and do now divide the opinions of professional men and railway companies, so that the two are placed in competition on extensive divisions of the same line, and on different roads. Each has its peculiar merits.

The II-rail has the advantage in simplicity and beauty of form, and may have in solidity, by a mod ification of the section. The head and base are generally made too light, (see Fig. 9200.) It also affords u better base fur its support on the bearinga.
The U' or bridre rail has the adrantage of perpendicular sides to support the head, without projections subject to be split off, like the H -rail. It also offers better facilities in its hollow form to secure strong and even joints, by the insertion of an iron core at those points. See Fig. 3201.

But, after all the exertion of talent and skill for the last twenty years to perfect a line of road with, the u-ual form of rails, it stitl remains very deficient in smoothness and stability at the joinings, and it is fiared will continue to be so while the rails are made in independent, separate, solid pieces

The perfection of a rail would be one of sufficient and uniform strengh-rolled, or made by other means-in one piece, without joints the whole length of the line; but this being impracticable, the effort is now to approach it by a new device, which is to form the rail of two or more pieces, say 30 feet in length, and to splice them together, breaking joint, so that each part shall act as a splicing-jhate to the wthers where their ends meet.
A three-part compound rail of cast and wrought iron has been on trial for some time on a line of heary traftic, and stands the test of heavy enoines remarkably well. It is more elastic than a solid rabl of the same weight, and the line is more uniform in strength, and of course more easy to the passenger, the train, and the road. It is apparently so far a considerable advance towards theoretic perfection. Ser figs 3202.

The next attempt, having the same object in view, is a compound rail of two parts, bolted together with a vertical joint, and each part breaking joint with the opposite part. It in now under trial in a section of an impertant roal, und is said to promise wrll. See Fig. 320:3.
The third plan, which yet exints only in model, is also a compound rail of two parts, having a vertien font, and breaking joint. But each part is concave on the inner side, so that when they are combined they form a tube, in which, at each eros-joint, is inserted an iron core which tills the fube for a short space, anl is designel to compensate the lows of strengel occasioned by the semicrose joint, and to prevent wertical alphing letwen the two parts. The edges of this compund ral are precisely alihe:
 sion, thereby donbling the durability of the ral. But without actual trial it is guestionable whether

 shows the break joint on the top, the doted ham a riprementing the come.

 experiment.

passing keys through the tongue of the cap-piece and fitting in stop-notches eut in the top of the bearing rails. A better mode of security in this important matter is suggested by the inventor, which is to let the tongue of the cap-rail project downwards sufficiently low that the bolts which hold the base-rails together may pass through it also. This compound rail loses about one-third of its strength at each cross-joint; but the objection may be relieved to a considerable extent by inserting an iron core at each cross-joint under the tongue of the cap-piece. This form of a composite rail necessarily carries with it one great objection in view of a perfeet surface, as the latter is broken at the end of each eaprail by a thorough eross-joint, presenting a noteh for the wheels to pass over of more or less extent, produeing more or less jar at all those points.
The two-part H-rail, the second noticed, and the two-part tubular rail cach equally possess the advantage of a surface but partially broken, as the cross-joint extends only to the middle of the surface, leaving the other part a bearing to the wheels in passing over. They also equally possess a provision against eud-thrusts, in merely combining the two parts. When the surface is worn out, the whole rail is lost in each case. The two-part H-rail loses half its strength at each cross-joint; the tubular rail, in consequence of the core, is of nearly equal strength in all parts of the line.

REFRIGERATOR, The Dry, for Family Use. A. S. Lyman's. Fig. 3207 is an interior view. The iee is placed in the chamber A, and the air in contact with it being cooled and condensed, and therefore rendered heavier, flows down tbrough the grate R , and the descending cold air flue C , in the direction of the arrows. It is discharged up through the opening in the back part of the bottom of the lower drawer. The warmer air in this drawer rises up through the opening M, in the division board above and onwards, finally passing up the flue D , and over again upon the ice: thus a current is formed, as shown by the arrows.

For the purpose of showing more elearly its internal arrangement, the middle drawer is represented as partially open. This shows the opening M, through the division board on which that drawer rests, and the opening N , through the baek end of the bottom of that drawer. This opening N , is now elosed by the division board. When the drawer is closed, these openings M and N coincide, and the air flows frcely through them, as it is foreed from the lower to the upper drawers by the superior weight of the column of cold air in the flue C. The back end of the drawer cats off all connection with the refrigerator, so that no air can flow out when it is open. The cold air in this drawer being heavier than the air outside, remains in it, unless there are currents in the room, whieh at most ean only sweep the air from this drawer.

Some of the gases set free in refrigerators are absorbed by ice, or rather by the pure water as it is dissolving from iee; but that alone will not absorb all impurities, nor prevent a refrigerator from aecuminlating bad odors, as is known practically by all whe have used refrigerators for a suffieient time.

In order that the air may be rendered perfectly pure, the charcoal filter S , is placed in the baek part of the drawer, so that the air in its rounds is constantly being filtered through the charcoal, and thas deprived of all its impurities. The water from the melting ice runs into the gutter G, and off by a trap pipe not shown. These refrigerators are all made double as represented, and the spaces, whieh are from $1 \frac{1}{2}$ to 3 inches wide, filled with pulverized chareoal ; this increases the weight and cost somewhat, but it is essential to practical snceess.

REGISTERING AND NUMBERING MACHINE, B.arixowsk's patent. The several machimes patented by Mr. Baranowski are all dependent on one particular arrangement of wheels or disks, of which he gives the following preliminary description:

The wheels or plates d and b, Fig. 3209, turn on their centres B and A, and when the tooth e falls into one of the nothes in b, it moves b rom one-tenth of its circumference, as there are ten notehes in the wheel b. The spaces between the notches in b are arcs of the same circle as d, so that b is alway's stationary and fixed, except when moved by the tooth in d once for each revolution of d. b is fixed tu a, the edge of which is engrased with the figures from 0 to 9 , as shown in Fig. 320s. The cogged-

wheel c is also fixed to a, and works into a cogred-wheel of the same size f, turning on the same centro as d, the edge of which is also shown in Fig. 3.08 . d^{1} is fixed to this last congect-wheel f, and is of the same form and size as $d . b^{2}$ is fixed to a^{\prime}, the edges of which are shown in Fiz . 820. 8 , and is of the same form and size as b. Again: Fig. $3208, l^{2}$ is fixed to a^{2}, and is turned by " F^{2}, which is fixed to j^{1}. working into the cogyed-wheel $c^{1}: b^{2}$ and d^{2} are also of the same size and furm as b and d and a^{2} and have also the figures from 0 to 9 engraved upon their edges. All the plates or whecels move freely on their cylinders or centres, A and B respectively, although it will be seen that no one of them can move without moving all the othera, at intervals of time dependent upon the number of noteles in the wheels b, b^{1}, and b^{2}, respectively, and also upon their respective distances in the arrangement from the first mover d. The operation of counting proceeds thus:-The first revolution of d moves a one-tensth, or Frits the unit in the place of the cipher on a; ten revolutions of l, or one of a-that is, one revolutiun

 ment huws $9,9,9$, where is $0,0,0$, in lige 3:0)

represent shillings and pounds. It will also be seen, by examining the Figs. 3208 and 3210, that Fig 3210 difiers slightly from Fig. 3208 , withont affecting the peculiar character of the arrangement. The same letters show the same parts in both figures. b, the unit wheel α, and d^{1} are all fixed to the axle A, which turns upon its centres. In Fig. 3208 the corresponding whecls are loose on A ; d^{2} works into b^{1}, as in Fig 3208; and as f is fixed to b^{1}, and c to a^{1}, and f and c are of the same size, and work into each other, every complete revolution of a is attended with a partial revolution of a^{1} through a space measured by the distance between any two notches in b^{1}, Fig. 3211. The object of this variation it the Figs. 3208 and 3210 is to bring the numbers on the edges of a and a^{1} close together.

Again: if d had two teeth, two notches of b would be moved round at each revolution of d, and the odd or even numbers on a would be presented from time to time where there is now $0,0,0$, Fig. 3208 , according as the arrangement was started with 1 or 2 . If started with 1 , it would skip $2,4,6$, \&c., and show $1,3,5$, \&c.; if started with 2 , it would skip $1,3,5$, \&c., and show $2,4,6, \& c$. The Roman method of notation, or any other signs or symbols expressive of numbers, can be substituted for the Arabic figures, and can, by means of this arrangement, (modified so as to facilitate and varg. its application,) be made to appear at $0,0,0, F i g .3208$.

The manner in which this simple and ingenous arrangement is applied to the numbering, stamping, and registering railway tickets, for example, is thus described:

Fig. 3212 is a sectional view of the side of a machine of this description. $R R$ is a cylinder which is movable up and down in the frame SS. The top P, upon which the blow with the hand is to be given, is always kept up some distance above SS by a spiral spring upon R R. The whole of the machinery forms part of $R R$, and moves up and down with it, except the rack X, and the clicks b and b, which are fixed to SS. When RR is struck down, a tooth of the wheel c passes beyond b, and when RR rises again to its place, the wheel c is turned one tooth by the position and resistance of $b ; d$ is a click to keep c fixed, as R R descends. The arrangement here is the same as shown in Fig. 3208, only there are four wheels with figures on them instead of three. as the number shown is any short of ten thousand. There are also two sets of figured or marked wheels, one above the other, and made to move at the same time by the cogged-whcels on the middle axle g, Figs. 3212 and 3213 . On the lower set the numbers project to be used as stamps, the neighboring parts being cut away, as shown in the wheels h, Fig. 3212. The upper set appear at II, Fig. 3214, so that each number from time to time is both stamped and registered. The segment of a wheel W, Fig. 3212, to which is fixed an arm carrying a small elastic roller T , works into the rack X , and at each descent of $\mathrm{R} R$ is thereby carried over the under side of the apparatus Z Z ; and this surface being charged with printing-ink, the roller T inks each projecting figure before it reaches the paper below.

REGULATORS. Clarks' Patent Steam and Fire Regulator. Even in the carlicst application of steam, regulators were contrived fur controlling the draft of the fire by the pressure of the steam in the boiler, by which an even pressure may be maintained and no greater quantity of fuel consumed than may be necessary to maintain the desired pressure. Figs, 3215,3216 , illustrate the most successful and practical of these contrivances, patented by Patrick Clark, in January, 1854. Both figures are in section. The construction can be readily understood. The steam from the boiler is introluced beneath a vulcanized rubber diaphragm, upon which rests a piston F , weighted like a common Eafety valve to its lever 11 , as rod K is attached, which connects with the damper in the chimncy or fluc. Fig. 3215 shows the position of the diaphragm and inston when the pressure in the boiler is
below that required: when the pressure exceeds the desired pressure, the diaphragm and piston are forced up, and the damper begins to close, till it attains the position, fig. 3216 , when the draft is entirely shut. The amount of pressure is controlled by the sliding weight or pea on the steelyard arm H, as shown in fig. 3216 . The diaphragm is composed of a cup or cylinder, and the patentee claims "the combination of a cylindrical diaphragm with a cylinder and piston," by which any desired amount of motion may be given from one inch to :en fest, but fur a movement not greater than an inch,
he observes, that a flat disc will answor, provided the cylinder is made as shown in the figures.

These machines are in successful operation throughout the country; they maintain an even head of stean with ceonomy in the con-umption of fuel, sufety to the boilers, an l general saving in wear and tear.

RIVETS AND BLANK SCREWS, MACIINE FOR MAKING. By J. (i. Dar, Brooklyn, N. Y. The following is the patentec's description of a machine for making rivets aul blank screws, patented July 3, 1849.

The nature of my invention consists in the diseorery of a speedy and useful way or process for making rivets and blank screws, with machinery the efor This machinery cousists of a disk or circular plate

maining at rest for the purpose of allowing such operations to take place, but cutting off the wire or rod that has been fed in as the disk and dies revolve, and holding and conveying it until the work is com plete; that is, until the rivet is headed and discharged, and so continuing their operations in succession so long as it shall be desired.

I arrange a table a upon which I place a disk b having its several dies c, and its outer edge being in the form of a ratchet d, and which may be caused to revolve by the pawl e, or any equivalent mechanism. This may be understood more clearly by referring to Fig. 3219 of the drawings, this being a plan on these parts, although the same parts are known by the same references in all the drawings. Above the table is the main shaft, from which is conveyed motion to all parts of the machine. A double-acting crank, by an intermediate connecting lever g, acts upon the pawl e to cause the disk to revolve at the proper time, and to the proper distance; while a somewhat similar arrangement bears a like relation tirrough its connecting-rod h to the discharger i, worked by an intermediate lever k. At the back of the pawl e^{\prime} is a spring l, which keeps the pawl up to its work at all times; there is, besides, a strong coiled spring, designed to keep the disk in its place firmly to the table; a planing-board n is used to plane off and level the head after the header or meshing tools have done their work. This tool may be constructed with a projecting point or lip to fit in a recess in the face of the disk, and this lip will cut the nick in the head of the screw. This planing tool is placed immediately in front of the discharger; behind the discharger is a stop or gage piece v placed in an oblique position, which serves the double purpose of a gage for the length of wire to be cut off, and as a clearer to throw off the work from the disk after it has been discharged from the dies. I will here add, that I have intended to use, if necessary, a lock-up for my disk; this would regulate the disk by stopping its motion at one precise place at each stop, in ease it should fall a triffe short or overreach the desired point by the inaccurate action of the pawl. This lock-up may be applied in many ways, but can be well applied by attaching a wide piece to the end of the discharging lever, and upon it placing two pins instead of one; one of these could have a long bevelied or taper point to enter one of the dies, and thus, as it is pushed in to the full size, will bring the disk to the exact place to receive the other, (the discharging pin;) this discharging $\mathrm{p}^{\text {in }}$ is for operating upon a headed rivet to discharge it.

Fig. 3217 shows the action of the heading hammer. This hammer has several hammer-faces, to act upon as many riveis or bianiz screws, ant gives by this means as many blows upon each one as there are of these faces; that is, one acts upon the head of the rivet in one die at one blow, and the same one acts upon the next rivet after one move of the disk, and so on, while the one acted upon first is acted upon by the second hammer-face, and so on to the finish. This hammer is shown at o, and is worked by a connection p to an eccentric or crank g, by which it is raised and lowcred in its operation, and presses or crushes down the metal, and firms a head in the rough where a flat head is to be formed, whilie the round head is produced by a hollow or concave in the face of the hammers.

I have used two, three, or more of these hammerfaces as kefore stated, for the more perfectly pressing and consolidating the metal, as it might not be per-
 fectly solid by a single blow, particularly when the metal is used in a cold state, as is generally the case for blank screws, while heated metal is most generally used for rivets. I also use one hammer having a chisel-fice, which may be pressed into the head and form a nick, when it is desired to form nicks.

I provide a tube r through which the wire or rod may be fed to the die in the disk, and which does the further duty of one-half of the shears for the cutting off the wire or rod, the die itself being the other half of said shears. The rods or wire may be fed in by hand, or by any convenient machinery, in many ways, such apparatus being common to machines for these purposes.
The operation of my machine will be better understood by saying that the machinery is set in motion by porser applied at the pulley s. We commence feeding wire or rods through the tube into the dies, while the disk is at rest; next, the disk of dies move round (always in the same direction) and cut off the wire, which has been fed in until it meets the herein-before-named gage v. This revolving action brings a second die which is also fed in, and so on until each die will be filled as intended. As the dies continue to fill and cut off, they pass on, and one after the other meets the header and subsequently the discharger, when one after the other is discharged-all the other operations being performed in the progress, and between the feeding and discharging.

RIVETING AND STEAM PUNCHlNG MACHINE. By M. Lematre, Paris. The principle on which the motive power of the steam-engine is applied in the machine now before us, is widely different from that which characterizes most of those of which we have yet treated, and, simple and obvious as it may appear, it is ouly beginning to be appreciated by mechanicians as we think it deserves.

In those machines in which if rectilinear motion, whether in a horizontal or vertical direction, is regnired to be produced, that object has hitherto, in most cases, been accomplished by n.eans of mechanism, more or less complicated and expensive, for converting the rotary motion transmitted throngh long trains of shafts from the fly-wheel of a steam-engine, into a rectilinear motion. In establishments in which a great number of nachines, small as well as great, have to be kept in motion, we believe that no improvement upon this roundabout method could be recommended; but for single and independent machines, where great power acting in a rectilinear dircction is required, we beliere that the direct action of the steam-engine, as exemplified in the machine now to be described, will supersede the more pircuitous, expensive, and, on many accounts, objectionable method hitherto practised.

Anotber very important peculiarity in the machine now under censideration, deserves to be specialls
noticed. In riveting by hand the workman finds it necessary to bring the plates upon which he is operating into close contact, by striking them with his hammer while clusing and finishing the head of the rivet. The necessity of this will be obvious when we consider that the iron pin, which is to form the rivet, tends, by the compression to which it is subjected by the blows of the hammer, to stave up throughout its whole length, as well as at the end, and that, coniequently, unless the plates are brought into very close contact during the operation, an obstacle to their perfect junction is interposed by the rery means employed to bring them into intimate contact. In M. Lemaire's machine this difliculty is obviated by a very ingenious and effective contrivance which we shall now proceed to describe.

Fig. 3220 is an clevation. Fig. 3221 a plan. Fig. 3222 an end view, ant Fig. 3223 a partial section of the steam punching and riveting machine.

The plates to be operated upon are, in this machine, placed horizontally between the fixed and mor able dies a and b. The matrix of the fixed dic a is at the extremity of a strong malleable iron stem or riveting-block A, fixed firmly into the sole and foundation of the machine, and serving as the point of resistance against the action of the punch l, the compressing ferule i, and the riveting-die b. This last, which, as well as its corresponding tixed die a, is made of hard-tempered steel, is fixed into a mallealle iron stock or tool-holder B, accurately planed and adjusted to slide in a vertical direction, and withont lateral motion, in a socket $($, the further purpose of which will hereafter be deseribed. The twol-holder I3 has an alternate rectilincar motion of ascent and descent communicated to it by a malleable-iron lever C, which has its centre of oscillation at the upper extremity of a strong frame 1 , east in a piece with the sule or base by which the machine is fixed to its foundations. The opposite end of the lever C is connected by the rod E , to a piston working in the cylinder F . This cyliader, which is open above, and close beneath the piston, is furni-hed with a valve inclosed in the valve-box c, and by this valve highpressure steam is alternately admitted under the piston, through the steam-pipe $g /$, and allowed to e's-

c.ape: through the exhaust pipe h. The value it raised or depressed liy means of the combination of roxt and levers def, which are disposed so as to phace the machine within the command of the workman who superintends the operation. The mechanien ly wheh the plates are compresed during the process of riveting consists of a cylindrical stecl ferule i, Fig. 3223 , thromh the centre of which the riv-eting-dice b pasanes, and which again is fitted into a atrong cat iron socket (8 , sliding exactly and without phay, between two planed guites II II. The cochet (i is made hollow for the parponot of forming the
 Ahpendent of, the hatter, from the two malleable-irom lewery II, which hatwe their centre of osellation in the same point as the lover C, and are comeneted at thoir oppowite extremitios he the rod J to a pi-ton contained within the eylimber K. This lather eylinher is of smaller diameter than that naded for rivetime

sition, when brought into operation by turning it downwards upon its pivot m and securing it betweer the guides M MI, coincides exactly with that of the matrix a^{\prime}, upon the extremity of the riveting-block A The matrix a^{\prime} is sunk into a circular recess cast upon the riveting-block, and for the sake of accurate adjustment, is acted upon by three small screws passing through the sides of the recess. Under these circumstances, it is obvious that the operation of punching will be performed by the same mechanism, by which, in riveting, the compressing ferule is made to descend. When not required to be used, the pumeh and its socket are turned into the position represented in Fign. 3222 and 3223.

Action of the machine.-The plates to be united by riveting, having been previously punched, are placed together, as shown in the drawings, upon the horizontal stem or riveting-block A. The heated rivet is then placed into its appropriate hole, with the head inside, and the plates are shifted till the rivet-head falls into the matrix α. The attedant workman by pulling down the handle f^{\prime}, depresses the valve inclosed in the steam-chest c^{\prime}, and thus opens a commmication through the pipe g^{\prime}, between the steam in the boiler and the under side of the piston working in the cylinder K. The piston ascends, and its motion being communicated through the rod J to the levers II, causes the ferule i to descend, and compress the plates firmly together. The same workman then, by pulling down the handle f, opens the valve of the large eylinder F, taking care that the pressure is still kept upon the plates. This causes the tool holder B, and riveting die b, to descend, and thus the rivet is fimished. The valve of the cylinder F is then first moved so as to shut the communication between the boiler and the piston, and allow the steam to escape through the pipe h. The weight of the rod E and lever C causes the piston to descend and the die b to rise. The handle f^{\prime} is then released, and by a similar process the fernle i rises to admit of the plates being shifted for the fixing of the next rivet.

The action of the machine in punching is obviously so similar to that already explained as to require no further description. As it is of importance that the rivet-holes should be pierced with as little delay as possible, at the same distance from each other, and in the same line, M. Lemaitre makes use of it marker which serves as a guide to the workman in placing the plates under the action of the machine. This contrivance consists of a small arm n formed into a socket, so as to admit of being adjusted and fixed upon the axis o, which has its bearings in one of the cheeks or guides M. Into the arm n is fixed a small piece of sheet-iron, shaped at the outer extremity into a circle, the diameter of which is equal to that of the punch, and its centre, when turned towards the punch, coinciding with it. In making use of this contrivance the handle p of the axis o is turned round till the extremity of the arm n is brought direetly under the punch. 'The plates are then shifted so that the place where the hole is to be piereed is covered by the circular end of the sheet-iron marker, and thus the accuracy of the work is insured.

Figs. 2224 and 3205 represent a very ingenious and most useful contrivance which M. Lemaitre has adapted to this machine, for the purpose of riveting long and narrow tubes from the interior, a problem which, at first sight, is of very difficult solution. The stem or riveting-block N is made hollow throughout its whole length, and incloses a long rod S , terminated by a steel wedge r. This wedge acts upon the movable matrix t, which passes through the upper side of the riveting-block N, in such a way as to cause it to rise or fall according as the rod S is pushed in or drawn ont. The die u and its holder or stock O are of the same form, and are connected with the machine in the same manner as those already deseribed. In using this form of the machine, the rivets are inserted from the outside of the tube, the dies t and u receive simultaneously a motion in opposite directions, the lower one t being made to rise by pushing in the rod s , and the upper one u descending by the action of the steam-piston upon the lever, and thus the rivet is formed.
M. Lemaitre has been enabled, by this contrivance, to rivet tubes of considerable length and small diameter; a work which it was impossible to perform either by hand or by any machine formerly in existence.

Literal Ieferences.

A, the malleable-iron stem or riveting-block.
13 , the stock or tool-holder into which is fixed the riveting-die b, and which is made to move in a vertical direction by the great lever

C, by which the pressure necessary for forming the rivet-head is conveyed from the steam-piston.
1 , the frame and sole or base of the machine.
E , the connecting-rod between the piston inclosed within the cylinder F and the lever C .
F , the steam-eylinder in which the power required for forming the rivet-head is generated.
G, a socket or tool-holder, to the lower end of which is fixed the compressing ferule i, and which. moves vertically between the two planed guides

II H, bolted firmly to the fixed frame of the machine.
II, a double malleable-iron lever, by which the pressure necessary for keeping the plates firmly to gether is conveyed from the piston inclosed within the cylinder K , to the compressing ferule i.

J, the connecting-rod betreen the piston inclosed within the cylinder K and the lever I .
K , the steam-cylinder in which the power required for compressing the plates is generated.
L , the stock or socket into which the punch l is fitted.
M M, the guides for confining the tool-holder L, laterally.
a, the matrix or die on the end of the riveting-block.
a^{\prime}, the matrix of the punching-tool.
l, the cylindrical stock into which the riveting-die is fixed, and which works up through the compres sing ferule i.
c, the valve-box fixed to the lower extremity of the steam-cylinder F .
c^{\prime}, a similar valve-box fixed to the lower extremity of the cylinder K .
$d e f$, rods and levers for working the valve attached to the eylinder F
$d^{\prime} c^{\prime} f^{\prime \prime}$, similar rods and levers for working the valve attached to the eylinder K.
$q h$, pipes for the admission and eseape of steam into and from the valve-box c.

$g^{\prime} l^{\prime}$, pipes for the admission and escape of steam into and from the ralve-box c^{\prime}.
 i, the compressing firule.

\vec{k}, a strengthening piece by which the fuudations, frame, and riveting-block are held together.
1, the punching-toul.
m, a joint by which the punch-hohler I , may be turned upwards or downwards, as required.
n, a small sheet-iron arm which may be used as a marker.
o, the axis upon which this marker is fixed.
p, a handle by which it may be turned out or in as required,
N, the hollow riveting-block used for riveting tubes internally.
0 , the stock or die-holder used in the same operation.
s, a lone rod terminated in a wedge r, by which the rivetingedie t is made to ascerid.
r, a sted wedye moving in the interior of the riveting-bluck N.
t, the internal riveting-die moving upwards and downwards by the action of the wedre r.
u, the external riveting-dic moving upwards and duwnwards by the action of the stean.
RIVETLNG MaChinE-By Willim Furbarn \& Co, Manchester. In the manuficture of steahengine boilers, however varied and important the improvements which have, from time to time, been effected in the form and arrangement of their parts, no attempt has, until a very recent period, beer made to facilitate the means of their construction, or, by the introduction of machinety, to supersedo the necessity for sanual habor. It is true, the punching and shearing machine has, under various mod ifications, been long in use, but it is only within the last few years that machines for bending plates, for making rivets, and still more recently for riveting, have been introduced.

For this last purpose, a variety of ingenuus and effective combinations have been proposed, and although, as yet, nome of them has come into very general use among boiler-makers, there can be little deubt that the laborious and expensive process of riveting by hand will be superseded by some form of this machine. The first idea of the riveting machine is due to Mr. Fairbairn, of Manchester, who, in 1538 , patented a machine in many respects similar to the common punching machine, but having the great lever of such a form as to communicate a horizontal motion to the dies or tool for forming the head of the rivet. The machine represented is a molification which Dir. Fairbatim has since made, in which he has introduced several improvements, and remedied suveral defects to which the former ras sulject.

 mans of iron in-ide the: builer, argant the ham of the rivet, while the wher two beat the protroding emd into the comical form given to the rivet on the antaile uf the beiler. For this uperatim very expert and

 and the hemispherical, which we think greatly freferathe to the comital forth, is thore wasily impre ed upon tho.

sole A, and consists of an oblong box, open at the top, and furnished with bearings for the movable parts of the machine; C, a strong upright stem of malleable iron, fitted firmly into the base A, which is secured against the effect of undue strains, arising from the dies coming in contact with a cold rivet or other hard substance, by a malleable-iron strap D passing round its upper edge, and secured by nuts at a a. The stem or riveting-block C is the point of resistance to the action of the dies, and against it is placed that part of the boiler which is to undergo the process of riveting. It is made of malleable-iron, in order that it may possess a certain amount of elasticity, which is necessary to the prevention of such accidents as we have just alluded to. Its upper extremity is formed into an oblong block k, and in this the matrices for receiving the dies are placed.

The moving parts of the machine consist of a slaft carrying the fast and loose pulleys E and F, driven by the belt b. To give the requisite power and velocity to the machine, a pinion G is fixed upon this shaft, and works into a wheel I, keyed upon another and stronger shaft situated directly over the former. On the pinion-shaft is placed the fly-wheel H, for giving a uniform motion to the working pirts of the machine, and at each revolution of the wheel I the machine performs one stroke. The ratio of the pinion G to the wheel I is as 1 to 6 ; consequently, when the pulleys are driven at the rate of 42 revolutious per minute, the machine performs 7 strokes per minute, and this is found to be the most suitable velocity. On the axis of the wheel I is fixed a cam c, of the form denoted by the dotted lines in Fig. 3127. This cam, in its revolution, alternately raises and suffers to fall by its own weight the friction-pulley d, which runs loose upon the centre pirot of a lnee-joint composed of the arms $e e$ and $f f$. The arms ee working upon a fixed centre, as shown in the plan, the elevation of the pulley d by the cone c necessarily impresses a horizontal motion upon the corresponding extremities of the arms $f f$. These extremities are connected by a joint to the slide g, the motion of which is guided into a perfectly rectilinear and horizontal direction by the dovetail pieces $h \hbar$, planed true and serewed firmly to the frame of the machine. The sliding piece g is furnished at its outer extremity with three holes or matrices for receiving the die i, which forms the head of the rivet. These matrices are so placed that their centres coincide exactly, both in the horizontal and vertical planes, with the centres of similar ones in the upper extremity of the stem or riveting-block c, already described. Into these latter is fitted the die j, against which the head of the rivet is placed during the process. The centre matrix in which the dies are represented in the figure is used for riveting every description of flat or circular work, while those at each side are required for finishing the corners of the boilers. Thus the machine is adapted for riveting vessels of almost every shape within the given depth.

Action of the machine.-The plates to be riveted together, having been previously punched in the usual way, are suspended by a block and chain, as shown in Fig. 3127. The heated rivet is then inserted into its appropriate hole, and the attendant workman shifts the plates, so that the head of the rivet falls into the recess on the point of the die j. The machine is then put in motion by changing the position of the strap b from the loose to the fixed pulley. This motion is transmitted by the mechanisu above described, to the sliding tool-holder g, and its projecting-die i, iu its adsance, forms the head and finishes the rivet. The velocity of the machine is so calculated as to allow time between each stroke for the insertion of another rivet and the readjustment of the plates, and thus the work proceeds without interruption.

It is stated by Mr. Fairbairn that, with two men and two boys attending to the plates and rivets, his machine can fix, in the firmest manner, eight rivets of three-quarters of an inch diameter in a minute, whereas, by the common process of hand riveting, three men and a boy can only rivet up 40 per hour. Thus the quantity of work done in the same time in the two cases is in the proportion of 480 to 40 , or as 12 to 1 , exclusive of the saving of one man's labor.

RIVETING MACHINERY-GARFORTHS PATENT, for riveting metallic plates, for the construction of boilers, and other purposes.

These improvements in machinery or apparatus for connecting metallic plates for the construction of boilers, consist in the direct application of the expansive force of steam to the dies for riveting such plates together, and in an arrangement of machincry whereby such foree is brought into action.

3999.

Fig. 3228 represents a plan or horizontal riew of an arrangement of machinery or apparatus designed for connecting or riveting metallic plates for the construction of steam-boilers; Fig. 3329 is a side view ; and Fig. 3230 a section, taken longitudinally through about the centre of the apparatus. $a \operatorname{a}$ is the
frame work fur supporting the steam-cylinder $l b$, in which a steam-tight metallic or other piston $c e$ workz; this piston $c c$ is mounted upon the rod $d l^{\prime \prime}$, which parses out throurh stuffing-boxes e e at each rand of the crlinder $b b$; in the end d^{*} of the piston-ro. the die f^{\prime} i fixe I, the other di y leng mounted in the pillar' h, which in fatt to the frame-work. Stean leing admitted throurh the entrance or feedpipe i, it pases onvards through a common slide of wher valve k, to the cylinler; and after ham ing performed its office, is allowed to pars out through the pipe l. The slid -valre k is worked by hand, b, mean: of the lever m, so as to admit the stem on either side of the piston at requikul.

The opration of the apparatus is as fullows: Steman of a suflicient prewtre beine aboited (hy

 thanls of the rivet n, between the 1 wo dies j and n; thas firmly connecting the phates o and p, an! thereby producing a perfectly steam, air, or water tifht joint.
The heact of the rivet is furmed at one or more blows, as required; the intensity of the blaw depending upon the area of the piston, the length of the struke, and the pressure of the stean employed. The valse k is then reversed, to admit the steam in front of the cylinder; which movenent will withdran the die f, when another rivet may be put in, and the operation procects as before.
The patentee remarls that he does not intend to contine himself to the wee of steam alune for such purposes, as the direct pressure of water, air, or other elastic medium may be similarly employed, without departing from the principle of his invention. IIe states that he dues not claim the exclusive use of the several parts of the above-mentioned apparatus, when taken separately, but only when employed for the purpose of his invention, which consists in the riveting of metallic plates by dies driven by the power of steam, water, \&c.
3231.

ROLLING MACIINE, for rolling iron, specially intended for railroad bars and locomotive tires-a new methol, invented by IIomatio Ames, of Falls Village, Comecticut.

We are induced to publi h the entire specification and drawings of this invention, not only on acenunt of the value and merit which it presents, but because of the deep interest which must be felt in all such improvements by those who are engared in the manufacture of iron, and in ratrouds, The great rival*hip now eroing on in this comatry and in Eneland, in the manufacture of iron, renders every improvement which looks either to the reduction of the co-t of manufacture, or to the amelioration of the quality of the iron, of the hishent importance. And as the cost of repairs on railronds arises in a great measure from the wear of railroat bars an I foemotive tires, by exfoliation and splitting, any invention which promises to avoil this evil mast lee looked upon with interent. The invention in question hats already excited a deep interest in bingland, where the insentur has secured it bey patent.

 sune tigure. The same letters indicate like parts in all the digures.

In the manufacture of iron, cither ley rolling of hambering, the fibres are nll dratw longitudimally, which, for the rails of railronts, fur the tires of ranlonal whecte, und for a variety of other purposes, renders it liable to break off in thin beaves or ceales, of to split benghtwise-this state of things heing wry commen in the two instances specitiod. The object of my invention is so to treat the iron, cither in the original mamfacture thereof, or afterwards, at to awoid this defeet, and thereby render the iron
 sealme oft or splitting. And my inventions con i to in twi ting the iron in, wr hefore, of after, the opera-
 similar to the filsero of hemp in a twi teal rope or stramb.

 ional betwern the two sety of rullers.

Vot. II.-:3

To enable any one skilled in the art to apply my inproved process of treating iron, and to construct and use the machine which I have invented therefor, I will describe the mode of procedure which I have essayed, as well as the manner of constructing and raising the machine therefor. The bloom of iron, or a bar previously formed, is taken while in a heated state, and twisted while undergoing the operation of hammering, which may be done by securing one end of the bloom or bar in a clamp and rotating it while the hammer rests on the other end; or by securing the two ends in separate clamps and twisting one of them, or both, in opposite directions, until the required twist has been given, and then subjecting it to the operation of hammering. But when the bar is to be drawn by rolling, the bar is to undergo the operation of twisting while passing between the rollers, or after it has passed betwecm one set, and before it passes between the second set; and when it is twisted on its way to the rollers, one end of the bar may be secured to a clamp, which is to be rotated as the bar passes between the draw-:ollers.
3232.

As the bars thus prepared are, in most instances, to be reworked to receive the required form or forms, according to the purposes which they are to be applied to, it will be evident that they may be twisted as they pass from the hammer or the rollers, instead of giving the twist before the hammering or rolling; and to effect this; the end of the bar may be clamped as it leaves the hammer or rollers, and the required twist given; but it is better to give the twist before the iron has undergone the operation of rolling or hammering, as it is then more highly heated, and the fibres will not be so severely strained as they would be after the metal has been partly cooled.
When iron has been treated and worked according to this process, the fibres, instead of running in the bar longitudinally, in straight lines, will run in the direction of a helix, gradually approaching to a straight line from the circumference to the axis of the bar, so that when used for making tires, or for other analogous purposes, the bar will be prevented from splitting along its length by the tenacity of the fibres, which cross the bar in the direction of a helix, instead of the mere adhesion of the tibres together; and when used for the rails of railroads, or similar purposes, none of the fibres can be separated from the mass longitudinally, as heretofore, nor can the iron be stripped off in scales until they have been cut oft on each side, for, by their direction, they pass diagonally from one side, over the surface, and down the other side, whereby they are completely tied together.

Of the machinery for working iron in accordance with the foregoing process.-In the accompanying drawings a represents a frame properly adapted to the purpose, and $b b$ two grooved rollers, such as are used in rolling-mills for rolling bars of iron-the groove in each being semicircular, or nearly so that the two together may form a cylindrical bar. These two rollers are placed one above the other, with their journals in appropriate boxes in the two standards $c c$. The shaft of the lower roller extends ont beyond one of the standards, and is provided with a level corr-wheel d, which mashes into a level pinion c on the main driving-shaft f, which turns the lower roller to feed in the bar of iron g-the upper roller being earried by the motion of the lower one. Just back of the first set of rollers above described, there is another pair $n n$, similar to the first, except that the grooves in them are smaller, to draw the iron slightly, after passing the first set-they are mounted in a hollow chuck or frame i on the forward end of a hollow shaft or mandrel j that has its bearings in two standards $k k$, and which is provided with a cogged pinion l, the teeth of which engage with a cog wheel m on the main-shaft, by which the second set of roliers are made to rotate at right angles to their axes, and on an imaginary line passing through the light of the two sets of rollers, and in the centre of the two holes firmed by the grooves an the rollers at the bight of each set, the axis of the hollew shaft or mandrel being in this imaginars:
line. Back of the clutch, and attached to the front face of the forward standard k, there is a whecl n, the cogs of which math into the cors of two pinions 00 on tro h ort arbors p, une on each of the two spposite sides of the chuck, the other end of these short arbors beins provided each with a chort serew q. the threads of which engage with the cogs of two pinions r r, one on the end of each of the rollers of the seeund set, so that the cog-wheel n, beins permanently attached to the standard when the hollow shaft with its chuck, and the second set of rollers, is turned, the two cogred pinions oo travel about thiwheel, which turns the arbors to which they are attached, in the directien of the rever-e of the rotation of the chuck, and the threads of the screw in turn engraging with the cofs of the pinions on the shaftof the second set of rollers causes these to rotate on their axes, and in the same direction with the firat set, and with a velocity, relatively to the rotation of the first set, proportioned to the anount of draming action which they are intended to exert on the bar that is to pass between.

In this way tit will be obvious that when the machine is put in motion, and a bar of iron fed in, it will pass between the first pair of rollers and be partly drawn, and then pass between the second pair, whish baving two motions, one on their axis and another at right angles thereto, and on the axis of thea bar of ison, th (the bar) will in consequence be twisted between the two pairs of rollers, and also di 240 cy them, and the fibres compressed.

From the foreroing it will be obvious that the extent of drawing action of either or both sets of drawing-rollers can be regulated at pleasure, by simply varying the size of the grooves and relative motions of the draw-rollers on their ases, and their rotation on the axis of the bar of iron.

It will be equally obvious that the number of draw rollers ean be increased without changing the principle of my invention. It is to be understood that the iron, when subjected to the componand action of drawing and tristing, is to be in a heated state, such as practised by and known to iron-masters in the manufacture of iron.

Cluin.-What I clain as my invention is, first, the method herein deseribed of treating iron to increase its toughness or durability for certain purposes-such as railroad bars and tires, de.-by subjecting it, in a highly heated state, to the compound operation of drawing and twisting, substantially as herein described.

I also claim in the machinery above described, giving to one set of rollers the rotary motion on their axus, and a rotary motion at right angles thereto, on the axiz of the bar of iron, when this is combined with another pair of rollers that have smply a rotary motion on their axes, whereby the bar of iron, in a highly heated state, is drawn and twi-ted.

ROLES, STIFFNESS OF, or the resistance of ropes to bending upon a circular are. The experi ments upon which the rules and table following are founded were made by Coulomb, with an apparatus the invention of Amonton, and Coulomb, himself deduced from them the following results:

1. That the resistance to bending could be represented by an expression con-isting of two terme, the one constant for each rope and cach roller, wheh we hall designate by the letter A , and which this phitonopher named the natural stitfness, because it depends on the mode of fabrication of the rope, and the degree of tension of its yarns and strands; the ether, propmentional to the temsion, T , of the end of the rope which is being bent, and which is expresed by the propluct B ' T , in wheh B is also a momber constant for each rope and each roller.
\%. That the resistance to bending varial insarwly as the diameter of the roller.
Thus the complete resistance is represented ly the expression

$$
\frac{1+13 T}{1)}
$$

"here 1) represents the dianeter of the roller.
Coulomb, auppored that fir tarresl raphes the stifline ; was proportional to the mimber of yarns, and M. Aavier infored, from examination of Coulombis experiments, that the conethements A and 13 wore propertimal to a certain power of the dimmeter, which dopended an the extent to which the cords we re winn. M. Morin, howerer, deemethis hypothes inalmisalde, and the following is an extract fom hit

"Tinexten! the reqult of the experimenta of timbonk to roper of diferent diametery fion thane

A and B shows that the power to which the diameter should be raised would not be the same for the two terms of the resistance."

Since, then, the form proposed by M. Navier for the expression of the resistance of ropes to bending cannot be admitted, it is necessary to search for another, and it appears natural to try if the factors is and B cannot be expressed for white ropes, simply according to the number of yarns in the ropes, as Coulomb has inferred for tarred ropes.
Now, dividing the ralues of A, obtained for each rope by M. Navier, by the number of yarns, we find for

$$
\begin{aligned}
& n=30 \quad l=0^{\mathrm{m} \cdot 200} \quad \Lambda=0.222 \cdot 160 \frac{\Lambda}{n}=0.0074153 \\
& n=15 \quad d=0^{m \cdot 1.14} \quad \Lambda=0.063514 \frac{\Lambda}{n}=0.00423 .13 \\
& n=6 d=0^{m \cdot 0088} \mathrm{~A}=0.010604 \frac{\Lambda}{n}=0.0017673
\end{aligned}
$$

It is seer from this that the number Λ^{\prime} 's not simply proportional to the number of yarns.
Comparing, then, the values of the roio $\frac{A}{n}$, corresponding to the three ropes, we find the following results:

Number of yarns.	Values of $\frac{A}{7}$.	Diffe ences of the numbers of yarns.	Differences of the values of $\frac{\mathrm{A}}{n} .$	Differences of the values of $\frac{A}{n}$ for each yarn of difference.
30	$0.00 \% .4153$	From 30 to 15. 15 jarns	0.0031810	0.000212
15	0 ¢ $24235^{\prime} 3$	" 15 to 6. 9 "	00021770	0.000272
6	1/001'673	" 30 to 6. 21 "	0.0056100	$0 \cdot 000252$

Mean difference per yarn, 0.000245.
It follows, from the above, that the values of A, given by the experiments, will be represented with sufficient exactness for all practical purposes by the formula

$$
\begin{aligned}
\mathrm{A} & =n[0.0017673+0.000245(n-6)] . \\
& =n[0.0002973+0.000245 n] .
\end{aligned}
$$

An expression relating only to dry white ropes, such as were used by Coulomb in his experiments.
With regard to the number B , it appears to be proportional to the number of yarns, for we find for

$$
\begin{array}{rrr}
n=30 & d=0^{\mathrm{m} \cdot 0200} & \mathrm{~B}=0.009738 \frac{\mathrm{~B}}{n}=0.0003246 \\
n=15 & d=0^{\mathrm{m} \cdot 0144} & \mathrm{~B}=0.005518 \frac{\mathrm{~B}}{n}=0.0003678 \\
n=6 & d=0 \mathrm{~m} .008 \mathrm{~B} & \mathrm{~B}=0.002380 \frac{\mathrm{~B}}{n}=0.0003967 \\
& & \text { Mean..............0.0003630 }
\end{array}
$$

Whence

$$
\mathrm{B}=0.000363 n .
$$

Consequently, the results of the experiments of Coulomb on dry white ropes will be represented with sufficient exactness for practical purposes by the formula

$$
\mathrm{K}=n[0.000297+0.000245 n+0.000363 \mathrm{~T}] \text { kil. }
$$

which will give the resistance to bending upon a drum of a metre in diameter, or by the formula

$$
\mathrm{R}=\frac{n}{\mathrm{D}}[0.000297+0.000245 n+0.000363 \mathrm{~T}] \text { kil. }
$$

for a drum of diameter D metres.
These formule, transformed into the English scale of weights and measures, become

$$
R=n[0.002150 \mathrm{~S}+0.001772 .1 n+0.00119096 \mathrm{~T}] \mathrm{lbs} .
$$

for a drum of a foot in diameter, and

$$
\mathrm{I}=\frac{n}{\mathrm{D}}[0.0021508+0.0017721 n+0.00119096 \mathrm{~T}] \mathrm{lbs}
$$

for a drum of diameter D feet.
With respect to worn ropes, the rule given by M. Navier cannot be admitted, as I have shown abovo
oreause it would give for the stiffness of a rope of a diameter equal to unity the same stiffuess as for a new rope; and it is from having adopted, with other authors, this rule without investigation, that I have been led to this inadmissible result, in calculating the table of the stiffiness of ropes inserted in the third edition of my Aide Mémoire de Mécanique Pratique, p. 328.
The experiments of Coulomb on worn ropes not being sufficiently complete, and not furnishing any precise data, it is not possible, withont new researehes, to give a rule for calculating the stiffuess of these ropes.

Turred ropes.-In reducing the results of the experiments of Coulomb on tarred ropes, as we have done for white ropes, we find the following values:

$$
\begin{array}{lll}
n=30 \text { yarns } & \Lambda=0.3 .1952 & B=0.0125605 \\
n=15 & A & \Lambda=0.106003
\end{array} \quad B=0.006037
$$

which differ very slightly from those which M. Nivier has given. But, if we look for the resistance corresponding to each yarn, we find

$$
\begin{aligned}
n=30 \text { yarns } \frac{A}{n} & =0.0116603 \frac{B}{n}=0.000 \cdot 115683 \\
n=15 \quad " \quad \frac{A}{n} & =0.0070662 \frac{B}{n}=0.000 .102160 \\
n=6 \quad * \quad \frac{A}{n} & =0.0035335 \frac{B}{n}=0.000133253 \\
& \text { Mean...........0.00011S144 }
\end{aligned}
$$

We see by this that the value of B is for tarred ropes, as for white ropes, sensibly proportional to the number of yarns, but it is not so for that of A, as M. Navier has supposed.

Comparing, as we have done for white ropes, the values of $\frac{\Lambda}{n}$ corresponding to the three ropes of 30 , 15 , and 6 jarns, we obtain the following results:

Number of yarus.	$\text { Viulues of } \frac{\Lambda}{n}$	Differenees of the numbers of yarns.	Differences of the values of $\frac{A}{n}$	Differences of the values of $\frac{i}{n}$ for each yarn of difference.
30	0.0116603	From 30 to 15.15 yarns	0.0045941	0.000306
15	0.0070662	" 15 to 6. 9 "	0.0035327	0.000392
6	0.0035335	* 30 to 6. 25 "	0.0081208	0.000339

Je:an \qquad
It fullows from this that the value of A can be represented by the formula

$$
\begin{aligned}
A & =n[0.0035335+0.000316(n-6)] \\
& =n[0.0014575+0.000316 n]
\end{aligned}
$$

and the whole resistance on a roller of diameter D metres, by

$$
\left.I={ }_{1}^{n}[0.0011575+0.400: 15 x+0.0100115111 \mathrm{~T}] \mathrm{ki}\right]
$$

Tran-forming this expre nion to the Engli-h scale of weifhts and measures, we have
for the re istance on a roller of diameter if fert.
That expres ion is exactly of the same firm it that which related to white ropes, imil shows that the stitfres of tarred ropes is is little greater than that of new white repps.
 from the data of Coulomb, ly the furmula

$$
\begin{aligned}
& d_{\text {cent }}=\sqrt{0} \cdot 1: 33 x n \text { for dry white rupen, and } \\
& d^{\text {cont }}=\sqrt{ } \text { ulan } n \text { for tared ropes, }
\end{aligned}
$$

which, reduced to the Eugli hate, become

官	Dry White Ropes,			Tarred Popes.		
	Diameter.	Value of the natural sliffness, A.	Value of the stifiness proportional to the tension, B.	Diameter.	Value of the natural sliffiness, A.	Value of the stiffness proportiona! to the tension, I .
6	ft . 0293	Ibs. 0.0767120	0.0071457	ft. 0.0347	lbs. 0.153376	0.00828138
9	0.0360	$0 \cdot 1629234$	0.0107156	$0 \cdot 0425$	0.297647	0.01234700
12	0.0416	0:2810384	0.0142915	0.0490	0.486976	0.01646267
15	0.0465	0.4310571	0.0178644	0.0548	0.721357	0.02057834
18	0.0509	06129795	0.0214373	0.0600	$0 \cdot 000795$	0.02469400
21	00550	$0 \cdot 8268054$	0.0250102	0.0648	$1 \cdot 325289$	0.02880967
24	$0 \cdot 0588$	1.0725350	0.0285831	0.0693	$1 \cdot 694839$	0.03292534
27	$0 \cdot 0622$	13501682	0.0321559	0.0735	$2 \cdot 109444$	003704100
30	${ }^{\circ} 0.0657$	$1 \cdot 6597051$	0.0357288	0.0775	2.569105	0.04115667
33	$0 \cdot 0689$	2.0011455	0.0393017	0.0813	3.073821	004527234
36	0.0720	2.3744597	0.0428746	0.0849	$3 \cdot 623593$	$0 \cdot 04938800$
39	0.0749	$2 \cdot 7797375$	0.0464475	0.0884	$4 \cdot 218416$	0.05350387
42	0.0778	$3 \cdot 2168888$	0.0500203	$0 \cdot 0917$	4.858303	$0 \cdot 05761984$
45	0.0805	36859438	0.0535932	0.0949	5.543242	0.06173501
48	0.0831	$4 \cdot 1869024$	0.0571661	0.0980	6.273287	0.06555067
51	$0 \cdot 0857$	$4 \cdot 6197647$	0.0607390	$0 \cdot 1010$	7.048287	0.06996634
54	$0 \cdot 0882$	5.2845306	0.0643119	$0 \cdot 1040$	$7 \cdot 868393$	0.07408201
57	0.0908	58812001	0.0678847	$0 \cdot 1070$	8.733554	0.07819767
60	0.0926	6.5097733	0.0714578	$0 \cdot 1099$	$9 \cdot 643771$	0.08231334
n	$\sqrt{0.000144 n}$	$\left\{\begin{array}{r}0.0021508 n \\ +0.0017724 n^{2}\end{array}\right.$	$0 \cdot 00119096 \pi$	$\sqrt{0.00020 n}$	$\left\{\begin{array}{r}0.01054412 n \\ +0.00250309 n_{-}^{2}\end{array}\right.$	$0 \cdot 001371889 n$

Application of the preccding tables or formulec.-To find the stiffness of a rope of a given diameter or number of yarns, we must first obtain from the table, or by the formulæ, the values of the quant.cies A and B corresponding to these given quantities, and knowing the tension, T, of the end to be wound up, we shall have its resistance to bending on a drum of a foot in diameter by the formula

$$
\mathrm{R}=\mathrm{A}+\mathrm{BT} .
$$

Then, dividing this quantity by the diameter of the roller or pulley round which the rope is actually to be bent, we shall have the resistance to bending on this roller.
Example. What is the stiffness of a dry white rope, in good condition, of 60 yarns, or 0928 diameter which passes over a pulley of 6 inches diameter in the groove, under a tension of 1000 lbs .? The table gives for a dry white rope of 60 yarns, in good condition, bent upon a drum of a foot in diameter,

$$
\mathrm{A}=0.50977 \quad \mathrm{~B}=0.0714576
$$

and we have $\mathrm{D}=0.5+0.0928$; and consequently,

$$
\mathrm{R}=\frac{6.50977+0.0714576 \times 1000}{0.5928}=128 \mathrm{lbs}
$$

The whole resistance to be overcome, not including the friction on the axis, is then

$$
Q+R=1000+128=1128 \mathrm{lbs}
$$

The stiffness in this case augments the resistance by more than one-eighth of its value.

SAWS.* Saws may be considered in two groups, namely, rectilincar saws, and circular saws. The blade of the rectilinear saw is usually a thin plate of sheet steel, which in the first instance is rolled of equal thickness throughout: the teeth are then punched along its edge, previously to the blade being hardened and tempered, after which it is smithed or hammered, so as to make the saw quite flat. The blade is then ground upon a grindstono of considerable diameter, and priacipally crossways, so as to reduce the thickness of the metal from the teeth towards the back. When, by means of the hammer, the blade has been rendered of uniform tension or elasticity, the teeth are sharpened with a file, and slightly bent, to the right and left alternately, in order that they may cut a groove so much wider than the general thickness, as to allow the blade to pass frecly through the groove made by itself. The bending, or lateral dispersion of the teeth, is called the set of the saw.
The circular saw follows the same conditions as the rectilinear saw, if we conceive the right line to be exchanged for the circle; with the exception that the blade is, for the most part, of uniform thickness thronghout, unless, as in the circular vencer saws, it is thinned away on the edge.

It is to be observed that the word pitch, when employed by the saw maker, almost always designates the inclination of the face of the tooth, up which the shaving ascends; and not the interval from tooth to tooth, as in wheels and screws. The teeth of some kinds are usually small, and seldom so distant as $\frac{1}{2}$ an inch asunder: these are descrived as having $2,3,4,5$, to 20 points to the inch; such as are rised
by hand, are commonly from about $\frac{1}{2}$ to $1 \frac{1}{3}$ inch asunder, and are said to be of $\frac{1}{2}$ or $1 \frac{1}{3}$ inch space although some of the circular saws are as coarse as $2 t, 3$ inches and upwards from tooth t., tooth.

The proceises denominated sharpening and setting a saw, consist, as the names inply, of two distine: operations: the lirst being that of filing the tecth until their extremities are sharp; the second, that of bending the teeth in an equal manner, and alteruately to the right and left, so that when the eye is direeted along the edge, the tectl of rectilinear saws may appear exactly in two lines, forming collectively an edige somewhat exceeding the thickness of the blade itself.
3235.

In general the angles of the points of the saw teeth are more acute, the softer the material to be sawn, agreeably to common usare in cutting tools; and the angles of the points, and those at which the file 3 are applied, are necessarily the same. Thus in sharpening saws for metal, the file is generally held at 90 degrees both in the horizonta: and vertical angl:, as will be shown; for very hard woods at from 90 to ≤ 0 deyrees, ard for very suft woods at froin 70 to $\mathbf{C 0}$ degrees, or even more acutely. The vertical angle is about hall the horizontal.

Fig. 323.5 represents in plan and two elevations the saw-teeth that are the most easily sharpened. namely, those of the frame-saw for metal, commonly used by the smith: the tecth of this saw are not set or bent in the ordinary manner, owing to the thickness and hardness of the blade, and the small size of the teeth.
3237.

The smith's-saw blade, when dull. is placed edgeways upon the jaws of the viee, and the teeth which are placed upsards, are slightly hammered; this upsets or thickens them in a minute degree, and the hammer face reduces to a general level thoso tecth which stand highest. They are then filed with a triangular file held perfectly square, or at nincty degrees to the blade, both in the horizontal direction h, and the vertical v, until each little facet just disuppears, so as to leave the tecth as nearly us possible in a line, that each mny fulfil its
share of the work.
The most minute kind of saws, those which are madn of broken watch springs, have teeth that are also sharpened nearly as in the diagram, but without the teeth being either npect or bent; as in very Emall saws the trifling burr, or rotarh wiry edge thrown up by the file, is a sullicient addition to the thickness of the blade, and is the only set they reecise.
lig. :3236 ilhnstrates the per-tooth; but it may also be considerel to apply to the M tooth, nat, in part, to the mill-sim tonth. The points of the cross-chtting saws fir solt wools are required to be neute or keen, that they may act as knives in dividing the fibres transversely.

The loft sides of each alternate tooth, are fir-t filesl with the horizontal angle denoted loy h, and then the oppoite sides of the same tentis witin the reverse inclination, or h. Fig. $3 \times: / 7$ maty be eonsildered to refier generally to all tecelt the ungles of which are 60) durrees, (or the same as that of the triangular file, and thot are ued lior wowl. The mat \boldsymbol{t} (x)mon exatufle is the ortinary bumd-aw tonth; but twots of uprimht pitch, stelt ins the crow-ent saw, or of cons:iderable pitcht, are tr at - 1 untula ia the same mamer. The teeth haviter been

 (10til they re-peretively "rree with it for 1 lime

 of the tooth fulls as mently as may be on the doted line a. The first comen tah at the f. an only of
 cols; amb the third crume tal.esthe tyerly it the ...
 bucks.

Fig. 3238 exhibits also in three elevations a somewhat peculiar form of tonth, namely, that of the pruning-saw for green wood. The blade is much thicker on the edge than the back, so that the teeth are not set at all. The teeth are made with a triangular file, applied very obliquely as to horizont.l] angle, as at h, sometimes excecding 45 degrees, but without vertical inclination, as at v; and the faces of the teeth are nearly upright, as in the hand-saw. The large sides of the tecth are very keen, and each vertical edge is acute like a kuife, and sharply pointed; in consequence of which it cuts the living wood with a much cleaner surtuce, and less injury to the plant, than the cominon hand-saw to th.

Fig. 3239 explains the method eniployed in sharpening gullet or briarteeth; in these there are large curvilinear hollows, in the formation of which the faces of the teeth also become hollowed so as to make the projecting angles acute. The gullets : 8,7 , are first filed, and from the file crossing the tooth very obliquely, as at $v v$ in the section, the point of the tooth extends around the file, and gives the curvature represented in the plan. The file should not be so large as the gnllet; it is there-$\mathrm{fl}-\mathrm{s}$ mequisite that the file be applied in twe positions, first upon the face of the one tooth, and then on the back of the preceding tooth. The tops of the teeth, 2,6 , are next sharpened with the flat side of the file, the position of which is of course determined by the angles c and d; the former varies with the material from about 5 to 40 degrees with the edge, and the latter from 89 to 60 degrees with the side of the blade; the first angles in each case being snitable for the hardest, and the last for the softest woods. The alternate teeth having been sharpened, the remainder are completed from the other side of the blade requiring in all four ranges.

After sharpening, the saw is to be set, that is, an uniform bend is given to the teeth olternately to the right and to the left. This is often done by a hammer and set punch, but usually by a saw set which consists of a narrow blade of steel, with notches of various widths, for different saws. The saw is firmly beld in clamps, the alternate teeth are inserted a little way into the proper notch, and are then bent over hy raising or depressing the handle of the blade. Some sets are arranged with a guide by which the bends shall be uniform.
The method of sharpening and setting circular saws is very similar to that employed for rectilinear saws. The teeth of circular saws are in general more distant, more inclined and more set, than those of rectilinear saws. They are more distant on account of the greater velocity given to the saw, whereby the teeth follow in such rapid succession that the effect is almost continuous. They are more inclined because such teeth cut more keenly, and the extra power required to work them is readily applied. The harder the wood, the smaller and more upright should be the teeth, and the less the velocity of the saw. The tecth are more set in order to produce a wider kerf, since the large circular plato cannot be made so true, nor keep so true as the narrow straight blade. The setting must be very uniform, as one tooth projecting beyond the general line will score or seratch the work. '. It is generally politic to use for any given work a saw of as small diameter as circumstances will fairly allow, as the resistance, the surface friction, and also the waste from the thickness, rapidly increase with the diameter of the saw. But on the other hand, if the saw is so small as to be nearly or quite buricd in the work, the saw-plate becomes heated, the free escape of the dust is preventel, and the rapidity of the sawing is diminished." As a general rule the diameter of the saw should be about t times the average thickness of the wood; and the flange on the spindle should be as nearly as possible flush with the platform or saw-table.

In cutting with the grain, the teetl of the saw should be coarse and inclined, and the speed moderate, so as to remove shreds rather than sawdust. In cutting across the grain, the treth should be finer and more upright, and the velocity greater.

The usual saws used at saw-mills for the manufacture of lumber are rectilinear saws, supported in an upright frame, to which motion is given by a crank, either attached to a small water-wheel, or drum, driven by a steam engine. The feed is menerally by a carriage geered and driven by a pawl on the saw frame, working into a ratchet wheel. In water mills the carriage is drawa back by a distinct wheel. In many mills the feed is contimous, the log being drawn in by feed rolls. For the manufacture of boards many saws are set in one frame, the whole log leing split at once; they are called fang saws Suws without frame, working in a guide at the top, and attached to the crank at the lontom are called muley saws. ('ircular saws are sometimes used for the manuficture of timber, but not to any great extent.

SAWS. Improrement in Tempering and Straightening, Waterman's patent. The usual method of tempering saws is to heat and then dip them in oil.-This process is slow, laborions, and costly ; it is also disadvantageous, because the saws become warped, and require to be hammered up straight :ugain by haud.

The present improvemient consists in tempering and straightening the saws at one operation. This is done by heating the saws to the proper degree, and then pressing thom, with a sudden and power"u. atroke, between the two surfaces of cold iron. Drop presses are employed for the purpose. The engraving shows a pair of presses conjoined, one for long the other for cirenlar saws. After being heatel the saws are supported in mid air, on buttons attached to the framing at the base of the machine. The beary drop-wcights $\Lambda \Lambda$, are now liberater by pulling the cords lb l , and the weithte f.ll upon their
repectire saws, drive them down, and press them upon the solid iron base ? with tremendous foree The sudden blow hardens the metal by rendering it more dense, and also straightens the sanv.

 II it it is nthptinl.

have a denble, triple, or quadruple thread, such, for example, as would be formed by placing $\frac{3}{3}, 3$, or 4 strings in contact, and coiling them as a flat band round the cylinder. The screw may also vary in section, that is, the section of the worm or thread may be angular, square, round, etc.

Wicrometer screws are screws of extremely fine pitch, accurately made, and used for graduation. Wood screws is a term applied to the common screw, as used by carpenters. Machine screws are a similar screw adapted to joiners in iron work.

SCREWS-SELF-OPERATING SHAVER. This is an improvement in machinery for turning or shaving the heads of the blanks which are to be formed into wood-screws, by J. Cullex Wmiple, Providence, Rhode Island.

In the machines heretofore used for turning or shaving the heads of blanks, the tool or cutter by which they were finished was brought up against them by hand; but in this improved machine the parts are made self-acting by means of cams and levers, and other devices connected therewith, arranged fos that durpose in the manner to be described.
3241.

In the accompanying drawings Fig. 3241 is a side, and Fig. 3242 a plan or top view. A A is the fiame of the machine, which is made of cast-iron. C C is a tubular or hollow arbor or spindle, which is sustained by and runs in the heads $\mathrm{A}^{\prime} \mathrm{A}^{\prime}$. The arbor or spindle C is driven by a band on a whirl or rulley D , and it is widened out at its end, C^{\prime}, so as to constitute two cheeks which embrace the jaws E.E. Though the tubular arbor C the sliding-bolt FF passes, and serves to close the jaws E. its nedge-formed end F^{\prime} passing in between the tails a a of the jaws for that purpose. The sliding-bolt F

Lears at. Its outer end against a regulating screw G. This serew passes through the hearl II' of the lever II, which has its fulcrum at I . When the end H^{2} of this lever is depressed, its end II^{\prime} will force the boll \vec{F} forward, and cause the jaws E to close and embrace the blank which is to be turned The lever II is depressed by means of a cam J, which is carried by at cam-shaft $K K$. The cam J as it revolves opertes upon a lever L , having its fuicrum at L^{2}, the short arm of which L ' serves to depress the end II^{2} of the lever II, during the time that its long arm rests upon the periphery of the cam J. The lever IH has

2 hardened roller M, near its end 11^{2}, upon which L' bears. As represented in Fis. 3241, the le ver L is relieved from its action on the lever HI by its having fallen into the recess between the peints it s' of the cam J ; the weight H^{3} =erves to raise the lever 11 . The arbor C C and the sliding-bult F F then fall back, release the blank that has been turned, and allow a new one to be fed in. 'There is a second cam $N \mathrm{~N}$, , carried by the shaft K , which cam serves to advance the tool or cutter O against the head to be turned. This tool or cutter does not differ from those used in other machines for turning the heads of screws. P is a lever upon which the cam Noperates to raise the cutter and carry it rerularly againet the head of the blank; the fulcrum of this lever is at Q. I" is a braneh of the lever B, wheh hy the aid of the set-screw $p^{\prime \prime}$ allows the action of the chitter to be accurately graduated. The preriphery of the cam J is equidistant from its centre K , but that of the cam \mathcal{N} has a gradually incereasing diameter, to cause the cutter to advance gradually, as it takes a waving off the head. The cutting part of the tool is so furmed as to cut both the top and bevel of the head at the same time.
On the same shaft with the cams there is a large pur-whel R, and motion is given to this wheel by means of a tubular pinion S , on a third shaft T , the bearings of which shaft are on the stambards $\mathrm{A}^{2} \mathrm{~A}^{2}$. The shaft '1' also carries the large band-whee U UT, which receives a band from a small band-wherl or whirl V on the shaft C. The shaft C and the band-whed U have their motion contimuons, the band around the whirl V and the wheel U connecting these two parts. W is a sliding clutchrbw, having the pinion S attnched to it; and these are moved back and forth by the shipper \mathbb{X}, which is governed by the handle Y, a rock-shaft Z on the lower end of which extends to the lower end of the shipper, by means of which the clutch-box is brought into contact with or removed from the clutch-pin, the clutching being effected by a tooth or pin b falling into one of the spaces cec. For the purpose of arrestin; the wheel R at the proper time for remoring a finished and feeding in a new blank, that is to saty, at the period when the cams cease to act upon the levers P^{\prime} and L , there is a pin p projecting from the shipper I at its upper end, on the side opposite to that seen in Fig. 3241, which pin points towards the wheel R, and said wheel bas a hole in its side, as at d, Fig. 3041 , into which said pin will fall when the wheel comes round to the proper point. The spiral spring e^{\prime} draws upon the shipper X for the purpo-e of forcing said pin into the hole, and of are-ting the whee. There is a gage-pind within the check: e^{\prime}, against which a blank e is stopped when fed in; this pin is regulated by a set-screw f to suit banks. of different lengths. B is a rest which sustains a blank whilst it is being turned. Within the jaws $\mathrm{E} \mathrm{E}:$ there is a spring g g by whel they are opened, and the blanks relieved as the bolt F recedes. The feeding is effected by passing the blank in between the jaws on the side shown in Fig. 8.2.11, where 13' is the head of a blank inserted ready for the shaving or turning, by the tool 0 . When it has been turned and the jaws opened, it is removed and another inserted by hand; the thank beiner stepped by the gage-pin u^{\prime}.
One person can readily attend two such machines, his duty being to operate the clutch at the proper time and to feed in a new blank.
sCREW BLANKis-Merrick's patent. Fig. 3248 denotes a phan of the blank feeder; Fig. 3214, at longitudinal, vertical, and central section.

In the said figures A represents a conical hopper, sustained in position by a suitable frame werk 13 . Two conic frustrat C D are di-posed within the said hopper, and the one over the other, and sustained upon shafts or bearings, as seen in the drawings. The said conic frustra should revolve in contrary directions, as denoted by arrows in the figures. The diameter of the lase of the lower frustam is somewhat lese than the diameter of the lowest part of the interior of the hopper, there being a cireular apace E left between them of a widh to eorrespond with the diameter of the shank of each of the screw hask, and permit them to move frecly through it, as will be heremafter described. The exterier surfices of the two conic frostra should be roughened or indented in such manner as to act upon the serew or pin blanks and cause them tor revolve Generally speaking, the angles of inclination of the exteriog edge of the two conic frutra and the interior edge of the hopper, with reapect to a horizuntal phane, are to be equal, or about equal, as denoted in Firs. 394 . Between the inner face of the hepper thi the outer faces of the two frusta, I extend a partition F, which I secure to the hopper, and permot tot approach as mar as possible towards the fru-tra and not interfere with their revolvig mowements, and at at suitable di-tance form, or on the right of the said partition, and between the interior face of the hopper and the exterior faces of the fru-tra, I arramge a revolving beator G.

The said beater com-ists of one or more trimgular or whor switably shaped plates 11 II , applied to at
 figures. The said beater may be revolved by mondens band N, which may pata nomand atomeal

 work may be adopteld.

which may be in that part of the space E which exists on the right of the partition F, and between it and the beater. The object of the upper conic frustum is to prevent the blanks from being carried around towards the beater in too great a body; it also facilitates the downward movements of the olanks towarls the space E .
'Tle triangular plates or arms of the beater, shaped as scen in Fig. 3244, revolve in the same directior as does the upper conic frustum. They therefore throw or keep back such blanks as might accumulata to an injurious extent in rear of them.
324.

The next part of the apparatus is that by which the blanks are regularly delivered or fed from the circular space E. It consists of a horizontal slide-plate b, Fig. 3243 , (which represents a view of the under sides of the hopper and lower conic frustum D,) affixed to the lower edge of the hopper just on the right of the partition F, the said plate being suitably sustained, so as to slide towards and from the axis of the lower conic frustum. It is forced inwards or towards the same by means of a spring c applied to it and the hopper. The said plate has a circular aperture d cut through one end of it, and a passage e into said aperture cut through the side of the plate, the whole being as seen in the figures. The inner end of the plate is cam-shaped, as seen at f, so that when a stud g, projecting from the under side of the lower frustum, is brought into contact with it, the stud shall press the slide outwards, or in a direction away from the frustum, and bring the passage e into line, or so as to correspond with the circular opening E. When this takes place, the movement of the lower frustum will carry one of the serew blanks through the passage e and cause it to drop out of the machine, the circular aperture d being made larger in its diameter than that of the head of the blank.
There is a small stud h fixed upon the rear side of the entrance e of the slide, as seen in the figure. When the slide is pressed outwards this stud enters between the serew blank which is to be discharged and the one next to it, and thereby prevents the escape of the latter. As soon as the blank is discharged, the slide-plate should be moved inwards by its spring.

The seren, or pin, or other blank thus discharged, may be received by or into any apparatus calculated to hold or dispose of it for any other operation necessary to be performed.

Instead of the conical frustra and hopper, I sometimes make use of two or more chain-belts arranged parallel to each other and at a proper distance apart, and I apply to them a hopper and beater; but I consider the said chainbelts, as mechanical equivalents to the aforesaid mechanism, by no means so useful or perfect in their operation.

The beater may be applied to two eylinders or rollers
 placed parallel to and apart from each other, and provided with a hopper and other contrivances by which the blanks may be dropped between them, and advanced towards the beater.

In some cases but one conic frustum may be used in comection with the hopper ; in others, a greater number may be necessary, according to circumstances.
sCREWs, BURRING MACHINE FOR-By J. Culeen Whipple, of Providence, Rhode Island. Fig. 3245 is a front view of the machine, or of that part opposite to which the person stands who it using it; Fig. 3246 is a side riew of it; Fig. 3247, a scetion through the maiu spindle or arbor; Fig. 2048, the under face of the machine; anl Fig. 3249, the upper face of the lower end.
$\Lambda \Lambda$ is the bed-piece or main-frame, which supports the working parts, and which is ueually of castiron. A^{\prime} is a piece projecting therefrom, by which it may be fastened to a bench. B is a whirl or pulley on the main arbor or spindle C C. This arbor runs and slides in collars in the heads $\Lambda^{2} \Lambda^{2}$. The arbor C^{2} widens out at its lower end $\mathrm{C}^{\prime \prime}$, and is divided so as to form two checks, between which the jaws D D are to be receivel. These jaws work upon pin; αa, whel pass through them and through the cheeks. HH is an adjustable slide, which is fastened to the bed-piece in by ? screw Z passing through a slot.

The part II' of the adjutable slil, which stan ls at rimh angle; to the part II, has on its fice a piece I fastened to it by a screw c, and this holds the tool $(x, b y$ which the burs are to be remowe 1 from the under side of the heads, the rroper form being given to the cuttin's bart (F^{\prime} of said tool, to adap, it

to the berel of the head. J is a steel plate, in which there is a countersink d to armit the head of the serew to come into contact with the tool C . Where the tool is to act upan the head the steel plate J is cut away, as shown at c

The arbor C C is tubular, and there passes through it a slating-volt K, haring a melje-fumas? head K', ey which the jaws D D are to be closed, anl this closing will take place as the belt is drawn back, and

bolt K . EE are a handle and lever, by which the sliding-bolt K and the spindle C are drawn upwards A spiral spring M surrounds the arbor C, and bearing against the uppermost of the heads A^{2} and against the pulley B , causes the spindle and bolt to descend, when the handle E is allowed to recede and renders the motion in both directions regular and smooth. As the bolt K descends it is brought into contact with the pins $g g$, which are made fast to the jaws and forces them open.

In using this machine, when the handle E has been moved back, and the sliding-bolt and arbor have descended, a blank, which has been notched, is fed in through the countersunk opening in the plate J, so as to enter between the jaws. The handle E is then drawn forward, which closes said jaws and brings the head up against the cutting edge of the tool Ge, by which the removal of the bar is instantanconsly effected, the edge of the tool projecting a little within the countersink. In removing the handle back the blank is liberated and falls out, and another is fed in.

SCREW-CUTTING MACHINE. This is an invention of Peter H. Watson, Esq., of Rockford, Illinois, for cutting serews.
Fig. 3950 is a perspective vicw of the machine, as arranged for cutting a male screw upon a rod of metal.

Fig. 3251 is a view of the face of the bevelled cog-wheel, carrying the dies, cutter and rest, \&c.
Fir. 3252 is a rertical transverse section of the carriage and jaws for holding the material to be uperated on.

Fig. 3253 is a plan of the cutter.
Fis. 3254 is a plan of the tap in the act of cutting the thread in a nut.
The nature of this improvement consists in combining and arranging in a suitable frame certain lenown mechanical principles in such a way as to form a new and useful machine, which will enable the mechanic to make screws and nuts with greater dispatch and correctness than by the modes now is ase.

The combination consists of a cog-wheel A and pinion B working into the same, supported by suitable framework C on a permanent bed D, said cog-wheel having attached to its face two sliding-dies E E of the nstal form for indenting the screw on the rod of iron F , said dies being turned with said cog-wheel, which is caused to revolve by turning a crank G on the axle of the pinion B, while the rod of iron F is held in a horizontal position between two vertical parallel jaws II, attached to sliding-carriage I, moved in parallel grooves S in the bed towards the dies, by the draft of the dies and chaser, on the rod in cutting the thread which passes through the hub of the wheel, made hollow for that purpose, the screw being perfected and finished before passing through the opening in the centre of the wheel, by means of an adjustable cutter or chaser J, of a shape corresponding to the shape of the thread to be cur, attached $t \rightarrow$ the face of the wheel between the dies and the wheel directly behind the dies, and in :
position to bring the cutter for chaser in contact with the thread as marked by the dice, so as to cut and perfect it as it leaves the dies, said cutter being attached to the fice of the whe el by a set serew J fassing through in oblung murtive in its slamk.

A forked rest k is comeneted to the con-wheel in the same manner su as to bear again-t the serew on the sule opposite to that where the cutter is placed being designent to support the serew white under the eperation of the chaser or cutter.
The dies are contained in and supported by a slidine-frame L, and are movel her a right and left screw M, attached by a cullar to a stud N inserted inter the face of the wheed turned by a milled heal or oflac means, withut changing its position longitulinally, the right thread working in an female heal in the middle of the top of said sliding frame L, and the lelt thread in a fomate threat in the middle of the sliding follower wheh slides in the sliding-frame, the lower die beine placed again-t the buttom of the stiding frame and the urper die against the under site of the follower 1 ', so that when said serew is turned it causes the dies to approads or recede from each other simultaneously by giving the follower and bottom of the frame similar movements in opposite directions. The imer sides of the frame are made of a V-ahape to enter corresponding shaped grooves in the ends of the die-phates and folluwer. The outsides of the sliding-frame ate similarly shaped to slide in corresponding grouves made on the under sides of parallel ribs and fastened to the face of the wheel.

This arrangement is adopted for the purpose of adapting the dies to various diameters of row upon which -crews are to be made, and for centering the dies and rods.
Thae jaws for holding the rod of iron on which the screw is to be cut comists of two vortical paralled flates 11 H , nothed or recessed on their inner sides where they grip or clamp the rud F , having their lower ends turned at right angles to enter and slide back and forth in parallel grouves $k k$ on the upper side of tire sides of the slidiugearriage I at right angles to the grooses 5 in the bed in which the cerriage I moves. Thee jaws are upened or clused by means of a right and left horizontal screw IT, turned ia corre-ponding right an I left female screws in the jaws II H, said screw being prevented from chomener its position longitudinally by attaching it to the lead of a post U , inserted into the carriage I ly a suitable neck V, formed in the middle of the serew between the right and left threado, said meck taning in a correponding box tixed in the head of the post U. By turning this screw the jaws will be moved simultancouly in upposite directions.

When a nut is required to be made, the piece of iron W to form the same must be beld between the
 phed tetween the dies; then, by inserting the tapered end of the tap into the hole in the centre of the piece of iron to form the nut, and curning the cramkanle $(t$, the thread will be cut by the sain tap.

The frame C containing the cor-wheel and pinion may be made to resolve horizuntally on a pivet or centre, and the cor-wheel may be made the driver and the pinion the carrier of the cutheng touls and dies, especially in cutting serevs of smatl diameter where speed is required.
 ly means of when the threads are to be cut, is the same in all re-pects with that deseribed and elamed by we in the specification of Letter: latent for a mathine fur cutting the thateals upon wood ecrews, granted to me muler date of the 1silh of Auru-t, in the year 15s? ; but the combination and arramerement of the other parts of the mechinery which I am now about to deseribe, difter cesentially from that whech was the -ubject of the patent above referred to.

Fig. 8.255 is at front elevation of such a machine.
Firs $305 t$ is a view of the right hamed end thereof.
Fig. 0257 is the top view, with the omision of certain parts shown fully in the neat figure.
Fir 3055 is the top view of the apparatus, inte which the blanks that are to be cut are to be fed, and by which they are succesively presented the the actim of the tom for cutting the thread: ment of the corating parts shown in this figure are onnitted in cach of the othors.

The ofher figures repem ht parts in detail which could net tee otherwise fully thenw. In each of these figures, where the same parte are hown, they are dowigated ly the same lettere of reference.

A A in ha frame-work of the machame, which may be of rat-iron. The part A^{\prime} is a erentar horizon-

 t, or in one pise with the circular table A^{\prime}. The omter pertum 1 of the rug hate on it priphery a

 thereti.

from the blank to be cut; the head n^{\prime} of this lever is widened ont for the purpose of sustaining the cutter, which is shown in place at $x x$, Figs. $3 ? 57$ and 3261 .
This is held in place by the cap P, which has a curvel sroore on its under side to receive it, the screw q pressing through said cap into the head o^{\prime} of the lever; r is a steel spring that bears against the imner side of the lever o, serving to force it back when not pressed up by the apparatus by which the cutter is made to operate on the blanks, which I will now describe.

F, shown most distinctly in Figs. 3255 and 3256 , is a cam-wheel made fast on the main horizontal shaft B. The periphery of this wheel is divided into fourteen equal parts, and is cut so as to have on it thirteen tooth-like projections $d d d^{\prime}$, Fig. 3256 , the part d^{\prime} occupying two of the fourteen divisions, leaving twelve, $d d$, equal in size. Each of these projections operates as a cam in causing the cutter to operate on a blank; the number of equal projections determines the number of times that each blank shall be acted on by the cutter, and this number may be raried, but that which 1 have given is found

Bufficient for screws of ordinary size. To the cutter-slide C is attached a hardened steel bearing-piece n, the upper end of which is in the form represented, and is kept in contact with the projections $d d$ of the cam-wheel; this wheel, therefore, by its revolution, will depress the slide and carry the cutter down: the cam-teeth and the bearing-piece n are made very true and smooth. The faces of the projections i which act on the piece n are finished to an irregular curve, which is such as to cause the direct downward motion of the slide to be equal in equal periods of time, the motion of the wheel being uniform. The slide (i is raised in the following manner, after each descent: H is a steel spring, shown most plainly in Fig. 3255, which presses on a lifting-piece V that works on a joint-pin U^{\prime}, and bears against a pin on the back side of the slide G. At the time when this lifting is effected, the cutter is drama off from the blank by the action of the gage-wheel F and its appendages.

F, Figs. 6205 and 3256 , is what I call the gage wheel, which is afficul to the horizontal shaft B; ihis wheel has a prujecting rim i i on its face, like a crown-whecl, which is diviled into a mumber of parts correspondinf with those of the prajections on the cam-wheel, there beins thirteen recesses ar notches $i j$, twelve of which are of une size, whilst the other j^{\prime} corresponds with the projection il on the canwhecl. The gage whecl F is intended to regulate the feed of the cutter in its succersive actions on the Llank; under the arrangement described the cutter will, as befure remarki, operat. twelve times in forming the the ead of each screw, the operation on each being completed by one revolution of the shaft 1․ The cutter is forced up against the blank in the fullowin's manner: $\mathrm{k}^{\prime \prime}$ is a lever which works on a fulcrum-pin l, ant the end $\mathrm{K}^{\prime \prime}$ of which bears upon the face of the projectins rim i i of the gage-wheel during the time that the cutter is operating upon the blank, when the point K i , by the revolution of the wheel F, brought opposite to one of the recesses j, the lever o with its cutter is passel back by the action of the spring r, and at the same instant the piece n falls into one of the notehe on the cam-wheel, the slide (i rising, consequently, to its original elevation. The lever k advances the cutter against a

 vertimal plame, but each projectine portion riaw by of regular inclinathon be yond that which pretedel it,

 the met on the blank, ind when it hav heen completel it mut lee tat ol thoritom, m! the rame or

 Vot, 11,-38
the cam-wheel E there is attached a broad rim or hoop v ?, Fig. 3955, and the situation of whick is indicated also by the dotted lines V V, Fig. 3256 ; this hoop is continuous for about $10-11$ tha of a circle, about $1-11$ th of it being removed, as at the part h. The outer surface of it is made perfectly irue and smooth, and there bears on it one end of a crooked lever Q, which is shown separately in Fig. 3263 ; its cnd Q is that which bears on the hoop U U ; it has a fulcrum-pin at $Q^{\prime \prime} . \mathrm{K}^{\prime \prime}$ is a pin attached to the upper end of this lever, which pins enter a noteh or opening in a piece k^{\prime}, to which is attached the vertical sliding-rod P that makes a part of the sliding-frame P P, Fig. 3256, which frame sustains the shaft of the screw-driver: when, by the revolution of the cam-wheel, the end Q^{\prime} of the lever Q is brought opposite to the opening h in the hoop U U it falls into it, and the sliding frame P with the screw-driver attached to it is raised; the lever Q is kept in contact with the hoop U U by the action of a spring l^{\prime} that bears against it, and is attached to the circular table A'. The passing of the end of the lever Q into the recess in the hoop U occurs at the moment that a screw has been finished. R, Figs. 3255 and 3256 , is the shaft of the screw-driver; this shaft passes through and revolves within in the arms O O, Fig. 3256, making a part of the stationary screw-driver frame. By means of a feather the shafi R slides freely up and down through the whecl g^{\prime}, which is driven by the wheel c. O, Fig. 3258 , is the bottom plate or basis of the frame 00 , which is fastened on to the top of the circular table A by screws, as at $f^{\prime \prime \prime} f^{\prime \prime}$. The upper end of the shaft R is connected to the sliding frame P by the springs $m m^{\prime} n^{\prime}$, Fig. 3256. The lowermost of these springs serves to lift it, and the upper one, by means of the thumbहcrew $o^{\prime \prime}$, serves to adjust it to the different thicknesses of the heads of the blanks, the shaft R is depressed, and the screw-driver leept in contact with the blank by the bearing of the lever Q on the hoop U U.

The removing of the finished screw from the tubes a is effected by the aid of the same hoop U that is concerned in the depressimy and raising of the screw-driver. S, Figs. 3255 and 3256 , is a stationary tubular rod phaced vertically, which receives within it a small sliding-rod p^{\prime}; there is a slot along the rod s, and a small arm $r^{\prime \prime}$ attached to the sliding-rod p^{\prime} passes through this slot and bears upon the peripherg of the hoop U until it arrives at the opening h; whilst it bears on the hoop the rod p^{\prime} is depressed, but when it enters the opening h the spiral spring r^{\prime} forces the rod p^{\prime} up, which, passing inte the tube containing the last but one finished screw, removes it, and it falls into a receiver.

The apparitus used for causing the zone or ring II' to revolve and carry a blank to the distance necessary to its being operated on by the cutter, is shown in Figs. 3255, 3258, 3259, 3260, 3261, and 3262 One side of the worm-wheel D D is widened out, so as to leave a guide-groove $f f f^{\prime}$ formed upon it. this groove passes uniformly rom the wheel, excepting at the point $f^{\prime \prime}, \mathrm{Fig} .3255$, where it forms an angle, as represented. This groove reccives the pin g which constitutes the end of a short arm $g^{\prime \prime}$, seen separately in Fig. 3202 ; from this arm a slaft M rises vertically and passes throurg the circular table \AA^{\prime}, and is firmly attached to an arm or lever K which rests on the top of the table, as seen in Fir. 3258 the piece If is shown separately in Fig. 3261, and the part of it to which the shaft M is attached is represented by dotted lines in Fig. 3258 . Whilst the pin g remains in the direct part of the groove $f f$, the piece K remains stationary, but where it enters the angular part f^{\prime} the shaft M is made to revolve partially back and forth, and carries with it the piece K. The arm $g^{\prime \prime}$ is situated below the table A^{\prime}; the shaft M to which it is attached has its step in the stod l^{\prime}. To canse the pin g to pass readily baek inte the straight part of the groove f, a spring s', the lower end of which is seen in Fig. 3255 , is made to bean against said pin, as shown in Fig. 3262 . The finger V on the picce K draws back the bolt y, Fig. 3258 , seen separately in Kir . 3259, so as to relieve it from one of a series of notches on the interior edge of the ring I 1^{\prime}. These notches $x^{\prime} x^{\prime \prime}$, \&e, correspond in number and position with the tubes for the blanks: and it will be manifest that the bolt y, when inserted in one of thee noteles, will keep the ring stationary. The bolt y is furced into the motchez by means of a spiral spring z, acting against the plate 0

Jo the piece K is alvo combeted the feed-hand L by a joint-pin $a^{\prime \prime \prime}$; this feed-hatl "arrien the ring I I' round to the requisite di-tance. The steel spring $b^{\prime \prime \prime}$, which has a bearin g on the pin c^{\prime}, serves to throw the feed arm furward t, the proper position to bear again-t the angle of one of the in teles, as seen at $x^{\prime \prime \prime}$.

In describing the various parts of this machine, I have also shown the manner it which they, are intended to operate, bat I will now give a general view of the action of the whak: The tubes a a in the horizontal ring I I' are to be kept supplied with blanks, which are to be fel in by hand. lmmediately preceding the first operation of the cutter on a blank, the lever (a will have occupied the recess h in the hoop U° on the cam-wheed, and the lever K the recess j^{\prime} in the gire-wherl; and the machine bring in motion, the cutter-slide $G G$ will be raised by the action of the spring Il on the joint piece u.

At the commencement of the ascent of the cutter-slide, the cutter will be thrown back by the action of the spring r on the lever o. During this period of time the revolving of the houp U on the cam-wheel will brimg the ent of the lever (2 , which hat occupred the recess h, in contact with said hoop, on the periphery of which it will ri-e, thereby lowering the screw-driver, when the serew-driver will enter the nick on the blank, which it will cause to revolve rapidly; the lever kina at the proper instant will leave the rece-s on the gare-wheel and bear on a projecting part of its rim, bringing the cutter into contact with the blamk. That one of the tooth-like projections un the eam-wheed, which is next to the double one, will at the same time be in contant with the -ted bearing picee n, and the cutter will be therehy catnen! to make ita first cut, which being suceceded by the action of the remaining cam-tecth, rompleted the scraw.

At the tince of the eompletion of the seren lint ent, the revelation of the can-wheel will have brotight the hasp, U into the pesition in which the emb of the laser (? wall enter the recess h, and the serewdriver will be lifted.

At this time the euther will have heen withlawn from the screw, and the point of the arm !",

 siven the revolving metion the the shaft $I \frac{1}{2}$ mee ary to the oferation of the pars comerned in the ahift

power is applied, upon which there are two pulleys C C, with bands for driving the different parts of the machinery. D is a whirl on the shaft E, which carries the circular cutter F, by which the serews art to be nicked. A band from the whirl C drives the whirl G on the shaft H , upon which there is an endless screw or worm I, which takes into a pinion J, upon the upper end of a vertical shaft, the lower end of which runs into a bridge-tree or shifting-bar, the end of which is shown at K, Fig. 326b. This shaft carries an endless screw or worm L, which takes into and drives the toothed wheel M, Fig. 3265, which toothed wheel is on the same shaft with that of N for holding the blanks; the lower end O of the vertical shaft being seen in Fig. 3266 ; the connecting-rod P acting upon the bridge-tree or shifting-bar K.

The blank-wheel N is in two parts, divided through its plane, as shown by the line along its periph-

ery; one of these parts is fixed firmly on its axle, whilst the other part slides cpon a square eye, or otherwise, upon the axle, and is capable thercfore of receding from the fixed part, although it revolves with it. The periphery of this wheel is perforated with holes at the junction of its two parts, as shown in the figures, which holes are of such size as to reccive and hold the blanks which are to be nicked. To cause the two portions of this wheel to grip the blank while it is being nicked, there is a friction roller which bears against the outer edge of the periphery of the movable part, immediately under the circular cutter. The dotted lines Q, Fig. 3265 , mark its situation, which is opposite to the screw-nut ll, Fig. 3266, which confines the friction-whecl box in its place. To react against this friction roller, a similar one is placed opposite to it, and bears upon the fixed portion of the blank-wheel; the bar S is to sustain this friction-whecl. The shaft which carries the saw is raised or lowered by means of the adjusting screws T T, and by this means the depth of the nick is perfectly regulated.

Having thus fully described the construction of this machine, its operation will be readily understood The shaft B being made to revolve by any motive power, the blanks are dropped into the holes in the blank-wheel N as it approaches the cutter, and are held firmly whilst being cut by the pressure of the friction rellers; and being released from this pressure, they fall out by their own gravity as they aro tarried round to the lower part of the machine.

It will be obvious from the furegoing, that instead of having one part of the wheel firmly attached to the shaft, that both parts may be loose thereon provided they are so comected with it as to be carricd around by its rotation, and adnit of being presed together to grip the blanks firmly while passing under the operation of the cutter to be nicked, whether this cutter be a rotating cutter or any other kind of instrument for this purpose, although the rotating cutter is deened to be the best. Instead of the rollers to press together the two parts of the carrying-wheel, cheeks may be substituted, but with lees adrantage on account of the friction of the rubling surfaces; and instead of making use of two rollers, he one that bears against the face of the permanent part of the wheel may be dispensed with by makjug this part of the wheel very strong, and the shaft to run in firm bearings that will afford sufficient strength to resist the pressure required to grip the blanks firmly white being nicked. It will also be obvious that the two parts of the wheel may be kept apart for the free reception and delivery of the hanks either by a boss or shoulder on the shaft, or by the introduction of something between them, or by any other equivalent means; although a projection boss, or shoulder on the shaft, is the simplest and most effective.
sCREWS, MACHINE FOR SHAYING AND TURNINGG. Crem \& Prersox's patent. The nature of the first part of this invention or improvement in the before-mentioned machine consists in giving to the frame or carriage that carries the carrying and holding wheel (sometimes misnamed the fede ing-wheel) an intermittent reciprocating motion to withdraw the turned blank and insert the points os others in the jaws, in succession, instead of giving an endwise motion to the mandrel for this purpose as heretofore; and also in giving to the carrying-wheel an intermittent rotary motion to present a nens blank to the jaws preparatory to the insertion of the same into the jaws by the motion of the earriage. And the second part of this invention consists in shaving the under and upper surface of the heads, within the rim of the carryiug and holding wheel, by means of a tool properly adapted to the purpose, which is attached to the end of a vibrating tool-holder, that receives its appropriate motions at right anoles to the axes of the blank from a cam on the main-shaft.

 be changed at the discretion of the constructor. On the table b of this frame, and near one end therent,
 the purpose of withatrawing from the jaws tha blamk that has been turned, and presenting a new one to the jaws

The carryine and holding whele is mate with a projecting rim fo in which spacea are cut out at equal givers di-tances apart, amb extu ling from the face of the whed to the midelde of the widela of the
 hales that receive the serew hanks are made half in the om! of the dies and the other half in the eden

fulcrum-pin r, has the end of one arm working in a slot s of the carriage d, while the end of the otl:e arm is provided with a roller or wrist which runs in a cam-groove t, made in the face of a plate u, on z shaft v, that makes half a revolution for each complete operation; that is, for every blank that is introduced, turned and discharged ; and the cam-groove is formed so that from the point 1 to 2 , in the direction the reverse of the arrow, it runs out of the circle to move the carriage, and with it the carryingwheel from the jaws w, to remove a blank that has had the bead turned; and from the point 2 to 3 , in the same direction, the groove runs towards the shaft by a curse tie reverse of that from 1 to 2 , for the purpose of moving the carrying-wheel towards the jaws to present a new blank, the previous motion of the carriage from the jaws having turned the carrying-wheel a distance equal to a space between two of the holes in the dies to present a new blank, and then from the point δ to 4 the groove is concentric to hold the carrying-wheel in the same position while the head of a blank is being turned. The other half of the cam-groove is similar to the one described to repeat the operation. So soon as the carryingwheel has completed its motion towards the jaws and while that part of the cam-grouve from the point 3 to 4 is passing over the end of the lever q, the carrying-wheel is held firmly in that position to hold the blank firmly while it is being rotated by the jaws and acted on loy the cutter; and this is done by the point of a follower x, that is forced by a helical spring around it to enter one of the series of holes y in the face of the wheel, and preparatory to turning the wheel to shift a blank, a cam z on the periphery of the cam-plate u forces up a sliding wedge-piece a^{\prime}, that acts on a follower x, to force it back out of the hole in the wheel, and the monent that the cam passes the follower x is in a condition to be forced by the tension of the spring into the next hole when the wheel is turned round to present another blank to the jaws.
The screw-blanks thus presented are caught, gripped, and rotated by the pair of jaws w, that are iointed to the end of an arbor or mandrel b^{\prime}, which runs in standards or puppets $c^{\prime} c^{\prime}$, and rotated by a belt d^{\prime} from a pulley e^{\prime} on the driving-shaft f^{\prime}. This mandrel is hollow, and within it there is a slidingrod g^{\prime}, one end of which is jointed by links $h^{\prime} h^{\prime}$ with the levers of the jarws, and the other end projects out beyond the back of the mandrel, and is there provided with two collars $i^{\prime} i^{\prime}$, that embrace the forked end of a lever j^{\prime} that turns on a fulcrum-pin k^{\prime}, the other end being provided with a roller or wrist that runs in a cam-groove l^{\prime} in the periphery of a wheel m^{\prime} on the shaft of the cam that operates the carrying-wheel. The form of this cam-groove is such that from the point 1 to 2 it runs by a sudden curve to the left to open the jaws just as the carryingwheel begins to move from the jaws to draw out the blank that has been turned; from 2 to 3 for a short distance it runs in the direction of the periphery to give time for the carrying wheel to present a new blank, and then from the point 3 to 4 it runs by a curve the reverse of the one from 1 to 2 , to close the jaws and grip the end of a blank, and then the groove runs in the direction of the periphery to complete half the circumference from the point 1 , the groove for the other half of the circumference being a repetition of the first half to repeat the operation. It will be obvious from the foregoing and the figures that the sliding of the rod in the mandrel by its connections will open and close the jaws. So soon as the blank has been presented and gripped the cutter n^{\prime} is moved up. The cutting edge of this cutter is somewhat in a \wedge form, the elge o° being nearly at right angles with the axis of the screw-
 blank to turn the top of the head, and the other edge v^{\prime} forming the required angle therewith to turn the under surface of the head. This cutter is fitted to a stock q, and slides therein that its cutting edge may be properly set by a serew r^{\prime}. The cutter-stock turns on a fulcrum-pin s^{\prime} and it rests on the upper end of a shiding-bar t^{\prime}, provided with a friction-roller u^{\prime} at the lower end, which is acted upon at the appropriate time; that is, the moment that the blank $1 s$ griped by the jaws, by a cam v^{\prime} on the same shaft with the other cams before described; this cam suddenly runs out from the axis to carry the eutter to the head of the blank and then runs for a short distance by a slight cceentricity to force the cutter gradually against the blank until the head thereof is sufficiently reduced or turned, at which point the cam suddenly runs towards the axis that the cutter may be drawn back from the blank by the weight of the catter-stock. There are two cutter-cams η^{\prime} to correspond with the double cams for operating the jaws and the carrying-wheel; but it will be obvious that by doubling the motion of this cam-shaft relatively to the motions of the other parts of the machine, that the cams may be single. The cam-shaft receives its motions from the mandrel by an endless-screw w^{\prime} on the latter, which actuates a spur-wheel x^{\prime} on one end of a shaft y^{\prime}, the other end of which has a bevel cog-wheel z^{\prime}, the cogs of which take into the cogs of a similar wheel a^{2} on the cam shaft, shown by dotted lines. As stated before, the screw-blanks are placed in the carrying-wheel, and carried up by its rotation, and whe: presented to the gripping-jaws the point is forced against a stop ${ }^{2}$
within the jaws by the motion of the carrying-wheel. And afier being turned, the further motion of the wheel carries ibem up, their heads resting on to a eurved rest c^{2}, which is so curved at d^{2} as to permit them to fall out by their weight so soon as they reach the top.

By doubling the length of the carriage, and putting another earrying-wheel on the other end of the hatf, as repreented in Figs. 3267 and 3268, and putting up, a duplicate of the mandrel, gripping-jaws, and cutting tools, with their connections, the cam-shaft and cams will answer for two machine-, with the exception of the cutter-eans, which must also be doubled to avoid eomplexity; but eren these may be di-pensed with by changing the furm of the cutter-stock and the slide that communicates motion to it from the cutter-cam.

 The nature of this insention com-ints in giving a reciprocating motion to a earriage, jn which is hung tho thaft of the carring and holdiner wheel to drave the stom of the blank from the dies as they rotate to give the piteln to the thread, and to return it to the dies for a sucession of operations until the thread is cot, this series of motions being given by a simple semment cor-wheel, the cogs of whel ate alternately an an upper and a lower rack connected with the earriage. And atoo in giving to the earrying and hohling whee an intermitemt rotary motion (to remove a hareated serew and present a blaki) from a wheel below, provilef with a pin on its face, which, at every rotation, lifts a lever, the upper end os which is provided with a hand that acts on the teeth of a ratchet-wheed on the shaft of the carryingWheel to turn it the reguired di tance for the presentation of a blank, the whed that earres the lifting pin beine turned a part of a revolution for cach cut of the dies boy an arm on the shaft of the cam that clesen the dies; the tamber of teeth or puns on the when that are to be struck by the arm on the crankthaft being such for each ping on the other face of the wheel, as to corre-pund with the namber of cuts to be given by the dins for the completion of the therad of the serew.

The mature of this invertien al on comsiste in holding the hamks while thder the operation of the dies

 acts by me mos of a slilinerod on a lever that frees a roil in the hullow mar of the jaw to chase them Whan this is combinat with a shating welge pinee interpoed betwent the sliturg rat and the lever te incrence the appth of the ent nt earh operation, the sadid wedge-piece beng mate to slide for this purpae hy means of anather can combinel therewith.

rear end oî this rod passes out of the mandrel and is acted on when the jaws are to be closed by the point of an adjustable screw l on the upper end of a lever m, the lower arm of the said lever being acted upon by a sliding-rod n that bears against the face of a cam o on a transverse shaft p. The form of this cam is such that from the point 1 to 2 , extending one-half of the circumference, it is concentric; at the point 2 it suddenly runs ont from the centre to close the jaws, and therefore to make the dies grasp the shank of the blank, and then from this sudden swell to the point 3 it gradually runs out from the centre to increase the bight of the dies, and then by a radial line it runs back to the point of beginning, to permit the springs to force open the jaws that the screw-blank may be run back for a repetition of the operation. This cam receives its motions from the mandrel by a train of cog-wheels $q r s$, the one q being on the shaft of the cam and engaging with the cogs of the one r, which is on the shaft of the

wheel s that is actuated by an endless screw t on the mandrel. Between the lower arm of the lever m and the sliding-rod n there is interposed a wedge-formed slide n^{\prime} placed at right angles with the sliding-rod n. The end v of this slide is forced by a spring v against the face of a series of camformed projections x on the face of a wheel y on a shaft z, the periphery of the said wheel being provided with teeth a^{\prime}, which strike against a pawl or hand b^{\prime} jointed to the main frame, the shaft of the said wheel y having its bearings in a frame a^{3} attached to and moved by the lever m, so that at every back motion of the lower end of this lever to open the jaws the wheel y is turned a portion of a revolution, that the cam-formed projections x may act on the end of the wedge-formed slide and force it back, and thus canse the threading cam at each operation to close the cutting-dies more, and in this way complete the cutting of the thread by a series of operations. The cam-formed projections x are as series of planes inclined to the plane of the face of the wheel from which they project, and the length of each is such, relatively to their motion, as that each shall move its whole length for the complete cutting of one screw ; and of course the number of these cam-formed projections will depend on the diameter of the wheel to which they are attached and to the extent of the motion of the said wheel.

The screw-blanks c^{\prime} are inserted in holes in the rim d^{\prime} of what is called the carrying and holding wheel e^{\prime}, the rim being made to project from the face of the wheel sufficiently for this purpose. The shaft f^{\prime} of this wheel runs in standards g^{\prime} of a carriage h^{\prime} that runs on ways $i^{\prime} i^{\prime}$, and this carriage receives a reciprocating motion to move the blank towards and from the chasers or dies by a segment cog-wheel j ' on the shaft of the threading-cam. The cogs extend over a little less than one-half of the circumference, and alternately act on the teeth of a lower rack k^{\prime} to move the carrying-wheel towards the cutting-dies, and then on the cogs of an upper rack l^{\prime} to run it back to form the thread, the said racks being formed in the opening of a bar attached to the carriage of the carrying-wheel. In this way the motions back and forth of the carriage are given to determine the pitch of the threads and to return the screw for the repetition of the operation.

So soon as a screw has been threaded it must be carried awny and a blank presented to the dies, This is done in the following manner: On the shaft of the carying-whecl there is a ratchet-whecl m^{\prime}, which is turued by a hand n^{\prime} on the end of a lever o' that turns on a fulcrum at p^{\prime}; the lower arm is bent
as at q, su that when lifted the hand on the upper end turns the ratchet-wheel, and with it the carrs ing-wheel, the required distance to carry of the ihreaded hank an I pre-ent a new one. The lever is operated in the fullowing mamer: On the threading-cam shaft there is an arm r ' which, at every rotation of the shaft, strikes one of a series of pins s^{\prime} projecting from ia wheel t^{\prime} to turn it a dintance equal to the space between the centres of any two of these pins, and on the obler f.wee of this wheel there is a pin u^{\prime} which, at every entire revolution of the wheel, strikes under the bent arm of the lever of and gives it the requi-ite motion to turn the carrying-wheel. Batk of the lever o there is a standard a^{3} with a set-screw b^{2}, against which the lever strikes when thrown hats by the weight of the bent part q°, so that by the set of this screw the extent of motion of the lever and the carrying wheel can be defermined. The position of the arm r^{\prime} on the segment cor-wheel shaft relatively to the serment of cogs should be such that the carring-whech will be turned for removing the threaled serew and presenting a blank when the carriage is farthest from the jaws. And the number of pins s^{\prime} on the whed t^{\prime} must be equal to the number of times it is intended that the chaters or dies shall pass uver the blank to complete the thread; but if desired this number may te doubled, trebled, de., by having two, three, \&e., pins u^{\prime} on the other face of the wheel. It is, however, preferred to have it as deacribed. In this way it will be seen that the carrying wheel carries the blanks towards the jaws amol inserts the blank in the open dies and moves it back to form the thread, and that these motions are repeated a given number of times until the thread is completely chased or cut, and that when completed the carryingwheel is turned far enourla around to remove the threaded screve and present a lilank to the jaws to undergo the same series of uperations.

While the screw is being cut or chased it is held in its hole in the rim of the earrying. wheel he means of a roller v^{\prime} within the rim of the wheel, and turning on a stud pin at the "nd of a lever $w^{\text {s }}$, which turns on a fulcrum-pin x^{\prime}, the roller being heht agaibet the imer periphery of the rim of the wheel by a pressure-serew y, that bears against the luwer end of the lever, so that as the blank is carrind op by the wheel to be presented to the des, the pressure of this roller agranst the head holds it tirmly in the rim of the whel. The machine can be made donble for theredine two serews at une and the same time, as hown in the figures, ly hatine two carrying whects on the same haft, and two mandrels with their jaws, dies, and sliding romlt, the twon mandels being geared together by two con wheels $z^{\prime \prime} z^{\prime}$.

well-known mechanical equivalents, they are simply named to indicate the various modes in which this part of the invention may be applied.

SCREIVING MACHINE FOR BOLTS. Fig. 3275 is a general plan of the machine.
Fig. 3276 is an end view looking upon the frame K , the guide-rods $\mathrm{R} R$ and chuck L being removed
Fig. 3277 is an end view looking upon the frame N.
Fig. 3278 is a general side elevation of the machine corresponding with the plan in Fig. 3275.
Fig. 3279 is a face view of the chuck L, seen also in Figs. 3275 and 3280.
Fig. 3280 is a corresponding front view of the die-frame, which is retained upon the guide-rods R R of the machine by recesses in the projecting ends.

The same letters of reference are used in all the figures.

The head-frame of the machine consists of three pieces fastened to a sole in the usuat manner. The forms of the frame-pieces K and N are distinctly shown in the drawings, particularly by ligs. 32 it and 3277 . A separate view of the intermediate upright is not given, but it is easy to perceive from

Figs. 8275 and 897 , that it has a projecting piece corresponding to that on the bracket \bar{N} to carry the spindle of the back-speed wheets G II ; and that it has beside's a centre-bearing corresponding to that of Fir. 3256 , for the end of the main-spindle, on which are the piniun C and wheel D , and which carries the chuck L .
P, the driving pulleys on the drivingspindle of the machine. This spindle has a bearing at each end, and a bearine also in the middle standard of the frame. The pinion F and wheel 1 are keyed on the spindle, and geer with the wheel and pinion G and $I I$ on a separate spindle, like the back-apeed of a lathe. The cluted-wheels A and B are lowec on the same spindle which carres the similar pair la and 1 , so that cither of them may be made drivers by means of the cluteh S, which slides on the shaft and is made to turn with it by a sunk feather which connects the clutch and shaft. This elutch is worked by a lever passing to the hand of the operator in the u-ual mamer. The piniun A geers witl: D on the main-spindle; B geers with a carrier-pirion E , Γ ig. 3276 , which, in its turn, geers with C on the main-spindle.

To explain the action of the machine, suppuse the bolt to be centered in the cluck $I_{\text {, and }}$ the dieholder, shown by Fis. :32s0, to be placed on the guide-rods R R, and brought up so that the end of tue bolt just enters the dies; then the eluteh being locked with the pinton A, and the machane set in motion, the chuck will be made to revolve, and with it the bolt to be screwed; and meanwhite the dieholder being pressed arainst the end of the bolt, this will enter them as into a nut and will enntimo to serew itself into them, and by this means the desirel thread will be cut upon its circumference.

The bolt being thus serewed, the next operation is to unserew it from the die-holder. For lhas purpmic , the elutch is disengaged from the pinion A, and locked with B, which geering with an intermediate pinion E, reveres the motion, and it at the same time increases the speed in propertion to the increase of diameter of B to A.

This form of serewing machine has some advantages, but it is wanting in compactness and simplicity of gecriug, so much the aim of constructors of engineering tools.

SCREWING MACHINE, DOUBLE-By WillasM Moome, Glasgow. This is one of the most powerful and complete machines of its class. It is capable of cutting the threads of screws of if inches dianeter, and, unlike most other machines of the kind. the geering is so adjusted, that both sides of tho machine can be employed simultaneously upon bolta and nuts of different sizes.

A A, the two main standards of the machine, are fixed upon a stroner cast-iron sole-plate 1 , whieh extendy the whole lenuth of the machine, and ia securely bolted to a sone foundation. FIn these stambards all the gecring of the machine is monted. The driving spindtr J is placed intermediate to the serewine-
 The spindle J has a bearing in cadl of the two stamdards, and earries the fort pinions a and h, also the whee U and pinion d, which are cast thecther, hat rm lome wh the spintle. The pinion a geers into

 J. The whed U geers into the whed K , and the finion diato the whed O , fint on the serewing

 fast ajon the -pindla.

the screwing-spindle N, has a second fork for working a clutch on the spindle L, to engage and disen gage the loose boss of the wheels K and M . But these two clutches are so fixed in relation to each other, that one of them only can be in action at the same time, consequently, when the wheel S is engaged by the clutch T, the wheels K and M must necessarily be loose on the shaft L.

This arrangement of the geering being kept in view, the action of the machine will easily be comprehended. Thus supposing motion to be communicated to the speed-cone I, if the clutches T and H be in geer with the wheels S and F respectively, these wheels will be driven by the pinion a, with a speed proportioned to their respective diameters, and in opposite directions. Meantime, the clutch on the under shaft L, being out of action, the wheels K and M will be loose upon it, and the shaft itsell will be made to revolve idly by means of the wheel P, which geers with the pinion \bar{c} upon it. The angular velocity of the wheel F will be immediately communicated to the screwing-spindle E and its chuck V ; but the angular velocity of the wheel S will be transferged to the hollow boss Q , and thence

to the whed R, which geers with the wheel U. But this lase being loose upon the driving-shaft, and fast with the pinion d, will communicate its motion to the wheel O, which is fast upon the screwingspindle N , and so communicate a reduced speed in the ratio of the numbers $\frac{x \times \mathrm{R} \times \bar{d}}{\mathrm{~S} \times \mathrm{U} \times \mathrm{O}}$. But let the clutch T' be disengaged-the clutch II remaining in geer as before-then the under clutch will engage the whechs K and M to their shaft L, and in consequence this shaft will be driven by the pinion l, which geers with the wheel K, and will drive the wheel 1 ', which is fast on the serewing-spindle N, with a speed, in the opposite direction to its former motion, determined by the ratio of the numbers $\frac{b \times c}{\mathrm{~K} \times \frac{\mathrm{P}}{}}$ Let the clutch If be brought out of geer with the wheel F, and engaged with the wheel G, then the spindle E will receive an increased speed in the opposite direction to its former motion. Thus the twe serewing-spindles may be driven in either direction independently of each other, aud may be conplosed at the same time to serew-bolts and nuts of different sizes and pitches of thread.

The screwing spindles are of malleable iron to insure strength, an I are mal, hollow to allow the bults to pass into thiem as they are screwed. The chucks are fote up on the on lis of the spindles, and to these the die-holders are bilted. The die-holder of the smaller sin lle is of the common form, and fits into a dovetailed reecss V. from which it can be removed and have its cutters changed at pleasure ;

but that for the larger spindle is eliferently constructed, as will be wberved from the face view of it given in Fis. 3297. This con-its of a strong plate $W_{\text {, }}$, annularly recessed to receive a ring X , flush with its exterior surface. The ring X has a portion of its circumference cut into teeth to geer with a worm receseed in the plate W, and which can be worked by a handle placed upon the projecting square pand of its spindle h. Consequently, as this morm is turned in one direction or the other, the ring I^{\prime}

will be correapondingly afferted, and will, by its motion, change the relation of the cutters ifff, in reepect of the axis of the chuck. Fior this parpose, three spiral recesses g og of formed on the interior sireumference of the ring, into which the exterior conts of the cutters project ant ibut against tho inner elfeges of the pirat recenses. It is therefore elear that if the ring be made to pass through a

dial slots $k l k$, through which pass three small round pins projecting from the cutters, for the purpose of guiding them in a rectilinear motion.

In the operation of serewing, the head of the bolt is caught in the gland-frame D, Fig. 3288, which fits between the guide-rods C C, along which it slides towards the chuck, as the thread is being cut, and the screw thereby formed passes into the hollow interior of the screwing-spindle. When nuts are to be tapped, they are inserted into glands which fit the guide-rods C C, at the opposite end of the machine, and the taps are fitted into the square holes in the ends of the spindles.

SEA-LIGIITS, or Lighr-IIouses. Powerful lights exhibited from lufty towers or headlands, to warn navigators of their proximity to the land. These are divided into coast-lights, which occupy the mos: salient points; bay-lights, located within the recessed lines of coast; channel-lights, arranged to designate some particular course for vessels to steer over a bar or past some danger, and hence are ofter called "leading-lights;" tide-lights, to indicate the height of tide at the port; and lastly, floating-lights, which are ressels from which are exhibited lights to indicate the vicinity of some shoal lying off from the shore, in a position where no permanent structure can be erected.

Light-houses, properly speaking, are of modern origin, and date their efficiency from about the year 1780, when Citizen Argand, of Geneva, in Switzerland, invented the admirable lamp that yet bears his name, and which combines in a degree not yet equalled by any other the best principles of combustion, and consequently the evolution of a brilliant light. Previous to the invention of Argand, navigators were compelled to trust to the dim and murky light of wood and coal fires, burned on the tops of towers or lofity promontories, which, when the wind was off shore, must have been nearly or quite soncealed by their own smoke. Coal lights have been continued in the Baltic till within ten years past. Smeaton, who erected the celebrated Eddystone Light-house, (justly considered the work of a man of genius, and as displaying a high degree of mechanical skill, had not the talent sufficient to derise any improvement in the lights, but was obliged to illuminate that superb Pharos with tallow candles! How great would be his delight, could he now see the beautiful combination of science and practice that are united in the admirable dioptric apparatus of Fresnel, which is installed in the Eddystone Light-house, and makes it one of the most efficient lights in the English Channel!
The great increase of commerce and navigation in the last century, and the repetition of frightful disasters by frequent shipwrecks, naturally directed the minds of men to suggest means for ameliorating the danger to which shipping of all classes was then exposed, and an effort to improve the light-houses was one step towards the accomplishment of this desinable object. The clumsy means of producing light from wood and coal fires, prevented the use of a glazed lantern to protect the flame from the furious winds of the Atlantic, and consequently the application of optical instruments to magnify the light. These fires were made in large iron braziers, and about 225 lbs of coal were used in one night. The first attempt to economize the light from coal or other fires, and to direct the rays to the horizon, was made in 1727, at the Cordouan Light-house, by M. Bitri, an engineer employed to repair that structure. He placed over the flame an inverted cone of tin plates, which reflected all the light incident upon its surface, and must have added materially to its effect as long as the tin was kept polished; but it is evident that with an open fire beneath the cone, the smoke and gas must speedily have destroyed the polish, and with it the reflecting power.

The effects of a light in giving out rays without any controlling apparatus, will be to fill a sphere whose radius is equal to the distance at which the light is visible. In the light shown from a lighthouse, those rays which are thrown upwards or downwards beyond the reach of vision, would be totally lost for practical utility, and it therefore becomes necessary to economize the light, to deflect these rays and cause them to assume that direction only in which they are required: in short, our apparatus must be so ordered as to produce a horizontal band or zone of light. To do this we have two methods, both of which have been successfully applied: the first being to collect the rays in a concave mirror, and by its reflective power project them to the horizon; a circle of these nirrors would thus be visible from every point of the horizon: this is termed the catoptric method. Secondly, to place lenses of a proper form around the light, when all the rays falling upon these will be refracted in a horizontal piane: this is called the dioptric method, and is the more modern and by far most perfect of the two systems.

As the catoptric or reflector system is the only one used in the United States, we shall briefly describe the form and construction of the reflectors, which ought to be paraboloidal to produce the proper result, though, we regret to say, there are few such reflectors in this tountry.

It is proper to premise that a parabola is a curre of the second order, oltained by cutting a cone in a plane parallel to one side, and possessing this remarkable property, that a line drawn from the focus to any point in the curve makes, with a tangent at that point, an angle equal to that which a line parallel to the axis of the eurve makes with that tangent. An inspection of the diagram will render this apparent, and it is easy to see that a revolution of this curre upon its axis will generate a parabolic conoid, which is the form of concave mirror we require for light-houses.

The line l' V G, lig. 3289, is a parabolic curre, and within it is the focal point F , which is the situation of the lamp flame in the reflector, of which this may be supposed to represent a section. Now, a ray from the lamp at F falling on the concave surface at d, will be reflected in the direction αf, which is parallel to the axis of the curve V Z, and the angle of reflection b a is equal to the angle of incidence $d a c$; in other words, it makes with the normal $a z$ the angle $g a h$ equal to the adjacent angle $h a i$, and this property belongs to every portion of the surface of the parabola, and consequently the rays from the focal point will be represented by the lines $\mathrm{F} x x^{\prime}, \mathrm{F} w w$.

With respect to the invention of parabolic mirrors, we find them mentioned at a very early period, though not in comection with the subject of illumination, but in reference to their powers of focalizing the rays of the sun to form burning instruments, an inverse principle of that of lamp reflectors.

In a work entitled "Pantonsetria," by Leonhard Digges, published in London in 1571, the authon states that, " with a glasse, framed by a revolution of it section parabolicall, I have set fire to powder
half a mile and more distant." In the prosecution of this sulgect the celob:ated Sapier and Sir Twace Neriton cxperimented with parabolic reflectors before 16:3, and Butfon, the great maturali-t, with the same olject propked the polyzonal lens, now adapted to light-house purpo-ez, as will be described further on. The first parabolic reflector: for light-humses of whieh any authentic recurd remains, were red at the port of Liverpool, Fogland, previons to 17Ti, for in that year 11 m . Ifutchin-ond duck-master of the port, pr.bli-hed his "Practical Seamanship," and in that work he fully de-ribes the apparatus used in the four lighthouses built at Liverpool in 1763 . These reflecturs were formed to a prabalic curve by a somewthat rude process, which he deseribes.

Figs. 3290 anl 3291 represent the parabolic reflecturs used in the Liverpooll lizhtheuses, cophed from a plate in Jutchinson's " Practical Seaman-hip," formed of wood, and lined with pieeen of loukinz-glass, or of plates of tin. The oil is kept on a level with the flame by a dripping pot, supplying the reserveir at the back.*

 a ju-t inleat of its correct applacation at an illuminatins instrument, and be ahon propmed wher
 use of lernes, mither somats to have atomptel the probluction of a more jerfent inethod of chatan-

 Inlutem, the reatell for which will he explainel further oni.

[^18]patent, and, combined with the reflector of De Borda, hat then been in public use in the French and English light-houses for thirty years.
The manner in which these instruments are applied to produce the effect of fixed and revolving lights will be understood by inspecting the diagrams.

Fig. 3292 is a half-plan and clevation of a fixed light of 16 lamps. The reflectors are arranged in two scries, one above the other, on circular frames of iron; at the back of each reflector an Argand lamp is attached, the supply-tube from which passes through a hole cut in the reflector and leading to the burner, which is accurately set in the foens of the instrument. Each reflector must thus illuminate that portion of the horizon towards which it faces, and consequently the distant observer sees the light of but one lamp.

Fig. 3293 is a half-plan and elevation of a revolving light of four faces. In the diagram there are but two lamps on each of the four sides of a square, though as many as ten lamps are often so placed in lights of the first class. It is obvions in this arrangement that the light from this apparatus must be visible in four directions only, and these 90° apart, or at right angles to each other, while the intervening spaces must be dark or eclipsed. By causing this apparatus to rotate slowly on its vertical axis, the bright and dark portions of the square will be presented alternately to the eye of a distant observer; in other words, the light will appear and disappear at intervals of time corresponding to the speed of rotation. Two objects are gained by this arrangement: lst. A distinctive appearance, by which a light that is eclipsed at regular intervals can never be mistaken for a light steadily visible, or, as they are termed, a fixed light. 2d. The power and brilliancy of the light is greater than in a fixed light, just in proportion to the number of lanps on each face of the frame; for while in the fixed light We cannot receive the light of but one reflector at a time, owing to the circular form of arrangement, in the revolving light we have the combined power of from two up to ten reflectors at one view, simply by placing so many reflectors on each face of the frame. The difference, then, between the illumimating power of the two methods of fixed and rotary lights, is in the ratio of 2 to 1,3 to 1 , or 10 to 1 , as the case may be. Consequently, the relative econony of the two plans is in a like ratio. In a fixed light of 24 lamps, the seaman can only have the aid of one reflector, no matter from what direction he views the light; while in a revolving light of 24 lamps, arranged in groups of eight reflectors on the three sides of a triangular frame, the seaman has eight times as powerful a light presented to his view at short intervals-yet the cost of maintaining these two lights is exactly similar. Notwithstanding the simplicity of this fact, and the cogent reasons that exist for availing omrselves of the superior economy and brilliancy of the revolving light, it is rarely adopted in the United States light. houses. With more than 300 lights on our coast, there are yet but 38 revolving lights, against $\unrhd^{2} 7$ fixed.

In Fig. 3259 the theoretical properties of the parabola are stated, and it is obvious that if these should remain true in practice, the bean of light from such a reflector would be a simple cylinder of \& diameter equal to the double ordinate of the mirror. Such, however, is fortunately mot the caso

The size of the flame of the lamp caluses a divergence of the reflected light, which divergence increasen and decreases with the length of the focal axis of the mirror and the size of the flame. Jupractice, the effective divergence of the beam of light from a 21 -inch reflector of 4 inches fucal axis is found to loe about $1 t$ degrees in azimuth. Hence we require 26 reflectors in a fixed light, in order to produce a tolerably equal distribution of light aromed the horizon. If a less number is used, the intervals between each pair of retlecturs is poorly lighted, and not visible at any great di-tatice.
Fig. $399 t$ is a rertical section of a parabolic reflector, with its lamp in the proper place, and the burner in the focal point.

Hioptric system of lights.-One of the earlient notices of the application of lenses to highthouses is in Smeaton's Narrative of the Eddystone Lisht-house, where it is mentioned that a London optician, in 1759 , proposed grinding the glases of the lantern to a radius of seven ficetsix hiches. About the midhle of the last century, however, lenses were actually tried in several light-houses in the sonth of England, and in particular at the South Fureland in the year 1752; but their imperfeet figure and the quantity of light absorbed by the glass, whieh wats of impure quality and of considerable thickness, rendered their effect so much inferior to that of the paraboloidal rellectors then in use, that after trying some strange combinations of lenses and reflectors, the
 former were finally abandoned.

The celebrated Buffon, in order to prevent the great absorption of light by the thickness of the material, which would nece-maly result from giving to a lens of great dimensions a figure continuou-ly spherical, proposed to grind, iut of a solid piece of glass, a lens in steps, or concentric zones. This suggestion of Buffon about the construction of large burning glasses was tirst executed, with tolerable success, abrut the year lisu, by the Albe Rochon.

The merit of having fir-t surgested the building of lenses in separate pieces seems to be due to Condorcet, who, in his Eloge de Butfon, published so far back as 1573 , cnumerates the advantages to be derised from this methenl. Sir David brewster aloo deseribed this mode of building lemes in 1s11, and in 1.20 the late eninent Frenel, unacquanted with the suggestions of Condurcet or the deseription by sir David Brewster, explained, with many infenious and interestine details, the same mode of constructing those instruments which he had diseovered for himself in 1819.

Spherical letises, like spherical mirrors, collect truly into the fueus those rays only wheh are incident near the axis; and it is, therefore, of the greatest importance to employ only a suall segment of any ephere as a lens. The experience of this fatt, among other considerations, led Comberect, as already. noticed, to sugest the buidding of lenzes in separate pieces. Fresucl, however, was the first whonactually con-tructed a lens on that principle, and fully availed himself of the advantares whieh it atfords; and he has subdivided, with such judgment, the whole surface of the lens into a contre lens and concentric amular bands, and has so carefully determined the clements of curvature for each, that it does mot seem likely that any improvement will soon be made in their construction.

Fig. 3095 represents a phan of the grat lens; Fig. 8296 a section through the line A 13 .
3:9.5.

 Vol. II, -: 3
the lens should be much thicker than the rest, as well for the purpose of avoiding inconvenient projec. tions on its surface, as to permit the rays to pass through every part of it with nearly equal loss by absorption. The objects to be attained in the polyzonal or compound lens are chiefly, as above noticed, to correct the excessive aberration proluced by retraction through a hemisphere or great segment, whose edge would make the parallel rays falling on its curve surface converge to a point much nearer the lens than the principal focus, as determined for rays near the optical axis, and to avoid the increase of material, which would not only add to the weight of the instrument and the expense of its construction, but would greatly diminish by absorption the amount of transmitted light.

In applying lenses to the flame of a light-house lamp, similar considerations must guide us in making the necescary arrangements as in the case of reflectors. The size of the flame and its distance from the surface of a mirror have an important practical bearing on the utility of the instrument, and the divergence of the resultant beam materially affects its fitness for the purpoze of a light-house. So also in the case of the lens; unless the diameter of the flame of the lamp has to the focal distance of the instrument a relation such as may cause an appreciable divergence of the rays refracted through it, it could not be usefully applied to a light-house; for, without this, the light would be in sight during so short a time that the seaman would have much difficulty in observing it. To determine the amount of this diverg ence of the refracted beam, therefore, is a matter of great practical importance, and we shall briefly point out the conditions which regulate its amount, as they are nearly identical with those which determine the divergence of a paraboloidal mirror illuminated by a lamp in its focus. The divergence, in the ease of lenses, may be described as the angle which the flame subtcnds at the prixcipal focus of the lons, the maximum of wheh, produced at the vertex of Fresnel's great lens by the lamp of four concentrie wicks, is about $5^{\circ} 9^{\prime}$.

This will be easily seen by examining Fig. 3297, in which Q q represents the lens, A its centre, F the prineipal focus, $b \mathrm{~F}$ and $b^{\prime} F$ the radius of the flame; then is the angle $b \perp b^{\prime}$ equal to the maximum divergence of the lens. Sin $b A F=\frac{b F}{A F}=\sin b^{\prime} \Lambda F=\frac{\text { rad. of flame }}{\text { focal distance }}$; and twice $b A F=$ the whole divergence at A. Then for the divergence at the margin of the lens, or at any other point, we have $\mathrm{FQ}=\sqrt{\left(\Lambda \mathrm{Q}^{2}+\overline{\mathrm{A}} \mathrm{F}^{2}\right)}$ and $\mathrm{Q} x=\sqrt{\left(Q \mathrm{~F}^{2}+\mathrm{F} x^{2}\right)}$; and for any angle at Q , we have $\sin \mathrm{FQ} \boldsymbol{Q}$ $=\frac{\mathrm{F} x}{\mathrm{FQ}}$.

On the subject of the illuminating power of the lenses, it seems enough to say that the same generas principle regulates the estimate as in reflectors. Owing to the square form of the lens, however, there is a greater difficulty in finding a mean focal distance whereby to correct our estimate of the angle subtended by the light, so as to equate the varying distance of the several parts of the surface; but, practically, we shall not greatly err if we consider the quotient of the surface of the lens divided by the surface of the flame as the inereased power of illumination by the use of the lens. The illuminating effect of the great lens, as measured at moderate distances, has generally been taken at 3000 Argand flames. the value of the great flame in its focus being about 16 , thus giving its increasing power as nearly equal to 180 . The more perfeet lenses have produced a considerably greater effect.

The application of lenses to light-houses is so obvious as to require little explanation. They are arranged round a lamp placed in their centre, and on the level of their foeal plane in the manner shown in Fig. 3298, which is a vertieal section and plan of a revolving light of eight lenses, that form, by their union, a right octagomal hollow prism, eirculating round the flame which is fixed in the centre, and showing to a distant observer suceessive flashes or blazes of light, whenever one of its faces crosses a line joining his eye and the lamp, in a manmer similar to that already noticed in deseribing the action of the mirrors. The eliicf difference in the effect consists in the greater intensity and slomter duration of the blaze produced by the lons; which latter quantity is, of course, proportional to the divergence of the resultant beam. Each lens subtends a central horizontal pyramid of light of about 46° of inclination, beyond which limits the lenticular action could not be adrantageonsly pushed, owing to the extreme obliquity of the incidence of light; but Fresnel at once conceived the idea of pressing into the service of the nariner, by means of two very simple expedients, the light which would otherwise have usclessly eseaped above and below the lenses.

For intercepting the upper portion of the light, he employed eight smaller lenses ot 500 mm . focal
listance (1965 inches) inclined inwards towards the lamp, which is also their common focus, and thus furming, by their union, a frutum of a hollow octagonal pramid of 50° of inclination. The light falling on those len-es is formed into eight beams rising upwards at an angle of su inclination. Above them are ranged eight plane nirrors, as in Fig. 3299 , so inclined as to jureject the beams transmitted by the small lenees into the horizontal direction, and thus finally to increase the etfect of the lisht. In flacing those upper lenses, it is generally thought adviable to give their axes a horizontal deviation of 7° or δ^{2} from that of the zreat lenses, and in the direction contrary to that of the revolution of the frame which carries the lenticular apparatus, By this armagement the hashes of the smatler henses precede those of the large ones, and thus tend to correct the chief practical defect of revoiving lenticular dighte, by prolonging the bright periods. The elements of the sulsidiary denser depend ugon the very came principles, and are calculated by the same formula as thove given for the great lenses. In fixine the fucal distance and inclination of those subsidiary lenses, Fresnel was guided by a com-ideration of the necessity for keeping them suffieiently high to prevent interterence with the free acce-s to the lamp. He aloo restricted their dimensions: within very moderate limits, so as to avoid too great weight. Their fueal distance is the same as that fur lenses of the third order of lights.

quickly perceived the adrantage of employing for fixed lights a lamp placed in the centre of a polyg onal hoop, consisting of a series of refractors, infinitcly small in their length and having their axes in plants parallel to the horizon. Such a continuation of vertical sections, by refracting the rays proceeding from the foens, only in the vertical direction, most distribute a zone of light equally brilliant ir

every point of the horizon. This effect will be ensily understood, by considering the middle rertical section of one of the great annular lenses, already described, abstractly from its relation to the rest of the instrument. It will readily be perceived that this section possesses the property of simply refracting the rays in one plane coincident with the line of the section, and in a direction parallel to the horizon, end cannot collect the rays from either side of the vertical line; and if this section, by its revolution

about a rertical axis, becomes the generating line of the enveloping hoop above noticed, such a hoop will of course possess the property of relracting an equally diffused zone of light round the horizon, Fig 3302. The difficulty, however, of forming this apparatus appeared so great, that Fresnel determined to substitute for it a vertical polygon, composed of what have been improperly ealled cylindric lonscs but which in reality are mixtilinear prisms placed horizontally, and distributing the light which they
reccive from the fucus nearly equally over the horizontal sector which they subtend. This polygon has a sufficient number of sides to enable it to give, at the angle formed by the junction of two of them, a light not very much inferior to what is produced in the centre of one of the sides; and the upper and lower courses of curved mirrors are almays so placed as partly to make up for the deficiency of the light at the angles. The effect sought for in a fixed light is thus ebtaine 1 in a much more perfect man. ner than by any conceivable combuation of the paraboloidal mirrors.

the material composing their poli-h, led to the introduction of totally reflecting frisins as a substitut, for the silvered glass mirrors placed above and below the great refracting belt. These prismatic zones or catadioptric rings, involve some very difficult calculations in order to determine the proper section on each. In a dioptric light of the first order there are 13 zones above the refractor and 6 below it. In cach one the triangular section differs according to its position with respect to the focal centre of the sy:tem of lenses.

The problem is, therefore, the determination of the elements and position of a triangle A B C, Fig. 3304 , which, by its revolution about a vertical axis, passing through the focus of a system of annular lenses or refractors in F , would generate a ring or zone capable of transmitting in- a horizontal direction, by means of total reflection, the light incident upon its inner side BC from a lamp placed in the point F . The conditions of the question are based upon the well-known laws of total reflection, and require that all the rays coming from the focus F shall be so refracted at entering the surface B C , as to meet the side BA at such an angle, that instead of passing out they shall be totally reflected from it, and passing onwards to the side C A shall, after a second refraction at that surface, finally emerge from the zone in a horizontal direction. For the solntion of this problem, we have given the positions of F the focus, of the apex C of the generating triangle of the zone, the length of the side BC , or CA , and the refractive index of the glass.

The position of the sereral prismatic zones is shown in the annexed section, Fig. 3305, or generatrix of the complete system drawn in perspective elevation, Fig. 3306, which is a fixed light of the first order. A BC, eatadioplric zones. D E F, compound dioptric belt with diagonal joints C N M. A $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, lower eatadioptrie zones, one division being left out for free access to lamp. F, foens with flame or lamp. XXX, diagonal supports for the upper eatadioptric zones. HH, service table, on whieh the lamp rests and where the keeper stands to trim the burner, and which is supported by a pillar resting on the light-room floor.

The original conception of this magnificent apparatus is seen in the amexed diagram, Fig. 3307, which represents a plan and vertical section of Fresnel's fourth order, combining a central annular refractor, with totally reflecting zones above and below. Mr. Stevenson has very unjustly attempted to appropriate this invention as his own; but the only claim he can properly advance is that of proposing the adoption of this plan of Fresmel's on a larger seale.

We have next to consider the great lamp, to the proper distribution of whose light the whole of the apparatus above described is applied. Fresnel immediately pereeived the necessity of combining with the dioptric instruments which he had insented a burner capable of prolucing a large volume of flame; and the rapidity with which he matured his notions on this sulject and at once produced an instrument admirably adapted for the end he had in view, affords one of the many proofs of that happy union of practical with theoretical talent, for which he was so distinguished. Fresnel himself has modestly attributed much of the merit of the invention of this lamp to M. Arago; but that gentleman, with great candor, gives the whole eredit to his deceased friend, in a notice regarding tight-houses, which appeared in the Ammaire du Burcul des Lonyitudes of $18: 31$. The lamp has four coneentric burners, which are defended from the action of the excessive heat produced by their united flames, by means of a superabundant supply of oil, which is thrown up from a cistern below by a clockwork movement and constantly overflows the wicks, as in the mechanical lamp of Carecl. A very tall chimney is found to be necessary, in order to supply fresh currents of air to each wick with sufficient rapidity to support the combustion. The carbonization of the wicks, however, is by no means so rapid as might be expected; and it is even found that after they have suffered a good deal the tlame is not sensibly diminished,
 as the great heat evolvel from the mass of thame promotes the rising of the oil is the coton. The large lamp at the Tour de Cortuan burns for seven hours without being snuffed or eren having the wicks raised; and, in the Scotch lighthouses, it often, with Colza oil, maintains, untouched, a full flame for no less a period than seventeen hours.

The amexed diagrams will give a perfect idea of the mature of the concentric burner. The first, Fig. 3308, shows a plan of a burner of four concentric wicks. The intervals which separate the wicks from each other and atlow the currents of air to pass, diminish a little in width as they recede from the centre. The next, Fig 8309, shows a section of this burner. $\mathrm{CC}^{\prime} \mathrm{C}^{\prime \prime} \mathrm{C}^{\prime \prime \prime}$ are the rack-handles for raising or depressing each wick; A13 is the horizontal duct which leals the oil to the four wieks; L L h, are small plates of tin by which the burncrs are soldered to each other, and which are so placed as not to ininder the free passage of the air; P is a clamping-screw, which keeps at its proper level the gallery $\mathrm{K} R$, which earries the chinney. The next, Fig. 3310, shows the borner with the glass chimney and thamper. E is the glass ehimney; F is a sheet-iron cylinder, which serves to give it a greater length and has a small damper D, capable of being turned by a handle for regulating the currents of air ; and B is the pipe which supplies the oil to the wicks. 'To prevent the oceurrence of such accidents as stoprage of the machinery of these lamps, and to render their eonsequences less serinus, various, precau
tions bave been resorted to. Amongst others, an alarum is attached to the lamp, consisting of a small cup pierced in the botom, which receives part of the overthowing oil from the wicks, and is capable, when full, of balancing a weight placed at the opposite end of a lwer. The moment the machinery stops the eup ceases to receive the supply of oil. and, the remander running wat at the bottom, the equilibrim of the lever is de-troyed, so that it falls and diongages a spring which rimg a bed sutficiently loud to waken the keeper should he chance to be asleep.

There is ansther precantion of more importance, which consi-ts of having always at hand in the light-room a spare lamp, trimmed and adju-ted to the height for the focus, which way be substituted for the other in case of accident. It ourht to he noticed, howerer, that it takes about tmonty minutes from the time of applying the light to the wicks to bring the dlame to its full strength, which, in order to produce its be-t effiect, should stand at the height of nearly finur inches (100^{cmm}.) The inconseniences attending the great lamp have led to severa! attempts to improve it ; aud, amons others, M. Delareleye has proprocel to subtilute a promp having a metallic piston, in phace of the leathern valves, wheh require con-tant care, and mu-t be frequentey renewed. A lamp was constructed in this maner by D . Lepaute, and tried at Corduan; but was eiterwards discontimued until some of its defects could be rencdied. It has lately been much improved by M. Wagner, an ingenieu* artist, whon M. Fresnel had

purpose of maintaining the light in a tolerably efficient state for a short time, until the light keepers have time to repair the valves of the mechanical lamp. Onty three occasions for the use of this reservelamp have yet occurred.

The most advantageous heights for the flames in dioptric lights are as follows:
Inches.

The dioptric system of Fresnel has another capital advantage over the old system of reflectors, by which a great economy is secured, and what is more important, the amount of light at each station can be graduated to the wants of narigation and the peculiar features of the location. The dioptric system is divided into four orders of magnitude, represented by Figs. 3311, 3312, and 3313, drawn to a uniform scale. Each order may be either a fixed light, a revolving light, or a fixed light varied by flashes, or a flashing light. Here are four different appearances or characteristics, in addition to which, the times of the flashes and eclipses can be so essentially varied as to produce new distinctive appearances perfectly intelligible to the practical seaman.

1. Lights of the 1st order, Fig. 3212, have an interior radius or focal distance of 92 centimetres, or 362 in ., and lighted by a lamp of four concentric wicks, consume munually 570 gallons of oil. The revolvmg lights of this order, having eight large polyzonal lenses, with the catadioptric zones above and below, produce a beam of light whose power is equal to 5000 Argand flames of one inch diameter and one and a half inch height. The fixed lights of the same order with catadioptric cupole and zones, produce a beam whose power in all azmaths is equal to 800 Argand burners, as above.
2. Lights of the $2 d$ order, Fig. 3313, having an interior radius of 70 centimetres, or 27.55 in., lighted by a lamp of 3 concentric wicks, consume annually 384 gallons of oil. The best revolving lights of this order have a brilliancy equal to 3000 Argand burners as above, and the fixed lights of same order, have a power in all azimuths equal to 450 such burners.
3. Lights of the $3 d$ order, having an interior radius of 50 centimetres, or 19.68 inches, and lighted by a lamp with two concentric wicks, consume annually 183 gallons of oil. The revolving lights of this order produce a flash equal to 800 Argand burners, and the fixed lights of same order have a power in all azimuths of 100 such burners.
4. Lights of the 4 th order, Fig. 3311 , have an interior radius of 15 centimeters, or 5.9 in., and are lighted with a simple Argand burner, consuming annually 48 gallons of oil. The flash of this light is equal to 150 burners, and as a fixed light its power in all azimuths is 25 burners.

There is no combination of refiectors that ean be made to produce such powers of light as the first order described above. A revolving reflecting light, such as the one on Teachy Head, has three faces of ten reflectors each, whose combined power of $10 \times 280=2800$ burners. We have thus three portions of the horizon illuminated at the same time with a power equal to 2800 burners.

The consumption of oil per lamp at

Beachy Head is 44 gallons per ammum, w , or lamps, gives an aggregato combustion of 132 gal dioptric illuminates eight portions of the horizon at one time, with a power of 5000 burners, or a: aggregate effect of 40,000 burners, consuming in one year 570 gallons of oil.

We have thus the fulloring comparison:

$$
\begin{aligned}
& \text { 1st order dioptric } 500 \text { galls. oil................500 } \times 5 \text { points }=40,000 \\
& \text { lst " catuptric 1320 " ".................2s00×3 }{ }^{\circ}=8,000 \\
& \text { Saving in oil }=750 \text { gallons per annum. } \\
& \text { Gain of light }=31,600 \text { burners in eight points. } \\
& \text { Gain of light }=3,200 \quad \text { "at any one point. }
\end{aligned}
$$

The greater the amount of sea horizon there is to be illuminated, the more economical and useful beemes the dioptric light; while the catoptric system increases in first cost, and maintenance afterwards, by the same law. In the first no inereazed consumption of oil is caused by extending the areat illumination, while in the latter system the number of limps and consequent cost and consumption must be increased in proportion to the mumber of derrees of horizon to be lighted.

The epheroidal form of the earth requires that the height of a light-house tower should increase proportionally to the difference between the earth's radius and the secant of the angle intercepted between the normal to the spheroid at the light-house and the normal at the point of the light's occultation from the view of a di-tant ob-erver. The effect of atmospheric refraction, however, is too considerable to be nerfected in estimating the range of a light, or in computing the height of a tower which is required to give to any light a given range; and we must, therefore, in accordance with the intluence of this clement on the one hamd increase the range due to any given height, and, viee versa, reduce the height reguired for any given range, which a simple consideration of the form of the globe nould assign. In ascertait ing this height, we may proceed as follows:

 rentre of the earth, $L^{\prime} 1$, a lightlmane, muls the po-ition of the mamers eye, we ohtan the value of $1 . I_{\prime}^{\prime}=\Pi^{\prime}$, the height of the tewer in feet by the formula,

$$
\begin{equation*}
\mathrm{H}^{\prime}=\frac{2 R}{3} \tag{1.}
\end{equation*}
$$

At which $l=$ the diataner in Fingliwh milen lid at which the light womblatrike the memats surface. We then reduce this value of 11 by the correction fir meme refraction, which permits the light to be seen at
a greater ilistance, mul which $=\frac{2 l^{2}}{21}$,
Suas to get, $\quad I I=\frac{2 r^{2}}{3}-\frac{2!}{2 t}=\frac{4}{7}$
an expression which at once gives the height of the tower required, if the eve of the mariner were just on the surface of the water at d, where the tangent between his eye at \dot{S} and the light at I would touch the sen. We must, therefore, in the first instance, find the distance $\epsilon^{\prime} \mathrm{S}=l$, which is the radias of the visible horizon due to the height $\mathrm{SS}^{\prime \prime}=h$ of his eye above the water, and is, of course, at once obtained conversely by the expression,

$$
\begin{equation*}
l^{\prime}=\frac{\sqrt{\bar{T} h}}{2} \tag{4.}
\end{equation*}
$$

Deducting this distance from S L , the whole effective range of the light, we have $\mathrm{L} d=l$, and operating with this value in the former equation,

$$
\mathrm{H}=\frac{4 l^{2}}{7}
$$

we find the height of the tower which answers the conditions of the case. From the above data the following table has been computed:

II Ileights in feet.	λ Lengtis in Enalish miles.	λ^{\prime} Lengths in nautical miles.	II Heiglats in feet.	λ Leng1hs in Euglish miles.	λ^{\prime} Lengtlis in nantical miles.	II Heirhts in feet.	λ Lengths in English miles.	λ^{\prime} Lengths in nautical miles.
5	2.958	2.565	70	$11 \cdot 067$	9598	250	20.916	18.14
10	± 184	3.628	75	11456	9935	300	22.912	19.87
15	5123	$4 \cdot 143$	80	11.832	$10 \cdot 26$	350	24.748	2146
20	$5 \cdot 916$	$5 \cdot 130$	85	$12 \cdot 196$	1057	400	26457	22.94
25	6614	5.736	90	12549	10.88	450	$28 \cdot 062$	24.33
30	7245	$6 \cdot 283$	95	12.893	11.18	500	29.580	25.65
35	$7 \cdot 826$	$6 \cdot 787$	100	13.228	$11: 47$	550	$31 \cdot 024$	26.90
40	8366	$7 \cdot 255$	110	13874	12.03	600	$32 \cdot 403$	$28 \cdot 10$
45	8.874	$7 \cdot 696$	120	14.490	12.56	650	$32 \cdot 726$	29.25
50	9354	8.112	130	15.083	1308	700	35.000	30.28
55	9811	8.509	140	$15 \cdot 652$	1357	800	$37 \cdot 416$	32.45
60	$10 \cdot 246$	8.886	150	17:201	14.91	900	39.836	34.54
65	10.665	92.19	2(0)	18.708	$16 \cdot 22$	1000	41.883	36.28

If the distance at which a light of given height cam be seen by a person on a given level be required, it is only needful to add together the two numbers in the column of lengths λ or λ^{\prime}, (according as nautical or English miles may be sought, corresponding to those in the column of heights H, which represent respectively the height of the observer's eye and the height of the lantern above the sea. When the height required to render a light visible at a given distance is required, we must seek first for the number in λ or λ^{\prime} corresponding to the height of the observer's eye, and deduct this from the whole proposed range of the light, and opposite the remainder in λ or λ^{\prime} seek for the corresponding number in I.
seaning Maciline, double. George R. Moore, Philadelphia, Peun. Fig. 8315 represents a general view of this machine. All the parts that are not lettered compose the frame smply, the construction of which is obvious from the drawing, as it is similar to other tin machines, and made of the same materials; it may, however, be varied.
We proceed to describe the working machinery, noticing first the two arbors a and b, which are connected by cog-wheels, and turned by the erank c. Two heads, d and e, are affixed to the ends of these arbors, and between these heads the double seaming is performed. A pan p is represented in dotted lines, as placed over the head d, on the lower arbor, so as to bring the edge which is to be seamed down between the head e, and a small roller f, hereinafter described. The shape of the head e should be carefully noticed. This head consists of a flanch 1, projecting from a cylindrical surface 2, similar to some other machines now in use; this cylindrical surtace is terminated by a shoulder 3, that connects with a conical monlding 4. The bevel surface of the head e bears first upon the edge of the pan, which is sustained by the head d, the shoulder 3, above named, coming against the bottom, and the edge is forced to yield to the bevel of the head e, as this is serewed down upon it by means of the screw g; and should any part of the edge be inclined to slip out towards the top of the pan, (as this edge is always composed of three thicknesses, it is prevented from so doing by the little roller f, attaclied to the colliar k, that surrounds the arbor b near the head.

At this stage of the operation the crank c is turned, the pan revolves in the machine, and the edge is turned down as fir as the bevel part 4 , of e, will turn it, while the shoulder 3 prevents the edge or the pan from bendiur too far down towards the centre; after this the head e must be raived up a little by turning the serew g, attached to the box, (in which the arbor b runs,) and then the lever h is brourht unto nse to move the arbor b inwarls, by which the cylindrical part 2 of the head e, which is parallel with the outer surface of the head d, is brought over the same and then serewed down towards it, by the screw !, when, by again turning the crank, the work is completed. The outside shoulder 1 of the head e keeps the bottom of the pan close againit the head d. The lever h passes through an aperture in the frame, where it has rom to be moved back and forth, and places are fitted to rreeive it when sr, moved, into which it is thrown by a spring, or by its own clasticity. It also passes between two shoulders on the arbor l, and its lower end is comected to the frame hy a piot. Its use has already bren explained. i is a sliding gage for the purpose of hokding in projer position flariog articles, such
as the pan represented in the drawing, where the bothon needs to be thrown out from a perpendiculan with the arbors, in order to bring the boly parallel with them. This gate consists of a shank that is attached by the screw j to the frame, and is terminated by heads bramehnge ont for the bottom of the pari to rest against, upon the inside. This is found to be indispensable when the work is much flaring. The heads of this gace are provided with soft or smooth surfaces, to present :hem rubbine the tin so as to mar or injure it. When it is not desirable to use the gage, the work will re-t again-t the head d, which is faced nearly to the edge with leather, although other materials may be used, to prevent its rubling the tin.

The prece k is a collar with a lever attached thereto; the collar part of it is fitted upon the arbor b, nllowing the arbor to turn freely in it, while the upper end passes through a loop m in the frame, to keep it in an upright position; ind lelow the collar, this lever passes through the little roller f. Tha moly wie of the loop in is to bring the roller f to bear properly upon the work; and to secure this the better, the lever k is made crouked at the top, so that, by presing it down, this part of it is brought townd- the frame, and consequently the roller f is moved up closer towards e, and vice cersu.

A spring l is applied to throw k back as it rises up, to make it easy to get the work property info die mithines.

SEWELS. Subserranean passages formed for the drainage of a town. The inclination and depth of sewers must be regulated according to circmostances. The lolborn and Finsbury regulations require that "the inclination be not less thans theh to every 10 feet in length, and as much more as circmmstances will admit in thowe portions that are in a stright line, and doulde that lall in portions that mre cubed." It is stated in the regulations of the Westeninstir (commiwion, (1831) that the eurnint required for sewers in all case is $1 \frac{1}{2}$ ineln to every lencth of 10 feet; lint later reculations corder "that the eurrent of all owwers to be built, he renulatem hy the commiswoners aceording in surface required to be drainem, without stating any purticolar indination. It is, as already whered, frequently a mateor of difliculty to ohtain sufficient inclination in a eewer, nul yot tomake it deep) emongh to drain the basement story of the neighmoring houses.
'Ju remerly the evils of intutheient derlivity, the process of flushing has been ndoptel in the sewers; that is, the water is allowed to acemmbate for a time by mems of gates or dams, and is then smblenly
 the dainage of howes by moms of small hamuels or draine, w-unlly of circular form.
 the bottom of the sewrer and ther reeommend that such drams have a fill of at hast $\frac{1}{\text { inch in a fiont. }}$ Glazed ntoneware pipes are exedhent substitates for brickwork in the smaller dratins. Thace nre mome

 a.jaining lipis.

SEWING MACHINES. The application of machinery to the purposes of sewing, is of very recen* date. It was only since the invention of Mr. Howe in 1846 , that it assumed any practical value, and still noore recently by other improvements, has it become a household utensil. The germ of the sewing machine is the tambouring machine, a description of which may be found in the Edinburgh Encyelopedia, under the head of "Chainwork." Tlis machine contained 54 needles, placed one inch asunder and was designed to tambour muslin ${ }_{4}^{\frac{6}{4}}$ wide, one whole row being wrought at the same time. In the de tails of its construction may be found many principles which are still employed.
3316.

The tambour or chain stitch is that in general use in the cheapersingle thread sewing machines. The form of stitch is represented in fig. 3316; a loop of thread $e_{\text {, }}$ is thrust through the fabric c, and held open thin the next morement of the needle forees a second loop throngh the cloth and through the first loop; the first loop is now drawn tightly, and the second loop held open for the third stiteh, and so on. At the completion the upper surface of the work shows a single line of thread, the lower a succession of loops: about four and a half yards of thread are a fair average for one yard of this work. The great objection to this stiteh is the facility with which it may be ravelled, and on this account it is often used in cloth bleacherics and printeries, where pieces of cloth are stitched together for the purposes of undergoing temporary operations. The low price of these machines has led to a large sale of them, and for many purposes they may be considered of practical value, but the purchase and use of them tend to develop the necessity of sewing machines, and the purchase of the more costly, and by far the most useful donble-threaded machines.

Besides the tambour machine, there are two other single-threaded machines essentially different in principle.

The first is the invention of Benjamin W. Bean of New York City, patented March 4, 1843, reissued March 10, 1849. The following is the claim: "What I claim as my invention is the combination of a straight or curved needle and two or more paired wheels for forming the doubles or corrugations of the cloth, the whole being made to operate together essentially as above specified, and in combination therewith. I claim one or more cogged wheels, applicd substantially as above specified, and for the purpose of advancing the doubles of the cloth along the needles as above explained."-This machine formed a running or basting stitch.

Second, the Robinson \& Roper machine; this is essentially a hand-sewing machine, single-threaded, forming the same kind of stitches that are made by hand, to wit: baek stitches, half and quarter back, side, sail, quilting, hemming, rumning, etc. Two needles are employed, one above, the other below the cloth, traversing large ares in a circular slide. The needles are somewhat like those used in the first tambouring machines. The eye opens at the side for the slipping in of the thread, which is retained in its place by a piston sliding down through the upper part of the needle. The principle of the action of the machine is as follows: a needleful of thread, say about 18 inches, is drawn off the spool in its proper position beneath the upper needle, as the upper needle passes down through the cloth it forces down a loop, which is caught in the eye of the lower needle, and by the down movement of this needle, the whole necaleful is drawn through the cloth, and by the return motion of the under needle, a loop is presented at the upper surface for a similar operation on the part of the upper needle. When the needleful of thread is exhnusted, another is supplied by the operator. The variety of form of stitch is effected by changes in the relative position of the upper and lower needles.

A similar machine with a rotary feed, has been constructed for the working of cyclet holes; for this improvement a patent was granted to S. H. Roper, Noveinber 4, 1856.

To Elias Howe, Jr., of Spencer, Mass., now of New York City, is due the credit of inventing the first practical sewing machine. This he patented in 1846, and under licenses from him, are manufactured all the most valuable and practical sewing machines, as I. M. Singer's, Grover \& Baker's, and Wheeler d Wilson's.

The stitch invented by Mr. Howe may be properly termed a lock-stitch; it is formed with two threads, one above and the other below the fabric sewed; interlocked with each other in the centre of the fabric, as in fig. 3317, c being the section of fabric sewed, e the thread above the fabric, and z the thread below the fabric; a single line of thread extending upon each sur face of the fabrie from stitch to stitch. The same thread does not appear both above and below the fabric at each alternate stiteh, but that shown upon the upper surface is exclusively the thread e, and that shown upon the lower surface exclusively the thread z. It may be formed by hand with two ordinary needles as follows:

Take two needles threaded in the ordinary manner, and a piece of soft cloth; tie the long ends of the thread tagether, and thrust the needle h, containing the thread e, through the cloth head first, as in fig. 3318, say three-fourths of an inch; withdraw it slightly, and a small loop of the upper thread c will be formed below the falric. Through this loop pass the needle with the lower thread z, and withdraw the needle h, entirely from the fabric. The upper thread e, thus surrounds the lower thread z, and iuterlocks with it; the point of interlocking being drawn into the fabric as in fig. 3318, and the process repeated, a seam will be formed with a single line of thread visible upon each surface, and having the eame appearance as that given by stitching. About two and onc-half yards of thread are an average for a yard of seam with this stitch, one yard being expended npon the upper surface of the fabric, one upon the lower, and one-half of a yard in passing through the fabric. A firm knot might be tied at each «titch, but as this would involve a waste of thread and form an uneven seam, it has not been pructised.
In the machine invented by Mr. Howe, this stitch was formed in the following manuer: one of the

$$
2
$$

threads was carried through the cloth by means of a needle, the pointed end of which passell throngh the cloth. The needle had the eye to receive the thread near the point, the other end was hell by a bap or arm vibrating upon a pivot. When the needle was forced through the cloth about three-funrth= of an inch, a small shuttle carrying a bobbin, filled with silk or thread, was made to pass between the needle and the thread which it carried, and when the needle was drawn up, it forced the thread received from the shuttle into the body of the cloth and formed a stitch; this being repeated, a seam was formed.
The cloth to be sewed was suspended perpendicularly upon pins projecting from a inter plate, between which and a pad-plate in front of it, which pressed the fabric upon the baster-plate, it passel, while the stitch was formed, the needle having a horizontal action. This baster-plate with the fabric was moved forward by a mechanical contrivance, by which also the length of stiteh was rerulated. The invention of the endless rotary feed, and the clange of the needle from a horizontal to a vertical action, were the first improvements upon it. The baster-plate was abandoned, the lubric was lain horizontally upon a cloth-plate beneath the vertical acting needle, pressed upon the plate by a clutl presser, and moved forward by a wheel with pins or other projections non its periphery, penetrating the fabric from beneath, by the action of which also the length of stitch was graduatel. The pins penctrating the cloth were objectionable, in not allowing that free movement to the fubrie which is essential in forming curved seams. A feed was desired that should not only advance the fabric, but should intermit its action, so that the fabric might be readily turned in any direction. The rough surface feed, with the yielding spring pressure invented by A. B. Wilson, admirably answers these requirements, and the patent has become the joint property of the three manufacturers above namel.

Many expedients are devised to increase the speed of shuttle maclines-a machine was invented in which the shuttle had a rotary motion, and was made to travel an entire circuit at each stitch; but the shuttle was kept in its place with diffienlty; the thread was liable to hecome entangled, amd was untwisted at each stitch. Another machine was invented for usiug a shuttle pointed at both ends, to take a stitch at eacb movement backwards and forwards.

The sewing machines of I. M. Singer are identical in their stitclı with Howe's machine. Mlay improvements in construction and in the details have been the subjects of patents of either Mr. "inger himself, or lave been acquired by purchase. In general arrangement the machines are strong and well made, and the seam secure. They are applied to the sewint of leather as well as that of cloth.

The Grover \& Baker Machine. Althourh making mse of two threa ls to form the stitch, the semm is widely different in its appearance from that of the lock stitch; it may be callel the double-threadel tambour stitch, Fig. 3319 represents the stitch in process of formation, fig. 3320 when completel.

On the upper surface a single thread is shown, on the lower side three. The upper needle forms a loup as in all machines, and the seam is made by a chain stitch pasimer through this luop. Tho stitch is strong and somewhat elastic, and the machine simple, but it is the least economical of threat of all the machines; the stitch requiring about six and a laht yards of thread tor each yard of seam. Like all the other sewing machines, the machine embodies several patents.

Tho Wheeler \& Wilson Machine. In 1851, Mr. A. B. Wilon patented his celebrated lock-stitch machine, which, with the co-operation of Mr. N. Wheeler, was soon introlnced into successfinl operation. The merit of Mr Wilson's invention con-ists in the rongh surface feed above mentioned, anl in the improved mode and mechanism by which sewing is eflected. The main feature of the invention consists in a "rotating hook," by which the needle or upper thread upon being passed through the fabric, is enlarged and carried arond a stationary bobbin contaning the lower thread, interlucked with it, and the point of interlocking drawu into the labrie. It may be made by hamd in an analogous mamer.

 by the upper thread, conlarge it, :mm? invent of pawing the bull with the fower theent it r in th the

 will be in the centre of the librie. The mann r of making this stitch with the libeeter it 10 its me manhe is represented by the Snllowing diadr:mm.

E in fir. 3322 is the rotating hook referred to; it is formed by cuttirig away a portion of the periphery of the circular concare disk, upon the end of the arbor C. Y, is the coneavity of the disk; a, the point of the hook cut clear to the point d; and d is a small groore diagonal across the periphery of the book to the point b. where the edge is beveled off; l is the needle with the eye near the point, that has been thrust through the fabric, with the thread c, the loop of which has just been entered by the point of the hook a. The lower thread is contained in a double convex metallic bobbin, to lie in the concarity Y^{\prime} of the hook E, and held in its position by a concave ring (not represented) between which

and the coneave surface of the disk it lies. No axis passes through it, so that a loop of thread ean pass around it as around the small ball of thread in the last diagram. By the revolution of the hook aiter entering the loop of the upper thread, this loop is enlarged and carried forward. Fig. 3323 represents the hook as having made about one-third of a revolution, and the lower thread z extending from the lower snrface of the fabric to the bobbin in the concavity of the hook containing it. The upper thread e, extends through the fabric from a previous stiteh, down into the concavity of the disk, behind the bobbin, around the hook at the point d, thence diagonally along the groove and to the ere of the needle h. Fig. 3324 represents the hook as having made abont half a revolution, with the bobbin F in its proper position. The upper thread c has been drawn further belhind the bobbin, thence sanund the hook at d, and diagonally across the periphery of the hook in the groove by b to h the needle. As the look further revulves to the position in fig. 3325, both lines of the loop e are upon the same side of the hook. The line of thread that extended in fig. 8824 along the groore of the hook from d to b, has slipped off at the termination of this groove, and fallen in front of the boblin F, so that

the loop extends lehind the bobbin, around the point of the hook a, and anross the front of the bobbia to the needle h, thins surrounding the bobbin and inclosing the lower thread \because. The hook revolving further, the loop e slips off from the point of the hook, and being drawn up, interlocks with the lowes thread z in the fabric, and forms a stitch similar to those represented in the several figures above.

The following is a description of the accompanying plates.
To ilhustrate more clearly the method of making the Howe stitel by the Wheeler \& Wilson Machine, we have exhibited the rotating hook E and the bobhin F, earrying the lower thread detached from the machine. In the subsequent figures the same parts are represented in their proper places combined with the other parts of the machine, and whicll are respectively numbered as follows: 1, 1 , the Bed l'late supporting $2, \because$, the front stanlards, and 3,3 , the back standards. 4 is the Arbor with its hearings in the front standards, and upon which are, 5, the lotating Hook, 6 the Feed Cam, 7 the Band Pullev, 8 the Eecentric Ring, and ! the Srooling Spindle. Moving in grooves in the frout staudards is 10 the leed Bar: 11, 11, Ears of the feed bar, 12 the Spiral Feed Spring, working between the left front standard and the left ear of the fued bar. 13 the Feed Tongue, slated in the feed bar, and furnishafl with 14

Feal Points. 1 is is the double convex metallic Bolbin, containiner the lower threat, and held in the concavity of the rotating hook ly 16 , the Bobbin ling, mounted upon 17 , the Tinco Bar, sliding in a groove in the bel plate, and hom by 1 sthe Thmbserw. IS is the Fixel Arm, projeeting from the back standarl, and suporting 20, the Cloth l'ressor, attacled to the Pi-ton in 21, the Pi-tom (Crlinder. 20 is the Thumb Serw of the cloth pressir, $2 ?$ the Lever of the eloth presser. $2 t$ is the Niedle Rocker,

 the lirake Sorew, 23. 33 the Thread Eyelets, 34 the Needle Yoke, 3.: the Nee 1 ll . 36 i is the Loop Cheek, 37 the spool l'in, 38 a spool of Thread, 32 a Thread Guide, 41 a Tension Pulley, 41 whtute Tem-ion Sprine, 42 larme Seam Gauge, $4: 3$ Gauge Serew, 44 Screw for Small Gaure, 4.5 the falurio sewent 46 the Cloth
 57 Thread Hohd, is small Gauge, 59 Spiral Spriug of the eloth presser, 60 Necelle Hole.
In contructing the machine, the lower surface of the bed-phate 11 is phanel with pertict exactness, and made the plane to which all the phanes and lises of the machine are adjusted. The -tandards $2 \boldsymbol{2}$ are levelled to a plane paral!el with the plane of the bed-plane, at a tixed height above it, aml piercel in another parallel plane for the arbor 4 , and grooved in a parallel line for the feed-bar 10 . The bedplate is grooved in the same line for the slide bar 17 ; the standards $3: 3$, are pierced parallel to the line of piercing in $\underline{2}$, fur the centre serews 25 2.5; and the arbor 4 , and the roeker 24 , are adjusted parallel to each other and to the glane of the bel-plate 11 . The comecting-rod 28 , the short arm $2 t$, the meedle arm 29 , the fixed arm 19, are adjusted at rirht ancrles to the lines of 4 and $\because 4$. The rotating hook 5 , the Lothin 15 and the needle 35 , move in planes vertical to the plane of the hed-plate 11. The rotating hook is a portion of the thread of a serew, formed upon the periphery of this circular conave dise. To the left of the noteh d, is a portion of :mother parallel thread of the serew: the dise is cut away below the point d into its coneavity, so that the thread of the screw furms the clear point of the hook a. The groove betweu the two threals of the serew extends diagonally across the periphery of the hook dise to the point b, where the hosk threal of the serew is entirely chanferel of and the groore disappear:The concave surlaces of the dise, and the side ring 16 , contan the bobbin 1.5 ; the needle 8.5 is curved to the are in which the end of the needle arm vibrates. A perfectly rectangular fignre is formed: the arbor + liorms one side; the connectint-ron $2 s$, the second ; the rocker 2 ? , the third : and the neede
 tween the needle and the hook.
The working parts are secured to a frame constitutod by the bed-plate 1 1, and the standards thereon, $2 \underline{2}$ and $3: 3$. The slide rine 16 , is adjusted by the set serew $i 3$, to retain the buhin 1.5 , mul allow it to turn lreely in the concavity of the hook dise. The neetle 85 is adjusted with its heal in the neetlo yoke 34 , to ribrate through at suall how 60 , in the cluth plate 4 , and so that in its rise the eye will he brought junt bodow the point of the look a, which revolves so close liy the right sile of the beedle 3.3 , that nothing can lie between then as they come opposite each other. The eecentric riur s, through the comecting-rod 25 and the rocker 24 , vilirates the needle arm so that it benins t, rise just before the point of the hook a reaches the needle. The pressure of the labric upon the thread about the needle at it begins to rise, loops the thread slightly upon the riflit of the neelle; this loop is canght, enlarged and carried around the bobbin as betore illustrated. When the loop of thrad is nbout to slip from the hook, as is reprenentel on fir. 3392, it is checked for an instant until the hook has complated its full revolution and enters the next lorp, in the process of enlarging which, it draws up the loop already formed. :3f, the loop check employed, is a small piece of leather or an equivatent, held in contart with the periphery of the hook, so that the loop camot pass until the chanfercal part 6 of the hook reaches and Prees it, as it dues just as the hork enters tho next loop.

This rotatine lowk is of simpularly ingenions, simple, and novel eonstruction, and is equisalent to several pieces of elaborate machinery. It performs the three operations of enharging the lonp of the "iper threal, pasing it aroum the bobbin carrying the luwer thread, and tightening the preceding low

The brohbin 1.5 is placel in its proper position, with the thread thowing frem the tep townels the frons of the machine, in which direetion it revalses sowly. The theme is womd mun this hobbin with preat facility, at the rate of one lumbrel yard per minute. Four this purpose it is phaced uph the
 bublin by working the treades as in sewing.

 fectly, the print of interlocking the two thremls shmald be duwn to the centre of the fithrie sased,

 : 22. The unxt pmint of importance is the I eed 7 hiw is that part of the mechanisun ins an ! the fobso

3303.

Vul. II.-40

The feed consists of a bar 10 , lying in grooves in the front standards, and directly beneath the cleth plate 46 . It has a slot nearly its entire length, in which is piroted, near the left end, a tongue 12 , with it right end resting upon the right front standard, armed with two rows of small points 14 . The relative position of the feed bar and its append ges to the cloth plate is best seen in fig. 3827. The eloth plate is fumislied with a slot 52 , through which the feed points when raised project, and enter the fabric held upon the eloth plate by the eloth presser 20. The feed is worked by the cam 6 , which rotates with the arbor 4 . As this cam revolves, the swell of its periphery strikes the under surface of the feed tongue 15 , and raises the feed points 14 , through the slot 52 , while the sweil on the right side of the cam G, presses upon the right ear 11 of the feed har, and throws it forward. The cam further revolving, brings a point of depression both on its periphery and its sile next to the feed bar ear, when the points drop below the surface of the cloth plate, and the feed spring 12, throws the bar back to the left against the feed slot 54 , and the next revolution of the can throws it forward again. It will be observed that while the needle penetrates the cloth, the feed peins are below the surface of the eloth plate. and iatermit their action upon the cloth; hence the needle constitutes a pirot upon which the falbie may be turned to sew a curved seam of any radius.
The feel points rising and peuctrating the cloth at each stithl, their movement forwarl determines the lengtl. of the stitel, which is graduated by regulating the play of the feed bar. The play of this bar is limited to the difference between the narrowest and the widest parts of the feed cam, which is about one-fourth of an inch, and may be graduated to any length within these limits by the eccentric feed slot 54, against which the heel of the feed bar is thrown by the feed spring 12. As the narrowest or widest parts respectively of this slot are turned fowards the feed bar, greater or less play of it is permitted, and longer or shorter stitches are made. This slot is turned with great facility while the machine is in motion, by pressing upoa the lever with which it is furnishe? The thachine when used is mounted upon a neat work-table, and driven by sandal treadles and band 7 . The fabric to be sewed 45 , is laid upon the cloth plate 46 , beneath the needle, and held by the cloth presser 20 . The operator seats herself before the table, on which the machine is placed, with her feet upon the sandal treadles by which the machine is driven. The threads being adjusted, the machine is touched into motion by a gentle pressure of the feet upon the sandals. The cloth moves forward from left to right, and the sewing is accomplished in the manner above described. Two and one-half fards of thread is the average required for a yard of sewing. There is no limit to the number of stitches that may be made in any given time. The driving wheel is graduated ordinarily so as to make five stitches at each treald, so that from six hundred to one thousand stitches per minute are readily made:

The bearings and friction snrfaces are so slight, that the propelling power required is merely nominal. The rotary hook, feed, bobbin, and other parts at all sulject to wear, are made of finely tempered steel the other parts of the machine are tastefully ornamented, or heavily silver plated.

Torious appliances are furnished for regulating the widths of hems, ete., as 42 and 58 . The seam guide 42 is attached to the fixed arm 19, by the thumb serew 43 , and extends down over the cloth plate with varinus projections for guiding the work. It is slotted and jointed so as to be adjusted in various positions. A smaller gange 58 is commonly used, but not in conjunction with 42. It is fastened to the cloth plate by the thumb screw $4 ?$.

Another appendage is the hemmer 48 ; it is nsed in place of the cloth presser 20 , and is in fact a cloth presser, so convoluted, that as the edge of the eloth passes throngh it is turned down as in ordinary hemming and beautiinlly stitched. All mumbers of thread are used, and needles of varions sizes are furmished suited to the several threads.

Thousands are used by seamstresses, dressmakers, tailors, manufacturers of skirts, eloaks, mantillas, clothing, hats, caps, corsets, ladies' gaiters, umbreltas, parasols, silk and linen goods with complete sucuss; sometimes from one hundred to two hundred are used in a single mamifactory: The amout of wwing that an operator may accomplish depends much upon the kind of sewing and her experience; one thonsand stitehes per minnte are readily made, which would form more than a fard of seam with stitches of medinm length. Fifty dozens of shirt collars, or six dozens of shirt bosoms are a day's work. Upon stmight seams an operator with one machine will perlorm the work of twenty by hand; on an average one probably performs the work of ten senmstresses.

The Wheler if Wilson machine is applicable to every variety of sewing for family wear; from tho ifghtest muslins to the heaviest cloths. It works equally well upon silk, linen, woolen and cotton goods, fe:ming, quilting, hemming, gathering and felling, performing every species of sewing except making button-lioles, stitching on buttons, and the like. Its mechanism is the fruit of the highest inventive grenius, combined with practical talent of the first order. Its principles have been elaborated with great care, and it involves all the essentials required in a fumily sewing machine. It is simple and thorough in construction, elegant in model and finish, facile in management, easy, rapid, and quiet in operation, and reflects additional credit upon American mechanical skill.

SIHEANS ROTALL', litggles' l'atent. This machine is made of sizes adapted to cut sheet metal of all numbers. One straight and one circular cutter are employed, the latter leing revolved and mored slowly along the edge of the former. The entting edges do not lap by each other except in cases of very thin metal, but are at a vertical distauce of about half the thickness of the metal to be cut.

SHEARS ROTALIY. Fig. $822($ is a representation of Bulkley \& Norton's patent improved rotary shears. The shears, when heed, stand in the position of the figure, and revolve upon the perpenlicular axis or standard. The material to be ent is placed between the clamps, put up to the chtters and the gauge, and held there by the serew, and is cut by one revolution of the machine.

The cutters revolve and are placed upon a movable half bows, which is easily set to any required size. A boy can use them, and his work will be cut perfect, while there is great saving of habor and stock, as it leaves the work and pieces perfectly smooth. They will cut any wire varying but a hair's breadth from $2 \frac{1}{2}$ to 29 inches in diameter. The ab se shears have been in constant use in variou*
heavy manufacturing entablisliments more than five years, and the many hish te-timoniahs of thein value which we have seen are fully corroborative of their excelhnce. When tin is required to be cut in a circular form these shears must be exceedingly useful; indeed it is said that an costire box of tin can be cut perfectly uniform in twenty $: r$ thirty minutes by this improvement. Orders for the ee shears are addressed to the patentees and proprietors, Messrs. Bulkley di Norton, Lerlin, Coun.

 2029, is the invention of Hesry Purdes, Esq., of the Troy Iron Work, New York. Fig. 3327 is a cras section through DFE. Fie. 33 อs is a vertical section through B F E. Fig. 3329 is a perspective

A
in the direction of the arrow by the pinion I . K K is a heavy ring or thmble whicls is alluwed to rise and fall up and down the shaft F ; its weight upsets the uppren of the bloom. The dotted line at L represents a large hook, to deliser the bluom when tinished. The dutted line at $3 t$ represents a scraper to clean away any slag that may remain on the flange of the cylinder. D is the rough bloom entering, and E is it just leaving in its fimi-hed state. F FFF are flanges to streugthen the eccentric ca-ing. The bloom leing thrown in at the wide end is laid lold of by the cylinder, and by its action pressed against the outside casing, and revolving on its own axis, is taken through the machine, being thus gradually brought to its finished state, and at the same time deprived of its scoria. The unter und of the bloom is upset by the action of the flange of the cylinder, and the upper end by that of the lifting-ring $K \mathbb{K}$, in the most perfect manner.

The adeantagrs are: -1 . The entire saving of hingler's wages, nu attentance being necessary, n Vory considerable saving in first cost. 3. Great, or rather, almost entire saving of repair=. 4. C'insiterable saving in power. 5. The inmense saving, in time, from the quantity of work done, one machine being capable of working to sixty puddling furnaces. G. Saving of waste, nothing but the -lag being thrown off. T. The stath are aloo saved. \&. It will lee readily seen, fiom the shorthe-s of the time required to finish a bloom, (six or seren seeonds, that the scoria can have no time to -et, and in thus got rid of much better than when allowed to congeal. 9. The blooms from this machine being discharged so perfectly hot, they roll much better, and thas, besides being much easier on the rollere, the bars produced are much sounder and better finished.

By the use of this machine, common iron, of an excellent quality, ean be finished of at the first heat, riz, that of the puddling furnace.

SHINGLE MACHINE—JOHASONS. Fig. 3331 represents a madine invented by Mr. J. G. Johssos, of Augusta, Miaine.

The machinery is adjusted to a frame of 10 feet in length by 3 feet 10 inches in width. On this is placed a movable earriase E E, which runs on trucks attached to the carriage FF. B is the block or fort of wool to be sawed, and is held in its phace by dors. C is a piece of wood fistened on the end of the frame, the ubject of which is to eallec the lever D to turn the set-shaft one guarter romb evers time the earriage returns back: this lever is raised by a piece of wood fintened to the main frame. Tu this lever is abo fastened a book, which honks on to the set-shaft. (it are handles attached to a roul which has a cam on it. By toming the landles up, the rack is raised out of geer and stepls the carriage while the operator supplies another bolt of block of wood. The set-shatt has a dog on each cond, placed st right angles so as not to set but one of the blocks at a time. Thowe dogs move two gares that are secured to the headstock which hohls the block or bolt of wood. The earriages is feal lie a deereased motion received from the saw-shaft.

 shot proceed rapislly in struight lines and lill into a hin pheed to receive them, ahout as fint dist ant ir in the buttom of the slah, whilat the miwhapen shot on the contrary, travel with a sluwer zig-zas mabinu and full without nuy bound into a hin immedintele ut the fiont of then ind line.

 Las hecal secured to lavill Smith hy patent.

3335.

the line G II of Fig. 3332. The cimilar letters used as marks of refirence apply to tiac like pats in all the figures.

In theee, I is a water-cistem bencath the tower. A is a pipe from any competent blowing apparalue, seading into a hollow amnular ringechabuer b, the botton of which is to be supported in any proper mamer above the ci-tern 1; the inner face forms a portion of the paseage for the doseentine thot ; the upper face c is fittel with hole-, as shorn in plan fig. 8334 , to pass and lispence the entering and ascending air; and the outer side of the ring b forms the bave of a truncated cone that sustains a metal cylindrical tower $d d$, which at ee spreads to pass the aseending blast through a fiame $f f$; this is shown in plan Fig. 33:3, and in Fig. 333 o is Ahwn as sustaning a cylindrical standard q, the upper eentral portion of which receives the pouring pan h : this is made changeable for each separate size of shot, to be made by larger or smaller looles through the bottoms of the successive pans, as neual; and romil the pewing-panh is a circular waste-troughi; round these parts the tower dd fini-hes also a trumpetmould K K . The intent and eflect of this arrangement is, that the flud metal running through the pouribepank into the ascending current of air, in a tower fifty feet hioh, when the air is passing up, with twice the velocity of the descendine metal, will be operated on to the same, or to a greater extent, by the air, as when it fallis through the stignant air in a contly tower of one humbrediand fifty fece or more high; and in the like proportions with the greater or les velocitios of the ascembiner currint of air. The partieles of metal fall through the open centre of the ring b into the water in the cistern I, where, for consenienee, a shoot $/$ carries the particles of metal into a tnl, m, which may be phaced empty, and removed when full throurli a scutle n in the cover of the ci-tem.

The patentee dies and intend to confine himself to the proportions of the parts as here described. wat Alre- he intemil chutining himedf to the parallel eylindrical form of the tower dd, lik, as this may be mate more or less noncal; amb the other parts may be varied in any way that is substantially the satrin. in the means ex:ployed to produce the like and intended efiects.

SHUTTLES. See Lamar.

SIIEEX. The earth of flints. The characteristic ingredient of a great varicty of minerale, as quartz, chalcelony, flint, ere. ; the predominating material in granite, many varioties of sand at one and quart\% rock. It- chief importance in practient arts is in the namaliseture of (ibas.

 an upper level while another set rises from a lower level and inetet them.
 the fat, at proment usel in this county is Weht, the wirhin a fex yeats it has been ext msively guarrim ${ }^{2}$ in Vermont.
 in the rock to the ilepth reyuirel, and then the slate comes off in thin layers the size of the space be-
 11. J. Jirmmer, of Nazarefh, Pa., has invented amachine, in whel cutters nre operated so as to tied

 \%ontal hyers from the surface to the depth the ente.rs have penetrated.

 martiseg cant in the wherl, hy bedea mald mits.
 "pplinel to the croes tive on a maitrond.

 tontento if a nurfice or solid may be known.

SLOTTING MACHINE, Self-acting, by Card \& Co., Greenock. The following figures represent a machine adapted for slotting or paring work of moderate size, and for cutting the key-grooves or seats of wheels not exceeding five feet in diameter. It is at once elegant in design, simple in construction, and capable of adaptation to a great variety of circumstances.

Fig. 3337 is a front, and Fig. 3839 a side elevation of the machine, slowing the general arrangement of the working parts. Fig. 3338 is a general plan, and Fig. 3340 a transverse section of the work-table and part of the framing on which it rests.
The framing consists of a strong fluted column A, with two brackets of proportionate strength for earrying the working geer and slotting-bar, and a soleframe for supporting the work-table and its appendagez, and having a strong bottom plate by which the machine can be bolted to a stone foundation. The whole of this framing consists of a single casting, and therefore may be presumed to possess all the strength and rigidity which can possibly be obtaned with the form adopted and the weight of metal employed; two conditions of the utmost importance in machines of this kind, in which the strain varies suddenly from the mere weight of the slotting-bar to the maximum pressure necessary to effect the cut.

The projecting palms of the brackets are faced and formed with dovetail edges, between which the slot-ting-bar B slides in its up and down motion. Two of these dovetail pieces are attached by screws, and cam be adjusted by set-pins, as they are worn by the sliding action of the bar. On the lower extremity of this bar the slotting.tool is attached by two glimeds and set-screws, in the usual way; and, at some distance from its upper end, it has an adjustable stud fitted into it, to which the upper end of the comectingrod O is jointed. The mode of fixing and adjusting the stud is clearly shown in the front elevation of the machine. From this view it will be observed that the bar has a long slot, occupying about a third of its length at the upper end, between the parallel cheeks of which the rectangular body-part of the stud is accurately fitted. This part of the stud is formed with shoulders which bear against the inside of the bar, and has a strong screwed pin projecting from its exterior surface, on which a large pinching-nut is passed. This nut being serewed tight against the face of the bar, the stud is effectually secured from shifting its position in the slot, by the friction induced between the bar and the shoulders of the stud on the inside, and the nut on the outside.

The rectangular body of the stud is traversed by a long square-threaded screw, which oceupies the whole length of the slot in the bar, and which can be worked by the small hand-wheel P, fixed on its upper end. This screw is so fitted into the machine as to have no endlong motion independent of the bar; but when turned by means of the wheel P , on its upper extremity, it will cause the stud to assume any required position in the slot. But it is easy to percepe that by changing the porition of the etud in the slot, the height of the slotting-bar will be correspondingly changed in relation to the work-table of the machine. In effect the stud may be considered as a fixed point by which the bar is suspended, and consequently by turning the hand-wheel of the serew in one direction or other, the bar will be correspondingly elevated or depressed, and the tool thereby ect at any height above the table that maty be necessary for the kind of work caler operation. And when it is so adjusted, the stud is made fist in its place by tightening the pinchingnut on the screwed tail projecting in front of the bar,
 as above described.
The lower end of the connectingrod 0 is flexibly attached by a stud-bolt to the disk or crank-whee N , which has a radial dovetail groose a formed in its plane face to receise the correspondingly formed head of the bolt. This bolt or stud is embraced by a strong fernle of slightly greater length than the eye of the connectingrol, which fits upon it frecly; and being in its place, a large nut is passed upon the projeeting end of the bolt, which tixes the fervile between it and the edges of the groove in the face
of the wheel, and therely effectually secures the -tud in the retpired po-ition, white the comeeting rom is left free to revolve on the ferule, in comsequence of the latter heing -lighty greater in haysh that the eye of the rod. The position of the stud in relation to the centre of the cramk-wheel obvionsly de termines the length of the stroke of the slotting-bar. Thus, the wheel admits of the stud being fixen at seven and a half inclee; from the centre as a maximum, and therefore the utnot throw will be if teren inehes.

brasses, as shown in the side elevation of the machine. On the opposite end of the crank-wheel shaf is keyed the spur-wheel G, which geers with the pinion H on the driving-shaft. The cone-pulley K receives motion by a strap from the main shaft, and is susceptible of three modifications of speed, to suit the kind of wok under operation, the fly-wheel I rendering the mation uniform, and obviating the jerks and variations to which it wonld otherwise be liable. This shaft las one of its bearings in the columnar frame of the machine, while the other is independently supported by a pillow restiug on the sole of a wall recess.

The sliding-table D is movable on the upper surface of the bed-plate E , in a direction parallel to the sole-frame of the machine ; and the circular table C is capable of sliding horizontally on this last, in ia direction at right angles to the direction of motion of the table D. From the sectional view, Fig. 3340, it will be observed that the talle C is provided with a rectangular sole-plate, to which it is attached by a central stud and socket, in such a mamer as to be capable of working freely on the stud as on an axis. By this arrangement two motions of the upper table are obtained, one rectilineal and the other circular. The rectilineal motion is obtained from the sole-plate, on which are bevelled ledges, adjusted to slide in corresponding faces formed on the table D, as shown in Fig. 3338 ; and the circular motion is obtained by causing the upper plate to revolve on its centre. The first of these motions is communicated by means of a screw e, which passes through a long. ${ }^{2}$ dinal recess, formed for its reception in the table D , and works into a nut attached to the sole-plate of the upper table. To obtain the circular motion, the table C is formed with a worm-wheel on its circumference, into which the worm on the spindle S geers; and as this spindle is attached by its bearings to the rectangular sole-plate, which cannot revolve in consequence of its attachment to the table D, it is obvious that by turning the cramkhandle on the worm-spindle, the plate C will be made to revolve on its central stud.

The table D can also be worked by hand, by placing a crank-landle on the square end of the serew h, the self-acting mechanism to be described presently being out of geer. This screw has its bearings in the bed plate E, and works in a nut attached to the under side of the table. It may also be observed that one of the doretail or berelled ledges of each of the sliding-tables is adjustable by set-screws when reduced by wearing, as shown in the section of the table D.

A self-acting motion may be given to the under table by means of an arangement of parts shown in the side elevation of the machine. These consist of the ratchet-wheel L, which is keyed upon the end of a spindle connected by a miversal joint at M, with the screw l; and a pawl l, attached to the end of the lever m, on the same axis and formed of a piece with the lever n. In one arm of the wheel G is tixed a stud o, carrying a small friction pulley, and adjustable, like the stud in the crank-wheel, to any required distance from the centre. This stud, as the wheel revolves, comes in contact with the lever n, which, being loose on its axis, yields to the pressure, and through the lower arm m, and pawl l, transmits its motion to the ratchet-wheel, and through this again to the screw h. The pawl l can be applied to either side of the ratchet-wheel, so that the table may be made to travel upon the bed E, in either direction, and as the throw of the lever n can be regulated by the position of the stud o, the amome of the feed motion may thus be adjusted to the kind of work. The object of the universal joint at M is to permit the table to be set at a small angle with the horizontal plane, when necessary, as in cutting the key-scats of wheels. This is effected by raising the inner end of the table by means of the screwed link b, jointed to the bed-plate E, as shown in Fig. 3340 , and acted upon by the set-nuts marked 2, 2, shown in the side elevation of the machine. The bed-plate of the table, when in this position, is supported by two palms fitted to a cylindrical piece formed on the front of the main sole ; and is prevented from moving laterally by the set-screws $g g$.

The circular motion of the table C may be communicated by the handle on the end of the wormspindle S ; but, to render it self-acting, a double ratchet-wheel is substituted for the handle, and is worked by pawls attached to a rocking-lever, which communicates by a series of small rods with the lever m. The transverse motion of the upper table can also be given by the handle on the end of the serew e; but a ratchet may also be substituted for this handle, and worked by a pawl comected with the levers employed to transmit the circular motion of the table. Thus each and all of the three motions of the table may be rendered self-acting, and the work thereby carried on independently of that constant attention which would otherwise be requisite on the part of the workman. It is seldom, however, that more than one of the selfacting motions is required to be in action at a time, the other motions being adjusted by hand.

Literal References.
A, the frame of the machine.
I , the slottiner-bar.
a, doretail groove in the crank-wheel N.
C, the circular table upon which the work is fixed.
D, the under slide of the table.
E, the bed-plate of this slide.
b, a link with adjusting nuts for setting the worktable at an angle.
ε, guide-screw of the upper table.
$g g$, set-screws for preventing lateral motion of the table.
h, gruide screws of the lower talle.
G, spur-wheel on the crank-wheel shaft, geering with
II, a pinion on the driving-shaft.
L, fly-wheel on the driving-shaft.

K, cone-pulley for driving the machime.
L, a ratchet-wheel by which motion is transmitted to the slide-screw h.
l, a pawl for working the wheel L .
m, lower arm of the lever to which the pawl is attached.
n, upper arm of the same lever recciving motion from the stud o.
M, a miversal joint by which the spindle of the ratchet-wheel L is connected to the screw h.
N , the crank-wheel on the main shaft.
O, the connecting-rod to the slotting-bar.
P, hand-wheel on the screw for adjusting the stroke of the machine.
S, the spindle of the worm geering with the wormwheel on the table C

SLU'ICE-COCKさ, Wallea's Patent. This invention consists in applying movable bu-hes or facings te sluice cocks, and in constructin? the burhes in such a manner that they shall be harder, and tit more truly, and may be more readily applied and replaced when wom ; it further con-iste in an mone of rembering the working surfaces of sluice cocks, which are made without movable bo-hes, more hard and durable
Fig. 3841 is a vertical section of the improved sluice-cuck; Fig. 3342 also represent: a vertical see tion, taten on the line A B of Fig. 3341 ; and Fig. 3343 is a horizontal section taken on the line ('1) (1) Figs. $33+1$ and 3342 . a is the body of the coek, and $b b$ are portions of two piper which cuter the sockets of the cock, and are retained therein water-tight ly the application of molten head, in the usual manner. The body of the cock is bored out, and the back- of the bulhes ece are turned in a lathe, so as to fit the receses thus formed. The bushes are made, by preterece, uf eat-iron, (allhough other metal may be used ;) the working surfaces are chilled in the act of casting, and are grouad or "faced up" with emery in a lathe. The busles are coated on their backs with marine glue

ar similar material, previous to introducine them into the co 's; and after the butws have heen intro. lluced into the cock, they are mowed hack in the receses before mentioned, into a proper working funition by furcing down the plug d into ite place. The patentee does not confine himeelf to the shape on the receses formed in the berly of the cock, as that may be varied. e is a screw for raining and lowering the plug; f is a screw-mut, fitted into a rece-s at the top of the plue; g, g are ribs, fimmed on the meterior of the upper part of the cock; and $t h$ are corre-ponding ribs en the vuter surface of the mpler part of the plug; the we of the ribs lecing to gnide the plug correctly is its mowement up and down. The surfaces of the plug are chilled in the act of casting, and are then ground with emery:

When making sluice-cocks without movable bulhes, the patentee camses t^{1} ne surface against which the plug works to be chilled in the act of easting the boly of the cock, so as to make it more durable, and this surface is afterwards rendered true by means of a revolving tool and emery.
The patentee clams, Firstly, the mode of preparing the bodies of sluice-cocks with recesses for recciving bushes; the planes of the surfaces being inelined to the central line of the barrel of the cock as above described. secomelly-the mode of applying movable bushes to cocks. Thirdly-mak: ing the movable buthes, and also the phugs of sluice-cocks, with chilled working surfaces as descriked. Fourthly-the making of shice-cocks with chilled surfaces, which form the bed of the phus.
sMUT MACHINE: F. Hambs \& Sons' latent Smut and Scouring Machine, fur cleaning ald Linds

of graik, was, we moderstand, origimally insented for hulling and pearling rice nom colfor, an aloo fos

past, giving entire satisfaction to all who have used it, and acknowledged to be superior for cleaning and scouring grain-being capable (when set the right distance apart) of pearling barley and wheat with ease.

This machine is constructed of three concave and convex stones, of a very porous and gitty nature. dressed similar to a mill-stone, are equally as durable, with a perforated iron case around the ruming or eoncavoconvex stone, (which makes 400 revolutions per minute,) all set into a frame, as represented in Fig. 3344, with a perpendicular blower or fan attached to the spiudle, capable of blowing every thing from the grain without a particle of waste.

This machine is capable of cleaning from 70 to 80,000 bushels of grain previous to being dressed or picked, which makes it do the work as well as when first put in operation. The stones can be set as necessity requires, closer or further apart, so as to suit all kinds of grain, and are well adapted for custom mills.

SOLDERING. Soldering is the process of uniting the edges or surfaces of similar or dissimilar metals and alloys by partial fusion. In general, alloys or solders of various and greater degrees of fusibility than the metals to be joined, are placed between them, and the solder when fused unites the threa parts into a solid mass; less frequently the surfaces or edges are simply melted together with an additional portion of the same metal.

The circumstances to be considered in respect to soldering, are, for the most part, that the solders must be necessarily somewhat more fusible than the metals to be united; and that it is of primary impertance that the metallic oxides and any foreign matters be carefully removed, for which purpose the edges of the metals are made chemically clean, or quite bright, before the application of the solders and heat ; and as during this period their affinity for oxygen is violent, they are covered with some flux which defends them from the air, as with a vamish, and tends to reduce any portion of oxide accidentally existing.

The solders are broadly distinguished as hard-solders and soft-solders; the former only fuse at the red heat, and are consequently suitable alone to metals and alloys which will endure that temperature; the soft-solders melt at very low degrees of heat, and may be used for nearly all the metals.

The attachment is in every case the stronger the more nearly the metals and solders respectively agree in hardness and malleability. Thus, if two pieces of brass or copper, or one of each, are brazed together, or united with spelter solder, an alloy nearly as tough as the brass, the work may be hammered, bent, and rolled, almost as freely as the same metals when not soldered, because of the nearly equal cohesive strength of the three parts.

Lead, tin, or pewter, united with soft-solder, are also malleable from the near agreement of these substances; whereas when copper, brass, and iron are soft-soldered, a bow of the hammer or any accidental violence, is almost certain to break the joint asunder, so long as the joint is weaker than the metal generally; and therefore the joint is only safe when the surrounding metal from its thimess is no stronger than the solder, so that the two may yield in common to any disturbing cause.

When the spaces between the works to be joined are wide and coarse, the fluid solder will probably fall out, simply from the effect of gravity; but when the crevices are fine and close, the solder will be as it were sucked up by capillary attraction. All soldered works should be kept under motionless resiraint for a period, as any morement of the parts during the transition of the solder from the fluid te the solid state, disturbs its crystallization and the strict unity of the several parts.

In hard-soldering it is frequently necessary to bind the works together in their respective positions: this is done with soft iron binding wire, which for delicate jewelry work is exceedingly fine, and for stronger works is the twentieth or thirtieth of an inch in diameter; it is passed ronnd the work in loops, the ends of which are twisted together with the pliers. The Asiatics seldom use binding wire.

In soft-soldering the binding wire is scarcely ever used, as from the moderate and local application of the heat, the hands may in general be freely used in retaining most thin works in position during the process. Thick works are handled with pliers or tongs whilst being soft-soldered, and they are often treated much like glue joints, if we conceive the wood to be replaced by metal, and the glue by solder, as the two surfaces are frequently coated or timned whilst separated, and then rubbed together to distribute and exclude the greater part of the solder.

The succeeding "Tabular View of the Processes of Soldering" may be considered as the index to the entire subject; which refers to the ordinary methods of soldering most metals. The article is arranged under three divisions, illustrated in distinct sections, preceded by one section on the modes of applying heat.

Tabllar mew of the processes of soldering.-To avoid continual repetition, references are made to the lists on the succeeding page, in which some of the solders, fluxes, and modes of applying heat are cnumerated.

Ilard soldering--Applicable to nearly all metals less fusible than the solders; the novdes of treatment nearly similar throughout.
The hard-solders most commonly used are the spelter solders and silver solders. The general flux is borax marked Λ, on next page; and the modes of beating are the naked fire, the furnace or muthe, and the blowpipe, marked a, b, g.
Note-The examples commence with the solders, (the least fusible first,) followed by the metals for which they are commonly employed.
Fine gold, laminated and cut into shreds, is used as the solder for joining chemical vessels made on platinum.

Silver is by many considered as much the best solder for German silver.
Copper in shreds is sometimes similarly used for iron.
Gold solders laminated are used for gold alloys.
Spelter solders, granulated whilst hot, are used for iron, cupper, brass, gun-metal, German silser, de,
Silver salders laminated are employed for all silver works and for emmon gold work, also for Ger-
man silver, gilding metal, iron, stecl, brass, gun-metal, de., when grenter neatnes is required than is ols tained with spelter solder.

White or button solders granulated are employed for the white alloys called button metals; they were introduced as cheap sulsitutes for silver solder.

Soft-sold rime- - Applicable to nearly all the metals; the modes of treatment very different.
The soft-whler mostly used is a parts tin and 1 part lead; sometimes from motives of ecomomy nuch more lead is cmployerl, and $1 \frac{1}{2}$ tin to 1 lead is the most fusible of the group unless bismuth is used The fones 1 ' to $(f$, and the modes of heating, a to i, are all used with the soft-soldere.

Note,-The examples commence with the metals to be suldered. Thus in the list, zine, s, C, f, implies that zine is soldered with No. S alloy, by the aid of the muriate or chloride of zince and the copper hit. lead, 4 to $\mathrm{s}, \mathrm{F}, d, e$, implies that lead is soldered with alloys varying from No. 4 to s, and that it is fluxed with tallow, the heat being applied by pouring on melted solder, and the subsequem w-e of the heated iron nut timed; but in general one only of the modes of heating is selected, according to circumstances.
Iron, eat-iron, and steel, S, B, D, if thick, heated by a, b, or c, and also by g.
Thimed iron, s, C, D, f.
Silver and grold are soldered with pure tin or else with $\mathrm{S}, \mathrm{E}, a_{,} \eta$, or h.
Copper and many of its alloys, mamely, brass, gilding metal, gun-metal, de., 8, D, C, D ; when thick, heated by a, b, c, e, or $!$, and when thin ly f or g.

Speculum metal, $8, i, \mathrm{C}, \mathrm{D}$, the heat should be most cautiously applied ; the sand bath is perlaps the bert mode.
'xinc, o C, f.
Lead and lead pipes, or ordinary plumbers' work, 4 to $\mathrm{S}, \mathrm{F}, d$, or e.
Lead and tin pipes, 8 1) and G mixed, g, and also f :
Britannia metal, 心, (C, D, \%.
I'ewters: the swheres must vary in fusibility aceording to the fusibility of the metal, generally G and i are used, sometimes also, (trd and g, or f.
Timming the metalo, and washint them with lead, zine, de.
Soldering per so, or burning together. - Applicable to some few of the metals onls, and which in general require no flux.
Iron, brass, ice, are sumetimes burned, or united by partial fusion, by pouring very hot metal over or around thelu, d.

Leal is mited without solder, by pouring on red hot lead, and emplaying a redhot iron, d, e, and aloo by the autngenous proces.

Illoys and lheir Melting IIeats.*
Fluxes.

[^19]twe feet by one, and five or six inches deep. The revolving fan is commonly used for the blast, and the zuyere irons, which have larger apertures than usual. are fitted loosely into grooves at the ends, to admit of ensy renewal, as they are destroyed rather quickly. The fire is sometimes used of the full length of the hearth, but is more generally contracted by a loose iron plate; occasionally two separate fires are made, or the two blast-pipes are used upon one. The hood is suspended from the ceiling, with. comuterpoive weights, so as to be raised or depressed according to the magnitude of the works; and it has large sliding tubes for conducting the smoke to the chimney.

Furnaces are occasionally used in soldering, or the common tire is temporarily converted into the condition of a furnace from being built hollow, or by the insertion of iron tubes or muflles amidst the ignited Gucl, as already explained in reference to forging and hardening. For want of any of these means, the dmateur may use the ordinary grate, or it is better to employ a brazier or chafing-di-h containing charcoal, and urged with hand-bellows blown by an assistant, as then both hands are at liberty to manage the work and fuel.

Fre-h coals are highly improper for soldering on account of the sulphur they ahways contain; the best fuel is charcoal, but in general coke or cinders are used. Lead is equally as prejudicial to the fire in soldering as it is in welding iron and steel, or in forging gold, silver, or copper; as the lead readily oxidizes and attaches it-elf to the metals that are being soldered or welded, preventing the union of the parts, and in almost all cases rendering the metals brittle and unserviceable.

There are many purposes in the arts which require the application of heat having the intensity of the firge-fire or of the furnace, but with the power of observation, guidance, and definition of the artist's pencil. These enditions are most efficiently obtained by the blowpipe, au instrument by which a stream of air is driven forcibly throngh a flame, so as to direct it either as a well-defined cone, or as a broad jet of name, against the object to be heated, which is in many cases supported upon charcoal, by way of concentrating the heat.

The blowpipe is largely used-namely, in soldering, in hardening and tempering small tools, in glassblowing for philosophical instruments and toys, in glass-pinching with metal moulds made like pliers, in enamelling, and by the chemist and mineralogist, as an important means of analysis: the instrument has consequently received very great attention both from artisans and distinguished philosophers.

Most of the blowpipes are supplied with common air, and generally by the respiratory organs of the operator; sometimes by bellows moved with the foot, by vessels in which the air is condensed by a syringe, or by pneumatic apparatus with water pressure. In some few eases oxygen or hydrogen, or the same gases when mixed, are employed; they are little used in the arts.

The ordinary blowpipe is a light conical brass tube, about 10 or 12 inches long, from one-half to onefourth of an inch diameter at the end for the mouth, and from one sixteenth to one-fiftieth at the aperture or jet; the end is bent as a quadrant, that the flime may be immediately under observation.

The lungs may be used for the blowpipe with much more effect than might be expected, and with a little practice a constant stream may be maintained for many minutes if the cheeks are kept fuly distended with wind, so that their elasticity alone shall serve to impel a part of the air, whilst the ordinary breathing is carried on through the nostrils for a fresh supply.

The most intense heat of the common blowpipe is that of the pointed flame; with a thick wax candle, and a blowpipe with a small aperture placed slightly within the flame, the mineralogist succeeds in melting small fragments of all the metals, when they are supported upon charcoal and exposed to the extreme point of the imer or blue cone, which is the hottest part of the flame; that is, fragments of all metals which do not require the oxyhydrogen blowpipe.

Larger partieles, requiring less heat, are brought somewhat nearer to the candle, so as to receive a greater portion of the flame ; and when a very mild degree of heat is needed, the object is removed further away, sometimes as in melting the fluxes preparatory to soldering, even to the stream of hot air beyond the point of the external yellowish flame.

The first, or the silent pointed tlame, is used by the chemist and mineralogist for reducing the metallic oxides to the metallic state, and is called the deoxidizing flame; the second, or the noisy, brush-like 17ame, is less intense, and is called the oxidizing flame.

The artisan employs in sollering a much larger flame than the chemist, namely, that of a lamp the wick of which is from a quarter to one inch diameter: this must be plentifully supplied with oil; the blowpipe in such cases is selected with a larger aperture, it is blown rigorously, and held a little distant from the flame, so as to spread it in a broad stream of light, extending over a large surface of the work, which is in most eases supported upon charcoal. When any mimote portion alone is to be heated, the pointed flame is used, with a milder blast of air and a deereased distance.

The following method is much employed by the cheap jewelry manufacturers at Birminghan. A stream of air from a pair of bellows directs a gas flame through a trough or shoot, the third of a cylimdrical tube placed at a small angle below the tlame. Instead of a charcoal support they employ a woolen handle, upon which is fixed a that disk of sheet-iron, about three or four inches diameter, covered with a matting of waste fragments of binding wire, entangled together and beaten into a sheet about three-eighths or half an inch thick; some few of the larger pieces of wire extend round the edge of the liik to attach the remainder. The work to be soldered is placed upon the wire, which becomes partially red-hot from the flame, and retains the heat somewhat as the chareoal, but without the inconrenience of burning away, so that the broad level surface is always maintained. small cinders are frequently placed upon the tool, either instead of, or upon the wire.
sometimes the gas-pipe is surmounted by a square hood, open at both ends, and two blast-pipes are directed through it; the latter arrangement is used by the makers of glass toys and seals; these are piached in moulds something like bullet-moulds; the devices on the scals are produced by iuserting in the moulds dried casts, made in plaster of Paris.
Makers of thermometers and other philosophical iastruments generally nse a table blowpipe, with a thallow oval, or rather a hidney-shaped Iamp, with a lopp placed Iengthways upon the short dameter
for holding the cotton, which is sometimes an inch long and laalf an inch wide. The wick is plentifully supplied with tallow or hog's lard, and a furrow is made through it with a wire to athord a free pasagre for the blast from the fixed nozzle, by the size of which, and it di-tance from the flame, the latter is made to a-tume the pointed or bru-helike character. This lamp is wore cleanly, and emits less smell than those supplied with cill any oredlow of the tallow is catblat in the outer rowel or tray, and when cold, the fat suludifies.

Many-blowpipe have been invented for the employment of oxygen and hyalrogen; the mixed gases were first used by Dr. Hare, of Philadelphia, who has been folluwed in varinus ways by Clark, Gurney, Commiug, Hemming, Marcet, Leeson, and many others. Two subsequent moditications of rav bluwpipes which have been invented for the workshop will alone be here described, namely, sir John liobr ism's Workshop Blowpipe, intended lor soldering, lardening, and other purposes; and the Count de Riehemont's Airo-hydrugen Blowpipe.

The general form of the "work-hop blowpipe" is that of a tube open at the one end, and supported on trumions in a wonden pellestal, so that it may be pointed vertically, horizontally, or at any angle as thesere. Common street gras is supplied through the one hollow trunnion, and it eseapes through an annelar opening; whilst oxygen gas, or more usually common air, is admitted through the other trunnion which is also hollow, and is clischarged in the centre of the hydrogen through a central conical tube; the magnitude and inten-ity of the flame being determined by the relative guantities of gas and air, and by the greater or less protrusion of the imer cone, by which the annular space for the hydrogen is contracted in any required degree.

From among-t mumerous other small applications of heat, Mr. Gill's portable blowpipe furnace may be noticenl; it comsitts of a lump of pumicestone three or four inches diameter, sconped out like a pan or crueble, and filled with small fragments of chareoal; sometimes a eonical pertorated cover is added; the in-ile may be intemely ifroited, whilst the slow conducting power of the punice-stune grards the hand from ineonvenient hata

Examples of herd-soldering.-It was mentioncl in the tabular view that the several works united
 grucral illea of hard-oblderime-a process commonly attended with some ribk of partially melting the warks, beeanse the fu-ing peints of the metals and their respective solders often aypuath rery nearly thagether.

Several of the hard-solders contain zine, which appeare to be useful in different ways: fir-t, it inereases their fusibility; in eases where the volder canmot be seen it serves as an index to denote the completion of the proces, for when the colder is melted the zine volatilizes, and burns with the wellknown blue tlame; and as at this monent some of the zine is consumed, the alloy left behind becomes tougher, and more nearly approaches to the condition of the metal which it is de-ised to unite. The zine may be therefore eom-idered to act as a flux, and so likewise does the arsenic oecaniomally introduced into the gold and -iber soldere, as the arsenic is for the most part lost between the procence of makiner and using the solders; but this metal being of a noxious quality, it is but little resorted to, and be-ifles, it rembers the other metals very brittle.

In every cate of sohlerimg, a general regard to cleanliness in the manipulation is important, and for the most jart the edges of the metals are filed or seraped prion to their being soldered, as before obwrred; in thon cates in which the redheat is emplayed, filuy wr seraping are less imperative, ats any greasy or combutible matters are burned away, and the borax has the property of combining with nearly all the metallic oxiles amb earthe bases, thereby clean-ing the edges of the metals, should that 1reweding lave been previou-ly onitted.

 matal or a -mall -pumb.

 withont the necrenity fon tapping the work.

and rolled backwards and forwards on the ground to distribute the solder equally at every part. Other common works in iron, such as locks, are in like manner covered with loam to prevent the fron from scaling off. Sheet iron may be soldered by filings of soft cast-iron, applied in the usual way of soldering with borax, which has been gradually dried in a crucible and powdered, and a solution of sal-ammoniac."
The finer works in iron and steel, those in the light-colored metals generally, and also the works in bras- which are required to be very neaily done, ure soldered with silver-solder. From the superior fusibility of silver-solder, and from its combining so well with the different metals without "gnawing then or eating them away," or wasting part of the edges of the joints, silver-solder is very desirable for a great many cases; and from the more careful and sparing mamer in which it is used, many objects require but little or no finishing subsequently to the soldering, so that the more expensive solder is not only better, but likewise in reality more economical.

The practice of silver-soldering is essentially the same as brazing. The joint is first moistened with borax and water; the solder, (which is generally liminated and ent into little squares with the shears, is then placed on the joint with forceps. In heating the work addlitional care is given not to displace the solder; and for which reason some persons boil the borax, or drive off its water of crystallization at the red-heat, then pulserize it and apply it in the dry state along with the solder; others fuse the borax upon the joint before putting on the solder.

Numerous small works united with hard-solders, such as mathematical and drawing instruments, buttons, and jewelry, are soldered with the blowpipe; in almost all cases the work is supported upon charcoal, and sometimes for the greater concentration of the heat it is also covered with charcoal. The management of the blowpipe having been explained, it is only necessary to add that the magnitude and shape of the flame are proportioned to those of the works.

In soldering gold and silver the borax is rubbed with water upon a slate to the consistence of cream, and is laid upon the work with a camel's hair pencil, and the solders although generally laminated are also drawn into wire or filed into dust; but it will be remembered, the more minute the particles of the granulated metals the greater is the degree of heat required in fusing them.

In many of the jewelry works the solder is so delicately applied, that it is not necessary to file or scrape off any portion, none being in excess, and the borax is removed by immersing the works in the various pickling and coloring preparations.

Examples of soft-soldering. - In this section the employment of the less fusible of the soft-solders will be first noticed; the plumbers' sealed-solder, 2 parts lead and 1 of tin, melts at about $440^{\circ} \mathrm{F}$.; the usual or fine tin-solder, 2 parts tin and 1 of lead, melts at 340°; and the bismuth-solders at from 250° to 270° : the modes of applying the heat consequently differ very much, as will be shown.
The soft-solders are prepared in different forms suited to the nature of the various works. No. 5, p. 590 , the plumber's-solder, is cast in iron moulds into triangular ingots measuring from 1 to 6 superficial inches in the section. No. 8 , the fine tin-solder, is cast in eakes about 4 by 6 inches, and $\frac{1}{4}$ to $\frac{1}{2}$ inch thick; and this and the more fusible kinds are trailed from the ladle upon an iron plate or flat stone, to make slight bars, ribbons, and even threads, that the magnitude of the solder may be always proportioned to the magnitude and circumstances of the work.

It is very essential that all soft-soldered joints should be particularly clean and free from metallic, oxides; and exeept where oil is exelusively used as the flux, greasy matters should be avoided, as they prevent the ready attachment of the aqueous fluxes. It is therefore usual with all the metals, except clean tinned plate, and clean tin alloys, to serape the edges immediately before, the process, so far as the solder is desired to adhere.

Lead works are first smeared or soiled around the intended joints with a mixture of size and lampblack, called soil, to prevent the adhesion of the melted solder; next the parts intended to receive the solder are shaved quite elean with the shave-hook, (a triangular disk of steel riveted on a wire stem,) and the clean metal is then rubbed over with tallow. Some joints are wiped, without the employment of the soldering-iron; that is, the solder is heated rather beyond its melting point, and poured somewhat plentifully upon the joint to heat it; the solder is then smoothed with the cloth, or several folds of thick bed-tick well greased, with which the superfluous solder is finally removed.

Other lead joints are striped, or left in ridges, from the bulbous end of the plumber's crooked soldering iron, which is heated nearly to redness, and not timed; the iron and clotb are jointly used at the commencement for moulding the solder and heating the joint. In this case less solder is poured on, and a smatler quantity remains upon the work; and although the striped-joints are less neat in appearance, they are by many considered sounder from the solder having been left undisturbed in the act of cooling. The vertical joints, and those for pipes, whether finished with the eloth or iron, require the eloth to sup)port the fluid solder when it is posed on the lead.

Slight works in lead, such as lattices, requiring more neatness than ordinary plumbing, are soldered with the corper-bit or copper-bult; they are pieces of copper weighing from three or four onnces to as many pounds, riveted into iron shauks and fitted with wooden handles. All the works in timed iron, sheet-zine, and many of those in copper and other thin metals, are soldered with this tool, frequently misnamed a soldering-iron, which in general suffices to convey all the heat required to melt the more fusible solders now employed.

If the copper-bit have not been previonsly timed, it is heated in a small charcoal store or otherwise to a dull red, and hastily filed to a elean metallie surface; it is then rubbed immediately, first upon a tump of sal-ammoniac, and next upon a eopper or tin plate, upon which a few drops of solder have been placed; this will completely coat the tool ; it is then wiped clean with a piece of tow and is ready for use.

In soldering coarse works, when their edges are brought together they are slightly strewed with pow dered resin, or it is spread on the work with a small spoon; the copper-bit is lield in the right hand the cake of solder in the left, and a few drops of the latter are melted along the joint at shert intervaly

The iron is then used to theat the edges of the metal, both to fuse and todistribute the soller along the joint, so as entirely to fill up the interval between the two part*; only a hort portion of the juint, farcly excecting six or eight inches, is done at once. Sometimes the parts are helt in contact with it broad chisel-formed toul, or a hatchet stake, whilst the solder is meleal and couled, or a few distant parts are first tucked thyether or united by a drop of solder, but mostly the hathls alune suffice without the tacking.

Two soldering-tools are generally wed, on that whilst the one is in the han the wher may be relteating in the stuve; the temperature of the bit is rery important; if it be mot hot enough torai-e the edges of the metal to the melting heat of the solder. it must be returned to the fire; but unlese fy mimanarement it is made too hot and the conting is burnch off, the process of timing the hit nechlunt be repeatel, it is simply wiped on tow on removal from the fire. If the tool be overheated it will make the Fohder umecessarily fluid, and entirely prevent the main purpose of the enpper-bit, which is intended to act both as a heating twol and as a brushe, first to pick up a small guantity or drop from the cake of :ohler which is tixed upright in a tray, and then to distribute it alone the edire of the joint.

The torl is sometimes passed only onee slowly along the work, heing, guifed in contact with the folsl or edge of the metal. This supposes the operator to possess that dexterity of hand which is abumbatly whilited in many of the best tin wares; in these the line of solder is very fine and regular. The rol-dering-tonl is then thin and keen on the elfge, and the flux instead of being resin is mostly the muriate of zime, with which the joint is moistened by means of a small wiee or a stick prior to the application of the heated torl; sometimes the workman cools the part just finished by blowing upon it as the bit proceeds in its course; and the iron if owerheated is cooled upon a moistened ray placed in the empty space of the tray containing the solder.

Copper work* are more commonly duxed with powdered sal-ammoniac, and so likewise sheet-iron, althourh some mix powdered re-in and sal-ammoniac; others mointen the eleges of the work with a sathrated solution of sal-ammonite, u-ing a piece of eane, the end of which is split into tilaments to make a stubby bru-k, and theresubequently apply re-in: each method has its adrocater, but so long as the metals are well defended from oxidation :any mende will suttice, and in general management the processes are the same.

Zinc is more ditlicult to solder than the other metals, and the joints are not menerally so neatly executed; the zine seems to remure the coating of tin from the copper suldering toul; his probably arises from the superior aftinity of copper for zinc than for tin. The flax sometimes used fur zine is salimmoniac, but the muriate of zinc, made by disolving fragments of zine in muriatic acid diluted with about an equal quantity of water, is much superior; and the muriate of zincoserves alnirahly likewie for all the other inetals, without such strict neees-ity for clean surfaces as when the other hluxes are used.

The copper tow is only applicable to thin metals, hecause it repuires such a degree wh heat as will allow it to raise the temperature of the work to be joined to the melting peint of the sulder; and the excess of heat thus required for stout metals, is apt either to burn off the conting of sulder, wr to canse it to be aberorbed as a process of superficial alloring. It requires some tact to keep, the heat of the tent within proper limits by means of the charcoal or cinder fire, but with the airo hytrogen blowpipe it is rasy to maintain any required temperature for an indefinite period.

Thicker pieces of metal, such as the parts of philosophical apparatus, gas-fittinge, and others whieh camot be conseniently managed with the copper-bit, are first prepared by filing or turning, and each fiece is then separately timed in one of the fillowing ways. small pieces, immediately after being cleaned with the tite or uther tome, and without beiner touched with the tingers, are dipped into a latle contaning melted soliler, which is covered with a little powdered sal-ammoniace. The thax meets the work before it is subjectell to the leent, and the timiner is then reatily dene; sometimes the work is in the tiret instance sprimkled with re-in, or rubbed orer with sal-ammeniac water; the latter is rather a dangerous practiere, as the moisture is apt to drive the melted metal in the face of the "perater.
'I hin pheres of braw or of eopper allows, if submitted to this method, must be quickly dipped, or their is risk of their beiner atfacked and partly dis whend by the sobler. There is sume litile une ertainty as to iron, and espectally as to steel, bemer wall coated by dipine; sometimes a foreitle jur or a hard rub
 shaped like a file, immeliately on their remowal from the melted solder, which makera the atheenon more cortain.

 lihe wion placed in at gewn light.

Vor.. 11.-11
foil, previously cleaned with emery-paper, and pinching the whole between a pair of heated tongs to melt the foil; or other similar modifications combining heat and pressure are used.

Many workmen who are accustomed to the blowpipe, as jewelers, mathematical instrument makers, and others, apply the blowpipe with great success in soft-soldering ; but as the methods are in other respects similar to those given, they do not require particular notice, except that in some cases there is no choice but to tie the works together with binding wire, as in hard-soldering; but the preference is always given to detached timning and rubbing together.

The modern gas-fitters are remarkably expert in joining tin and lead pipes with the blowpipe; they do not employ the method of the plumbers and pewterers, or the spigot and jaucet joint surronuded by a bulb of solder, but they cut off the ends of the pipes with a saw, and file the surfaces to meet in buttjoints, in mitres, or in T-form joints, as required. In confined situations they apply the heat from one side only with the blowpipe and rushes; they employ a rich tin-solder, with oit and resin mixed in equal parts as the flux; the work looks like carpentry rather than soldering.

An ingenious workman assured us that he had employed this mode, for lead pipes measuring externally one inch and a half diameter and situated in angles, by placing pieces of slate against the floor and the perpendicular partition to defend them from the flame, the action of which was assisted by two pieces of charcoal inserted in the corners. And also that as a trial of skill, he had made fifteen joints in three-quarter inch tin pipe, five of each kind, namely, plain, mitre, and T form, including the preparations, in the exceedingly short period of twenty-five minutes.

Iron, copper, and alloys of the latter metal, are frequently coated with tin, and occasionally with lead and zinc, to present surfaces less subject to oxidation; gilding and silveriug are partly adopted from similar motives.

Copper and brass vessels are first pickled with sulphuric acid, mostly diluted with about three times its bulk of water; they are then scrubbed with sand and water, washed clean and dried; they are next sprinkled with dry sal-ammoniac in powder, and heated slightly over the fire; then a small quantity of melted block-tin is thrown in, the vessel is swung and twisted about to apply the tin on all sides, and when it has well adhered the portion in excess is retorned to the ladle, and the object is cooled in water. When cleverly performed very little tin is taken up, and the surface looks almost as bright as silver; some objects require to be dipped into a ladle full of tin.

Iron presents rather more difficulty, the affinity of the tin being less strong for iron than for copper ; but the treatment is in general nearly the same. Old works require that the grease should be removed with concentrated muriatic acid, before the other processes are commenced; and in cast-iron vessels the grease often penetrates so deeply, owing to the porous nature of the metal, that the retinning is sometimes scarcely possible, and it is often more economical to obtain a new ressel.

An alloy of wickel, iron, and tin, has been introduced as an improvement in tinning the metals. Mr. G. M. Braithwaite, one of the patentees, says that "the nickel and tin compound is harder than tin, and endures a much longer time; it is less fusible, and will not run or melt at a heat that would cause the ordinary tinning of pans to forsake the sides and lic in a mass at the bottom. Also that as an experiment to show the tenacity of the nickel, a piece of cast-iron tinned with the compound had been subjected by him for a few minutes to the white heat under a blast, and although the tin was consumed, the nickel remained as a permanent coating upon the iron."
The proportions of nickel and iron mixed with the tin in order to produce the best tinning, are ten ounces of the best nickel and seven ounces of sheet-iron to ten pounds of tin. These metals are mixed in a crucible, and to prevent the oxidation of the tin by the high temperature necessary for the fusion of the nickel, the metals are corered with one ounce of horax and three ounces of pounded glass. The fusion is completed in about half an hour, when the composition is ron off through a hole made in the flux. In tinning metals with this composition the workman proceeds in the ordinary manner.

There is also another method, that of cold-timing, by aid of the amalgam of mercury; but this process, when applied to utensils employed for preparing or receiving food, appears questionable both as regards effectiveness and wholesomeness, and the activity of the muriatic acid must not be forgotten; it should be therefore washed carefully off with water. The tin adheres, however, sufficiently well to allow other pieces of metal to be afterwards attached by the ordinary copper soldering-bit.

Soldering per se, or burning together:-This principally differs from ordinary soldering, in the circumstance that the uniting or intermediate metal is the same as those to be joined, and that in general no fluxes are employed.

The method of burning together, although it only admits of limited application, is in many cases of great importance, as when successfully performed the works assume the condition of greatest strength, from all parts being alike. There is no dissimilarity between the several parts as when ordinary solders are used, which are open to an objection, that the solders expand and contract by heat either more or less than the metals to which they are attached. There is another objection of far greater moment: the solders oxidize either more or less freely than the metals, and upon which circumstances hinge some galvanic or electrical phenomena; and thence the soldered joints constitute galvanic circuits, which in some cases cause the more oxidizable of the two metals to waste with the greater rapidity, especially when heat, moisture, or acids are present.

In chemical works this is a most serious inconvenience, and therefore leaden vessels and chambers for sulphuric acid must not be soldered with tir-solder, the tin being so much more freely dissolved than the lead. Such works were formerly burned together by pouring red-hot lead on the joint, and fusing the parts into one mass, by means of a red-hot soldering-iron. This is troublesome and tedious, and it is now replaced by the antogenous soldering.

Pewter is sometimes burned together at the external angles of works, simply that no difference of color may exist; the one edge is allowed to stand a little above the other, a strip of the same pewter is laid in the angle, and the whole are melted together, with it large copper-bit heated almost to rednese the superfluous metal is then filed off, leaving a well-defined angle without any visible joint.

Brass is likewi=e burned torether; for instance, the rims of large mural circles for obserratories, that are five, six, or seren feet diameter, are sometimes east in six or more segments, and attached by burn'ng. The ends of the serments are filed clean, two pieces are tixed vertically in a sand mould in their relative po-itions, a shallow space is left around the joint, and the entive charge of a crucible, say thirty or forty pounds of the melted brass a little hotter than usual, is then poured on the joint to heat it to the melting point. The metal overlluws the shallow chamber or hole, and runs into a pit prepared for it in the sand; but the last quantity of metal that remains, solidifies with the ends of the segments, and forms a joint almost or quite as perfect as the general substance of the metal; the process is repeatel for every joint of the circle.

The compensation balance of the chronometer and superior wathes is an interesting example of natural soldering. The balance is a small fly-wheelmade of one piece of steel, covered with a hoop of brass; the rine consisting of the two metals, is disided at the two extremities of the one cliametrical arm of the balance, so that the increase of temperature which weakens the balance-spring contracts in a proportionate degree the cliameter of the balance, leaving the spring less resi-tance to overcome. 'This occurs from the brass expanding nuch more by heat than steel, and it therefore curls the semicircular arcs inwards, an action that will be immediately understood if we conceive the compound bar of brass and steel to be straight, as the heat would render the brass side longer and convex, and in the balance it renders it more enrved.

In the compensation balance, the two metals are thus united: the disk of sterel when turned and pierced with a central hole, is fixed by a little screw-bolt and nut at the bottom of a small erucible with a central clevation, smaller than the disk; the brass is now melted and the whole allowed to cool. The crucible is broken, the excess of brass is turned of in the lathe, the arms are made with the file as usual, the rim is tapped to receive the compensation screws or weights, and lastly the hoop is divided in two places, at opposite ends of it diametrical arm.

A little black-lead is generally introduced between the steel and the crucible; and other but le:exact inodes of combining the metals are also employed.

Cast-iron is likewise united by burning, as will be explained by the following cxample: to add : flange to an iron pipe, a sand mould is made from a wood model of the required pipe, but the gusset er chamfered band between the thange and tube is made rather fuller than usual, to afford a little extra base for the flange. The mould is furuished with an ingate, cutering exactly on the horizontal parting of the mould, at the edre of the flange, and with a raste-head or runner procecding upwards fom the top of the tlange, and leading over the edge of the flask to a hollow or pit sumk in the sand of the fluor.

The end of the pipe is filed quite clem at the place of junction, and a shallow nick is filed at the inner sdge to assist in keying on the flange; lastly the pipe is plugged with sand and latd in the monld. Alter the mould is elosed, about six or eight times as much hot metal as the flame requires is poured througl. the mould; this heats the pipe to the temperature of the fluid iron, so that on cooling the flange is attached sufliciently firm to bear the ordinary pressure of serew-bolts, steam, de.*

The method of burning is occasionally employed in most of the metals and alloys, in making small additions to old ca-tings, and also in repairing trifling holes and defects in new ones; it is only suceesful, however, when the pieces are filed quite elean, and abundance of duid metal is enployed, in order to impart sufficient heat to make a matural soldering: a process whech is also, although differently neconplished, in plating copper with silver, as the two metals are raised to a heat just short of the moherg point of the silver, and the metals then mite.withont solder by partial alloying.

T'o cunclude the description of suldering processes, we have to refer to the airo-hydrogent blowpipe, invented in France by the Count de liehemont. It is in a great measure converting the oxy-hydrogen bowpipe, invented hy Dr. Hare, to the service of the workhop, and it is done with great simplicity and eafely. An clastic tube supplies hydrugen from the generator, and a pipe supplies atmospheric air fom a small fair of double beflows worked by the foot of the operator, and compresed hy a comstant weight: the two pipee meet in an arch, and proceed thrungh the third pipe to a small jet, from whence pruceeds the shanc. All the connections are ly clastic tubes, which allow perfect freedom of motion, so that tha pritable blownipe in carried to the work.

In soldering by the autegemond provers, the works are first prepared and seraped dean as usata, the heatrogen is ignited, mud the size of the thane is propertioned ly a stopecek; the air is then momitteal through the air-pipe matil the flame a-sumes a tine puinted characher, with which the work in mited after the gencral method of howpipe soldeting, except that a strip of lead is used instead of solder, mu. 1 gencrally without any thax.

This mone is described nu being suitalle to mont of the metale, hat its bent application appars to lue to phumber's work: The ssight of luad combumen in makiug the joints is a mere fraction of the weight of ordimary seder, which is beth more expensive and more oxidzable, from the tin it contains. 'Hhe few soldering, at it is callod, mones likewiee the ri-k of areidents from the plumber's fires, us the gat soll

[^20]erator which is in itself harmless, may be allowed to remain on the ground whilst the workman ascends to the roof, or elsewhere, with the pipe.

Lead is interposed as solder in uniting zine to zinc, and it is also used in soldering the brass nozzles and cocks to the ressels of lead, and those of copper coated with lead, used as generators. Another very practical application of the gas flame is for keeping the copper soldering tool at one temperature, which is done by leading the mixed gases through a tube in the handle, so that the flame plays on the back of the copper bit. This mode seems to be very well adapted to tin-plate and zinc works, espe cially as the common street-gas may be used, thereby dispensing with the necessity for a gas generator

SPANDRIL. An irregular triangular space formed between the outer curve or extrados of an arch and a line tangent at or near the crown, and the perpendicular line from the springing of the arch.

SPARK ARRESTER-CUTTNG's patent. Iig. 3339 is a vertical section of the machine.
Fig. 3341 , a view of the diaphraga with its curved and inclined planes, scparating the outer chambe: from the inuer chambers, and exhibiting a view of the ventilators, or air-flues, in the lower or inclinet: section.

Fig. 3342 is a horizontal view of the unler side of Fig. 3341 , showing a series of ventilators or air flues, and the curved plane.

Fig. 8340 is a perspective view of a cection, showing the comlination of the different parts.
Fig. 3343 is a horizontal view, taken at the line a a of Fig. $334 t$, showing the air-flue, and the entrance of the ventilating tubes.

Fig. $334 t$ is a vertical section of the chimmey in combination with the rentilating tubes and airchambers.
'The same letters in the several figures represent the same parts.
The nature of the first part of this invention consists in arranging upon the outside of the inclined piane, at the base of the diaphragm, a series of air-flues, extending from the spark-chamber through the diaphragm, the mouths of said flues leing in the spark-chamber, and their exits in the diaphragm, हo that the rotary current of steam, \&c., through a series of curved flues in said diaphragm, will pass over the exits of said air-flues, causing a current of air to be drawn from said spark-chamber through said air-flues in the direction of the current of stean, \&e., for the purpose of creating a partial vacuum in said spark-chamber into which the sparks fall. And in order to effect the deposit of such light particles as may possibly reach the top of the diaphragm, the nature of the second part of the invention consists in arranging an air-chanber within the diapluagm at the top of the stack, which chamber is ventilated or exhausted by means of tubes conneeting that chamber with the air-flue at the bottom of the chamber at the top of the chimney.

To enable others skilled in the art to make and use this invention, we will proceed to describe the same with reference to the drawings.

At the top of the chimney A is placed an air-chamber 3 , over which is placed a deflecting cone C , in the form of a fumel, with the outer edges turned down all around uniformly, to reverberate the steam, grases, and particles, and throw them into a series of curved and inclined flues D, surrounding the airchamber B, by which a whirling or rotary motion is produced within the diaphragm O. This diafhagm is provided with a series of apertures (t. The exhanst stean, in passing through tha
chimney A into the air-chamber B, bas the effect of drawing a current of air between the curved plane K, and the chizney A, through the air-flues F, out of the spark-chamber J.
The air-the: F are arranged on the outer side of the incline 1 plane E , at the base of the diaplragm, and extend from the chamber J through the diaphragm O. The mouths of the flues F are in the sparkchumber J, and their exits c in the diaphragm O, the current of air through them being in the direction of the current of steam, passing through the inclined flaes D , as shown by the arrows, so as to allow the air to pass out trom, and prevent the sparks, \&c., from passing into the spark-chamber through saiu lues F .

At the bottom of the diaphragm 0 , under the series of eursed and inclined flues 1 , is a curved plane K, an an inclined plane E . In the inclined plane E is placed the series of flues F above deseribed. The effect of the passage of the circular current of steam, dec, within the diaphragm 0 , and over the air-flues F , is to still further exhaust the spark-chamber J of its air, on the same princifle that the spark-chamber J is ventilated by the passage of steam, \& c , over the air-flue 1 , (shown by dutted lines in Fiy. 3344 , at the bottom of the air-chamber E.

The eircular current has the tendency by its centrifugal furce to tleor the particles off in a tangent, against the inner walls of the diapliragm O, and through the apertures G into the outer or spark-chamber J. The deposit of the sparks, dec, in the spark-chamber J is greatly facilitated by the action of the partial vacuum in the spark-chamber J, by which a draught is occasioned through the apertures G of the diaphragm O, towards said spark-chamber J.
8341.

It will be seen that the spark-chamber J is exhau-ted of its air, in part, by every pulsation of ex. hau-t atem, consequently betwen every pulsation there will he a dranfht towards ihe park-chamber J through the air the as wofl ats thronsh the apmerture (i of the diaphramon 0 . This dram hit through the nir- Alae tuwards the parkechamber J will have the efleet to create a dramght upards through thes chimeney A, by which the draught of the furnace will be to a great extent re gulated, amd the heat cor re pondinsty increasal.
 past to ancother :ur-chamber I, at the top of the stack. The pawabe of the ste:m thromph the channey A temls to draw a current of air thronfh the pipes 1I, in the same manmer in which the ventihe ton of the sparke chamber J is effected, the rewult of which it to whan-t the air chamber I of a pur-

 ewolved.

SPLCHIFC GHAVITY: Sen finavits.

direct from the drawing frame, and has only one row of spindles on one side of the frame; these art usually called spceders: the other receives the bobbins from the speeders and still further reduces the rovings; these are called stretchers, and have rows of spindles on each side like the throstle. The roring from these machines, unlike the first varieties, has a little twist: the chief objection to them lies in the power required to drive them, and on this account chiefly, they have been superseded by the bobbin and fly frame in the finer mills; two machines being commonly used, corresponding to the speeder and stretcher, a coarse and fine frame. In their general action they may be said to unite the drawing and spinning frame, performing both processes, and being the connecting link between the two.

SPIKE MACHINE. Burden's Patent. "In my improved machine, the feeding in of the rod, the zutting it off, and the pointing the s;ike, are effected in the way previously used by me for performing

the same offices in my ordinary spike machines, or adopted by others; and my improvement for forming the spikes with hook or brad heads, may be applied to spike maclines of various constructions.

Before the introduction of my improvement, the heads of hook or brad-headed spikes were, so far as I am iuformed, always made by hand, and they were necessarily imperfect, being deficient in that uniformity in shape and strength which are important requisites. My improvement in manufacturing them consists principally in the employment of what I denominate a bending lever, or some analogons device, by means of which the portion of the rod which is to constitute the head is bent down so as to form an angle with the shank, and in then forcing up a heading die, properly formed, so is to upiet the bent portion, and to catus it to assume tho desired shape.

In each of these figurea, whero liko parts are whown, they are designated loy the aame letters of reference. A A is the bed plate upon which tunat of the operating parte of the machine are shatained. B B are the dies which grip and hold the apike-rod turing the time the bembling and heading are efficted. C is a lever by which the die B is elosed, the die 13 being statimary. This lever is neled on hy the segmental cam 1) on the drivinesthaft E of the machine; the frame FFF, which holds the die II, works on a jointrod $c c$, and is lifted loy the strap dd, attached by the joint-pine to the lever C. The ngike rod

f is to be fed into the dies in the usual way, and as soon as the dies are closed upon the piece to be headed, the bending lever G has its outer end h raised by the cam H on the shaft E, which causes. it end g to descend upon the projecting end of the spike-rod, and to bend it down in the manner shown. I is the heading-slide which carries the heading-die J, and as soon as the cam H escapes from the outer end of the bending lever h, and that end descends, the cam K comes in contact with the end L of the heading-slide, which it forces.

In the accompanying figures a represents the frame-work of the machine, in which are hong the shafts $b b b$ of three rolls $c c c$, arranged at equal distances around a common axis. Each shaft has two jourvals running in boxes $d d$, the lower one so mounted in the frame by means of set-serews e the axis of the rollers can be adjusted in a radial direction from or towards the central line around which they are arranged. The rolls are frustums of cones from the lines 1 to 2 , and 2 to 3 , which is the extremity of the rolls; they are in the form of the frustum of a flatter or more obtuse cone, so that in the plane of the radii of the common centre, the latter part will be parallel with the common axis around which the three rolls are arranged.
33.3.

There is a cog-wheel f on the shaft of each of the rolls, the three being' of equal diameter, and thest three are caused to rotate in the same direction by means of two intermediate cog-wheels $g g$. The driving power should be applied to the shaft h of one of the rolls in any desired manner, although it may be applied to the shafts of one of the intermediate wheels. The dotted lines $i j$ in seetions, represent the inclination of the axis of the rolls, and the intermediate wheels form the axis round which they are arranged, and the dotted lines $k k k$ represent vertical planes radiating from this common axis, and the dotted lines $l l l$ the lines of the axis of the three rolls which are slightly jnelined thereto

When the rolls are set in motion a loop or ball of iron m, in a highly heated state, is dropped in between them, at their upper end, the frame-work being left open above for that purpose, and the slight inclination of the axis of the three rolls from the vertical plane, as indicated by the dotted lines $b b b$, causes the rolls gradually to carry down between them the ball of iron towards their lower end, where they are nearer together by reason of the inclination of their axis from the vertical line being greater than the lines of the cones.

By this means not only is the mass of iron gradually drawn down in the direction of the common axis, around which the rolls are arranged, but by the action of the rotating surface of the rolls, in a line nearly at right angles to this common centre, the iron is rotated on its axis and squeezed in a spiral direction, and the mass gradually elongated and carried out at the bottom in a round bar n, of a diameter equal to the space between the lower end of the three rolls, where the cones are so flat as to reduce the bar to a cylindrical form. For the purpose of preventing the rolls from being overheated
by contact with the highly heated mass of iron under treatment, the rolls may be made hollow as indicated by the dotted lines, with a central water-tube o, extending down to near the bottom through which water is introduced, and which flows out around the tube, and is discharged at the top.
Fig. 3345 elevation of right side of machine, showing the fly-wheel, pulleys, bands, and fixtures, to apply the moving power.
Fig. $3345 a$ section of same through $c d$.
Fig. 3310 elevation of left side of machine when closed in the act of finishing a spike.
Fig. $3346 a$ section of same through $a b$.
Fig. 3347 front elevation, with pointing. levers clozed.
Fig. 3318 rear elevation, with pointing-levers closed.
Fig. 3349 longitudinal section and elevation of machine, prepared for making hook-liead spikes, tha machine open, and immediately after forwarding the nail-road, and ready for the downward motion os the upper lever and hooker.

Fig. 3350 section after the downward motion of upper lever and hooker.
Fig. 3351 section after the downward motion of upper lever and hooker, with the header home and the spike headed and pointed.

Fig. 3352 plan of heading-box and heading-lever B, heading-bolt II.
slimning fliame. See Mule and Theostle.
SPINNING-FRAME BANDING, MACIILNE FOL MAKING. Applicable to the making of small cord for any purpose.
Description,-A, Fig. 3361, is the combination of fixed loose pulleys receiving the driving-band. D is a cone, from which a band leads to a round cone directly in the rear of B on the shaft b; thence by another band to the pulley c motion is communicated to shaft c, which takes up the banding as it is laid, which from thence passes to a bobbin, and is wound by the friction of a drum on which the bobbin liea, which is driven by a band from the pulley i, but which are not shown in the drawing. E is the machine which lays the banding. A revolving motion is given by the band-geer C around the fixed spindle D, while the upper is steadied in a socket at d, and the whole is supported by the point l bearing on the top of D. The twist to be made into banding is wound on two bobbins p placed within the flyers h, held between two disks, which disks are kept together firmly by two rods, not shown in the figure. The twist, as it leaves the bobbins, passes round the rim of the flyer, or through a staple in the conical weight i, thence through a hole in the end of the bar f, thence through the centre of the flyer twiee or thrice round the geered rolls k, thence through the centre of the spindle of the machine 1 b, when the two strands are twisted together or laid. The shaft E : takes up and delivers the bandims. It is evident that in laying the banding, if the bobbins were stationary, a portion of the twist would be taken ont; to remedy this by means of the geer m tixed on the spindle D and an intermediate n, motion is given to the geer o to which the theer is fastemed by this means, as much or more twist is put into the strands as wonld be lust in the laying. The
 bubbins of t wist p are held on spindles, which spinHes fit into a socket in the botton of the flyer, and the upper end passin: through the bar f is hehl by n small serew. To take out the spindle, the bar f can be revolved.

STATLONARY STEAM ENGBNE. U'nder tho head of "Engine" will bo fond the nsual rarieties of Stationary Engines. $13 y$ far the largest class in this country aro horizontal cylinders, with every varicty of valve nad cut off. Of Inte yenrs it has been fomm ceonomical to nvoid wire drawing, to opern and close the steam ports as suddenly nas possible, und to uttach the governor dircetly to the stemm valve.
 inventor. I'late V'll represphis one of his engincs: in this cate a vertical engine, but the improvements are equally adaptera to horizontal emgines.

Stutionary Sitam I:ngine, Corlias L'utent. The chiof peroulinrities lis in the mothool of worhine tho valves, and in controlling the valve mation by the fovernor, so na to regulate the motion of the curite with perfection, and ase the stemen th the beat advantage undor all conditions.

Tho valves emphoyed ure rotury sliding valuen. Their motion is similar to that of the commem phagcock or fitucet, but the form alopted is such that they till a portion only of the celindrical conitien in
 adapt itedf to all conditions. It works freely and yat remains tight, precively like mo ar limary alide

portion of the stroke. The precise point at which this shuttirg of the steam valve occurs, and conse quently the volume of steam admitted into the cylinder in any gen stroke, depends on the position of the governor balls l, and the speed of the engine is regulated by the variations in the quantity of stear thus admitted. The principal improvements in this engine are therefore twofold.
First: There is a peculiar device for moving each steam valve and each exhaust valve, with a distinct and independent motion, by means of a crank-wrist. Λ series of crank wrists, $a^{1} a^{2} a^{3} a^{4}$, are attached to a common dise or plate, a, which latter is secured to a rock shaft connected with the main eccentric. Each wrist operates through a distinct lever upon its proper valve ; and all of the wrists are so arranged on the common wrist-plate, with reference to their levers, that they act like cranks, each of which vibrates near its dead point or point of slowest throw, and therefore imparts but little movement to the valve it actuates, while that ralve is closed, and moves with its fastest throw, and therefore imparts the greatest morement to its valve, during the opening and closing motions. This is a substitute for the common slide valve arrangement. As commonly constructed, a steam valve and an exhaust valve are rigidly connected together, so that when one is moved the other is forced to move equally with it.

The whole amount of force consumed in unnccessarily mowing a valve while closed, is expended to no good purpose, and tends to increase the wear of the engine. The new device therefore, secures two adrantages: first, it saves much of the power which was injuriously expended in moving the closed valve; second, it prevents wire-drawing or waste of the expansive force of the steam, because the valves are moved with increased speed while opening and closing their ports.

The second improvement in this engine consists in a method of automatic regulation of the steam in Ets passage into the cylinder, so that, by means'of the steam valves only, the entire expansive force of the steam is saved and applied. This is effected by combining the governor-all its sensibility being completely preserved-through the agency of stops or cams, with the catches that liberate the steam valves for the purpose of cntting off the flow of steam into the cylinder.
The Corliss engine then, is a steam engine with sliding or circular valves, and with a new valve-gear adapted to perfect automatic regulation and to the saving of fuel. The regulation in this engine is purely antomatic, and practically perfect, as it acts without impairing the effect of the stearn. The common method of regulation is by the employment of a throttle valve, a kind of damper in the steam pipe, described on page . This is connected to the governor, so that as the speed of the engine is increased the aperture throngh which the steam passes is diminished; by thus retarding its flow, the pressure of the steam iu the cylinder is diminished, and the velocity of the engine is conseqnently checked. The action is a continual choking of the engine, which is increased and diminished according to circumstances, but is always a tax on the power. The loss by the use of the throttle-valte is universally acknowledged to be very serious. Mandsley, in Great Britain, and several others, succeeded in regulating by varying the cut-off by the hand of an attendant, but the adjustments could not be successfully effected by the governor prior to this invention, as the power required to clange the parts exhausted the sensibility of the governor and made the motion very irregular. Even the slight resistance experienced in turning a throttle-valve-as it is necessarily effected through the intervention of a steam-tight stuffing box-is sufficient to affect the action of the governor, and make the throttle regulation not only wasteful, but imperfect. In the method here represented, there is practically no resistance to the rise and fall of the governor balls, and the engine is found to work with apparent uniformity, even in driving such machinery as large rolling mills, where the resistance varies suddenly from 60 to 360 horse power.
In the cugraving, the letters c and d as before observed, indicate the steam valves, or rather indicate levers, keyed on the stems of such, and by which they are worked. Near the extremity of each rod, and k, is provided a suitable hook or catch, which at each rocking movement of the plate, a, seizes the respective lever c or d, and opens the valve, but by a movement which necessarily presses the polished side of j or k against the end of one of the light and loosely mounted slides $n n$. This contact, as the circular motion of the wrist pin a^{1} or a^{2} continues, aided by the curvilinear motion of the extremity of the lever, compels the book to slip off and release its valve, which is then immediately closed by a weight suspended to the rod r or s. The slight rods or slides $n n$, are free to slip endwise until their opposite extremities press against the side of the pieces oo, mounted for the purpose on the rod m of the governor. The sides of oo are inclined slightly, and as they are elevated by the rise of the governor balls, they urge $n n$ forward, and canse the hooks to detach and the steam valves to shut at an carlier point in the stroke. When, on the other hand, the engine inclines to run too slow, and the balls sink, the slides $n n$, yield to the slight pressure of j and k, and slip back until they are in contact with o, and thus more steam is admitted into the cylinder, the steam valves not being detached until a later period in the stroke. In case either the resistance to the motion of the engine becomes very great, or the pressure of the steam becomes very slight, the slides $n n$ retreat so far that they fail to detach the hooks and the stean ralves consequently remain open during the whole stroke, like the exhaust valves.

It will be observed that in this engine the governor nowhere performs any labor, and, on the contrars, only indicates the change required to the levers which move the valves. This does not task its powers: it puts forth only the force necessary to more the small stops $n n$. This morement is attended with the least possible friction, and the stop presents absolutely no resistance to the governor, except at the very instant when it is in actual contact with j or k.

In puppet-valve engines, the valves must be started from their seats or places of rest at the moment of opening their ports. In this engine, as we have seen, the sliding or circular valves have a rapid motion at that point, analogous to, but faster than, that in the common slide valve arrangement. This allows the ports to be uncovered and covered rery rapidly, withont involving any accompanying sudder: motions and concussions. It allows the valves to be opencd very widely with great rapidity, a point of considerable importance in the motion of the exhanst valves, as it is always desirable to discharge the steam as freely and rapidly as possible when its work is pertormed. But its greatest merit lies in the "int that it prevents a wire-drawing of steam at the closing of the steam valres, by meaus of the sule
jemess of the motion；a result whieh cannot be oltainel in an engine liaving puppet－valves，becau－e the descent of the valves by gravity，must．in such engines，be very moderate at the termination of the motion，to prevent their slamming on their seats．

The alternations in the action of the steam，as ordinarily effectel，are constantly in progrese．＇Thes ofening for the admission of the steam enlarges gradually，and is moner fully and freely open that it eommences to cluse：the same is true of the opening fur the exhaust．In orle r to so elfect the op－ crations of admitting and discharging the steam that the moan of each thall he at the proper time，it is m－ cesary to commence a certain time in alvance．Thus the stam begins t ）enter the eylinder to prompon a movement of the piston in one direction before the previuns stroke las been fully coinpleted．and con－ equently act＝for a brief period in the wrong direction，or as a retarding foree；and subsequently be cins； th recape．and to lose its cflect before the piston has completed its proper mowement．Tlise imperfer－ tions in the action of the steam are mavoibable in the common varictics of the stemm chane，wh ther using slde values or puppet valves．but are ermpletely avoided in this style of engine：the stemn bur admitted and diselaremel very treely，and at the moment the piton is at the ends of the stroke．The construction allows of the adjustintr of the valve motion so as to receive and discharge a little in all－ vance or a listle behin 1 this perinal if preferred，and in fact，these encrines ar：trequently a lju－te I in va－ rims conditions in this respert ：but the necessity for commencing either operation in alsane，or rivin ＂lead＂to the valves，is entimely removed by the rapility with whieh it is efforth．

Perfection of eeonomy in the use oi steain is to admit it freely at a hioh pres－ure at the moment the niston commences its stroke，and allow it to follow at full pressure through such a fraction of the stroke that the subsequent expamion shall，during the remainder of the stroke，reduce it to the lowest pressure at which it can be uscful．A certain amome of pressure，varying from otse to three or four，pomens is always required to overeme the friction of the engine．Whenever steam is discharged from a eylin－ der at a hipher effewtive presoure than this，it proves that there is still power remaining in it whitis might have been utilized by a better arrangement and propertion of the curgine．It might seem reazm－ able to supp se that the grain of effect lue to expansion，explained whate ，may be inereased in－
 the stroke；but there are other considerations，due on the strains on the parts，the friction on the surfiees， and the leakare of steam，which limit it．In the Corliss engiue，the averuge expansion allowed in that Luund most cconomical in practice．

It should be premised that it requires a higher femperature，but only a very little ereater amount of heat， to evaporate a given quantity of water at a high pressure than at a low．Jiecent claburate scientitic experiments，as also the results of general experience，assure thi that there is a little，and but al little difference in the amount of fucl consmond，in craporating a cubic fuot ot water at 100 ponnds pressure or at I pound pressure，while the power derivable is much greater from the stean of highest pressure， used expansively as above described．The actual cost for fuel to obtain my given power，is a subject which bus not received the attention it deserves．The following conlensed tabular stateme in indertes the actual performances of these engines．The data are from large mills in ordinary anl ematant uw， and in this respect differ very widely from experiments conducted for short periods ant with miniature apparatus，－good common engines had been previously employed in each．

SeT The quantities narked with an asterisk（＊）indicate the amount used tor heating and dressite in addition to that required for power．

Eatnblishment．	Hursen power liy Jnli．alor．	Js．Coal cunamed prer day with Curlas Engine．	ILa．Lonl pas Horso jur llour．	Ounces Coal per day jer Syinalle．	Itis．Coal consurned wah former lingince．
Sthatic MT，Prov＝ dfone 1：I．	270	6,0011	1－3	3.912	－
bury furt，Mas．	$2(10)$	6，000）	2\％＊＊	51900＊	9．8゙以 ${ }^{\text {\％}}$
J：athes Mila，11s．	$1!31$	5，13911＊＊	2\％	$\therefore \ldots$	1！，小＊
	24.1	4.8131%	$\because 49$	－	11．111＊
	（i） $6,0: 3$	4， 1261$)$	－		11，12M ${ }^{\text {a }}$

 \％

of B, the large cutting-roller, which is open. L is the lever or handle to set the feed-geer in motion, l_{y} lifting the wheel which drives the feed-shafts.

The nature of this invention and improvement consists in combining and arranging two revolving rings or wheels having eutters on their opposing surfaces next each other, for shaving the stave transversely on both sides at once, producing a stave the cross-section of which is the segment of a circle, the diam eter of which is to be greater than the diameters of the wheels, and the curre of the stave being variable at pleasure for all kinds of easks. The position of the whole geering can be changed to suit the angle of the stave's curvature, as the stave moves on the cutters it being the hypothenuse of a right-angled triangle formed by the parallel lines on which the cutters are placed. The whole machine is constructer] on the principle of considering a circle (for the curvature) to be a regular polygon of an indefinite numher of sides, the sum of the sides being the perimeter of the circle.

A patent was granted for this machine to Judson \& Pardee, New Haven, Conn. It cannot but be at great benefit to our country, as it destroys at once the rough, slavish work of cooperage, and lets the cooper occupy his lands with the most light and easy parts of his trade.

STAVE-JOINTING MACHINE. Fig. 3363 is an engraving of a stare jointer, the invention of Mr. II. Law, of Wilmington, North Carolina, who has taken measures to secure a patent for the same. Its utility, nature, and mode of operation will be fully anderstood by the following description:

A A A, frame. B, lever, which moves the frame L L , together with the saw and roller D, which are all attached to frame L. L. C, lever, by means of which lever B is moved. D D, concave rollers under which the stave passes. EEE E, standards to support D D. F F, circular saws, standing in a raking position, verging in opposite directions, so as to give the proper bevel to the edges of the stave. GG GG, raised pieces over which the stave passes, which raised pieces together with the concave rollers D D form throats or slots just the thickness of the stave, and through which the stave is made to pass II, a guide-picce to conduct the stave to the second saw. I, a light spring to press the stave against the guide-piece H.J, the end of the feed-chain which connects with the dresser. K K, dogs or hooks, attached to the endless ehain and traversing in the curved slot S S S to carry fortard the stave-the chain

is underneath, and does not appear in the engraving except at J. L L, morable frame that supports the saw, and that is attached to and acted upon by lever B to adjust the saw to the width of the stave. Mi, journal-box. P P, pulleys to drive the circular saw. O, pawls, or hold-fasts, to lever C. NN, weight and rope that move lever B. Q Q, index beds. R, curved piece attached to lever B., dotted curved line ranging with the saw, and governing the feed of stave on that side.

Operation.-The stave is deposited by the machine on the floor of the jointer, and is placed by hand with the back of the stave ur, with one edge on the dotted lines, being the proper prsition for that edge
to be jointed br the first saw, and with a single glance of the eye on the index lines on the near side tha tender can see what width the stave will bear; if it is described, for instance, by the first line, the lever C is immediately placed on the corresponding first line, and held fist by pultey O , or if the stave is of some other width it is readily scen, and the lever C placed in the proper pu-ition; but it is not convenient that the saw should take that position immediately, therefore lever B is still hide fane in its former position by ratchets underneath and attached to cireular piece k, which circular piece is attached to ant tritverses with lever B. There is a ketch attached to the frame of the machine, which is preseed into the ratchets and holds fast lever B. This hold-fiat is tripped by one of the durs pawing through a throat under the floor at the proper time, when the weight N immediately shifts lever 13 to lever C, and places the saw in it= proper position. The dog that carries the stave forward traver-es in a curved line corresponding to the bilge or taper of the stave, giving to the stave its taper, and both saws fanding in a rakiog position curresponding to the bevel of the stare, gives to the stave its proper bevel, the stave fassing between the raised pieces G G G G and the concare roller D D, which tugether form a slot just the thickness of a stave, must of necesity bring every crook or twist fair to the saw, jointine to correspond with the crooks and twists, and making a more perfectly shaped stave than can possibly be dune by the hand. The staves are pressed by springs (which do not appear in the engraving) up araint the rollers D D, and as the rollers are more concave than the stave is convex, one edge of a narrow stave is forced into this concavity and presents an edge less bevelling to the saw than a wide stave does, so that without any alteration of machinery the bevel is made to correspond to the width of the stave; to accomplish this with the second saw the concave roller, together with the near standard E and raised piece G, is attached to the frame and shifts with the saw.

STEAM. The elastic fluid into which water is converted by the continued application of heat.
All liquids whatever, when expozed to a sufficiently high temperature, are converted into vapor. The mechanical properties of vapor are similar to those of gases in general. The property which is most important to be considered, in the case of steam, is the elastic pressure. When a vapor or gas is contained in a close vessel, the inner surface of the vessel will sustain a pressure arising from the clesticity of the fluid. This pressure is produced by the mutual repulsion of the partieles, which gives them a tendency to tly asunder, and causes the ma-s of the fluid to exert a force tendiner to burst any vessel within which it is confined. This pressure is unifurmly diffused over every part of the surfice of the vessel in which such a fluid is contained: it is to this quality that all the mechanical power of stem is due.

To render the chief properties of stean intelligible, it will only be necessary to explain the phenomena whieh attend the consersion of water into vapor by the eontinued applieation of heat, under the various circumstances of external pressure which present themselves in the processes of mature and art.
Let A B, Fig. 3064, be a tube or eylinder, the magnitude of whose base is a square inch, and Lut a piston move stean-tight in it ; let it be imagined that under this pi-ton, in the bettom of the cylinder, there is an inch depth of water, which will therefore be in quantity a cubie inch; let the piston be counterbalanced by a weight W acting over a pulley, which shall be sufficient to connterpoise the weight of the piston and its friction in the evlinder; and lot the weight W^{5} be so arranged that from time to time its amomat may be diminished to any required extent. Under the circumstances here supposed, the piston being in contact with the water, and all air being excluded from beneath it, it will be pressed duwn hy the weight of the atmosphere, which we shall assume to be 1.131 Ls . Lee it he al-u sup po-ed that a thermoneter is placed in the water under the pistun, and that the tabe i is is traniparent, so that the indications of the themometer may be observed. The temperature of the water under the piston beiner reduced to that of melting iee, which is $8 e^{3}$, if the common thermometer, let the flame of a lamp be applied moder the tube, and lee the time of ite application be noted. If the thememeter be mow obeerved, it will he seem slowly and emal ually to indieate an increa-ing temperature of the water, the pi-ton mantaming it positmin in comas: with the water unchanged. This angmentation of the temperature will emante until the thermometar indicates the temperature of 210 ? Set the time be then moted. It will he limad that after that equeh. the water will ceate to incrate in temperature, notwithatadine the continued applicathon of the lanp,
 will he observel gradually to riow, leavim at atace upparenty vatant hetwern it ant the water. The depth of the water will, howerer, be at the sathe time gradually dimini-hed, and the diminutinn of it

 lamp be continued, and the tube have sufficient lengh, the water will, after the lapee of a cortam time, altergether disappar from the hothon of the tule; an! when that ocenrs, the pistm will have rimen th

which the water had been converted, it is apparent that the cubic inch of water, in this case, was corverted into 1700 inches of steam.

The pressure of the atmo*phere above the piston was, in this case, overcome by the elastic force of the steam, and the piston, bearing that pressure upon it, was raised to a height of 1700 inches. In the evaporation, therefore, of this cubic inch of water, a mechanical force has been evolved equivalent to $14 \frac{3}{4} \mathrm{lbs}$. raised to the height of 1700 inches.

From the moment at which the water began to be converted into steam the thermometer, having then attained 212°, ceased to rise. Nevertheless, the application of the lamp was continued, and therefore the same quantity of heat per minute was still supplied to the water. Since the water did not increase in temperature, it may be asked what became of this continued supply of heat received from the lamp? It may be said that it was imparted to the steam into which the water was converted; but if the thermometer were raised out of the water, and held in the steam between the water and the piston, it wonld still indicate the same temperature of 212°. We thus arrive at the extraordinary and unexpected fact, that notwithstanding a large supply of heat imparted to water during its evaporation, that heat is sensible neither in the water itself nor in the vapor into which the water is converted.

The quantity of heat which is thus aborbed in converting water into steam is easily determined, the interval of time being noted which elapsed between the first application of the lamp and the moment at which the thermometer ceased to rise. Let us suppose that interval to be an hour ; the interval being also noted between the moment the thermometer ceases to rise and the process of evaporation begins, and the moment at which the last particle of water disappears from the bottom of the tube and the evaporation is completed, it will be found that this interval is $5 \frac{1}{2}$ hours; and in general, whatever may be the length of time necessary to raise the temperature of the water from 32° to $212^{\circ}, 5 \frac{1}{2}$ times that interval will be necessary for the same source of heat to evaporate the same quantity of water. It follows, therefore, that to cvaporate water under a pressure of 14^{3} pounds per square inch requires $5 \frac{1}{2}$ times as much hoat as is necessary and sufficient to raise the same water from 32° to 212°.

Since the difference between 212° and 32° is 180°, and since $5 \frac{1}{2}$ times 180° is 990°, it follows that to convert the water into steam after it has attained the temperature of 212°, as much heat must be supplied to it as would be sufficient, if it were not evaporated, to raise it 990° higher. The heat thus absorbed in eraporation, and not sensible to the thermometer, is said to be latent in the steam; and the phenomena which have been just described form the foundation of the whole theory of latent hoat. That this large quantity of heat is actually contained in the steam, though not sensible to the thermometer, admits of easy demonstration, by showing that it may be reproduced by converting the steam into water. If a cubic inch of water, in the form of steam at the temperature of 212°, be introduced into the same ressel with $5 \frac{1}{2}$ cubic inches of water at the temperature of 32°, the steam will be immediately converted into water; the temperature of the $5 \frac{1}{2}$ inches of ice-cold water will be raised to 212°, and there will be found in the vessel $6 \frac{1}{2}$ cubic inches of water at 212°. Thus, while the steam, in reassuming the liquid form, has lost none of its temperature, it has nevertheless given up as much heat as has raised $5 \frac{1}{2}$ cubic inches of water from 32° to 212°. It is therefore demonstrated that this quautity of heat was actually in the steam; and that it was its presence there in the latent state, by some agency not yet explained, that conferred upon the water in the vaporous form the property of elasticity.

We have here supposed that the pressure under which the water in the tube was evaporated was the mean pressure of the atmosphere, or $14 \frac{3}{3}$ lbs. per square inch. Let us now suppose that the piston resting on the water is loaded with a force of $14 \frac{3}{4} \mathrm{lls}$., besides the pressure of the atmosphere, which may be done by taking $14 \frac{3}{4} \mathrm{lbs}$. from the counterpoise W. If the same process be followed as before, it will now be found that the thermometer will not cease to rise when it has attained 212°; nor will the piston then begin to ascend. The thermometer will, on the other hand, continue to rise until it has attained 250°. It will then, as in the former case, cease to rise; the piston will ascend, and the water will begin to be converted into steam; the proportion, however, between the ascent of the piston and the diminished depth of the water, or, in other words, between the volume of steam produced and the volume of water producing it, instead of being 1700 to 1 , will now be about 930 to 1 , being little more than half the former proportion. The force against which the elasticity of the steam, in the present case, acts, is $29 \frac{1}{2} \mathrm{lbs}$. ; and this force is raised about 930 inches by the evaporation of a cubic inch of water. In the former case, a force of $14 \frac{3}{4} \mathrm{lbs}$, being half the present force, was raised to 1700 inches by the evaporation of the same quantity of water. If the double force, instead of being raised 930 inches, had been raised only 850 inches, or half the first eleration, then the mechanical effect evolved would in both cases be precisely the same, the double resistance being raised through only half the space; but the actual height through which the double resistance is raised being 930 inches instead of 850, a greater mechanical effect is produced in the one case than in the other, in the proportion of 930 to 850 , being an adrantage on the part of the steam of greater pressure of about 8 per cent.

If the pressure under which the evaporation is produced were further varied, it would be found that with every increase of pressure the temperature at which the eraporation would commence would be augmented, and that with every diminution of pressure that temperature would be diminished. It would be also found that the volume of steam produced by a cubie inch of water would be less with every increase of pressure under which the evaporation is made; and that the diminution of rolume would be nearly, but not in quite so great a proportion, as the increase of pressure. In like manner, if the pressure be diminished, the volume of steam produced by a cubic inch of water will be augmented in nearly, but not quite so great a proportion, as that of the diminution of pressure. From all this, it obviously follows that the mechanical effect evolved by the evaporation of a given volume of water under different pressures is very nearly the same; greater pressures, however, having a slight advantage over lesser ones.

It has been seen that 143 Jbs , are raised to a height of 1700 inches by the evaporation of a cubic inch of water under the pressure of 143 lbs. per equare iuch. Now, 1700 inches ire nearly equal tc 142 feet; and $14 \frac{7}{} \mathrm{lb}$ s. raised 142 feet is equivalent to 142 times $14 \frac{3}{4} \mathrm{lbs}$. raised one foot, which is cquad
to very nearly 2100 lbs ．raised one foot．To use round numbers，it may then be slated，that by the evaporation of a cubic inels of water a mechanical furce is produced equivalent to a ton weight raied a foot ligh；and that this force is very mearly the same，whatever be the temperature or pressure mide： which the evaporation takes place．

In the following table，ealculated by Dr．Lardner，and given by him m the Appendix to the Tthedi tion of his work on the Steam－Engine，is exhibited the temperatures at whel water is evaporated unde： different pressures，the volume into which the water expands by evaporation，the mectratucal effect wolved expressed in lbs．raised onte foot．

	Correspond－ ing Tempera－ ture．	Volume of the steam com－ pared to the volume of the water that has produced it．	Mechanical ef－ fect of a cubic inch of water evaporated，in pounds raised one fout．		$\begin{aligned} & \text { Correspond- } \\ & \text { ins' Tempera- } \\ & \text { fure. } \end{aligned}$	Volume of the stann comb pared to the volume of the water that has produced it．	Mechanicalef－ leet or a cubic inch of water evaporated，in pounds ralsed one fivet．
1	102.9	2）S6is	1739	58	2929	481	2359
2	1261	10874	1812	59	294%	477	2343
3	1410	7437	1859	60	2956	470	2347
4	$152 \cdot 3$	5685	1895	61	296.9	463	$\bigcirc 351$
5	1614	4617	192．t	62	298.1	456	2355
6	169\％	8597	1918	63	299.2	449	2359
7	175.9	8376	1969	6.	$300 \cdot 3$	443	2362
8	182.0	$\bigcirc 983$	1989	65	$301 \cdot 3$	437	2065
9	187 ＇4	2674	2006	6.5	$202 \cdot 1$	431	$\bigcirc 369$
10	102.4	2126	2022	67	$303 \cdot 4$	425	$\bigcirc 3$ ¢2
11	197.0	22．1	2036	is	$304 \cdot 1$	419	2375
12	201.3	2050	2050	69	$305 \cdot 1$	411	2375
13	2053	1904	2063	5	$300 \cdot 1$	405	2382
14	2091	175	2074	71	$30 \cdot 1$	4103	2885
15	2128	1669	2086	「2	308．1	895	23 S
$1 i^{1}$	216%	15\％	2097	73	8093	80%	2391
17	2196	1488	2107	74	$310 \cdot 3$	385	2394
18	$220 \cdot 7$	1411	2117	75	811%	38.3	2097
19	29－6	1318	2126	Tic	8122	879	$\because 100$
20	2985	1281	2135	\％	$310 \cdot 1$	3.4	$\because 103$
21	231－2	1285	214．	78	31.0 ．	370	$\bigcirc 105$
22	2388	1174	2152	79	3149	366	$\bigcirc 108$
23	236．3	1127	2160	80	$315 \cdot 8$	862	2411
24	238.7	10S t	2168	S1	316.7	358	2114
25	2.11 .0	1044	2175	82	3176	351	$\bigcirc 117$
${ }^{2} 6$	2183	1007	2182	83	$315 \cdot 4$	350	2119
27	215.5	973	2189	84	3193	346	2122
28	21%	941	$\bigcirc 196$	85	： $0 \cdot 1$	342	2.125
29	2196	911	$\bigcirc 202$	86	321.0	339	2127
30	251%	88：	2009	87	321．8	335	$\bigcirc 130$
$\because 1$	2536	857	2215	88	82.6	332	$\because 132$
32	2455	883	22.1	89	323.5	325	$\bigcirc 4: 5$
33	2573	810	229	90	3213	825	$\because 138$
31	2591	ins	－28	41	$325 \cdot 1$	322	$\because 110$
35	2609	767	－238	8	3250	319	$\because 113$
26	268	71%	$\because 213$	93	320.7	316	$\because 115$
37	2113	7×9	2218	9 t	32.5	313	214
$\because 8$	$\underline{2659}$	712	2253	4	3マロー	3111	$\bigcirc 150$
89	26.5	695	2－259	91	$329 \cdot 0$	：07	2153
40	2691	679	2－20	47	$8: 95$	301	$\because 155$
41	2700	（6） 1	2\％6s	！${ }^{1}$	330＇5	301	$\because 157$
12	$22 \cdot 1$	619	2973	9	：331：3	298	$\because 160$
43	2736	685	$\because 25$	100	$83 \div 0$		$\because 16$
41	$\because 750$	602	こご2	110	33：＋30	$\because 1$	$\because 140$
45	$\because 761$	（i1）	－295	120	： $11: 5$	051	2507
46	こ7－8	594	$2 \because 11$	130	135	23：3	25.7
47	2Tリ\％	546	\％e94；	110	$3 \mathrm{n} \cdot \mathrm{y}$	218	25.5
14	280%	55	2：00	1511	\％号 1	2115	\because
43	$\because 414$	51］ 1	2301	160	：$: 16 \times 7$	119	25.7
$51)$	－53：	551	2：ms	1111	：73i	18：3	2593
51	$\because 4.19$	511	$\because: 12$	14）	83741	171	－6ics
5：	28.5	531	$2: 310$	1！11）		1 iji	－6：
$8: 3$	$2-6.9$	825	$\because 30$	2014	\％\％ 3	154	26：
5.1	ごい1	516	－2031	$\because 111$	3141\％	151	
5	ごり3	5014	2！327	$\because 211$	3305	11.5	－6iry
5.13	2！05：	511	2：31	こ：1）	$39+4$	1111	ceits
57	$\bigcirc 91.7$	19：	\％	$\because 11$	4031	131	2057

Vorn II．－12

From what has been above explained, it is apparent that the quantity of sensible heat in steam in augmented with every increase of pressure under which the evaporation takes place; but if the interval of time be observed which clapses between the first application of the lamp to the ice-cold water in the experiment abore described, and the moment at which the last particle of water disappears by eraporation from the bottom of the tube, it will be found that this interval is exactly the same, whatever be the temperature or pressure under which the evaporation takes place. It follows, therefore, that the actual quantity of heat necessary to convert ice-cold water into steam is the same, whatever be the pressure of the steam; but as the temperature of steam increases and diminishes as the pressure is inereased or diminished, it follows that this given quantity of heat is differently distributed between sensible and latent heat in steam of different pressures. As the pressure is increased the sensible heat is augmented, and the latent heat undergoes a corresponding diminution, and vice versa. The sum of the sensible and latent heats is, in fact, a constant quantity ; the one being always increased at the expense of the other. It has been shown that in converting water at 32° of temperature, and under a pressure of $14 \frac{3}{3} \mathrm{lbs}$. per square inch, it was necessary first to give it 180° additional sensible heat, and ufterwards 990° of latent heat, the total heat imparted to it being $11 \% 0^{\circ}$. Such, then, is the actual quantity of heat which must be imparted to ice-cold water to convert it into steam. The actual temperature to which water would be raised by the heat necessary to evaporate it, if its evaporation could se prevented by confining it in a close ressel, will be found by adding 32° to 1170°. It may, there fore, be stated that the heat necessary for the evaporation of ice-cold water is as much as would raise it to the temperature of 1202°, if its evaporation were prevented. If the temperature of red-hot iron be, as is supposed, about 800°, and that all bodies become incandescent at the same temperature, it follows that to evaporate water it is necessary to impart to it 400° more heat than would be sufficient to render it red-hot. if its evaporation were prevented. As the mechanical effect evolved by water eraporated at all pressures is nearly the same, and as the quantity of heat necessary to effect that eraporation is also the same, it follows that the same quantity of fuel employed in the evaporation of water is productive of very nearly the same mechanical effect, whatever be the pressure of the steam.

Since the heat imparted to water in evaporation is necessary to sustain it in the form of vapor, it follows that if any portion of that heat be taken from it, the steam rill not be lowered in temperature, but a portion of it will be reconverted into water; a process which is called condensation. To illustrate this, let us suppose the tube $A B$ to be filled with steam of 212° of temperature, produced from a cubic inch of water eraporated under the pressure of $14 \frac{3}{4} \mathrm{lbs}$. on the piston. If, by the application of external cold, or any other means, a quantity of heat be extracted from this steam, say as much as would be sufficient to evaporate the tenth of a cubic inch of water, then a tenth part of the steam in the tube will be condensed and deposited in the liquid state in the bottom, the piston will descend through a tenth of its entire height, and the steam remaining uncondensed will still have the temperature of 212° and the pressure of $1 \frac{3}{3} \mathrm{lbs}$. per square inch, while the water in the bottom of the tube produced by the condensation will also have a temperature of 212°. The heat, therefore, which has been thus abstracted, is the heat which was latent in the steam formed by the water thus deposited. And in the same manner, any heat which is drawn from the steam will be latent heat; a corresponding condensation will take place until all the steam has been condensed, and the piston brought into contact with the bottom of the tube. After that, any abstraction of heat must be made at the expense of the sensible heat of the water.

It has, in some works, been stated that by mere mechanical compression steam will be converted into water. This is, however, an error, since steam, in whatever state it may exist, must possess at least 212° of heat; and as this quantity of heat is sufficient to maintain it in the raporous form, under whatever pressure it may be placed, it is clear that no compression or increase of pressure can diminish the actual quantity of heat contained in the steam ; and it cannot, therefore, convert any portion of the siteam into water.

If steam, by mechanical pressure, be forced into a diminished volume, it will undergo an augmentation both of temperature and pressure, the increase of pressure being greater than the diminution of volume; in finet, any change of volume which it undergoes will be attended with the change of temperature and pressure indicated in the above table. The steam, after its volume has been changed, will ussume exactly the pressure and temperature which it would have in the sgme volume if it were inmediately evolved from water. Thus, let us suppose a cubic inch of water converted into steam under a pressure of $14 \frac{3}{3} \mathrm{lbs}$. per square inch, and at the temperature of 212°. Let its volume be then reduced by compression in the proportion of 1700 to 930 . When so reduced, its temperature will be found to have risen from 212° to 250°, and its pressure will be increased from $14 \frac{3}{4} \mathrm{Ibs}$. per square inch to $29 \frac{1}{2}$ lbs. per square inch; but this is exactly the state, as to pressure, temperature, and density, as the steam would be in if it were immediately raised from water under the pressure of $29 \frac{1}{2} \mathrm{lbs}$, per square inch. It appears, therefore, that in whatever manner, after evaporation, the density of steam be changed, whether by expansion or contraction, it will still remain the same as if it were immediately raised from. water in its actual state.

The circumstance which has given rise to the erroneons notion that mere mechanical compression will produce a condensation of steam is, that the vessel in which steam is contained must necessarily have the same temperature as the stean itself. If then the steam contained in the ressel be suddenly compreseed, it will undergo as sudden an eleration of temperature; and the vessel containg it nut reeciring at the same time, from any external source, a corresponding increase of temperature, it will rob the steam of a portion of its heat, and a partial condensation will be produced, aud will be continued until the temperatures of the steam and the vessel containing it shall be equalized.

While water, in passing into steam, suffers a great enlargement of volume, steam, on the other hand, in heing converted into water undergoes a corresponding thiminution of volume. It has been seen that a cubic inch of water, evaporated at the temperature of 2120 , swells into 1700 cubic inches of stean. It follows therefore, that if a close vessel, containiug 1700 culic inches of such steam, be exposed to
cold sufficient to take from the steam all its latent heat，the steam will be reconverted into water，will shrink into its original dimen－ions，and will leave the remainder of the vesecl a vacuum．This prop－ erty of steam has supplicul the means，in practical mechanics，of obtaining that amunt of mechanieat power which the gropertice of the atmosphere confer upon a vacuun．If by any means whatever the space in a cylinder under the piston be rendered a vacuum，the atmospherie premore will take effet above the piston，and will urge the piston downwards with a force amounting to about 15 lbs ．on each square inch of the surface of the piston．To render steam a vailable for this parpose，it is only neces． sary to inject it into the erfinder until it expels from the cylinder all the atmompheric air or other un－ conilet，sable ga－es which the cylinder contains；and when that is cffected，the pure steam which rematin－ in the evtinder being suddenly condensed by the application of cold，le：wes the es linder a sacuma，and gives effect to the atmospheric pressure abore the piston，as befure explained．This is，in fact，the principle of the atmuspheric engive．
The temperature and pressure of steam produced by immediate evaporation，when it has received no heat，save that which it takes from the water，have a fixed relation one to the other．If this rela－ tion were known，and expressed by a mathematical furmula，the temperature might alwass be inferrul from the pressure，or rice versa．But physical seience has nut yet supplied any prineiples by which such a furmula can be deduced from any known properties of liquids．In the absence，therefure，of any general relation established by direct reasoning，empyrical furmule have been propused which express， with more or less precision，this relation in different parts of the thermometric seale．

When the pressure under which the evaporation takes phace does not exceed one atmosphere，or 15 Ibs ．per square inch，the relation between the temperature and the pressure will be expressed with sufficient accuracy by the following formule，proposed by Southern：

$$
\begin{gathered}
\mathrm{P}=0.0 .1915+\left(\frac{51.3+\mathrm{T}}{155.7256}\right)^{5.13} \\
\mathrm{~T}=155.2256 \times \sqrt{\mathrm{P}-0.019 .18}-51.3,
\end{gathered}
$$

where l＇expresses the pressure in pounds per square inch，and T the temperature by Fahrenheit＇s thermometer．

Fur pre－－ures exceeding one atmosphere and not exceeding four，the relation is expressed by the following furmulie，proposed by Tredgrld：

$$
\begin{gathered}
\mathrm{P}=\left(\frac{103+\mathrm{T}}{201 \cdot 1 \mathrm{~S}}\right)^{6} \\
\mathrm{~T}=201 \cdot 18 \sqrt[6]{\mathrm{P}}-103 ;
\end{gathered}
$$

or by the fullowing furmulie，

$$
\begin{gathered}
\mathrm{P}=\left(\frac{98 \cdot 206+\mathrm{T}}{195 \cdot 562}\right)^{6} \\
\mathrm{~T}=195 \cdot 562 \sqrt[8]{\mathrm{P}}-98 \cdot \mathrm{~S} 06 .
\end{gathered}
$$

For pressures extending from fur to fifty atmospheres，the fullowing formulx have been proposed by Mesors．Dulung and Arago：

$$
\begin{gathered}
\mathrm{P}=(0.26793+0.0067585 \mathrm{~T})^{8} \\
\mathrm{~T}=1.17 .961 \sqrt{\mathrm{P}}-39.614 .
\end{gathered}
$$

Ihiot has propucel a more gencral formula，which expresses the relation between the pressure and the temperature，whatever be the presure moder which the evaporation takes place．let p be the presure，expre ed in millimetres，of mereury at the temperature of melting ice；let t be the tempera－ ture of the water taken wn the cente－inal air thermometer；and let $a, a_{3}, a_{2}, b_{1}, b_{2}$ be constant quanti－ ties，whose values shall be determined by the folluwing comlitions：

$$
\begin{aligned}
& a=5.96181330209 \\
& \text { Lug. } a_{1}=\text { T.820.t168519: } \\
& \text { Lang } b_{1}=-0.013 \text { リ973.1295 } \\
& \text { 1, 号 } a_{2}=0.71110951 \text { в. } \\
& \text { 1. .ng. } b_{2}=-0.0021205105 \mathrm{~s} 3 .
\end{aligned}
$$

The relation betwon p＇and t will then he expresed by the following formula，

$$
\text { Ln } \cdot p^{\prime}=a-a_{1} b_{1}^{(n)}+t-a_{2} b_{2}^{2(t)}+t \text {. }
$$

M．Bint comparel the temperature and correnponding pre ares，caleulated hy this formula，with the nerios determined by mestemive conree of explaments madertaken by DM．Arago mad Dulong by order of the French gevermment，t ，the of of the expeciments of Tatelor at lower temperathers，and th is

 yared for all urdinary purpuses．

Let V express the number of cubic inches of stean produced by one cubic inch of water, and let \boldsymbol{P} express the pressure of this steam in kilograms per square metre; then we shall have

$$
\mathrm{V}=\frac{1000}{0.09+0.0000484 \mathrm{P}}
$$

This formula gives sufficiently accurate results when applied to pressures much above one atmosphere It fails to give the same accuracy, however, when applied to lower pressures.

The following formuls have been proposed by M. de Pambour :

$$
\mathrm{V}=\frac{10,000}{0.4227+0.0025 \mathrm{SP}}
$$

which will apply to low pressures; and

$$
V=\frac{10,000}{1 \cdot 421+0.0023 \mathrm{P}},
$$

which will be appricable to high pressures. In each of these P is expressed in pounds per square foot. Dr. Lardner proposes the following modified formula, V and P retaining their signification:

$$
\mathrm{V}=\frac{3875969}{164+\mathrm{P}},
$$

which may be used in reference to low-pressure engines of every form, as well as for high-pressure engines which work expansively

When the pressure is not less than 30 lbs. per square inch, the following formula will be more accurate:

$$
V=\frac{4347826}{618+P}
$$

In the preceding observations steam has been considered as receiving no heat except that which it takes from the water during the process of evaporation, the amount of which, as has been shown, is 1170° more than the heat contained in ice-cold water. But steam, after having been formed from water by evaporation, may, like all other material substances, receive an accession of heat from any external source, and its temperature may thereby be elevated. If the steam to which such additional heat is imparted be so confined as to be incapable of enlarging its dimensions, the effect produced upon it by the increase of temperature will be an increase of pressure ; but if, on the other hand, it be confined under a given pressure, with power to enlarge its volume, subject to the preservation of that pressure, as would be the case if it were contained in a cylinder under a movable piston loaded with a given pressure, then the effect of the augmented temperature will be, not an increase of pressare, but an increase of volume; and the increase of rolume in this latter case will be in exactly the same proportion as the increase of pressure in the former case.

These effects of elevated temperature are common, not only to the vapors of all liquids, but also to all permanent gases; but, what is much more remarkable, the nomerical amount of the angmentation of pressure or volume produced by a given increase of temperature is the same for all vapors and gases. If the pressure which any gas or vapor would have were it reduced to the temperature of melting ice be expressed by 100,000 , then the pressure which it will receive for every degree of temperature by which it is raised will be expressed by $208 \frac{1}{3}$; or, what amounts to the same, the additional pressure produced by each degree of temperature will be the 480 th part of its pressure at the temperatore of melting ice. From these data it is easy to obtain an algebraical expression by which the angmentation of pressure in a given volume, or, what is the same, the augmentation of volume under a given pressure for every increase of temperatare, may be calculated.

Let v be the volume of any elastic fluid at the temperature of 32°; and let it be then supposed to be raised by the application of heat to the temperature T, if under a given pressure. Let its augmented volume be V. The increase of volume will then be $V-v$, while the increase of temperature will be $\mathrm{T}^{\circ}-32^{\circ}$. But since the increase of volume for one degree of temperature is $\frac{v}{480}$, the increase for $\mathrm{T}^{\circ}-32^{\circ}$ will be $\frac{v}{480} \times\left(\mathrm{T}^{\circ}-32^{\circ}\right)$; and therefore the augmented volume V will be

$$
\mathrm{V}=v+\frac{v}{480}\left(\mathrm{~T}^{\circ}-32^{\circ}\right) . \quad=v\left\{1+\frac{\mathrm{T}^{\circ}-32^{\circ}}{480} ?\right.
$$

If Y^{\prime} be the volume at any other temperature T^{\prime}, we shall have

$$
\mathrm{V}^{\prime \prime}=\eta\left\{1+\frac{\mathrm{T}^{\prime 0}-32^{\circ}}{480}\right\} .
$$

From whence we infer

$$
\frac{V^{r}}{V^{\prime}}=\frac{T+448}{T^{\prime}+44 \delta^{\prime}}
$$

by which, when the volume of steam at any one temperature is known, the volume at any other temperature may be found, supposing that the steam receives no accession of water by evaporation.

Steam which thas receives alditional heat after its separation from the water from which it is evolved has been called by Dr. Lardner superteated steam, to distinguish it from common steam, which is that usually employed in steam-engines. Superheated stcam admits of losing a part of its heat without suffering partial condensation; but common stcam is always partially condensed if any portion of heat be withdrawn from it. For further details ou these properties, see Lardner on the Steam-Engine 7th cd. p. 168, ct. seq; also Appendix. See also Jardner on Heat, chap. viii.; Cubinet Cyelopedia

In the mechanical operation of steam，which has been already explained，the pressure，density，and temperature of the steam are supposed to remain the same during its action，and the mechanical effect 18 produced by the continual increase of the quantity of steans produced by evaporation．Thus，the pitun in the apparatus represented in the figure is moved upwards，not by any change in the tempera－ ：ure，density，or pressure，lut by the increased volume required by the continual production of steam． It has been proved that by this process alone the evaporation of a cubic inch of water，whatever be the pressure under which it takes place，evolves a mechanical furce equivalent to a ton weight raised a foot high．But if，after this evaporation has been completed，the steam be separated from the water which produced it，and the load on the piston be gradually diminished，the stean would expand by moving She piston upwards in virtue of its excess of pressure，and this expansion will continue until the press－ are of the steam shall be reduced to equality with the load on the piston．All mechanical effect de－ veloped in this process is due to the steam itself，independently of any further eraporation

To inake this important quality of the expansive action of steam understood，let us suppose the pis－ ton loaded with a pressure amounting to four times that of the atmosphere，including that of the at mosphere itself．If the water under the piston be evaporated under this pressure，it will have a ten－ perature of about 291° ，and by its evaporation the piston will be raised 40 feet．This will，therefore， be the whole mechanical effect arising from the immediate evaporation of the water．But when the evaporation has been completed，and the piston，with its load of four atmospheres，stands suspended at 40 feet above the bottom of the tube，let a pressure equal to that of one atmosphere be removed from the piston．The remaining pressure of three atmozpheres being less than that of the steam below the piston，the piston will be raised，and will continue to rise until it has attained a height of about 50 feet， and the temperature of the steam thas expanded will fall to about 275° ；and its pressure being re－ duced to that of three atmospheres，it will cease to rise．By this process，therefore，a mechanical force has been obtained from the steam equal to the weight of three atmospheres raised 10 feet，in addition to the effect obtained by immediate evaporation；but the expansive aetion does not stop here．Let it be supposed that the piston is again relieved from the pressure of another atmosphere，the superior pressure of three atmospheres below will cause it to rise，and it will ascend to the height of about is feet，the temperature of the steam fulling to about 250° ，and its pressure being reduced to two atmos－ pheres．A further mechanical effect equivalent to the weight of two atmospheres raised to about 25 feet，has thus been obtained；and it is evident that by constantly and gradnally diminishing the load on the piston，an additional effect may be alrays obtained from a given amount of evaporation，to an extent which is only limited by practical circunstances which restrain the application of this expansive prineiple．Since the cost of producing stean as a mechanical agent depends chielly on the quantity of fuel necessary to effect the evaporation of a given volume of water，it follows that all the mechanical effect obtained by this principle of expansion is so much power added to the stean without further expense．Its importance，therefore，will be obvious in the economy of steam－power．For the maner of rendering it available in steam machinery，see Steam－Exgine．

Table No． 1 exhibits the temperatures and corresponding pressures of steam as determined by the experiments of the committee of the French Institute up to tifty atmospheres－the atmosphere being measured by a column of mercury 29.922 inches high．

The last six temperatures in table No． 1 are deduced by calculation from the formula $c=(1+$ $0.7153 t)^{5}$ ，in which e expresses the elasticity in atmospheres，and t the temperatures in centieme de grees，begiming from 100° ，and proceeding upwards．

Table I．

I＇ressure in Atmospheres	Temperature	Prosare in Atnowitheres．	Temperature．
1	212°	1：3	350.96
$1 \frac{1}{2}$	231	11	3 smoy
\％	2505	15	392×6
$2 \frac{1}{4}$	263%	1 ；	39548
3	275	17	$103: 8$
3 ）	2．	15	小いらリ2
4	2937	19	11374
12	$300 \cdot 3$	－1	1151\％
5		$\because 1$	texe9\％
51	$311: 1$	：	1 27 －
6	$820 \cdot 35$	$\because:$	131412
4if	326－24	$\because 1$	133） 50
7	3331.7	2.5	489.31
$7!$	331154	S	157．16
$\stackrel{8}{4}$	311.78	85	17273
4	83078	111	18659
111	854	45	499.14
11	86686	511	8100
12	371		

The most recent experiments on the elastic furce of stean are those by a committee of the Franklin Institute．The object of the eommitteo was to in－ quire into the causes of the explosion of steam－ builers，to investigate which they were requested to make experiments on the properties of steam， the expense of which was defrayed out of the treasury of the United States．

The results are contained in the following table， No． 2 ，arramged ats in table No． 1, up to ten atmus pheres．

Tame： 11.

I＇remature in H1mow pherew	Tempernture	I＇ressure in Alabuspheres	Temprature．
1	210°	1	$815\}^{\circ}$
11	2：：5	li． 2	： 31
\because	254	7	：36
21	261	7）	331
3	$\because 7$	s	838
：${ }^{1}$	24.1	83	： 110$\}$
1	2913	9	315
14	29sb	918	－19
${ }_{6}$	3011	10	3025
i）	310		

Table of the Pressure of Steam in inches of Mercury at the tompcrature of melting ice from degree to degree of Fahrenheit's thermometer.

$\begin{gathered} \text { Temp. } \\ \text { in } \\ \text { ingrees. } \end{gathered}$	Pressure in inches of Merc.	Difference for \therefore degree.	$\begin{gathered} \text { Temp. } \\ \text { in } \\ \text { ingrees. } \end{gathered}$	Pressure in inches of Merc.	$\begin{gathered} \text { Difference } \\ \text { for } \\ 1 \text { degree. } \end{gathered}$	$\begin{aligned} & \text { Temp. } \\ & \text { in. } \\ & \text { ingrees. } \end{aligned}$	Pressure in inches of Merc.	Difference for 1 degree.
0	0.040	$0 \cdot 002$	91	$1 \cdot 67$	\ldots	157	9.54
5	0.052	0.003	92	172	158	9.76	
10	0.069	0.004	93	1.77	0.06	159	9.98	$0 \cdot 23$
15	0.088	0.005	9.	1.83	160	10.21	$0 \cdot 24$
20	0.113	$0 \cdot 006$	95	1.89	161	$10 \cdot 45$
25	$0 \cdot 143$	0.007	96	$1 \cdot 95$	162	10.69	
30	0.179	0.008	97	$2 \cdot 01$	163	10.93	0.25
32	$0 \cdot 196$	98	2.07	164	11.18
33	$0 \cdot 204$	0.009	99	$2 \cdot 13$	165	11.43
34	0.213		100	$2 \cdot 19$	\ldots	166	11.68	0.26
35	$0 \cdot 222$	0.010	101	$2 \cdot 25$	0.07	167	11.91	$0 \cdot 27$
36	0.232	0.011	102	$2 \cdot 32$	168	$12 \cdot 21$
37	0.243	0.010	103	$2 \cdot 59$	169	$12 \cdot 48$	$0 \cdot 88$
38	$0 \cdot 258$	$0 \cdot 011$	104	$2 \cdot 46$	170	1276
39	0.264	.	105	2.53	\ldots	171	12.04
40	0.275	106	$2 \cdot 60$	0.08	172	13.32	$0 \cdot 99$
41	$0 \cdot 286$	0.012	107	2.68	173	13.61	0.30
42	$0 \cdot 298$	108	$2 \cdot 76$	174	13.91	...
43	$0 \cdot 310$	0.013	109	2.84	175	14.2]	0.31
4.	0.323	0.014	110	$2 \cdot 92$	176	1452
45	$0 \cdot 337$	111	8.	\ldots	177	14.83	$0 \cdot 32$
46	0.351	112	$8 \cdot 08$	0.09	178	$15 \cdot 15$
47	0.865	.	113	$3 \cdot 17$	179	$15 \cdot 47$	0.33
48	$0 \cdot 379$	0.015	114	$3 \cdot 26$	180	15 S0	0.34
49	$0 \cdot 394$	0.016	115	$3 \cdot 35$	181	16.14
50	0:410		116	3.44	182	16.48	0.35
51	$0 \cdot 426$	$0 \cdot 017$	117	3.53	$0 \cdot 10$	183	16.83	\ldots
52	$0 \cdot 143$	118	$3 \cdot 63$	184	$17 \cdot 18$	036
53	$0 \cdot 460$	0.018	119	3.78	185	17.54	0.37
54	0.478	120	3.83	$\ldots .$.	186	17.91
55	0.496	$0 \cdot 019$	121	3.93	$0 \cdot 11$	187	$18 \cdot 2$	0.38
56	$0 \cdot 515$	122	4.04	188	18.66
57	0.534	0.020	123	$4 \cdot 15$...	189	19.04	$0 \cdot 39$
58	0.554	0.021	124	$4 \cdot 26$	\ldots	190	$19 \cdot 43$	$0 \cdot 40$
59	0.575	...	125	4.37	0.12	191	19.83	0.41
60	$0 \cdot 596$	0.022	126	$4 \cdot 48$	192	20.24	\ldots
61	0.618	$0 \cdot 023$	127	$4 \cdot 60$	193	20.65	0.42
62	0.641	128	4.72	194	21.07	$0 \cdot 43$
63	0.664	0.024	129	$4 \cdot 84$	$0 \cdot 13$	195	21.50
64	0.688	$0 \cdot 025$	130	4.97	196	21.93	$0 \cdot 44$
65	$0 \cdot 713$	$0 \cdot 026$	131	$5 \cdot 10$	197	22.37	$0 \cdot 45$
66	0.739		132	$5 \cdot 23$	\ldots	198	29.82
67	0.765	0.027	133	$5 \cdot 36$	$0 \cdot 14$	199	23.27	0.46
68	$0 \cdot 792$	0.028	134	5.50	200	23.73	0.47
69	0.820	0.029	135	5.64	\ldots	201	$24 \div 0$	0.48
70	0.819		136	$5 \cdot 78$	$0 \cdot 15$	202	24.68	$0 \cdot 19$
71	0.878	0.030	137	5.93	203	$25 \cdot 17$
72	0.908	0.081	138	6.08	204	25.66	0.50
73	0.939	$0 \cdot 033$	139	$6 \cdot 23$	205	$26 \cdot 16$	0.51
74	0.972	,	140	6.38	$0 \cdot 16$	206	26.67	0.59
75	1.005	0.034	141	6.5	207	$27 \cdot 19$	0.53
76	$1 \cdot 089$	0.035	142	6.70	\ldots	208	27.72	0.54
77	1.074	...	143	6.86	$0 \cdot 17$	209	$28 \cdot 26$	0.55
78	$1 \cdot 109$	0.037	144	7.03	210	28.80
79	1.146	0.038	145	7×0	0.17	211	29.35	0.56
80	$1 \cdot 184$	0.039	146	$7 \cdot 37$	$0 \cdot 18$	212	29.91	0.57
81	1•223	$0 \cdot 010$	147	7.55	213	$30 \cdot 48$	0.58
82	$1 \cdot 263$,	148	7.73	$0 \cdot 19$	214	31.06	0.59
83	1.303	0.043	149	7.92	\ldots	215	31.65	$0 \cdot 60$
84	$1 \cdot 316$	0.0 .13	150	$8 \cdot 11$	\ldots	216	32:25	0.61
85	139	0.04	151	$8 \cdot 30$	020	217	32.86
86	1.13	0.05	152	$8 \cdot 50$	218	$33 \cdot 47$	0.63
87	1.48	...	153	8.70	219	34.10
88	$1 \cdot 53$	154	8.90	021	220	34.73	0.65
89	1.57	155	$9 \cdot 11$	\ldots	221	35.38	\cdots
90	1.62	...	156	932	0.2	222	36.03	$0 \cdot 67$

Table of the Pressure of Steam，de．，（Continued．）

$\begin{gathered} \text { Temp. } \\ \text { int. } \\ \text { degrees. } \end{gathered}$	Pressure in inches of Jere．	$\begin{aligned} & \text { Difference } \\ & \text { ffr } \\ & 1 \text { degrce. } \end{aligned}$		I＇ressure in uiches of Mere．	Diterance her 1 derree	$\begin{gathered} \text { Temp. } \\ \text { in } \\ \text { degrew } \end{gathered}$	l＇res－ire in mehes of Mere．	$\begin{aligned} & \text { Hifarenes } \\ & \text { for } \\ & 1 \text { dugree. } \end{aligned}$
223	86：0	．．．．．	279	9.47	1．5）	38.5	213.71	29.1
221	37.87	0.69	280	95.97	1.51	2：36	$\because 16.68$	$\because 27$
225	3 SOH	（1）． 0	281	$97 \cdot 45$	1.52	897	21065	．．
－26	3×16	0.7	2が	$9!$.	1\％\％	335	22\％ザす	：20，
$\because 27$	$30 \cdot 17$	－72	2ง3	100．54	1.515	389	2056	807
$2 \because 3$	$41 \cdot 19$	0.73	2×4	10\％10	1－5	810	2．2．\％	8．11
$\because 29$	40.92	0.75	285	11068	$1 \cdot 6$	311	231×5	\％．1：3
2311	$41 \cdot 67$		285	105－28	$1 \cdot 63$	：12	231.98	2－11；
$\bigcirc 31$	12－42	0%	207	106.91	$1 \cdot \mathrm{~s}$	213	238.14	320
23：	43.15	0.77	$\because 88$	105.50	1.67	311	$241 \cdot 34$	3×1
$\bigcirc 33$	43.95	0.78	2s9	$110 \cdot 3$	1.69	815	24.58	8.5
234	41.73	0 \％ 0	290	$111 \cdot 92$	1.71	816	217.86	8：2
235	45.53	$0 \cdot 1$	291	113.68	$1 \% 2$	317	$251 \cdot 18$	385
236	40.34	08.2	292	115.35	1.75	315	251.51	839
$\bigcirc 37$	4716	0×3	293	117．10	1.7	349	$25: 93$	3．42
238	47.99	0.85	294	118.87	1．81）	350	$261 \% 35$	$8 \cdot 15$
239	40.81	0.86	$\bigcirc 95$	1206	1.83	：51	2 ti 1.0	$3 \cdot 19$
210	19．7）	0.87	296	122．51	1.55	852	26509	353
211	50.57	0.88	297	121.85	$1 \cdot 57$	353	2715	8.59
212	$51 \cdot 15$	$0 \cdot 89$	291	126\％	1.59	854	27589	\％ 1
$\because 43$	50.2	$0 \cdot 91$	299	$125 \cdot 11$	1.41	35.5	こケ9．	
241	50.25	0.42	300	$130 \cdot 0$	1.43	856	2－266	8．71
$\bigcirc 15$	54.17	095	301	1：3195	$1 \cdot 4 ;$	257	24037	87.5
$\because 16$	$55 \cdot 11$	0.5	502	138．91	199	855	29012	\％：9
$\because 17$	56.16	0.96	803	135.919	201	359	240.91	34：
248	5702	0.97	301	137.91	$\because 113$	30°	$297 \% 1$	3 s
249	57.99	1.	805	$1: 99.91$	$2 \cdot 06$	361	$301 \cdot 61$	$3: 1$
$\because 50$	58.99	1.01	：065	142	209	36	30553	20.5
251	60.		307	11409	$2 \cdot 11$	363	309.17	3.98
25：	61.01	1.03	303	1－15：20	2．13	86.1	81814	
253	6.208	1.01	：09	1．153：3	$\cdots 16$	$0: 65$	317.50	
251	63.05	1107	810	$150 \cdot 4!$	$2 \cdot 0$			
255	61.15	1.07	311	$15 \div 69$	2.22	Formuld． $p \equiv$ pressure in inches． $t=$ temp．in deg．Fiahr．		
256	65.2	1.09	812	15．191	$2 \cdots 1$			
257	66.31	．．．．．．	813	$157 \cdot 15$	2×7			
－5．5	67.41	$1 \cdot 10$	811	159 12	$2 \cdot 30$			
0.5	$6 \bigcirc 53$	1.12	315	16172	23			
－690	69.67 $70 \cdot 4$	1.11 1.16	316 817	161.01	201	$\therefore p=\left(\frac{t}{150}+\frac{990}{1695}\right)^{6} ;: 2 n t$		
－ 261	$70 \cdot 4$ 71.99	$1 \cdot 16$	317	$166 \% 8$ 168.75	2937 2.11			
$\because 63$	7314	1.19	819	171.15	2.11			
261	T1：3	$1 \cdots 3$	：20	17：3：5）	－1\％	Alow，if		
295	75.60	$1 \cdots 1$	821	17607	$\bigcirc 51$			
$\because 69$	「らくり	$1 \cdots 5$	328	17588	$\because 53$	$\begin{array}{r} p^{\prime}=\mathrm{presinre} \text { in atmosphere } \\ \text { of } 29 \cdot 015 \text { inches it } 52=? \end{array}$		
267	7509	$1 \because 7$	323	181.11	$\because 5$			
－is	$79 \% 6$	1ジく	831	15\％\％6	2\％	$t=$ tempe as before ；		
209	Sitel	$1: 31$	：0\％	1－4， 31	$2 \cdot 1$			
9こ1	81.94	$1 \% 3$	806	184－5\％	$\because 61$	$\therefore \gamma^{\prime}=\left(\frac{1}{517.13}+\frac{561 \cdot 01}{1695}\right)$		
271 272 278	83.27	1315	327	19119	\because 新			
272 273	$8 \leqslant 61$	1\％	$\therefore 3$	19115	$\because 69$			
－11	8．＂．9\％	$1: 8$ 1 1	8：39	1364 1314	\％	$=\left(\begin{array}{c} 1 \\ \because 1613 \end{array}+\frac{1931}{23415: 3}\right)$		
275	85：7	111	：$: 31$	20ご为	－ 4			
275	910．1：	$14:$	：$: 3$	20.113	－ 4	： ml		
277	01155	115	：	$\because 07$	2－	$t=8171: \sqrt[n]{p}-100^{3}, 1: \%$		
274	113	117	：3： 1	$\because(1) \sim 4$	$2!91$			

 to our readers as a stambard work on thie sulbect．

STEEL. Steel appears to occupy an intermediate place between cast and malleable iron. The researches of the French academicians, Monge, Barthollet, and Vandermonde, show the distinction between cast-iron and steel to be that the former is charged with a superabundant, the latter with a minute yet sufficient dose of carbon; hammered iron, on the contrary, if pure, consists of iron free from all heterogeneous matter. It is to be regretted that the constituent proportions of steel have not been accurately determined. Vauquelin assumes the average amount of carbon to be 1-150th, and Clouet places it as high as 1-32d. Mr. Parkinson considers the quantity of carbon necessary for making of steel to be very small, indeed the actual amount seldom exceeding 1-200th, or 1-300th, and perhaps never more than 1-100th, the remaining portion of charcoal flying off at the time of cementation in the form of gaseous oxide of carbon. Dr. Thomson analyzed some specimens of cast-steel, from the marufactory of Mr. Buttery, near Glasgow, and the general results of his trials gave the constituents as follows:

Iron ... 99
Carbon, with some silicon 1

Now this approaches-
Iron, 20 atoms 70
Carbon, 1 atom... 0.45

And this Dr. Thomson considers as likely to be the constitution of cast-steel. He did not in like manner attempt the analysis of blistered steel, but concludes the proportion of carbon in it to te rather less. It is well ascertained that iron and carbon are capable of combining together in a variety of different proportions: when the carbon exceeds, the compound is carburet of iron; when the iron exceeds, the compound is steel or cast-iron in various states according to the proportion: all these compounds may be considered as subcarburets of iron. The most complete detail of experiments on these compounds which has yet appeared in this country is by Mr. Mushet. This ingenieus metallurgical chemist has observed that the hardness of iron increases with the proportion of charcoal with which it combines, till the carbon amounts to about 1-80th of the whole mass. The hardness is then a maximum, the metal acquires the color of silver, loses its granulated appearance, and assumes a crystallized form. If more carbon be added to the compound the harduess diminishes in proportion to the quantity, as appears from the following tabular arrangement, extracted from Mr. Mushet's papers on iron and steel :

Dr. Schafthacutl has lately propounded a novel and startling theory, viz., that steel is entirely a mechanical production of the forge-hammer, which tears the molecules of certain species of white castiron out of their original positions, into which the forces of attraction, in respect to the centres as well as to the position of the molccules, had arranged those molecules by the slow action of heat, and that stecl, as it comes out of the converting-furnace or the crucible, is nothing more or less than white castiron, of which Indian steel, called wootz, is the fairest specimen.

Steel, as is well known, is made by combining carbon with iron, the atmosphere being excluded and a white heat kept up until the iron has imbibed from the carbonaccous matter with which it is surrounded a sufficient quantity, which may be more or less, according to the use for which the steel is intended. Iron is very slightly, and if pure, not at all, altered or increased in harduess by sudden cooling from a red-heat, but the small amount of carbon which it reeeives during the process of cementation greatly increases both its strength and toughness, leaving it alike malleable and ductile, and imparts to it that peculiarly valuable property of becoming extremely hard if suddenly cooled from a red-heat. With this first dose of carbon it is denominated mild steel, possessing all the distinctive properties of iron with increased strength. A larger dose of carbon renders the metal susceptible of greater hardness, and proportionably more brittle. It is also fusible, and therefore called cast-steel, but being less malleable is more difficult to work.

Steel made by cementation is designated blistered-stecl, because it is supposed, while the carbon is entering it meets with oxygen, hydrogen, or some foreign matter which it causes to become gaseous, and thus blisters the surface of the stecl. Dr. Thomson attributes these blisters to a gas evolved in the interior of the bar, which pushes up by its elasticity a film of the metal, and Mr. Gill considers them as indications of the quality of the steel, as "the hardest will be found to be blistered all over its surface while the milder will be smoother." Cast-steel being made by fusion admits of an equal distribution oi the carbon, to the expulsion of every other substance, which cannot endure the intense heat : the soundness of this description of steel is obviously a great recommendation, but the excess of carbon renders it
harshand consequently intractable; under the hanmer, however, by careful treatment during the operation of forging, the excess of carbon may be dissipatel aud the quality of the steel ameliorated and greatly improved for general purposes.

The question whether steel contans any thing besides iron and carbon is purely chemical, the consideration of which would form, did space allow, an interesting theoretical illustration of the practical details of the present inquiry: A gool workman merely requires steel free from flaw , completely homogeneous, and such as will harden at the lowest heat, for this test supersedes all others in proving its superior quality.

Perfectly pure iron cemented in equally pure carton would doubtless produce steel free from blistera but as in practice these blisters are unavoidably evolved, it is needless to inquire into their origin more minutely than we have already done, especially as it seems to be admitted that bli-tered-ateel is unequally carbonized, the outside retaining the larger portion. It is therefore rendered fit for the market by doubling and welding several times, by which means the parts are more intimately blended together, and the carbon more equally distributed; in this state it is called sheer-stecl. These repeateal weldings, although they tend to condense the metal, are apt to produce flaws, 1 st. by imperfect union, 2d. by the carton burning out of the commingling surfaces, thereby interposing a stratum of iron or imperfectly converted steel, and this being softer than the strrounding particles would give way during the extension of the steel. To whaterer eanse such defects are to be attributed must necessarily remain a matter of conjecture, but that they do very largely accompany this description of stecl is certain, and it is a question whether any process short of actual fusion can totally remove then; nevertheless, it is ascertained that long-continued forging essentially conduces to the soundness or homogeneity.

Besides these flaws there is another obstacle frequently met with in steel: it is said to have pins, when, in the operation of turning or filing, knots are developed harder than the other portions of the metill; these knots or pins present themselves of almost every degree or hardness, commencing with mere har-hness, and advancing to absolute intractability, so that whilst turning in the lathe the pins would remain projecting out and grind or break the edge of the tool rather than submit to be cut away, and it is by 10 means unusual to tind their hardness nearly approach that of a file applied to remove them. Various causes have been assigned for these knots; Mr. Varley thinks they are portions of inetal over-steeled, that i , so completely charged with earbon as to be incapable of being amealed by any known process of slow cooling. Mr. Clement states that he broke the steel across these pins, having filed away the back to render it weak enough to part at the right place, when he found a cut or division, on which account he attributes the flaw and its extreme hardness to an oxide of iron, which jrevented the union of the parts. It would be a curions and by no means an unprotitable investigation to analyze the condition of the deepest bli-ters, in order to determine whether they are alloyed or axidized, or in any way differing in their state of carbonization from the more solid parts. It seems clear that if these bins are induced by the presence of oxygen, then the aljoining metal wond be irun, for there would be a gradation from the oxide through iron to the steel, and consequeutly the circmaference of such a spot would be softest.

An excess of carbon renders steel harder and more brittle, therefore an inequality is liable to oceur. This may be illustrated by the known fact, that portions of an iron casting intended to be soft are frequently haralened by contact with the moist sand of which the mould is formed, and those parts nearest the outside break with a fracture more glassy than even hard steel. Now good steel hardened by sudden immersion in cold water, when at a redheat, will invariably return to as solt state by slow conding from such heat, and more equally so if the external atmusphere be earefully exeloded; but this hard cast-iron on the contrary does not; it requires to be exposed for many hours to an intense heat. and must ant be smothered by fuel to prevent the escape of the superabundat earbon with which it is charged. The air too should be allowed free aceess as a means of disemparing some protions of the carbon, while the remaineder hats a temency to equalize itself; then, it slowly coulded, the mast will be found to be sutliciently annealed.

The knots or pins in steel are rarely removed by slow cooline alone; there is, however, an opinion prevalent among workmen that pinny sted may be remdered uniform in its subtance if it be first hardened and then amealed. To burn out these pina would manifenty spoil the steel, becamse it hats no carbon to pare but in the pins, (suppo-ing this (1) le the camse of their hatuens,) and the procers
 cast-steel, which is tumbenably purer and more lemoremeons that may uther deacripition, is liable to
 and more minate attention the the tratment of she⿻ than the sulject apears to have recoived, and for

 rtanding every preaution, we still see tha hator and skill of the mathai-t defoated hy tho wom-

 fuilures and guard arannt fiture di apmintmont.

other, so as to insure perfect uniformity, for the carbon being thus spread the metal will be rendered as sound as can be expected of cemented steel; and it is clear that if by mechanical agency all foreign matter be expelled and the carbon alone remain, there is nothing to prevent a perfect union of the parts while under the hammer. Good steel consists of that proportion of carbon and iron, which combined form the strongest and toughest compound: each purcr portion, therefore, when brought into contact by the hammer remains in that state and resists its percussive force the more from the greater cohesion of the particles. Hence the redundant or deficient portions suffer most till they become equalized, and the impurities are cither beaten out or formed into a homogeneal compound with the catire mass.
Although by this means sound steel may be obtained, it is fir from being in a perfect state; it is still rery unequal in density, and in a state of distraction; some portions are close and dense, and others are fissured. A second hammering at a particular heat is therefore necessary, and under circumstances required by the shape of the steel--such as recesses in the anvil or blocks laid thereon, technically termed swedges and moulds. For this purpose the metal is first brought as near as eligible to the required dimensions, and is then to be hammered in order to close and condense the particles equaliy and throughout, yet leaving cvery part in a state of rest and ease-a condition very essential for good springs, and indeed every article formed of steel, that has to vibrate or act by tension.

This second hammering is also intended to prepare the steel for receiring the utmost hardness of which it is susceptible-a quality which entitles it to be considered the master metal-the oue by which we give shape and form to all others. Now steel at a red-heat, when suddenly plunged in cold water, becomes both brittle and hard, but even in this state its tougliness greatly exceeds that of any other brittle substance. This characteristic hardness cannot be given in part, but always in full and to its highest limit. So true is this, that in a piece of steel, a portion of which is hard and a portion saft, no gradation of hardness can be detected, the parts adjacent to the hard portion being quite soft, or, as some think, softer than if slowly cooled. This singular fact has been thus accounted for:--Suppose a rod of well-hammered steel to be heated at one end for hardening, there will be a gradation of temperature from the coldest to the hottest extremity, and the annealing or reduction of that hardness which it has received will be in proportion to the heat, consequently the rod will be softer and softer towards the end where the heat is applied. On plunging the bar into cold water, that portion which has become sufficiently lot to harden, is rendered quite hard, but that part immediately adjacent to it will be found to be most annealed, and will endure more twisting and bending than any other. Although this hardness may be imparted in its full extent, it may nevertheless be lowered in any assignable degree-that is, a portion of its brittleness may be removed by the application of moderate heat, a greater portion by more heat, and so on, as the purposes may require. This is called tempering. If hard steel be brought to a red-heat and then suffered to cool slowly, it will become as soft as if never hardened: this is called softening, and is distinguished from annealing, which is a similar process of slow cooling, but applied to steel, iron, or brass, merely to remove all mechanical condensation, whether by hammering or ctherwise; for if metal has been altered in shape by the hammer or any other process, as much as it will bear without breaking, then by annealing it will be softened and may again be altered in form as often as requisite. Now as different degrees of heat remove different degrees of condensation received from the hammer, and a white-heat removes all, it is of great importance to liarden steel from the lowest possible degree of heat, in order to retain as much condensation as practicable; and it is a fortunate coincidence that the greater the condensation the lower is the heat from which steel will harden, and the stronger and tougher it will be. But should this condensed metal be once over-heated, it will then no longer harden from that lower degree, but only from a heat nearly approaching that to which it was originally raised. In this case, the condensation, with all its attendant advantages, can only be restored by rehammering.
The lowest heat at which steel will generally harden, is a dull or cherry-red, just visible in day-light ; therefore, to be safe, the same test, that is, a dull red-heat, just perceptible in the dark, is chosen for the process of hammering; it offers, too, the advantage of coating the article with carbonaceous matter, thereby securing instead of losing by the action of the fire a due supply of carbon, which is of particular consequence. Different modes of performing this part of the process may be adopted. It is desirable that the forge should not be under the influence of a strong light; the anvil should be placed as near as circumstances will permit to the flat bed of the forge, and the fire smothered with small fuel, just kept alive by the bellows, so as never to allow the gas bursting into flame. The pieces of steel under treatment :ure now placed in the smouldering and partially kindled fuel enveloped in smoke, whence they imbibe a portion of carbon, which the hammering heat is insufficient to expel ; they are then brought in succession from the fire to the anvil, and back again to the fire when too cool, the hammer is moved quickly, and every part of the stcel subjected to its blow. The position of the article is then slightly clianged, and the operation continued and repeated as often as needful, till it has been hammered well in every direction. See Tools, as also Tcmpening. See also Mushet on Steel.

STRENGTH OF MATERIALS OF CONSTRUCTION. 1. Direct colesion.-Tlie power of cohesion is that resistance which bodies exhibit when force or weight is applied to tear asunder in the direction of their length the fibres or particles of which they are composed.

The strengtis to resist foree or weight that produce fracture is as the area of the cross-section acted upon. Hence, multiply the area of the section in inches by the power in pounds (as in the following table) opposite the name of the material, and the product will be equal to the weight in pounds the rod, bar, or piece will just support; but the greatest constant load should never exceed one-fourth.

Table of the C'blesive Power of Bodies whose Cross-Scetional I reas equal Oue Square Inch

Woods.	Cohesive Power, in $1 \mathrm{~B}=$.	Cuhesive l'uwer, in tons.	Metals.	Cuherive I'uwer, in llts.	Chherive P'ower, in tons.
Lanee wood.	23,100	$10 \cdot 11$	Swedish bar-irun	65,004)	29.20
Hox	19,980	$8 \cdot 9.2$	liusian du.	5!, 179	26.70
'Turtosa, 1 frican tcak.	17,100	75	Engli-h du.	56,000	2500
Ash	15,780	TU1	Cinst steel.	131,256	59×13
Teak wood, or Indian			Blistored stec	133,152	$5 y \cdot 13$
Oak................	11,500	6.17	Shear do.	1:7,68:	56.97
Puona, or Peon	12,350	$5 \cdot 51$	Wrought eupper	33,492	15.05
Beect.	12,100	5.35	Hard gun-metal	36,368	162 \%
American fir, or pine..	11,500	$5 \cdots 6$	Cast copper	19,072	S.J1
Oak	11,592	$5 \cdot 17$	Tellow brass, cast	17,968	801
Elm	11,500	$5 \cdot 13$	Ciast-iron	17,62S	7
Mahograny, IIonduras.	11,455	512	T'in, cast.	4,730	2.11
Syeamore	11,000	4.91	Bismuth, cast	3,250	$1 \cdot 15$
Chestaut, Spanish......	10.800	482	Lead, cast..............	1,5: \pm	$0 \cdot 51$
Alder	9,700	$4 \cdot 33$	Llastic power, or direct		
Larch.	9,500	$4 \cdots 2$	tension of wrought-		
Wralnut	7,740	$3 \cdot 15$	iron, medium qual-		
Mahogany, spanioh ...	7,500	$3 \cdot 37$	ity	22,400	10.00
Cedar, Libanus.........	7,000	$3 \cdot 12$			
Ioplir	6,500	$2 \cdot 91$			

Note- - A bar of iron is extended 000006 , or nearly one ten-thousandth part of its length, for every ton of direct strain per square inch of sectional area.

The resistance being proportional to the area, the strength of any given bar or bolt will be found ly multiplying the sectional area in inches by the tabular number.

Table of the relative Weight and Strength of liopes and Chains.

Circum. of Rope.	Weight per fathom,	Weight of chain per fath.	I'vol Strengith.		Circuen. of rupe.	Weight per fithum.	Weigtit of chain per fath.	$\begin{array}{r}1 \\ -1 r \\ \hline\end{array}$	
Inclies.	1 lbs	11.3.	tons.		Inches.	lis.s.	lis.	tons.	cws.
$3 \frac{1}{2}$	2.3	$5 \frac{1}{3}$	1	$5 \frac{1}{2}$	10	23	43	10	$1)$
47	14	S	1	163	103	28	49	11	11
\bar{j}	53	$10 \frac{1}{2}$	\because	10	$11 \frac{1}{2}$	301	5 G	13	S
53	7	1.1	3	5	$1 \because f$	it	63	11	18
$6 \frac{1}{2}$	43	18	4	31	13	39	71	16	1.1
7	11 t	$\because 2$	5	\because	$1: 3$	15	79	18	11
8	15	$\because 7$	is	4.3	11.5	481	87	$\because 0$	s
43	19	\%2		7	15%	515	96	2.	1:3
91	$\because 1$	87		1:3	10	fio	1166	$\because 1$	14

2. Trumsurse strinyth, or resistaner to lateral pressure.- 'The strength of bu lies thrasi-t fracture in

The getmeral formmla being

$$
S u l^{2}=l i r,
$$

where a is the breadh, the dapth, I the leneth, of the weinht, and 5 a mamber determined by experi.

I'alura if Stor llifr rent Materids.

If the depth is taken, a certain fractional part of the depth as $\frac{1}{n}$ th, the above formula becomes

$$
\begin{gathered}
S d^{3}-n l w \\
\text { or, } d=\sqrt[3]{ } \frac{n l w}{s}
\end{gathered}
$$

Hence the following rule in words:
Rule.-Multiply the length between the bearing in feet by the weight to be supporied in pounds and by the number indicating the ratio of the depth to the breadth-divide the product by the tabula ralue, and the cube root of the quotient equals the depth in inches; and the depth divided by the proportional breadta is the breadth in inches.

Example.-Suppose a oniform beam of east-iron, 18 feet in length, be required to carry a weight of 20,000 ponnds on the middle, between the supports, what must be the breadth and depth, in inehes, when the breadth is one-fifth of the depth, and the strain not to exceed one-third of the strength?

We must here take $\frac{1}{3} s=850$.
Hence, $\frac{88 \times 20000 \times 5}{850}=\sqrt{3} 21176=12 \cdot \mathrm{~S}$ in. in depth, and $\frac{12 \cdot 8}{5}=2.56$ in. in breadth or thickness.
2. Given the length and brealth of a uniform beam, and the weight it is to support in the middle, to find the required depth; or the depth given, to find the breadth required.

Here,

$$
d=\sqrt{ } \frac{l w}{s a}
$$

Rule.--Multiply the length in feet by the weight in pounds. Also the tabular value of S by the breadth in inches. Divide the former product by the latter, and the square root of the quotient will give the depth in inches.

Or, divide the former product by S times the square of the depth, and the quotient will be the breadth.

Example.-Let it be required to find the breadth of a uniform beam of oak to sustain a weight of 6000 pounds in the middle of its length, the distance between the supports being 20 feet, and the depth of the beam 9 inches. The strain to be half the strength.

$$
\frac{6000}{200} \times 20.99^{2}=5 \text { inches, the breadth; and } \frac{\sqrt{6000} \times 20}{200 \times 7}=9 \frac{1}{4} \text { inches, the depth. }
$$

Nore 1.-When the load is not on the middle of the beam, but placed nearer to one end, divide four tinses the product of the distance of the weight in feet from each bearing by the whole distance in feet, and the quotient equals the length of the beam to be taken into account.

Example.-Suppuse a beam 30 feet in length with a load placed 9 feet from one end; required the length to be taken into calculation as affected by the load.

$$
30-9=21, \text { and } \frac{21 \times 9 \times 4}{30}=25.2 \text { feet effective length. }
$$

Note 2.-When the load is distributed over the whole length of a beam, it will bear double the assumed load as above; hence, in such cases, the divisors mast be doubled.
Note 3.-When a beam is to be fixed at one end and the weight placed on the other, take only onefourth of the tabular number for the divisor; but if the weight is to be laid unitormly along its whole length, use one-half.

Example to Rule 2.-Required the depth for the cantilevers of a balcony of east-iron io project 4 feet, and to be placed 5 feet apart, the weight of the stone part being 1000 pounds, the breadth of each cantilever 2 inches, and the greatest possible load that can be colleeted upon 5 feet in length of the balcony 2200 pounds.

$$
\begin{gathered}
1000+2200=3200 \mathrm{lbs} \text {; and } 800 \div 2=400, \text { the divisor. } \\
\text { Hence, } \frac{\sqrt[3]{ } 3200 \times 4}{400 \times 2}=4 \text { inches, the depth required. }
\end{gathered}
$$

Deflection of rectangular beams.-To ascertain the amount of deflexion of a uniform beam of cast-iron supported at both ends, and loaded in the middle to the extent of its elastic foree.

Reve.-Multiply the square of the length in feet by 02 , and the product divided by the depth in inches equals the deflexion.
Example.-Required the deflexion of a cast-iron beam 18 feet long between the supports, 12.8 inches leep, 2.56 inches in breadth, and bearing a weight of 20,000 pounds in the middle of its length.

$$
\frac{18^{2} \times \cdot 02}{12 \cdot 8}=506 \text { jnches from a straight line in the middle. }
$$

Note.-For beams of a simila: description, loaded uniformly, the rule is the same, only nultiply by 025 in place of 02.
To find the deflexion of a beam when fixed at one end and loaded at the other.
Rule.-Divide the length in feet of the fixed part of the beam by the length in feet of the part which yields to the foree, and add 1 to the quotient; then multiply the square of the length in feet by the quotient so increased, and also by 13 ; divide this product by the middle depth in inches, and the quotient will be the deflexion, in inches also.

Multiply the deflexion so obtained for castiron by 86 , the product equals the deflexion for wroughtiron: for oak, multiply by 2.8 ; and for fir, 24 .

A Table of the Depths of Square Beams or Bars of（＂ast－Iron，calculated to support from 1 met． 10 10 tons in the Midulle，the Deflexion nut to exceed $1-10 t h$ of an inch jor cach joot in Length．

Lengths in feet．		4	5	8	10	12	14	16	． 8	20	ล2	24	20	93	30
Weight in cwt ．	Weight in lbs．	$\underset{\vdots}{\vdots}$	$\stackrel{\vdots}{\vdots}$				$\stackrel{y}{\dot{\tilde{E}}}$					产	立		三
		In．	In．	In．	1 n ．	1 n ．	1 m.	1 n ．	1 n ．	In．	In．	11.	1 n ．	$\mathrm{In}^{\text {．}}$	In ．
1 cw	112	12	1.4	1.7	$1 \cdot 9$	$\bigcirc 0$	－	2．4	95	$2 \cdot 1$	9	$\stackrel{9}{9}$	3.0	31	3%
2	1：4	14	1.7	\bigcirc	$\stackrel{1}{2}$	\cdots	$\because 6$	\cdots	34	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 6$	3.7	3.
3	：336	1.6	$1 \cdot 9$	28	$\stackrel{4}{4}$	7	$\therefore 9$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 6$	$3 \cdot 3$	$3 \cdot 9$	$4 \cdot 1$	$4 \cdots$
4	443	1.7	20	2	$\stackrel{1}{6}$	$\bigcirc 9$	$3 \cdot 1$	33	35	37	$3!$	$4 \cdot 0$	4：	43	4%
5	5400	1．6	$\stackrel{\square}{2}$	9	20	$3 \cdot 0$	$3 \cdot 3$	35	3.7	39	4.1	43	14	4.6	4． 6
${ }_{0}$	6i\％	1.8	6－3	96	$\because 9$	$3 \div$	3－4	37	3.9	$4 \cdot 1$	$4 \cdot 3$	4%	14	4.	511
7	T－4	14	2	27	30	$3 \cdot 3$	36	$3 \cdot 8$	4.1	4.2	4.4	$4 \cdot 6$	48	50	5%
8	896	$2 \cdot 1$	\bigcirc	28	31	$3 \cdot 4$	3.7	3.9	$4 \cdots$	4.4	46	$4 \cdot 8$	5.0	5	54
9	1,1008	$\because 0$	25	\bigcirc	$3 \div$	35	$3 \cdot 6$	40	$4 \cdot 3$	45	47	$4 \cdot 9$	5.1	53	5%
10	1，1：0	$\because 1$	$\because 6$	30	33	$3 \cdot 6$	$3 \cdot 4$	4	4.4	4.7	49	$5 \cdots$	5.3	54	5．7
11	1．23－2	$\bigcirc 1$	96	30	34	3.7	4.0	43	45	4.8	$5 \cdot 0$	$5 \cdot 3$	$5 \cdot 4$	510	5.2
1．2	1，344	\bigcirc	2.7	$3 \cdot 1$	35	$3 \cdot 8$	$4 \cdot 1$	4.4	4.7	4.9	5.1	$5 \cdot 3$	$5 \cdot 5$	5	5.9
13	1，456	$\underline{\square}$	2%	$3 \cdot 1$	35	$3 \cdot 3$	$4 \div$	44	4.7	49	$5 \cdot 7$	54	5.6	59	6.0
14	1，．ition	23	9．	3%	36	3.9	4	45	$4 \cdot 8$	50	$5 \cdot 3$	5.5	5.7	60	6.1
1.5	1，60	$\stackrel{3}{2}$	－8	$3 \cdot 3$	36	4.0	$4 \cdot 3$	46	4.3	5%	5.4	$5 \cdot 6$	5 ¢	6.1	6＊
16	1．7リ：	$\bigcirc 4$	\bigcirc	33	3%	4.0	$4 \cdot 4$	4%	50	5：	$5 \cdot 5$	5.	5.9	6°	6.4
17	1.914	24	$\stackrel{1}{ }{ }^{-9}$	$3 \cdot 4$	$3 \cdot 3$	$4 \cdot 1$	$4 \cdot 4$	4.7	50	53	$5 \cdot 5$	$5 \cdot 3$	$6 \cdot 0$	62	10.5
18	$\bigcirc 016$	41	3.0	$3 \cdot 4$	3.	$4 \cdot 3$	4.5	4.8	$5 \cdot 1$	5.4	$5 \cdot 6$	5.9	$6 \cdot 1$	64	6.6
19	2,124	25	3.0	35	39	4%	$4 \cdot 6$	49	5	$5 \cdot 4$	5.7	6.0	$6 \div$	65	67
1 Ion	－	2.3	$3 \cdot 0$	$3 \cdot 5$	$3 \cdot 9$	43	$4 \cdot 6$	49	5	55	$5 \cdot 8$	6.0	6.3	65	6.8
$1 \frac{1}{6}$	$\bigcirc 6.200$	24	3	37	$+1$	4.5	4^{+3}	5.	55	$5 \cdot$	6.1	6.4	$6 \cdot 6$	69	－-
11	3.360	$4 \cdot 8$	$3 \cdot 4$	39	43	4	$5 \cdot 1$	5.5	50	61	10.4	67	50	7	7
1.	3．9－20	49	$3 \cdot 5$	40	$4 \cdot 5$	$4 \cdot 9$	53	57	$\mathrm{f}_{6} 0$	$6 \cdot 3$	6.	6.9	7	75	\div
$\underline{2}$	4．4－0	29	$3 \cdot 5$	4.1	47	$5 \cdot 1$	$5 \cdot 5$	59	6\％	$6 \cdot 5$	6	\％	$7 \cdot 1$	7	ع－0
21	5， 800	$3 \cdot 1$	3．2	44	49	55	$5 \cdot 8$	12	$\mathrm{t}^{\circ} \mathrm{t}$		73	－	$5 \cdot 9$	－ 3	C－J
3	1．ヶ20	$3 \cdot 3$	40	46	5－1	57	$i \cdot 1$	6%	E^{69}	\cdots	76	7	$\stackrel{+}{7}$	ع゙i	と9
$3 \frac{1}{4}$	7， $\mathrm{E}_{10} 10$	$3 \cdot 4$	$4 \cdot 1$	4.8	53	53	153	17	71	\％	74	ャッ	50	－-1	！
4	8，919	3 J	$4 \cdot 3$	$4 \cdot 9$	5－5	60	6． 5	70	74	$7 \cdot 8$	どこ	čJ	8	！ 12	95
$4 \frac{1}{2}$	10， $0=0$		$4 \cdot 4$	$5 \cdot 1$	5.7	6	6.7	7	$7 \cdot 15$	col	74	c\％	$9 \cdot 1$	（1）3	98
5	11.200	．．	$4 \cdot 5$	$5 \cdots$	5.8	tif	6！	74	7	\because	\cdots	190	9.1	9． 7	101
6	13，44）	．	．	5.5	$6 \cdot 1$	6.7	\because	\because	¢2	－	（1）0	34.	198	10\％	111.5
7	15， $\sin ^{2} 0$	\cdots	\cdots	57	63	69	7．5	\％ 0	と 5	と	$9 \pm$	198	1112	10.6	11.0
8	17，9：0	\cdots	．	$5 \cdot 9$	$0 \cdot 6$	－-1	78	ع 3	8.8	$4 \cdot 3$	97	111	$10 \cdot 1$	1119	$11 \cdot 3$
9	20， 160	\cdots	\cdots	6.0	6.8	74	$8 \cdot 0$	$8 \cdot 5$	$9 \cdot 0$	$9: 5$	10.0	1114	10.9	11.7	13．
111	？ 3 ， 4 （	．	\ldots	．．	159	$7 \cdot 6$	$8 \div$	－2	9.3	9 M	103	1107	112	$11 \cdot 1$	$1 \because 0$
11	$\underline{-4.610}$	\cdots	\ldots		$\div 1$	\％ 8	8.4	90	$9 \cdot 5$	10.0	10：5	11.0	11\％	11.9	$1 \because 3$
1：	$\because(5,-\sim 1)$	．	．	\ldots	7	7.9	8.6	$9 \cdot 2$	97	10%	$10 \cdot 8$	11%	11.7	$1: \sim 1$	$1 \because 5$
13	29．120	．	．	\cdots	$7 \cdot 4$	8.1	$8 \times$	91	99	$10 \cdot 4$	11.0	11.5	11.9	$1: 4$	$1 \because \sim$
14	31，369		．	．．	－5	$8 \cdot 3$	$8 \cdot 9$	95	$10 \cdot 1$	106	11.1	11.7	1：1	1：6	13.0
Deflexion in inches．．		1	－15	$\stackrel{1}{2}$	－5	3	－35	$\cdot 1$	$\cdot 45$	－	－55	$\cdot 6$	－65	$\cdot 7$	75
Lengths in feet．		10	12	14	16	14	$\bigcirc 0$	\because	91	26	23	30	32	31	36
15	33．600	7.7	－1	$0 \cdot 1$	$4 \cdot 8$	10.3	$10 \cdot 3$	$11 \cdot 1$	11.9	12.3	12．3	13%	13.7	11.1	$1+5$
111	3．5．r 10	－	85	13%	9•6	10.4	11.0	11.3	130	120	130	13%	13.9	11.3	11.7
17	3－11－1）	$7 \cdot 3$	c 7	4.1	10.0		$11 \cdots$	11.7	120	127	13\％	137	$1+1$	11.5	$1 \cdot 4$
14	11， $3: 30$	$\times 0$	r－a	9.5	10.1	$110 \cdot 8$	$11 \cdot 3$	11.4	$1 \cdot 4$	129	131	13.3	11：3	11.7	$15 \cdot 1$
19	＋1．540	$\bigcirc 1$	59	96	103	111^{-1}	115	$1 \cdots$	126	131	13－1i	$1+1$	$1 \cdot 15$	15.0	15.4
（4）	44 （10）		$9 \cdot 0$	9.7	11.4	1111	11.6	$1 \div 5$	127	13：-1	1：3＊	14	1.17	13.1	15\％
－	49，2－1）	\cdots	9	$10 \cdot 0$	10.7	$11: 3$	11.4	$1 \because 8$	13.0	$13 \cdot 1$	$11 \cdot 1$	$1+10$	15.1	$15: 5$	15.9
24	51，\％	．	9.1	110.3	10.9	11：3	$1 \div$	130	13.4	1：39	1.14	$1+3$	$15 \cdot 4$	15.4	16.3
\％	5 y ，2 11）	\cdots	96	101	11.1	11.8	$1 \because 1$	1：1：1	1376	$14 \cdots$	$1+7$	15\％	15.7	16\％	16.7
－3	12，（20）		9．6	106	11.1	$1: 0$	$1 \div 7$	13.5	139	1.14	150	15.5	160	1105	$17 \cdot 0$
Vellexion la inchas．．		0.5	3	－35	$\cdot 1$	45	5	－5．	6	－60	\because	\cdots		［J	－1）
Ientiliy ins fert．		14	16	1.	$\because 0$	2）	21	20	－4	30	12	34	36	3.	10
39	67．	10^{-4}	11：	12\％	12.4	1：35	111	117	150．	17%	16\％	16：4	17.3	17.7	1～2
32	71， 1×-11	11.0	11.7	$1 \% 4$	1．3．1	1：1：7	113	119	15\％	16：11	110：\％	17\％1）	$1: 5$	1×0	1－5
31	7ti， 1 （13）	1119	11.3	$1: 11$	1：1：1	1：39	11．5	$1: 1$	1.57	16%	16\％	173	$1: 8$	1－3	184
3	－10，1il）	11：1	$1 \div 0$	$1 \because 4$	$1: 1$	111	117	1．3．	1.53	11.5	171	175	1－011	1－3	190
34	c－5， 1.10	11.1	$1 \because 2$	110	1313	14：	11.9	1.5	16.1	11.7	1こ\％	17%	1×3	143	1193
$41)$	（ $4,1,(1)$	．．	$1 \because!$	1：31	1：14	115	15%	$1: \cdot 7$	11.1	$11: 4$	17：	1×11	1－3	191	119，
4.1	（11．0－1）	\cdots	1：5	1：3］	110	11.7	1.3	1.5 .3	18.5	171	17.7	$1 \times \cdots$	$1-7$	11） 3	$1!14$
41	！iansmot	．	1\％8	$1: 1.5$	112	119	1.0	16.1	1118	17.4	179	145	190	193	
41	J101，01		1：${ }^{\text {H }}$	1315	11：3	1511	13.7	163	170	17 i	1＊1	1－7	19：	$1!54$	シい 1
45	115，5 5	\ldots	1311	$1: 3$	11.5	159	1． 13	16.5	$17 \cdot 1$	17．7	1－3	1～N	1114	－410	析示
：n1	112．（4x）	．	．．	1．3．2	11.18	1．：3	1100	1tit 4	$1: \cdot 1$	$12: 4$	145	1！0	114	－211	3 ，
5：	116， 1011	\cdots	．	1111	117	1．t．	11：	1；${ }^{\text {d }}$	173	1－1	157	1！	19 N	2015	$\because 111$
$5!$	1：20，Mil	－	．	11.1	1101	1，7	11.3	17\％1	$17 \cdot 1$	142	1－8	I！！	1！1－1	21． 5	211
it	1：5， 111	．		11：3	1，0	15．$=$	11.5	$1 \cdot 1$	17	1－1	1＂1	111 i	41	： 17	$\because 1 \cdot 3$
is	1．9．930		．	1＋1	1.1	119	litit	$11: 3$	1：19	1－i	11：2	11：	2013	$\because(14)$	$\because 11$
（i）	1：31， 414	．	\cdots	$11 \cdot 3$	1.3	160	11.7	174	｜－1	147	11.3	11：9	\％	211	11.6
thefextun fis luchers．		4	1	1．）	5	3．	6	－ 0	i	\because	\cdots	，	． 9	23	10

Examples illustrative of the Table-1. To find the depth of a rectangular bar of cast-iron to support a weight of 10 tons in the middle of its length, the deflexion not to exceed $1-40$ th of an inch per foot in: length, and its length 20 feet, also let the depth be 6 times the breadth.

Opposite 6 times the weight and under 20 feet in length is 15.3 inches, the depth, and'1-6th or $15.3=2.6$ inches, the breadth.
2. To find the diameter for a cast-iron shaft or solid cylinder that will bear a given pressure, the Qexure in the middle not to exceed 1-40th of an inch for each foot of its]ength, the distance of the bearings being 20 feet, and the pressure on the midule equal; 10 tons.

Constant multiplier $1 \cdot 7$ for round shafts, then $10 \times 1 \cdot 7=17$. And opposite 17 tons and under 20 feet is 11.2 inches for the diameter.

But half that flexure is quite enough for revolving shafts: hence $17 \times 2=34$ tons, and opposite 34 tons is 13.3 inches for the diameter.
The preceding tables of the strength of cast-iron bars are the data of recent experiments by Mr Hodgkinson of Manchester, and extracted from his new edition of Tredgold on the strength of cast-iron This gentleman has also made extensive experiments for obtaining the strongest form of section for beams, the following of which is the strongest form yet obtained.

The bottom flange B is as 6 to 1 of the top flange T, or contains 6 times its sectional area.
He also gives the following rule for ascertaining the ultimate strength of beams of casttron of the preceding section and proportions.
Multiply the sectional area of the bottom flange in inches by the depth of the beam in inches, and divide the product by the distance between the supports, also in inches, and
 $51 \pm$ times the quotient will give the breaking weight in cwts.

Table of the Weight of Modulus of Elasticity of various Metals

Name of Netal.	Modulus of Elasticity, in lbs.	Name of Metal.	Modulus of Elas ticity, in lbs.
Steel	29,000,000	Gun-metal	9,873,000
Wrought-iron	24,920,000	Brass	8,930,000
Cast-iron .	18,400,000	Tin	4,608,000
Zinc	13,680,000	Lead	720,000

Note.-Modulus of elasticity, or measure by which the comparative stiffness of bodies may be ascertained: thus, the modulus of elasticity for oak is 1714500 , and for cast-iron 18400000 , or 10% times that of oak; therefore a piece of cast-iron is 107 times as stiff as a piece of oak of equal dimensione and bearing.
A hard body is that which yields least to any stroke or impressive force; and in uniform bodies the degree of yielding is always proportioned to the weight of the modulus of elasticity.
Resilience, or toughness of bodies, is strength and flexibility combined; hence any material or body which bears the greatest load, and bends the most at the time of fracture, is the toughest.

Annexed is a Table of experiments on rectangular bars of malleable iron by Mr. Barlow, for the purpose of determining the point of ncutral axis, the centre of compression, and the greatest deflesion to which railway bars or lines of rail might be submitted withont causing permanent injury to the properties of the iron.
Note-Distance between the bearings 33 inches; breadth of bar $1 \frac{1}{2}$ inch; depth 3 inches.
The neutral axis was found to be $1-5$ th of the depth from the top of the bar; the centre of compression ${ }_{3}^{2} \mathrm{~d}$ s of that fifth above the neutral axis; and the rule for obtaining the utmost degree of deflexion as fullows:
Divide 22 by 4 - 5 ths the depth of the bar n inches, and the quoticut is the utmost delexion that car be suffered with safety on bearing 33 inches apart.

Io find the weight that railway bars will support--Observe, that whatever figure may ve given to the transverse section, the head,

Weight in tons.	Deflexion in inches.	Deflexion per half ton.	Remarks.
$\cdot 125$	-043	\ldots	
-500	$\cdot 059$		
$1 \cdot 00$	$\cdot 074$	$\cdot 015$	$)$
150	-083	-009	
2.00	-095	-012	Mean, 0103.
$2 \cdot 50$	-101	-006	$\} \begin{aligned} & w=4 . \\ & 1: 4.9\end{aligned}$
3.00 3.50	-109	$\cdot 008$	Elasticity preserred
3.50 4.00	-120	. 011	at $4 \frac{1}{3}$ tons.
$4 \cdot 50$	-148	. 017)
.50	$\cdot 017$...	
$1 \cdot 00$	-037		
1.50	-05:	-015)
$2 \cdot 00$	-061	-009	
\bigcirc	$\cdot 064$	-003	w=4年. Neutral axis,
3.00 3.50	.078	.014,	$\} \begin{aligned} & \text { 1: } 4.9 .\end{aligned}$
4.00	-102	-013	Elasticity injured.
4.50	$\cdot 124$	-022	j
. 50	-003	
$1 \cdot 00$	-050	-020	
1.50	$\cdot 060$	-010	The depth of this bar
$2 \cdot 00$	-074	$\cdot 01.1$	\} only $2 \frac{1}{2}$ inches.
250	-093	-019	Mean, 0173.
$3 \cdot 00$	-110	$\cdot 017$	
3.50	$\cdot 149$	$w=3 . \text { Neutral axis, } 1: \mid$
7.50	Bent 8 in	ches.	

Resistance of the heal or upper portion of the rail.-lites.--Subtract the thickness of the middle rib from 2 inches, and multiply the remainder by 10 - Again, subirate $\frac{1}{2}$ an inch from the whole depth, nond multiply the remainder by 12 ; then divide the former prodsed by the latter and the quatient equalt the resistamce, in tons, due to the head, not including the entimation of the mild!e ribs.
liesistance of the centre rib.-RuLe.-Multiply the whole depth of the rail in incher hy the whele depth minus $\frac{1}{2}$ an incle, and that product by lu times the thickmes of the rib; fid of the last prodect entath the resistance, in tons, of the middle rib continued through the whole depith.
linsistunce of luzer wel.-litee.-Multiply the whole depth of the rail, minu: 1 inch, by the brealh h of the buttom web, minus the thickness of the rib, and that product by 10 . 1 gatin: from the whole fepth of the rail subtract 1 inch, and to 12 times the square of the remainder adid if times the remainder, and call this the fir-t number. From this subtract twice the romand r, and add 1 , and call thas the second number. Then say, as the dirst number is to the second, su is the protuct obtainel in the former part of the rule to the resistance of the lower web, not includirg the continuation of the mid. dle rib.

Then, the sum of these three revistances multiplied by 1 , and divide 1 by the clear bearing length. will be the weight, in tuns, that the rail will sustain without injury.
Eir. 1. Let the depth of a mil be 5 inches, with a phaia rib, whee thicknces is 9 of au inch; required the greatest weight that it ought to be required to bear.

$$
\text { Pesistance of head }\left\{\begin{array}{l}
(2-9) \times 10=11 \\
\left(5-\frac{1}{2}\right) \times 12=51
\end{array}\right\} \frac{11}{51}=02
$$

Resistance of rib $\frac{1 \frac{1}{2} \times 5 \times 9 \times 10}{3}=\frac{65 \%}{65 \cdot 7}$; and, $\frac{ \pm \times 667}{5 \%}=8 \% 1$ tons, the greatest weight ; and the deflexion with this weight $\frac{22}{45}=05$ of an inch nearly.

Fi. 2 Suppose a rail with bottom web, the deptlo of rail being 5 inches, the thickness of rib 6 of an inch, breadth of section of luwer web $1 \because 2$, and weight 50 lbs ; required the greatest load.

$$
\begin{aligned}
& \text { Lower web }\left\{\begin{array}{l}
(5-1) \times 72 \times 10 \times 25.5 \\
12(5-1)^{2}+21=216, \text { or } 1 \text { st number } \\
216-7=209, \text { or } 2 \mathrm{~d} \text { number }
\end{array}\right\}
\end{aligned}
$$

$73 \cdots 0$
And $\frac{73.2 \times 1}{33}=5.5$ tons, the greatest weight.

OS THE STANXGTII OF COLLMNS, OR POWLR OF NESISTANCE TU COSIPRESSIVE FORCE,
 sions aill support in lles.

Sors- $W^{*}=$ the wiflt the columa will wif

$l=$ tho lonctlis fint.
$l=$ the slisune ter in in h_{1}.
 support?
$E x$. 2. What weight will a cast-iron cylinder support, whose diameter is 4 inches, and length 10 feet?

$$
\frac{9562 \times 5^{4}}{4 \times-\overline{5^{2}+18} \times 10^{2}}=\frac{5976250}{118}=50646 \mathrm{lbs} .
$$

Table to show the Weight or Pressure a Column of Cast-iron will sustain with safety.

Length or height in feet.	4	6	8	10	12	14	16	18	20	22	24
Diameter.	Weight in ewts.	Weicht in cwts	Weight in ewts	Weight in cwts.	Weight in cwt	Weight in cwts	Weight in cwts.	W'eight in cwts	W'eight in cwts	Weight in cwts.	Weight in cwts.
In.											
$2 \frac{1}{2}$	119	105	91	77	65	55	47	40	34	29	25
3	178	163	145	128	111	97	84	73	64	56	49
$3 \frac{1}{2}$	247	232	214	191	172	156	135	119	106	94	83
4	326	310	288	266	242	220	198	178	160	144	130
$4 \frac{1}{2}$	418	400	379	354	+ 327	301	275	251	229	208	189
5	522	501	479	452	+ 427	394	365	337	310	285	262
6	607	592	573	550	525	497	469	440	413	386	360
7	1032	1013	989	959	924	887	848	808	765	725	686
8	1333	1315	1289	1259	1224	1185	1142	1097	1052	1005	959
9	1716	1697	1672	1640	1603	1561	1515	1467	1416	1364	1311
10	2119	2100	2077	20.45	2007	1964	1916	1865	1811	1755	1697
11	2570	2550	2520	2490	2450	2410	2358	2305	2248	2189	2127
12	3050	3040	3020	2970	2930	2900	2830	2780	2730	2670	2600

Relative Strcngth of Long columns of different materials, Cast-iron being 1000:

Steel.	$=2518$
Wrought-iron	$=1745$
Dantzic oak..	108.8
Red deal	78.5

Elasticity of torsion, or resistance of bodies to being twisted. -The angle of flexure by torsion is as the length and extensibility of the body directly and inversely as the diameter. Hence, the length of a bar or shaft being given, the power, and the leverage the power acts with, being known, and also the number of degrees of torsion that will not affect the action of the machine, to determine the diameter in cast-iron with a given angle of flexure:

Rule.-Multiply the power in pounds by the length of the shaft in feet, and by the leverage in feet; divide the product by 55 times the number of degrees in the angle of torsion, and the fourth root of the quotient equals the shaft's diameter in inches.

Ex. Required the diameter of a series of shafts, 30 feet in length, and to transmit a power equal to 4000 lbs ., acting at the circumference of a wheel of 2 feet radius, so that the twist of the shafts on the application of the power may not exceed one degree.

$$
\frac{4000 \times 30 \times 2}{55 \times 1}=\sqrt[4]{4364}=8.13 \text { inches diameter. }
$$

Note.-The rule is the same for hollow shaits, only using 48 in place of 55 , the thickness of metal being 1-5th the shaft's diameter.

To determine the side of a square shaft to resist torsion with a given flexure:
Roie.-Multiply the power in pounds by the leverage it acts with in feet, and also by the length of the shaft in feet; divide this product by 92.5 times the angle of flexure in degrees, and the square root of the quotient equals the area of the shaft in inches.

Ex. Suppose the length of a shaft to be 12 fect, and to be driven by a power equal to 700 lbs , acting at 1 foot from the centre of the shaft; required the area of cross-section, so as it may not exceed 1 degree of flexure.

$$
\frac{700 \times 1 \times 12}{92.5 \times 1}=\sqrt{90.8}=9.53 \text { inches. }
$$

Relative Strength of Bodies to resist Torsion, Lead being 1.

Tin............................. $=1.4$	Swedish iron.................. $=9.5$
Copper $=4.3$	English do. $=10 \cdot 1$
Yellow brass $=4.6$	Blistered stee]................. $=16.6$
Gun-metal............ $=5.0$	Shear do........................ $=17^{\circ} 0$
Cast-iron $=9.0$	Cast do..................... .. $=19.5$

Strength of Metals when Pulled in the Direction of their Length.

Strength of Alloys when J'ulled in the lhirection of the ir length.

Strength of Woods when Pulled in the Dircetion of their Length.

Transecrse strenyth of timber．－The following table contans the results of five different series of ex periments upon the strength and qualities of different sorts of timber．The experiments are detailed at considerable length in Vol．V．of the Irofessional Papers of the lioyal Enginecrs．The names of the experimenters are given at the top of the colums in which the mean resulte of their experiments are contained．
The transwerse strength S is calculated from the common formulat $\frac{W^{-} l}{4 a d^{3}}$ ，in which W° is the weight it pound－necessary to break a beam of l length，a breadth，and l depth，and supported at the ends；on S may be taken as the resistance of a rod in inch square．

Table of the Trunsuerse Sircngth of Tïmber．

Names of woods．	OBSERVERS．										Meun．		liemarks
	ht．Nelson．		captr yotag．		Mn．Moore．		Mr．Barluw		Lt，dexisos：				
	sp．gr．	S．	sp．gr．	S．	sp．gr．	ㄷ．	sp．gr．	S．	sp．gr．	S．	：p．gr．	S．	
African Oak	125	91－1	\ldots		962	250	92？	2103	10：4	2505	$9-8$	2523	（51．g．88： iwhen iry．
Ash，Lingli－h．			\ldots	\cdots	．．．．		76	9026			760	－	
\％American	（il）	15.50	\ldots	．．．．	．．．．	．．．．	．．．．	．	6	9041	626	1595	
＊．${ }^{\text {a }}$－Ewam	．．．．	．．．．	\ldots		\ldots	\ldots	\ldots	\ldots	113	1165	925	116.5	
Beech，Lumlibh				\ldots					533	ctil	533	－131	
Beech，Coglish ．．．．．．．．	．．．．	．．．．	\ldots	\cdots	\ldots	．．．．	6915	1506	\cdots		696	1．asis	
＊．American White．	7\％	$1: 20$	\ldots	\ldots	\ldots	\ldots	…		711	1：tcu	711	13－0	
Lirch，Cimmon ．							7ii	142－20			711	1928	
＊Am－rican Black．	L－：	1－18					649	1810	679	2，0．5	690	2061	
${ }^{6}{ }^{\text {6 }}$－J lillow．								．．．．	75	1335	751	$1: 135$	
Cedar，Bermudia．	IT 12	134.5		1401			．．．．			．．．．	74.	$1+43$	
＊Gaudaloun	756	2044									7.56	9141	
＊．American White．									3.34	Tric	35.1	766	
Elin，of Lebatinon									330	1.193	330	1＋13	
Eim，Eusdioh ．．．．							553	1013	60.5	551	579	T－2	
Hickory damerican．	700	1－69							751	90：－1	7\％	10：0	
Hickory，American ．．．．．．	8.1	1672	\ldots	$\because 47$	Tevi	215：	．．		と30：	$\because 2415$	831	－1：9	
Wak，linglish ．Biller No．．．．									E－1	14.5	¢7	1145	
Wak，Inglish ．．．．．．．．．	－34	16321	．．．．		816	1919	93.1	16.4	733	15.56	<29	169	
	64.5	1699	\ldots	．．．	836	1694	ยั：	1766	7－3	1 1－0！	739	174：3	
＂．${ }^{6}$＂．lietl．	440	1709	\ldots	\ldots	．．．．	．．．．	．．．．		964	166is	45.8	lite7	
\％Adrinic live	1160	186：	\ldots	\ldots					．．．．	．．．．	1160	180：	
＂Dinintic	\cdots	\ldots	\ldots		684	1.5109	－153	1385	\ldots	\ldots	80．3	1415	
＊Italian			\ldots		796	16iss	．．．．	．．．．	\ldots	．．．	796	1ties	
＊1．orrane			\ldots		7915	14－3	．．．．	．．．．	．．．．	．．．．	714	$1 \cdot 183$	
\％Meroul．					727	1665					$7: 7$	11.0 .3	
Pine， 1 merican White	48	11.50	410	1023					$43: 3$	$11 t i 0$	438	1ゼり	
．．\quad \％limd．	$0 \div 1$	1014	．．．．	1769	$5: 1$	1：－ 12	657	1341	516	$1 \because 61$	5.6	1：527	
\％¢ Jellow		．．．．	\ldots	．．．．	516	1183	5．7：1	110：	450	12tit	5116	$11-5$	
＂．Virania ．．alch		．．．．	\ldots		－ 0		Citu	16：3：	8：0	1ごご	740	17.2	
＂．Virsinia．		．．．．	\ldots		591	14．2；	．．．．	．．．．	．．．	．．．．	$5!11$	14.56	
＊．Srchamge		\ldots	．．．．		5.51	1：17\％	．．．．	．．．．	．．．．	\ldots	5.11	1370	
＂Inatzie		\ldots			619	$1+3$	\ldots	\ldots	\ldots	\ldots	6．14	$1+26$	
＂It．onkel		\cdots	\ldots		6in！	131－		\ldots	\ldots	\cdots	6 lil 1	1：348	
＂liiza．		\ldots	\ldots	．	56	16－7	746	10：9	．	．．．．		1：13－3	
Spruce．	\ldots	\ldots	．．．．	\ldots	5103	1315	\％				511：3	$1: 346$	
＊Americats	．．．．	．．．．	\ldots	\ldots	．．．．	帾			Ti：	113i；	77	lulti	
Mar－Furest liar	．．．．	．．．．	\ldots	．．．．	．．．．	\ldots	6：1－	$1 \geq 3:$	．．．．	，	$6!4$	1235	
Norway sipar ．．	．．．．	．．．．	\ldots	．．．．		．．．．	557	11.1	．．．	．．．．	57	$1-17$	
Tocal，Christinas	．．．．	\ldots	\ldots	．．．．	\ldots	\ldots	6－3	156：	．．．．		¢i－！	1516	
Cumada Batsum	．．．．	．．．．	\ldots		\ldots	．．．．	．．．．	．．．．	514	11：3	515	11 ± 3	mben mir
llembinct．	．．．．	\ldots	．．．．	\ldots					：111	111：	911	11．12	M mar
1．arch ．．．．．．．．．．．．．．．．．．	．．．．	\ldots	…	\ldots	6．1－	10， 0	51：	00.7	+14 .13	16，2	5.51 433	$13: 5$	$\left\{\begin{array}{l}\text { j．r tatily } \\ n\end{array}\right.$
1．denum－S゙itis ．．．．．．．	$111 \cdots$	is 1：3							．．．		110：	21113	
	112	17．5：		｜ $\mathrm{m} \mid$	i上	1.0 .1					B6i＊	1719	of umine
Smyerove，Barmuda tiok	$11 \sim 0$	Hig：									18－4	1×113	
Trak＂＊Whate	！ 1.11	1！－i									4.1	1！1－5	
T－rak	711	1594			$\therefore \therefore$	1！ni！	71.1	$\because 112$	．			ごいら	
linoth	．．．．	．．．．			Tis	$11 .-7$	574	いこ！	．	．．．．	17.3	101．1	
Асыніа．		．．．．			．．．．	\cdots	711	1～云	．	．．．．	711	1－6i7	
－Mratworkl．	Hия	315	．．．．		．．．．	1．．．	．．．			\ldots	Jmits	334，	
1 IVluw－uctul．	95	$\because 103$			．．．．	\cdots			．．		112	\＃110：3	W． $1=$
lirronlurar	．．．．	．．．．	970	$\because 11$	．．．．	．．．．	lixk）	2i．3！	．．．		9－5	\％ilis	
Whllabat．	．．．．		1117	1143	．．．．	．．．．			．．．		1187	16.13	
Bubleretri．	．．．．	\ldots	111\％	23，	\ldots	．．．．	118	＊い1	．．．		101．2	$\because 6$	
Kinkurally	．．．．		1：\％	1－5．	．	．．．．	．．．．	．．．．	．．．．	．．．	1：2．1	917\％	11
l rabl－w uri		\ldots	H		．	．			．		1i，	1－．．）	
Tacu 1 tabaculy	．．．．	．．．．	．．．．	．．．．	．．．．	．．．．	$!1.1$	3：4	\ldots		21.1	13：11	
1 athacaly ｜ram－wisi			\ldots			\ldots	00	－．134	－7	｜－｜x｜	！ mNO_{1}	当1 1	
\％oll Maple			．．．．	．．．				\ldots	6is	l6，	C，．，	11.4	i^{\prime}

SUGAR-MILL, HORIZONTAL. By M. Nillus, of Harre. The figures furnish a good example of the form of machine used for crushing sugar-canes, as constructed by an eminent French enginecr, who has devoted his attention, in an especial manner, to the improvement of the apparatus used in the colonies for the manufacture of sugar. It differs but slightly from the form usually adopted by English makers. Many improvements lave been recently proposed, hut we have preferred giving engravings of the more simple and compact form which is still mostly in use.

The conformation of the sugar-cane does not render it necessary that, for the extraction of its juice, the cells which contain it should be previously broken, as is the case with sugar obtained from other sources ; simple pressure, properly applied, is all that is required for its expulsion. For this purpose the canes are squeezed by being passed successively between rollers disposed somewhat like those of a rolling-mill. In the older form of machines employed for the extraction of the juice, the rollers are placed vertically, and it is only within the last few years that this arrangement has been supersedec by the sugar-mill with horizontal cylinders, which is not only cheaper in construction and more easily fixed, but by its use the process of fecding is performed with much less labor, and at the same time more efficiently.

Fig. 3365 represents a front elevation of the entire mill, showing the form of the framing, and the general disposition of the eylinders or rollers, and of the feeding-board, returner, and delivering-board.

Fig. 3366 is an end view of the same, showing the geering by which the rollers are driven.

Fig. 3367 is a half-sectional plan taken on the line $v-w$, in Fig. 5365.
Fig. 3368 is a similar half-section taken on the line $x-y$.
Fig. 3369 is a vertical transverse section, through the centre of the mill, exhibiting the form of section of the framing or standards, and the internal construction of the toproller, with its gudgeon and bearings.

Fig. 3370 is a longitudinal section of the entire mill, in which the arrangement and dimensions of the rollers and their gudgeons, and the disposition of the feeding-board, returner, and delivering-board, are most distinctly represented.

Fis. $33 \not 1$ is a longitudinal scetion of one of the lower or feeding and delivering rollers, and of one or the driving pinions.
Fig. 3872 a front elevation of the thre driving pinions, corresponding in position with their respective rollers, as shown in Fig. 8370.

Fig. 8373 a detached riew of one of the stay-bolts for strengthening the standards.
Fig. 3374 is a section of part of the feeding board, through the soeket of one of its supporting columns.
Fig. 3375 is a section of that part of the standard throngh which passes the screw for adjusting the searings of the feeding and delivering rollers; and Fig. 3376 shows a face vien of one of these bearing: themselves.

Gencrai description.-The crushing-rollers con-i-t uf three strmbe ca-t-iron ey linders ABC, mounted between the two massive head-tucks or standards D [, and so dispered that the periphery of the pper roller A is nearly in contact with those of boh the enhers. The wollers are made from $2 \boldsymbol{2}$ to 3 inches thick, and to give additional strength, are ribbed in the centre. They are traversed by the strong malleable irun gudreons abc, fixed into their respective rollers by keys, in the usual manner, and canrying at une extremity the geering by which the rollers are moved. The gudewn of the upper roller A is made of con-iderably greater strength than those of the others, as it has to sustan simblaneou-ly the strain of both. The feeding and delivering rollers 13 and (' have swall 1)anges at their ends, between which the top-roller is placed, as shown in Fir. 3369 ; these flanges are for the purpore of preventing the presed canes from working into the mill-bed. Some makers still continue the practice, once uniFersally adopted, of fluting the top-roller, th order the better to scize the canes, but it is now very generally abandoned, as it is found that after working some time, the surface of the rollers becomes sufticiently roush to bite the cance effectively; and the nletel rollers bave this disadvantage, that the grooves carry round with them a considerable pirtion of the expressed juice, which is specdily absorbed by the spongy canes, besides cansing considerable waste by breaking the cancs themselves.

The standards D D are securely tixed to the strong cast-iron =ole-plate E , which, besides perfurming this function, is constructed of such a form as to serve as a receptacle for the collection of the expressed juice. For this purpose that part of the sole-plate marked F , which lies between the two standards, is made to slope domnwards from all sides, thus forming a species of trough or cistem, the bottom of which communieates with the gutter c, also cast of a piece with the sole-phate, and through which the juice runs off into the proper receptacles. The whole mill rests upon, and is bolted firmly to its foundation G, which, in the example before us, consi-ts of two strong beams of timber, but more generally a stone foundation is preferred. The bolts $f f f$ which serve thi- purpose, pass through foundation, soleplate, and standards, so that the whole are at once bound together.

 3:376. 'T'o rergulate the distane of the rollers from eath other, and to compenste for the wear and tear
 from the centre of th. uill, ant for this lat purpu-e the bearings are madde of con-interable thackness at

 the jurpune of alduatine the lower wollers.

standards, and are supported by the slips of wood P P, which may be made of greater ir less thickness according as it is fomd necessary to elevate or depress the returner. The use of the returner is te direct the canes which have been crushed between the top-roller A and the feeding-roller C , so that they may be again subjected to pressure between the former and the delivering-roller B.

The three rollers A BC are simultaneously set in motion by the strong spur-pinions Q R S, fixed by keys upon the extremities of their respective gudgeons and geering tegether, as shown in Fig. 3372. The pinion of the upper roller, which communicates motion to the others, is itself set in motion by the driving-shaft, through the intervention of a clutch or coupling-box, fitting into the teeth $q q q$, which are cast upon it. To provide for the varsing resistance arising from irregular feeding, or from the accidental crossing of the canes, by which accidents the engine is liable to be brought up so suddenly as to endanger the breaking of the fly-wheel shaft, it is necessary to make all these connections of unusual size and weight. The best surface speed for the rollers is 3.4 or 3.6 feet per minute.
The feed-board P consists of a flat plate of east-iron, strengthened by feathers on its under surface. It is set at a considerable inclination, and furnished with sheet-iron sides, and its purpoze is to convey the canes regularly and equatly from the hands of the feeder to the mill. The feed-board rests upon two cast-iron columns t, fixed by cotters at their lower extremities to the edge of the mill-bed. Fig. 3374 shows the mode of their attachment to the feed-board.

On sereral sugar estates a continuous system of feeding has been recently adopted, and might, we think, be generally employed with advantage. This consists of an endless web of cloth, carried by two parallel rollers, on which the canes are laid. One of the rollers receives motion from the mill itself, and consequently the eloth progresses regularly, carrying the canes with it, and delivering them to be crushed between the feeding and upper rollers. By this means the canes are all presented to the action of the rollers in a longitudinal direction, and in the most equable and regular manner; whereas, when spread on the hopper by the hands of the negroes, the quantity admitted is sometimes too large and sometimes too small, which has the disadvantage, in the one case, of permitting a portion of the canes to pass between the rollers without receiving the due amount of pressure, and in the other of unnecessarily straining the mill.
The delivering-board U, by which the crushed canes are withdrawn from the mill after the juice has been expressed, consists, like the feed-board, of a cast-iron table, set at a great angle, and fitted close to the delivering-roller B, so as to detach any small portions of the canes that may adhere to it, and might otherwise mix with the liquor. It is made so as to turn upon pivots at the top of the small columns u u which support it.

Action of the machine.-The action of the sugar-mill is so obrious as scarcely to require to be specially noticed. The sugar-canes, having been previously cut into short lengths of about three feet, are brought to the mill tied up in small bundles; there the feeder unites them, throws them on the feed board T, and spreads them so that they may cross each other as little as possible. They are drawn in between the feeding and top rollers A aud C , where they are split and slightly pressed; the liquor flows down and is received into the mill-bed F, while the returner O guides the canes between the top and delivering rollers A and B , where they receive the final pressure, and sliding down the deliveringboard U , are turned out on the floor of the mill, while the liquor runs back and falls into the mill-bed.

When circumstances will admit of it, it is desirable that the mill should be situated at such an elevation above the rest of the sugar apparatus as to render it unnecessary to raise the juice which flows through the gutter e by pumping, as the contact of the air occasioned by the agitation of the liquor in the pump-barrels tends to throw it into a state of fermentation. In very many cases, however, a pump is attached to the sugar-mill, and is worked by suitable geering affixed to the gudgeon a of the upper roller, which in our figures is shown of sufficient length to effect this purpose if required.

Literal References.

A, the upper roller or cylinder.
a, the gudgeon or shaft of the upper roller, upon which it is fixed by keys.
I3 C, the delivering and feeding rollers.
$b c$, their respective gudgeons.
D D, the standards or headstocks of the mill.
$d d$, small projections thereon for guiding the bearings of the rollers B and C .
F , the sole-plate, to which the standards D D are fitted, and which is also formed inte
F, the mill-bed, into which the expressed liquor flows.
P, the grutter for withdrawing the liquor from the mill-bed.
iff, the holding-down bolts of the mill.
Q G, strong beams, forming the foundation of the mill.
g g, gutters for withdrawing the superfluous oil from the bearings of the rollers B and C.
II IH, brass bushes, forming the bearings of the rollers B and C.
$h h$, regulating screws for the adjustment of the rollers B and C .
$i j$, their nuts, sunk into the framing.
II, the cheeks of the framing, traversed by the screws h / h.
K K, cotter-bolts, for strengthening the cheeks I 1 .
$k k$, east-iron ferules on the bolts $\mathrm{K} k$.
1 L L , the brass bearings of the top-roller.
M M, the plummer-block covers of the top-roller.
N N, the plummer-block cover boits, which also regulate the pressure upon the top-roller by meam st the nuts $n n$.
O, the returner, fixed between the lower rollers, and serrated at each ellge.
PP smail slips of wood for supperting the returner.

Q, a strong spur-pinion on the gudgeon of the top-roller. On its face are also east the projections q, qq, engaging with similar projections on the coupling-box of the driving.shaft.
in S , spur-pinions on the gudgeons of the lower rollers, geering with the pinion (2.
T, the feed-board.
$t t$, small columns for supporting the feed-board.
U , the delivering-board, litted with hinge-joint:, to admit of its turning uinn
$u u$, the small columns upon which it is supported.

Fig. 38 tit represents a five-roller sugar-mill built by Nellius in France for the French colomes.
The mills u-ed for grinding the cane are generally placed ten to twelve feet from the ground, in order 10 give sufficient fall for the juice to flow into the juice-boxes, and from them into the kettles.

 represented in lig. :3:3is, sames frum $\because f$ to : inchas, accordine to size ; the depth of the eye of the roller is 12 inches in all the " mills. The shafte are of wroutht iron. The journats vary in size

going directly under the clarifiers, sending the draught through the teache and all the boilers. W W danipers for shutting off draught from clarifiers D E. X X X, feeding-doors to the boilers. Y Y, feeding doors to clarifiers. Z Z Z, doors for drawing the ashes from under the boilers.
The sugar-canc is twice subjected to the action of the mills, or is passed through two sets of rollers of which the second pair are adjusted more closely together than the first. By this process, the sugarcane comes out from the rollers nearly dry, but some juice is still retained by the capillary forces of the plant, and cannot be entirely separated from it by any degree of pressure. The liquor thus produced soon undergoes fermentation if left to itself, and by very slight causes is changed into substances of a nature entirely different from the pure solution of sugar, of which it at first consisted. Among these substances are mucilage, lactic acid, alcohol, and carbonic acid. To prevent this change by fermentation, the liquor, as soon as possible after it is expressed from the cane, is exposed to a high heat. This checks its tendency to ferment.

As it comes from the mill, the juice is passed through a sieve or coarse cloth, to separate the coarse solid feculencies. It then flows from the mill-bed into chammels through which it is conducted to receivers. These are generally two in number, placed in a situation as cool as possible, to diminish the tendency of the liquor to ferment. They are also usually on a hieber level than the boiling-house.

The crushed cane-stalks are carried from the mill to the trash-house, which, on large plantations, is a building about one hundred feet long, eighteen feet wide, and fourteen feet high. In these the canctrash is carefully spread out, and means taken to render it perfectly dry. When dry it is employed as fuel.
When the receiver is filled with canc-liquor, a valve is opened, and the liquor flows out through a channel lined with shect-lead, into the clarifiers D and E. Fig. 8379. In the ordinary method, a fire is lighted under these clarifiers, and lime is stirred into the canc-juice. The liquor soon becomes heated, and the temperature gradually rises till the thermometer stands at about 210°. As the heat increases, minute bubbles of air make their appearance, and a greenish-gray scum forms upon the surface of the liquor. The temperature is not allowed to rise to the boiling point, as the motion thus produced in the liquor would break the scum at the top, and mingle it again with the fluid by carrying down the feculencies which had risen to the top. In about forty minutes, the scum attains a thickness which causes it to "erack", or to divide into white froth, as watery vapor rises up and forces its way through. When this is observed, the liquor is skimmell for about ten or twelve minutes, after which, if circumstances will admit of the delay, the fire is damped, and the cane-liguor is allowed to remain undisturbed in tho nlaifises for twenty or thirty minntes, or even longer, during which period there ensues a more colv
plete separation and rising of the impurities. This process is called darifying, because in this way the greater part of the feculencies is removed.

From the clarifiers the liguor is drawn of by stop-cocks M and N , (in Fiee l's procens; various methods are employed in other proeesses.) These stop-cuchs are placed at such a di-tance from the buttom that about one-trentieth of the liquid will remain in the builer. In sume cases the boiliog-hou-e is furnished with only une clarifier; in general, however, two or three, and in some large establi-honents four are employed. The boiling-honee of an estate in Jamaiea, which produces thu hug heads of surgar annually, is provided with three clarifier-, each of 10 gallons eapacity, one grathed vaperatur of equal magnitude, one of 300 gallons, another of 180 gallons, and another of 90 galloms, wine meature.

From the elarifiers the liquor passes into the first evaporator C , which, in liced's armangement, hohls about 400 gallons. Ifere the juice is allured to boil. This boiling separates at kind of feculencies which could not be separated by gentle heat, and which, therefore, were not removel in the charifiers. The scum, as it rises, is carefully removed by scummers. When, in this way, the cane-liquor is improved in quality, thickened to at yrup, and reduced about two-thirds in quantity, it is then drawn of into the second and smaller evaporator B. This ceaporator holds about su0 gallons. New liquor may now be admitted from the clarifiers into C. The syrup from C. is concentrated still further in 1 , and then drawn off into the last evaporator A. This evaporator is technicully called the teache. In this the syrup is concentrated to the requisite degree for erystallizing. This is called the strikimt-point, and the concentrated syrup the strike, while stritiong is an operation performed in a set of woolen vesouls or wooden vate, not represented in the tigure. These are male of eypress planks, and are very shallow, measuring from four to five feet in widht, by twelve to fourteeis inches in depth. Nut lesis than six of these are used with one set of kettles, amb, in general, a sugar house contain- eight or ten, or ewen a greater number. They are called coolers, for the hquor is removel from the thathe and poured into these vesels to coul. Their size is such that, when filled, the syrup will cool at that rate Whiel is most favorable to a proper crystallization of the sugar. The more gradually the syrup cools the larger will be "the grain" of the sugar, and the more casily will the molases be dramed from it.
The degree of concentration of the syrup is detemmed by several methots, of which the best is ealled the pronf by touch. A small portion of the syrup) is taken from a ladle or stirrer whe the of the thumb, and the middle finger is then brought in contact with it, and again separated from it. If. in this case, two drops of liquid separate, that on the thanb below being the harger, the concentration is as yet weak. If the drops become nearly equal and do not separate until the tinger and thambare drawn widely apart, the concentration is stronger. The third state of concentration is where, by the separation of the finger and the thumb half an inch, a thread is drawn out, which timally breake below; the end of the threal becomes club-shaped, and rises flowly towards the finger. In the fourth stare the same thing occurs at a greater distance, the end is folded backwards, and the thread has the furm of a ribbon or long strip, which rises more rapidly than before. In the fifth and lat degree of comechtration, after a greater separation, the thread breatha, being very fine at the end which turns abide and wists up like a cork-screw. It dors not foll itself upon the upper part of the thread as before. A ittle more concentration prevents the thread from shrinking at all upon it-elf.
The seum which is removed from the cane-liguor and syrup is taken, together with the feculencies
Nected in the clarificrs, to the still-house, where it is converted into spirit. The furnace is maintained ..t a unifurm heat, day and night, from the commencement of the grinding season in November, till it. conclasion in January; stopping only a fow times that the kettles may be scraped from the acemmalation of rust, lime, and carthy inpurities, which collect upen them, and which, if not uceasionally removed, callee them to crack.

From the coubtro the sugar is taken to the curing-honse, which is a large building contiguobs to the builing hou-e. In at cat ity in the lower part of the euring honse is the molasses cistern. Weer this cis
 she midhe. "pan thace juints are suppurtenl a series of hergheade, into which the surar, when ithriently eryatallizel in the com lere, is removed. and the molsones dramel off throush hales in the buttum.
 to hold all the sagar whech can be made in three or four weeks, or till it is freal from the greater part
 erably dry, the sugar i remosed from the curing honace for shijmant. The surar that mandacture 1
 sugar.

 the mate in which the fire ispiliel.

resented by the bent arrow, will finally pass through the flue $a h$ into the chimney. Two valves are represented by the letter a, and two by the letter b, corresponding to the two clarificrs represented by No. 1. The object of this double arrangement is to shut off the heat from either claritier, according to circumstances.

The flue ed passes therough the teache and is composed of a series of pipes, as represented at H . ir Fig. 3379. The valve e is so constructer as to close all these pipes, and corresponds to the valve R, in Fig. 3379. The valve d is made in the same war. The flues beneath Nos. 3 and 2 pass through these boilers, als represented in G and H, in Fig. $33^{2} T$. The flue beneath No. 1 has a different con-
etructon. In this two large pijpes pass through each clarifier, as is shown at ffff, Fir, 33s0. By the valve l the fire may at any time be entirely, or in part, cut off from the clarifiers, and by the valve c from the teache.
The remaining arrangements are represented in Fig. 3379. XXX XV are doors opening to the furnace, by which it fire may at any time be kimbled directly under each of the boikers of under the clariticre. ZZZZ are doors for removing a-he; from under the builers. I) is a stop-cock for trawing of syrup from the teache. The stop-cocks for drawing off the syrup from the other builurs have been already mentioned.

To prepare the boilers for use- A 13 and C are at first nearly filled with water, D and E are filled with came-juice. The dire is then kinded, and the heat is made to pass, as described abowe, through all the boilers, and une of the claritiers D , but not through the other, E . Whens the eane-liguor in D i: heated nearly to the boiling point, the heat is cot off from this and made to pass through E. The water is now drawn of from builer C , and the elarified canc-juice from D is drawn of into this boiler $1)$ is then again filled with cane-liquor:

When the canc-liquor in E is sutliciently clarified, the contents of C are drawn off into B, the wate of which has been previously removed. The liquor from E is then drawn off into C , and E is filleul with fresh cane-juice.
The liquor from 1 being ready to be drawn off ag in, the water is removed from the striking teache A, and the syrup is drawn from B to A, from C to B , and from D to C . D is filled with fresh canejuice, and all the boilers are now in operation. When the syrup in A is sufficiently concentrated, the fire is cut off from this builer by raising the valve d, Fig. 33 en. The syrup is allowed to remain in the teache for a few moments till it is somewhat cooled, and is then drawn off except 30 or 4 jucles at the buttum.

Advaitages of Reed's Bollers. 1. Economy of fuel.-In most of the tropical countries where sugar is made, fuel has become scarce; hence the great ubject of the planter is so to arrange his works as to economize fuel. The usual arrangement for this purpose, is of a series of boilers in a horizontal flue. The heat of the fire is thas, to a great extent, abstracted before it arrives in the flue. The saving of fuel, in Reed's arrangement, is proluced by cutting off the fire when it is mot neeked.

Mere position cannot adapt the boilers to the different dugrees of heat which they require, for there is wo gradation in this respect. When the liguor is first introduced into the clarifiers, a great amome of heat is frequently necessary, on a count of the large quantity of water which the cane-juice contains. But, as the evaporation proceeds, the amount of beat requirel diminishes. In the striking teache, also, it is equally importint to be able to diminish or cut off the heat at once. This is easily mamared in Reed's method, and, at the same time, the heat is not lost, but is applied immediately to the evapurators Nos. 2 and 3. Fig. 3üSo.
2. E'conomy of time.-Un many plantations, and on all at certain times, it is far more important to hasten the convervion of cane-juice into sugar, wen if this is done imperfectly, than to obtan a more perfect article with a greater expenditure of time. It is often far more prolitable to make a large quantity of rather inferior sugar, than a smaller amount of the first quality.
Beonomy of time is important in another respect. It has been ascertaned that sugar is remered dark und uncrystallizable more by the duration of boiling than by the intewity of the heat emphoved. slow evaporation by steam, fin instance, insteat of producing a better result, gives wery dark and un crystallizable syrups. A rapiel evaporation in 6 or 8 minutes, in the usual evaperating pan, reuders less of the sugar uncrystallizable, han a slow araporation in the same pan continued for 40 or 50 minutas The same eflect hats been foume to take place even in the vacuum procese, where the sugar is builed at a very low temperature.

Reetls process seenres this advantare in three ways. (1.) Evaporation takes place much faster when the heat is diatributed through the syrup by pipees, than when it is applied to the that on round
 proces, besides the shan which tills the double botom of the boilers used in this proeess, and communicates heat from beneath. (2.1 A mueh higher degree of heat can le ured in this methed than in the one generally empleyent. In the conmon builer, ats the heat of the fire acts directly on the that or
 dered uncryatalizable. It a high hat in comployed, it is impusible to prevent this eflect from taking
 cersa, the damer fiom this sumer i- entiraly removeal. (ii) The whole arrangement is an abily man

 hurry of gatherins the erop an I converting the cha jule into sugar.

the second racuum-pan is supplied, where it is then brought to the striking point. The vacuum-pans used in this mode of boiling are like those described under the mode of boiling in open kettles and vacuum-pans; they are heated with low-pressure steam, and, consequently, the burning of the concentrated saccharine liquid is thereby obviated. When the operations of defecation, filtering, and boiling are well managed, the sugar is equal in every respect to any made in any apparatus of the most improvel method. By this mode of boiling sugar the consumption of fuel is as great as with common kettles. These kinds of racuum-pans require a great quantity of fresh water for condensing; and in places where water is scarce, racuum-pans of this description cannot be employed.

Degrand's apparutus.-Degrand's system consists of a condenser. The vapors arising from the juice or symo boiled in a vacu*n-pan and condensed by means of a serpentine tube, over which a film of cold juice is continually kept flowing, which absorbs the latent heat of the vapor within the tube, and a portion of the water from the juice passes off as rapor in the air. Degrands condenser serves the double purpose of a condenser and evaporator.
There are only two of Degrand's apparatus in Louisiana. They were constructed at the Novelty Works, New York, and are more commonly known as Dérosne's apparatus; but Mr. Degrand is the eal inventor and patentee of this apparatus, and Dérosne d Cail are only the constructors and assignees of his apparatus fur the ucrth of France and the colonies.

The Degrand apparatus in operation in Louisiana have vacuum-pans with a very large heating surface, and heated with low-pressure steam; the air-pumps are larger than those used in the Island of Cuba. The artificial draught of air is not made use of here, but the same result is obtained by the injection of water between the condenser and air-pump; this increases somewhat the consumption of fuel, but the vacuum obtained in that way is as perfect as by means of the draught of air ; and the sugar made with this apparatus is as good as any made in Louisiana.

In the beet-sugar manufactories in Germany the manufacturers were beginning to abandon its use, in consequence of the practical difficulties in distributing the beet-juice regularly over the serpentine; and in case one of the many tubes which form the serpentine has the slightest deviation from the straight line, the juice will concentrate more at such depressions, and disturb the regular distribution of juice over the tubes. When a leak happens, the juice or syrup is rapidly absorbed into the interior of the tube on account of the vacuum, and causes a considerable loss. It is likewise found that the economy of water for condensing is not so great as was anticipated, and finally it was concluded to return to the former plan of boiling in common vacuum-pans.
The consumption of fuel by a Degrand's apparatus is 13 to ϱ cord ; of wood for every 1000 pounds of sugar produced. In the I land of Cuba this apparatus takes off the whole crop with the bagasse alone; kowerer, some require great quantities of wood besides the bagasse.

Mr. Dérosne obtained a patent in Lurope in 1836, and in America in 1845.
The following description of the mode of working his apparatus is taken from his patent.
The juice which is taken from the mills is defecated in pans or boilers, a row of which is shomn at ffff, Fig. 3382. In Fig. 3381, the clevation of one of these boilers, f, is represented. The juice from the mill passes into a reservoir d, that is comnected by a pipe d^{\prime} with an air-tight cylinder e, in which pipe there is a stop-cock that is tumed by a long handle $d^{\prime \prime}$, by turning which the cylinder c can be tilled, and the communication can be afterwards cut off by admitting steam from the generators or boil. ers, (shown in lig. 3382, 6 , in dotted lines, that supplies steam to the engines and healing apparatus oi the whole manufactory,) into the top) of the eylinder e. The juice is forced throngh a pipe e^{\prime}, in the bottom of said cylinder, up into the clavifying boilers f, which is constructed with a double bottom, between which steam is adnitted by the tube a' from the generator; the condensed water being returncu to the boilers by a force-pump through the pipe b'. The eonstruction is common, but the employment
of the series of these pans, for this purpuse, has newer before been dome, or the juice el vified, as about (1) Ine describet.

When the cane-juice has reached the point proper for receiving the clarify ins mixture, which point is from 60° to $6: 5^{\circ}$ of Deamme, it is added. This cempesition is made by a comp tom t the sulphate of tumine of the cheapest character, either with or withont the preemee of iron, which is formed by mix. ng sulpuric acil with aluminous earth, and adding thereto lime, pota-h, or other similar salt, and a quantity of liquited blow, either fre-h or dried, being incorporated intw the precepitate. This is united with the juice by carefully stiming it white pouring in the mixture, and chafifes it; or, in tead of this, jme alone can be u-ed, as in the former frowenes, the quantity being mash greater that that used in the ohl colonial mode of proceding, as, in this system, there is nothing to fear from an ax a of lime which a suberquent 1 art of the prucess perfectly corrects to any extent that it uay have been fiumb neeceary to use it, in order to ubtain a groud clarifeation. The stean is kent un mitn the juice bergint to hoil, and when this point is reached, the steam is cut off. The result of this is, where the mature in used, that at the top of the boiler ff a thick and solid coat of scum is formed, and only a ruy =mall guantity of matter is precipitated to the bottom of the boiler. In a few minutes the liquor will have becurse clear, and can be drawn ofl through a tube m, by turning a cock in the buttom by means of a key m^{\prime}, when it cam be a-certanced if the liguor is limpid. A small quantity of thick matter usually s-ues from the tube tirst, but it soon runs elear. By this mode of proceeding we aroid all the trouble ome labor of skimming, we. The juice, after leaving the tube m, pasises into a guter M which commumicates ly a pipe c with another reservoir j, by which the filters, hereafter described, are charged with the juice.

When all the clear juice is drawn off, the semm and the remainder is drawn into a reservin underneath; after which bags are filled with it, and the syrup is drained and pressed out of it. The elarified cane juice in the rocervir F is next to be filtered through anmal charcoal in grain; and this filtration con-titite- one of the mont important operations of the manufacture-it purifies the juice and furn-hers the means for readily ubtaining sugar of the first quality. In Fig. 3581 cight of these filters are reprenented, h h h. all of the same construction: the same are shown in Fig. $88 s$. They are comstructeal th contain about one and one-seventh tons of anmal charcoal. They are made of thect iron or wod lineal with copper, of a square form, uarrowing slightly towards the bottom. At the lower part the re a grating, leaving a small shace hetween that and the bottom, through which the filtered liguid thows. On this eratimg is phaced a thick blanket for the gurpose of supproting the chareoal, which should be safliriently lare to alluw the edeses to be presed against the sides; in thick layer of charcoal is then apread over this banke timbly and evenly, after which another layer of charcoal is put on, care being taken to equalize it with a trowied as it is thrown in, and the filter is filled thus to alout four and a half feet in Wepth; the upprer surface is then carefully smoothed, and it is ready for use.

A phate is laid on the phace where the cock discharges the juice or syrup into the filter, in urder that t may aprad hazontally over the surface without forming hollows therein. The syrup penctrates whe animal chareoal, and drises th. a air down before it, which is di-charged from a pije" that leads up from the rpace below the grating to the tup of the filter. The syrup, after pas-ing through the grating and hasing depored all its impurities in the filter abowe, is drawn wh through the cock in the botom, from whence it is conducted to a rearwoir, hown in Fig. asis. by the hettre, from which it is chevated by a cylinder l into a reservoir l '. This cylinder or monte-jus is made and "perates prociely the same as that previnusly de-ribed and hown in lige 8351.
from the reserwir l^{\prime} of Fige 3 3se the juice is conveyed to the evaporator, which is one of the most

 -मpes from the derilntor alowe, at it fill intu the rewerer t^{\prime}.

a condenser for the steam rising from the racmum-pan. The steam, when condensed into water, runs out of the lower tubes, as above named, into an injecting-cylinder D, where, if the condensation is not perfect, water can be injected to complete it; from the cylinder D the water of condensation, de., is drawn off by the action of the air-pump attached to a steam-engine, indiented in the drawing by $\mathrm{E}^{\text {a }}$. The pump and cylinder D, above named, may be omitted, and a rentilator placed in their stead; but the vacuum will not in that case be so complete, although the expense of the apparatus is somewhat rednced. Instead of attaching the condenser with the vacuum-pan, as above described, it may be con nected with the exhaust-pipe of the steam-engine.

As the depth of juice in vacuum-pan A is reduced by evaporation down tw the heaters inside, a further supply is to be admitted from u through the pipe $d^{\prime \prime}$, as in the first instance; and when the juice under evaporation acquires a density of 21° or 25° of Beaumé, it must be drawn out of the pan, the passage of the steam to the heaters being first cut off, and the vacumm therein destroyed.

The syrup at 25° then passes through a movable spout L , which is directed into another spout N , and thence into the reservoir I, after which the boiler is charged with juice from u, and the process again proceeds as before. During the operation of emptying and refilling the pan, the time is so short as not to require the stopping of the flow of the cane-juice over the outside of the tubes $\mathrm{C}^{\prime} \mathrm{C}^{\prime \prime} \mathrm{C}^{\prime \prime \prime}$.
From the rescrvoir 1 the syrup is raised by means of a hand-pump J into a spout which is representect at i, Fig. 6382 , for fecding the filters before described. The syrup runs from the spout i into either of the filters h through stop-cocks attached thereto for that purpose, and passing down through the filters, it is soon atter drawn off through the cock and received into the gutter i^{\prime}, whence it is conducted into the rescroir k^{\prime}, Fig. 3382; and when there is a sufficient quantity therein to fill the pan A, the other processes are stopped, and the pan A is filled with the syrup from the reservoir k^{\prime}, by means of a pipe u, which connects them by a proceeding similar to that for filling the pan from the reservoir u. The craporation of this syrup of 25° is then proceeded with until it is sufficiently boiled, which is ascertained by the testing-rod of commonform. When the syrup is in a proper state of condensation, the pan is to be emptied by means of the movable spout L , through the spout N , into one or the other of the heating pans shown by letter F .

The pans F have double bottoms, and are supplied with steam from the generators between the two bottoms, by which they are heated, until the temperature of the syrup contained therein reaches 70° Beaumé, at which point crystallization almost immediately commences; and when it is quite determined, the mixture of erystals and syrup must be stirred with a wooden spatula, care being taken to distribute the erystal formed on the bottom and sides equally; the matter is then, white in a liquid state. ready to pour into the moulds.

In the process of filtration, hercin before named, as soon as it is found that from the use of the filter the syrup of 25° comes from it less pure than at first, it is stopped and turned into another filter; the clarified juice is then admitted into the filter from spout j; this drives the syrup still contained in the filter down, and takes its place. When the degree of the flowing syrup is found to be reduced to 15°, the juice flowing from the cock is directed into the gutter j, which conducts it into the reservoir k, from whence it takes its course as before indicated.

When the animal charcoal is sufficiently exhausted by the filtration of the clarified juice, water is let on to the filter, and assumes the place of the clarified juice in the same way as the juice did the syrup; by this meams the greater part of the juice is recovered, the flow boing stopped when the degree of the liquid is too weak to be of value.

The coal is then taken out of the filter and conveyed to the revirifier, and the filter is again refilled with fresh black.
Dérosne claims the employment of a series of horizontal tubes, placel one above another, in the man. ner described, having a current of steam passing through them, and the canc-jnice flowing over the exterior surface, by which the steam is condensed and the juice is somewhat concentrated; thus serving the double purpoze of condenser and evaporator as before described, said condenser being attached cither to the racuum-pan or to the exhaust-pipe of the steam-engine.

Rillieux's apparatus.-Norbert Rillicux, of New Orleans, invented an apparatus for boiling sugar 1 us vacuo, in which he uses the latent heat ariving from one pan to boil the juice or syrup in succession in mother vacuum-pan of similar construction. To heat the first pan he wees the escape stemo of the
steam-engine which worlis the grinding-mill; the secund, third, or fusth pan is heate, from the vapora arising from the second and third pans.

An air-puny produces the necessary vacuum.
Mr. Fillieux obtaned letters patent for his invention in 1 S 13 , and for improvement in the same in 1810 .
The following description and tigures will give a correct idea of the apparatus and its mode of working.
Rillienx's boiliny appuratus is composed of three or fonr pans.
The fiver-pan apparatus.- The cane-juice, after having paesed the elarificrs and filters, flows into a vat, from which it is pumped in the first pan A, throush a pipe a, Fig. 38 , which weads to the back part of that pan, on which pipe there is a stop-cock, which is opened of elo-el ly means of a handle b placed in frout of the apparatus, where the mat who manages the apparatus is phaced; and, in turning

Fow let us follow the steam:
The exhaust steam from the boilers goes through the pipe I, Figs. 3383 and 3384 , to the first pan \mathbb{A}. Below that is another, K, which brings the direct steam from the boiler and feeds the clarifiers F F and the pumping engine L. At M, Fig. 3384, is a valve which connects the two steam-pipes together, and through which any quantity of direct steam wanted, besides the exhaust steam, can be let into the ex haust steam-pipe 1 for boiling the juice.

The vapors arising from the cane.juice of the pan A are carried down through a pipe h, Figs. 3385 and 33S6, and columm i, in a cast-iron box, o^{2}, steam-chest l. A part of this steam passes up through the column l to feed the second pan D, and passes through the horizontal pipe m, Fig. 3385, and up the column q to feed the strike-pan D.

The vapor arising from the second pan B passes through column n and steam-chest k^{\prime}, and up through the column o, to boil the pan C. The vapor from CD passes through the columns $p 2$ through the horizoutal pipe s, and brings the yapor to the condenser s, where it is condensed by means of a jet of water; the racuum being maintained through the means of an ordinary air-pump T. S is a pipe which connects the pumping engine with the condenser, the third and fourth pan.

The waste water of the first pan A comes down through a pipe into an air-tight chest in the bot-tom-plate of the pumping engine, from which the force-pump u takes it and sends it back to the steambnilers.
The waste water of the second and third pans, which is the condensed water of the rapor arising from the canc-juice in the first and second pans, passes through similar stop-cocks and pipes, which carry it to the small air pump U, which forees it up to a vat, where it serves for all the cleansings of the establishment.

Three-pan apparatus.- When the three-pan apparatus is used, the cane-juice is pumped into the first pan A; from thence to the third C; the secoud, marked 13 , is omitted; whence it is dramn off by the
pump to the clarificers, and the juice follows the same course a = in the fuur-p:n apparatue, above de scribed.

The exhaust stam and the direct steam are let in the firat 1 an her means of the valve M , abow mentioned, and the vapur arisug from this pan feads the pan (s, an Ith. third pan 1 , an 1 the wipor of the second C, and thrd I, goes as in the other apparatus already dweribe l to tlo couletser. The wate water of the second C^{\prime}, and third D, follows the same course as abreuly ofe rilned in the fiur-pars
 exhat steam of the mill-engine, the mill mat be kept grinding at a unifime peed. an I whathentmmally regular supply of cane; and as the power of the engine is regulated hy the ditirence of freare: between the -team in the beilers and the steam in the exhamst-pipe, an I, as wht dith remee is wes late i by the weight on the valve M, it follow that, in loadinf that ralve 31 more or less, the dith rent pres. sure of team, or what is called the effective preseure of the steam, is atjustelt in su In a way that the
 and filered juice-vat are always kept full. The liquid therv from the mill up the the clarifir-an I down to the filter-, with the same speed ats it comes from the mill, the eane-juice pasing ont of the afore-ail vat as fate as it comes in, to supply the firct pan, an I from thence to the second pan, on therd, as the raze may be,? When it is brought to the density of gyo Deatumé. A small pamp is attachad to the en gine to take it out of that pan fast emough to keep the syrup at a certain height in it.

The syrup is pumped into one of the clarifiers Eat high as the jacket reaches; when that clatitier is filled to that point the rest of the syrup is turned into the other, which is heated by letting in the steam before it is full; when the first charifier las reached the builing point, the stean is -hat off, the scum removed, and the liquid emptied by the cock W into a trough, and thence down to the filters

The only operation which the attendants of the pans have to obeerve is to keep the juice or syrup at the proper level in the first and second pans, and to feed them as well as the third pan in such a way that the syrup be maintained at 29° Beaume in the secoml pan, or thirl, as the case may be, by upen ing or clu-ing the feeding-cocks when the syrup runstun thick or two thin, or when the juice is too high or too low, and also to rezulate the pressure of the stean by the valve II. It will be observed that there are two sets of elarifier E F - one set t, boil the syup, and the other st to defocate the juice as it comes from the mill.
When the stop-cocks are rerulated they require a con-tant watching ly the person employed at the pans; but they remain sometimes hours wifthut leing movel, or the handes require t. he mosed more than one erighth of an inch to one or the wther -ife to keep the canc-juiee at the proper height, an I the syrup at its proper den-ity. The cancejuice, when it leaves the mili, pasce in a constant -trean to the
 sity, and from there it goes through the bune-black filters $\mathcal{C} \mathcal{F}_{\dot{r}}$ to the vat H , which a ain -uplies the strike-pan, an! then, at last, the builine is done by strikes, as the sumar-builer catls it.

The juice goes from the tir-t into the seconl in the three-pan appuratus, and from the first the seeond, and from the second to the thirl in the four-pan apparatus; becauce, in the latter appaatus the re is more vacuum in the second than in the first, and more in the third than in the seconl; and it is that exeess of vacuum which draws the eane-juice from one pan into the ether:
The waste water of the juice elarifier F F comes through pipe X in the steam-chamber of the first pan; on which pipe there is a three-way eock, which, when properly turned, sends it direetly lack to the wante-water pipe t of the fir-t pan. The waste water of the two other claritiers E E comes directly to the waste-water pipe tof said pan. When the second pan is boiling, the three-way cok in turned to bring sail waste water from the cane-jnice elarifier to the steam-chamber of the fir-t pan; and nl the stean ari-ing from caid wa-te water upwards mixes iteelf with the exlaust steam, anl lelpis the builing of sail pan; the water thows to the lower row of pipes thron fh the other end of the pan, and mixes it-elf with the waste water of sain pan, and eroes down throush the wastewater fifee f, mixed
 from whence the whele is prunce I back to the bileri in such a way that all the ot an con len el in the jucket of the can- juice an I yrup chandier, and that which has been combnemd in the pige of the

 Inated to the beilitg pente is sent lank to the builer.
 than in nay wher - y tem known.
 square inch, and the latent heat of the vapor from thin pom is need (ow examate the mrup in the mext af

 stean-engine, which is phaced under then apparaths.

 for which it way intemderl.

 dre United sitate.

 Vor.. IJ.-11
sugar-house, generating enough steam to work the grinding-mill, to heat the defecators, supply the ne nessury quantity of steam to the boiling apparatus, to work the engine for the air, juice, syrup, and water pumps; making $12,000 \mathrm{lbs}$ of sugar 1124 hours.

The apparatus is sulid and requires very small space, and has a pleasant appearance.
The sugar made with this apparatus is of a beautiful light straw-color, of fine large crystal, and frec from unpleasant odor, and commanding a good price and ready sale.

The price of a lillicux apparatus varies according to the size; a three-pan apparatus sufficiently large to take off a crop of 410 hogsheads of first sugar, including clarifiers, bone-black filters, vat fire filtered cane-juice and syrup, three boiling-pans, pumping engine, cast-iron and copper pipes, and all expenses of setting up, is $\$ 11,000$.*
A. Stillman patented an improvement in evaporating saccharine juices in 1813.

The invention consists in employing the surplus or waste heat from the "train" in generating stem for grinding came, pumping, or any uther parpuse for which it may be required.

To supply the deficiency of evaporating power occasioned by diminishng the train of kettles, he substitutes in their place any number of steain ceaporators or clarifiers, into which is introduced the "exhaust" or waste stean from the steam-engine. 'this waste steam, to be made effective, must be introduced into the clarifiers or evaporators under a pressure greater than that of the atmosphere, and the effect will be in propurtion to the pressure.

The objects of this arrangement are, a saving of fuel and improvement in the quality of the product, and the improvement in the latter respect will be proportionate to that amount of the process of clarifying and evaporating which is transierred from the ordinary kettles in contact with the fire, to those making use of the waste steam.

Fig. 3387 is a section of the sugar-works in which are shown the application of the improvement, and respecting only a general arrangement. A A are the steam-boilers so placed as to receive under them the waste heat from the train; B, the steam-engine; E, pump for bringing the liquor from the reservoir to the clarifiers through the pipe F. This pump is not an essential fixture, as the mill is more frequently elevated to a height sufficiently for the liquor to run directly to the clarificrs. GG, the clarifiers; II, the craporator, which is of the same form and construction as the clarifers; IK I, a train of "coppers" or evaporators, such as are in common use; M, fireplace for the train; N, the flue, through which the flame passes from the "train" under the stcam-boilers to the chimney; OP is also a flue to the chimney, so that the flame from the "train" may be turned off from the steam-boilers at will; R , exhaust steam-pipe from the engine ; this pipe communicates with the pipes in the clariners or evaporators; S, the escape-valve, by which a pressure is mantained in the exhaust-pipe.

The clarifiers are rectangular boxes of shect-iron, (boiler-plate, the bottoms of which are donble, so as to form a steam-chamber a : around the top they have a channel-way m, which forms the "skim-ming-spont;" the skimmings, which it receises, are carried off by a pipe. In addition to the heating surface obtained by the double bottom, there is above it one or more tiers of copper pipes. The method of introducing them is as follows : on two opposite sides of the clarifiers is a cast-iron box riveted, which forms the side chamber $b b$, and extents the whole length of the clarifier; this chamber is closed by a movable phate which is fastened by bolts; these two opposite chambers are comected by the crosspipes c; the pipes are received into the chambers through "packing-joints," so as to prevent any communication between the steam in the chamber and the liquor withia the clarifier. To the top of one of the side chambers there is a cylindrical valve chamber attached, which receires the steam from the ex-hau-t-pipe on either side; from the lower side of this valve-chamber is a steam passage conmunicating With the chamber b; this steam passage is opened or closed by means of a sliding-valve d.

When the engine is in operation, the waste steam passing through the exhanst-pipe R is admitted through into the side chamber b, and from thence into the pipes $c c$. and also through apertures into the bottom chamber a. The liquor in the elarifier is then expused to the heating surfaces of the pipes $c r$, and also of the "false" or "double bottom."

Steam-pipes passing through the liquor lave been before employed, but not in combination with the double bottom. The adrantage of this combination is this: by using the pipes alone, that portion of the liquor beneath them would be in a great measure unaffected, whilst the double bottom above would not gise the necessary heating surface; so that the combination is necessary to a perfect operation.
h and i are two valves; one for discharging the clarified or concentrated liquor, and the other for discharging the sediment formed in clarifying. Their construction is as follows: the valve is the ordimary "puppet valve," with a hinge on the upper side for attaching the rods; the seat is fitted betweer the two bottoms of the clarifier and riveted to both; the pipes for carrying the liquor and sediment art
attached by fanches arn! bolts to the bottom of the seats. The valves will close by their own weifht and the weij iit of the liquor above them will keep them right; the walves are raisell ly eords con necting then to levers on the shaft R , which shaft is worked by a handle on the outside of the elaritier
Thie valves are so placed that the levers stand in opposite directions upen the same shaft, so that buth valves can nerer te opened at the same time.
S the eseape-valve, made like an ordinary safety-valve, and attached to the exhaust-pipe of the engine. Its particular construction, however, is not essential, its purpuse being to whtain all the useful effect of the waste steam by contining it in the exhaust-pipe and clarifiers at any required preseste. Suppose, for instance, that the engine is in operation, and the exhaust-pipe terminating in the clanifiers, but in some part of the exhaust-pipe there is an opening into the air of a size equal to that of the 1.ipe. the steam, of course, would escape through the opening against the pressure of the athoor ihere only; it, elfeet in the elarifiers would then be very slight; but when that opening is clused by means of a loaded valve, by increasing the weight on the Falve, we may so conline the waste steam as to effect the entire absurption of its heat in the clanitiers or evaporiturs.
The operation of this apparatus is as folluws: The tlues \mathbb{N} and P being closed ly dimpers, a fire is made under the steam-builers in the usual mamer. As soou as a sufficiency of steam is gencrated the ensine and cane-mill are put in operation. The pump F is then put in operation, and the liquor carried to the clarifiers $G G$, through: the pipe F'; the steam is then admitted from the (exhaust-pipe into the clarifiers; and the liquor having gore through the usual process of clarifying, is discharged by means of the ralves h / h into the evaporators II, and through that into the train of coppers 1 KL , where the evaporation is to be completed. These coppers or kettles being fillend with the elaritied liquor, the furnace is closed, and the fire started under the trains of coppers on the furnace JI, by which fire, be-ides effecting the concentration of the liquor in the kettles, the steam is generated in the boilers and the operation continved.
The stean-clarifiers may be used indiscriminately in elarifying or evapurating, as the case may require.
If the train of coppers be very much diminished, more of the evaporation, of course, must be carried on in the steam evaporator.
sWITCH. A contrivance of a variable rail by means of which the ears on a railroad are passed from one line of rail te another.
Fiz. 35 n s shows the methoul of operating. Ss are called the switch-bars, movable about the preint II, at which point they form part of the line of rail of the straight track B B B B3. Thwe bars are secured togethen by iron folla $r r r$; arma r^{\prime} is connected to the thort arm of a lever l, seem in
 the right or left the switech bars are moved so that they firme cither part of the straight and rifht hand track BA, BA, or part of the -traight and left. hand track BC, BC Where the rails cross at E it the fixed costinge calleal a froy, the use of which th pas the flimen of the wheel through the curseal rail is too obvions to reguire explumation. This is the double switels connecting a main line with a turn out or track on enther si lea mid wherever the rails crors esth wother a frog ts in erten, Ixaitel to the crio-ties. S'ee Finos.
hummerable furms of switch bar nuld frug have beender: I far acemplishing the same purpere, mal tereral patents have been taken ont fur Swithes callewl "nafoty switches," the whicet of Whath is to prevent the cart pame off the track
 "han thrus:h negli ernce the varialder rail io le ft
 switch, us is al o Mr. 'T'yler, of Woree ter, Ml.L.

TELEGPAPH, History of the. Soon after the discovery of the Leyden jar, in 1747, it was observed that the shock, passed through twelve thousand feet of wire, affected persons placed at either extremity, apparently at the same instant of time. The idea of the instantancous passage of electricity was probably thus first recejed, and it was foreed, by new observations, on the attention of all succeeding electricians.
In 1791, Reizen proposed a telegraph, employing the spark, with seventy-six wires, or thirty-six complete circuits, one for each letter and number. In 1798 , Betancourt constructed a telegraph, also employing the spark, which is stated to have been in successful operation, between Madrid and Aranjucz, for twenty-six miles. This was the achievement of the close of the last century. The difficulty of insulating free electricity made it impossible that any great results should be obtained from its use.

The first year of the present century produced the roltaic or galvanic battery. In 1809, Sommering improved this discovery by inventing a telegraph of thirty-five wires, which indicated the letters by the decomposition of water, which took place under the eye of the observer, from little pins of gold. He also caused the liberation of the gases to raise a cup attached to a lever, and therehy drop a weight on a little platform, connected with chime machinery, so as to ring a bell. In 1816, Dr. J. R. Coxe, of Philadelphia, proposed a similar decomposing apparatus, and confidently predicted the ultimate suc cess of the telegraph. In the same year, Ronalds, in England, returned to the use of free electricity: inventing an claborate telegraph, which was put into operation over eight miles of wire.

The first registering telegraph seems to hare been constrncted by Mr. Harrison Gray Dyar, of Long Tsland, in 1826 , who used the decomposing power of the spark, acting upon a fillet of paper, moistened and stained with litmus, and moved by hand or clock-work. The passage of each spark from a conductor to the paper produced a discoloration, and, by different combinations of marks thus made, any signal could be transmitted and registered. This was a very important step in the history of the telegraph, and appears to be the origin of the system of telegraphic alphabets so generally used in later inventions.
In the telegraphs already referred to, it had been necessary to interpose the indicating apparatus in the course of the circuit; that is, to interrupt the circuit for a short space. This was obriated by the rliscovery of the deflection of the compass needle by Ersted, in 1819, and the discovery of the electromagnet by Ampère, in 1820. According to the first of these discoveries, a magnetic needle tends to place itself at right angles to a wire in its neighborhood, through which a galranic current passes. According to the second, a piece of soft iron, placed in the axis or centre of a coil of wire, becomes a magnet during the passage of a galvanic current through the coil.
In 1820 and 1822, Ampère proposed and fully described the use of the deffection of a number of needles to constitute a telegraph similar to that of Wheatstone, now in operation, with a less number of circuits, in England. From this time the subject became one of frequent suggestion among philosophers. The deflective telegraph was, however, finally introduced into practice by Schilling, in Russia, at the end of 1832 , by Gauss and Weber at Gottingen, in 1833 , and finally, on a large seale, by Wheatstone, in England, and Steinheil, at Munich, in 1887, or soon after. The credit of the first construction of the galvanic telegraph belongs thus to Schilling, Steinheil, and Wheatstone, by the latter of whom, with some of his English coadjutors, many of the practical difficulties in the modes of transmitting the current were overcome.
The telegraph of Steinbeil, which was in operation between Munich and Bogenhausen in the summer of 1837 , scems to be the first elcetro-magnetic telegraph on record which employed a registering apparatus. The deflection of his needles moved little levers, carrying pen-points, which marked dots or short iines on a fillet of paper moved by clock-work, as had been done with common electricity previously by Dyar, and as was subsequently brought into use in this country by Professor Morse.
The deflective telegraph was still imperfect, each deflection of the needle requiring a very appreciable time to be accomplished. The use of the electro-magnet was the next step taken in advance. It was not until the experiments, in 1830, of Professor Joseph Henry, now secretary of the Smithsonian Institute, upon powerful electro-magnets, and the effect of long conductors, that this form of telegraph became possible; and in his first paper on the result of these experiments, he at once applied the new facts to the idea of the construction of the telegraph.

In 184t, the registering telegraph of Professor S. F. B. Morse, employing the electro-magnet, was introduced upon a line between Baltimore and Washington, the caveat to his patent bearing the date of October, 1837. The first suggestion of this form of telegraph is claimed to have been made by Professor Morse in 1832, and also, in its general character, by Dr. C. T. Jackson. This telegraph, together with the House telegraph, and the Bain decomposing telegraph, constitute the three systems now, for the most part, in operation in this country.

Description of the telegraph.-Fig. 3390 represents a series of twelve pairs of Grove's battery, such $a s$ is generally u eed in connection with the telegraph. When a plate of platina and a plate of zinc are placed in an acid solution, a current tends to flow from the platina to the zinc, through any conductes

Which may be so di-posed as to connect the two. In the figure, the galranic series is represented, cor eisting of twelse single pairs, the zinc of each of which is connected with the platina of the next. It may be con-itered that a current is produced by each of these pairs, which has, however, to flow in the same direction, and fall in with all the others. "Ifence their intensty is multiplied twelve times. It is by this means that the resistance to the passage of the current through very long conductors is overcome. The number of pairs in the telegraph is always proportioned to the distance which the current Is to traverse, tifty or more being used on a line of two hundred miles.

- Each pair of the battery consi-t- of a pint glass tumbler, a eylinder of zinc, a small porous cylindrical earthenware cell within the zinc, and a platinum strip suepended within the cell from an arm belonging to the zinc of the next pair. A solution of diluted sulphuric acid i- used with the zinc, outside the purous cell, and the cell itself is filled with nitric acid. The two acids are used on account of an increase of power depending on a chemical reaction. The zine cylinder is amalgamated with mercury, to present its being acted upon by the acid when the battery is not in wse. A solution of sulphate of soda is sometimes added to the sulphuric acid, to assist in accomplishing the same ubject. This is the most powerful form of battery known.

A battery, using copper and zinc plates in flat glass cells, has been lately employed on the lines of the chemical telegraph in this country. The interval between the plates is filled with white sand. The sand is moistened to the consistency of a paste with diluted sulphuric acid. This battery proves very constant, and, though less powerful, is much noore easily managed than the Grove battery.

Two screw-cups will be seen rising above the battery in Fig. 3390, one of which is the positive pole or extremity of the series, the other the negative. To these the wires are attached which convey the current. These wires, as first used in the telegraph, were of copper, which is a better conductor of galvanism than iron; but the liability to accident, from their want of strengeth, was so great, that iron wires were substituted by steinheil, in Germany, of a size sufficient to make up by their quantity for the poorness of their quality as conductors.
The wires are usually supported on posts, from which they are insulated by glass supports or knobs They have been sometimes carried through the ground, insulated within a metallic tube.

Fig. 3091 represents the signal-key in its simple form. It is placed, when in use, in the course of the conductors or telegraphic circuit, pruceeding from the battery: When the hand depresses the key; it comes in contact with the knob and metallic strip below, making connection between the two screwcups, and completing the battery circuit. While the key is depressed, a contimous current passes; but if it be depressed, and allowed to spring immediately up, only an instantancous wave or impuls is communicated. The use of the signal-key, in comection with the telegraph, was deseribed by Ampère, in 1820.

The signal-kiry, in its more purfect construction, is represented in Fig. 3392. It consists of a lever, mountel on a horizontal axi*, with a knob of ivory for the hand at the extremity of the long arm, which is at the right in the figure. This hever is thrown up by a spring, so as to avoid contact with the button on the frame below, except when the lever is depresed for the purpoee of completing the circuit. A regulatin: screw is seen at the extremity of the short arm of the lever, which graduates precisely the andunt of motion of which it is at any time capable.
3393.

of the clectro-magnet losing all its magnetism, and the armature, with the lever, is carried back by the action of a little spring, being a dot impressed upon the strip of paper. Should the distant operator hold down the key, a continuous current will pass, and a line is marked on the paper which moves under the roller.

The complete registering instrument, shown in Fig. 3394, is a large spool, on which the strip of paper is wound, and clock-work, with rollers, give the strip a steady motion onwards under the style upon the lever of the electro-magnet. A bell may also be added, which is struck by its hammer on the first motion of the lever, to draw attention. There is a stop-motion sometimes used, by which the clockwork is brought to rest in a few seconds after the lever ceases to act, and which is released again by the first motion of the lever.

The annexed is the combination of dots and lines on the fillet of paper used by Professor Morse to indicate the different letters and numbers.

Between each letter of a word a short space is allowed, between words a longer space, and between sentences a still longer one. Many shorthand signals are also employed.

Where a long circuit is used, the resistance to conduction, measured by the amount of electricity which passes, is very great. The diminution of the current is most sensible when tested through the first few miles of wire, the amount which subsequently passes appearing nearly constant for a long distance. It is not, however, sufficient, in its electro-magnetic effects, to work one of Morses registers directly. The current, which has traversed a great length of wire, can only move the lever of the electro-magnet sufficiently to bring a platina point in contact with a little platina disk placed opposite to it, so as to complete the circuit of a local battery, which works the register with energy. This is the principle of combination of circuits, and constitutes the important invention of the recciving magnet and relay or local battery,
morse's telegraphic alphabet.
 as they are familiarly known in connection with Morse's telegraph.

The effect of the combination of circuits is to enable a weak or exhausted current to bring into action, and substitute for itself, a fresh and powerful one. This is an essential condition to obtaining useful mechanical results from electricity itself, where a long circuit of conductors is used, and accordingly it received the attention of carly experimenters with the telegraph. This principle seems to have been first successfully applied by Professor Joseph Henry, of Princeton College, in the Iatter part of 1836. He was thus enabled to ring large bells at a distanee, by means of a combined telegraphic and local circuit. In the early part of 1837 , Wheatstone, in England, used a combining instrument, which consisted of a magnetic needle, so arranged as to dip an arch of wire into two mercury caps, when deflected by a fecble current, thus completing the circuit of a local battery, which struck a signal-bell. Davy patented in England, in 1838, a system of combined circuits, for four different purposes connected witl: his telegraph. He brought into action a local circuit, 1st, to discolor or dye, by electro-decomposition, the calico on which he registered his signs ; 2d, to actuate an electro-magnet regulating the motion of the calico; 3d, to direct the long or telegraphic circuit to cither of two branches, by means of a receiving instrument placed at their point of meeting, and operated upon from a distance; 4 th, he providec for a complete system of relays of ling circuits. His instrument resembled Wheatstone's, ouly the conact was made by two surfaces of metal, without the use of mercury.

The receiving magnet w-ed by Profesor Morse is a very slifht molification of his registur, the platunt zoint for eompleting the local cireuit being substituted for the making point. The magnet is sur ounded with helices of tine wire, which multiply the efticts of the fechle current, and the whole instrunent is con-tructed with delicacy. By Moreés patent of 1810 , this i applied to the combination of long circuits, or the relay of currents; and by his patent of 1546 , it is applied to operatine the regisur by a incal or othee cireuit. The electro-magnet, armature, and lewer, contituting the chice part of botw these in-truments, is simply the electro-magnet of Professor Henry, described in 1×31.

In a line of telegraph of several hundred or thousand miles, any number of receiving magnets may te intor-persed, as they do not interrupt the circuit. Each one of these may work a lucal register, and thus the same message may be recorded at a mutitude of places, practically at the sanue moment i tim : If the receiver magnet is to eflect a relay of currents, the motion of its lever brimg intu action a powerful battery on the spot, which work the next receiving magnet in succe-sion, and so on.

The use of the receiving magnet, however, for the purpose of rile!! of the galwanic foree, nay be citepenied with by simply increasing the number of pairs, and distributing them in groups alone the bue. Thus Mr. Sears C. Walker, of the Coast Surver, writes, "We have made abundant experiments on the line from Ihiladelphia to Louisville, a distance in the air of nine hundred miles, and in circuit of eighteen homdred miles. The performance of this long line was better than that of any of the shorter lines has hithertu been. I learn, from an authentic source, that the same succuss attends the work from l'hiladelphia to St. Louis, a distance in circuit of onc-toeffth of the carth's circumfercnce. The number of Grove's pint cups used is about one for every twenty miles. It is natural to conclude, from this experiment, that, if a telegraph line round the earth were practicable, twelec andred Grove's pint eups, in equidi-tant group of fifties, wonld suffice for the galvanic power for the whole line. The daily exprense of acids, for maintaining this whole line, would be about five mills per day for each cup, or six dullars por day for the whole lime." This distribution of the galvanic ageney is frequently edopted in the mode of placing one half of the necessary number of pairs at each extrenity of the line.

The conductors hitherto speken of have been exclusively the telegraph wires. It has now, however, become a univeral cu-tom to use the earth as one-half of the circuit, and thus to employ but one wire. This is accompli-hed by carrying a wire down at cach extremity of the line, and comecting it wi ha metallic plate buried in the earth. The advantage consists not unly in the cconomy of engloyine at single wire to each circuit, but the lose from conduction by u-ing the earth is va-tly less. The u-e of the ground circuit fur the telegraph seems to be due to l'refersur stemheil, of Munich.
la case of interruption of the lelegraph wire, much ingemuity hat been fown by the association if a throumh line and a test line, which latter communicater with a number of intermediate stations, am l by means of which the place of interruption can be readily ascertained, and the injury repaired. An interruption is shown by the increasel strength, the weakness, or the su-pen-ion of the eurrent, whieh each station has the mean; of exammins, and from which the direction and mature of the accident can be inferred.

A great source of irregularity in the action of the telegraph, in this country, hats been atmo-pheric clectricity. The air being in difterent electrical states in different places, or thunder-storms tabins place in the course of the line, the in-ulated telegraph wires frequently become the melium of trantier of atmo-pheric electricity. The safety of the operators, aud even the regular action of the electro-manet, requires the use of comductors at the stations, which are marly in contact with the wires, and which communicate with the earth, so as to carry off any excessive charge of electricity which misht deatroy the in-tranent, or wen endanger life. Much irregularity in the action of the telegraph still exi-ts finm this callee.

Theoe fact- of general application to the electric telegrapla bave been considered here, as many of them were tirst develoged and appliel in this conntry, in comnction with Mores's register. 'This instrumene, am the sy-thm comected with it, will ulways docerve credit for its early service in adaptind the telegraph th our climate and matural resoarees.

Lighenng I'rotector. L:y I.. I'owist, M ismancure. This is a bequtful and most important diseovery ors an auxiliary in the jectiotion and fill devhpment of the deetriv telegraph. It is de- nel to drain off the atmo pherie chactri-ity, whin in crtan conditions of t'e atmophere necumbates in the wire,
 de-troying them. The beanty of the insmion is in it simplicity: it emsist, in the diemory that

 the malvanic battery:

The nyparatus comints imy ly of a elow tulo, two i ches in diametr hy tive in f neth, folle 1 wila th o

 in metalin contart with the firn reine. Ite of ration is ns thows:

 lis lity:

cye observes the point of contact, now a blank space, and now a deep blue line, appears upon the retreating surface. This is the record of the intermitting current, sent over the wires from a distance.

In Fig. 3395 the clock-work which moves the tablet is scen on the left. Its motion is regulated by a fly-wheel above, the vimes of which can be inclined so as to present greater or less resistance to the aii. A lever or break bears upon the axle of the fly-wheel, by moving which lever the clock-work may be stoppert, or allowed to go on. The circular disk, or tablet of brass, carried by the clock-work, is seen on the right of the figure, inclined towards the observer. In the centre of the disk, occupying the shaded portion, a spiral groove is cut, in which the guide to the pen travels. This guide is seen attached at right angles to the penholder, which extends orer the disk. The pen-wire is seen held by a little clamp, descending so as to touch the tablet. This wire, of course, traces a spiral upon the outer ring of the disk's surface, exactly corresponding, in the distance of its lines, to the spiral groove within, which serves as a guide. By this beautiful contrivance, the writing is disposed in a close spiral, occupying but very little space.
The outer part of the surfuce of the disk, upon which the letters are represented in the figure, is covered with a ring of moistened and chemically prepared paper. This may be renewed or removed at pleasure. The penholder is connected with the positive wire of the telegraph, and the tablet with: the negative. The circuit of conductors is completed by the moistened paper which intervenes, and Which the current accordingly traverses. This paper is moistened with a solution of the yellow prussiate of potash, acidulated with nitric or sulphuric acid. The pen-wire consists of iron. When the surrent passes, this peri-wire is attacked by the solution, and the portson of iron lissolved unites with $i^{\text {'3 e e prussiate of potash to form the color known as Prussian blue, which permanently stains or dyes }}$ the paper.

A modification in the mode of marking has been introduced in this telegrapla by Mr. Rogers, of Baltimore. He substitutes a pen carrying an ink which is decomposed by the current when in contact with the brass disk, without any intervening paper. A superficial stain is produced on the metallic surface. which is easily obliterated by friction.

In l3ain's telegraph, no receiving magnet is necessary. The current traversing the long wires is sufficient to leave its trace mpon the paper. There would be a disadvantage, however, in the use of this telegraph, with a simple circnit, where it is desirable to register the same communication at a number of different places, as the interposition of the paper, moistened with a saline solution, somewhat obstructs the current. The receiving magnet and register used by Morse present a metallic conductor for the current throughout, and they can, therefore, be multiplied without serious loss. To compensate this disadrantare, a system of branch circuits at way-stations has been devised, in connection with the Bain telegraph, by which communications can be received at varions places at the same time. Morse's instrument requires the time taken by the motion of the armature to make each mark. The decomposition in Bain's instrument is instantaneous. This is an advantage where mechanical means are used to complete and break the circuit with great rapidity for the purpose of rapid communication.

All ingenious instrument to effect this object has been recently contrived. One of the circular metallic disks of the register lias its surface conted with wax or other composition. The lines and dots which constitute the writing to be transmitted, are scrateded through this so as io expose the metal, by the operator, previons to completing the telegraphic circuit. This writing is effected, and disposed in spirals around the disk, loy simply putting a little signal-key in place of the pen-wire, and allowing the uisk to revolve. The guide to the penholder, of course, carries the signalley over the same spiral which the pen-wire would describe on the disk. The signal-key has a slarp or entting point. which removes the wax from the disk whenerer the key is depressed. The usual motion for signalizing the letters, therefore, prepares the impression of the writing, which is afterwards to be connected with the telegraph, and transmitted with speel. This transmission is effected by restoring arain the pen-wite o its holder, and allowing it to follow over the track just made by the signal-key. The lattery b ing connected, the wire completes the cireuit whenever it touches the exposed metal, and hreaks the circuit when it rests upon the wax. The diak at both the fransmitting and receiving ends are made finally to
revolve rapudly, and the mesage is said to be thus commenicatel at the rate of one thousand or more letters per minute.

The atphabet u-el by Bain is the same in principle as that empluyed by Dyar, ste isheil, and also by Morse, con-i-ting of combinations of thots and lines.

The call, commonly used on the Bain lines, is repreantel in Fis. ndou. It consists of a C'shapes receiving marnet, placel horizontally on the board, with two lellees of wire surromding the legs. An
 the magnet. This is held back by a delicate spirat spring, graduatel by a screw, which is at-o seen to the left. Above are two circular plates of glass. The uprisht bar, armeal with two little knobe th perform the part of a hammer, rises between these plates. When the arnature is drawn to the mat: net. It strikes one of them, and on being drawn back it strikes the other. Is they are of difterent tone, the repetition of this sigmal at once draws attention th the register. The daty of the operatur is th at to set the clock work in motion, and receive the message communicated. This is-trument can be used al=o as a receiving magnet, by placing a platinum point on the uprisht bar or pendulum, and a litthe platinum di.k immediately in front of it, so connected that the interval between the pein an 1 disk shall constitute the break in a local circuit, an additional pair of screw cups for the attaclment of wheh may be seen upn the base-board. When the armature approaches the electromatuet, it clo es the local circuit, ant when it recedes it breaks it. This is essentially the recciving instrument of Donse and others.

This call is similar in. parpose or principle to those neel by Sxmmering in 1311, Schilling in 1831, and Henry, Steinhcil anil W'heatstone in 1836 and 1837.
Sain': telegraph has been introduced very extensively into this country, especially in eonnection with the network of lines constructel throughont the South and West by the enterprise of O'Reilly.

The receiving macnet in its improved form, Fing 3397, ned for the purpase of combining or connecting circuits, is chas.ly allicel in its construction to the call, anl may therefore be described here, though alrealy referred to in connection with Morse's telegraph. The armature is mounted on an upright bar, and is seen forminer part of the cross just in front of the poles of the horizontal el ctro-magnet, surreundert with helices of tine wire. The long or telegraphic circuit is comectel with these helices by incans of tho of the serew-eups on the boarl. When the current llows, tio armature is attractel to the magnet, and the uprirnt bar is bronght in contact with the end of the horizontal sorew, seen at the top of the instrument. This completes a local circuit, or branch circuit from the main battery, the conductor: of which are connected with the instrument by means
 of two fither screw-cups, seen on the left of the board. The points of contact of the upright bar and screw are protectel from oxidation by the use of platinum

TELEGRAPHC COMPOSITOR. The experience of Bain and others, in transmittine signals by electricity, has demonstrated that the amount of time requisite to senl a message to a distme place, is not dependent upon the speed with which the electricity travels, but upon the time in which the hum:m hand can perform the proper manipulations. This, in actual practice, as experience with the varims methods in nse has prove l, has never reached an average of more thatn ei gity letters per minute. In the inean timn the researches in electricity have shown, that when the wave or pulsation is given to the enrent by the finger, it flies to its destination with the swiltness of thonght, themgh its path mey bo thom*ands of miles in length, amd leading over precipitons mountains and thrugh birren if erte.

The tele craphice compestor was inventel by J. l'. Ihmaton, of New Haven, 'onne fient, ant was pat rit in ciptembers, 18:7. Its objert is to inerense the rapility of manipulation s, wat it shall bear

 owing to the fiet that theg reluire monhery whes thoving parts have weightand in rtis. With tho

House's Printing Telegraph. This beautiful invention may be considered as one of the wonders of the age. Using but a single wire, it is yet able to select and print in order the letters of the common alphabet, with a greater rapidity than the hieroglyphic marks of Professor Morse, representing the same letters can be produced.

This instrument is complicated, though all its parts are simple. We shall try to describe it so that the mode of its operation may be understood. A perspective view of the instrument is shown in Fig. 3398, comprising both the transmitting and receiving apparatus. The principle by which the different letters are signalized over the wire, is the transmission of a given number of electrical impulses for each letter, by the rapid opening and elosing of the circuit. This is accomplished by means of the twenty-six letter-keys, and the two keys for the dot and dash, seen in the figure. Under the key-board is a horizontal cylinder, which is kept in revolution by turning the crank and wheel, seen at the left of the figure. At one end of this cylinder is a circuit-wheel or break-piece, having fourteen projections and fourteen spaces, on which a spring, connected with the telegraphic circnit, bears. Consequently the battery circuit is completed fourteen times and broken fourteen times with each revolution of the cyl inder. Under each key a projection or stop is placed upon the cylinder, in such a position that when the key is depressed and comes in contact with it, the cylinder shall have performed such part of a revolution as to have made and broken the circuit the number of times which represents the letter corresponding to the key. The motion of the cylinder is communicated by means of slight friction, and it is accordingly arrested by depressing the key. This is the transmitting or "composing" apparatus.

The receiving or printing apparatus is seen behind the key-board in the figure. There is one such at each extremity of the line, to receive messages transmitted from the other extremity. But both are left constantly in the circuit, so that the operator signalizes or prints the message which he sends both at the distant end of the line and immediately before lis eyes. The printing instrument which we are examining is, therefore, a fac-simile of the one which receives the communication at a distance from the operator at the key-board in the figure.
The printing apparatus consists of an upright rod-electro-magnet, inclosed in the metallic cylinder A of a little engine, operated by condensed air, and moving an escapement at B; of a type-wheel at C of a printing eccentric and lever, the end of which is seen at D ; of a black coloring-band at E , and the strip of printing paper at F F.

The electro-magnet consists of a compound rod of several short pieces of iron strung upon a rod ot brass. This rod is inclosed in a tube of brass, attached to which, within, are several short tubes of iron, correaponding to and reacting with the pieces belonging to the axial magnet. This whole system of tubular and axial magnets is inclosed in a single helix of fine wire, connected with the telegraphic circuit. The tube is fixed, but the compound rod is movable, and attracted downwards by several cooperating reactions when the current passes. This rod is suspended by a cross-wire, which may be seen stretched across the top of the cylinder A, and acts as a spring, drawing the rod back after the current has ceased to act. A very rapid vibration of the rod is thus obtained, corresponding to the opening and closing of the circuit effected at the transmitting end of the line.

Comected with the wheel is a condensing pump at G, which keeps up a supply of condensed air. At the upper part of the electro-magnetic rod is a collar:valve, which changes the direction of the current of condensed air with each vibration of the rod, though these vibrations are only 1-64th of an inch. The air is thus admitted to opposite sides of the eylinder of a little atmospheric engine, which, by means of its reciprocating motion, permits the action of an escapement, tooth by tooth, and the corresponding revolution of the type wheel, which is impelled by a spring kept wound up by the manual power emploved at the crank and wheel.

The result is that the type-wheel, which has twenty-cight teeth, revolres just as far as the cylinder attached to the circuit-wheel, at the distant extremity of the line, has been permitted to revolve by depressing one of the keys. Each break, as well as each completion of the circuit, thus corresponds to a letter. It only requires that the instruments at both ends of the line should be set to the same letter, and then the cylinder at one extremity and the type-wheel at the other, regulated by the pulsations of the current, will always revolve at the same rate; and if the cylinder is stopped at any one point representing a letter, the type-wheel is stopped at the same point, ind presents the type which it carries on its periphery to the strip of paper in front of it.

When the type-wheel stops, an eccentric, actuated also by the local power at the crank and wheel, lorings the black band and paper forcibly against the type, and leaves the impression of the letter. The paper is then carried on just the distance of a letter, and is ready for another impression. Roman letters are thus printed over a long line at the rate of from one hundred and fifty to more than two hundred a minute.

In the figore the letter Λ will be observed at a little window above the type-wheel. This letter is in a letter-whecl, connected with the type-wheel below, so that the letters may be presented to the
sight at the same time as printed; or the printing eecentrie may be detached, atod only the vi-ible letters read.

The action of the electricity in this telesraph is nerely to pro luce correspon lence of motion in machinery at different ends of the line, in the same maner that uniformity of wate has been secure 1 in elocks at ditlerent places, resulated by the electro-telegraphic current. All the mechanical re-ults of House's telegraph are produced by local mechanical power. For this purposis, clock-work, haviu; at regular rate, would be preferable to manual power.
Hor:a's igiating tolegraph.-The rearister invented by G. H. Iforn cmploy's a pinciple never before applied to the telewraph, namely, the heating or irnitinir effect of electrecity. When an electrical ecrrent flows through a tine platinum wire it ignites it, or lorings it to a rel heat. If this wire is bent, as \&t A, in the figure below, so as to be in contact, for a short distance, with a mowinr fillet of paper, it will burn a hole through the paper when the current pasees. This can be done with great rapinhty, so is to zepresent probably a bundred linear letters per minute.

This inctrument is shown in Fig. 8.809 , the grenter part of which consists of the clock-work, spool, dec required for moving the paper. Above the elnch-work are two pillars, supporting an axis, upon which is the autiustathe wire holder, the loteer extrenity of which is seen touching the fillet of paper. By means of the connections and insulationa of the pillare, axis, and wire-holder, the platinum wire, which pa-zez over a little slip of porcelain nt the end of the wire-holder, becomes part of the circuit, with which the two serew-cups on the right of the base-board are counected. When the wire needs alju-t. ment, the wire-holder ean be turned up on its axit. The bed supporting the fillet of paper is also adjustable, an as to regulate the contact between the wire and the paper.

This regiter requires a quantity current to produce the effect of ignition, and thereforo needs a roeciving intrument and local battery, to be nopratel by the t le oraphic circuit.

1rial Telegraph. The nai.l teldgrapt is fimed al on the toudmey it in for of irnn to lic (lrome int) at (wht of wire, throurh whith a galvanie currate is muth to pate thlu intluenis iner saed where two ergils of wion are ued, kurrom line the licen of a E'shapel piece of sott iron. the phwer

of this reaction is so great, that it has been successfully applied by Prof. Charles G. Page, of Washinc:ton, to the propulsion of machinery on a large seale.
The axial telegraph is represented in a simple form in Fig. 3400. The U-shaped iron rests upon a spring, seen on the board. A style attached to the iron, projects up between the coils so as to be nearly in contact with the roller, under which the strip of paper is made to pass. A little rod or armature of iron, placed across the top of the coils, causes the soft iron to move in obedience also to clectro-magnetic attraction, somewhat increasing the power, but introducing a new and unnecessary principle into the reaction. The axial telegraph in its complete form, is represented in Fig. 3401, where the spool sud clock-work for the morement of the paper are added.

The axial motion is due to the duflective power of a coil, as in the telegraphs of Amphere, Steinheil, and Wheatstone, and not to clectro-magnetic attraction. This instrument requires, on a long line, the intervention of a receiving instrument and short circuit.

Tclegraph, Inghes. The Hughes instrument consists of a train of clock work, keys for closing the circuit, an electro-magnet, and a vibrating spring to govern the type wheel, which revolves by aid of the sain of wheels. The clock work consists of four cog whecls, turned by a weight, which turns a shaft with a wheel, upon which are engraved the letters of the alphabet. This wheel is inked by a small rollcr. Below the type wheel a small press moves the paper to be printed upon against the letters. This press mores ouly wheu the armature of the magnet acts by a current of electricity being sent along the line.

The magnet of the Hughes instrument is a peculiarly simple and effective arrangement, by which clectricity is made to work at its highest development. Electricity only holds the armature whilst in contact. As soon as it is set free by the distant operator closing the circuit, it falls against a detent which brings a small cam in play, and restores the armature to its resting place in contact with the clectro-magnet. This operation is performed every letter that is printed, the magnet never acting until a letter is sent, and then only once to each letter.

The principle of making all the instruments keep exact time with one another, so that they always present a certain letter opposite the press at the same instant, and also to revolve rapidly, has been accomplished by the union of a well known law in acoustics to mechanies: thus a certain number of vi1 rations per second produces a certain musical tone; if these two instruments have each a vibrating spring of the same tone, the two instruments must always revolve in exact time with each other.

These type wheels, revolving by means of clock work, carry around with them a circuitcloser, which travels orer twenty-eight pins corresponding to the letters upon type wheels; if any of these pins are touched by corresponding keys, the circait is closed at the moment the closer passes that point. The armature immediately falls off, opens the detent which locks the press to the wheel work; this moves up the press, and when the letter is printed unlocks itself until again locked by the astion of the armature.

The fact of the possibility of writing both ways simultaneously on one wire has been fully demonstrated. This is accomplished by the arrangement of the battery, so that it does not affect the magnet at the office sending, but the instant that a distant office puts on battery the magnet acts; thus each magnet acts only from the distant battery, and is not affected by its own writing, whilst it receives perfectly what is sent to it. Another great feature in this machine is the freedom of disturbance from atmospheric causes. This is caused by the line being always open except at the instant of the letter being sent ; then if in same direction, can only assist the current from the battery.

Another new feature is its power of cutting off all offices except those to which it is desired to communicate. This is accomplished by a flange on the type wheel-this flange laving a space cut out opposite a certain letter-each office having the flange cut out at different letters from each other. A bolt is made to slide through this space, and moved through by the action of the instrument. If this bult is sent through at the moment the space is opposite, it permits the instrument to run; if not, it goes against the flange and locks the wheel.

The success of telegraphs for overland communications soon turned the attention to its practicability as a submariue condiector. As early as in August 1843, Prof. S. F. B. Morse, in a letter to the Secretary of the Treasury of the United States, speaking of an experiment which he made the previous year, of passing an electrie curreat through a submerged conductor, says: the inference from this law is that a telegraphic communication may with certainty be established across the Atlantic. In the autum of 1812, he submerged an insulated wire from the Battery to Governor's Island, and had just begun to operate, having received but two or three characters, when the wire was raised and broken by being drawn up, with the anchor of a vessel. He also succeeded in transmitting a current across a stream or canal, by means of parallel lines along the banks.

In the fall of 18.50 , a wire of ahout the size of an ordinary knitting needie enease lin a coating of gutta percha, was laid from Calais to Dover; commnnications were transmitted for a time through this wire, but socin a portion became broken, and another cahle was laid composed of four copner wires, each insu lated with gutta perchat, and afterwards bound together with hemp steeped in a solution of tar and tallow.

In MIay, 185.2, Hylyhead and Howth, a distance of 65 miles across the Irish Chamel, were comected by a single wire encased in gutta percha. Scotland and Ireland were connected by a cable of thirty miles long consisting of six wires.

The follorring June a cable was laid from Orfordness, in England, to the Hague in IIolland, a distance of 115 miles. This task was accomplished in thirty-lour hours, and only $4 t$ miles of cable were required in the paying out over the actual length from point to point, making hardly 120 miles altogether Auother cable connects Dover with Ostend, making the third between England and the continent.

In the summer of 18.54 a telegraphic union was effected between Corsica and Sardinia. This work was attended with much difficulty in consequence of the breaking of a part of the wire. The submergmerf a cable between Corsica and the island of Sirdinia vias successfully accomplished shently alter.
but the attempt which was subsequently made to connect the inland of Sarlinia amd Algeria, and thens establish imme liate communication between the continents ot Lurvie aul Arian, was unsweestinl, and has not sine been attempted.
 to unite rhe idanls of Newfomblanal and Cape breton, but the verals emphel in the wora were canght in a galn, the cable was obliged to be cut, and the und rtaking ainament for that time. The cule, as may bas on from the accompanying engraviags, which show the exact siz, hal thr e conductors, an I was protectel i.s the same manner, by iron wire, as thos already deseribe 1 .

3!?

In 1850 the company succeelel in makine the desirel conte tim between the opposite shores of Newfoudland and Conpe Bren. Thi- time they rejected the three wire cable and procured a much lighter one, with a sug wire, consisting of seren strinds. The olject of thas arramremert, inthal of 3103.
 e single wire of the same thickness, is to provil :1-tur. it the posifility of any break of continuity thinempan the metal. This strand will stretch twenty fer cent. of its own length, wh is covered with taree layers of the prent gutta percha, suarately applied. The cable weinhesmblat I ss tham a ton to the mile, and is one of the lightent and strongrist of its thickness yet manuartured.

A few weeks after the allied army enterel the 'rim:a a single wire cable was laid across the Black S a, a distance of 374 miles, between Tarna and Balaklava, and it was throurh this that the Encli-h and Fren h governments were apprisel every day of the movements of the belfigerent furces on cither silu. This is the longest submarine cable which has yet been lai L .

In the fall of 18.5, an attempt was male th lay a cable between Tialentia Bay, Irelanl, aril St. Tuhas, Newfountlanl, a d-ta:ice of 1650 miles. The attempt was unsuccesful, the cable havinis parted alter some $3(0)$ and oll miles had been lail. It will be again mudertaken this year, and it is to be hopsu with bett re surces.

From the following cugraviage it will be seen that the transatlantic submarine cable is somemhat di:ferently made from a y previon-ly mana hetured. The core, or conductor, is compont lik. that of the

3 ins.

3105.
 guli cable, of seven cupper wirs wound tere ther in the same matmer The cable will be ", IU0 mil-s in lunsth, the arplas over the athal di,tane to be tratersel beif: considerel necesary in case of emergency to make up for the incqualities in the bed of the ocean, and the variatimsthat may be callen! by the winls and the curreats. The protecting wires are mule into stramle, each compus-l of seven of the best charenal iron wires. The agnrecgate lemgth of the smallar wires requirel in the thamfacture of one mile of the cable is one hanhed and twenty-sis miles, and the whole cable will repuire three hundre 1 and fifteen thourand miles of this wire.

The flexilility of this cable is so great that it can be mala as menareable no a small rop, ant it is capable of brity tiel around th arm without ingury. Its weight is but $1,80 \mathrm{p}$ phats to the mil, and ita strength such that it will bear in water over six miles of its own lengh if surpended vertically.

Table of sumbin cibles airvaly laid ducho.

momentaily a as to mark upon the same fillet the transit of the star over the wire of the telescope. A permanent and incomparably accurate record was thus made of the observation, and the instant of its time. It is estimated that the facilitics of astronomical observation are increased sixty-fold by this invention. In fact, it constitutes an era in modern astronomy. Though the work of the last one or twe years, it has already received the tribute of the most distinguished foreigu obscrvers.

TELESCOPE. An optical instrument for viewing distant objects.
For soveral reasons a distant object is seen less distinctly than a similar near one. The angle which an object subtends diminishes as the distance increases; the density of the light which renders it visible also diminishes with the distance, but in a much faster ratio; and a considerable portion of light is alFays lost in its passage through the atmosphere.

It is fom by experience that to be discernible at all in ordinary daylight, a detached olject must subtend at the eye an angle of not less that $30^{\prime \prime}$, and that the least angle under which contiguous objucts can be satisfactorily distinguished is about one minute. By the aid of a telescope a magnified image of the object is obtained; and within certain limits the object is not only apparently enlarged, out rendered brighter than it appears to the unassisted eje.

The invention of the telescope, to which practical astronomy is indebted for its most important discoveries, has been ascribed to various persons. Sir Davil Brewster (Encyc. Brit., art. "Optics") says * We have no doubt that this invaluable instrument was invented by Roger Bacon or Baptista Porta, in the form of an experiment ; though it had not, perhaps, in their hands assumed the maturity of an instrument made for sale, and applied to uscful purposes, both terrestrial and celestial. If a telescope is an instrument by means of which things at a distance can be seen better than by the maked eye, then Baptista l'orta's concave lens was a real telescope; but if we give the name to a tube having a convex object-glass at one end, and a convex or concave lens at the other, placed at the distance of the sum or difference of their focal lengths, then we have no distinct eridence that such an instrument was used before the begimning of the 17 th century." Descartes ascribes the invention to James Metius, a citizen of Alkmaer in Holland; Huygens to John Lippersey, or Zacharias Jansen; Borellus also to Jansen. Professor Moll, who has discussed these rival clams, after examining the official papers preserved in the archives at the Hague, comes to the conclusion that Metius (whose proper name was Jacob Adriaansy, on the 17 th of October, 1608 , was in possession of the art of making telescopes, but that from some unexplainel reason he concealed his invention, and thus gave up every claim to the honor he would have derived from it; that on the 21st of October in the same year, 1608 , John or Hans Lippersey, a spectaclemaker of Middleburg, was actually in possession of the invention; and that there is little reason to believe that either Hans or Zacharias Zanz (or Jansen, father and son) were inventors of the telescope, though one of them invented a compound microscope about 1590. (Journal of the Royal Institution, vul. i.)

The telescope soon made its way into other countries. Iu April or May, 1609, the illustrious Galileo, having heard a rumor of the invention, set about considering the means whereby distant objects could be seen distinctly, and was soon in possession of a telescope which magnified three times. In subsequent trials he succeeded in increasing the magnifying power'; and before the beginning of 1610 he had observed the satellites of Jupiter. In England, Harriot also, in 1609, began to use the telescope for examining the disk of the moon, and before he had heard of the discoveries of Galileo. (Pricstlcy's History of Discoverics relating to Tision, Light, and Colors.)

Telescopes are of two kinds, refracting and reflecting telescopes: the former depending on the use of properly figured lenses, through which the rays of light pass; and the latter on the use of specula, or polished metallic mirrors, which reflect the rays; an inverted image of the object being formed in both cases in the focus of the lens or mirror:

Refracting telescopes were those which were first constructed. They were of the most simple character, consisting merely of an object-glass of one lens, and an eye-glass of one lens, but of a shorter focus. But in this construction the prismatic colors produced by the difference of the refrangibility of the luminous rays tinged the images of all objects seen through the telescope, and the image was likewise distorted by the aberration of the extreme rays. It was soon found that the latter defect could be sufliciently corrected by employing more lenses than one in the ese-piece; but it was long before a . remedy was found for the chromatic dispersion; and artists, despairing of success, generally turned their attention to the improvement of instruments of the reflecting class. The difficulty, however, was at length overcome through the persevering efforts of John Dolland, (sce Acmromatism;) and the achromatic refracting telcscope may now be regarded as an instrument all but perfect.

The gencral aim in the construction of a telescope is to form, by means of lenses or mirrors, as large, bright, an I distinct an image of a distant object as possible, and then to view the image with a magnifying glass in any convenient manner. We shall first describe those of the refracting glass.

Galilcun telescope.-This is the most ancient form of the telescope, and is that which was used by Galileo. It consists of a converging object-glass A 1, Fig. 3102 , aud a concave diverging eye-glass C D On passing through the object-glass A B the rays of light coming from the different points of a distant object in parallel pencils are rendered convergent, and proceed towards the principal focus, where they would form an inverted image; but before they arrive at this point they fall upon the concave lens C'D, by which they are again rendered parallel, or at least their couvergence is corrected
 so as to give distinct vision of the object to the eye at E. The lens C D is therefore placed between the object-glass and the image, and at a distance from the image equal to its principal focal distance. The nagnifying power is equal to the principal focal distance of the object-glass. Sco Lexs.

In this tele:cope the nuject is seen crect, and the length of the tube is only the difference betseen the focal lenghs of the two lenser. These properties rember it preferable tio any other teleseope for many ordinary purposes; as, for example, an opera-glass. When ned for this purpose the magnitying power is hardly ever greater than 4 ; and it is uften as low :ts …

Astronomicat telescope.-This is compoed uf a converging whject glans A B, Fixp 3103, and of a converging eye-glass C D. Rays of light procecding from any 1 wint 31 of a ditant olject 31 N , and fatling on the dilerent points of the object-rgass, are refracted into a puint m in the principal focus. In hlie mamer, thoee proceeding from the point Nare r fracted into the point n; and thas an inverte.l imarge $m n$ is formed at the focus of the obpectoglases. The ere-glata is placed so that its fiens shall coincide with the place of the imase; consequently says diverging from any point of the inaige, and falling on the lens C' D, are refracted intu a parallel direction be-
 fore they enter the eye at E , and are thereby rendered fit to promuce distinct vision. The lemeth of the telesonge is equal to the sum of the fucal distances of the two lenses; and the nagnifying power is equal to the foread distanee of the olject-glats divided by the focal distance of the eyerghes. This tele-cope was fir-t deserited by Keplar in his Hioptrier, 1611; bat it dues not appear to lave been executed until about twenty or thirty years later.

Tierestrial telcseope-This differs from the astronomical telescope only in having two additional
 image to it erect po-ition, and thereby accommodatinis the telescope to terrestrial objects. The fieal lenyths of these additional lenses are usually the same as that of the eye-glase. The two pencth uf rays proceeding from the poin ts 3 and N erose each other in the anterior foebs of the second lelis L F F , and falling paralhen on E F firn in its princpal locus an inverted image of $n n$, and consequently an crect imate of the olject 31 N . This imaze m' n^{\prime} is seen by the eye at E thronerh the lems $G H$, as the rays diverging from m^{\prime} and n^{\prime} in the foeus of G II enter the eye in parallel pendis. When the thace tir-t lenses are equal, the magnifying power is the same as that of the astrungmical tele eeper, whoso object and eye glasess are the stane ats $A 1 ;$ amd C D.

The performanee of refractine telesenpestapend- neast esentailly on the goodness of the oljeet glast , fur if the tir-t image is bright and di-tinct, and perfectly achromatic, there is little dificulty in eon-truct-

lifflectien b'escopns.-In reflecting telecopes the speculum, or mirror, performs the same office that the efjecetglass does in thoee of the refracting kind, and is therefore called the olject-mirror. The in-

 the llersid, li:an.

 fower is equal to the focal lengeth of the olject nurvor A I divitelly thit of the eye ghe

Gregorian t.lescope.-In this construction the object-mirror A B, Fig. 3406 , is perforated in the middle, and the rays of light from a distant object being reflected from the surface of A B eross each other in the focus, where they furm an inverted image a, and are then intercepted by a small coneave mirror d, which causes them again to converge to a focus at b, near the perforation of the object-mirror, where they form a reinverted or direct image, which is viewed by an eye-piece E screwed into the tube belind $\Lambda \mathrm{B}$. The currature of the small speculum should be elliptical, having the foci at α and l; but it is generally made spherical. In this case the great speculum should be slightly hyperbolic, to counteract the aberration of the small mirror.

Casseyrainian telescope.-The great speculum of this instrument is perforated like the Gregorian; but the rays converging from the surface of the mirror $A B$, Fig. 3407 , towards the focus α, are intercepted before they reach that point by a small convex mirror l, not sufficiently convex to make the rays divergent, but of such a curvature as to prevent them from coming to a focus till they are thrown back to b, near the aperture in A B, where they form an inverted inage which is viewed by the eye-piece E . This construction has the advantage of requiring a shorter tube than the Gregorian; but the inversion of the image is not corrected, and for this reason probably it has not heen much used.

In the two last constructions the small mirror d is adjusted by means of a rod turning on a shoulder near the eye end of the tube, and connected by a screw with the apparatus which carries the arm c, to which the mirror is attached.

Iferschelian telescope.-This construction differs from the others in having no second mirror. The large speculum 1 B, Fig. 3408; is placed at the bottom of the tube in an inclined position, so as to bring the focal image a near the edge of the tube, where it is viewed directly by the eye-picce F without interfering with the light entering the telescope from the object observed. The magnifying power is the same as in the Newtonian.

The reflecting telescope was invented by James Gregory, and is described by him in his Optica Promota, 1663 ; but the first telescope of the kind was exceuted by Newton. Reflecting telescopes have been inade on a very large scale. The celebrated instrument of Sir William Herschel, erected at Slough in 1789 , was 40 feet in length. Its great speculum had a diameter of $49 \frac{1}{2}$ inches; its thickness was about $3 \frac{1}{2}$ inches, and its weight when cast was 2118 lbs. Its focal length was 40 feet, and it admitted of a power of 6150 being applied to it. The essential advantage of large telescopes of this kind consists in the immense quantity of light which they collect, whereby the observer is enabled to perceire faint nebulx and stars which are altogether invisible in ordinary instrmments.

Reflecting telescopes are used only for observing phenomena, and are not like refracting telescopes. attached to circular instruments for the purpose of measuring angles with greater precision. In order to derive full benefit from them they must be used in the open air; and must either be mounted equatorially, (see Equatorial ;) or else in such a manner as to be eapable of a smooth motion both in a vertical and horizontal direction. Telescopes of this kind being generally used with a high magnifying power, and consequently having a small field of view, are always acconpanied with a smaller telescope or finder fixed to the tube, so that the axes of the two instruments are exactly parallel.

Fine-picees of tcleseopes.- When the image formed by the object-glass or mirror is viewed with a single lens or eye-glass, whether concave or convex, it is only in the centre of the field that distinct vision is obtained, all towards the margin being hazy and distorted. To remedy this defect, Boscovich and Huygens separately proposed the construction of an eye piece formed of tro lenses, placed at a distance from each other equal to half their focal distances. Boscorich recommended two similar lenses; Huygens, that the focal length of the one should be twice that of the other; and as this construction is fonnd to answer best in practice, it is that which is most commonly used.

The two lenses are usually plano-convex, with the convex faces towards the object-glass; the larger lens, called the field glass, is innermost, or nearest the object-glass; and it diaphragm cutting of the marginal rays is usually placed between them near the focus of the eye-lens, where the image is formed. This eye-piece is usually called the negative eye-piece, from its having the image seen by the eye beliind the field glass; and is that which is commonly supplied with telescopes intended only for the purpose of sceing objects without reference to measurement.

Another modification of the two-lens eye-piece was proposed by Ramsden, and is called the positive eye-piece, because the image observed is before both lenses. The lenses are plano-convex, and nearly of the same focal length; but their distance from each other is less than the focal distance of the lens nearest the eye, two lenses thus placed acting as a compound simple lens. This eye-piece is the most convenient when micrometer wires are placed in the focus, because it can be taken out without injuring the wires; and it has also this adrantage, that the measure of an object given by one eye-piece is nut altered when it is changed for another of a different magnifying power.

In both the eye-pieces now described, the image is seen inverted; and though this is of no import-
 objects. By placing an additional pair of hen-e in the tube of the ese phece, the image in repated abd remperted, and, comserututly, seen ereet. ligy his neans, as explaned at ove, the terme thinh telestope is obtained.

 when the telescope is Iwinted high.

 tube which earries the eye-piece.
 arts.-When the malleable metals are hammed, or rolle l, they gencradly in tuas in hardnes, in clasticity, and in density or specific gravity, which effects are produced simply from the chsm apmeaimation of their particles; and in this respect stecl may be perhaps con-idered to excel, as the process called hammer-hardening, which simply means hammering without heat, is frequenty cmple yed as the sole meaus of hardening some kinds of steel springs, and for which it an-wers remarkably well.

After a certain degree of compresion, the malleable rictals as-ume the ir clowest and munt condeneel states; and it then becomes necessary to discontince the compresion or elongation, as it would cause the disunion or cracking of the sheet or wire, or else the metal must be softened by the procese of an ne:ling.

The metale, leat, tin, and zine, are by some considerel to be perceptibly softened by immersion in boiling water; but such of the metals as will bear it are generally heated to redoes, the coleesion of the mass is fur the time reduced, and the metal beeomes as soft as at first, and the working and annealing may be thus atternately pursued, until the sheet metal, or the wire, reaches its limit of tenuity.

The gemerality of the metals amb alloys suffer no very obecrable change, whether or not they are -udenly quenched in water from the red-heat. Pure hammered iron, like the rest, aj $1^{\text {uars after an- }}$
 iron harden by immersion, but only to an extent that is rather hurtfol than weffl, and which may ho con-idered as an aecidental quality.

Steel however receive ly sulden cooling that catrene degree of haranes combined with tenacity,
 cially as it likewi e admits of a regular gradation from cxtreme hardues to its suftet state, when subsequently reheated or temperce. Steel therefore assames a phace in the ectmony of mamufactures unapprachable by any other material; conseguemly we may safely say that withont it, it wobld be impo-ible to produce weariy all our tinished works in metal and other lard substance; for ahboush some of the metallic alloys are remarkable for hardnes, and were ned for varinus implements of peacefol industry, and also those of war, before the invention of stecl, yet in pent of alsoblute and emburis hardness, and equally so in respect to clastieity and tonacity, they fall exceedingly short of hardened sterl.

Hammer-hardening renders the sted more fibrous and less crystalline, and reduces it in bulk; on the other haml, fire-hardening makes sted mure erystalline, and frequently of greater bulk; but the thatic mature of hammer-hardened sted will not take so wide nor $=0$ efficient a range as that which is finchardenerl.

If we attempt tu seek the remarkable diflerence between pure iron and steel in the themieal analysec, it apprears to recult from ammute portom of carlon ; and eant-iron, which posstsises a moch larger share, present-, as we should expeet, somewhat similar phenomena.

 int glas-

 1"nite extromity ahnost cold.

Vol.. $11 .-15$
for cutting as are found to be insufficiently annealed, the boiling is sometimes preferred to a spcond passage through the leer: lamp-glasses are also much less exposed to fracture when they have been once used, as the heat if not too suddenly applied or checked, completes the aunealing.
Steel in like manner when suddenly cooled is disposed to crack in pieces, which is a constant source of anxiety; the danger increases with the thickness in the same way ats with glass, and the more especially when the works are unequally thick and thin.

Another ground of analogy between glass and steel, appears to exist in the pieces of unameated glass used for exlibiting the phenomena, formerly called double refraction, but now polarization of light; an effect distinctly traced to its peculiar crystalline structure.
In glass it is supposed to arise from the cooling of the external crust more rapidly than the internal mass ; the outer crost is thercfore in a state of tension, or restraint, from an attempt to squeeze the imer mass into a smaller space than it seems to require ; and from the hasty arrangement of the unannealed glass, the natural positions of its crystals are in a measure disturbed or dislocated.
It has been shown experimentally, that a rearrangement of the particles of glass occurs in the proeess of annealing, as of two pieces of the same tube each 40 inches long, the one sent through the leer, contracted one-sixteenth of an inch more than the other, which was cooled as usual in the open air. Tubes for philosophical purposes are not annealed, as their inner surfaces are apt to become soiled with the sulphur of the fuel; they are in consequence very brittle and liable to accident.
In the philosophical toy, the Prince Rupert's drop, this disruption is curiously evident to the sight, as the inner substance is cracked and divided into a multitude of detached parts, held together by the smooth external coat. The unannealed glass, when cautiously heated and slowly cooled, ceases to present the polarizing effect, and the steel similarly treated ceases to be hard, and may we not therefure indulge in the speculation, that in both cases a peculiar crystalline structure is consequent upon the unamealed or hardened state?
In the process of hardening steel, water is by no means essential, as the sole object is to extract its leat rapidly; and the following are examples, commencing with the condition of extreme harduess, and ending with the reverse condition.
A thin heated blade placed between the cold hammer and anvil, or other good conductors of heat, becomes perfectly hard. Thicker pieces of steel, cooled by exposure to the air upon the anvil, become rather hard, but readily admit of being filed. They become softer when placed on the cold cinders, or other bad conductors of heat. Still more soft when placed in hot cinders, or within the fire itself, and cooled by their gradual extinction. When the steel is incased in close boxes with charcoal powder, and it is raised to a red-heat and allowed to cool in the fire or furnace, it assumes its softest state; unless lastly, we proceed to its partial decomposition. This is done by juclosing the steel with iron turnings or filings, the scales from the smith's anvil, lime, or other matters that will abstract the carbon from its surface; by this mode it is superficially decarbonized, or reduced to the condition of pure soft iron, in the manner practised by Mr. Jacob Perkins, in his most ingenions and effective combination of processes, employed for producing, in unlimited numbers, absolutely identical impressious of bank notes and checks, for the prevention of forgery.
A nearly similar variety of conditions might be referred to as existing in cast-iron in its ordinary state, governed by the magnitude, quality, and management of the castings; independently of which, by one particular method, some cast-iron may be rendered externally as hard as the hardest steel: such are called chillect-iron eastings; and, as the opposite extreme, by a method of annealing combined with partial decomposition, mallcalle-iron castings may be obtained, so that enst-iron mails may be clenclied.
Again, the purest iron, and most varieties of cast-iron, may, by another proceeding, be superficially converted into steel, and then hardened, the operation being appropriately named casc-lardening.
It may perhaps be truly said, that upon no one subject connected with mechanical art does there exist such a contrariety of opinion, not ummixed with prejudice, as upon that of hardening and tempering steel; which makes it often difficult to reconcile the practices followed by different individuals in order to arrive at exactly similar ends. The real difficulty of the subject occurs in part from the mysteriousness of the change; and from the absence of defined measures, by which either the steps of the process itself, or the value of the results when obtained, may be satisfactorily measured; as each is determined almost alone by the unassisted senses of sight and touch, instead of by those physical means by which numerous other matters may be strictly tested and measured, nearly without reference to the judgment of the individual, which in its very nature is less to be relied upon.
The excellence of cutting-tools, for instance, is prononnced upon their relative degrees of endurance, but many accidental circumstances here interfere to vitiate the strict comparison: and in respect to the measure of simple hardness, nearly the only test is the resistance the objects offer to the tile, a mode in two ways defective, as the files differ among themselves in hardness; and they only serve to indieate in an iniperfect manner to the touch of the individual, a general notion withont any distinct measure, so that when the opinion of half a dozen persons may be taken, upon as many pieces of steel differing but tlightly in hardness, the want of uniformity in their decisions will show the vague nature of the pronf.
Under these circumstances, instead of recommending any particular methods, we have determined to advance a variety of practical examples derived from various sources, which will serve in mot cases to confirn, but in some to confute one another; leaving to every indivilual to fullow those examples which may be the most nearly parallel with his own wants. There are, however, some few points upon which it may be said that alliare agreel; namely,
The temperature suitable to forging and hardening steel difiers in some degree with its quality and its mode of manufacture the heat that is required diminishes with the increase of carbon:
In every case the lowest availuble temperature should be employed in each proce-s, the hammering should be applied in the most equal mannor throughout, ind for eatting tools it should be continued mintil they ar : nearly cold:

Cuke or charcoal is much better as a fuel than fre-h coal, the suljhur of which is highly injurious:
The scale -hould be removed from the face of the work to expose it the more winformly to the effect of the cuoling medium:

Hardening a second time without the intervention of hammering is attended with increased risk; and the le-s freguently steel passes through the fire the better.

In hardeniny and tempering steel there are three things to be con-iderel; namely, the means of beatine the objects tor redness, the means of cooliug the same, and the means of applying the heat fur tempering or letting them down. I will speak of these separately, before giving examples of their application.

The smallest works are heated with the flame of the blowpipe and are oecasionally supported upon charcoal. (Sce soldering.)

For objects that are too large to be heated by the blowpipe, and too small to be conveniently warmed in the naked fire, various protective means are employed. Thus an fron tube or sheet iron box inserted in the midst of the ignited fuel is a safe and cleanly way; it resembles the mutile employed in chemi eal woris. The work is then mannged with long forceps made of steel or iron wire, thent in the form of the letter U, and flattened or hollowed at the ends. A crucible or an iron pot about four to six inches deep, filled with lead and heated to redness, is likewise excellent, but more particularly for long and thin tools, such as gravers for artists, and other slight instruments; sereral of these may be incerted at once, although towards the last they should be moved about to equalize the heat ; the weight of the lead makes it desirable to use a bridle or trevet for the support of the crucible. Some workmen place on the fire a pan of charcoal dust, and heat it to redness.

Great numbers of tools, both of medium and large size, are heated in the ordinary forge fire, which should consizt of cinders rather than fresh coals: coke and also charcoal are used, wut far less generally; recourse is also had to hollow fires; but the billows should be very sparingly used, except in blowing up the fire before the introduction of the work, which should be allowed ample time to get hot, or, as it is ralled, to "souk:"

It is a common and excellent practice among some workmess to use coke both in forging and hardening stecl gords. They frequently prepare it for themselves, cither upon the forge-hearth or in a heap in the open yard.

Which method soever may be resorted to for heating the work, the greatest care slonuld be given to communicate to all the parts requiring to be hardened a unifurm temperature, and which is only to bo arrived at by cantiously moving the work to and fro to expose all parts alike to the tire ; the difficulty of accompli=hing this of course increases with long objects, for which tires of proportionate length are required.

It is far better to err on the side of deficiency than of exeess of heat ; the puint is rather eritical, and not alike in all varieties of steel. Uutil the quality of the steel is familiarly known, it is a safe prectution to commence rather too low than otherwise, as then the extent of the mischief will be the necessity for a repetition of the process at a higher degree of heat ; but the steel if burned or overheated will be covered with secles, and what is far worse, its quality will be permanently injured; a good hammering wilk, in a degree, resture it; but this in finished works is generally impracticable.

It is argued by some, that by heating pieces of steel to different degrees, before phenging them into the water, the one piece attains full harduess, the next the temper of a tool fit for metal, amother of a tool tit for wood, a fourth that of a spring, and so on. That this view is not altegether without fomedation, appear in the faet that if the end of a piece of steel be made entirely hard, the transition is not quite immediate from the hard to the soft part ; in making pointe, such as are used in at dividing engine, it is customary to harden the ent of a lunger piece of steel than is required, and form the point upon the grind-tone, exactly at that part where the temper suits, without the steel being let duwnat all. In hardening ly this methonl, howeser, without temperins, the seate of propere hardness is confined within such extremely narrow limits, as to be nearly widens; thas, it frequently happens that in a momber of tow he heated at mearly alike as the workman cond julpe, some few will be fomed too soft for aly use, although they were all intemdel to receive the ordinary hardnese, se as to regure letting down, as usnal
 althourh many towls for thetal, u e 1 with quict and miform pressure, are left of the full hardness for greater durabilies:

With the ereess of leat, beyoml the lone st that will sumber, the hrittheness rather that the useful hard
 hardeniner in the usual mamer, the sted domes mot appear to be injured, und the colns on its lifightemed murface that oeme in tempering are ans cxeflent, and in genema, sulliciently trustworthy index of the inferior degrees of haretnes proper for varions beッ.

Losy than a cortain hat faily to prombe har lne-s, and in the oginion of some workmen hat quite the

 hut intermitent mannor.

 neaterl.

water, or water mixed with rarious "astringent and acidifying matters;" plain water follows; ane' lastly, oily mixtures.

I find but one person who has commonly used the mercury; many presume upon the good conducting power of the metal, and the nonformation of steam, which causes a separation betwixt the steel and water when the latter is employed as the cooling medium. I have failed to learn the reason of the advantage of salt and water, unless the fluid have, as well as a greater density, a superior conducting power. The file-makers medicate the water in other ways, but this is one of the questionable myste ries which is never divulged; although it is supposed that a small quantity of white arsenic is gener ally added to water saturated with salt. One thing however may be noticed, that articles hardened in salt and water are apt to rust, unless they are laid for a time in lime-water, or some neutralizing agent.

With plain water an opinion rery largely exists in faror of that which has been used orer and orer again even for years, provided it is not greasy: and when the steel is very harsh, the chill is taken of plain water to lessen the risk of cracking it; oily mixtures impart to thin articles, such as springs, a sufficient and milder degree of hardness, with less danger of cracking, than from water; and in some cases a medium course is pursued by covering the water with a thick film of oil, which is said to be adopted occasionally with scythes, reaping-houks, and thin edge-tools.

From experiments upon all these means, we are induced fully to acquiesce in Mr. Perkins' recommendation of plain cold water for general purposes; except in the case of thin elastic works, for which oil, or oily compositions are certainly more proper.

A so-called natural spring is made by a vessel with a true and a false bottom, the latter perforated with small holes; it is filled with water, and a copious supply is admitted beneath the partition; it ascends throngh the holes, and pursues the same current as the heated portions, which also escape at the top. This was invented by the late Jacob Perkins, and was used by him in hardening the rollers for transferring the impressions to the steel-plates for bank notes.

Sometimes when neighboring parts of works are required to be respectively hard and soft, metal tubes or collars are fitted tight upon the work, to protect the parts to be kept soft from the direct action of the water, at any rate for so long a period as they retain the temperature suitable to harelening.

The process of hardening is generally one of anxicty, as the sudden transition from heat to cold often causes the works to become greatly distorted if not cracken. The last accident is much the most likely to occur with thick massive pieces, which are as it were hardened in layers, as although the extermal crust or shell may be perfectly hard, there is almost a certainty that towards the centre the parts are gradually less hard; and when broken the inner portions will sometimes admit of being readily filed.

When in the fire the steel becomes altogether expanded, and in the water its outer crust is suddenly arrested, but with a tendency to contract from the loss of heat, which cannot so rapidly occur at the central part; it may be therefore presumed that the inner bulk continues to contract after the outer crust is fixed, and which tends to tear the two asunder, the more especially if there be any defective part in the steel itself. An external flake of greater or less extent not unfrequently shells of in hardening; and it often happens that works remain unbroken for hours after removed from the water, but eventually give way and crack with a loud report, from the rigid unequal tension produced by the violence of the process of hardening.

The contiguity of thick and thin parts is also highly dangerous, as they can neither receive, nor yiehl up heat, in the same times; the mischicf is sometimes lessened by binding pieces of metal around the thin parts with wire, to sare them from the action of the cooling medium. Sharp angular notches are also fertile sources of mischief, and, where practicable, they should be rejected in faror of curved lines.

As regards both cracks and distortions, it may perhaps be generally said, that their avoidance depends principally upon manipulation, or the successful managoment of every step: first the original manufacture of the steel, its being forged and wrought, so that it may be equally condensed on all sides with the hammer, otherwise when the cohesion of the mass is lessened from its becoming red hut, it recosers in part from any unequal state of density in which it may have been placed.

While red-hot, it is also in its weakest condition; it is therefore prone to injury either from incautions handling with the tongs, or from meeting the sudden cooling action irregularly, and therefore it is generally best to plunge works vertically, as all parts are then exposed to equal circumstances, and less disturbance is risked than when the objects are immersed obliquely or sideways into the water ; although for swords, and objects of similar form, it is found the best to dip them exactly as in making a vertical downward cut with a sabre, which for this weapon is its strongest direction.

Occasionally objects are elamped between stubborn pieces of metal, as soft iron or copper, during their passage through the fire and water. Such plans can be seldom adopted and are rarely followed, the success of the process being mostly allowed to depend exclusively 1 pon good general management.

In recent experiments in making the magnets for dipping-ncedles, which are about ten inches long, one-fourth of an inch wide, and the two-lundredth part of an inch thick, this precaution entirely failed; and the needles assumed all sorts of distortions when released from between the stiff bars within which they were hardened. The plan was eventually abandoned, and the magnets were heated in the ordinary way within an iron tube, and were set straight with the hammer afier being let down to a deep orange or brown color. Steel however is in the best condition for the formation of good permanent magnets when perfeetly hard.

In all cases the thick unequal seale left from the forge should be ground off before hardening, in order to expose a flean metallic surface, otherwise the cooling medium cannot produce its due and equal efleet throughout the instrument. The edges also should be left thick, that they may not be burned in the fire; thus it will frequently happen that the extreme end or elge of a tool is inferior in quality to the part within, and that the instrment is much better after it has been a few times ground:

Thirdly, the heat for tempering or letting down. Between the extreme conditions of hard and soft steel there are many intermediate grades, the common index for which is the oxidation of the brightened surface, and it is quite-sfficient for practice. These tints, and their revective approximate temperatures, are thus tatbulated:

1. Very pale straw yellow.
430°

- A :hate of darker sellull - 10 -

3. Darker straw yelluw...................................... 470
!. Sin datker hint yellow..
4. A yellow; tinge ! slightly with purple.............. 5 en
5. Light purple... 580
6. Dark purple... 550
7. Dark luce.

570

The first tint arrives at about $480^{\circ} \mathrm{F}$, but it is only seen by comparison with a piece of steel not heated: the tempering colors differ slightly with the various qualities of steel.

The knife-edres, for Laptain Kater's experimental pendulum, were very carefully hardened and tempered in a bath heated to 180°; being then found too soft they were rehardened, amf tempered, at only the heat of hoiling water, after which they were considered admirably suited to their purpose.

The heat for temperine being moderate, it is often supplied by the part of the tool not requiring to be hardened, and which is not therefore cooled in the water. The workman first hastily tries with a file whether the work is hard, he then partially brightens it at a few parts with a picce of grindstune or an emery stick, that he may be enabled to watch for the required colur; which attained, the work is usually cooled in any convenient manner, leet the boily of the tool should contimue to supply heat. But wh en, on the contrary, the culur does not otherwise appear, partial recurrence is had to the mode in which the work was heated, as the llame of the candle, or the surface of the clear tire applied, if pussible, a little below the part where the culur is to be obowied, that it may not be sulded by the rinuke.

A rery conenient and general manner of tempermer small objects, is to heat to redues a fers inehes of the end of a flat bar of iron about two feet long; it is lad acrons the anvil, or fixul hy its cold extremity in the vice; and the work is placed on that part of its surface which is found by (rial to be of the suitable temperature, by gradually sliding the work towards the heated extremity. In this manner many touls may be tempered at once, thase at the lout part being pushed off into a vesel of water or onl, ds they severally show the required culur, but it repuires dexterity and quickness in thus managing many pieces.

Vessels containing oil or fu-ible alloys carfully heated to the required temproatures have also been used, and I shall have to describe a method called "blueing ofi", resurted to fur many articles, such as springs and saws, by heating them over the naked fire ontil the oil, wax, or composition in wheh they have been hardened ifnites; this can only occur when they respetively reach their buiting temprattures an 1 are evaporated in the gaseous form.

The perion of lettine down the works is also commonly chosen for correcting, by means of the hammas, those distortions which so commonly oceur in hardening ; this is dune upn the anvil, either with the thin pathe of an or linary hammer, or elee with at he \%-hemmer, a toul terminatins at each emp in an when-e chatele loe, whith repuires continual repair on the grind-tane.

The blows are given on the lolluw side of the mork, and at risht angles to the harth of the curve; they chorgate the concate sile, an I gradually reatore it to a plame surface, when the blows are discrabute 1 comsistatly whth the pe-itions of the erromens parts. Tha lanck hammer manoblably injures the surlace of the work, but the blows shond wot be violent, at dhey are then abor mare porme to breats the work, the liabilisy t, whel is materialty lon enod when it is kept at or near the tempering heat, and the e lee of the hack hamaer is shiphty rombed.

are laid on their backs upon a clear fire, about half-a-dozen together, and they are removed one at a time, when the edges, which are as yet thick, come down to a pale straw-color; should the backs acci dentally get heated beyond the straw-color, the blades are cooled in water, but not otherwise. Pen knife blades are tempered, a dozen or two at a time, on a plate of iron or copper, about twelve inches long, three or four wide, and about a quarter of an inch thick; the blades are arranged close together on their backs, and lean at an angle against each other. As they come down to the temper, they are picked out with small pliers and thrown into water, if necessary; other blades are then thrust forward from the cooler parts of the plate to take their place.

Hatchets, adzes, cold chisels, and numbers of similar tools, in which the total bulk is considerable compared with the part to be hardened, are only partially dipped; they are afierwards let down by the heat of the remainder of the tool, and when the color indicative of the temper is attained, they are entirely quenched. With the riew of removing the loose scales, or the oxidation acquired in the fire, some workmen rub the objects hastily in dry salt before plunging them in the water, in order to give them a cleaner and whiter face.

In hardening targe dies, anvils, and other pieces of considerable size, by direct immersion, the rapid formation of steam at the sides of the metal prevents the free access of the water for the removal of the heat with the required expedition; in these cases, a copious stream of water from a reservoir above is allowed to fall on the surface to be hardened. This contrivance is frequently called a "float," and although the derivation of the name is not very clear, the practice is excellent, is it supplies an abundance of cold water; and which, as it falls directly on the centre of the anvil, is sure to render that part hard. It is, however, rather dangerous to stand near such works at the time, as when the anvil face is not perfectly welded, it sometimes in part flies off with great violence and a loud report.

Occasionally the object is partly immersed in a tank beneath the fall of water, by means of a crane and slings; it is ultinately tempered with its own heat, and dropped in the water to become entirely cold.

Oil, or rarious mixtures of oil, tallow, wax, and resin, are used for many thin and elastic objects, such as needles, fish-hooks, steel pens and springs, which require a milder degree of hardness than is given by water.

For example, steel pens are heated in large quantities in iron trays within a furnace, and are then hardened in an oily mixture; generally they are likewise tempered in oil, or a composition the boiling point of which is the same as the temperature suited to letting them down. This mode is particularly expeditious, as the temper cannot fall below the assigned degree. The dry heat of an oven is also used, and both the oil and oven may be made to serve for tempers harder than that given by boiling oil; but more care and observation are required for these lower temperatures.
Saws and springs are generally hardened in various compositions of oil, suet, wax, and other ingredients. The composition used by an experienced saw-maker is two pounds of suet and a quarter of a pound of bees-wax to every gallon of whale-oil; these are boiled together, and will serve for thin works and most kinds of steel. The addition of black resiu, to the extent of about one pound to the gallon, makes it serve for thicker pieces and for those it refused to harden before; but the resin should be added with judgment, or the works will become too hard and brittle. The composition is useless when it has been constantly employed for about a month: the period depends, however, on the extent to which it is used, and the trough should be thoroughly cleaned out before new mixture is placed in it.

The following recipe is recommended by an experienced workman: "Twenty gallons of spermaceti oil; twenty pounds of beef suet rendered; one gallon of neats-foot oil; one pound of pitch; three pounds of black resin. These two last articles must be previously melted together, and then added to the other ingredients; when the whole must be heated in a proper iron vessel, with a close cover fitted to it, until the moisture is entirely eraporated, and the composition will take fire on a flaming body being presented to its surface, but which must be instantly extinguished again by putting on the cover of the vessel."
The above ingredients lose their hardening property after a few weeks' constant use. The saws are heated in long furnaces, and then immersed horizontally and edgeways in a long trough containing the composition; two troughs are commonly used, the one until it gets too warm, then the other for a period, and so on alternately. Part of the composition is wiped off the saws with a piece of leather, when they are removed from the trough, and they are heated one by one over a clear coke fire, until the grease inflames; this is called "bluriny off"." When the saws are wanted to be rather hard, but little of the grease is burned off; when milder, a larger portion; and for a spring temper, the whole is allowed to burn away. When the work is thick, or irregularly thick and thin, as in some springs, a second and third dose is burned off, to insure equality of temper at all parts alike.

Gun-lock springs are sometimes literally fried in oil for a considerable time over a fire in an iron tray; the thick parts are then sure to be sufficiently reduced, and the thin parts do not become the more suftened from the continuance of the blazing heat.
Springs and saws appear to lose their elasticity, after hardening and tempering, from the reduction and friction they undergo in grinding and polishing. Towards the conclusion of the manufacture, the clasticity of the saw is restorel principally by hammering, and partly by heating it over a clear coke fire to a straw-color: the tint is removed by very diluted muriatic acid, after which the saws are well washed in plain water and dried.

Watch-springs are hammered out of round steel wire, of suitable diameter, until they fill the gage for width, which at the same time insures equality of thickness; the holes are punched in their extremities, and they are trimmed on the edge with a smooth file; the springs are then tied up with binding-wire, in a loose open coil, and heated over a charcoal fire upon a perforated revolving-plate. they are bardened in oil, and blazed off.
The spring is now distended in a long metal frame, similar to that used for a saw-blade, and gronnd and polished with emery and oil, b:tween lead blocks; by this time its elasticity appears quite lost,
and it may be bent in any direction; its elasticity is, howerer, contirly retored by a subsequent han mering on a very brifht amvil, which "puits the nature into the spriny."

The coloring is done over a llat plate of iron, or hood, un ler which a litule spirit hamp is kept burning; the spring is continually drawn backwards and forwards, about two or the ree inches at a time, until it as-umes the orange or deep-blue tint throughout, according th the ta-te of the purchaser; by many the coloring is eonsilered to le a matter of ornamant, and not cocential. The lat process is to evil the spring into the spiral form, that it may enter the barrel in which it is to be contained; this is done by a torl wish a small axis and winch-handle, and does not require heat.

The balance-- rrings of marine elronometer:, which are in the form of a screw, are wound into the square thread of a serew of the appropriate diameter and coarseness; the two ends of the spring are metamed by side-serews, and the whole is carefully enveloped in platinum foil, an 1 tirhtly bound with wire. The mas-s is next heated in a piece of gun-barrel closel at the one end, and planjed into oril, which hardens the spring almost without discoloring it, owing to the exclusion of the air by the close platinum covering, which is now removed, and the spring is let down to the blue, before renoval from the serewed bluck.

The balance or hair springs of common watches are frequently left soft; those of the liest watches are hardened in the enit upon a plain eylinder, and are then curled into the spiral form between the edge of a blunt knite and the thumb, the same as in curling up a narrow riband of paper, or the filaments of an ontrich feather.
Mr. Went says that 3200 balance-springs weigh only one ouner; but springs also include the heaviest examples of hardened -teel works uncombined with iron: for example, of Mr. Adams' patent bowsprings for all kinds of vehicles, some intended for railway use, measure $3 \frac{1}{2}$ feet long, and weigh 50 pounds each piece; two of these are uecd in combination: other single springs are 6 fect longr, and weigh To pound.

In hardening them they are heated by being drawn backwarls and forwards through an ordinary forge-fire built hollow, and they are immersed in a trough of plain water: in tempering them they are heated until the black-red i- ju-t vi-ible at night; by daylight the heat is denoted by its making a piece of wool sparkle when rubbet on the springe which is then allowed to cool in the air. The metal is 9-1ktha of an inch thick, and Mr. Adams considers 5 -sths the limit to which teel will haremp perperly -that is, sufliciently alike to serve as a spring: he tests their claticity far beyond their intended ramed.

Great diversity of opimion exi-ts respecting the eause of clasticite in springs: ly some it is referred to different states of electricity; by others the elasticity is considered to re-ide in the than, blue, oxilized surface, the removal of which is thought to destroy the clasticity, much in the same manner that the clasticity of a canc is greaty lost by stripping off its siliceons rimi. The elasticiey of a thack sprim is certainly much impaired by grinding off a small quantity of its coterior metal, which is larder than the imer prortion; and perhaps thin springs sutain in the polishing a proportional lowe, which is th them equailly fatal.
It has been found experimentally that the bare removal of the blue tint from a pendulum spring by its inmer-ion in weak acil, eansed the chronometer to lose nearly one minute cach hour ; a feond and equal immersion searcely caused any further lose. It is also stated as a well-known fiet that such spring* get atronger, in a minute degree, during the frot two or three years they are in $n=0$. from sume nemb-pheric change; when the sprime are coated with gold by the electrotype process, no such chamee in observable, and the covering, although perfect, may be so thin as not to compensate for the luss of the blue axillized surface.

One of the mose serious ruils in hardening steel, especially in thick hlock or those which are un "qually thick an I thin, is their liability to erack, from the sulflen transition; and in referenee to harl ening raze re, a case in peint, Mr. Sifulart mentions it as the observation and practice of one of his work
 pend be suppesed the leather could do, this workman replied, "that he could take upen him to say that he wever hal a mager crath in the hardemeng sinee her hat used this methen, though it was atrequent wewrener before."

Whon britule aub tances crack in cooliner, it always happont from the out-ide contractin * and beom

 weut whil.

 from beins itijure l by the dire.

An analogous method is now practised in hardening patent axletrees which are of wrought-iron, with two pieces of steel welded into the lower side where they rest upon the wheels and sustain the load The work is heated in an open forge-fire, quite in the ordinary way, and when it is removed a mixture, principally the prussiate of potash, is laid upon the steel; the axletree is then immediately immersed in water, and additional water is allowed to tall upon it from a cistern. The steel is considered to become rery materially harder for the treatment, and the iron around the same is also partially hardened.

These are, in fact, applications of the casc-hardening process, which is usually applied to wroughtiron for giving it a steely exterior, as the name very properly implies. Occasionally steel which hardens but imperfectly, either from an original defect in the material, or from its having become deteriorated by bad treatment, or too frequent passage through the fire, is submitted to the case-hardening process in the ordinary way, by inclosing the objects in iron boxes, as will be explained. This in part restores the carbon which has been lost, and the steel admits of being hardened; but this practice is not to be generally recommended, although it is well employed for the purposes of transfer engraving, explained at Exgrayisg ox Steel, at method introduced by Mr. Jacob Perkins, and which took its origin in the curious transfer processes of the calico-works, wherein, however, copper is the material principally used.

Various methols have been likewise attempted to prevent the distortions to which work is liable in the operation of hardening, but without any very advantageous results: for instance, it has been reeommended to harden small cylindrical wires by rolling them when heated between cold metallic surfaces to retain them perfectly straight. This might probably answer, but unfortunately eylindrical steel wires supply but a very insignificant portion of our wants.

Another mode tried by Dr. Wollaston was to inclose the piece of steel in a tube filled with Newton's fusible alloy, the whole to be heated to redness and plunged in cold water; the object was released by immersion in boiling water, which melted the alloy, and the piece came out perfectly unaltered in form, and quite hard. This mole is too circuitous for common practice, and the reason why it is to be always successful is not very apparent.

Mr. Perkins resorted to a very simple practice with the view of lessening the distortion of his engraved steel plates, by boiling the water in which they were to be hardened to drive off the air, and plunging them vertically ; and as the plates were required to be tempered to a straw color, instead of allowing them to remain in the water until entirely cold, he removed them whilst the incide was still hot, and placed them on the top of a clear fire until the tallow with which they were rubbed smoked; the plate was then returned to the water for a few moments, and so on alternately until they were quite cold, the surface never being allowed to exceed the tempering heat.

From various observations, it appears on the whole to be the best in thick works thus to combine the hardening and tempering processes, instead of allowing the objects to become entirely cold, and then to reheat them for tempering. To ascertain the time when the plate should be first removed from the water, Mr. Perkins heated a piece of steel to the straw color, and dipped it into water to learn the sound it made; and when the hardened plate caused the same sound, it was considered to be cooled te the right degree, and was immediately withdrawn.

Loconotive wheels with hardened-steel tires may be viewed as the most ponderons example of hardening, as the tires of the eight-foot wheels weigh about 10 cwt., and consist of about one-third steel, and there seems no reason why this diameter might not be greatly exceeded.

The materials for the tires are first swaged separately, and then welded together under the heavy hammer at the steel-works, after which they are bent to the circle, welded, and turned to certain gages. The tire is now heated to redness in a circular furnace; during the time it is getting hot the iron wheel, previously turned to the right diameter, is bolted down upon a face-plate; the tire expands with the heat, and when at a cherry-red it is dropped over the wheel, for which it was previously too small, and is also hastily bolted down to the surface-plate, the whole load is quickly immersed by a swing-crane into a tank of water about five feet deep, and hauled up and down until nearly cold; the steel tires are not afterwards tempered.

Hardening and softoning cast-iron.-The similitude of chemical constitution between steel, which usually contains about one per cent. of carbon, and cast-iron, that has from three to six or seven per cent., naturally leads to the expectation of some correspondence in their characters, and which is found to exist. Thus some kinds of cast-iron will harden almost like steel, but they generally require a higher temperature ; and the majority of cast-iron, also like steel, assumes different degrees of hardness, ac cording to the rapidity with which the pieces are allowed to cool.

The casting left undisturbed in the mould, is softer than a similar one exposed to the air soon after it has been poured. Large castings camot cool very hastily, and are seldom so lard as the small pieces, some of which are hardened like steel by the moisture combined with the moulding sand, and cannot be filed until they have been annealed after the manner of steel, which renders them soft and easy to be worked.

Chilled iron castings prezent as difficult a problem as the hardening and tempering of steel ; the fact is simply this, that iron castings, made in iron moulds under particular circumstances, become on theis outer -urfaces perfectly liad, ind resist the file almost like hardened steel; the eflect is, howe ver, su perficial, as the chille I exterior shows a distinct line of demareation when the oljects are lroken.
lloughshares are sometimes cast on this printiple; the under sides and points are hard from the shilling process, and thuse, from resisting abrasion more than the softer parts, maintain a comparatively thin ellye.

The production of chilled castings is always a matter of some uncertainty, and depends upon the anited cffect of several caluses: the quality of the iron, the thickness of the casting, the temperature of the iron at the time of pouring, and the condition or temperature of the iron mould, which has a greater effect in "striking in" when the mould is heated than if quite cold : a very thin stratum of earthy matter will almost entirely obviate the chilline effict. A cold monk does not genmrally chill so readily as onf heated nearly to the extent ealle! "hack hot;" but the reverse comlitions necur with some cast-irn

There is this remarkable difference between cast-iron that hardene l, and tecl hardened by pl inging Whist hot into water: that whereas the latter is suftemel agrain by a duld red heat, whe chilled castings, on the contrany, are turned out of the mould as som as the netal is set, and are allowed to cool in the air: yet although the whole is at a brightred heat, no offening of the chilled part takes phace. This material has been employed for punches for red-hot iron; the punche- were tixeld in cast iron suckets, from which they only projected =ufficiently to perforate the whed-tires in the furmation of which hey were weed, and from retaining their hardness they were more fficient than tho-e punches made of steel.

Chilled castings are also commonly employed for axletrec toxes and naves of wheles, which are fins ished by grinding culy; also for cylinders for rolling metal, for the heary hammers and ampils or stuthes in iron-works, the stamp-heals fur founding metallic ores, de. Camon-balls, as well ats phehehares, are examples of chilled castings; with the de-tructive engine the chilling is unimportant, and occurs alone from the method essential to giving the bails the required perfection of furm an I size.
Shalleable iron castings are at the opposite extreme of the ecale, and are rembered externally soft by the abstraction of their carbon, whereby they are nearly reduced to the condtion of pure matleable iron, lot without the fibre which is due to the hammering and roding employed at the forge.

The malleable-iron castings are made from the rich Pemsylvania irm, and are at first as brittle as flas- or hardened steel; they are inclosed in iron boxes of suitable size, and surroumbed with poumded iron-stone, or some of the metallic uxides, as the scales from the iron forpe, or with common lime, ant various other absorbents of carbon, used either together or separately. The ca-ce, which are sometimes as large as barcls, are luted, rolled into the ovens or furnaces, and "ubmitted to a grod heat for about five days, and are then allowed to cool very gradually within the furnaces.

The time and other circumstances determine the depth of the chect: thin pieces become malleable entirely through, they are then readily bent, and may be slightly forced; cast-iron mails and tacks thme treated admit of being clincled, thicker pieces retain a central portion of cat-tiren, but in a softenel state, and not brittle as at first; on sawing them throngh, the skin or coat of suft iron is perfeetly dis tinct from the remainder.

The mode is particularly uscful for thin articles that can be more ecommically and correctly cast than wrought at the forge, is bridle-bit-, suffer-, parts of leck-, culinary and other vessels, pokers and tongs, many of which are subsequently ense-hardened and polishet, as will be exphaned, hut mableable cast-irn shouk never be used for cutcing-terls.

Case-hurdening urought und cast irom.-The property of hardening is not posesesed ly pure malleable iron; but we have now to explain a rapid and partial jrocess of cennentation, by wheh wrougheren is tirst converted exteriorly inte, sted, and is suberguently bardened to that particular depth; leavine the central parto in their criginal condtion of soft fibrons iron. The preces is very consi-tently call al case hardenting, and is of great importance in the mechanical arts, as the pieces combine the ecomomy, strength, and internal flexibility of iron, with a thin casing of steel ; wheh, although admirable ats an armor of defence from wear or deterioration as rearards the surfice, is unlit for the fomation of cuttine edges or tools, owing to the entire absence of hammering, subeequent to the cementation with the carbon. Cast-iron obtains in like mamer a cuating of steel, which surrounds the peculiar shape the metal may have atsumed in the jron-foundry and work hop.
The principal agents used for case-hardening are amimal mattere, as the hoofs, homs, bones, and skins of aninals; these are nearly alike in chenical constitution, and fhey are mestly charred amb coarsely poumle? ; some per-ons alsomix a little commonsalt with some of the above; the works should he anroundel on all sdes with a layer from half an inch to one inch thick.

The metheds pursued by dificent individuals do not greatly difler; for example, the grum-mith incerts
 the box in tiod on with iron-wire, and the joint is luted with chay ; it is then heated toredne-s as quickly ats posable and retained at that heat from half an hour to an lome, and the contents are quichly insmered in culd water. The objects somblat are a ste ly exterior, and at chan surface cowerel with the

 four of fise home.

It is a new application without any change of principle; the time occupied in this steelifying process is sometimes only minutes, instead of hours and days; as, for example, when iron is heated in the open fire to a dull red, and the prussiate is either sprinkled upon it or rubbed on in the lump, it is returned to the fire for a few minutes and immersed in water; but the process is then exceedingly superficial, and it may if needful be limited to any particular part upon which alone the prussiate is applied. The effect by many is thought to be partial or in spots, as if the salt refused to act uniformly, in the same manner that water only moistens a greasy surfice in places.

The prussiate of potash has been used for case-hardening the bearings of wrought-iron shafts, but this seems searcely worth the doing. It has been also employed with the view of giving an additional and extreme, although superficial hardness to steel, as in axletrees, Perkins's engraved steel-plates, de.; but we have only heard of one individual who has encased work with this salt-it was for case-hardening the iron rollers and side-plates of glaziers' vices employed for milling window-lead.

In the general way, the conversion of the iron into steel by case-hardening is quite superficial, and does not exceed the sixteenth of an inch; if made to extend to one-quarter or three-cighths of an inch in depth, to say the least, it would be generally useless, as the object is to obtain durability of surface, with strength of interior, and this would disproportionately encroach on the strong iron within. The steel obtained in this adventitious manner is not equal in strength to that converted and hammered in the usual way, and if sent in so deeply, the provision for wear would far exceed that which is required.

Let us compare the case-hardening process with the usual conversion of steel. The latter requires a period of about seven days, and a very pure carbon, namely, wood charcoal, of which a minute portion only is absorbed; and it being a simple body, when the access of air is prevented by the proper security of the troughs, the bulk of the charcoal remains unconsumed, and is reserved for future use, as it has undergone no change. The hasty and partial process of cementation is produced in a period commonly less than as many hours with the anmal charcoal, or than as many minutes with the prussiate of potash; lut all these are compound bodies, (which contain cyanogen, a body consisting of carbon and nitrogen,) and are never used a second time, but on the contrary the process is often repeated with another dose. It would be, therefore, an interesting inquiry for the chemist, as to whether the cyanogen is absorbed after the same manner as carbon in ordinary steel, (and which in Mackintosh's patent process was driven through the crucible in the form of carbonic acid gas, and is stated to be absorbed at the rate of one-thirtieth of an iuch in depth, each hour ;) or whether the nitrogen assists in any way in hastening the admission of the carbon, by some as yet untraced affinity or decomposition.

This hasty supposition will apply less easily to cast-iron, which contains from three to seven times as much carbon as steel, and although not always hardened by simple immersion, is constantly under the influence of the case-hardening process; unless we adopt the supposition, that the carbon in cast-iron which is mixed with the metal in the shape of cinder in the blast-furnace, when all is in a fluid state, is in a less refined union than that instilled in a more aerifurm condition in the acts of cementation and case hardening. (See Tools.)

THERMOMETER. An iustrument for measuring variations of heat or temperature. The principle upon which thermometers are constructed is the change of volume which takes place in bodies when their temperature undergoes an alteration. Generally speaking, all bodies expand when heated and contract when cooled, and in such a manner that, under the same circuinstances of temperature, they return to the same dimensions; so that the change of volume becomes the exponent of the temperature which produces it. But as it is necessary not merely that expansion and contraction take place, but that they be capable of being conveniently observed and measured, only a small number of bodies are adapted for thermometrical purposes. Sulid bodies, fur example, undergo so small a change of volume with moderate variations of temperature, that they are in general only used for measuring very high temperatures, as the heat of furnaces, of melting metals, \&c. Instruments for such purposes are called pyrometers. (Sce Pyrometer.) The gaseous fluids, on the other hand, are extremely susceptible on the impressions of heat and colld; and as their clanges of volume are great even with moderate accessions of heat, they are only adapted for indicating very minute variations, or for forming differential thermometers. Liquids hold an intermediate place; and by reason of their moderate but sensible expansion throngh the ranges of temperature withiu which observations have to be made for by far the greater number of purposes, are commonly used for the construction of thermometers. Tarious liquids have been proposed, as oils, ether, spirits of wine, and mercury; but scarcely any other than the two last are now ever used, and mercury by fiar the most generally.

The propertics which render mercury preferable to all other liquids (unless for particular purposes) are these: 1. It supports, hefore it boils and is reduced to vapor, more heat than any other fluid, excepting certain oils, and endures a greater cold than would congeal most other liquids, excepting certain spintuous liquors. 2. It takes the temperature of the medium in which it is placed more quickly than any other fluid. Count-Rumford found that mereury was heated from the freezing to the boiling point of water in 58 seconds, while water took 133 seconds, and air 617 seconds, the heat applied being the same in all the three cases. 3. The variations of its volume within limits which include the temperatures most frequently required to be observed, are found to be perfectly regular, and proportional tc the variations of temperature. The spirit thermometer is now little used excepting for ubservations of very low temperatures, or as a self-registering instrument for meteorological observations.

Construction of the mercurial thermoneter.-In order to render small changes of volume sensible, a Glass bulb, having a slender hollow tube attached to it, is filled with mereury, so that expausion or contraction can only take place by the rise or fall of the liquid in the tube. The diameter of the tube may be of any comenient size; but the smaller it is the larger will be the scale of the variations; and capillary tubes are usually employed. It is essential that the diameter of the bore be of a uiform width throughout; a quality which is tested by drawing up into the tube a short columu of mercury, and measuring its length at the different parts with a pair of compasses. Not more than a sixth part of tiow tubes which come from the glass-house are found to be fit for the purpose.

Havin's selectel a tube, the workman begins by llowing a hoolhow ball A, Fig. 310 , upon one extren, Iy of it, ly means of an air-bay of carutchouc, (in order to avoid the introduction of watery vapor by olowing from the mouth.) The length which the thermometer is to have is then marked, and above this point the tube is expanded into a second bulb is, rather larger than the first. When the 3 tun tube has acquired its natural temperature one of the hulbs is warmed, in order to expel the air from it, and the open end of the tube is plungel into distilled and well-boiled mercury. Durins the cooling the inercury rises into the second bulb B, whence it is made top:an into A by phacing this undermost, and expelling the air from it by heat, after which the mercury descends from, the effeet of conding. When the bull A bas been completely fille l, and aloo a part of 13 , the tube is -u-pended horizontally over a charcoal fire, so as to be equally heated throughout, and the inchased mercury boiled, in order to expel every remaining particle of air or hamidity. The epens "nd is then tonched with sealing-wax, and the tube withurawn from the fire, and placel in an upright position until it is cooled, when the bulb A and the portien of the tube under B will be filled with mercury: A portion of mercury is then expelled by heat, so that the column may stand at the proper hieight in the tube. The tube is then carefully softened with the blowpipe, and hermetically sealed under the bull, B , which is thus cut off.

Grudiution of the seale.-The instrument prepared in the manner now described is admirably adapted for rendering evident the expantions and contractions of the inelosed tluid, and it ouly remains to athyt a seale to it in order to have a complete thermometer. The graduation of the seale is in some measure artitrary; nevertheless, in order that different thermoneters may be comparable with eath other, it is necessary that two points at least be taken on the scale correspending to fixed and determinate temperatures, the distance between which will determine the graduation. The two points which are now miniver-ally chosen for this purpose are thoee which corre-pond to the temperatures of freezing and boiling water. With reepect to the first of these there is no difficulty; it is only necessary to surround the hulh with ice, and to mark on the stem the point at which the mercury stands when the iee begins to melt. The boiling point is not so readily determined. As the temperature at which water buils varices to a small extent with the barometric pres-ure, it is necessary, in order to have instruments comparable with eath other, either that the builing point on the scale be deternined when the barometer stands at a certain height which is arbitrarily assumen! for the standard, or else to apply a correction when the actual height of the barometer is above or below the assumed standard. De Lue made a number of experiment; on this sulject, and gave a formula for the correction, which was adapted to Fallremheit's scale and Engliih inches by Ihorsley. (1 'hil. Trans., vol. Rxis.) A comnittee of the Royal society who undentook to investigate the be-t method of adjusting the fixed jumints, and whose repert is contained in vol. Lxvii. of the Trans cetions, laid down a set of rules which have been generally followed by Eingli-h instrument-makers. They recommended the adoption of 29.8 inches for the standard barometric pressure, and gave a table of the corrections for all ordinary pressures above or below this st:mdiard. Their tible is very nearly represented by the following simple rule, which will be quite sufficient for the guidance of the artist in all ordinary cases:
Supporing the thermometer placed in an atmosphere of stemm immediately over the surface of buil1 mg water, then for every tenth of an inch by which the barometer is abuve or below 29.8 , the correction for the builing point of the scale of the thermometer is one-thousandth part of the interval between the freezing and boiling prints. The corrected must be phaced lower than the wbecred boiling puint liy this qumtity when the pressure exceeds 29.8 inches, and higher when the pressure is less than the stan laril.
Siveral other minute circumstances must be attended to in the construction of delicate instruments. As the temperature of beiling water is diflerent at the thip and near the botton of the vessed in which it buils, the thermemeter should not be phanged into the water itself, but into the salpor which riwes abone it, in a clane vesach with an aperture for the e-eape of the stem. The resech should be of metal, because water beils at a different temperature in vosels, of diflerent sulstances, ns metal and glass. Dinetilled wature or elarar oft water, shomhl bee need; if mixed with saline ingrediente, the temperathre at which it bohls womld le allectod, and the in truncent rendered inacenrate.

The intersal between the two fixed points on the stom may be divided into any momber of dwerets

flaid) expanded from 1000 parts to 1080 . This division soon became general in France and othe countries, and a great number of valuable observations have been recorded in terms of it; but it is now seldom used in works of science.

Centigrade scale.-In 1742 Celsius, professor at Upsal, in Sweden, proposed to divide the space between the freezing and boiling points of water into 100 equal parts, the zero point being placed (as in Licaumer's) at freezing. This division being in harmony with our decimal arithmetic, is better adapted than the two former to scientific purposes. It has been actopted by all the French writers since the Revolution, and is the best known in most parts of the north and middle of Europe.
It has been sometimes objected to this scale, (and the objection applies equally to Reaumer's, that on account of the comparatively high point at which the zero is placed, meteorological observations are cmbarrassed with the algebraic signs of plus and minus. The inconvenience (if any) is a very trifling one, and is much more than compensated by the facilities for ealculation which the scale affords.

Conversion of degrees of one scale into degrees of another.-From the manner in which the three scales are graduated, it is easy to deduce formule expressing any temperature given according to one scale in terms of either of the others. The interval which in Fahrenheit's scale is divided into 180 parts is divided into only 100 parts in the centigrade scale, and into 80 in Reaumer's. Hence one degree of Fibhrenheit's is equal to $5-9$ ths of a degree of the centigrade, and to $4-9$ ths of a degree of Reaumer. But some attention is required on account of the difference of the zero points. For the sake of perspicuity, it is convenient to adapt the expressions to three distinct cases. Let F denote degrees of F'abrenheit's scale, C degrees of the centigrade, and R degrees of Reaumer; then,

Case i. For all temperatures above the freezing point,

$$
\mathrm{F}-32=\frac{9}{5} \mathrm{C}=\frac{9}{4} \mathrm{R} .
$$

Case 2. For all temperatures between the freezing point and the zero of Fahrenheit's scale,

$$
32-\mathrm{F}=-{ }_{5}^{9} \mathrm{C}=-{ }_{4}^{9} \mathrm{R} .
$$

Case 3. For all temperatures below the zero of Fahrenheit,

$$
-32-\mathrm{F}=-\frac{9}{5} \mathrm{C}=-\frac{9}{4} \mathrm{R} .
$$

By substituting numbers in these formulæ for F, C, or R , as the case may require, the corresponding values on the other scales is immediately obtained; but if many reductions are required to be made, it is more convenient to have comparative tables, by which the correspondence of the scales is seen at a glance. Such tables are given in most treatises on chemistry
Theory of the graduation.-It will be evident from what has now been said that, whatever scalc be adopted, the division is founded on the assumed principle that equal increments of heat produce equal exparsions. This assumption may be put to the test of experiment by the mixture of fluids at different temperatures. For example, if a pound of water at 212° Fahr. be mixed with another pound of water at 32°, and the requisite precautions be used, then the temperature of the mixture will be 122°, which is the arithmetical mean between the tro temperatures; and if the assumed principle be correct, a thermometer plunged into the mixture will stand at 122°. This is found to be the case with the mercurial, but not with the spirit thermometer; and, in general, thermometers formed of different fluids, when exposed to the same temperatures, do not give the same indications throughout the whole extent of the scale. An important question hence arises: what substance ought to be adopted as the standard to which, in comparing observations, all others should be reduced? It is, perhaps, not possible to determine this question with absolute certainty; but the experiments of the French chemists Duloug and Petit on the dilatation of various substances, render it probable that air and the other permanent gases (which all expand equally) afford the most accurate indications of the true variations of temperature. As compared with the air thermometer, the expansion of mercury is proportional to the increase of temperature from - 36° to $+100^{\circ}$ of the centigrade scalc. From this point to 360° (the boiling point of mercury) mercury expands more rapidly than air, and consequently the mercurial thermometer stands higher than the air thermometer in the same temperature. When the former indicates 200° and 300°, the latter indicates 197° and 292.7° respectively; and it seems to be a general law that all fluids with the same increase of heat expand more rapidly as the temperature approaches their boiling point. The more rapid expansion of the mercury at high temperatures is, however, in some measure currected by the expansion of the bulb.

Change of the acro point.-There is a circumstance connected with the mercurial thermometer which requires to be attended to when very exact deteminations of temperature are to be made. Bellani, in Italy, and Flaugergues in France, observed that when thermometers which have been constructed for several years are placed in melting ice, the mercury stands in general higher than the zero point of the scale; and this cireumstance, which renders the scale inaccurate, has been usually ascribed to the slowness witl which the glass of the bulb acquires its permanent arrangement, after having been heated to a high degree in boiling the mercury. Despretz (Traite de Physique) observes, that in very nice experiments it is always necessary to verify the zero point; for he found that when thermometers have been kept during a certain time in a low temperature, the zero point rises, but falls when they have been kept in a high temperature; and this remark applies cqually to old thermometers and to those which have been recently constructed.
liegister themometers.-In meteorological observations it is of great importance to ascertain the lim its of the range of the themometer in a given period of time, during a day or night, for example, whife the observer is absent. Numerotis contrisances have accoidingly been proposed fer this purpose, but the two following are those most frequently used.

Six's register thermometer.-This instrument was invented by Mr. Six, of Cokehester, Englamel, and i:s described in the Phil. Tirans, yol. lxxii. It is a spirit thermometer, having a long cylindrical bulb $A_{\text {a }}$, lig. 3.110, with the tube bent in the form of a siphon, an: I terminating in a small cavity B. A part of the tube. from a to b, is filled with mercury; but the bulb A, and the remaning portion of the tube.
and a small part of the cavity B , with highly rectified alcolhol. The we of the mercury in t]e midule of the tube is to give motion to two indices, c and d, which com-int each of a glass tube in which a small bit of iron wire is in fored, the ents being capped with enamel. The indies are of such a size that they move frecly within the barometrie tube, and allow the spirit to pass ; but a slender prins is attached to each, which presses again-t the site of the thale, and is just -trong chough to prewent the index from falling dow when it has been rai-ed to any poiat an I the mercury recedes. The action of the instrument will be readily appedended from the figure. An increa e of leat expands the alcohol in the lualh, A , deprewes the mercury at a and con-equently raiees it in the other branch of the siphon at b. The moveury while ri-it: drives the index \boldsymbol{l} befure it; and when the temperature dimini-he the wereury re-cedt- from the index, which is retained in its phace by the action of the spring, and contequenty marks the lifolest point at which the macrury has stow. In like mamer, when Wie spirit in the lulb A is contracted by a diminution of heat, the mercury is preseld towards A by the elastic furce of a portion of air purpusely left in the cavity B, and drives before it the index co, wheln is prevented from falling back by the suring, and con-equently remains at the highest point at which the mercury has stowit that branch of the siphon.
 When the observation has been made, the indices are brourht back to the surface of the mercury by means of a magnet, which acts on the inclosed iron wire and overcomes the free of the spring. A seale is applied to cach limb of the siphon, and graduated ly comparison with a standard thermometer.

This instrument has all the defeets which belong to the spinit thermometer, and the indications arn beides in some degree deranged ty the expansion and contraction of the inclused colum of mercury: probally, also, by the friction of the indices. Nevertheless, it is the best instrument we poso-s for determining the temperature of the sea at great depths.

Futherford's thermoneter.-Another register themometer, simpler in it construction, and less expensive than the former, and consequently more generally wed, is the diny and night themometer projused by Dr. Rutherford in the Eilinburali, Trunsuctions, vol. iii. It com-ists simply of two thermome ter-; a merearial thermometer A, Fig. : 411 , and a spirit themometer l; attached horizontally to the same frame, and each provided with its own seale. The index of A is a bit of sted, which is pu-het before the mercury; but, in consequence of its borizontal position, remains in its flace when the mereury recedes, and consequently indicates the lishest dewree of the seate to which the nercury has risen." The inlex of B ; is of glase, with a small knob at each end. This lies in the spirit, which frecly pauses it when the thermometer rises; but when the pirit recedes, the ch la-ive attraction betwern the thid and the glass overemes the triction arising from the weight of the in fex, an the index is con-e quently carried back with the spirit towards the bulb. As there is no foree to mowe it in the oppoite direction, it remains at the point nearest the bulb tow which it has been brought, an I the indeates the luwest temperature which has occurred. By inclining the instrument the indices are bronght to the surfares of their reapective hluids, and prepared for a new observation.

Histor!" of the thirmometr. - The invention of the thermoneter dates from about the begiming (I the 1 ith century, but it is not certanly kown when or by whom it was first brought inture liy the Dutch authors it is ascribed to Comelius Drebbel, a peasant of Alkmaar, and by the Italians to s.metorio. Libri (Amules duc (himir, Dec. 1830) maintains, on the authority of Castelli and Viviani, that the inctrument was invented by Galilen prion to 1597. The thermoneter of Drebbet and Sancturio waty a very inperfect instrument. It con-i-ted of a glass tube, having a ball bhow on one of its extromities, and the other end leftepen. A pertion of air being expelled from the ball by leat, the open eme was phunged inte a chp, ontaming any liguid, when, on the cooling of the bath, the liguid would riee ins the tube, amb the variations of its height indicate the increase or eliminution of the temperature of the Dulb. The imerument had no - cate, thel watherefore merely an indieater of chanes of temperature, or a thermoscope; and it was defective evell in this re-pect, ina-much as it is atfected mot morely hy heat mol coll, but by the varying premure of the atmo-phere. The Forentine acalemiciam tiret ax-
 mentically realing the tube 'Ihe next step' in improvement was the atepotion of a fixed pront in the
 be reably obtained at all times of the year. Whlly propoed the uniform tompratore of a deep pit,

 instrument.

 Hiortertuch.

sounding along the shore has litherto withheld the organization from any full investigation of the Gulf Stream problems, yet several results of much interest, as to its form, position, movements, and temperatures, have been already reached in more or less detail. How to observe the deep sea temperatures which are ever disturbing the rest of the ocean-how to bring up, from a depth of several miles, a trustworthy reading of the heat which prevails in those unexplored recesses, is a question which demands an answer before the Gulf Stream can be fully comprehended in its fundamental fiets.

The proposed investigations were serionsly obstructed by the cnormous pressures in the regions to be explored, which deranged all eommon contrivanees. The ordinary glass thermometers were repeatedly tried in the Coast Survey soundings, but as uniformly broken. Attempts were made to protect them by strong metallic cases, which were also crushed in. Mr. Sixton, the eminently ingenious and successful head of the Instrument Department in the Coast Survey Office, then devised the deep sea thermometer which bears his name, and which has been used for several years with entire success. Some accidents, not faults of the instrument, have had the effect to prevent such extensive observations as Mr. Bache had provided for, but it is to be hoped that eaeh year will contribute to the number of our reliable observations with this elegant apparatus. We proceed to state its principle and the arrangement of its parts.

num. As the rates of expansion of these two metals are widely different, the variation of temperature to which the spiral is exposed, will produce a considerable movement of torsion, or rotation at the bottom of the helix, the top heing fixed. This principle is familiar in Breguet's torsion thermometer, and Mr. Saxton has only applied it to a novel case, with an improved arrangement at the upper extremity of the spiral, for magnifying and reading the indieation furnished. The motion of rotation given by a change of temperature, is very well fitted for reading, as by gearing it up, it gives a quite ample rotation to an index hand. Within the spiral is a hollow tube, to which at the top the spiral is screwed fast, as shown in fig. 1. Within this tube is a small rod or axle, which is connected with the botrom of the spiral, and turns freely on a supporting pivot, so as to communicate the torsion rotation to a toethed
silver wheel on its top, which is shown in fig. 2; that part only being toothell whish will be needed A small pinion, which bears the index loand, takes up the motion, aml is male to traverse the graduated silver rim, and carry with it a stop hand, fig. 3 , which will indieate the maximum or minimnm temperatures pased in the descent, according to its arrangement. Surlace temperatures are real off at once, and the sounding line give the depths.

The whole of this arrangement is inclosed in a firm metal case, as shown in fife t, which protects it from injury, and yet permits the water to pass freely around the apiral, causing it instantly to take the temperature of it locality. The tup case is covered with a cap, pierectl with small holes to permit the water to pass frecly. The whole case is then mounted in a metal trame by means of two ring: The top riner turns on two side pirots, to permit the insertion of the ease; but th, lower rithe is in halves, one of which is fixed, and the other opens out to receive the cass, alter which it closen, and is tight!y clamped. An eye at the top receives the sounding-line, tund one at the bettom any requisite sinking weirlits. All the delicate parts of this thermometer which conlhl be corroded, are heavily ulectro-phated with goll by Mr. Mathiot in the Coast Survey Electrotype Laboratury, so that they are mut liable to in!jury with fair treatment.

In ung this inctrument, it is thrown from the sile of the resel at succosive time firt observirg

 mg of a point of maximmon or minmm then perature, howewr, compliatis the problem, mal makes it a mater of critical july nent to consect the temperature and derth with acouracy. In the hathls of
 hat int oment within the range of ita caparates. Ita cont, mate in the limited numbers requird in the

 phoyen with increneil zeal in the thaly, thot only of t iff stre an temperatures, but of the ocean throngh-

The watur-whel is of the land in summated evershof, with weal in luthel
The shaft of thes whei
rests on pillow-blocks bolted to the stone-work forming the sides of the whel-pit. These pillow blocks have sometimes covers of the regular form, but more commonly they are unprovided with covers of any sort; ocensionally they are furni-hed with shell-covers for the sake of appearance, and to preserse the gudyeons from water and sand,

Or the end of the water-wheel shaft, which passes into the barn, is keyed a spur-wheel 1 , of 121 teeth; this wheel geers with the pinion 8 , of sixteen teeth, upon the shaft 35 . On the other end of the shaft is keyed the cog.wheel ? , of 115 teeth; this last geers with the pinion 4 , of 15 teeth, on the end of the shatt of a drum D , which carries on its circumference four projecting pieces called the lieaters, their purpose being to beat or thresh the grain from the straw as this passes forward between the feedrollers R , at the bottom of the feed-table F , upon which the unthreshen material is spread out in a layer previons to its being introduced between the feed-rollers. The feed-rollers are both fluted, and derive their motion from a pulley on the shaft B, by means of a pitch-chain 6 , which passes over the pulley 8 , on the spindle of the lower roller.

On passing the beater-drum D, the straw is taken up by the twa sets of shakers S S in succession. The shakers are driven likewise from the shaft B by a pulley marked 7 , and a pitch-chain which passes over a pulley marked 5, on the shaft of the first set of shakers. The second set of shakers is connecied with the first by a pitch-chain, which passes over the equal pulleys αa, upon their shafts.

During the operation of threshing, the straw is tossed out behind the machine by the second set of -hakers upon a lecek Y, and the grain falling through the sparred segmental bottoms II H, is collected by the hopper $k k$ into the fanner, sitnated below the machine, as shown in Fir. 3412. The fan is driven from the shaft of the beater-drum by a rope-band, which, passing from the pulley P on the beater-shaft to the guide-puilleys $b b$, embraces the fian-pulley C, of the same diameter as P, so that the
fan and the beater-drum have the same speed, supposing no slip of the band. But the geide-pulley= b3, are msually fixed in a frame, which can be shifted vertically, so as to increase or lewen the fenton nt the band it pleasure, according a: the grain is heary or light; for, when the grain is light, it will he more casily lilown away with the chaff than when heary, and for that reaton a certain amount of slip, of the banci is allowed by lessening the tension, until the propretrenth of blat is whataned.

the dircetions of the motions of the several parts of the machine are in fieated by arrows on the elination fiemers, and, indeed, are ubvius from the mode of action (f the machine.

THMOSTLE. A spinuing frame for the manfa ture of cotton yarn of the lower mambers, sy b luw olls. Throtles are designated as the lire spin lin, used in the Middle and Sonthern States, the d ul spinil'o usal in Lowell. The L'ap Spinner, or Danfirth Throotle; the Ring Throstle, or King and Traveller. Fips :3111, 3415 , 3416 represent one of the latter chass; it differs fron the more common form of ring and traveller in jts manner of driving the spindle, In all other thro-tles the motion is given to the flyer or to the spindle by a twistel bund, from a central drum pa-sing round a senall pulley on the spindle.

Fig. 3111 is an ent desation, showin; the arran ecment for the gecers and beth for driving the rolla and liftime motion for the rails.

 shemg in room, wear, mul repair. The whith, wh at are coserel with leather, whll lint setorat fers withent need of rephir.

 for the spindlew, guide roid if fur rai-inf lup or rihe ral de:

 motion to the rase rail wheh forms the thape of the Inthlin.
 per minute for No. 11 yarm.
 Vot. II-It

made by the Lowell Machine Shop, who build frames of this kind to run with cach side separate, thereby stopping only half of the spindles while dufting.
In general arrangement, this machine dithers but in the mote of driving from other ring-throstles; and in all respects but this the description applies to all ring-thro-tles. The older noode of driving is by a central drum, from which bunds, pas-ing round whirls on the spindles, give motion to the same.

This latter mode of driving, by the firiction of the whirl on the ed!ge of a revolving disk, is fully tented and very largely in operation. It gives a stronger, more regular and muifirm aution the the spindle than is given by bands, and is applied to driving the spindles, tlyers, and bobbins of atl kinds of thro:les, also to worsted frames, and to doublers and twisters, with similar advantages

TIMBER PEADING. The usual way of benling planks to curved forme, has been by strammg ou* heating the pieces and bending over a mould or frame, and leaving them keyed in this po-ition till they hat by cooling taken a set. This process not only strained the fibre of the word, but was inapplicable to the formation of curves of short radins in large spantling. In $18 t 9$ letters patent were granted to Thomas blanchard for improvements in bending wood and other fibrous substances. This patent clamed the bending timber by placing a powerful pressure ou the ends of the boly; and while the pressure was continued, it was forced around a mould to the desired curre. The pressure upon the ends of the timber prevented the clongation of the fibre outsile of the eurve, while the inside was necessarily shortened, thereby preventing the rupture or breaking of the same.

It was found, in the course of experiment in thenling heary timber for ships' knees, requiring shont curves, that the timber, in the process of conforming to the moull, spread or buliced, much to its defacement. To remedy this defect, Mr. Blanchard was employed to construct nnother machine, in all respects adapted to bending ship timber. This was accomplished by encasing the timber on all sides, and effectually preventing its spreading in any direction. This improvement was of vital importance in benting heary timber, and without which large knees could not be made. Previous to being sulyjected to the pressure, the fibres of the wond are softened by steaming, which also incidentally by dissolving the acid containel in the capillary vessels, increazes the durability of the timber.

The fibres of wool have their origin in cells, generally shaped like a donble cone, greatly elongated, and phaced close and parallel to one another, with the various extremities of one set wedged in between thone of another set. These fibres are generally collected together into layers, so arranged as to present the greatest resistance to forees tending to displace them in the longritudinal direction. The masees of tibre contain assemblages of cells which retan the air, fluids, guns, and resins of the tree.

In the application of heavy lateral forees to a body of wool, ats in the nperation of bending, the result is but a compression of its fibres to a solid mass, by the breaking up of the cells of which the fibres are only the coat or covering. These fibres will remain under the action of any firce, entire and contimuns throughout the body, throngh their flexibility and elasticity, most hard wools being taken as a standard. The grain of the wood or fibre is easily traceable, even at the point of greatest tension and di-placement, the angle at a short curve, where they interlace and loek each other so firmly as to huhb the extremities of a stick in position, after being bent to a right angle.

The aggregation and complication of the fibres at the angle of the curves, gives the greatest strengeth where it is most required, as at that point one-fourth of every inch lost in bemling the interinr side of the curve, is there gained. The severest tests have shown the impossibility of restoring a stick of timber, of whatever size, to its original form, alter heing suljeeted to this process; fracture would first ensue, but at those parts quite removed fron the centre of the curre. Additional strength and elasticity are given to a bent riece of wood, by the interstices and cellular spaces being tilled up liy the solid fibrous material:

In 10, $;$; tests were made at the Brooklyn Nony liurd, under the direction of oflicers of tho navy, with the following results:

The knees unon which these tests were made, were of the largost size eommonly used for hamging kners. In order to make the test analogns to the applinuce in the vessel, a pieco of ouk timber of equal siding size with the knees, was fastened to the boty, representing a timber of tho ships trame; ako unother to the arm representing the beam of a wesel. The body was seeured upon an irom frame, in which the press rested, while the power whe applied to the amm, on some, to contract the angle of the knee, by drawing it inwird to "thint of rupture; and on others, to thrnst the urn out ward the thepturing point. In severul cuses, the fastenings wore found inablegrate to hoh the hemm and arm together, although placod in ubout "qual quatity, tizo and di-tribution, to the propertion commonly usel in ves-chs. It should be considered, however, that the laces were of more tham ordinary stamp in quality.

ILsult if Tirint.

 and fulcrum ut right angles with a peint on the Ioly, 1.92 feet from corner:

 und fustelinga, same at Ni. 1:

 diseributed:

Notr.-This knee, (Xo. 3,) was bent inward six inches, when the fastenings giving way, the knee was allowed to return, which it did; was re-fastened, and again bent inward, when it sustained within abont 9 per cent. of its first pressure.
No. 4.-Natural or grown knee, sided $10 \frac{1}{2}$ inches; moulded to corner; angle square. or 90 degrees; power applied, same as those before bent; fulcrum at middle of throat, at angle of 45 degrees, with arm and body:
Bent inward, at $\frac{1}{2}$ inch, required......5.500 pounds. |Bent inward, at $1 \frac{1}{2}$ inch, required......9.000 pounds.

$$
\text { " } \quad \text { " } 1 \text { " } 6 \quad \ldots \ldots .7 .500 \text { " }
$$

No. 5.-Bent knee, sided $10 \frac{1}{2}$ inches: monlded 11 irches; filled out to corner with chock; angle right, or 90 degrees; leverage as before, 5.37 fect from corner: fulerum at right angles from middle of throat, $=$ to 3.08 feet:
Bent outward, at $\frac{1}{2}$ inch, required..... 8.000 pounds. | Bent ontward, at $1 \frac{1}{2}$ inch, required... 18.000 pounds.

Note.-This knee. (No. 5 ,) was bent ontward 10 inehes, without the least rupture, and the highest resisting pressure $=35.000^{*}$ pounds; and on leing relieved, returned to within $4 \frac{1}{4}$ degrees of its former angle ; was ayain suljected to pressure, and when at $11 \frac{1}{2}$ inches from its relieved pasition, the pressure amounted to $36.500+$ pounds.
No. 6.-Natural or grown lnee, sided $10 \frac{1}{2}$ inches; moulded to corner ; full and well-grown, with 5 feet arm, the very best the Nary or market could furnish: was prepared at the nary yard, angle 82 degrees; fastenings, leverage, and falcrum as before applied; one inch larger in body at commencement of throat. This knee had two trials, in consequence of the necessity of re-arranging to secure equality of position.

On First Trial.

On Second Triat.

Bent outward, at $\frac{1}{8}$ inch, required... 11.500 pounds. \mid Bent outward, at $1 \frac{1}{2}$ inch, required... 31.500 pounds. "6 " 1 " ". .22 .500 "
It broke at two inches in the throat, the rupture being complete. Blanchard's patent has passed into the hands of the Timber Bending Co., who have now nearly ready for operation an inproved machine, with capacity to bend timber fifty feet long and tarenty inches square.

TOBACCO-CUTTING MACHINE. This is a superior constructed tobacco-cutting machine, the in rention of A. P. Fincir, Red Falls, Greene Co., N. Y. Its workmanship is of a very superior kind, strong, correct, and simple, and there can be no question of its qualities.

A, Fig. 3419, is the frame; B B are two wheels on which is fixed the cutting-knife C, across the end of the box $D ; E$ is the lid of the box, under which is pressed down the tobacco to be cut, by four serews FFFF. As the tobacco to be cut has to be pressed down to a very solid bed, two cross-bars extend under the nuts of the screw-bolts across the box D , on the top of the cover E , and there are notches in

the sides of the box to allow these bars to descend with the eover on the top of the tobacco as it is screwed down. H is a cog-wheel on the screw L . The screw passes throngh it, and as there is a thread in the interior of the wheel, the screw will be moved forward or backward by the motion of the wheel. On the end of the screw in the box there is a square block pressing behind the tobacco to move
it gradually towards the knife. This is the office of the screw. Therefure as the knife cuts up the to bacco under E, at the right end of the box, the screw pu-hes up the compressed tubacco to present alternately a new layer of tobacco to the knife at every revolution of the revolving cutter-wheel- B B . I is a fly-wheel on the cutcer-shaft, and the pulley on the left of the cutter is fur a band to drive the *haft. 'The cog-wheed F , at the left end of the box, is driven by a worm-wheel J, sarcely seen, wider the bottom of the box. K is a set of pulleys on the shaft of J to drive the said shaft, so that the serew may receive a forward or backward motion by the changing of the band. The handle on the end of the fcretr is merely to show the manner in which it may be tumed.
TOOLS. The great and manifest importance of tools to the mechanic is so selfevident that it is extraordinary the subject has nut hitherto received that investigation which it obviously deserses. The vast improvements in modern machinery are mainly attributable to the excellence and accuracy of the tools used in preparing and completing the various parts of which every machine is composed.

By the expression tools, according to the definition given by Mr. George Rennie, we understand instruments employed in the manual arts for facilitatimg mechanical operations by means of percus-ion, penetration, separation, and abrasion of the sub-tances operated upon, and for all which operations various motions are required to be imparted either to the tool or the work.

For the sake of distinctness it would be desirable, so far as is practicable, to treat the subject under two points of view: 1st. Where motion is given to the tool, as in handieraft work; ?d. Where motion is given either to the tool or the work, as in self-acting or automatic tools. Now, in the case of the turning-lathe the tool usually remains fixed, while the object invariably moves-in that of the planingmachine the tool or cutter may either remain fixed or be made to mose, according to the duty required to be performed. In almost all the other machines which come under the denomination touls-such, for example, as are intended to perform the various mechanical operations of slutting, key-grooving, punching, drilling, nut-trimming, cutting the teeth of wheels, boring, serew-cutting-the tool receives motion, although in some cases, particularly in the nut-trimming and screw-cutting machines, the tool may be cither movable or fixed.

It would afford much matter for curious and instructive inquiry to trace the carly history of tools, as there ean be little doubt that the uee of handieraft tools is coeval with the earliest ibes; and assuming the recent researches of modern travellers to be satisfactory proof of the fact that the ancients were acquainted with alnost all the touls now in use, we camot fail to admire the patient perseveranee of the workman, whose skill, combined with manual dabor, enabled him to produce so many beautiful speeimens of his art-a circumstance the more remarkable when we consider the rude and simple implewents by the aid of which this extraordinary degree of execllence was attained.
The gradual inprovement in tools, which of late years have reached a very hirg point of perfection, is well illustrated by the wheel-cutting and dividingengine. We therefore propose very brietly to sketch the history of those machines and appliances which come under the general name above pretixed.

While the art of constructing wheel-work was in a less adsanced state, the dividing of the circumference of a whed into the requisite number of parts, and cotting out the tooth spaces by a manual operation, was not only a tedinus but also an extremely imperfect way of proceeding. To facilitate such manual operation by a tile, the simple platform described by Pere Alexandre, in his Treatise on Clock-making, was invented; this platform was simply a circular plate of brass, of ten or more inches in diameter, with concentric circles traced thereon corresponding to the numbers of teeth in the wheels and pinions of elock-work. In the ecentre of this platform was fixed astud or fast arbor, round which an index, with a straight edfe puinting to the centre, turned freely into any given point of a required circle, by means of which the divisinn of any given circle were tranferred to a whed placed on the central arbor under the index already described, ly a markiner point. This mode of dividiner a wheed is still practised in some branches of the mechanical arts, and is, doubtless, an ea-y way of tran-ferrinit divi-ions from a larerer to absabler circle for variond purposes, where rigid aceuracy is mot regured. But whe great difliculty still remained to be surmomeded: the spaces necessartly regiured to be cont by hand with a file. At lenyth a small trame was momed on the index, which was contrived to direct and contine the file ins such a way as to cut the nothes in a whed pated over the index, with les de. viation from the truth than could be manared by more mamal dexterits. It 5 extromels prolable that this mdition lom to the ahption of a cirent or file or cutter, and of such other appemhagen ne com
 Howke was the fir-t prom whe contrived onch ant urrangement as combl
 reffacting piece of wrehome was mate up of the strong frame, the shl

 the ope ration of cuttine the Shate ive te.thot a whal 'Ther thes

The original divisions of the circle, namely, $360,300,150,90,60,8 c$, are commonly retained in the ordinary engines, although many of the smaller numbers are included in the larger ones, and are, therefore, superfluons; for, taking every fourth hole in the circle of 360 , gives precisely the same result as using the circle of 90 , or every sixth as using the circle of 60 , and, in like manner, taking every other hole in the circle of 300 , will be precisely the same in effeet as using the circle of 150 . It must, we think, be obvious to every one, acquainted with the ordinary process of cutting the teeth of wheels, that engines, of the construction just described, are very limited in their operations, by reason of their powers extending only to the numbers marked on the divided circles, or the factors of which those numbers are composed, and because the prime numbers are not usually inserted. To remedy this defect, and at the same time render the engine of greater practical utility, appears to have been a favoritc study with different ingenious artisans, whose daily a vocations admirably qualified them to appreciate the improvements we have already referred to, as well as to devise such additional apparatus as would make the engine more perfect.

It is unnecessary to pursue further the minute details of this subject, but it is to be observed that the only true and accurate method of circular division, namely, by a tangent-wheel and endless screw, first contrived and used by Dr. Hooke in 1664 , for the purpose of dividing astronomical instruments, has been from time to time advantageously applied to the wheel-cutting engine by eminent mechanicians.

We now proceed to the dividing-engine, of which it has been justly observed, that "none has so much contributed to the interest of navigation considered as a science;" indeed the facility, and at the same time the accuracy, with which the measuring portion of any astronomical or mathematical instrument, however portable, can now be divided by our best engines, are truly astonishing; the fine lines of division which in many instances are searcely visible to the naked eye, are, when magnified by a suitable lens, perceived to be laid down with perfect equality, as to relative distance, so much so, that no one who has not examined the means by which the result is produced, can conceive the possibility that the expedition with which the divisions are made, is equal to the accuracy with which they are measured and marked down.

Several trials were made at the Greenwich Observatory, by Flamsteed, the Astronomer Royal, but the method was found defective, probably in consequence of imperfect workmanship, and was soon abandoned. In Mr. Smeaton's paper, read before the Royal Society of London, November 17th, 1785, on the "Graduation of Astronomical Instruments," he mentions an engine made by Mr. Henry Hindley of York, which indented the edge of any circle in such a way that a screw with fifteen threads acting at once, would, by means of a micrometer, read off any given number of divisions, so as to answer the purpose of subdividing the circle. Mr. Ramsden, in consequence of the reward offered by the Board of Longitude to Mr. Bird, for his method of dividing, in the year 1760 , turned his atteution towards the contrivance of an engine that would divide nautical instruments with sutticient accuracy, without resorting to the delicate and tedious process of manipulation, practised by Mr. Bird. He connpleted an engine with an indented plate, or wheel of thirty inches diameter, which, though it did not entirely answer his expectations to their full extent, yet was found very useful for dividing theodolites, and such like instruments, with great facility. This was effected before the spring of 1768 ; and in 1774, a much larger and more efficient engine was produced, with an indented plate of forty-five inches diameter, which divided a sextant for Mr. Bird's examination so aceurately, that the Board of Longitude, ever ready to remunerate any successful endeavor to promote the lunar method of determining the longitude at sea, did not hesitate to confer a handsome reward on the inventor, but on the express condition that the said engine should be at the service of the public, and that Mr. Ramsden should publish an explanation of his method of making and using it.

In 1820 , Mr. James Allan was rewarded by the Board of Longitude with one hundred pounds, for his improvement on Ramsden's dividing-engine. This improvement consists in the method emphoyed to ent or rack the teeth around the periphery of the great circle, worked by an endless screvs, upon which the are to be divided is placed, so as to insure perfect equality of size, is regards the teeth, in all parts of the circle. This extremely ingenious, thongla simple contrivance of Mr. Allan, is described in the transactions of the Society of Arts. The great circle of bell-metal, a semi-plan of which is shown in Fig. 3.421, is mounted upon an axis A, and its surface made truly plane and perpendicular to the axis; the scetion shows the figure of the axis, and the central ring B, to give the greatest strength to the circle; C is a section of a portion of the frame of the engine; and D , a socket into which the axis A is fitted; the circumference of the large circle is then turned to such a figure as to receive a ring ot brass a, which is united firmly to it liy a number of pins. Upon this ring a second, b, is placed, the two
making the same thickness as the circle, a sectional view of which is here introduced. The inside of the ring b, and the out-ide of the bell-metal circle, are fitted to each other with the greatest accuracy and great care taken to turn the same troly fitting concentric with the axis of the circle; the brass rings a and b are held together by twenty-four screws, and a groove corresponding to the curvature of the screw which moves the circle is then turned in the outside of the two ; in this state the racking of the teeth is performed by 2 screw similar to that afterwards used to turn the circle to its divisions, but notehed acruss the threads so that it cuts like a saw, when pressed against the circle and turned round, and removes the metal from the spaces between the teeth, which are by this means formed around the edge of the circle; when this has been performed all round, two fine lines are drawn across the brass and bell-metal circles, diametrically opposite to each other; the twenty-four brass serews are then withdrawn, and the upper brass ring turned exactly half round, which is determined by the lines before mentioned; and by this means the teeth of the circle are divided into two thicknesses, and being put together again in opposite directions, if any error arose in racking the tecth, it would be shown by the upper and lower halves of the teeth not coinciding when reversed, and by racking theru while reversed, the screw would cut away the inequalities, and make all the teeth of the same size and distance from each other; this reversing the teeth is performed several times, till the teeth are brought to a perfect equality in all parts of the circle; four steady pins are accurately fitted into the two rings to hold them together in any of the positions in which they have been racked together, and it is upon them that dependence is placed for the coincilence of the tecth, the twenty-four screws being morely to hold them fast together, and fitted rather loosely in their holes that they may not strain the steady-pins.

We have purposely omitted any mention of the improved engine by Mr. E. Troughton, in whose hands the art doubtless arrived at a high degree of exactuess, because, to adopt the language of a competent judge, there are various difficulties in the application and construction of the apparatus, to avoid which was the avowed object of the engine now in part to be described, by adopting prineiples perfectly independent of mechanical action, and governed only by vision, assisted by the nust powerful optical means. For this really scientific piece of mechanism we are indebted to Mr. Alexander loss, mathematical instrument maker, to whose ingenuity the Socjety of Arts of London, in 1831, awarded the (iold Isis Medal and fifty guineas.

Fig. 3422 is a side view of Mr. Ross's apparatus for cutting original divisions, and consists of the fol lowing parts: a small circle 10 or 12 inches diameter, divided into epaces of $3^{\circ} 45^{\prime}$ or 96 parts, by the usual dividing-engine or by any ordinary means-two micrometer microscopes, represented at ab an are $c c$ of the length of $3^{\circ} 45^{\prime}$ of the circle to be divided-a cutting-frame $d e$, and a frame $f f g g$ to support the apparatus. The frame $f g$ con-iste of a bottom and top plate connected by two strong pillars, une of which is represented at h, the front one being removed to show the other parts. In the bottom plate are serewed the nuts $i i$ which form adjustable feet for the frame; these muts are perforated, and the screws $j j$ pass through and fasten the whole securely, after being levelled by the nuts i and the level l. The upper plate is secured to the pillars h by two screws and collets, moving on the one as a centre, and adjustable at the other by the pushing screw n for the purpose of setting the cutting-point o, which is attached to the upper plate f, to cut a radiating division on the circle to be divided: an are and index not capable of being shown in a side riew, indicate the inclination given. To the upper plate is likewise attached the hollow centre g; in this works a male centre, the thanch of which is seen at r; this supports the bar 88 which carrics the mieroseopes ab and the level l. The microscopes are secured to this bar by two pulling and two pushing screws $t t, t$, passing through a flanch r, and acting in and on the bar 8 . The mierozeopes are secured to the flanch by fitting into strong tubes $u u$, and when mot justed to distinct vision can be fixed in that position by the clamping rings wo. The hamdle $x \times$ for the cutting-frame is attached to the perpendicular sling d, having a double joint at the point where it is fixed, in order to prevent any unequal pressure from prodacinir a lateral motion of the cutting point ; the: other cud is connected to the upright dovetail slicle 31, which forms part of the apparatus for mowing the cutting-point. (See article Actosstic, in 1st volume of this Dictionary.)

From a consideration of the foregoing sketch we draw the following conclusion, namely, that the difficulties and failures which have from time to thme checked the progress of inventive gemius are to be traced to two sonrees: first, a limited knowledge of elementary principles; and secondly, the defective construction and consequent imperfect merformance of the tonls employed.

One of the mont valuable mily to the more perfect constraction of machinery in due to Mr. Joseph Whitworth, of Manchester, who has recently intraluced the simple process of seroping, insteal of the dirty and unsati factory op ration of grimbing, ns a means of froducing phase metallie surfaces. It is

 hearing peints may, withot dealvantan', lue fewer in momber, and conswgenty whder apatt; I ut in

 It he suppen al that one ut the sarfice is concene, und the wher a true phane, then the tomdenes of grimding, no dente, would t. tw riduce the errar of the former, but the eppoite orror would at the sime

obviating this source of error except by sliding the one surface entirely out of the other at each more a method which is clearly impracticable.

It may be mentioned as an additional cause of error, that the grinding powder collects in greater quantity about the edges of the metal than upon the interior parts, producing the well-known effect on the bell-mouthed form. This is particularly objectionable in the case of slides, from the access afforded to particles of dust, and the immediate injury necessarily occasioned thereby. Another circumstance materially affecting the durability of ground slides is, that a portion of the cmery becomes fixed in the pores of the metal, and can never be entircly eradicated therefrom, causing a rapid and irregular wear of the surface.

If, then, grinding le not adapted to form a true general outline, neither is it to produce accuracy in the minuter detail. There can be little chance of a multitude of points being brought to bear, and distributed equally under a process from which all particular management is obviously excluded. To obtain any such result, it is nccessary to possess the means of operating independently on each point as occasion may require, whereas grinding affects all simultaneously. It is subject neither to observation nor control, there is no opportunity of regulating the distribution of the powder, or of modifying its application, with reference to the particular condition of the different parts of the surface. The variation in the quantity of the powder and the quality of the metal will of necessity produce inequalities, even supposing they did not previously exist. Hence, if a ground surface be carefully examined, the bearing points will be found lying together in irregular masses, with extensive cavitics intervening. An appearance indeed of beautiful regularity is produced, to which, no doubt, we may trace the universal prejudice so long established in favor of the process; but this appearance, so far from being any evidence of troth, serves only to conceal error, and under this specious disguise surfaces pass without examination, which if unground would be at once rejected.

In addition to what has been stated, it must be remembered another great evil of grinding is that it takes from the mechanic all sense of responsibility and all spirit of emulation, while it deludes him with the idea that the surface will be ultimately ground true; hence he slurs his work over in a slovenly manner, trusting to the effect of grinding, being conscious that it will efface all evidence either of care or neglect on his part.

Thus it appears that the practice of grinding las altogether impeded the progress of improvement. A true surface, instead of being, as it ought, in common use, was until lately almost unknown; few mechanics have any distinct knowledge of the method to be pursued for obtaining it, nor do practical men sufficiently advert either to the immense importance or to the comparative facility of the acquisition. The expression "true surface" may appear contradictory, and therefore require qualification. Absolute truth is confessedly unattainable; moreorer, it would be possible to aim at a degree of perfection far beyond the necessity of the particular case, the difficulty of which would more than counterbalance the advantage; nevertheless it is certain that the progress hitherto made falls firt short of this practical limit, and that considerations of economy alone would carry improvement many degrees higher. The extensive class of machinery denominated tools, affords an important application of the sulject; here every consideration combines to enforce accuracy. It is implied in the very name of the planing engine, the express purpose of which is to produce true surfaces, and it is itself constructed of slides, according to the truth of which will be that of the work performed; and when it is considered that the lathe and the planing engine are employed in the making of all other machines, and are contimually reproducing surfaces similar to their own, it will manifestly appear of paramount importance that they should themselves be perfect models. Indeed it would be difficult to mention any description of machinery which would not serve as an illustration of the importance belonging to truth of surface, and at the same time offer abundant evidence of the present necessity for material improvement; nor is there any subject connected with mechanics, the bearings of which, whether regarded in a manufac turing or scientific point of vew, are more varied or more extensive.

The tool employed for scraping is not only simple but easily made; it should be of the best cast-steel, and carefully sharpened to a fine edge on a T'urkey-stone, the use of which must be frequently repeated; but worn-out files may be converted into convenient scraping-tools. A flat file with the broad end bent and sharpened will be most suitable in the first instance, and afterwards a three-angled file sharpened on all the edges. The process of scraping is equally simple, requiring rather care than skill on the part of the workman, whilst it affords a certain and speedy means of attaining any degree of truth that may be deemed necessary, thus tending to the gradual establishment of a higher standard of excellence, the intluence of which cannot fail to affect beneficially all mechanical operations, opening at the same time to the mechanic himself a new field in which he will find ample scope for the exercise of skill, both manual and mental.

We are now in a condition to proceed with the matter more immediately under consideration. The value of every cutting instrument depends upon the excellence of the steel of which it is made, theseare bestowed daring the several processes of forging, hardening, and tempering, and the just adaptation of the angle or bevel which forms its edge to the work it is intended to perform. Generally speaking, this angle is determined by the harduess of the substance to be operated upon. Thus we see chisels for entting soft woods are thimer than those used for the harder species, and these again are more acute than chi-els employed for cutting metals, or in other words, the greater the resistance offered by the material to be cut, the more obtu*e must be the angle of the tool. This detinition is not propounded as rigidly correct in all cases, although it is susceptible of abundant practical illustration; for example, in hand turning, the workman is enabled by raising or lowering the T of the rest, to vary the direction and limit the cut of the tool employed, according to circumstances. This one fact, amongst a multitule of others equally palpable that conk be adduced, might have been expected to induce inquiry and invesligation. On the contrary, we lave the authority of Mr. Nasmyth for stating that the form of tools, more especially those used in tuming and planing iron, brass, de., has not hitherto received either that attention which the importance of the subject calls for, nor has any attempt been made to reduce it te:
plain and general principles, of which it is highly susceptible, and if so treated would be of mueh service to those in whase lands the manarement of such tools is for the most part intrusted. So many considerations of a practical mature are in-eparable from this subject, that the quality an well as the quantity of work produceable from turning lathes and planing machines depends entirely upon the skill of the workman in giving to his tools the proper form.
The general principle propouded by Mr. Nasmyth, which is equally applicable whether the motion be hurizontal, circular, or vertical, is deduced from at con-ideratimn of ihe direction in whieh the metal is to te cut or penetrated. With regarel to the first case, as in the planing machane, it is manifent that the face of the tool is at right angles to the plane of the material to be cut, and consequently, if it point or cutting edge be made in the form of a very obtume angle, it will powess little or no penetratime pual-ity-zueh a tool would not cut, but rather abrade, or probably crush off the particles of metal. Again, if we resurt to the other extreme, and give to the cutting edlye the shape of an extrencly acute angle. we shall find, however sharp, it may appear, a total absence of penetrating quality, or at all events in the required direetion, and what is equally objectionable, the point being weak would smap oft, incapable of resisting the least applied force.

From an investigation of these and other ubvions facts, Mr. Nasinyth concludes that a tool of the furm shown in Fig. 8123 fulinls the requisite conditions, as it combines a high deerree of acuteness with sufficient strength-the former in the direction of the cut, and the latter belind the point or cutting edge, where it is most needed. Hence the following principle may be established, namely, that in forming and settine a tool to cut any surface, it is sisentially nceessary so to place it that the end shall form the least possible angle with the surface to be cut, or in other words, as ncarly parallel as posible, and whatever degree of acuteness may be deemed necessary must be obtained by hollowing out the face EC, on Which the shavings slide. An apt and very familiar illustration of the principle may be dram from the common phane of the joiner. An artificial end being given to the phane-iron, which is here the cuttine tuol, by means of the sole of the plane, this necessarnly limits the penetrating quality in all directions except that in which it is required to remove the material. Further, it can scarcely have escaped ubservation that the bevelled surfice of a chisel is invariably placed outwards, and the flat surface ne at to the wood, so that the lite of the chisel next the wood and the surface of the wood itself shall form the leatst possible angle.

The same principle is similarly true in the case of turning-tools, and inded in every toot, from the smallest and most delicate of the elock and watch maker, up to the largest and most puwerful toul in an engineer's lathe or planing machine.

As regards circular motion, we have a clear exemplifieation of the principle by merely con-idering
 the lathe, and E F so placed as to be, as nearly as cireumstances will permit, a tangent, that is, at right angles to the radius of the curse-the requisite acuteness being obtained, as before, by hollowing wat the fice EC.

 a gromere at X, in, : ath entting fice.

duce a certain number in a given time, and if they satisfy the eye his ooject is attained. The good or bad quality of a tool depends more on the care and attention bestowed during the process of forging than is conmonly imagined, and the defects, whether of texture or edge, which so often present themselves in articles manufactured of steel, are to be traced not so much to any natural imperfection or partial conversion of the metal, as to a slovenly and hasty mode of forging. (See Steel.)
The tool employed for chipping is simply a chisel with an edge assuming the shape of an acute wedge; it is ordinarily made from square or oval steel of the best quality, rather spread out at that end which is intended to form the edge, so as to afford a greater surface. Whatever may be the length of the chisel, whether six or eight inches-and this must depend in some measure upon the nature of the work-the form of the cutting edge is in all cases nearly similar; observing, however, that it is advisable to have the chisel drawn out by the smith, by which precaution the edge, when injured, may be more easily restored on the grindstone. The operation of chipping is materially facilitated by the use of the cross-cutting chisel, of which Fig. 3426 shows a front and Fig. 3427 a side view, $a a^{\prime}$ in the latter figure being a section. The cutting edge of this extremely useful tool varies in breadth from one-sixteenth to five-sixteenths of an inch; its utility and application will probably be rendered more obvious to the reader by a diagram than by any lengthened verbal explanation.

Suppose the surface of a block of cast-iron, represented by Fig. 3428, to require chipping. In the first place, the workman cuts longitudinal grooves $a a^{\prime}, b b^{\prime}, c c^{\prime}$, throughout or across the entire length or breadth of the surface by means of the cross-cutting chisel, and at such a distance from each other as is rather less than the width of the chipping chisel intended to be subsequently employed; by which means the corners of the edge of the chipping chisel are essentially preserved from injury, as under ordinary circumstances it is found that the corners of the chisel first give way, and require constant repair.

The interior portions of any piece of metal are usually removed by a tool called a drill. Boring differs from drilling principally, as we shall hereafter show, in being applied to larger works. The class of tools which come within the general description of drills, or cutters, is extremely numerous; that more commonly employed is too well known to require description, more especially as we bave already given Mr. Nasmyth's improved form of this tool. The pin-drill and half-round drill are, in certain cases, extremely uscful ; the only objection to the former is, that it requires a small hole to be first cut in and through the metal in which the pin of the drill works and necessarily follows; it answers, however, for

All ordinary purposes, and performs its work extremely well, although it cannot be depended on in cases where rigid accuracy is required. The half-round drill offers little or no security whatever as regards piercing in a right line; it is, however, a very useful tool, and may, in many instances, be advantageously employed. Perhaps the most effective form of drill yet introduced, more especially if applied to any metallic substance revolving in a lathe, is that invented by M. Collas, an eminent French inechanician. This tool, of which Fig. 3429 is a front view, and Figs. 3430 and 3431 side views, taken from from e and f, is turned truly cylindrical throughout its entire length, except at that end which is intended to fit into the brace, or if used in a lathe a small portion of the metal is filed square, or the edges taken off to admit of any convenient mode of preventing the drill turning. At the other or opposite extremity of this cylinder of steel, and through the centre a small hole is drilled in proportion to the size of the tool; one half of a portion of the bar is then cut away, leaving the remainder cylindrical; this part is then equally divided into three, and one of them filed out, as is clearly shown in the plan views of Figs. 3429,3430 , and 3431 , by which process the central hole is cut into two equal parts, and becomes a small semicircular groove. With regard to the angle of inclination to be given to the eutting end of the drill, this must depend principally upon the resistance offered by the material.* This tool manifestly cuts circularly, except at the centre, where it forms a small projecting pin, which enters the central groove and serves as a conductor; in proportion as the tool advances this pin increases in length until it reaches the extremity of the groove, when it necessarily breaks and comes away with the chips. It is important to observe that this groove must be rather less than greater than a semicircle, otherwise the pin of metal which enters therein, being cylindrical, conld not leave it during the progress of the operation, and the distinguishing feature of this tool would be destroyed.

Small drills are commonly made of a single piece of steel wire, upon which, near to the middle, a pulley or drill-barrel is driven. Occasionally a small mandrel is used, provided at one end with a square

* Drills or boring-bits ought to have the angles of their edges varied according to the nature of the metal to be bored; thus, wrought-iron would require a very different angle from that used for cast-iron. If, in use, the bit trembles or jars. it is a slgn that the angle is too acute, and must be made more obtuse, or nearer to a right mugle with the plane or flat face of the drill. Again, if the obliquity of the other, or crossing angle, be too great, the tool will also have too great a tendency to form a nipple or cone in the centre of the bottom of the hole, and to bore the hole gradually wider aud wider instead of truly cylindrical, as it will do when properiy formed; and that lault must therefore be corrected by grinding the drill or bit so as to reduce its obliquity, or bring it nearer to a right angle with the sides of the bit,
hole about half an inch deep, into which drills of various dimensions can be inserted. The disadvantage of this mode of construction is, that the drill is rarely ylaced true in the mandrel, which necessarily causes it to perform indifferently; it is, therefore, but seldom emplosed by practieal men who have the convenience of readily supplying themselves with drills of various dimensions as required.

When small drills are used they are held horizontally and kept up to the work ty a breast-piece, which is usually made of wood, armed with a plate of steel superficially piereed with lioles of ditterent dinen-ions, in one of which the blunt end of the drill works. The drill receives a reciprocating motion from an elastic bow, the spring of which is coiled once round the pulley. Common bows are ordinarily made of stout cane, those of a better deseription of steel, and the string of catgut, but the strength of both mu-t necessarily be proportioned to the size of the drill.

In order to cut large holes more force is obviously required than can be imparted by the methoul just lescribed, instead of which a brace, not very dissimilar to that used by carpenters, is empluyed, and the drill itself is fitted as a boring-bit; but with this difference in the mechancal arrangement, instead of the stoek remaining stationary, we have in this case a long tapering spindle, which being nothing more than a continuation of the brace, is necessarily carried round at the same time, and the motion becones continuous. The upper part of this spindle works in an iron or steel plate, which is attached to the under side of the beam, ealled the drill-beam. One end of this beam turns upon a transerse pin, between two uprights, pierced with various holes, to allow facility of fixing it by means of the fins at different elevations. The other end of the beam traverses between two uprights, and carries a lieavy weight, which acting as a lever necessarily keeps the drill to its work, and the point of the drill being placed upon that part of the metal to be bured, the brace is revolved by the hand of the workman.

The shank of the drill should be accurately fitted in the brace, and the apparatus is generally so arranged that the work may be held in a strons bench-vice during the proces.
The difficulty of applying a press or lever drill in confined situations appears to have been very generally felt. In Bergeron's Manuel du Tourner, there is a plan of a brace worked by a pair of bevelwheels, and Mr. George Rennie, in the last edition of Buchanan on Mill-work and other Machinery, has given two views of a portable drill, invented by Messrs. Nasmyth, Gaskell, \& Co., of Manchester, which consists of a cast-iron frame, earrying an upright drilling spindle, the top of which is formed into a screw, so that it may be raised or depressed by a handle-wheel, while the requisite revolving motion is inparted to it by two small bevel-whecels. When required to drill a hole in any piece of machinery, it is first of all set in its proper place; after this is doue the handle or small fly-wheel is turned round for working the drill, and by a slow revolving motion given to the upper bandle, communicating by means of the serew, the drill while working is made gradually to descend.
The contrivance we have now to deseribe is, we are informed, the invention of a practical mechanic, then in the employ of Mr. Hague, of London. The distinguishing feature of this torl is the introluction of a ratehet-wheel and click, which obviate the necessity of turning the brace completely round, so that the effective power of the workman is constantly aeting at the greatest advantage. Fig. 3-132 shows an elevation of the complete tool. Fig. 343.3 is a section of the same ; and Fig. 3.134 the ratchet with its appendages, and the arm separately. It is composed of two parts: the first distinctly shown in the sectional viers, and distinguished by the letter a, which is simply an elongated uut ; the second is a circular plece of wrought-iron, terminating in a square threaded screw b, and working into the aforesaid nut a. The combined length of these two, which constitute the principal part of the thol, as shown in lige. 3432, may be lomghemed or chortened at pleasure, by means of a mut a. The
 bertom piece b has a square hose, slightly tapered, cut in its extremity, amd in a drection with its unds for receiving the drill f. The hande or third pertion of the texi, shown separately in lige : $3: 134$, fits on to) b, for which jurpoas at suare hole is cut in it as shown at e; the hamble lass a pertion of it at one chal cot out to receive the ratehet and its nppendases, is is apparent from in-pection of the figure, and is kupt in its place by the ring or cap, shows in sectims at m, Firs. 3133 . Whe netion of the ratchet whert is phanly ratrained to one directions by mans of the click g and spring h, so that when the han dle is moved with a backward pull, the drill dewe mot move.

In working, the conical peint of the brace in placed under a temperny franing of cont iron; the tome
 fary, or, in twhical laguage, "kept to its work," ly uncrewing the upher pertion or mut a, lis math
 ward.

drill-stock, and acting upon it by friction for the more complicated combination of ratchet-wheel, click, and spring. Fig. 3435 shows an elevation, and Fig. 3436 a section of this improved form of the tool, a is the hallow mut for adjusting the drill to different lengths, b the screw for feeding the drill, c the handle of the same form, and worked in the same manner as that already described, but made with a cylindrical socket c^{\prime}, which embraces the spiral riband k, and of which Fig. 3487 is a detached view This spiral riband or clutch is bored truly cylindrical to fit the drill-stock e, and rests without being fixed upon a collar at the lower ead of the stock; it is fixed to the upper part of the socket c^{\prime} by the screw l, and the washer m secures all these parts.

The mode in which the too Horks will be sufficiently obvious from the above description and an examination of the section, Fig. 3436. When the handle c is turned in the direction in which the drill f cuts, the clutch k by its friction firmly cmbraces the drill-stock e, and turns the drill, however great the resistance may be. When the handle is returned the clutch relaxes and slips upon the stock, thereby preventing the return of the drill.

The class of tools which come within the general description of rose-bits, countersinks, wideners, or broachers, is far too numerous to admit of any specific description in an article like the present. Some are intended partially to enlarge a hole previonsly drilled, others to do so throughout its entire depth. M. Lenseigne, a French mechanician, has made a great and decided improvement in the form of his broaches. It is a well-ascertained fact that pentsgonal broaches do not perform their work very accurately, more especially when applied to enlarge a hole drilled through a thin plate of metal. The motion of the brace has a tendency to render the hole sensibly larger at the mouth. To correct this defect some workmen turn the broach truly cylindrical and then remove a portion of two sides with a file, as is shown in the sectional view, Fig. 3438 : the part a, which is a segment of a circle, bears against the sides of the bole, and serves as a conductor, and whilst the acute angular edge b quickly removes the material, the obtuse angle c, which follows, corrects any inequality of cutting. This form of broach is unquestionably preferable to any previously introduced; nevertheless it has this defect: if a chip of metal gets between the round part α of the broach and the side of the hole, the angular edge b is necessarily thrust forward, and the truth of the work is destroyed. To avoid this difficulty, M. Lenseigne gives to his broaches the form shown in section in Fig. 3139. Here there are three segments of a cylinder which serve as guides, and the metal is remored by the obtuse angular edges. A tool thus formed euts nearly as fast and much more accurately than that shown in Fig. 3438; it also possesses the advantage of being more easily made than those which are either pentagonal or hexagonal.

We have now to consider the method of cutting a screw or spiral thread upon any cylinder of metal by a manual operation. Before describing the tools by which this effect is produced, we propose to lay before the reader a brief analysis of Mr. Joseph Whitworth's excellent and thoroughly practical essay on a Uniform System of Screw Thrcads, as applied to bolts and screws, used in fitting up steam-engines and other machinery. The difficulty of ascertaining the exact pitch of any particular thread, especially when it is not a submultiple of the common inch measure, occasions extreme embarassment, an evil which would be completely obviated by uniformity of system, the tnread becoming constant for a given diameter. The same principle would also supersede the costly rariety of screwing apparatus required in many establishments, and remove the confusion and delay occasioned thereby; it would likewise prevent the waste of bolts and nuts which is at present unavoidable.

It does not appear that any combined effort has been, hitherto, made to attain so desirable an object; as yet there is no recornized standard, and this will cease to be a matter of surprise when it is considered that any stantard must, to a great extent, be arbitrary. On the one hand, it is impossible to de duce a precise rule from mechanical principles, or from any number of experiments; and, on the other, the nature of the case is such that mere approximation would be unimportant and unsativactory, abcolute identity of thread being indispensable. To how great an extent the choice of thread is arbitrary will appear from a corsory consideration of the principles affecting it. Without attempting to discuss these in detail, which would be foreign to the present purpose, it may be interesting to notice the general outline and bearings of the sulject.

The wee of the screw-bolt is to unite certain parts of machinery in close and firm contact, and it is peculiarly adapted for this purpose by the compact form in which it possesses necessary strength and mechanical power. The extreme familiarity of the object tends to prevent the observation of its peculiar fitness, yet among all the applications of mechanies there is, perhaps, no instance of adaptation nore remarkable. The ease with which distinet parts of machinery can be united, the firmness of the union, and the facility with which they may be separated, are conditions of the utmost importance, thich by wo other contrivance could be combined in an equal degree.

While, lumever, the utility of the serew in this application is abondantly obvions, it is by no mean erident what may be the precise formation most arlvantagenus under all cireumstances. No exact data of any kind can be obtained for calculation, and the 1 roblem will be found to he capable only of appproximate solution.

The principal conditions required in the screw-holt are petwer, -tremoth, and durability-the latter having reference to the wear ucca-ioned by frequent fixing and unfixing. But none of these conditions can be reduced to any definite quantity. We cannot, for example, letermine the exact amount of puwer neccosary to draw the parts of a machine into duc contact, of the frecise derree of strencth which may sullice for resistin's the strains to which they may be expoech. In nee we carmot lay duwn any rule for determining the diameter of the screw-bolt required for a given purperse. Practical men can judge of the proper size with endeiderable necuracy, but they lase no means of aseertandug it with at-nlute precision.

If the diameter be given, and it be required to find the profer thereal, the nature of the quetion is not essentially altered. The amount neither of power mor of strength, nor indeed any other comation, is thereby determined. A certain limit is assigned, but within that limit the proportions of strength and power, de., may vary indefinitely accordinis to the actual formation of the threatl. There are three esential characteristics belonging to the screw threal, namely, pitch, depth, and form. Fach of theee may be indetinitely modified independently of the others, and any change will more or lese atfect the several conditions of power, strength, and durability: The mechanical power of the serew clearly depembls on the pitch, which, for a given diameter, determines the angle of the inclined plane, and on the form of thread which regulates the direction in which the furce applied will act. The strength of the screw, as regards the thread, varies with each of the three characters; in the centre part being as the area, it is little affected, except by change of depth. 'The durability of the thread also depend-chiefly on its depth, and the proper degree of the latter is determined principally with reference to this condition. In the selection of the thread considerable latitude of choice will be found to prevail with reference to all the characteristics; therefure no detinite rule can be given for deteminins any one of them. It may be manifest that particular thread- are tou coarse or ton dine, too deep or too shallow, but there are clearly intermediate degrees, within which the choice of thread, like that of the diameter, is arbitrary, and must be guided rather by discretion tham by calculation.

The mutual dependence of the several conditions required in the thread may be noticed as having a tendency to perplex the choice. Thus, increase of power, according to a known law, is necessarily attended with diminution of strength, and the spuare thread which has the adrantage in re-pect of power is proportionally weaker than the anzular thread. A fine the a blace in strength while it gains mechanically as compared with one that is coarser; and deep threads, while they are more durable than Elallow, materially detract from the strength of the bult.

The selection of the thread is also affected by the mutual relation subsisting between the three curestituent characters of pitch, depth, and form. Bach of these, ats already wberved, way be separately modified; but practically no one character can be determined irrespectively of the whers. The pith of the square thread is usually twice that of the angular, for the same diancter, to retatin similar prob portions of power and strength. Goarse threads should be deep ate compared with dine to provile against the wear from friction, and a coarse angular thered will require additional depth, not ondy to preserve the due proportion of power, but also to prevent the longitudial strain from leing thrown too much siflewaye on tle mut. Hence each character acts as a limit to the rariation of the others, and in some in-tances, that is, in the case of certain diancters, it will be found that the leading consideras tions in fixing one character is the resultiny effict on another. Thus, in some of the smaller sized nerews, the piteh is determinel principally by reference to the depth, a coarser thread being oljuectiona ble, because the extra depth would obvously temi to weaken the contre part of the beilt, while the necessary shallowness of a finer thread would render it too liable to wear with friction.

The proportionate stragth of the thremb and contre part of the screw is reandated manly hy the depth of the nut, which is usually of the same monsme as the diameter of tha lowt. Assmine thie dimension as fixed, the proportion of strength between the two partw will necessarily vary with the
 to wear, while the thrend is obvinuly subjeet to friction and accidental injury, the original preprotion of strength ought th, lee convidernbly in fatour of the latter.
 degree of latitude might naturally be expeeten in ther proctieal upplication. Accordingly we tind,
 of its removal. "The conly more in which this cund he attempted with any prohatinty of suce as woml 1 be by a fort of compromion, ull partios consemtine to adont amedimm fur' the sake of common mome

 other.

 to tho inch, stamlard me:amer, for each dhameter.

It will be observed that above one inch diameter the same pitch is used for two sizes. This was unavoidable without introducing small fractional parts; moreover, the economy of screwing apparatus is promoted by repetition of the thread.

Further, it is important to remark that the proportion between the pitch and the diameter varies throughout the entire scale. Thus the pitch of the $\frac{1}{\frac{1}{2}}$ inch is one-fith of the diameter; that of the $\frac{1}{2}$ inch, one-sixth; of the 1 iuch, oneeighth; of the 4 inch, one-twelfth; of the 6 inch, one-fifteenth. It is obvions that more power is required as the diameter increases: but this consideration alone will not account for the actual deviation, which is obviously much less than it would be if the seale were calculated mathematically with reference to the power required. The necessary amount of power must be determined in relation to the muscular force of the human arm, aided by the leverage of the screw-key. Now in the case of smaller screws, there is a considerable excess of force, and consequently of power. Again in the larger we discover a deficiency of power, for with all the leverage that can generally be ap-

Diameter in inches.	Threads to the inch.	Diameter in inches.	Threads to the inch.
$\frac{3}{16}$	24	2	418
1	20	21	4
5	18	$2 \frac{1}{2}$	4
1	16	23	$3 \frac{1}{2}$
${ }_{16}$	14	3	$3 \frac{1}{2}$
$\frac{1}{2}$	12	83	81
5	11	$3 \frac{1}{2}$	37
$\frac{3}{1}$	10	$3 \frac{3}{4}$	3
${ }^{8}$	9	4	3
$1{ }^{\circ}$	8	$4{ }_{4}$	27
$1 \frac{1}{6}$	7	$4 \frac{1}{2}$	27
$1{ }^{1}$	7	$4 \frac{3}{4}$	23
$1 \frac{3}{6}$	6	5	23
113	6	$5 \frac{1}{4}$	$2{ }^{3}$
15	5	$5 \frac{1}{2}$	25
13	5	$5 \frac{3}{4}$	$2 \frac{1}{2}$
$1{ }^{\frac{7}{8}}$	$4 \frac{1}{2}$	6	$2 \frac{1}{2}$

It may, perhaps, be necessary to remark that the threads, of which the preceding table shows the average, are used in cast as well as wronght-iron, and this circumstance has, doubtless, had the effect of rendering them somewhat coarser than they would have been if restricted to wrought-iron. The variation in depth among the different specimens, before alluded to, was found to be greater proportionally than in pitch. The angle made by the sides of the thread will afford a simple and convenient expression for the depth. The mean of the variation of this angle in one-inch serews was found to be about 55°, and this was also very nearly the mean of the angle in screws of different diameters. As it is obviously desirable that this angle should be constant, more especially with reference to general uniformity of system, the angle of 55° has been adopted throughout the entire scale; a constant proportion is thus established between the depth and pitch of the thread. In calculating the former, a deduction must be made for the quantity rounded off, amounting to one-third of the whole depth - that is, one-sixth from the top, and one-sixth from the bottom of the thread. Making this deduction, it will be found that the angle of 55° gives for the actual depth rather more than three-fifths, and less than two-thirds of the pitch. The precaution of rounding off is adopted to prevent the injury which the thread of the serew and that of the taps and dies might sustain from accident.

Two descriptions of tools are employed for cutting screws by hand; namely, the screw-plate and the screw-stock, with movable dies. The first, and doubtless the most ancient form, is simply a flat plate of stecl, assuming the shape of a file, having a tang and handle at one or both ends; in this plate are one or more series of graduated serewed holes, so that by passing the bolt or pin successively through several a finished screw is obtained. This form of tool, however modified in its construction, is obviously imperfect, and but rarely used except for screws under $\frac{3}{8}$ inch diameter.

The first decided improvement with which we are acquainted is due to Mr. Peter Keir, who introduced a cutter, let into a groove sunk in one of the dies, which follows the lead obtained by the dies, and deepens the thread. This arrangement is more especially applicable to square-threaded serems.

In 18:8, Mr. J. Jones submitted to the Society of Arts of London an improved form of serew-stock and tap, for which he received the thanks of the society. In this case, also, a cutter is used, secured by clamps on the face of the screw-stock, which necessarily follows the lead obtained by the dies, and completes the screw in an expeditious manner. The altered form of tap is a combination of the taper and plug tap, the part towards the point being conical, and the upper part cylindrical. The threads are rounded off both at top and bottom, and the tap is fluted with four or more rectangular groovez, one side of which is in a line with the centre, thus giving, in a cross section of the tap, a form somewhat similar to a ratchet-wheel. About one-third of the threads have their tops filed down to diminish the quantity of surface in contact, by which much labor is saved, as the greater part of the power requisite for screwing in the usual way is expended in overcoming the friction, and not in entting away the superfluous metal. This form of tap answers perfectly well for muts not exceeding one inch and a quarter, but for those of larger size, as two or three inches, it is advisable to insert a cutter in the body of the tap just at the part where the cone terminates, by which nearly the whole of the metal is cut out, and the upper or plug part of the tap has nothing to do but to equalize and smooth the thread.

In 1838, M. Gouet proposed a new form of serew-stock with four dies, two of which were conductors or guides, and the other two acted as a screv-eutting or chasing tool. In the Buelletin de la Sociétié Industriclle de Mul house, we find a description of two forms of serew-stock, and ast expanding tap by M. Lamoriniere. The first is composed of three dies, two of which are of tempered steel, and the third of wood, intended merely to scrve as a conduetor. The second has four dies, very narrow and directly opposite to each other, which are made to approach by means of a circular plate, hollowald in an ellip
tical shape, and its circumference cut into teeth. With regard to the expanding screw-tap the object of the inventor appears to have been to dispense with a series of taps of different sizes, to cut rather than press out the metal, and to aldow sharpening on a grindstone when the cutting edges become impaired. M. Waldeck also invented a screw-stock with a suries of cutters, which produced either angular er square threads, and the same mechanician subsequently introduced further improvements with resard to taps. The screw-stock invented and patented by Mr. Juseph Whitworth, of Manchester, next clains our attention. Of this tool there are two forms; the first is rather complicated: the dies, of which there are three, work in as many eccentric curves sunk in a metal disk, whose exterior elge is cut inte, teeth in the manner of a tangent-wheel, and worked by an endless screw, the actiun of which necessalrily causes the dies either to approach or recede from a common centre.

This tool cuts the metal with great rapidity, requires but little exertion, and produces very excellent screws. The principal objection to it is, that the complication of its parts, and the wear and tear of the tanyent-wheel render frequent repair necessary, more especially in the hands of careles or inditlerent workmen.

The second, or guide screw-stock, is entirely new in furm, and not liable to the same objection; moreover, it is alleged by the inventor that it will cut a screw scarcely inferior to that obtaned in a slidelathe from a true guide. The thread produced is not only true, and of the exact piteh required, but perfectly formed throughout, being cut clean, without distortion of the metal.

In all these respects the advantage of the guide over the common screw-stock is remarkable. The latter will not cut a screw in any degree perfect; the thread, besides being irregular, is never of the right pitch; it is also more or less swollen by the violence done to the metal, so that the diameter of the screw is frequently found to exceed that of the blank-bolt in which it is cut. These defects are attended with the most serious practical inconvenience; they frequently render it extremely ditficult to obtain a fit between the screw and the nut, and consequently occasion a considerable saterifice both of time and labor. They necessarily impair, in a very great derree, the efficiency of the screw-loblt, which zonot possess either the strength or mechanical power which it would have if the thread were cut clean and true.

The defects in question are variously modified according to the size of the master-tap used in cutting the dies. If they lave been cut by it master-tap double the depth of the thread, harger in diameter than the bolt to be screwed, they will act very well at first, and the thread will be started true, hut, as the operation proceeds, they become altogether unsteady and ancertain in their action. If, on the other hand, they have been cut by a master-tap of the same size as the bolt to be screwed, the thread is made sut of truth in its origin. They first touch the bolt only on the extreme point of their outer edfes, as shown in Fig. 3410, a being the die, and b the pin or bolt. Further, they have neither sufficient guide nor steady abutment the the operation is on the point of completion. It is not umsual to employ a master-tap of m intermediate size. In this case, however, it is obvious that the dies will combine in
 a modified degree the defects peculiar to each of the cases already mentioned. In the guide-stuck this perplexity is entirely obviated, and the dies act with full athamage from the coms. mencement of the operation to its conclusion. They are cut by a master-tap double the depth of the thread, larger in dianeter than the screw-blank; white their general form and the direction in which they are moved forward, are such as to prenerve their cutting jower, and steadiness of action, undi-mini-hed to the full depth of the thread.

The plan of the guidestork will be easily understoud from Fig. 3411. The interiur of the stock is shown in doted lines through the top-plate a, whieh is fintened by the serews $b b^{\prime} b^{\prime \prime}$; c is at stationary or tixed die; $d d^{\prime}$ are moving dies eimultaneonsly brourgt up by a piece e, sluting in a recess in the stock, and bearing with a dintinct incline, as shown by dotted lines, agatinst the back of each die. The piece e terminates with is suare-threated Ecrew e^{\prime}, and is drawn up by a nut f, on the outsile of the stuck. The dies having beon cut ly a full-eized mater-tap, as already mentionel, the curve mate hy their outer colyes is that of the blakk pin or bolt they are intended to sorew. Hence,
 in startiner the thread they bear at all puints of the common curve, and the improsion mate by indentation is an exact cople of the thread of the die. The part ine

 nearly equidiotant, an that ly litthe mone than a guarter turn, the thread is completely started romma the pin, and the ditlioulty inwlved in the apration, ly the common serew-stock, is entirely ramed.
 The movine dios are peenliar bath in regard to their form amil drection, which depend on the pi-ton of

change of position, and the latter when combined with the eccentricity of the dies, so far from being any impediment to their action, materially assists it. The newly formed thread is thereby kept in contact with the dies, for some distance behind their cutting edges, affording them the same kind of supe port throughout the operation which they have at the commencement; when, as already obserred, the curve made by their outer edges is coincident with that of the scew-blank. This continued support, which is necessary to steady their action, could not be obtained without a change in the position of the serew-bolt. They would otherwise acquire too much elearance as they form the thread deeper, and their cutting edges would be apt to dig.
'The steadiness of the guide-stock, and its easy action in screwing, are equally remarkable. In using it, not one-half the force consumed by the common stock is required. The inner edges of the moving dies, which principally act in cutting out the metal, are filed off to an aeute angle; this enables them to ent with extreme ease, and without in any degree distorting the thread, while they take off shavings similar to those cut in the lathe; their action in cutting is in effect the same as a chasing-tool, to which indeed they bear an obrious resemblance in form, and they may be sharpened on a grindstone in the same manner.
A practical difficulty has hitherto attended the use of the screw-stock, arising from the wear of the taps aud dies. The tap becomes less in cliameter, and consequently taps the hole too small, while the opposite effect takes place with the dies, which, being unable to cut a full-sized thread, leave the screw too large. The only mode of counteracting this two-fold error, so as to obtain a fit between the serew and the nut, is by forcing the dies forward till they have reduced the diameter of the screw a proportionate quantity, and from what has been before observed, it is manifest that this cannot be done in the case of common dies, without injury to the thread. In using the guide-stock, on the contrary, it is attended with no disadvantage, and lest the diameter of the serew should inadrertently be reduced more than necessary, figures are stamped on the sides of the nut f, to indicate when the thread is full.

We have now to describe another screw-stock. This tool is constructed on the principle of the ordinary serew-stock, with such additions and alterations as appeared necessary. The principal objection to the old form is, that the metal is rather pressed out than cut, at the expenditure of much force; in that now under consideration, one die acts as a guide, and the other as a cutter, by which arrangement not only is a perfect thread produced, but the tenacity of the metal is preserved and less porrer employed.

Figs 3442 and 3443 show Mr. Bodmer's improved screw-stock, with the lid remored in a plan and longitudinal section; $a a^{\prime}$ is the box made either of steel, wrought, or cast iron; b the vibrating tool or cutting-die, which is fixed in the die-holder c, in such a manner as to accommodate itself to the inelination of the thread when the die begins to cut on the surface. The die may also be a perfect fit in the die-holder c, but in that case it must be cut to a larger diameter than the serew itself would require, as usually done in common stocks; d is the guide-die recessed into the stoek $a a^{\prime}$, and which may be bored out to the full diameter of the bolt or pin to be screwed, or tapped in the ordinary manner. The guidedie d is prevented from turning by a small key e; the serew f, in the die-holder c, is not only the handle or lever by which the stock is worked, but also advances the cutting-die b as the operation proceeds. The cutting die-holder c is recessed into the stock, in a manner similar to d, and has as much room at x and x as is necessary to allow that part of the cutting-die which, when the stock is turned in the opposite direction would drag, to recede out of the thread so as to clear the thread and particles of metal cut out during the operation, by which arrangement the cutting-die will preserse its keen edge. Suppose the operation of screwing to have been commenced at the bottom of a pin, and the stock arrived at the top; the handle or screw f will require to be advanced a little, and then the stock is ready to work in the opposite direction. It is evident that the moment the handles $f f^{\prime}$ are pulled by the workman, the die will bite on that side which is mored deeper by the pull, and recede out of cut on the opposite side; it will therefore act and cut like a tool in a lathe or planing machine, and preserve its keen edge much longer, and remove filaments of metal much more easily than dies constructed in the ordinary way.

Fig 344 is an end view of the stock; Fig. 3445 a ground plan and an end view of the cutting dieholder, and Fig. 3446, the lid of the stock fitting the bevel or half V grooves of the same; Fig. 3447 is a plan and section of the guide-die d, and Fig. 3448 shows a mode of regulating the play or motion of the cutting-die b, by means of set-serews.

Fig. 3449 is a ground plan, and Fig. 3450 a section of a stock with two cutting-dies moving in a lateral direction; $a a^{\prime}$ is the stock or frame; $b b^{\prime}$ the handles or set-serews, acting upon the dies $c c^{\prime}$, which are perfect fits in the stock, and again-t which the cutting-dies $d d^{\prime}$ slide laterally. These dies are confined between two plates which are serewed or riveted to the stock in the ordinary manner. It is evideut that the two cutting-dies $d d^{\prime}$, when tighteued up against the piece which is to be serewed.
will recede in the contrary direction to that of the pull, as much as there is space left between the dies and the side of the stock, and in so doing will operate in the manner already described with reference to the vibrating dies.

Fig. 8451 shows a longitudinal and end view of one of these taps. After having been finished to nearly the right measure in the screwing lathe, the taps are subjected to the operation of a mechanism in a tap-cutting lathe, by means of which the convolute form is given.

The adrantage of this construction of tap is evident, because not only is the top of the thread eased in a convolute form, as usually done by hand, but likewiee the bottom; the sides of the thread also are tapered, or relieved, in the same proportion, so that the tap cuts like an ordinary turning-tool, instead of making its way through the metal by sheer pressure.

The annexed table indicates the nomber of threads per inch both for angular and square threads.

To describe, within the linits of a brief article, the sarious tools used among the different classes of turners is manifestly impowible. They are so infinitely diversified both in form and size, according to the necessities, the ingenuity, and frequently, perhaps, the prejudice of those who use them, that a vulume would scarcely suflice to do justice to the subject.

Gravers, triangular, square, round, pointed, heel or hook, and screw tools, with various other nameless sorts, the contrivance of individual skill, are used in turning hard bodies, such as bone, ivory, and the metals.

The graver is made from a square bar of steel cut off by an oblique plane at the end, which forms a lozenge or diamond face, and produces two inclined edges, at two of the that sides of the bar; these are inclined opposite ways, so that the graver serves either for left or right hand work by merely turning it one quarter round to bring up another side. The point furmed by the acute angle in which the two inclined edress meet, is better adapted for cotting than any other furm, and is exceedingly strong; the flat sides give it an excellent bearing upon the rest. Another convenience of the graver is the ease with which it may be slarp. enect, an object of conviderable importance in turning hard

V-Threads.		square Taper-threals.	
1)imeter in inches.	Threads per inch.	Diameter in inches.	Threads per inch.
- 18	15	7_{15}^{5}	9
3	16		9
7	11	1	8
$\frac{18}{6}$	12	$\frac{1}{2}$	\bigcirc
-18	11	10	7
鿷	11	\%	7
11	10	11 16	7
-3	10	4	6
$\frac{13}{18}$	9	18	¢
${ }^{17}$	9	${ }^{1}{ }_{7}^{8}$	6
$1{ }^{15}$	S	15 10	6
1^{10}	8	1^{10}	5
15	7	11	4
17	7	11	4
$1 \frac{1}{6}$	6	$1{ }_{8}^{3}$;
$1 . \frac{1}{6}$	fi	$1 \frac{1}{2}$	3
13	5	13	$\because 5$
17	5	11	$\because 2$

Triangular and square thols are so demominated from their reapective sectiona being of these figurea
 direction; the latecr, which are primeipally uned for turning brase, hase fum, that is, eado arris at the extremity.

Round towly have the col on of a semicicular form, and are used for forming hollow mouldins.
The pointed tonl has two inclined iolsea, formine a peint, which cut grooves in any picce of work, or Its eifers may be used to turs shouldiry cither right or left.

Heel-tow are used fire turnine wrondit iron, sted, min! cupper; they are male with ath the edene atready deseribed, but the end where the cedge is formed is bent, so that when it i gre onted th the
 upan the workman's shoulder, and he helds it dwo firmly with buth hands, the heel wf the tool be onat the wame time supported on the latheret. The metala nowe mentionel, beme of a til roms reature, -urn away in a commeted has ing; the tond ore therefore precented in the directurn fat the ot to the

 vatiny the end its ed fo cuta deener.

 the eifge is made to prome nearly the the centre, mal an the int tal in whally har I an I retractury, they

Vin.. 11.-45
are made with a hook, which, being laid over the rest, acts as a lever, and causes the cdge to approach, to or recede from the work by merely raising or depressing the end of the handle.

Screw-tools are very important appendages to a lathe, and in many cases indispensable; they are usually made in pairs, namely, an outside and an inside tool, and the teeth of both should be so accurately cut that on being placed together, the teeth of the one in the intervals between the teeth of the other, they should exactly fit, even to the exclusion of light. It may probably appear fastidious to insist on this rigid perfection in a tool which is apparently of simple and easy construction; a little consideration, however, will show that unless the teeth, whatever be their shape, are similar in every respect, it will be impossible to cut an accurate thread, since if one tooth be in the least degree larger than the others. it will necessarily destroy the proportion of the thread.

Many methods have been suggested to enable the mechanic to eut his screw-tools. M. Séguier, a distinguished amateur turner, recommends that a model be taken in lead or soft brass, by impression of the required screw, and then to place the pattern so obtained and the blank tool back to back in a viee, and with a triangular file remove the steel, until the projectiag teeth exactly coincide with the model. To this we object that the form of a triangular file does not agree with the shape of a screw-thread-it is much too obtuse; what is called a slitting file is certainly more suitable. Wiih very great care and dexterity in the use of the file, this method may answer, but the operation demands an aptitude and precision of hand rarely attained-added to which the loss of time and risk of failure are scarcely compensated by the probability of success.

We now proceed to explain a method very generally adopted to cut the teeth in screw-tools. A piece of cast-steel is turned cylindrical, and being suspended between the centres of the lathe, is made to revolve; upon the surface of this cylinder a series of concentric and equidistant circles are cut by means of a screw-tool, or a simple V-tool, which is held firm!y and in a fixed position against the steel cylinder. When the teeth are sufficiently raised by the cutting action of the tool, the cylinder is removed from the lathe, and gaps or notches cut across its surface in a diagonal direction, so as to give to the teeth a cutting edge. It is then hardened, and tempered to a straw-color. This is teehnically called a hob, or hub.

The great objection to this method is, that it produces perpendicular and not inclined teeth in the screw-tool. This however, is easily remedied by cutting a regular helix, instead of merely concentric circles, upon the surface of the hob; or still more readily by employing a common plug-tap, which an swers the purpose perfectly well.

We will now suppose either a hob or plug-tap to be made to revolve between the centres of the lathe, The workman takes a blank screw-tool, which must be well annealed, and applies its face to the revolving hob; being careful to hold the tool very firmly, yet not to allow the hob at the commencement to bite too greedily, and supplying oil to the surface of the hob or tap, which essentially assists the operation. The blank tool may be held either above or below the centre of the hob. The latter is shown in Fig. 3453, and is in some respects preferable to the former, as it affords a better purchase for the tool. The method practised in Manchester of cutting serew-tools, is in many respects similar to that we have just described, except that it
 requires the aid of change-wheels and a slide-lathe. Nevertheless, as many of the details are common to both, the observations we are about to make will, in some measure, apply to manual as well as mechanical power.

The first thing is to cut the Irob, or hub, which is effected by a self-acting slide-rest. It is simply a screw cut on the surface of a solid cylinder of cast-steel, with diagonal grooves cut across the thread ot the serew to act as cutters, as shown in Fig. 3452 ; the two necks of the hob have concave holes drilled in the ends to carry the centres of the lathe.

The hob is placed between the centre points of the lathe, by means of a dog or cateh attached to one end in the usual way. Change-wheels are then put on to consect the mandrel or spindle with the guide-screw of the lathe, and which carries along the slide-rest. The wheels are so arranged that one turn of the mandrel causes the slide-rest to travel a distance exactly equal to one thread. The blank Which is to be cut is firmly screwed down in the tool-box of the slide-rest, and made to stand above the centre of the hob, as shown in Fig. 3454. It is then pressed, by the screw of the slide-rest, against the hob; and the lathe being put in motion causes the tool to traverse along and against the hob, cutting it as deep as may be thought necessary. The face of the tool, when cut, is a segment of a circle, rarying, of course, according to the diameter of the hob.

Fig. 3155 is a side view of the tool in this condition; but this form is not found sufficiently economical n practice, since it can only be ground and sharpened to a particular point, as to b, fur when ground to \therefore as from a to c, it ceases to cut, owing to the top of the tool being then as far from the screw to he rut as the bottom. The method adopted to obviate this difficulty is to give the tool an angular insteat of a circular fice, hand this is managed in the following way: the serew-tool is removed from the sliderest, and as the hob revolves, the workman elevates and depresses the end of the tool which is in his hand, so as to present diflerent points of the face to the cutting action of the hob, until by degrees he sueceeds in obtaining a ferfectly angular face, which allows the tool to be ground nearly or quite to the bottom, with a certainty of preserving a good cutting edge. In order to fix the blank which is intended
to make an in-ide screw-tool, in the slide-rest, some little contrivance is necesary, the stem is usually bent, and afterward=, when cut, set straight previou-ly to hardening.

The bandles of turnin-tools, it may be premised, must be varied in -ize, according to the manner in which they are intended to be held. For heavy work, more especially when the lathe is turned by machinery, they mut be sulliciently loner to reach to the shoulder, upon whith one end rests during the operation of turning, be-ides being held by both hands of the workimathe same time. In using the fout-lithe the touls are beht by both hands unly, and the handles are rarely more that half the lempth required in the furmer instance.

The socket-handle for turning-tools, Fig. 3556 , is an extremely ingenious and useful :apmendage to the lathe, as it is equally applicable to slide-rest tools. This hamdle is 待 inches lomer; the brass socket of u' has a longitudinal slut 6b', which terminates at the circular hole c. 'This sucket is confinent by the shel ring $d d d^{\prime}$, which has at one side a steel set-serew e, and at the other a pinching-screw j, whichnecesearily contracts the aperture, and consequently grips the tan; of a tool placed within it. The - - on $6 b^{\prime}$, ats well as the opening for the tang of the tool and the pinching-serew, ate more clearly shown in the end vier.

The tool-gage is a very simple and convenient method of ascertaining whether a toul is ground on formed to the proper angle. It con-ists of a planed plate of metal, on whose surtice there is, at one end, fixed a conical steel jin, whose taper, or the angle formed by the sides of the cone with the surface of the plate, is exactly that which is proper for the cutting face of the tool. The angle formed by the sides of the cone and the surface of the base plate should be about three de grees. biy using this gage all difficulty of forming the tools to the proper angle is at onee removed. Hureover, this same gage will anstrer for every kind of planing or turning tool of whatever size.

We now proceed to a very important practical inquiry, namely, the velocity at which touls cut most advantageou-ly for diferent kiods of material.

It cannot, we apprehend, have escaped the observation of such of our readers who are in the hatit of turning metal, that if a velocity exceeding certain prescribed limits be imparted to the material, the edtere of a cutting tool applied to reduce the surfice of that material is brought to a soft state and rendered obtuse. This is an acknowledged faet, and many ingenious contrivances lave been, from time to time, introduced to meet the exigency of the case, or in other words, to regalate the speed of the lathemandrel according to the hardness aud diameter of the metal or other substance to be turneel. It in commonly suppuaed that for wood the velucity camot be tou great, yet this is probably a vulgar error, since if we allow the speed to pass certain limits the tool necessarily becomes hot, loses its teuper, and ceases to cut. Wronght-iron requires a slow motion, and cast-iron, above all, ceases to be aflected by the edge of the tool, mikes a very slow and re rular motion is preserved, as it appears to act by abraion, and actually grinds away the fitce of the tool.

The opinion of practical men is much divided on this proint-some name from ten to tifteen feet fer minute as a maximum velocity, others allow thirty to forty feet, whilst others again regard this as the minimum speed which should be given to cast-iron, in order to obtain the greatest effect from the thol.

For turning or borimg cylinders, or indeed any substance of which the diameter is nearty equal throughout, a unform velocity fully answers the purpo-e, since the epeed can easily be increa-d or dminished by means of conical puileys paced in oppoite directions, as aloo by many other mechamieal contrivances* which are too familiar to practical men to require any extendert description on this necasion. Suppose, for example, we have a cylinder of wom of condiderable dimeter to turn, we derise fome methent to control the speed, as, for instance, by diminishayg the diameter of the fly-whed, and increa-ing that of the pulley or mandrel-wheel; by this means the motion is made slower, and in some respects in proportion to the diameter of the material. Had the cylinder been composed of east-iren instend of wood, we shuld have pursued a somewhat similar course, but carried to further himits than that we have ju-t deverned. The fiecility atforded by two elongated cones, fixed in oppoite directrans, at regatels their re-puective diancters-the one attached to or in immediate comection whth the thy. wheel, and the other on the lathe-mandrel-enables us to regulate the velocity with a preen-mon that in many uperations is of the higheot importance; but it must be remembered that the mamatagenas effects. of this arrangennent arre limeted to the circumfi renee, or purineter.

 to the "pur-wheel se, but in the former case the epeed of the lathespindle, and eomecpuently whaterer is attached to it, is greatly reducel, ne in heen is manfent from in-pertion of the emgraving for supporing

 olutions of the format

 14nmur:

 fitm tive per sceums.

[^21]The velocity of east-iron, turned by a hook-tool, held and guided by the hand of the workman, to finish or complete, is 12 centimetres.

For iron turned by means of the slide-rest, the velosity at the circumference of the work is abont 14 centimetres. When the metal is turned by hand-tools, the speed at its circumference is from 18 to 20 centimetres to rough out, and from 28 to 30 centimetres to finish.

The difference of velocity of the work or the tool when the turning is effected mechanically or by the hand, is deduced from the obvious fact, that in the former case the contact between the tool and the work is constant and invariable, whilst in the latter it is intermittent.

The foregoing velocities are equally applicable to drills or cutters in boring machines.

The lateral progress of the tool varies according to the power of the machine; it is in general from $\frac{1}{4}$ to $\frac{1}{3}$ of a millimetre for each revolution of the work, nevertheless it should be less for drills.

The annexed table indicates the average degree of apeed, as well for turning as boring.

If we have occasion to turn a plane surface accurately true, the motion of the lathe-mandrel, or what is the same thing, the substance affixed to it, requires to be accelerated or retarded in a ratio proportioned to the progress of the tool, either to or from its

Diameter in inches.	Revolutions ofspindle per minute.	Diameter in inches.	Revolutions of boring-bar per minute.
1	50	1	25
2	25	2	12.5
3	16.67	3	8.33
4	12.50	4	6.25
5	10	5	5
6	8.32	6	4.16
7	$7 \cdot 15$	7	3.57
8	6.25	8	3.125
9	5.55	9	2.77
10	5.	10	2.5
15	3.33	15	1.66
20	2.50	29	1.25
25	2	25	1
30	1.667	30	0.833
35	1.430	35	0.714
40	1.250	40	0.125
45	1.12	45	0.56
50	1	50	05
60	0.834	60	0.417
70	0.716	70	0.358
80	0.626	80	0.313
90	0.551	90	0.278
100	0.50	100	025

Under ordinary circumstances, regular motion in surface-turning is not only prejudicial in relation to its effects, but it also involves great waste of time. We will suppose that a speed suitable for the circunference and the proximate parts is obtained, it is evident, as we approach the centre, the rotary movement becomes less effective; until at length near the centre it produces little or none, and the work does not proceed at all. The reason of this is obvious; the velocity continues unaltered, while the diameter of the material is progressively reduced. It is also manifest as an inevitable consequence to uniform motion in surface-turning, that presuming a suitable velocity be communicated when the tool is at the greatest distance from the centre of rotation, if it be made to advance regularly towards the same point, similar uniform speed being continued, the cutting edge of the tool would not, on its arrival at the centre, be more deteriorated than if the velocity had been increased in a proportionate ratio to its progress towards the centre. This, we believe, is an admitted fact by competent judges; but it must be remembered there would be a sacrifice of nearly one-half of the time employed. This statement, extraordinary as it may appear, is nevertheless susceptible of mathematical demonstration, a mode of proof which, we presume, few will feel inclined to dispute. Let the parallelogram, a $b c d$, Fig. 3457 , represent the time that would be required to turn a surface. Draw the diagonal line $b c$; bisect the line $a c$ at $c, c c$ at g, and $g c$ at i; then draw the lines
345%.
 $c f, g h$, and $i j$ parallel to $a b$.

Let c represent the centre, $a c$ equal the radius, and $a b$ equal the circumference, or time of onc revolution at its greatest diameter; therefore, the lines $\epsilon f, g h$, and $i j$, will also represent their circumference, or time of one revolution at their respective radii at $c g$ and i; and as the lines $a b, c f, g h$, and $i j$, are one-half the length of each other, so will their revolutions be performed in similar proportions of time, and the velocity of the lathe-mandrel will be increased in the inverse ratio, as the length of the lines $a b, c f, g h$, and $i j$; consequently, the right-angled triangle $a b c$ will represent the time that would be required to turn a surface, when the velocity of the lathe-mandrel is increased in the manner already described. The parallelogram $a b c d$ will represent the time that would be required, if the velocity remain pualtered-that is, from the moment the tool is applied to the surface at its greatest diameter, to its arrival at the centre; for if the length of the line ab represent the time of one revolution at its greatest diameter, the line $c d$ will similarly represent the time of one revolution when the tool reaches the centre; therefore, as the length of the line $c d$ is equal to $a b$, so will all the intermediate revolutions be performed in similar spaces of time.

This inquiry may be usefully applied to determine the period of time necessary for surface-turning. Thus, if we wish to know what time would be required to turn a plane surface of cast-iron, the diameter being twenty-four inches, to make fifty revolutions or cuts in each inch of the radius, and to pass the tool at the rate of 15 feet per minute: Multiply the circumference, say 75.39 inches by the radius equal 12 inches, then multiply the product, $904 \cdot 68$, by the number of revolutions or cuts in one inch of the radius, in this instance 50 , this will give 45,234 inches; divide this by 12 , to reduce it to feet, and we have 3769.5 ; divide again by 15 , which gives 251.3 minutes, and lastly dividing by 60 , we have s hours, 11.3 minutes; consequently this would be the time, if each revolution were performed in equas
portions of time, but if the speed of the lathe-mandrel be regulated so that the surface to be turned shall always pass the tool at the same velocity, then the time required to perform the work will be only one-half of the above; for in this case we must multiply the radius by one-half of the circumference, as that will be a mean proportion of the lengths of all the intermediate revelutious.

We have now arrived at a very important and interesting inquiry:-namely, the principle and mode of action of automatic or self-acting tool-machines.

If we consider the separate and distinct parts which combined make up a machine, whether simple or complex, to be disunited and viewed in detail, we shall find that their constituent parts, however numerous, are composed either entirely or partially of certain original geometrical figures, so that it is evident the more nearly the configuration of each individual part approaches strict mathematical truth, the more regular and perfect will be the performance of the machine.

But the accuracy and precision of workmankhip here predicated, and which peeuliarly distinguishes the machinery of the present day, is obviously unattainable by mere manual dexterity; it is principally to be attributed to the slide-rest.

The invention and introduction of this tool may justly be considered an era in the history of construetive mechanism; it has entirely superseded both manual labor and dexterity, which previously were required; added to which, it enables us to produce work infinitely superior, and in a much shorter space of time than could be effected by hand-turning: so many and so conclusive are the beneficial results consequent to the introduction of this tool that it is not affirming too much to assert that nearly all the improvements in modern machinery are in a greater or less degree to be attributed to its almost universal application in some or other of its many and raried forms.

It constitutes no part of the present inquiry to investigate the principles of turning, except so far as is absolutely necessary to illustrate the subject in hand. Let us suppose then, that instead of the tool being lield and guided by the hand of the workman, assisted merely by muscular strength, the same tool is firmly fastened to the lathe-rest, so that during the operation of cutting, it could be slid along the bed of the lathe, in a direction parallel to the axis of the work, the result of this operation would necessarily be a cylinder; if, however, the tool move in a line forming an angle with the axis of the mandrel, a conical form would be obtained, and if it operate at right angles to the same axis a plane surface would be the result. Such are the elementary principles on which this important, and in many respects invaluable tool is constructed, the details of which, and the different forms, we defer for the present, thinking it preferable in the first instance to describe the machine of which it forms an appendage.

One of the primary and most indispensable requisites of a well-constructed lathe is, that the centre of the cone-spindle should coincide exactly with the adjustable centre of the movable head-stock, or, in wher words, that each of these parts should be in the same line, parallel to the face of the lathe-bed.

The spindle is a very important part of the lathe, as upon its truth and accuracy of motion the circt:lar rotation of any work attached to it mainly depends; it is usually made of iron, but the working parts of the two extremities are altogether of steel, which are hardened after being turned and finished; they are then ground in their places to fit the collars or bearings with finely pulverized Turkey stone and oil ; the left-hand end has a hole bored exactly in its centre to receive the point of a screw, which supports and retains it in its place, as shown iu Figs. 2523 and 2524, p. 176.

The other, or right-hand end of the spindle, is somewhat larger, and has a conical hole bored in the direction of its axis for the purpose of receiving a centre point ; this is disengaged when necessary by means of any tapered instrument which, being inserted in a slot cut in the mandrel, acts as a lever and furces the centre forwards.

In the larger class of lathes the spindle is usually fitted up to run in divided collars of brass or gunmetal; these slide on \mathbf{V}-shaped grooves cast in the lead-stock, and are adjusted to fit the neek of the mandrel or spindle by means of screw-bolts which pass through a cap or plate of wrought-iron, fitted on the upper surface or top of the head-stock.

Various contrivances have from time to time been suggested to avoid the inconvenience of a backscrew, and at the same time insure uniformity of pesition under all prosible circunstances. The boring and turning machine, pp. 180, 181, and 18\%, oflers na example of this moditication: here the ppindle works in divided collars, but has ehoulders at the necke, hy which cuntrivamee all homgitudinal motion is entirely a voided. The inethod adopted by Mr. Whitworth, of Jtanchester, to chlect this object is extremely ingenious, and peculiarly entitled to the distinctive epithet, self-sustainine; as a specimen of the alaptation of mechanical means applied tu produce cortain results, it is probably unrivalled.

In this lathe the imer journal of the rpindle in turned conieally, but at two differnt angles, that part next the no-e beit more acute than the remaining purtion. This mramement meets the great difliculty attendunt on conical bearings, as the base of the conse is upposed to direct pressure, and comsequently removes all dnuger of the pimble becommy tixed ir jammed in itw collar. The whater cone which is phamed upon the spindle for working in the onter bearing, becomes, as it were, a part of the spindle, hat having longitudinal motion; it tembe to lname the effect of pramare appled dirwetly the serew.

 hand cmel of the spindm.

it is almost impossible to make it perfectly regular and mathematically true ; consequently, if the centra, line of the cone, which forms the point, be not that of the screw itself, the same effect will be produced

These and other considerations of a like nature that might be adduced, probably suggested the ar rangement shown in Fig. 2538, which combines the simplicity and uniformity of position of the cylinder with the mechavical power of the screw. In this case the sliding cylinder in the head-stock is deprived of rotary motion, its outer end being connected by a coupling to a second cylinder of smaller diameter; which constrains both to move in a parallel direction; between these, a square-threaded screw works, which is capable only of longitudinal motion, being comnected to the aforesaid coupling, so that the screw being worked to the left hand, compels the cylinder in the head-stock to travel with it, as is cvi dent from inspection of the figure.

The form of head-stock just described probably suggested that generally known as the cylinder head stock. This was invented simultaneously, we believe, by M. Collas, of Paris, and Mr. Joseph Clement of London. The arrangement now usually adopted is shown in section in Fig. 3458. The bead-stock is bored out true and an iron or steel cylinder ground therein so as to insure an accurate fit; this recaives a forward and backward motion from a screw which is rendered endless by means of a collar or

cap, and is worked by a handle-wheel. The sliding cylinder is fixed when requisite by a pinchingscrew, which presses against a piece of iron let into the head-stock. A sectional view of another mode of fitting up is given in Fig. 3459. This is unquestionably not so expensive to get up as that just described, but it is liable to the objection, that nearly the whole amount of pressure is thrown upon the driving-screw connected with the cylinder and attached to the handle-wheel. In this latter example the mode of fixing the spindle in its required position is superior to that shown in Fig. 3458. A mallenble iron ring, bored out so as accurately to fit the spindle, is let into a recess in the head-stock, and tightened up by means of a bandle passing through a screwed shank projecting from the ring.

In some cases it is desirable to possess the means of moving the shifting head-stock in a direction at right angles to the bed of the lathe. A very convenient mode of effecting this is shown in Figs. 2523 and 2524 , by means of the screw f, which causes the head-stock to move transversely, an arrangement which is peculiarly applicable to conical turning.

In heavy lathes the sliding head-stock is usually moved along the bed by means of a train of bevelwheels, as in Fig. 2542. Here a bevel-pinion attached to a horizontal spindle, which is worked when necessary by a crank-handle fitted upon the square end o, gives motion to a bevel-wheel upon one end of a vertical shaft, which has its bearings inside a hollow column cast in the body of the head-stock for that purpose. On the other end of this shaft is a bevel-pinion; this again geers with a small bevelwheel keyed upon the spindle p, which works in bearings attached to the sole of the head-stock and also carries a pinion which works into the rack M, fixed upon the bed-plate of the lathe, and thus obviously completes the connection, enabling the workman to adjust the sliding head-stock in any required position with ease and facility.

Cones or speed-pulleys are very important adjuncts to tool-machines in general, and more especially the lathe, as from the nature of the operations performed ly it, it is a primary requisite that the range of variation in the velocity of the spindle should be as large as possible. Professor Willis has investigated the mechanical principles of their adjustment in a very clear and satisfactory manner.
Supposing a pair of cones or speed-pulleys to be arranged upon two parallel axes and in opposito directions, we have an easy mode of changing the ratio of the angular velocity of the shafts by simply moving the belt from one pair of speeds to another.

In this case it is evident that the dimmeters of each pair of opposite pulleys should be so adjusted that the belt shall be equally tense upon any pair of the whole series; this, as may be easily demonstrated, is attained by making the sum of each pair of opposite pulleys equal throughout the whole series.

We have now to describe the slide-rest, a tool which has unquestionably contributed more than any other to the improvement of modern machinery. The invention of this truly important tool is clained by Mr. Nasmyth for the late Mr. Henry Mandslay; but, as it appears to us, the conclusion arrived at by that gentleman has been hastily adopted and without sufficient inquiry, inasmuch as a form certainly similar in all important details was well known and commonly used by rose-engine turners long previously, added to which we may remark that the original slide-rest constructed by Mr. Maudslay for Mr. Bramah bears so slight a resemblance to that now in use as scarcely to be capable of identification ; moreover, it is extremely doubtful whether a form of rest, known as the parallel rest, as well as a tool very similar in principle, invented by the late Earl Stanhope for turning metallic surfaces of large dimensions truly plane, did not precede the slide-rest of Mr. Maudslay.

- It is fureign to our purpose to pursue the subject further, nor are we disposed to depreciate the great merit of an ingenious and highly talented engineer; nevertheless, as the principle has been so extensively and so successfully applied to modmentonl machinery, we have been solicitous to perform an act of justice in attributing to those who have in any way contributed to the inveution of this important tool a fair share of commendation.
The form of slide-rest shown in lirs. 2542 and 2513 is a very convenient arrangement in many of it:

Jetails, and the one most commonly adopted. Here \mathbf{J} is the sadtle-plate upon which the slide-rest k is supported, and the longitudinal slide L , which carries the tool-holder is firmly secured upon the part K by the serew u; the parallel motion of the tool-holder is nbtained by weans of the serew r, and similarly a transverse motion of the same in order to place the tool in and out of cut by the screw s; these necessarily work at right angles to each other, and the tool itself is made fat on the took-holder by the two clamps u. The adjustneent requisite for setting the tool to the work is effected by di-engraging the sole K from the saddle-plate J; the nuts on the bolts which pass through the slots, shown in the plan view, Fig. 2543 , being relea-ed, by this means the sole K may then be moven to the requi-ite di-timee from the longitudinal axis of the lathe, and to a certain extent in the line of that axis by shifting thes Lults in the dovetail grooves of the saddle-plate, should that operation be more convenient than to shith the latter on the bed-frame of the lathe.

A transverse adjustment to a limited extent may be obtained by means of the screw s, and the toulcarrier may be adjusted longitudinally by the screw r.
The slide-rest we have now to describe is due to the ingenuity of Mr. Joseph Whitworth. It is urn questionably an excellent specimen of constructive mechami-m, combining the requisite stability with great accuracy of motion, and the manner in which the details are worked out displays considerable ability and mechanical talent. Figs. 3460 and 3461 , the latter being a section, show the rest set for facing a circular plate; that is, the motion of the upper slide is in a line at right angles to the lathe-bed A A, which is bolted in the usual manuer to the supports B B.

The saddle upon which is placed the carriage of the rest is simply a broad and strong plate of ca-tiron CC, plamed true and finished by scraping upon both horizontal faces. The slides a a, similarly planed and dressed, are screwed to the lower surfice of the saddle on either side of the lathe-bed, til enable it to traverse with uniform motion its entire length without simke or play, and so arranged as tu compensate for wear and tear by means of lateral serews countersunk in the cheeks of C C.
When the saddle is required to remain stationary during the work, as, for example, when a circular or other plate is to be faced, it is firmly fixed on the lathe-bed a A by means of a single screw bolt b, the nut of which is screwed up by the lever-handle c.
The carriage of the rest is composed of three prineipal parts: the first D D, which re-ts upon the sathdle, and is susceptible of different positions; the second E is a plate movable upon the precediner, and the third F which carries the tool. The base or carriage is of calt-iron, planed and finished by scrapure not ouly on the two horizontal faces, but also on the two upper lateral edges, which are angular like those of the lathe-bed, so as to reecive the slides ec fitted on each side of the rectangular phate E. A screw-bolt d. the square head of which is lodged in a gap sunk in the saddle CDC, sorves to aljust the carriage D D upon the saddle-plate, and this aljustment obviously depends upon the diameter of the piece to be turned.

The rectangular plate E is rendered movable in the direction of the length of the carriage D D by means of an endless-screw f, which is entirely sunk in its thickness, and receives a rotary mothon either from the handle g or from the lathe itself. This endless-screw works in a brass nut fitted under the phate E , and being deprived of endlong motion, it necessarily folluws that in its rotation it imparts a forward and backward motion to the nut, and consequently the tool-carrier.

The part 1 , which may properly be designated the tool-carrier, is suseeptible of another movementthat is, in a direction exactly at right angles to that just deseribed-by means of a scond endles-serew knaller than the former; this is intended to be worked only by the handle h, and that in the event of its being necessary to regulate in an exact maner the position of the tool with regard to the piece upon which it is to uperate. 'This endlesserew works in a bra-s nut attached to the plate E, fund comsequently inparts a forward and backward motion to the tool carrier F, which moves between two slides sercwal uphn the plate.

The torl i, whicis is intended to net upon the material either fur turning or serew-cutting, is securely fixed on the i con-carser F by vertical pinching-screws $j j$, which are screwed through the thickness of the upper phate or catp; the ee serews, four innumber, are phated at the angle 3 of the can, an arrangement which allows the tow to be tixed in diferent derections, nud in such a manner that it is always acted mpon by two serews. This dispusition mabless the workman to employ two tools which whall act at the same tims or nearly a) upin the material ; for in tance, the one to rourg out and the other to complete the work.

Motion is comanaicated to the carriage, and cone equently to the tex, ande, by a pmenk arrangement of the guthencrew, Which is so formeal at to be ulike eapable of prememmg the oflied of a rack as well $n+$ that of a rowew; (t) this emol the thread is rounded off benth at (11) at ll hottom, insteanl of heing cisher tri-
 with at thencot-wlucel.
 in the lathe-frame, wot on the drectum of the nas of the mathine,

dent that by turning the handle m, the tangent-wheel p, driven as already described, will produce pre cisely the effect of a rack; that is to say, the saddle and carriage will receive a traversing motion ir the direction of the length of the lathe-bed.

In actual work the saddle, and consequently the rest itself, is placed in any required position, the handle m being removed and the nut k brought into connection with the guide-screw G, which, actuated and regulated by a train of wheels attached to the lathe, causes the saddle with its appurtenances to travel with any degree of speed that may be required.

By a peculiar and ingenious arrangement, the guide-serew is made to drive the carriage and tool carrier in a direction at right angles to the axis of the lathe. This is effected in the following man-ner:-with the mitre-wheel o a similar but smaller one q geers; this is keyed on the end of a shaft in the same straight line as that which carries the small mitre-wheel n. At the opposite extremity of this axis is a spur-wheel r which geers with a similar spur-wheel s mounted on an iron spindle, which terminates at the other end in a grooved shoulder; this axis is morable in a socket which forms a support and is fixed to the saddle C , and by means of an ingenious contrivance the forked lever t is made to connect or disconnect at pleasure the spindle that :arries the spur-wheel s, with the square end of the screw f of the carriage D D.

It is obvious, if we suppose the saddle to be fixed on the lathe-bed-and to effect this it is merely necessary to screw up the bolt c-that the guide-screw G giving motion to the tangent-wheel p determines the motion of the toothed-wheels, and consequently that of the serew f, which after this manner gives motion to the carriage and the tool-carrier, to which we have given, by anticipation, the position shown in the sectional view, Fig. 3461. It is evident that when this transverse motion is not required, it is only necessary to throw the wheels out of geer by means of the forked lever t, and then these wheels will revolve on their axes without producing any effect.

The collars or bearings in which the axes of the bevel-wheels n and q revolve freely, are nothing more than long hollow cylinders bored out true, and fixed on the saddle or bed-plate c, and to avoid the injury which might result from these wheels becoming clogged by chips of metal, they are usually protected by a metallic cover either of tin or sheet-brass.
In the construction of stean-engines and engineering work generally, there are a great number of parts, such as steps, bushes, dc., which require their outer diameter to be turned truly concentric with the hole bored through them. The most general method of accomplishing this, is by driving the work upon a mandrel sufficiently tight to withstand the action of the turning.tool. The common mandrel, which is perhaps the most universal adjunct of the lathe, is a cylindrical bar of steel, turned with an exccedingly slight taper to fit the central hole of the work.
The time lost in preparing these mandrels, and the great weight of useless metal which must thus be kept in stock, prove serious objections to their nse, and led Mr. Hick to the invention of the expanding mandrel, by which various sizes of holes may be fitted.
Figs. 3462 and 3463 represent a longitudinal section and an elevation of the mandrel, the expanding wedges being shown in two different positions. a is the mandrel, the central portion of which is turned conically as at b. This cone is provided with four dovetail grooves c running in the direction of the axis of the mandrel, and fitted to receive the four wedges $d d$, shown in Fig. 3462, in their highest position. The dotted circles in the end view represent the work, which is placed upon the four wedges; these are pressed onwards by the hollow conical collet c, urged by the nut f, working on the screwthreads cut on the mandrel. In this manner the wedges d are driven up the inclined grooves, and thus fix the mandrel concentrically within the hole of the work so that any diameter of hole may be readily fitted, which is within the range of the travel of the wedges.

Another equally important appendage of the lathe, is the universal chuck. Various views of this chuck are given in Pigs. 254 - 2545 , pp. 180-2. For turning or boring articles of a regular external configuration, this arrangement has a decided advantage over the common chuch, where each adjusting screw is moved separately; and effects a considerable saving in time, in setting the work.

There are, besides the modification just referred to, various other species of chucks, among which we why chass Mr. Bolmer's as one of the best.

In this arrangement, the clutches are expanded and contracted by means of a series of radiating screws, each of which carries a pinion geering with a large central wheel on the front plate of the chack; the work is fastened by setting the lathe in motion, and holding back the front plate until the wheel upon it shall have driven in the clutches worked by the screws sufficiently far to grasp it.
The object of change-whecls applied to a lathe is, geverally speaking, to obtain a serew of any required pitch; that is, in relation to the leading or guide screw* by which the cutter is moved in alongitudinal direction.

If a spur-wheel be attached to the left-hand end of the lathe-spindle, and so arranged as to geer with mother spur-wheel similarly fixed on the axis of the guide-serew, and continuas motion be communicated to the lathe-spindle, it is evident that this motion will be transferred by means of the aforesaid wheels to the saddle of the slide-rest; consequently a screw-tool attached thereto, will receive direct rectilinear motion, and thus trace the spiral thread of a screw on the exterior surface of any revolving cylinder opposed to its action.

The relative proportions of these whecls obvionsly determine the pitch of the serew to be eut, as compared with that of the guide-screw of the lathe; so that if they are of equal diameter, or, what is the same thing, have an equal number of teeth, the result will be a serew of the same pitch as that of the leading serew ; but if the driving-wheels be larger than the driven-suppose in the proportion of two to one, then will the piteh of the work be exactly double that of the gude-seren, and if these proportions were reversed a contrary result would follow.

It is obvious in such a case as we have here suppozed, that, as the wheel fixed on the lathe-spindle and that upon the guide-screw, each revolve in contrary directions, all serews cut by this arrangemeut will be the reverse of the guide-screw, or left-Land threaded. In order, therefore, to cut a right-hand serew, it will be necessary to introduce an intermediate wheel geering with both wheels, so that the direction of motion of the work shall be the same as that of the lathe-spindle.

The principle of this arrangement is shown in Fig. 346t, entirely disconnected from the frame-work of the lathe, and without strict regard to proportion, it being intended merely to exbibit the parts as distinetly as possible. Here $A \Lambda^{\prime}$ is a portion of the lathespindle, to which is attached in the usual way a cylindrical rod, for the purpose of eutting a thread upon $i t$. G represents the leading or guide screw revolving in suitable bearinge, and giving motion by means of a nut to the saddle, and consequently the earriage of the rest, upon which is firmly clamped a suitable tool intemded to cut the screw.

In this arrangement it is manifest that every revolution of the guide-screw G will cance the reat tu alvance through a spaco exactly egual to its own pitch, or, in other words, supposing tho guide serew to have finur threals in the inch, it will, in every revolntion it nakes, alvance the rest, mal consequently the tow or cutter, one fourth of an inch ond long upon the work, so that if the Lathe-ppindle revolve with the ame velocity no the guile-screw, the toril will produce a serew of precisely nimilar pitch; but if, wh the contrary, $A A^{\prime}$ revolve with leas velocity than $(i$, then the effect will lee n greater piteh, and viee verset. Now if the hathespindle nond the grude-berew be connerted by in sat of change. wheelt, we have the meane, lyy propurly chosimg the numbere of these wherds, to obtain any desired pitel. This is practically effected by an internediate axis which is supportod by a gromend bemere this carries an arrangement of adhtional chaing" wheds.

[^22]of wheels which are in connection with the spindle of the lathe, it passes through and forms the axis of a morable piece H, and at its extremity carrics the fast-whecl I, which geers with a pinion E; this and the wheel F , which geers with the pinion D apon the end of the lathe-spindle, are carried by o. stud B fixed in a straight slot cut in the movable arm H, which has likewise a curvilinear slot near its and, through which two fixed stads pass; upon these studs pinching-nuts are placed, which being screwed up tightly, retain it securely, and by altering the angular position of H, a pinion of greater or less diameter than D may be nsed, and consequently the motion of the leading or guide screw regulated.

Having now explained the arrangement of geering necessary for effecting a change of speed in the guide-screw, we shall, for the sake of a practical illustration, give determinate ralues to the wheels D FE and J. Thas let the number of teeth in the wheels D and E be 30, and that in F and J 60 each, the pitch of the guide-serew G being $\frac{1}{2}$ inch, or in other words, that it has two threads per inch. It is now erident that one complete revolntion of G will advance the tool through the space $\frac{\text { inch }}{2}$, and similarly one revolution of A will adrance the tool through the space $\frac{30 \times 30}{60 \times 60}=0.25$ turns of G, or $\frac{1}{8}$ th inch, and consequently the pitch of the screw cut by this arrangement will be $\frac{1}{8}$ th inch. In this manner any desired pitch of screw may be cut by proportioning the change-wheels accordingly. This may be much facilitated, by arranging the various pitches of screws in a tabular form and placing the respective change-wheels required for each opposite to them, so that all computation during the actual progress of the work is a voided.

In order, however, to meet emergencies, it is necessary that the process of calculation for any given pitch should be thoroughly understood, and for this purpose we shall give an example as a guide.

Suppose it is required to cut a screw which shall contain 18 threads in the inch. Here the ratio of speed between the cone-spindle and the guide-screw is required to be as $6 \frac{1}{2}$ to $\left\{\frac{13}{2}\right\}$, so that we have (J) $\frac{130.156}{20 . \quad 24} \& \mathrm{cc}=6 \frac{1}{2}$. In this case, the wheels D and J are supposed to be geered together merely
(D) by a single carrier-wheel ; but as this arrangement is not always convenient, we shall now find the ratios of the wheels as given in Fig. 3464, where four are nsed. Here we must remember that the condition of the case is that the numerator divided by the denominator of the expression (13) shall be $6 \frac{1}{2}$. We will assume 28 and 56 as the respective values of D and J , or $\frac{\mathrm{J}}{\mathrm{D}}=2$. Hence we have only to find such values of F and E , so that $\frac{\mathrm{E}}{\mathrm{F}}=\frac{6 \frac{1}{2}}{2}$ or $3 \frac{1}{4}$, which informs us that E must have $3 \frac{1}{4}$ times as many teeth as F. Suppose then F has 32 teeth, we have $32 \times 3 \frac{1}{4}=104=$ the number of teeth in E, the whole set of wheels standing as follows: $\mathrm{D}=281, \mathrm{~J}=56, \mathrm{~F}=32, \mathrm{E}=104$. This result is capable of verification as follows: $\frac{56.104}{28 . \quad 32} 2=2.3 \frac{1}{4} .2=13$, or the number of threads per inch of the serew to be cut. Thus in all cases of calculations of this nature, the expression in general terms stands thas :

$$
\frac{(\text { No. of teeth in } J, \text {) }}{(\text { No. of teeth in } D, \text {) } \text {) teeth in } E} \text { (No. of teeth in } F=\frac{\text { No. of threads per inch of screw to be cut. }}{\text { No. of threads of guide-screw. }}
$$

The following table shows the train of wheels to be used in cutting screws varying in pitch from 1 to 70 threads in the inch; the leading or guide serew is supposed to have two threads per inch, yet may the table be still employed where the leading screw has four threads to the inch, for the same train of wheels would suit for cutting screws of double fineness; and similarly when the leading screw has only one thread to the inch, a screw of only one-half the fineness will be produced with any train given in the table.

In the first columns it will be observed that the wheel and pinion carried by the stud B are omitted; these not being required in cutting screws of the pitches there stated, are displaced, and a simple car-rier-wheel substituted for them. To facilitate this arrangement, the wheel J , on the leading screw, has the boss of its socket longer on one side than the other; so that when reversed, as in this instance, it is brought into train with the earrier-wheel, placed upon the stud; and this again is placed in train with the pinion D.

Such are the general prineiples of serew-entting for single threads; but when it is required to ent a multi-threaded serew, it is evident that some additional apparatus will be requisite to effeet the requisite exactitude of division, so as to bring in each parallel thread in its proper place.

the surface of a hollow cylinder; the toal being in both cases the describing point, and the plain cylinder the surface.

 Now as the tracing of this spiral is resotvable into two simultaneous motions, one of revolution with respect to the axis of the cylinder, and the other of transition parallel to that axis, we have in the construction of machines for boring and screw-cutting the choice of fonr arrangements:(1.) The cylinder may be fixed and the tool revolve and travel. This is the case in all simple instruments for boring and tapping screws, in machines for boring the cylinders of steam-engines, and in engineers' boring machines.
(2.) The tool may be fixed and the cytinder revolve and travel. Screws are cut upon this principle in small lathes with a traversing mandrel.
(3.) The tool may revolve and the cylinder travel. The boring of the cylinders of pumps is often effected upon thif principle.
(4.) The cylinder may revolve and the tool trapel. Guns are thus bored, and enginoers' screws cut in the lathe.

	No．of tecth on			Sio．of teeth on					No．of teeth on					No．of Heth on			
							言			2 3 3 3 3				$\begin{aligned} & \text { 关 } \\ & \text { 童 } \end{aligned}$			
1	s0	40	S \downarrow	40	55	20	$61)$	18	40	60	20	120	32	31	80	20	120
17	so	50	$8 \frac{1}{2}$	90	85	$\because 0$	90	$18 \frac{3}{3}$	80	100	20	150	33	40	110	20	121）
$1 \frac{1}{2}$	80	60	83	cu	71	$\because 0$	75	19	50	95	20	100	$3 \pm$	20	25	$\because 0$	$1 \because 0$
13	S0	70	$9 \frac{1}{2}$	90	90	20	95	$19 \frac{1}{2}$	80	1：0	20	180	35	60	140	20	150
2	90	90	93	40	60	20	65	$21)$	60	100	20	120	36	30	（11）	20	120
21	81	90	10	60	75	20	80	$20 \frac{1}{4}$	10	90	20	90	38	30	0.5	20	$1 \because 0$
21	S0	100	$10 \frac{1}{2}$	50	70	20	75	21	－ 80	120	20	140	39	40	120	20	1：11
23	80	110	11	© 6	55	20	120	$\because 2$	60	110	20	120	40	30	100	20	120
3	80	120	12	90	90	20	120	$22 \frac{1}{2}$	80	120	20	150	42	50	140	20	151
3）	80	130	123	60	85	20	90	2.23	80	130	20	140	14	30	110	20	120
31	80	140	13	90	90	20	130	234	40	95	20	100	45	30	90	20	150
$3{ }^{3}$	So	150	$13 \frac{1}{2}$	60	90	20	90	24	65	120	20	130	$45 \frac{1}{2}$	40	130	20	140
4	40	80	$18 \frac{3}{4}$	80	100	20	110	25	60	100	20	150	50	30	100	20	150
4	40	S5	14	90	90	20	110	25 $\frac{1}{2}$	30	85	20	90	52	35	130	20	140
$4 \frac{1}{2}$	$4)$	90	147	60	（1）	20	95	26	70	130	20	140	$52 \frac{1}{2}$	40	140	20	150
43	10	95	15	90	80	20	150	27	10	90	$\bigcirc 0$	130	55	30	110	20	150
5	40	100	16	61）	813	20	120	27	40	100	20	110	56	30	120	20	110
$5 \frac{1}{2}$	40	110	$16 \frac{1}{4}$	80	100	20	130	28	75	140	≤ 0	150	60	30	120	20	150
6	40	120	$10 \frac{1}{2}$	80	110	$\simeq 0$	120	$28 . \frac{1}{2}$	30	90	20	95	65	30	130	20	150
$6 \frac{1}{2}$	40	130	17	45	sJ	20	90	30	70	140	20	150	70	30	1.10	$\because 0$	150
7	40	140	$17 \frac{1}{2}$	81	100	20	140										
$7 \frac{1}{2}$	10	151															
8	30	120															

Two separate contrivances have been devised for this purpose．Pihet＇s apparatus is shown in Fime 3465 and 3466 ；the furmer of which is a front clevation and the latter a section in a line with the axis of the tathe．a is a cast－iron disk cut with a female screw to tit the nove of the lathe－spindle，and on the face of this dink is fitted the division－plate l ，the tubular portion of which also answers for chucking the work．The circumference of this disk is divided by notehes，into to equal parts，numbered respeet－ ively from 0 to 60 ，into which the spring－catch or stop c takes，so that when the disk a is put in mo－ tion，and the catch put down in any nutch as required，the whole moves together as in one piece．

In cutting a mult－threale 1 frew ley this apparatas，it take the phae of the common diuch，the

 20, and to relatively hear to ends other．

In the production of the minor screws and bolts used in engineering work, the lathe is superseded by the screwing and tapping machine, in which the thread is formed by a travelling die working upon the revolving-bolt intended to be screwed. The principle of the action of this machine will be understood by referring to Fig. 3275, in which we have given an elevation, ground plan, and different detailed views of a single screwing machine of great simplicity. In this arrangement the frame containing the dies travels upon the parallel guide-rods $R \mathrm{R}$, the work being fixed in the chuck L , and entered intc the dies which are then contracted until they embrace the boit sufficiently to be drawn along its surface by its revolution. The quick return motion of the die-frame is produced in the ordinary manner as applied to planing machines. This machine is objectionable on account of its want of compactnes: otherwise it is a pretty fair specimen of its class.

The double screwing machine by Messrs. Randolph, Elliot, and Co., of Glasgow, is a much morc complete and useful workshop auxiliary than the last, and has, besides, the merit of great compactness. Fig. 3467 is a side elevation of the machine, Fig. 3469 is a ground plan, Fig. 3468 is an elevation of the

nut-tapping end, and Fig. 3470 is a similiar riew of the bolt-serewing end. The frame-work of the machine $A A$, and the sole-plate $B B$, are cast in one picce. The driving-cone C is supported by the upright frames ncar the centre of the machine, and carries a pinion D , of 15 teeth, which geers with the Wheel E, of 56 tecth, keyed on the smaller screwing-spindle F; thus the relative speeds of the drivingcone and the spindle F are as 3.73 to 1 . The spindle F again carries a pinion G of 18 teeth, geering
with the wheel II of ia tecth, keyed on the larger ecrewing spinclle I, the ratio of speed in this case being as t to 1 . In the end view the chucks $K K$ are shown with square receses, for the purpose of receiviug the heads of taps for tapping-nuts. In the view of the contrary or bolt-serewing end, the chucks L L are provided with plates grooved for the purpose of receiving the screwing-dies, which are adjusted by means of two set-screws, wheh press against the backs of the dies so as to suit them to any diameter of bolt. The motion of the spindles is stopped or reversed by the hambles M M, at each end of the machine. They are connected by a lever with the vertical rod E , which carries the thiftin'strap forks. The top driving-geer con-ists of three pulleys, a fixed central one, with a loose one on each side, all being on one slaft, which also carries a cone of three speeds exactly similar to C.the hast carries the driving-belts communicating directly with the machine. The centre pulley of the set of three is much narrower than that on each side of it, so as to allow of the release of the crossstrap before the open one comes upon it, and viec verse. For another somewhat similar arrangement, sce Figs. 3292 to 32si.
3409.

Analogous to the subject just disensed, is that of nut-cutting, an operation formenly entirely per furmed by manual labor, a tedious and uncertain process, but now effected with facility and precision by self-acting machincry.

In Figa. 2974 to 2976 we have given detailed views of a complete machine for this purpose, by Mr. A. Mylne, of Glasgors. The nut to be cut is fixed on the upright spindle of the support r, and is brought in contact with the revolving-eutter x by means of the screw y, the requisite division of the faces of the nut being effected by means of the circilar table, which is provided with six equal notches fitted with a sprino-eatch from the lever n. This machine is also provided with a self-acting feed motion, by which the nut is gradually moved up to the cutter while in action. This is effected by the shaft c of the epeed pulley e, which carries a worm 8 geering with the wheel h, upon the shaft of which is fixed a pinion geering with a rack on the lower side of the table carrying the not. This motion may be dispensed with when thought necessary, aud the work may be calried forward by hand, by means of the handwheel and shaft b.

This machine is very compact and folly answers the purpow of dressine-nuts of any mumber of sides by nsing diflerently divided plates. In many engincering works, unts of all mumbers of sides are forged in swares made for the purpose; the accuracy and beauty of tinish of which is nearly equal to muta cut by the machine, and an-wer atl purguses where extreme finish is mot required, the expense of production being at the same time very groatly dimini-hed.

The subject of mut-entting leards ns now to the considerntion of serew kines, lye means of which all nuts of serews thed in the connection of the different portions of mathinery are miljusted to suit the ever-varying exigencied of mechanical contrivances. The common sorew key with tixad jaws mat he so familiar to our readers ant to renter may description of it annecessary, mil we shall therefore puint out a few examples of attempts to remedy the defente of this mont neecessary instrmant. In the dis. section of any piree of machanery, ewor of the more simple speries, we insariably find a multituat, of differnt sized boles, the muts of whict: of conren etch repuire a key stited to its own particular size A reforence to the number of gradations of nize of nuta, given in a previons portion of our payes, will

 pendicres.

 the working of nuts and all similar ph-rpoes.

the end a and the fixed stop d; it is held in its place when set for any nut by means of the second lever e, which works on a centre-pin in the projecting portion of the jaw. This lever also carries a projection at f, by which it is jointed to a thin wedge, passing between the top of the lever b and the interior surfice of the slotted portion of the movable jaw. Thas, when the latter is set to the size of nut required, a slight pressure upon the side of the lever e forces down the wedge, and secures the jaw immovably. (See Wrevch.)
The peculiar merit of this species of key is, that all allonance for wear is made up by the wedge, which will never permit any looseness in the jas, as the only difference caused by the wear of the surfaces in contact will be a greater travel of the fixing wedge. Practical men who have made use of those keys which are adjusted by means of nuts will at once see the ralue of this adrantage.

Next to the turning-lathe in its importance to the engineer, the planing machine stands foremost in rank of constructive machines. The primary idea of planing by machinery was donbtless brought into existence by the necessity which constantly presents itself of diminishing the enormous amount of labor expended in producing plane surfaces on wood by hand, as practised by means of the common joiner's plane. Next to the process of sawing, there is no operation connected with the working of wood, which consumes so much time, and adds so much to the expense of the conversion of timber as the production of the hand:planed surface.

The first attempt to obviate this difficulty with which we are acquainted, was made by General Bentham, in 1791, who took out a patent for a method of effecting this object. In this scheme, the plane or cutting-edge, which was movable, was made of the full width of the board intended to be cut, and on each side of it were fixed fillets which projected below the face of the plane, a distance equal to the amount of the thickness intended to be taken of the board. Several vlans were adopted for obtaining a good surface from a rery thin board, but the whole scheme eventually proved all but abortive-the machine was never practically worked by mechanical power, but whetker thus drisen, or by the hand of the attendant workman, the idea had still the adrantage, that it exonerated the latter from the charge which he had of his tool in the ordinary operation of planing, rendering a common workman as useful as the skilful joiner for this purpose. The next epoch in the history of mechanical planing is the improvement produced by Mr. Bramah, who, in 1802, patented a method of producing "straight, smooth, parallel, and curvilinear surfaces on wood and other materials." This invention embraced the original machine for producing spheres, the principle of which is still preserved in all machines of a similar nature to the present day. Bramah's planing machine, as constructed for the Royal Arsenal at Woolwich, gives us a specimen of an embodiment of his ideas at this period.

Here the cutters are attached to a hosizontal disk keyed on a strong vertical spindle. This disk is put in rotation at a speed of about 90 revolutions per
 minute, the material to be cut being attached to a sliding cast-iron bed, which is moved by hydrostatic pressure. A pipe communicating with a hydrostatic press is carried in below the bed of the machine, and terminates in a plunger-barrel, the plunger of which carries a rack-gecring with a pinion on a rag-wheel shaft. This wheel is provided with teeth, over which a pitch-chain attached to the table of the machine is carried.

In all planing machines as at present constructed, the cutter is invariably the fixed portion, the work being passed beneath it in the act of cutting, by means of a sliding table. The particular species of planing machine which has beelt most lately introduced, is termed the hand-planing machine.

In Figs. 3477 and 3479 we have given three views of a simple and effective hand-planing machine, as suited for small work generally, such as links and connecting-rod ends for locomotive engines, and other portions of machinery where a plane surface of small extent is required.

The table of the machine is here supported in the usual manoer, as employed in similar tools of a larger class, upon a bed bolted to the top of two standards attached to the floor. The lower surface of the table carries a rack M, which is driven by a pinion F, upon the shaft G, supported in bearings attached to the fixed bed of the machine. Motion is given to this shaft in either direction, by the cross landle H , worked by hand in a similar manner as applied to small presses.

The cross-slide C is supported by two uprights bolted down to the bed; this slide carries the tool-holder D, which is traversed across the bed of the machine by means of the horizontal screw b. The automatic action of the transverse feed motion of the cross-slide is effected by the movable stud S , attached to the travelling-table; this stud, being movable in a groove in the side of the table, is capable of being set at any point in order to suit the required length of stroke for the work. The pressure of this stud, upon a short lever keyed on the small shaft carrying the piece n, depresses it, and the latter, by its comecting-rod r, acts upon the ratchet-plate K , upon the horizontal screw b.

The amount of travel thus given to the screw is raried by shifing the position of the sliding-studs in the pieces m and n. The front plate of the tool-holder is provided with two short circular slots, through which bolts pass from the back plate; in this manner the tool may be set at any angle to suit the mature of the work required. The tool-holder or cross-slide is raised or lowered to suit the circumstances by the vertical screws $f f$, driven by bevel-geering in the usual manner.

A somewhat similar but more useful machine of this species has been introduced by Mr. Charles Walton, of Leeds. In this machine the bed is so arranged that it may be fixed upon the workman's bench, and may be driven either by manual or steam power. Immediately beneath the bed of the machine is placed a horizontal grooved disk, driven by bevel-gecring, either from the pulley-shaft of the
workshop or by a winch. This di-k is grooved directly acrosis its upper surface for the purpose of receiving a pin, which is connected by a limk with the lower surface of the sort travelliug-table. In thin romner a reciprocating motion is given to the table in the simpleat manner, and the lenyth of stroke is capable of variatio: accurding to the distance of the pin in the hurizontal ermoned dith, from the centre of motion. The fiend motion of the cross-slide is effected by astull tixel on the mader surfine of the horizontal disk; this stud work a short lever keyed upon al slaft workinf in bearimga attached to the side of the bed. This shaft again carries a second lever out-inle the bed, amb is jointed by a link to an arrangement of ratchets. For all smatl machines, this methot of giving motion th the table is decidedly the simplest and mo-t compact, and although the introduction of the disk has the clliect of producmer a variable spect in the cutting, being greatest at the middle of its stroke and least at each emal; yet az the disk is enntined to machines of as =hort stroke, its diameter is mot sh great as 21 bring about a detri mental variation in the speed. Small machines of this species, which are quite ant movation in the workshop, are now becoming indispensable where much small work is required, and have servel in a great mesure to bamish that most expensive of all took, the file, and thus rendered an important sur. vice in chenpening engineering work in general. So mueh indeed is the the care, that it is an w-ats lished face that diflerent portions of machinery, the confirumation of which is made up of curval and plane surfaces, are now entirely finished by means of the lathe and phang mathine, whout the neceso sity of touching them with the file.

As a speimen of a step higher in the order of completeness and general usefulness in machinas of thi kird, we must mone refer the reader to Figs. $30 \leq 0$ and 800^{2}, where we have given very complete views of the machine invented by Mr. Mylne, of Glasgow. Here the system of wirhins the vertical and horizontal slides is similar to that made $8 e$ of in the hand-machine, $\mathrm{Fi}_{\mathrm{o}}=: 007$ and 30ご.

The chice pecularities in the present machine are the arrangement of the gecring for travelling the table, and the great completeness of the toul-holder. The forward or cutting motion of the table is whtancd from the large pulley A, the shatt of which carries a pinion D geering with the large whel L upon the rack-pinion shaft.

This shate carries two pinions gecring with two racks of smilar piteh bolted to the under side of the travelling-table. Thee racks are so placel that atch tooth of the one slall be opposte to each space of the other; in this manner the irrerularity of motion so moth eomplaned of in urdinary rack worke i machines, a- producing a waved surfice on the work, is to -ome extent avoided. A more eflictual methot of attamimg this end has been intruducet! hy Mr. Collior, of Manchester; this plan empist m making the teeth of the rack and piniun on what is technically terment the step sy:tem, that is, cach touth is divided in it breadth into three parts, each division being set a distance ergal to we third of the true pitch of the teeth behand its neighbor. The practieal result of thas arramement is, that ahberish the stremigh of the original coarse pitch is pre-erved, yet the teeth work with the steathin... due to a pitch three times finer, or so many times less as the number of divisums of the teeth amoments to. 'This plan is now universally adopted in all rack machines, as it is simple, eaty of application, and completely elfectual.

This, athongh in our opinion not the beat, is probably the mont univer-ally naed sfecies of driving gecring applied to planiner machines. Of the two remaining systems, the chain and serow, the latter, for excellenee of workman-lup, is decidedly to be preferrel. Ar. Whitworth's phang machine is perhaps the moat timi-hed sjecemon of modern toal-makime extant.
 was firat introducel by Mr. Whitworth, in $15: 55^{2}$, when he employed it as anotion for the carriage of the solfacting phiming mule. In his paning machume the rollers are phaced parallel, fite to f.we, wh "pmoter sile of the -crew, their axes rewheing in hearing attached to the under surfiee of the hed,

 revolve, and at the same tume to carry formart the table to which they are tiand. The frictum whels

 remuerel to the la there - - mad.
 thaft with the arap fork in capmble of mon hamplatation.

wheel motion, so called from its adaptation as a continuous forward motion for common clothes-mangles. It consists of a large disk, having near its circumference a circle of pins bolted through the metal at right angles to its plane; these pins answer as a set of teeth, into which a small driving-pinion geers, working alternately on the outside and inside of the teeth so as to effect the desired reverse motions. In Mr. Nasmyth's arrangement, the driving-pulley is keyed upon a light shaft passing transversely beneath the table of the machine. The contrary extremity of this shaft, which projects beyond the edge of the bed, carries the mangle-pinion geering with the pins of the mangle-wheel. The latter is keyed upon a central transverse shaft which passes beneath the table of the machine and carries a large chainpulley. Round this pulley a chain is passed twice, and its two extremities are passed ronnd two fixed pulleys placed at contrary ends of the bed, and attached to the opposite ends of the travelling-table. The reversing of the mangle-wheel, and consequently that of the table, is effected in the following manner: at two points in the circumference of the mangle-wheel, one or two of the pin-teeth are removed, and a sloping guide or stud is placed at each point, so that when the driving-pinion arrives there, this guide causes it to traverse in or out, as the case may be, to geer with the inner or outer sides of the pins, under which conditions it is casy to see that the two contrary motions of the wheel will be the result. The guide supporting the pinion-shaft is slotted horizontally to allow of the traversing of the shaft as well as to prevent its running beyond the point of geer with the pins of the mangle-wheel, the bearing on the opposite end of the shaft next the driving-pulley being arranged to swivel on a centre, so as to permit of this motion. This movement of the pinion-shaft is also taken advantage of in giving the feed motion to the cross-slide of the machine, being connected to the vertical rod carrying the catches for the ratchet-wheel of the transverse screw.
This movement, although ingenious, is destitute of the advantage of an increased speed in the return stroke, consequently much time is lost by it when applied to single-acting machines.

The arrangement applied by Messrs. Nasmyth and Gaskell to the rack-planing machines is a very convenient though somewhat cumbrous motion. Fig. 3472 is a ground plan of this geering, in which a is the forward motion driving-pulley, keyed on the hollow shaft b, which carries a pinion c geering with a large spur-wheel d. The latter is keyed directly on the rack-pinion shaft e, shown in dotted lines passing beneath the table of the machine. The backward-motion pulley f is keyed on the solid shaft, passing through the hollow one and revolving at one extremity in the bearing g fixed on a pedestal attached to the bed-plate, and at the other in the bearing l bolted to the side of the bed. This latter shaft carries another pinion k geering by means of an intermediate carrier-wheel, with the spur-wheel l also keyed on the rack-pinion shaft. The centre pulley is of course loose, serving merely to carry
 the strap when the machine is stopped, and during the transfer from the forward to the backward pulley. Thus it will be seen that the return stroke of the table will be so much quicker than the cutting one, as the difference in diameter of the two wheels l and d, or rather, as the ratio which exists between the wheels k and l and c and d.
The strap-fork is seen at m; it is worked by catches fixed on the other side of the table, a connectingslaft from which passes beneath the bed where it is attached to the fork; n is a weighted lever for the purpose of giving a sudden shift to the strap, so as to give the workman a better command over his machine.

Of chain-worked planing machines, the modification introduced by M. Decoster, of Paris, is perhaps one of the most complete. In his machine he has made use of the driving geer as applied by Mr. Whitworth to his screw-machines. In the example by M. Decoster, to which we refer, the chainmotion is applied to give motion to the tool-slide, while the table of the machine remains stationary. This plan is found extremely useful in planing heavy and unmanageable pieces of metal, as the latter may be firmly secured to a foundation independent of the machine, while the tool alone traverses over it; and consequently no more power is absorbed by a heavy casting, than by the lightest possible piece of metal. The driving geering before referred to is here placed alongside the bed of the machine, near one end; the pinion on the central bevel-wheel geers with a large spur-wheel, on a shaft passing transversely across the bed of the machine, below the table. The latter shaft carries two rag-wheels, placed near its two extremities just within the frame of the machine. Round each of these wheels is passed an endless chain, which passes along the whole length of the machine, returning round a similar pair of wheels revolving loosely on studs at the contrary end of the bed. The upper length of this chain is attached to the lower surface of a V -grooved slide, working in corresponding grooves planed in the upper surface of the bed. This slide carries a sceond horizontal slide supporting the tool-holder in the usual manner. The feed-motion of the cross-slide is ingeniously effected by two ratchet-catches attached to the spur-geering on the end of the horizontal screw. The lower extremities of these catches are set to come in contact with movable tappets attached to the fixed frame of the machine, so as to give the proper amount of motion to the screw of the cross-slide. The method of attachment of the drivingchains adopted by M. Decoster has the advantage of giving a steadier pull to the tool-slide than can be obtained by the central mode of fastening, with a single chain.
The principle of the movable tool and fixed table has also been adopted by M. Cave and Mr. Hick, of Bolton. In M. Care's machine, the driving motion is given to the tool-slide by an endless strap. The driving-pulley is placed immediately over the centre of the bed of the machine, the strap from whion passes below two fixed tension-pulleys, placec just bencalh the driver, and thence round two fixed pul-
leys attached to the opposite ends of the bed. Tha attachment of this strap to the sliding-frame of tha tool is effected by pasing the strap in contrary directions round two separate pulleys, each carrying a pinion geering with a central driving-whect. The shate of the latter parscos across the thed of the mas chine, and carries two pinions, geering with two racks, placed within the framing, and ruming alurg the whole length of the bed.

The arrangement of the spur reversing-geer will be understood by referring to Fig. :8tis3, which is a side view of the toot-slide, frame, and geering, with the driving pulfeys removed. A is the travelling tool-slide, earrying the central driving-wheel B, keyed on the pimion-shaft-the safts $\mathrm{C} C$ each carry : loose driving-pulley, capable of connection by means of sliding clutch-boxes with the two pinims D D These later work loose on the pulley-shatis, and gecr with the central wheel F , so as wo drive it in either direction accordingly as the eluteh-boxes are set.

Two movabie inclined tappets are fixed to the bed of the machine, which altertately eome in contact with the lever E on the oblifue shaft F , so as to nome it in and out aceording to the motion of the shine. The shafe Fearries the two forks (F , comnected to the chute h-boves of the pinions D) D, which are pheed, one on each side of it, so that when the lever E is pressed upon by its tappets, the hold of the twi dhtches is changed accordingly-one being thrown out of geer at the same time the other is put in. In this mamner, as the two pulleys on the pinion-shafts revolve in different directions, a reciprecating mos tion is given to the travellimes-whele.

The crow- - lide of this machine is provided with two tomblhblers, , me on each side, so as to cut in buth directions; this improwenent efleets a great snving of time, as the return stroke is rembered eymally as dfective at the forward one.

In Mr. Hick's movable tenl-slide machine, the traversing motion it wiven to it hy means of steel belte The driving pulley of the machise is altornately worked by a cross and upen stapl the shaft of this palley is connected, hy meand of spur gering, with a tramevere shaft carrying two pmilley wok king
 side the frame, and pasing round two mimilar pulleys phamel nt the contrary extremity of it. The
 (1) commumiate an nltornate motion th it, necordingly at the "jen on cromerl stap is worhing on the driving pulley.

It is a matter of comalerable impertance in planine machines, to have a compact nrangement at

Vios. II.-4s
makers, indeed, have applice the clutch-box instead of the shifting-strap, the clutch being arranged to throw the tro side bevel-wheels in geer alternately with the centre onc.

As a compact and efficient self-acting reversing and feed motion, we give that adopted by Mr. Whit worth, as one of the best. Fig. 3474 is a side elevation of the apparatus; α is the table of the planing machine, on the side of which, at the centre, is screwed the fixed catch b, which, in the course of worl. ing, alternately comes in contact with the movable catches $c c$, adjustable on the shaft d which runs alongside the table, sliding in the bearings ec at each end of the frame. This shaft carries a third adjustable catch f, connected with a short lever cast on the boss g working loose on a stud screwed to the frame. The same boss has also cast upon it a second lever h, at right angles to the former one, the end of which works in a slot in the scrap-fork i. The latter oscillates on a centre attached to the bed at k; when the catch b comes in contact with one or other of the stads c, the shaft d is carried along laterally, and gives motion, through the arrangement of levers just described, to the strap-fork so as to shift the strap from one pulley to the other, and reverse the table.

The self-acting feed-mation of the cross-slide is effected in the following simple manner: on the sliding shaft or rod d a few rack-teeth l are cut, which geer with a segment of a spurwheel keyed on the shaft m, working in bearings screwed to the upright frame of the machine, and carrying the eccentri-cally-grooved disk n, which revolves with it; o is the rertical rod carrying the ratchet-catches for working the horizontal screw of the cross-slide: it is guided by a bearing p screwed to the frame, and carries at its lower extremity a pin working in the eccentric slot of the disk n. Thus when the rod d receires its motion from the catch b, at the termination of the stroke of the table, its short rack causes the disk n to make a portion of a revolution, so as to raise or depress the rod o by means of the eccentric groove. This motion is at once effectual and easy of application, besides possessing that great desideratum in all tools, compactuess.

We now come to the consideration of tool-holders. The specimen of a tool-holder given in Mr. Mylne's machine, is one of the more complicated variety, being provided with a double set of slides and appropriate screws, for the purpose of planing at two different angles with one adjustment of the tool. The saving in time, however, by this arrangement, is more than counterbalanced by the increased cost of the tool-box,
3475.

and the disadvantage which it entails upon the machine, by throwing the point of resistance in cutting so far from the surface of the supporting frame as to render the cutting action unsteady.
A somewhat simpler modification of the same varicty of holder is represcnted in Fig. 3155 , where the
ouffacting dowe cut motion i , obtained by one screw; a is a tran-verse section through the cross-slide of the machine, to which is fitted, by dovetail-, the horizontal sliding-plate b. The latter again carries the down-cut slide c, being attached to it by dovetail-headel bolts workins in a circular groove in the former. The slide c is fitted with a central screw carrying a nut tixel on the front sliding plate d, su that the latter may be moved at any angle to the bed of the madine aceording to the angular position. of the serew ; e is a front plate, checked into the slide d, to which is hinge I the tonl-hahter fo carry inf the tool as chown at π.
The elf-acting feed-motion is given to the serew in the plate c by bevel-remerns, similar to that em ployed in Mr. Mrlne's machine. The hinge at the upper end of the towlholder is fir the purpose of allowing the tool to give way in case it comes in contact with any obstacle daring the return struke of the machine. In all properly con-tructed tool-boxes, the mechanism is arrancel to lift the thol ent of the way at each return stroke, so that it never rests upon the surface of the work in the back mution. This is effected by a separate transerse screw placed parallel to the main traversing serew, an: 1 worked by the same geering. In Mr. Budmer's tool-boxes this screw carries a nut with a slottel projection nitting to a pin in the upper end of the front plate, which o-cillates loowly on a fixed centre. The n.t being carried along with the tool-slide by the revolution of its serew, remains always immediately abore the centre of the toul-holder; at the termination of a stroke, the reversing geering is so connected witi. the serew as to give the latter a lateral slidine motion, the mut upon it then moves the front plate by the pin in its upper side. This plate carries a small inclined pin, which in its motion presses against the front of the hinged toul-holder, thas raising it out of connection with the work.

The selffeeding down-ent motion is also given by the same oscillating plate. The latter is provide 1 with a tonthed seetor screwed to it near its Fower extremity, and geering with a small bevel-pinion on the down-ent crew-spindle. The latter being litted with it ratchet-wheel, receives at each stroke of the machine an amount of motion propartioned to the material t, be cut. This is pubably one of the mont complete an! cfliective of all single-acting toolholders, and is a grood specimen of the high degree of cminence which Mr. Bodmer has attaned as at maker of eusstructive machiners.

In adtitinn to the common rectilineal planing machine, melninists have of lite year- found a powerful ansiliary in the circular machine; thi- may be defined, in general terms, a* a lathe with a vertical opindh. 'The thol is either fixed or movable, the former being the preferable and more general arramement. The adrantages which these machines posess ower common tuminelathes, are, firstly, the ereater facility of adjustment of heary ca-tings preparatory to planing them; and secondly; the greater latitule they illow for acting on masses of metal of great diameter, as the drivine wheeds of lemomotive engines, fly-wheels, dec. of this speetes of tools, perhaps Mr. Bodmer's monlifeation stands higheot in the scale of uefulness. It consints of a heary foundation plate, in the centre of which it strumer vertie:al spindle revolves, hawing a horizontal circular table of large diameter keyed unon it, and provided in the (i-mal manner with alots for fixing the work. The fixed cutter is held in a toul-bux preciecly similar to that adopted in the common planing machines. It is placed on a strong horizntal wos-slife, which is adju-ted to work frecly in a vertical direction upon two upright frames, placed whe on each side of the revolving table. The tool-holder being fitted with a down-ent motion, is readily aljusted with freat niecty tor suit the work, lesides which its horizontal motion on the eross-slide, combined with the yert cal motion of the latter upon the uprights of the frame, permit the tool to be set to any purtion of the radius of the talle. The machine is fitted with a selffededing motion ; this is found rery serviceable in turning up the tires of loemotive and carriage wheck, the rims of small the whels, de. Mandines have been con-tructed which combine the adramtares both of the rectilineal and circolar machines, with a view th the fini-hine of more complicated work than can be effected by either of the ereparately. The
 hrizonat haft pates transersely below the bed, and carries a plain serter of considerable radins, to which 11 chain is attached, and is cinneeted to the urposite embs of the tabh. Notion is given to this
 geering, supported hy the uprisht framing which sprines from the bed of the machine. The pin of this disk is attacheol hy a suitable comectingerel to at crank keyod on the exthemity of the shaft of the sec-
 of the pin in the radnus of the diak.

Whan continush circular work is required, tha drisinge dak is thrown ont of esear, ant the driving-

manner by a circular slotted disk. In planing the circular ends of levers, de., the work, after being lrilled, is fixed on an ingenious adjustable mandril, with its rectilineal surface in a line with the direetion of the traverse of the tool. A self-feeding motion causes the work to revolve slowly in the action :f eutting, similarly to the same arrangement in the slotting machine. By detaching this geering the tool becomes available for the production of plane surfaces at any angle by an appropriate adjustment of the tool-holder-thus it unites the offices nasually consigned to separate tools, and is a very usefu. tuxiliary to the engineer.
Though not in immediate connection with the subject of planing, we may here mention Mr. Bodmers stand-catting machine. This tool is a species of planing machine, provided with a revolving cutter, and is used for the purpose of cutting out the recesses in the small stand bearings, \&e., in cotton and other machinery, a species of work which requires the utmost precision and exactitude of management. In preparing and fitting up the supporting pedestals ased for the rollers of spinning machinery it is essentially necessary to preserve their line of bearing perfectly level, otherwise the rollers will undergo an injurious strain in the working. To accomplish this in a speedy manner, Mr. Bodmer fixes a row of pedestals upright on a movable bed, constructed like an ordinary planing machine. The apright framing in the centre of the machine carries a revolving cutter, similar to the steel cutters used for cotting the teeth of wheels; the row of pedestals, which are placed in a line with the motion of the bed, are then passed slowly beneath the cutter, thns securing an accurate adjustment of the height of each.

A machine similar in principle is used for fluting the wooden rollers of fax machinery, mechanism being introdnced for the purpose of causing the rollers to make a portion of a revolution after the cutting of each groove.

Slotting machines, in their general principle of action, may be defined as planing machines with movable tools. The period of their introduction to the workshop dates among the latest of the automatic tools of the day, as, until a short time back, the species of work now executed by them was entirely performed by the file and ehipping-tool. As a finished specimen of this tool we may refer the reader to Messrs. Caird \& Co.'s machine, Figs. 3337, 3338, 3339, 3340.

The method of transmitting motion from the driving-ges to the reciprocating tool is here very simple, and the machine, as a whole, has a very hardsome appearance. The table, in addition to the usual rectilineal and circular motions, is provided with apparatas for setting it at any angle to suit the different varieties of work. This angular motion is useful in cutting the key-seats of wheels, where a slight inclination is necessary to suit the shape of the fixing-key.

In such a machine as the one before us, it is evident that the size of the work capable of being operated upon by it, is circumscribed by the distance from the cutting centre to the edge of the supporting pillar. If this distance is increased in order to suit the dimensions of wheels and castings of a large size, a greater disadvantage ensces, namely, an increased amount of unsteadiness of action. Messrs. Nasmyth \& Gaskell have remedied this disadvantage most efficiently by doing away with the supporting framing of the machine, and cansing the tool to cut from below upwards. The machine is, as it were, entirely reversed in this molification, the driving disk and geering connected with the slotting-bar being placed under ground in a pit made for the purpose. The cutting end of the slotting-bar projects upwards, through a fixed cast-iron table on the floor of the workshop, upon which the work is laid in the act of slotting. As in this arrangement there are no supports to interfere with the work on the table, it is evicent that this tool possesses an unlimited range of action. In another modification by the same firm, this object is attained by supporting the tool-slide in a bottom-plate attached to the floor, to which are attached four strong pillars, carrying a square table for the support of the work, at the height reqnired for the convenience of the workman. The driving-geer, in this instance, consists of a horizontal shaft, passing under the table, near the level of the floor, driven by a strap, and carrying a pinion geering with a large spur-wheel, whieh, at the same time, serves to commonicate the reciprocating motion to the slotting-bar, being grooved across one side, for the purpose of receiving the traversing-pin of the connecting-rod. The self-acting motion of the table is extremely neat and convenient. The spur-wheel shaft carries a small eccentric, the rod of which communicates with the ratchet-wheels of two shafts running horizontally at right angles to each other, beneath the movable sides of the table. Each of these shafts carries screws, one of which, passing beneath the eentre of the table, gives the rectilineal motion, while the other geers with the screw teeth cut round the circumference of it, and, consequently, traverses the table in a circular direction.

We have already discussed the philosophy of the true form of cutting edge for drills, as well as the minor species of tools of this class; it remains for us, therefore, now to enter upon the construction of what are more properly termed drilling machincs. The varieties of these useful machines, as used by the engineer, are so numerous, that we can only find space to touch upon a few of those best adapted to the wants of the workishop. Practically speaking, drilling machines are divisible into two classes only, namely, the common vertical pillar, or wall-side drill, and the radial machines.

For a good example of the former of these varieties we may refer the reader to the detailed views in Figs. 1122-1128, of Mr. Whitworth's vertical drill. This machine, which probably takes the first rank in its class, is independent, being provided with its own separate frame intended to be serewed to the floor without the additional support of a pillar or wall. Motion is commonicated to the drill-spindle by an arrangement similar to the lack geer of a lathe, contained in an opening in the upper portion of the frame. The rectilincal feed motion of the drill-spindle is self-acting; it is a beautifully ingenious arrangement, and is pre-eminently deserving of attention. The upper portion of the spindle between its bearings is screwed for the purpose of geering with the inclined tecth of a pair of worm-wheels, placed one on each side of it; the axes of which work in bearings attached to the front of the frame. A compact friction-elip worked by a vertical serew from below embraces the projecting ends of these axes, by which arrangement the revolution of the wheels may be completely stopped when requisite. Thus, we will suppose the tightening screw of the friction-clip to be screwed up so that the latter holds the wormwheels firmly in their position; it follows, then, that if the drill is set in motion, the threads upon the
spindle will act upon the teeth of the worm-wheels exactly as in an nur, and a quick deseent of the spindle will be the result. If now the friction is slighatly relaxed, then the speed of the descent of the spindle will have diminished so muel as is due to the slipping round of the worm-wheels. In this mamer any amount of feed motion may be communicated to the spindle with a nicety unattainable by any other means, so that the varying hardness of the metal under action may be immediately accommodated by a speed exactly suitable for cutting most adrantageously. The table of the machine is provided most completely with all the requisite movements, and may be raised or luwered to suit the work by a pinion working in a vertical rack attached to the front of the frame.

In Fige 3652 to 0659 we have given complete views of Messrs. Na-nyth \& Gavkell's drilling-machine, which differs from the last specimen in the fact of its being destitute of a self-acting feed motion. The downward pressure necessary for the feed of the tool being given by the pressure of the foot acting on a bottom lever, which is connected by a vertical rod at the back of the frame, with a second lever working on a bearing at the top. The front end of this lever works a sliding bearing fitting on the top of the spindle, which thus receives a downward motion aceording to the pressure of the foot, the counter-weight on the back end of the lever bringing up the spindle again, on the lever being released from the pressure of the foot. This, as an independent variable motion, is very convenient, though inferior in nicety to that used by Mr. Whitworth.

Fig. 3476 is a front view of the self-acting feed motion applied by Mr. Lewis, of Manchester, to a wall-side drill. Here the vertical spindle a carries a bevel- \boldsymbol{w} heel b, into which a second bevel-wheel c on the driving cone-shaft geers. The spindle works in two bearings $d d$, attached to a vertical plate bolted to the wall. A small spur-wheel e is keyed on the spindle, a little above the lower bearing; this wheel geers with a sccond wheel f, which carries a sliding bu-h g, so that it may be thrown in and out of geer whth the driving-whect e at pleasure. The shaft h, carrying this latter wheel, passes up the side of the drill, and carries a second spur-pinion k at its upper extremity, geering with at large wheel l, the bush of which carries an ant warking on the screw m on the spindle.

This motion may be driven by hand at pleasure by disconnecting the wheel f and working a hand-wheed fised on the spindle h.
This may be taken as a specimen of the best kind of self-feeding motions: it is compact, effective, and inexpensive.

Of pillar drills, the modification introduced by Mesirs. Randolph, Elliot \& Co., of Glasgow, is one of the most compact. This drill is certainly the simplest and mo-t generally applicable of its class, its component parts being confined to a set of brackets to carry the drill-spindle, without any additional frame, the office of which is supplied by any of the pillars of the workshop. The spindle-brackets, as well as those for surporting the table, are clamp-bolted to the pillar-the spindle beiner worked either directly through at-peced cons: or by double geering, as applied to lathes gencrally: The selfacting feed motion in its general details is similar to that of Mr. Lewis. The table is provided with a -trong central fort, to which two projectfurs brackets at the fone of the pilkar are loolted; it is thas fixed immovably, and so far lacks the inmortant advantage porsiesed ly a movable table. In come varioties of drills the feed motion is contined entircly to the table: which is worked by a rack and pinion mowement, ite werifht being balanced by"a comerpuise attached to a damp pass-
 ing over : pulley on the top of the fratme. In dritts in-

 maker to his urdinary vertial mathon.

working in a bearing on the top of the radial arm immediately over the centre of the screw-motion being communicated from it to the drill-spindle by means of berel geer as in Mr. Whitworth's machine The additional horizontal traversing motion of the spindle is effected by means of a pinion keyed on a hand-wlieel shaft and geering into a rack on the radial arm ; the downward motion for the feed is given by hand by means of an overhead ratchet lever connected to a ratchet-wheel on a short horizontal shatt, over which a chain connected to a cross-head on the drill-spindle is wound. A rod from this lever is brought within the reach of the workman, so that he can depress the spindle at pleasure, the upward motion leing accomplished by means of a counter-weight attached to a chain-pulley on the ratchetwheel shaft. A somewhat similar mode of central movement has been adopted by Mr. Bodmer in his improved radial drill. Here the main central support consists of a strong hollow cirenlar pillar provided with wrought-iron centres at top and bottom, upon which it revolves. A screw passes down the centre of this pillar, and carries a nut attached to a bevel-whecl on a bracket projecting through a vertical slot in the pillar. This bracket is serewed to the radial arm of the machine, and is raised or lowered by a lever handle on a shaft carrying a bevel-wheel geering with the one referred to above as carrying the nut on the central screw. 'I'he driving geer consists of an overhead horizontal shaft carrying a bevelpinion working in a large bevel-wheel on the top of the supporting pillar; the latter carries a spurwheel geering with a pinion on a vertical grooved shaft working in bearings attached to the pillar. This shaft earries a sliding oevel-wheel provided with a key to fit its groove, so that it is at liberty to rise and fall with the radial arm without revolving loosely on its shaft. From this bevel-wheel motion is transmitted by a train of geering to the drill-spindle in the radial arm, in the usual manner. The self-acting feed motion is highly ingenious and effective; the horizontal driving-shaft of the radial arm carries a small band-pulley from which motion is given to a short horizontal worm-wheel shaft, the worm of which geers with a wheel on an upright shaft earrying a long pinion on its upper extremity. This pinion geers with a spur-wheel attached to the nut of the top driving-serew of the spindle, which thus receives a regular descending motion according to its boring speed. By detaching this geering, the long pinion may be worked by hand at pleasure. Although for some specific purposes this species of drill is highly useful, yet where great accuracy is required, it is inferior to the ordinary pillar or wallside machine on account of its want of steadiness and rigidity.

Boring machines are, abstractedly, merely modifications of the larger class of drills, and are applied to the same purposes.

They are divisible into two classes, namely, horizontal and vertical machines. The latter species of machine is generally considered to be the most useful for engineering works, and there is no donbt that it possesses some great advantages over the former one. In the first place, the vertical position of the eylinder entails no transverse strain upon it, which would be pretty considerable in a cylinder of large size placed horizontally. Such a strain wonld, of course, render the action of the tool extremely uncertain, and would detract materially from the required true surface. Again, the boring-bar may in some sort be considered as liable to the same disadrantage which its vertical position remedies. Lastly, the action of the cutters is not at all impeded by the prescnce of the turnings, which immediately fall to the foot of the cylinder and leave the cutter free at each progressive step. The most converient and secure place for a boring-machine of a large size is the corner of the workshop, where the two angular walls form firm supports for the framing of the machine.

Messrs. Nasmyth \& Gaskell have produced a useful tool of this particular class; the framing consists of a stout circular bottom easting, provided with a elamping ring for holding down the eylinder in the act of boring, and an overhead cross-beam for carrying the upper extremity of the boring-bar spindle. The footstep of the boring-bar is placed beneath the gronnd floor of the shop, where, as well as for a portion of the driving, geering, an excavation is purposely made to receive them. The driving-pulleys are placed ontside this pit; they communicate with an oblique shaft, which carries a worm on its end, gecring with a large worm-wheel near the foot of the boring-bar, to which motion is thus given. The cutter-boss is traversed in the usual manner by a longitudinal serew in the bar, but a different method is adopted for returning it after the first rough ent. Immediately this is accomplished the eutter-boss is detached from the nut of the traversing screw, and is hauled up alone by a small crane attached to the machine; the cutters are then reset and the finishing eut is gone over.

A machine somewhat similar, but of gigantic dimensions, has been constructed by the same engineers for the Great Western Steam Navigation Company, for the purpose of boring ont the eylinders of the Great Britain steamer:

In this machine, the entablature earrying the upper end of the boring-bar is supported on two massive pillars of masomry, placed one on each side of the boring-bar. The feed-motion of the cutters is novel and ingenious in the extreme; it consists, primarily, of an internal screwed collar fixed on the upper surface of the entablature, and surrounding the boring-bar. A train of geering, terminating in a pinion Working into a rack running down the side of the boring-bar, is attached to the latter and revolves with it. The first wheel of the train is a species of crown-wheel, its teeth being set at right angles to its axis of motion; this geers with the internal threads of the screwed collar before mentioned, so that by this means, the train is set in motion by the revolution of the bar, and the cutter-boss, which is attached to the lower end of the rack, is raised and lowered at pleasure.

Mr. Walton, of Lecels, has introduced a highly effeetive boring machine, with columnar framing intended principally fur boring the apertures in the tube plates of locomotive engines. The machine is capable of drilling a series of parallel holes on a surface of five feet square, without refixing the object under operations, the tool-holder and the table being movable at right angles to each other. This boring machine may be considered as a magnified drill, as the spindle is fed longitudinally, no cutter-boss being attached. The framing consists of two plain columns, coupled at the top by a suitable entablature, and carrying two other transwerse beams for the support of the drill-spindle and driving-geer The self-feeding motion is similar to that illustrated by Fig. 3476 , and it may also he worked by hand in the same way

The spindle is capable of a vertieal travel of 24 inches, and is consequently well suited for boring out the small eylinders of loeomotives, de., as well as for boring out the eyes of carriage and othe wheels, which it will receive up to 6 feet in diameter.

Figs. 25.17 and 2545 nuw introduce to us the steond species of boring marhine, the horizontal one Our example is intended for the heaviest kind of work in the engine-shep, and is purposely very strongly constructed. The arrangement of the train of drivingegeer allows of a considerable latitnde of speril of the cutters; the changes by alteration in the geering permit of as suall a variation as 1 tolla so that any speed within the entire range may be obtained within $\frac{1}{6}$ th of the one required. In Figs. 2512 and 2543 we have given a still more complete tool by Mesers. Kimmonds, Huttom, and Stecel, of Duridee. It is provided with a slide-rest and tool-holder, and thus becomes available for turning ats well as boring. This is a very raluable machine, and where ground space is an object in the workhop, will be found highly convenient from the saving of space which it efticets. The proper speed at which the cutter should pass over the surlice of the metal may be stated as from 6 to 7 leet per minute, though this must, of course, be dependent in a considerable degree upon the relative hardness of the metal. Until a few years back, cannon were cast with a core, in the same manner as steam-engine cylinders are now. Experience has, however, pointed out the fallacy of this method, as it was impossible to make a true bore, the cutter having a tendency to fulluw the inaceuracies of the yet rough surface. In addition to this, the guns, when east hollow, have a tendency to become spongy near the inner surface of the bore. To remedy these defects, all ordnance are now east solid, and thus the metal is rendered eloser in the grain, and any "blown" or defective parts are confined to the eentre of the metal, when they are cut out in boring. "Guns are bored in a manner directly the reverse of that employed in pre paring stean engine cylinders. The bed of the machine employed for boring out guns is provided with two pedestals having bearings of a considerable diameter, in which the gun itself is caused to revols, the cutter remaining stationary on a sliding-earriage. The eutter is kept up to its work by means uf a weighted-lever, attached to a pinion-shaft beneath the bed of the machime. This pinion geers with at rach attached to the cutter-carriage, which is thus impelled forward towards the gun, until the weights in the loaded lever reach near the ground, when the lever is raised and the weghter reset by a ratelactwheel.

The punching machine, from being confined to the tin-smith and ornamental metal-worker's shop, has latterly become an instrument of no slight importance to the engineer, whene ponderous adaptations of this tool excite the greatest wonder in the mind of a stranger masecustomed to their operations. Here the punch or cutting tool seems to pass through an enomously thick piece of cold metal, as if the latter was so much pasteboard, the whele of the operation being conducted without producine the leant nowe.

In Fig. 317t we have given various views of a compaet and convenient punding madhene, constructed by Mes-rs. Caird, of Greenoek. The framing consists of one solid eastug, open in the centre for the reception of the large driving bevel-wheel on the horizontal punching-shatit. The driving peering aud Ay-wheel for steadying the motion are placed overhead, so as to be completely out o: the why, and leaving a clear space all round the machine for the workmen. The shearing and punching apparatus being on two opposite sides of the machine, these two operations may be conducted at the same time, without any risk of confusion amoner the men.

Of late years, the systen of riveting by steam power has made rapid progress, and promises in all large works to supersede entircly the old laborions and noisy process of rivetmer byand. We are indebted to Mr. Fairhairn, of Manchester, for the introdnction of this machine, who invented it upon ann. emergency to suply the loss of a set of hand riveters who had left their employment on account of
 apparatus. The essential principle of the machine is that of the knee-jeint lever, as applied to printingpresses. Notion is given to this lever by means of a revolvingeam driven by smathle geerime; this cam acting upon a loco: anti-friction pulley, placed at the centre joint of the lever. The saving hy the use of this mathine is very great, and, what is of m small consequence, the whole opratim of riveting is performed in silence; the system of presime, toe, has the alvamtige of hawing the met.ll of the rivets in its original state. liy the old phan of hammering, the bivets were extremely sulject to ery-tallization, and as a natural conseynence, numbers of the heals gave way in the timshur.

We have seen a section of two pimeas of buikerphate riveted turgether in tha mamar, the section bee
 chines hat forced, at it wore, the metal of the rivet into all the interatien of the plates, imeopmating

 row tules, which is sory it fomon !y contan I.

capable of being worked either by manual or mechanical power. The framing consists of a single: easting, having a stud keyed in the thickness of the metal near its top, for the purpose of carrying the fly-wheel and driving-pinion, which are east together. These work loose on the stud, the pinion geerin,; with a large spur-wheel keyed on the horizontal eccentric punching-shaft. A slot is cast through the centre of the frame for the reception of this shaft, suitable bearings for carrying it being placed within the slot; the projecting end of the shaft is slightly eccentric, for the purpose of giving motion to the vertical punching and shearing shaft. The latter consists of a heavy piece of metal, having a horizontal slot in the centre, for the purpose of allowing a clear space for the lateral working of the eccentric end of the driving-shaft. Suitable bearings are attached to the front of the frame, in which the punch-ing-shaft is arranged to slide, the top of the latter being the shearing end, and the bottom carrying the punch, the matrix for which is fixed in a projecting piece cast to the frame.
The machine is adapted to punch holes up to $\frac{3}{4}$ inch in diameter in plates $\frac{3}{8}$ inch in thickness, at any distance from the edge not exceeding $7 \frac{1}{2}$ inches, the frame being hollowed out to this extent to permit of the entrance of the plates. The shears are capable of cutting plates $\frac{3}{8}$ inch in thickness, and 12 inches breadth, without curling the piece sheared off.

The construction of this machine is exceedingly simple, and being set in an independent framing of its own, may be moved to any part of the workshop with facility. A somewhat similar machine, but much more complete in its details, has been constructed by Messrs. Nasmyth and Gaskell. Here the punching-slide is provided with four punches, by which means the same number of holes are punched at each stroke of the machine. The punching operation is also made self-acting, by an arrangement of a self-moving table for carrying the work. The plates intended to be punched are fixed in the usual manner on a travelling-table, moving on wheels set to run of a pair of triangular rails. A long notched bar is attached by means of brackets to the under side of this table; this is arranged to traverse the table in the following manner:-The large driving-wheel on the eccentric shaft carries a pin fixed in the side of its rim, which, once during each revolution, comes in contact with a lever connected to a ratchet-catch adapted to take into the notches of the bar before mentioned; thus each recolution of the spur-wheel causes the table to advance a distance equal to the length included between each noteh in the bar.

In Fig. 3100 we have detailed a machine intended for the bending of wrought-iron plates. This machine, owing to the increase of iron ship-building, has latterly risen to be of great importance to the engineer and ship-builder. The present machine being principally intended for the use of the shipbuilding yard, where few plates are required to have a regular curve throughout, is not provided with geering for simultaneously altering the positions of the ends of the front roller. This arrangement allows of the setting of one of the ends of the roller at any position with regard to the other, so as to give any required t wist to the plate.

In the original application of the bending-rollers to the curving of boiler plates, none of the rollers touch each other, and they are placed so that lines drawn from centre to centre form an equilateral triangle, the upper central roller being made adjustable for the different curvatures required; this arrangement is, however, now entirely superseded by that depicted in Mr. Napier's machine.

We take this oceasion to acknowledge our indebtedness to the Engineer and Machinist's Assistant, published by Blackin and Son, Glasgow, for the very valuable articles on Geering, as also this one on Tools. The work mentioned should be in the hands of every engineer and nachinist.

TOOLS, TURNING. The proeess of turning is accomplished with considerably more facility, truth, and expedition, than any other process requiring cutting tools, because in the most simple application of the art, the guide principle is always present, namely, that of rotation. The expedition of the process is due to its being uninterrupted or continuous, except as regards the progressive changes of the tooi, and which is slowly traversed from part to part, so as to be nearly always in action.

To choose the most simple condition, let us suppose the material to be in rotation upon a fixed axis, ond that a cutting tool is applied to its surface at fifty places. Provided the tool remain quiescent at me place for the period of one revolution of the material, the parts acted upon will each become one circle; because the space between the tool and the axis is for a period constant, and the revolution of the matcrial converts the distance of the tool from the centre into the radius of one circle, and the same is equally true of the fifty positions.

The fifty circles will be concentric, or parallel with each other, because the same axis, extended or nontinued as a line, remains constant, or is employed for each of them; and therefore conceiving the fifty eireles to be as many parts of the outline of a vase or other object, simple or complex, it will be strictly symmetrical, or equidistant from the central line at corresponding parts.

Each of the fifty circles will also become the margin of a plane at right angles to the axis, and which axls being a straight line, the whole of the circles will be parallel, and therefore the top and bottom of the vase will be also exactly parallel. And yet all these accurate results must inevitably occur, and that without any measurement, provided the material revolve on one fixed axis, and that the tool is fur a short period constant or stationary at each part of the surface-conditions inseparable from the turner's art.
The principle of rotation upon a fixed axis removes the necessity for many of the steps and measurements required to produce with accuracy the various angular solids employed in earpentry and many other arts.
The tumer's box consists of two pieces, as the bottom ard its four sides are resolved into one piecewhen of wood, by nature in the forest; when of metal, by man in the erucible. The surfaces are therefore reduced to eight, namely, the inner and outer surfaces of the bottom and lid amounting to four, and the ianer cand outer sides or margins, amounting to four also, and the revolution of the work upon one axis places the eight in exaet and true relation with extreme rapidity.

For example, the ends or terminal planes of the box are, from necessity, at right angles to the axis of rotation, and parallel with earh n!!eri. In each of th esn smerficies the question of being in or out of
xinding ceates; as, if straight, they can only be planes or cones, and which the one straight edge inmediately points out.
The principle of rotation insures circularity in the work, and perpendicularity or equality as regards the central line; it only remains, therefore, to attend to the outline or contur. The right line serves tu produce the cylinder, which is a common outline for a box; and the employment of mxed, flowing, ame arbitrary lines, produces vases and ormaments of all kinds, the beauty of which demands attention alone to one single clement, or conception, namely, that of form ; and in the chuice and production of which a just appreciation of drawing and propurtion greatly assist.

In the art of drawing, it is almost essential to the freedom of the result, that the lines should be de. lincated at once, and almost withont after correction; in the art of turming it is always desirable to copy a drawing or a sketch, but having nearly attained the end, the tool may be cominually reapplied, partially to remove any portions which may appear redundant, until the must scrupulous eye is satisfied.

The combining of the several parts of turned objects, as the separate blocks of which a colunn or other work is composed, is greatly facilitated from the respective parallelism of the ends of the pieces of which turned ol.jects cousist ; and the circular tenons and mortises, whether plain or screwed, place the different pieces perpendicular and central with very little trouble.

These several and most important facilities in the art of turning, are some amonget the many reasons for its laving obtained so extensive and valuable an employment in the more indispensable arts of life, as well as in its cleyrances.

The tools used in turning the woods act much in the manner of the blades of the carpenters planes; but as we have now, at all times, a circular guide in the lathe-mandrel, we do not require the stock of the plane or its rectilinear guide. Although if we conceive the sole of the plane applied ts the tangent to the circle, the position it would give is nearly retained, but we are no lunger encumbered with the stock or guide. In turning-tools for soft woods, the elevation of the tool and the anrle of its edge are each of them less than in ordimary planes, and in thoee for the hard woods both angles are greater.
For example, the softest woods are turned with tools the acute edges of which measure about 20 to :0 degrees, and are applied nearly in coincidence with the timgent, as in Fig. 347.

These tools closely assimilate to the spokeshave, which is the plane of the lowest pitch and keenest edge. On the contrary, the harde-t woals may be turned with the above soft-wood took, applied just
 80 demrees, and the face of tho tool is applied almost horizontally on the latherest, ur as a radins to the circle, as in lig 3 ITs, thus agrecing with the opposite extreme of the planes, in which the cutter is perpendieular and much lose acute, as in the seraping and towhing phame, which are only intended to scrape, and wot tos cut.
 or the bate of a colum, or simitar object in hart wood or ivory; but if we try the same ferole om deal. ash, and other soft would, we shall in wain attmpt to produce the capital of in colum, or ceno its es lindrical shaft, with a thick horizontal toul as in hard wood; fir the tithes would not bee cht, hat formbily turn a-under, and the -urface wouht he laft conere mind rugged.
But a reforence to the planes with which the joiner promeeds across the fibers of deal, will conver the

 lenisth.

faces are perfectly true or concentric ; as wide flat tools applied to rough irregular surfaces, espe cially of metal, would receive a vibratory, or rather an eadloug motion, quite incompatible with trutk of work.

Tlening-Tools for soft wood.-Angle 20° to 30°-Figures generally half size.-The tools most gencrally used for turning the soft woods are the gouge and chisel, Figs. 3478 to 3479 , wherein they are shown of one-fourth their medium size; they vary from one-cighth to two inches wide; and as they are never driven with the mallet, they do not require the shonlders of the carpenter's tools, they are alse ground differently. The turning gouge is ground externally and obliquely, so as to make the edge elliptical, and it is principally the middle portion of the edge which is used; the chisel is ground from both sides, and with an oblique edge, and Figs. 3481 and 3482 represent the full thickness of the chise ${ }^{1}$ and its ordinary angles, namely, about 25 to 30 degrees for soft, and 40 for hard woods. The gonges and chisels wider than one inch are almost invariably fixed in long landles, measuring with the bladea from 15 to 24 inches; the smaller tools have short handles, in all from $\&$ to 12 inches long.

Fig. 3477 shows the position of the gouge in turning the cylinder; the bevel lies at a tangent, and the tool gencrally rests on the middle of the back, or with the concave side upwards, the extremity of the handle is beld in the right hand close to the person, and the left hand grasps the blade, with the fingers folded beneath it, and in this manner the gouge is traversed along the eylinder.

For turning the flat surface the gouge is supported on its edge, that is, with the convex side towards the plane of the work, and with the handle nearly horizontal, to bring the centre of the chamfered edge in near coincidence with the plane; the tool is inclined rather more than the angle at which its chamfer is groond, and it is gradually thrust from the margin to the centre of the work.

The gouge is also used for hollow works, but this application is somewhat more diffienlt. For the internal plane, the position is almost the same as for the external, exeept that the blade is more incined horizontally, that it may be first applied in the centre to bore a shallow hole, after which the tool is iraversed across the plane by the depression of the hand which moves the tool as on a fulcrum, and it is also rotated in the hand about the fourth of a eircle, so that in completing the margin or the internal cylinder the tool may lie as in Fig. 3177, but with the convex instead of the concave side upward=, as there shown.

In Figs. 3483 and 3484 are represented the plans, and in Figs 3485 and 3186 the elevations of the hook-tools for soft wood, which maty be called internal gouges; they differ somewhat in size and form: the blades are from 6 to 12 inches long, the handles 12 to 15 . They are charpened from the point around the hook as far as the dotted lines, mostly on one, sometimes on both sides, as seen by the see-
tions. The hook-thols follow very nearly the motion of the gonge in hollowing, the rest is phated rathe di-tant and oblique; the tool is movel upon it as a futerum, imed it is also rotated in the ham i, so as al wars to phace the bevel of the tool at a very smat inclination to the tangent.
The fini-hing tools used subsequently to the goures on hook touk have straight edres; the chiech, Fir 8487, is the most common; its position closely resembles that of the gonge, subject to the modificationcalled for by its rectilinear edge. If, for example, the enge of the chisel were just parallel with the axis of the cylinder, it would take two wide a holdt there would be ri-k of one or other comer digring intu the work, and the edige, from ite parallelism with the fibres, would be apt to thar them out. All the-e inconveniences are aroided by pheine the edre ublique, as in Fire. 8157 , in which the tool may be supposed to be seen in phan, and proceedmy from right to kett, Fig. 3177^{7} being still true for the uther viow; the tool is turned over to proced from left to right, and both corners of the tool are removed from the nork, by the wbliquity of the edge. The tool may be groum square acrose, but it must be then behd in a more sloping pusition, which is less convenient.

Turning a that surface with the chisel is much more diflicult. The blade is placed quite on edge, ame with the chamfer in ayreement with the supposed plane abc, Firs. $\mathrm{Bl}_{1} 1^{\circ}$; the point of the chisel then cuts through the fibres, and removes a thin slice which beennes dished in creeping up a d, the bevel of the tond; it then arts comething like the seoringrpoint of the planes, or the point of a penknife. Flat surfines, e-pecially those surk beneath the surlace, as the in-ides of boxes, are frequently moothed with :an urdinary firmer chiech, which is ground and sharpened with one bevel, but rather thicker than for carpentry: The edge is then burnished like the scraper, and it is applied horizontatly like a hard-womb tome ats in Fig. :3tis, but againt the face or plane surfice. The wire edge then hes in the required po sition, but it must be frequently remwer.

The broad, represented in three views in Fige infse, embures much bonger, but it requires to be bell downwards or underned at about an angle of 40 to 50 decrees from the horizontal, in order to bring italge into the proper relation to the phane to be turned. Another form of the hom in also repmented in Figs. 3189 ; it is a eylindrical stem, uman the end of which is screwed at trimgular di.k of steel, some-
 -atme puition ats the last. Bronds of the forms be are also used, but primeipally for large work the plank way of the grain. Similar touls are alon uned for turning pewter warea.

For the in-ifes of eylindera the side toul, Fise ateo, which is reprenented in three views, is sometime
 views, serves buth for the side and the buthms of hap work, hat it does mot momit of be ine turned
 is considered to give it a luelfer purchate:

A good fair practice on the soft woods would be found very greatly to facilitate the general manipu lation of tools, as all those for the soft woods demand considerably more care as to their positions and management than those next to be described.

Turning-tools for hard wood and ivory.-Angles 40° to 80°-Figures generally half size.-The gouge is the preparatory tool for the hard as well as for the soft woods, but it is then ground lesa acutely; the soft-wood chisel may indeed be employed upon the hardest woods, but this is seldom done, because the tools with single bevels held in a horizontal position, as in Fig. 3478, are much more manageable, and on account of the different natures of the materials they are thoroughly suitable, notwithstanding that their edges are nearly as thick again as those of soft-wood tools. In general, also, the long handles of the latter are replaced by shorter ones, as in Figs. 3496 and 3497, measoring with the tools from 8 to 12 inches; but these give in general an abundant purchase, as from the nearly horizontal pe sition of the tool, the lathe-rest or support can be placed much nearer to the work.

The hard-wood tools are often applied to a considerable extent of the work at one time, and the finishing processes are much facilitated by selecting instruments the most nearly in correspondence with the required shapes. Rectilinear surfaces, such as cylinders, cones, and planes, whether external or internal, necessarily require tools also with rectilinear edges, which are sloped in various ways as regards their shafts; they are made both large and small, and of proportionate degrees of strength to suit works of different magnitudes. The following are some of the most useful kinds.

'The right-side tool, Fig. 3498 , ents on the side and end, the dotted lines being intender to indicate the molercut bevel of the edge-so named becanse it cuts from the right hand towards the isf. The left-side sool, Fig 3199, is just the reverse. The flat-too?, Fir. 3500, cuts on both sidrz, and on the end likewise;
and in all three tool; the angle seen in plan is less than a right angle, to alluw them to be appliel in rectangular corners. The point-tool, Fig. 35×5, is also very convenient; and brrel-tools, Figo, 3508 and 3587 , the halves of the former, are likewise employed; Fig $* 35$ ss show the general thickne-ses of these tools. When any of them are very narrow they are made propmtionally deep to give sufficient strength, the extreme case being the parting-tool, Fig. 3589 , which is no longer required to be thuted, as in the corresponding tool for soft wood; but the side-tools, when used for smatt and deep lofles, necessarily require to be small in both respects, as in Fig. 8590 . The inside parting-tool, Fig. 3591, is used for the removal of rings of jory from the interior of solid works, in preference in turning the materials into shavings ; it is also useful in some other undercut works.

Some of the curvilinear tools for hard wood are represented in the ammexed group of figures; the semicircular or round tool, Fig. 3592, is the most general, as concave mouldings camot be made without it, and it is frequently divided, as in the quarter round tools, Figs. 3593 and 3594 ; it is convenient that these should be exact counterparts of the mouldings, but they may also be used for works larger than themselvea, by sweeping the tools around the curves. Convex mouldings are frequently made by rec tilinear touls, which are carried rours' in a similar manner, so as to place the edge as a tampent to the curve, but the bead, Fig. 8595 , the astragal, lig. 3596 , or the quarter hollows, Figs. 8597 and 3595 tacilitate the processes, and complete the one member of the moulding at one sweep, and enable it to be repeated any number of times with exact uniformity

Frequently the tools are made to include several members, as the entire base or eapital of a column, as in Fig. 3599. Similar figured tools have been applied to turning profiles of about one or one and a half inches high, by employing four different tonk, umbracing each about a quarter of the protile, and applied at four radial positions, around a ring of some three to five inches diameter; the rings are cut ap into radial slices, and turned flat on each face prior to being glued upon tablets. Frofiles have been likewise successfully and more skilfully turned, by the ordinary romird, point, and that tools.
ligs, 3600 to 3603 represent some of the various kinds of inside tomte, which are required for hal. lowing vases and undercut work-; and Fig. $360 \pm$ the inside screid tonl, and Figs. 3 tion the outside serelo tool for hard wood, ivory, and the metals: theoe tools are made with many points, and are berelled like the rest of the group.
 as a file; but their swerps are morn aceurately shapened hy comical metal grimbers, ouphliend with
 the face. The ends of these touls may be whelted at a slope, if it lue more grathal than in Fing. Efillif.

 screw tools more e-pecially.

 texils.

3 BH

istiln.

copper, it only serapes with inconsiderable effect. A triangular file, Fig. 3609, similarly ground, cuta iron with great avidity and effect, but is far less suited to brass; it is too penetrative, and is disposed io dig into the work. It appears, indeed, that each different substance requires its own particular angle, from some circumstances of internal arrangement as to fibre or crystallization not easily accounted for.

I stout narrow round tool, Fig. 3592, in a long handle, serves as the gouge or roughing-out tool for bracs-work; others prefer the point, Fig. 3585 , with its end slightly rounded, which combines, as it were, the two tools with inereased strength; a small but strong right side tool, Fig. 3582, is also used in rough-turning ; the graver, Figs. 3611 and 3612, although occasionally employed for brass, is more proper for iron, described hereafter.

The wide finishing tools should not be resorted to under any circumstances until the work is roughedwat nearly to the shape, and reduced to perfect concentricity or truth, with narrow tools which only embrace a very small extent of the work.

It is the general impression that in taking the finishing cuts on brass it is impoiitic, either to employ wide tools, or to support them in a rigid solid manner upon the rest, as it is apt to make the work full of fine lines or strise. This effect is perhaps jointly attributable to the facility of vibration which exists in brass and similar alloys, to the circumstance of their being frequently used in thin pieces on the score of economy, and to their being rotated more rapidly in the lathe than iron and steel, to expedite the progress of the work.

When a wide flat tool is laid cluse down on the rest, and made to cut with equal effeet throughout its width, lines are very likely to appear on the metal, and which if thin, rings like a bell from the vibration into which it is put; but if the one corner of the tool penetrate the work to the extent of the thiekness of the shaving, whilst the other is just flush with the surface, or out of work, the vibration is lessened, and that whether the penetrating angle or the other move in advance.

The brass-turner frequently supports the smoothing-tool upon the one edge only, and keeps the other slightly elevated from the rest by the twist of the hand, which thus appears to serve as a cushion or spring to annul the vibrations: Fig. 3610 shows about the greatest inclination of the tool. Some workmen with the same view interpose the finger between the tool and the rest, in taking very light finishing euts. The gencral practice, however, is to give the tool a constact rotative shufling motion upon the supported edge, never allowing it to remain strictly quiet, by which the direction of the edge of the tool is continually changed, so as not to meet in parallelism any former strix which may have been formed, as that wouid tend to keep up the exciting cause, namely, the vibration of the metal. The more the inclination of the tool, the greater is the disposition to turn the cylinder into small hollows.

Some workmen burnish the edges of the finishing tools for brass, like the joiners' scraper, or the firmer chisel used in soft-wood turning. On account of the greater hardness and thickness of the edge of the tool, it camot be supposed that in these cases any very sensible amount of burr or wire edge is thrown up. The act appears chiefly to impart to the tool the smoothness and gloss of the burnisher. and to cause it, in its turn, to burnish rather than cut the work; the gas-fitters call it a planishing tool, but such tools should never be used for accurate works until the surface is perfectly true and smooth.

The hard-wood and brass-turners avoid the continual necessity for twisting the lathe-rest in its socket to various angular positions, as they mostly retain it parallel with the mandrel, and in turning hollow works they support the tool upon an arm-rest; this is a straight bar of iron, which resembles a longhandled tool, but it has a rectangular stud at the end, to prevent the cutting-tool from sliding off.

The position of the arm-rest and tool, as seen in plan, are therefore nearly that of a right angle; the former is held under the left arm, the latter in the right hand of the workman, the fore-fingers of each hand being stretched out to meet near the end of the tool. This may appear a difficult method, bnt it is in all respects exceedingly commodious, and gives considerable freedom and choice of position in managing the tool, the advantage of which is particularly felt in guiding the first entry of the drill, or the path of the serew-tool ; and in brass-work it likewise renders the additional service of associating the tool with the elastic frame of the man. But when particular firmness and accuracy are required the tool should be supported upon the solid rest as usual.

T'rining-tools for iron, steel, etc-Angles 60° to 00°-Figures generally one-sixth the full size.The triangular tool is one of the most effective in turning these metals, as was adverted to above; the triangular tool is also used by the engravers and others for scraping the surfaces of the metals, and it is then applied nearly perpendicular, or as a penknife in erasing ; but when the triangular tool is placed nearly as a tangent against the inner or outer edge of a ring or cylinder, as in Fig. 3609, it seems almost to derour the metal, and instead of scratching, it brings off coarse long shavings. In turning the flat sides of the ring, the face of the tool is placed almost in agreement with the plane to be turned.

The graver, which is also an exceedingly general tool, is a square bar of steel ground off at the end, diagonally and obliqnely, generally at an angle of from 30 to 50 degrees. The parts principally used are the two last portions of the edre close to the point, and to strengthen the end of the tool a minute facet is sometimes ground off, nearly at right angles to the broad chamfer, or principal face.

The proper position of the tool in turning a cylinder, will be most readily pointed out by laying the chanfer of the tool in exact contact with the flat exd of such eyliuder; it will be then found that one of the lateral angles of the tool will touch the rest, and the obliquity in the shaft of the tool would be the angle, at which the graver is gromd, instead of which it is held square and slightly elevated above the horizontal position, as shown in Fig. 3611. The graver is rotated upon the supporting angle, which sticks into the rest, muel the same as the edge of the triangular tool; in fact, the two tools, although different in form, remove the shaving in a very similar manner.

In using the graver and other tools for the metals, it is the aim to avoid exposing the end of the tool to the rough gritty surface of the material. This is done by eleaning the surface, especially the extreta. edge, with an old file, and beginuing at that edge, the work is at one sweep reduced nearly to its required diameter by a wide thin cut, which may be compared with a chmontr, or a conieal fillet, cont
necting the rough external surface with the snmoth reducell eylinder. Therefore after the fir-t entry, the point of the tonl is buried in the elean metal beluw the crint, and works haterally, which is indeed the general path of pointed tools for metal.

When the graver is usel in the turn-bench with intermitent motion, as for the pipot-of watches, the axes for sextants, and ofl:er delieate works, it is applied overhand, or inverted, its in lifs. 3612 ; but it is then nece-ary to withdraw the tool during each back stroke of the low, tw avoid the destruction of the acute point, and which alone is used. The graver, when thus applied in lathes with contimous motion, is only mored on the rest as on a fulerum, and in the plame in which it lies, rather as a test of work dune, than as an active instrument.

The edre of the graver is afterwards used for smonthing the stronger kimls of work; it is then neecssary to incline the toul horizontally, to near the angle at which it is ground, in order to lring the sloping edge parallel with the surface. But the smothing is better done by a thick narrow flat took, ground at about sixty degrees, the handle of which is raizel slifhtly above the horizontal, as in lig. 3613 , in order that its edge may approach the tangential position; here also the tool is rotated on one edere, after the maner of the brass towh or the graver.

For many slight purposes requiring rather delieacy that strugeth, as in finithing the rounded etlee of a washer, the that tool is inverted or placed bevel upwards, as in Fig. 361t; the lower side then l_{n} comes the tangent, and the edge the axis of rotation of the toul, the same as in tuming convex mouldings with the -oft-woul chisel. Indeed, many anaturies may be traced between the tools respectively ued for suft womls and iron, except that the latter are groms at alyont twice the angle to meet the increased resistance of the hard metal, anil the tools are mostly sustanel hy the direct support of the rest, in-tead of resting in great measure again-t the hambs of the individual.

edge travels in short ares, and when its position becomes too inclined, a fresh footing is taken; on this account the straight handle, employed in ordinary tools, is exchanged for the transverse handle represented. In the best form of heel-tools the square shaft lies in a groore in the long handle, and is fixed by an eye-bolt and nut, passing through the transverse handle, as seen in the section, Fig. 3618. Notwithstanding the great difference the materials upon which the gouge and heel-tool are employed, their management is equally easy, as in the latter the rest sustains the great pressure, leaving the guidance alone to the individual.

Fig. 3619 represents another kind of hook-tool for iron, which is curiously, like the tools Figs. 3483 to 3484, p. 707, used for soft wood, the common differences being here also observable, namely, the increased strength of edge, and that the one edge is placed upon the rest to secure a firm footing or hold.

Nail-head tools are made much on the same principle: one of these, Fig. 3620, is like a cylinder, terminating in a chamfered overhanging disk, to be rolled along so as to follow the course of the work, but it is rather a theoretical than practical instrument. When, however, the tool is mate of a square or rectangular bar, and with two edges, as at Fig. 3621, it is excellent, and its flat termination greatly assists in imparting the rectilinear form to the work. Occasionally the bar is simply bent up at the end to present only one edge, as in Fig. 3622 ; it is then necessary the curved part should be jagged as a file to cause it to dig into the rest like the others of its class, and which present some analogy to the soft-wood tools, Figs. 3488 and 3489, p. 707.
The cranked, or hanging tools, Fig. 3623, are made to embrace the rest, by which they are prevented from sliding away, without the necessity for the points and edges of the heel-tools; the escape of the cranked-tool sideways is prevented by the pin inserted in one of the several holes of the rest. The direct penetration is caused by the depression of the hand; the sideway motion by rotating the tool by its transverse handle, which is frequently a hand-vice temporarily screwed upon the shaft. To save the trouble of continually shifting the lathe-rest, an iron wedge (not represented) is generally introduced at a, between the rest and the back of the tool; when the wedge is advanced at intervals it sets the tool deeper into the work, when it is withdrawn it allows more room for the removal of the tool.

Fig. 3624 represents a tool of nearly similar kind; the stock is of iron, and it carries a piece of steel, about three or four inches long, and one inch square, which is forged hollow on the faces by means of the fuller, to leave less to be ground away on the stone. The rectilinear edges of this tool are used for smoothing iron rollers, iron ordnance, and other works turned by hand, and to preserve the edge of the tool, thin spills of hard wood are sometimes placed between the cutter and the bar. Under favorable arrangements these tools also are managed with great facility; indeed, it occasionally happens that the weight of the handle just supplies the necessary pressure to advance the tool, so that they will rest in proper action without being touched by the hand; a tolerable proof of the trifling muscular effort oceasionally required, when the tools are judiciously moulded and well applied.

These hand-tools, and various others of the same kinds, although formerly much used by the millwrights, are now in a great measure replaced by the fixed tools applied in the sliding-rest.

Fined or machine tools for terming and planing.-Angles as in the hand-tools-Figures generally one-fourth to one-cighth the full size.-The performance of fixed tools is, in general, much more effective than that of hand-tools; as the rigid guides and slides now employed do not suffer the muscular fatigue of the man, nor do they experience those fluctuations of position to which his hand is liable. Therefore, as the tool pursues one constant undeviating course, the corresponding results are obtained both more economically and more accurately by the intervention of the gride-prineiple, or the slide-rest, from which we derive the side-lathe, and thence the planing maeline, and many other most invaluable tools.
The cutting edges of machine-tools mostly follow the same circumstances as those of hand-tools, but additional care is required in forming them upon principle; because the shafts of the fixed tools are generally placed, with little power of deviation, either at right angles to, or parallel with, the surfaces to be wrought; the tools are then held in the iron grasp of screws and clamps, in mortises, staples, and grooves. The tools do not, therefore, admit of the same accommodation of position, to compensate for erroncous construction, or subsequent deterioration from wear, as when they are held in the hand of the workman, and directed by his judgment.

It must also be additionally borne in mind that, however ponderons, elaborate, or costly the machine may be, its effectiveness entircly depends upon the proper adaptation and endurance of the cutling-tool, through the ageney of which it produces its results.

The usual position of the fixed turning-tools is the horizontal line, as at α, Fig. 3025 ; and unless the tools always lie on the radius, (or any other predetermined line.) various interferences occur. For instance, the tool praceeding in cither of the lines b or c, could not reach the centre of the work, and a portion would then escape being wrought; the curvature of the circle at b would sacrifice the proper angle, and expose the tool to fracture from the obliquity of the strain; and at e, the edge would be altogether out of contact, and the tool could only rub and not cut. These evils increase with the dim inution of the circle; and although the diagram is greatly exaggerated for illustration, the want of centrality is in truth an evil of such magnitude that various contrivances are resorted to, by which either the entire slide-rest, or the cutter alone, may be exactly adjusted for height of centre.

The planing tonls for mnctals are in general fixed vertically, and the path of the work being, in the majority of planing-machines, rectilinear and horizontal, the tool may be placul at d, c or f, indiffer ently, there being no interference from curvature as in turning.
In those modifications of the planing-nachine in which, as in lormel's monti-ing-tugine, the cutter travels perpendicularly, and is also fixed perpendiculaty, as in the keygroove of slotitegngines, and the paring-engines, the general forn of the tool f, or that of a strons parine chiect, is retained, but the
 expect with its entting edie, and the length of the toul supplies a little elanticity to reline the frietion of the tack stroke.

Although all the various forms of hand-turning tools are more or less employed as fixed fools, still the greater part of the work is clone with the puint-tool, (sucla as g. in the plan Fig. 36e 0 .) the angle of which shoult be slighty rounded; but for working into an angle, the point of the tool is thrown ull as at h, so that its shaft may awod either side of the angle, and it is then called a side-tool. lour internal works, and in small afertures especially, the abrupt curvature requires particular attention to the central prosition of the tow i, and a frequent sacritice of the most proper form of the chamfer or edge. Wo will now describe a few of the slide-rest tools in the previens order, namely, those for suft wemt, for hard wood, for bra-s, and for iron.

The fircd tools for sotit wood require the sance acute edfes and nearly tangential pu-itions as those usel by hand; and if thee combitions exist, it is quite immaterial whe haer the tond torbeh the work ubove or beluw the contre; but the central hane, of a, l'irs. 2625 , is the must usual. 'Ihe soft word gouge, or hook-tool, is succes-fully imitated by mahing moblique hole in the en of a lar of steel, as seen in two views in l'is. :afon, but it is not very lastime ; or a bar of sted may he bent to the form of
 chisel, Dut neither of the ene touls almits in itself of andjutment for contre.
 only an inch or two lopge and with at eyfindreal stem ato an inch or two fon , by which it may be re-

 arrainst the sidus.

 after adwerted to.
 Vot. 11.-1:1
sidered in one group; the principal difference is, that the tools for brass present an angle of nearly 90 degrees, the touls for iron an angle of 60 , to the superficies to be wrought. Indeed, the angles or edges of the cube may be considered as the generic forms of the tools for brass, and the angles or edges of the tetrahedron, as the generic forms of the tools for iron; that is, supposing the edges or planes of these solids to be laid almost in contact with the line of motion or of the ent, in order that they may fultil the constant conditions of the paring tools.

The fixcd tools for brass and similar alloys resemble, as in hand-turning, the more simple of the hard wood tools, except that they are sharpened a triffe thicker on the edge; they are, however, nearly re stricted to the point-tool, the narrow round tool, and to the side-tool, which is represented at j, Fig. 362 , $;$ It is ground so that the two cutting edges meet at an angle not exceeding about 80 degrees, that in proceeding into rectangular comers it may clear each face by about five degrees, and it will then cut in either direction, so as to proceed into the angle upon the cylindrical line, and to leave it upon the plane surface, or it may be applied just in the reverse manner without intermission.

When the tool is used for rough work the corner is slightly rounded, but in finishing it is usually quite sharp; and as it differs only some ten degrees from the solid angle of a cube, it is abundantly strong. If the tools acted upon a considerable extent or width of the brass, they would be liable to be set in vibration; but as the paths of the cutters are determined by the guide principle employed, the point fulfils all that can be desired.

The fixed tools for iron present more difficulties than the generality of the foregoing kinds; first, the edges of the tools are thinner and more interfered with in the act of grinding, as the vertical height of the cutting edge is reduced when either face of the wedge is ground; and secondly, they are exposed to far more severe strains from the greater hardness of the material, and the less sparing manner in which it is reduced or wrought, owing to its smaller price and other circumstances; and therefore, the most proper and cconomic forms of the tools for iron are highly deserving of attention.

The fracture of a tool when it is overloaded commonly points out the line of greatest resistance or strain. The tool, Fig. 3629, although apparently keen, is very weak, and it is besides disposed to pursue the line at which its wedge-formed extremity meets the work, or to penetrate at an angle of some 30 degrees. Fig. 3629 would probably break through a line drawn nearly parallel with the face $a b$ of the work under formation; that portion should therefore be made very nearly parallel with $a b$, the line of resistance, in order to impart to the tool the strength of the entire section of the steel; so that should it now break it will have a much longer line of fracture. The tool thus altered is very proper for brass, an alloy upon which acute tools cannot be favorably employed.

But with the obtuse edge of Fig. 3630 other metals will be only removed with considerable labor, as it must be remembered the tool is a wedge, and must iusinuate itself as such amongst the fibres of the material. To give the strengthened tool the proper degree of penetration, the upper face is next sloped, as in Fig. 3631, to that angle in which the minimum of friction and the maximum of durability of the edge most nearly meet; and which, for iron, is shown to be about 60 degrees, as in the triangular tool, Fig. 3609. The three planes of pointed tools for iron, meeting at 60 degrees, constitute the angle of the te-
 trahedron, or the solid with four equilateral planes, like a triangular pyramid, the base and sides of which are exactly alike.

But the form of Fig. 3631 would be soon lost in the act of grinding; therefore, to conelude, the tool is made in the bent form of Fig. 3632, in which the angles of Fig. 3631 are retained, and the tool may be many times ground without departing from its most proper form. This is in effect extending the angle of the tetrahedron into the triangular prism ground off obliquely, or rather, as seen in the front view, Fig. 3633, into a prism of five sides, the front angle of which varies from 60 degrees to 120 degrees, and is slightly rounded, the latter being most suitable for rough work; sometimes the front of the prism is halfround, at other times quite flat: these forms are shown in Fig. 3639.

The extremities of Figs. 3631 and 3632 approach very closely to the form of the graver used for engraving on steel and copper-plates, than which no instrument works more perfectly. The slender graver, whether square or lozenge, is slightly bent, and las a tlattened handle, so that the ridge behird the point may lie so nearly parallel with, and so completely buried in, the line or groore under formation, as to be prevented or checked by the surface contact from digging into the work. This is another comfirmation of the fact that the line of penetration is that of the lower face of the cutter or wedge, or that touching the work.
In adopting the crank-formed tools, Fig. 3632, the principle must not be carried into exeess, as it must be remembered we can never expunge elasticity from our materials, whether viewed in relation to the machine, the tool, or the work.
The tool should be always grasped as near the end as practicable, therefore the hook or crank should occupy but little length; as the distance from the supposed line of the fixing-serew c to the edge of the tool being doubled, the flexure of the instrument will be four-fohl; when trebled, nine-fold; in fact, as the square. And also as the flexure may be supposed to occur from near the centre of the bar, (that s, neglecting the crook, the point of the tool should not extend beyond the central line 0 ; otherwise when the tool bends, its point would dig still decper into the work from its rotation on the intersection of c and o; the point situated behind the central lize wonld spring avocy from, or out of, instead of into the work. To extend the wear of the cranked tools they are commonly forged so that the point is nearly level with the upper surface of the shaft, as in Fig. 363s; they then admit of being many times ground before they reach the central line, and they are ultimately ground (always at the end of the prism and obliquely) until the hook is entirely lo-t. This avoids such frequent recurrence to the forge tire, but it is a departure from the right priaciple to allow the point to extend beyond the centre line o.

The works of the lathe and planing-machine frequently present angles or rebates, chamfers, grooves and under-cut lines, which require that the tool should be bent about in various ways, in order that their edges may retain as nearly as possible the same relations to all these surfaces, as the ordinary surfacing tools, Figs. 3631 and : $: 632$, have to the plane $a b$. For instance, the slaft of the tool Fifg $\ddot{0631}$, when bent at about the angle of 45 degrees, becomes a side cutting and facing toul, as shown in plan in Fig. 3634, in elevation in Fig. 8635, and in perspective in Fig. sibso ; and in like manner the cranked toul, Fig. 3682, when alio bent as in Fig. 3681, becomes Fig. 6637 , ind is aksu adapted to work. ing into angular corners upon cither face.

Mr. Nasmyth's thol-gage, shomn in clevation in Fig. 363s, and in 1 lan in Fig. 3639, entirely removes the uncertainty of the angles given to these irregular bent tools; for instance, when the shaft of the tool is laid upon the flat surface and applied to the iron cone c, whose side measures about 3° with the perpendicular, it serves with equal truth for s, the tool for surfaces; p and f, the side-cutting tools, used also for perpendicular cuts and fillets; and u for under cut works.

In applying tools to lathe works of small diameters, it is necessary to be very exact, and not to place them above the centre, or they immediately rub; and as this soon occurs with touls having so small au angle, it appears de-irable to make the cone-gage for small lathe works of about twiee the given angle, and to mark upon the cone a circle exactly indicative of the beight of ecntre; the tool can be then packed up tu the centre line, with one or two lips of sheet-iron, to be afterwards placed beneath the tool when it is fixed in the latherest. In small hollow works, the most lanting or the crank-formed tools are entirely inapplicable; indeed, so much attention is required to preveat the toul from rubbing agnint the interion surfaces, that the ordinary angles cannot be employed, and the cone gage censes to he useful, but in every other case it should be constantly resorted to ; the additional thickiness a is required to make it applicable to the crank fomed tools.

tate the process of sharpening without altering the character of the edge, which continued under the same circumstances as when solid.

About sixteen years back the author made for his orn use a tool such as Fig. 3640, but found that with rough nsage the cutter was shivered away, on account of its lreadth, and he was soon led to substitute for the solid eylinder a triangular cutter, the final edge of which was slightly rounded, and placed more nearly perpendicular, in a split socket with a side screw, as in Fig. 3641. The strength of the edge was greatly increased, and it became, in fact, an exact copy of the most farorable kind of tool for the lathe or planing-machine, retaining the advantage that the original form could be always kept: with the smallest expenditure of time, and without continually reforging the blade, to the manifest deterioration of the steel from passing so frequently through the fire; it being only requisite to grind its extremity like a common graver, and to place it so much higher in the stock as to keep the edge at all times true to the centre.

A right and a left hand side-tool for angles, the former seen in Figs. 3642 and 3643, were also made; the blade and set-screw were placed at about 45°, and at a sufficient vertical angle to clear both the iuside of a cylinder of three inches diameter and also to face the bottom or surface. These side-tools answered very well for cast-iron; but Fig. 3641, the ordinary surfacing tool, is excellent for all purposes, and has been employed in many extensive establishments.

The prismatic cutters admit of the usual variations of shape: sometimes two binding screws are used and occasionally a tail serew, to receive the direct strain of the cut. When the blades are only used for cutting in the one direction, say from right to left, they may, with advantage, be ground with a double inclination; for as all these pointed tools work laterally, the true inclination of some 60° to the narrow facet or fillet operated upon is then more strictly attained.

Considerable conomy results from this and several other applications, in which the cutter and its shaft are distinct parts. The small blades of steel admit of being formed with considerable ease and acenracy, and of being hardened in the most perfect manner. And when the cutters are fixed in strong bars or shafts of iron, they receive any required degree of strength, and the one shait or carriage will serve for any successive number of blades.

The blades are sometimes made flat, or convex in the front, and ground much thinner, to serve for soft wood; the tools for hard wood and ivory, being more easily ground, do not call for this application of detached blades.

In turning heavy works to their respective forms, a slow motion and strong pointed tools are employed; but in finishing these works with a quicker rate of motion, there is risk of putting the lathe in it slight tremor, more particularly from the small periodic shocks of the toothed wheels, which in light finishing cuts are no longer kept in close bearing as in stronger cuts.

Under these circumstances, were the tools rigid and penetrative, each ribration would produce a line or scratch upon the surface, but the finishing or hanging tools, Figs. 3644 and 3645, called also springing tools, which are made of varions curves and degrees of strength, yield to these small accidental motions. The first resembles in its angles the rest of the tools used for brass, the second those for iron; their edges are rectilinear, and sometimes an inch wide. The width and elasticity of these finishing tools prevent their acting otherwise than as scrapers for removing the slight superficial roughness withont detracting from the accuracy of form previously given. In a somewhat similar manner the broad hand that tool, rendered elastic by its partial support, as in Fig. 3610, is frequently used for smoothing brass works, and others turned with the slide-rest.

Figs. 3646 and 3647 represent a very excellent finishing tool, introduced by Mr. Clement, for plamng cast and wrought iron and steel; it resembles the cranked tools generally, bot is slighter; it is made smooth and flat upon the extremity, or rather in a very minnte degree rounded. This tool is sharpened very keenly upon the oil-stone, and is used for extrenely thin cuts, generally one-quarter of an inch wide, and when the corners just escape touching the work is left beautifully smooth; the edge should on no account stand in adrance of the centre line. But to avoid the chatters so liatle to occur in brass works, Mr. Clement prefers for that material the elastic planing-tool, Figs. 364 S and 2649 ; its edge is situated considerably behind the centre.

In concluding the notice of the turning tools it may be necessary to add a few words on those used for lead, tin, zine, copper, and their ordinary alloys. The softest of these metals, such as lead, tin, and soft pewter, may be turned with the ordinary tools for soft wood; but for the harder metals, such as
zine, and hard alloys containing much antimony, the tools resemble those used for the hard woods, and they are mostly employed dry.

Copper, which is much harder and tougher, is turned with tools similar to those for wrought-iron, but in general they are sharpened a little more keenly, and water is allowed to drop upon the work to lessen the risk of dragging or tearing up the face of the copper, a metal that neither admits of being turned or filed with the ordinary facility of most others. Silver and gold, having the temacious character of eop per, require similar turning tools, and they are generally lubricated with milk.

In the above, and nearly all the metals except iron and those of equal or superior hardness, there seems a dispuition to adhere, when by aceident the recently remored sharing gets forcibly pressed against a recently expozed surface, (the metals at the time being chemically clean;) this disposition to unite is nearly prevented when water or other fluid is used.

Water is oceasionally resorted to in turning wrought-iron and steel ; this causes the work to be left somewhat smoother, but it is not generally used, except in heary work, as it is apt to rust the machinery; oil fulfils the eame end, but it is too expensive for general purposes.

Cast-iron, baving a erystalline structure, the shavings =oon break without causing so much friction as the hard ductile metals; cast-iron is therefore always worked dry, even when the acute edges of 60 degrees are thickened to those of 80 or 90 , either from necessity, as in some of the small boring tooks, or from choice on the score of durability, as in the largest boring tools and others. Brass and gun metal are also worked dry, although the turning tools are nearly rectangular, as the copper becomes so far modified by the zinc or tin, that the alloys, although much less crystalline than cast-iron, and less ductile than copper, yield to the turning tools very cleanly without water.

But when tools" with rectangular edges are used for wrought-iron and steel, on account of the greater cohesiun of these materials, they must be lubricated with oil, greese, soap and water, or other matter, to prevent the metals from being tom. And the serew-cutting tools, many of which present much sur face friction, and also rectangular or still more obtuse edges, almost invariably require oil or other unctuous thids for all the metals.

In the practice of metal turning the diamond point $a b$, Fig. $\because S 45$, is occasionally used in turning hardened steel and other substances; il, Fig. 2stu, are constantly used in engraving by machinery, and in graduating mathematical instruments.

of the operator ; but in this the drill-spindle has not only the same vertical and revolving motions as in that form of the machine, but admits also of a lateral motion whereby it can be bronght over the work into any required position within the limits of the radial arm D , on which the whole drilling apparatus is carried.
The arrangement consists of a strong upright framing A A, Fig. 3650, with a sole by which it can be bolted to a stone foundation. To this is attached a vertical sliding bracket $B B B$, attached by dovetailed guides. This bracket is raised and lowered at pleasure, according to the height required for the work, by means of a handle which fits on the end of the tangent-screw L; this screw works into the tangent-wheel K , on the spindle of which is a small pinion which geers with a rack on the back of the bracket B B. The bracket is secured, when raised to its proper position, by the pinching-screw w, on the outer end of which a handle is fixed.
$\mathrm{C} C$ is the sole of the radial arm D D. It is supported in bearings at its extremities in the verticak slide B B, and by this means can swing through an are of 180 degrees. On this arm D D is carried movable slide, to which all the drilling apparatus is attached.

E is the pulley-cone by which motion is communicated to the machine. On the spindle of this cone is keyed the bevel-wheel f, which geers with the similar wheel marked e on the rertical spindle g. This spindle is provided with a sunk-feather to allow it to slide through the eye of the wheel e when the bracket is moved vertically. On the upper end of the spindle g is kejed the bevel-wheel h, which works into another similar wheel on the end of the horizontal. and hollow shaft G , which has its bearing in the boss F . This hollow shaft G has a groove-cut inside of it to receive a feather inserted into the spindle k, which passes into it, and with which it must of necessity turn by virtue of the connecting feather or key projecting from the surface of k. The other end of the spindle k has its extreme bearings in the slide, and has the bevel-wheel o keyed upon it; this wheel geers with that marked n on the drill-spindle. It is therefore clear that motion being commumicated to the driving pulley-cone E, it will be transferred to the bevel-pair f and $l e$, then to the similar bevel-pair at h, and from that point through g and k to the berel-pair o and n, the last of which is placed on the drill-spindle l with a sliding feather or key, as before explained.

We have described the wheel whing geers with that marked l, as being directly keved on the hollow
piece G; this, honever, is not the ease: the wheel is keyed on an independent hort spindle of its own which enters G in F, and connects itself also by a sunk $k e y$, so that the piece G is nothing more than a coupling for this spindle with that manked k, and can moreover be slid considerably further into the bosis F than is represented in the drawing, Fig. 365 ?.
The slide is muved along the radiak arm D by a crank-landle placed on the squared end of the screw $v{ }^{\prime}$, which pases through in nut fixed on the back of the slide in the usual mamer.
The slide moves along the arm in dovetail guides, as shown in the front view, Fig. 3653 ; on the upper side are the adju-ting piece c and setting-serews d.
As already stated, the feeding apparatns, and in fact all the drilling tackle, is identical in arrangement with that described on p. $35^{7}: p p$ are the friction-pulleys on the same axes as the serew-wheels which geer with the screwed part r of the drill-spindle. $q q$ are the friction-clips upon the pulleys $p p$, and s is the screwed rod by which the clips are brought into action.

For some special purposes the radial drill affords great convenience, but where mucla accuracy is required it cannot be so well depended upon ats the ordinary form, as it rarely possesses the requisite degree of rigidity.
It may be here observed, that the merit of first introducing this description of Jrilling machine is due to Messrs. Benjamin Hick \& Son, of Bolton.

 slwation of the mathine; Fig. 36.5:3, a fromt view.

Fig afot is a partin! ecetion thement the axia of the trill epindte.
life 3ti55, a cro -section above the table N, atowing the formi of the frame I A.
 withont wher tixing.

 bhown separately ly f"in : B6:

of pulleys is placed the belt, which directly gives motion to the drill-spindle by means of the bevel-pair a and \hat{b}, of which the wheel marked a is keyed on the guide-tube CC of the drill-spindle, and that marked b is fast on the rod of the same spindle on which are the cone-pulleys E.

G and II, a pair of pulleys, one fast and the other loose, by which the machine is driven. They are upon the same spindle as the lower cone-pulleys F , by which the motion is conveyed through a belt to the pulley E.

I, a link connecting the foot-lever J with the weighted lever L, one end of which enters a recess d of the sliding bracket $l h$, the sole of which is guided in dovetail grooves, formed by the pieces $b b b b$, scen in Fig. 3653. From this arrangement it is easy to perceive that when the foot is pressed upon the footboard at J, the link I will cause the weighted end of the lever L to ascend, and the other to descend; and at the same time the sliding bracket, into which is fitted the top of the drill-spindle.

The manner of attaching the drill-spindle to the sliding bracket is rendered obvious by Fig. 3654: the top is formed with a ruff upon it, which is kept in the screwed recess formed in c to receive it, by the hollow screw which bears against the under side of the ruff. The spindle is at the same time met above by a screwed steel pin. The end of this pin sustains the downward pressure when the foot is placed on the treddle J.
M is the bracket of the table N. The table is simply a plank of wood resting upon the top plate of the bracket.
As the travel of the drill-spindle is very limited, the table-bracket can be raised and lowered at pleasure, through the required range, by means of the screw S . Its sole is guided vertically by grooves $k k$ in the frame; this has also grooves formed in it to receive the heads of the setting-bolts $m m$, the nuts of which, being screwed tight, keep the bracket in its place. The bolt-heads are entered through the openings n, and slide down the grooves $l l$; the arrangement of the table-screw S, with the hand-wheel for working it, also its socket with the treddle-lever attached, are shown in plan, Fig. 3659.
Fig. 3656 is a plan of the sliding bracket for feeding the drill-spindle; and Fig. 3657 is a plan of the lever by which it is worked by means of the treddle and link I.
TORSION in mechanics is the twisting or wrenching of a body by the exertion of a lateral furce. If a slender rod of metal suspended vertically, and having its upper end fixed, be twisted through a certain angle by a force acting in a plane perpendicular to its axis, it will, on the removal of the force, untwist itself, or return in the opposite direction with a greater or less velocity, and, after a series of oscillations, will come to rest in its original position. The limits of torsion within which the body will return to its original state depend upon its elasticity. A fine wire of a few feet in length may be twisted through several revolutions without imparing its elasticity; and within those limits the force evolved is found to be perfectly regular, and directly proportional to the angular displacement from the position of rest. If the angular displacement exceeds a certain limit, the particles of the body will be wrenched asunder; or if the elasticity is not perfect, (as in a wire of lead, for example, before disruption takes place,) the particles will assume a new arrangement, or take a sct, and will nòt returu to their original position on the withdrawal of the disturbing force.
The resistance which cylinders or prisms formed of different substances oppose to torsion, furnishes one of the usual methods of determining the elasticity and strength of materials; and the property which a metallic wire or thread stretched by a small weight possesses of becoming twisted and untwisted in a series of isochronous and perfectly regular oscillations, has been ingeniously applied in the torsion balance to the measurement of very minute forces, and thereby to the establishment of the fundamental laws of electricity and magnetism, and to the determination of the mean density of the earth. See Balasce of Torsion.
The laws of torsion have been experimentally investigated by Coulomb in a rariety of substances; as metallic wires, hairs, fibres of silk, de. The method which he employed consisted in attaching a body of given form and dimensions to the extremity of the wire, and, after twisting it through a certain angle, to abandon it to the action of the force evolved, and observe the time of the oscillations. The following general laws were found to hold good:

1. On loading a wire or thread with different weights, it will settle in different positions of stability; that is to say, an index attached to the weight will point in different directions if the weight be varied, and the angular deviation may amount even to a whole circumference.
2. The oscillations are isochronous.
3. The time of oscillation is proportional to the square root of the weight which stretches the wire.
4. The time of oscillation is as the square root of the length of the wire.
5. The time of oscillation is inversely as the square of the diameter of the wire.

From the second of these laws it follows that when the wire is twisted round from the position of rest, the force with which it tends to return to that position is proportional to the angle to be described in order to attain it. For it is a general result of meehanics that all motions produced by forces acting according to this law have the property of tautochronism; that is to say, the oscillations are performed in equal times, whatever be the length of the arc. This fundamental property is usually enunciated by saying that the force of torsion is proportional to the angle of torsion.

Let F denote the force of torsion, measured by the weight which it would be necessary to apply by means of a pulley to a point p, situated at the unit of distance (one inch) from the axis of the wire, and iusariably connected with it, to cause the point p to describe an arc of a circle equal in length to the unit of distance; then, by the property enunciated, the force which must be applied at p in order that the point may describe any are ϕ is expressed by $\mathrm{F}^{\prime} \phi$. If the are of torsion is expressed in degrees instead of parts of the radius, we have $\phi=\pi \phi^{\circ} \div 180^{\circ}$ (π being the semicircumference to radius 1 , or $=3 \cdot 14159 ;$) whence the expression of the force becomes $\mathrm{F}+\pi \phi^{\circ} \div 180^{\circ}$.

On this principle of the proportionality of the impelling force to the angle or deviation the problen of determining the time of an oscillation is solved. Suppose a bolly of any form attached to the extremity of a slender wire, whose weight in comparison to that of the body may be neglected, and let
$d m$ be an element of the mass, r the distance of $d m$ from the axis of the wire, and T the time of ar oscillation; the sulution of the problem gives

$$
\mathrm{T}=\pi \sqrt{ }\left(\int \frac{r^{2} d m}{\mathrm{~F}}\right), \text { or } \mathrm{T}^{2}=\pi^{2} \int \frac{r^{2} d m}{\mathrm{~F}}
$$

The integral $\int r^{2} d m$ is the moment of incriac of the attached body: If the botly be a cylinder whose axis coincides with that of the wire, and if a denote its radius and II its masc, then $\int r^{2} d m= \pm \lambda a^{2}$; or, substituting the weight for the mase, and observing that if the weight be denuted by 1 ', and the aceclerating furce of gravity by $g\left(=321008\right.$ feet or 386.2891 inches in a second, we have $l^{\prime}=$

If the attached body were a slender cylindrical needle suspended horizontally by its middle to the wire, Te should, on denoting its length by l, have $\int r^{2} d^{I} m={ }_{3}^{1} M l^{2}$; whence $T=-l \sqrt{ } \frac{l^{\prime}}{3 g \mathrm{~F}^{\prime}}$

The following results are deduced from the formula: 1. The force of torsion is independent of the weight which stretehes the wire, or F remains constant while l' is varied. Fur suppose l' to become P^{\prime}, and let T" be the eorre-ponding time of oseillation, and l' the corresponding force, we have then

$$
\mathrm{T}^{2}=\frac{\pi^{2} a^{2} \mathrm{P}}{2 g \mathrm{~F}^{\prime}}, \mathrm{T}^{\prime 2}=\frac{\pi^{3} a^{2} \mathrm{P}^{\prime}}{2 g \mathrm{~F}^{\prime}}
$$

whence $\mathrm{T}^{2}: \mathrm{T}^{\prime 2}:: \mathrm{l}^{\prime} \mathrm{P}^{\prime}: \mathrm{l}^{\prime \prime} \mathrm{F}$. But, by the third experimental latw, $\mathrm{T}^{2}: \mathrm{T}^{\prime 2}:: \mathrm{P}: \mathrm{P}^{\prime}$; therefore $\mathrm{F}^{\prime}=\mathrm{F}$.
2. The force is inversely as the length of the wire. For, supposing P to remain constant, we have $\mathrm{T}^{2}: \mathrm{T}^{\prime 2}:: \mathrm{F}: \mathrm{F}$. But, by the fourth experimental law, $\mathrm{T}^{2}: \mathrm{T}^{\prime 2}:: l: l^{\prime}$; whence $\mathrm{F}^{\prime}: \mathrm{F}:: l: l^{\prime}$.
3. The force is proportional to the fourth power of the diameter of the wire. Let there be tro wires of the same substamee, but of different diameters, I) and D^{\prime}, and stretched by the same weight P '; and let T and T^{\prime} be the corresonding times. By the fifthexperimental law, we have $\mathrm{T}: \mathrm{T}^{\prime}:: \mathrm{D}^{\prime 2}: \mathrm{D}^{2}$. But it has been shown that $\mathrm{T}^{2}: \mathrm{T}^{\prime 2}:: \mathrm{F}^{\prime}: \mathrm{F}$; therefore $\mathrm{F}: \mathrm{F}^{\prime}:: \mathrm{D}^{4}: \mathrm{D}^{\prime 4}$.

To show the method of applying the formule, we shall compute one of the experiments of Coulomb. An iron wire was stretched by a sertical eylinder of 8 of an meh radius and weighing 21 be, and it was observed to make 20 oscillations in 242 sconds, or one in 12.1 seconds. It is proposed to determine the furce F. From the formula for the time of an oscillation we have, by transposition, $\mathrm{F}=\frac{\pi^{2} a^{2} 1^{2}}{2!1^{2}}$. Substituting numbers in this formula, we have $\pi^{2}=9 \operatorname{Sc} 96, a^{2}=64, \mathrm{P}=2, g=356.291, T^{2}=(1 \cdots 1)^{2}$ $=146 \cdot 41$; consequently $F=\frac{112033}{113118}=000117$ of a pound, or about $\% 8$ of a grain. Ifence the weight applied at the distance of one inch from the axis of the wire that would be required to twist the wire through a complete revolution, or $\ddot{U}^{\circ} 60^{\circ}$, is 6.288 times this quantity, or nearly five grains.

For the demonstration of the fundamental formula, namely, $\mathrm{T}^{2} \mathrm{~F}=\pi^{2} \int r^{2} d m$, sec Coulomiv, Thiorio des Machines T'imples; or Biot, T'raité de Physique. tom. i.

TRANSIT N'STRUMENT' for the corrcction of time-licepers. Mr. Dent had long felt persuaded that the interest of Horoloyy would be promoter if the public were more generally pusiessed of a cheap, simple, and correct transit instrument, requiring little or no scientific knowledge for its right use. and not readily suseeptible of injury or deramgement. To this end he had devoted much tame and thonght; and, in 140, he con-ilered that he had succeded in inventing an apparatus which, by means of shedones, would produce the desired result. This idea he communieated to J. ML. Blexam, biat, whe thereupon infomed him that hit own attention had for some years been devoted the same ubject, and that he hat eontrived an optical arrampement, which, by the areney of a smite and donble rethection, determind the suns pasage wer the meridian with great exactness. Convineed of the superionity of Ar. Bhowm's eentrivance, Mr. Dent, in conjumetion with that gentleman, after two years of great labor and experse, produced the instrment in its present simple and acemate form. It has hem made the subjeet of a patent, and may we hal, with complete instructions for its wee, from the maker and prepmintur, Mr. Dent.

 will be chowns from the tione.

The instrument consists of three reflecting planes D C, DB, and B C, Fig. 3661. D C represents the exterior plate of glass, which covers in the other two opaque glass surfaces D B and BC, set in the in terior of the instrument. Suppose D C to be so divided that the ray No. 1 falling on D C, at E, will be reflected to the eye at l^{\prime}, and the image of the sun will appear to advance in the direction from 11 towards C. The ray No. 2 passing through D C, is reflected from C B, impinges on D B, and reaches the eye in the direction 2^{\prime}. The image of the sun thus formed will appear to move from C towards D , bechuse it has been twice reflected, and thus the two images will approach each other. Suppose the ray No. 1 to have advanced to the position No. 3, and the ray No. 2 to the position No. 4 ; it will then be evident that their reflected rays will be in the same direetion 3^{\prime} and 4^{\prime}, and, therefore, that the two images of the sun coincide, as shown by the arrows being in the position of erossing each other, and indicating the instint of apparent noon; as the rays continue to advance, the images, having passed over each other, will, of course, be seen to separate.
The following familiar illustration is introduced to further explain the optical construction. When the sun is about setting, it is not uncommon to see the rays so reflected from the windows of a whole range of houses, as to convey the idea of a public illumination. While some portions of the sun's rays are thus reflected, other portions pass through the glass into the rooms. The rays thus transmitted (the rays of incidence, as they were styled above) may be thrown at pleasure in any direction consistent with the range of the sun, by a person within the room, having a looking-glass in his hand: exactly as children produce what they call a Jack-o'-Lantern. Now if, instead of throwing the rays upon a non-reflecting object, (such as the wall, \&c.,) he were to transfer them to another looking-glass, they would be again reflected from this latter glass. Supposing these two looking-glasses to be placed at an angle of less than 90°, in a mamer corresponding with the position of the two silvered planes seen in the instrument, and also shown in the figure at D B , B C, he can reflect the sun's rays again out of the window. Now, if we imagine the window to represent the outer reflector of the meridian instru.nent, its construction is, by this process, completely excmplified. To proceed a little further; it is evident, that the angle and situation of the two looking-glasses could be so arranged as to direct the rays of the sun through any particular pane of the window; so that a person standing without, in a proper position, would see, in addition to the sun's rays reflected from the outer surface of the pane, the rays of incidence that had passed through the window, and were thus reflected from the double mirror: One of the luminous objects (the flash or glare of the sun) so produced, wound be reflected from the surface of the window, and would be a single reflection; while the rays of incidence, which had passed through the window, and undergone a double reflection by means of the two mirrors would, on being thrown back by the mirrors through the window, move in a direction contrary to that taken by the single reflection from the surface of the window-pane. Hence, any one of the heavenly bodies, subjected to the eye by a process of the above description, would not only appear as two distinet objects, but those objects would be seen to approximate and cross each other in an opposite course: a desideratum being hereby secured which increases the power of the instrument in a double ratio, and renders it nroportionably preferable to any other that has been hitherto employed.

The Dipleidoscope, or new pateut meridian instrument, will enable any person to obtain correct time with the greatest facility, by an observation either of the transit of the sun over the meridian by day, or of the transit of the stars by night. It possesses great advantages over any other of similar correctness; it is exceedingly simple, it is not liable to get out of adjustment or repair, and it does not require any attention beyond that which is, of course, necessary in the first instance, viz., that it be placed on a level surface, and in the meridian. The observations to be taken afterwards can be made by any one, although previously unacquainted either with astronomical apparatus or practical astronomy; the instrument being as simple as a sun-dial, while it is infinitely more correct, since it gives the time to within a fraction of a second. The utility of possessing an indicator of this kind in addition to the most perfect time-keeper, must be cvident: for, however excellent a clock or watch may be, experience shows how difficult it is to obtain exact time, for lengthened periods, by any mere mechanical contrivance. To remedy the defect of mechanism, it has been already remarked, that actual observation of the heavenly bodies becomes indispensable; as, without it, the best time-keeper cannot be implicitly depended upon for any considerable interval.

TRIP-HAMMER. Fig. B662 is a side elevation of a small trip-hammer, such as is commonly used for forging spindles and bolts, and for swaging various other kinds of small wort

Fig. BfCR is an end clevation of the same. A is the driving-puller, with a flameh on each side to Fuide the belt while rumning looze. This pulley is attachel to the cam-shalt, upon the other ent of which is the halance-wheell:. C a fort-lever, connected with the catch b, ly a rod and spring, and has means of which the hammer can be stopped or startel without shipping the belt. 1', heel if timbera bolted together to support hammer. G. post in which the hammer-block is placed-noually extemding into the ground luw or tive feet. f is the hu-k-supporter or rocker, adjusted ly screws and bults, su that the hammer can be ert at any taper. S is a heavy cast-iron led-plate to which all uther part are connected. This plate is bolted firmly to the timbers below.

THIP or TILTNG HAMMELS. From the Lowell Machine Shop. Figs. 3664 and $36 G 5$ are side and end elevations of a tilting hammer, with a head weighing 250 lbs .
a is the driving pulley. As the velt runs loose around the pulley when the hammer is not in use here is a thanch on each side to keep the belt in its place.
13, large timbers on which the heavy fron-work rests.
1'. timbers disconnected with B , which support the blook S in which the lower die is fastened.

c, a spring of the best kind of timber, which serves as a stop for the bammer when raised, and gives furce to the Llow:
b is the cam, which raises the hammer twice in one revolution.
The hush of this hammer is hung in a rocking stand, adjusted by set-screirs and bolts, so that it can be set at any taper for drawiner tapering work.

This hammer is well adapted to swarmer car-axles, de.
TUBE-MAKING MACHINERT-DEAKI's improvements, 1850. The patente's invention relates to rolling machinery for the manufacture of metallic cylindrical, taper, and other tubes and solida

pair of rollers CC^{1}, the centres of the shafts of these rollers being in a direction at or near right angles to those of the rollers B B , and therefore revolving at right angles to them. The peripherics of the rollcrs B B are all concave, the concavity of the first pair from the rollers C C ${ }^{1}$ being greater than the concavity of the other pairs, and this concarity decreases in each pair of rollers until the last, in which the two concavities of the rollers form together a circle. The peripheries of the two rollers C^{1} are different from each other; that is, one of them, as C , is convex, and the other, C^{1}, is concave. The lower ends of the vertical shafts D D, carrying the rollers $\mathrm{C} \mathrm{C}^{1}$, revolve in steps, $\mathrm{E}^{1}, \mathrm{E}^{2}$, upon the bed-plate F , which thereby supports the weight of them and the rollers. The rollers are geered together by spur-wheels, and the requisite rotary motion is given to them and to the rollers BB by any well known and convenient means. Grepresents the plate or skelp of metal in the process of being bent and formed into a tubc. The flat skelp is previously heated in a suitable furnace, and then passed through the machine, first between the convex and concave rollers C C ${ }^{1}$, by which it is bent from its previous flat form, and assumes that of the peripheries of the rollers, being about semi-cylindrical, of considerably larger diameter or radius than that of the intended tube, and then passes on to the first pair of the horizontal rollers IS B, by which the edges of the skelp become further bent round, and begin to approach each other, and this rounding gradually goes on in the passage between the remaining pairs of rollers. In passing bet ween the sccond pair of rollers, the edges are cansed to approach nearer together; the action of the third pair brings the edges into contact, and the last pair effects the closing or welding of the joint. When the whole formation of the tube is intended to be effected at one operation of the machine, it is necessary that the skelp should be at a welding heat when passed into the machine. Thus it will be scen, that at one operation of the machine, the flat plate or skelp will be bent up to the cylindrical form, the joint welded up, and the perfect tube produced at one heat of metal. This result, however, camot always be obtained, as when very thin plates or skelps are used for the manufacture of tubes. In this case the metal cannot be retained at a welding heat sufficiently long to insure a perfect junction of the edges of the skelp at the last pair of rollers, thereforc the skelp is bent up to the tubular form, and the edges brought together at the first operation, preparatory to the welding process, which the patentec then effects by passing it, at a welding heat, between the rollers of a second machine of similar construction to that previously described, but not having any rollers similar to these, $\mathrm{C} \mathrm{C}^{1}$. The rollers B B are sometimes arranged in vertical positions, instead of horizontal, as described; the rollers $\mathrm{C} \mathrm{C}^{1}$ will likewise be reversed in their position, but their action on the skelp and the result will be preeiscly the same as by the first arrangements.

The next improvement consists in the means of manufacturing taper tubes. The machinery employed for this purpose is the same as that previously described for manufacturing cylindrical tubes, except that one or more of the pairs of rollers employed, instead of having their grooves regular, and of equal size throughout the whole of their peripheries, are formed of varying sizes, either increasing or decreasing, according as the tube to be manufactured is required to be produced of increasing or decreasing diameter. One of the rollers is represented in section, Fig. 3668, which shows the form of the

groove. It will be scen that proceeding from the cutter I^{2}, Fig. 3668, in one direction round the roller, the size of the groove is gradually increased until it arrives at the same point, which is the junction of the greatest and smallest portions of the groove; proceeding in the other direction from the same point the reverse obtains, the corresponding roller working with the one shown in section, both being grooved in a similar manner, so that when working together they present a circular passage of gradually varying diameter, and thereby produce a tube, the taper of which corresponds with the varying size of the grooves; the variation in the sizes of the grooves will of course depend upon the degree of taper the manufactured tube is required to have. The patentee sometimes employs taper plates or skelps of metal in the manufacture of taper tubes, by means of the above-described machinery; and when he requires to manufacture tubes with the interior cylindrical, and taper upon the exterior, he then employs skelps of metal of uncqual thickness. The means adopted for forming and making the varying grooves in the rollers, so that they shall present a smooth surface, and also that their variations shall be perfectly. regular and uniform throughout the circumference, is this:-It consists of a frame or head-stock H, Fig 3668 , fitted in bearings, in the top of the uprights of which is mounted the shaft or mandril H^{1}, upon which is fixed the driving cone of pulleys or wheels, Il^{2}, by which the requisite rotary motion is given to the mandril II: the mandril is hollow, and slotted upon opposite sides. A rod 1 passes juto the hollow of the mandril from one end. The imer end of the rod is pointed or wedge shaped, and passes into, and bears against a corresponding recess in the end of the cutter I^{1}, which is of two or more parts, Whe cutting-edges of which pass through the slots ia the sides of the mandril, and project beyond it

The rod I is causel to traverse along the mandril by means of the scretr I^{2}, passing through a bracket fixed to the back of the upright carrying the open end of the mandril, the end of the screw bearins against the end of the slottingrod I, so that as the scress is sererred up, it causes the ebiter to expan 1 by acting on the rod. The cutter is, of courze, carried round with the mandril. A spur-pinion is fixel upon the screw l^{2}, by which a slow but reqular rotary motion is given to it, by which the expan-ion of the cutter is elfecter at a regular and uniform rate. The rollers L L are mounted upon thafts in a carrying-frame, in po-ition slown, the groove to be cut off, one being above and one bentath the cutter. I slow rotary motion is civen to the rollers, both moving at equal velucities, at the same time that it rapid motion is given to the mandril and cutters; when the eutter ${ }^{-\infty}$ in the po-ition shown in the draw: mys, the largest part of the groove required will be cut, because the largent part of the cutter is then in the plane pas-ing through the two centres of the rollers; but as the cutting progreseses, the size of the groove cut will gradually decrease, by reason of the cutter being caused to traverse along the mandril, when the small part of the cutter comes gradually into action, until the rullers have made one revolution, when the cutter will have traversed so far that only the small cud of the cutter will be in action, in cutting the smallest part of the groove, where the junction with the largest part of it takes plice. The degree of variation of the grooves cut in the peripheries of the rollers will depend upon the form and length of the cutter, and amount and rate of traverse given to it, in relation to that of the rollers upen their axis. In manufacturing other forms of tube, the patentee employs the eylindrical tubes in the manner before described, which are reheated and passed between rollers, the peripheries of which are of such a form as to cause the tubes to assume the exterior form de-ired. A pair of rollers, the forms or shapes of the peripheries of which are such as to compress the cylindrical tubes between them, and into the form of a hollow railway rail, are shown in Fig. 3671.

Fig. 3669 shows an arrangement of these rollers, 000 O placed triangularly, for compreseing and rollin: eylindrical tubes into holluw trilateral furns, suitable likemise for ratwiy rails, the peripheries of the rollers being of such shapes as to produce the forms required.

Fig. $360^{0} 0$ hows the hellow trilateral rail produced, and rolled by the arrangement of rollers, as shown - F Fig. 3669.

Vig. 30.5 is another form of hollow trilateral rail, slighty differing from the preceding. tig. :34i3 represents a cylindrical tube.
Five 3iat is a taper tube, the interior and exterior being of uniform taper, and of equal thickness of metal throughout.
l'ig B6aシ represents a tube tapered exturiorly, and cylindrical interiorly, and of an equal thickness of metal. Mandrils may be employed or not in the above modes of manufacturimg tubes, as convenient.

The next improvement relates to the manufacture of spiral or helical metal tuhes This inprovement is illustrated in Fig. 36iff, which reprecents an elevation of the apparatus. The apparatus eobs

catel being provided to secure it, and as the rollers revolve, the tube will be drarn between them, and coiled along the spiral grooves T T, thus forming the spiral tube required, and when the tube has beer: formed, the machinery is stopped and the rollers wemoved from their bearing; when the spiral tuba may be drawn off. The rollers are then replaced in their bearings preparatory to another operation, The rollers may be formed with any required degree of taper, so as to manufacture tubes of corresponding forms, and the spiral grooves may be made so as to produce spiral tubes either regular or irregular in the pitch of the spirals, increasing or decreasing, as required. When it is required to manufacture helical tubes, the patentee employs eylindrical instead of taper rollers, and proceeds as before described, with respect to spiral tubes. By this improved machine the patentee is cnabled to manufacture spiral or helical tubes, in which the direction of the spiral or helix shall be either right-handed or left-handed. This is effected simply ly causing the straight tube to be coiled during the process, and wrapped around either one or the other of the two rollers, the grooves of one being right-handed, and the othen left-handed, and therefore a correspondingly formed tube is oroduced.

TUNNELS. From an examination of James Hayward, Esq., C. E., before a Committee of the Massachusetts Legislature.

Mr. Hayward visited Europe and examined as many as thirty tunnels. The Marseilles Tunnel i located at Nerthe near Marseilles, is three miles (15,153 feet) long, and has twenty-four shafts. The material in this tunnel is a very hard limestone. The height of the ground over it is a little over 600 feet. The aggregate length of all the shafts is 7,589 feet; the deepest shaft is 610 feet. The cost per yard down, for exeavation, was $\$ 43$. The shafts are nine feet in diameter, and are lined with masonry, at a cost of $\$ 1940$ per yard down.

The deepest shaft cost $\$ 73$ per yard down, entirely completed. The entire cost of all the shafts for tile masonry amounted to $\$ 47,000$; and $\$ 150,000$ for the whole cost of the tunnel. The entire cost of the tumel for the contractor was $\$ 125$ for the lineal yard; this includes shafts. The tumnel was lined with masonry of different thicknesses, and cost $\$ 423,000$. The entire cost of the tunnel, exelusive of masonry, was $\$ 705,000$.
Woodhead Tunnel between Manchester and Sheffield, is a little orer three miles long, and the hill over it 600 feet high. It has five shafts, 10 feet in diameter, which vary from 400 to 600 feet in depth. The character of the rock is granite, not so hard as our granite; it is called there "Mill-stone rock." The tunnel was about five years in construction, and its whole cost was $\$ 1,026,705$.
There are various ways of rentilating the tunnel while the miners are at work, and it is easily done. It was supposed that the shafts would be necessary for ventilation in the Woodhead Tunnel, as the cars passed through it, but they are now closed. Mr. H. gave an explanation of the various modes that are adopted for ventilation. In the mines in Cornwall, there are excavations extending 30 miles under ground. There are tunnels in the Duke of Bridgewater's Canal, which make, in the aggregate, thirty miles. On the Thames and Medway Canal, there is a tunnel about two miles long. The shafts by which it was originally constructed, except one in the centre, are closed. The tunnel is used both for a railway and canal, and trains pass through it every half hour daily. Gen. Paisley, the superintendent of public works, passed nearly a day in the tunnel, and he says that the smoke and steam from the trains passed almost immediately away. There was a constant current of air through it.
The Box tunnel, on the Great Western Liailway, about 100 miles from London, is the largest and most expensive tunnel ever constructed; it is 39 feet high, and over 30 feet wide. The shafts were 25 feet in diameter, its length is 9579 feet. Over one-third of it is through the solid rock.

Upingham Tunnel, 1320 feet in length, cost $£ 25$ per lineal yard. Pulpit Rock Tunnel, Pennsylvania, a difficult tunnel on the leading Road, cost $\S 6620$ per lineal foot. Gen. Barnard gave to Mr. Baldwin, in answer to some inquiries, the cost of five tunnels, the highest of which was $\$ 430$ per cubic yard.

TURBINE. See Water Wieel.
TURN-TABLE. A contrivance on railroads by means of which the engine or cars may be turned round. This is effected by excavating a pit under a portion of the track, and laying in the bottom ot this pit a circular track, upon which a platform, supported by friction-wheels, is made to revolve. A great many plans have been devised to effect this object. The following is the method of construeting the iron turning platform used in England.

These tables are thus constructed: oo, Fig. 3680, is the surface of the ground whereon the rails of the railway are laid, a circular hole being dug of sufficient depth to receive the table; around this, large stone blocks a a, similar to the railway blocks, are placed; upon these blocks eight cast-iron chairs, represented at $b b b, \& c$., Fig. 3681, are placed, and pinned down; a circular ring of cast-iron $e c$ is laid within these chairs, about two inches and a half broad at top, and a little bevelled; this ring is laid perfectly horizontal, and upon it the small bevelled rollers $g g g$, \&c., revolve, the arms $1,2,3,4$ acting is axles to them, and around the ends of which they turn freely. These arms pass through a ring of iron near the extremity, which keeps the rollers constantly in their proper position; the arms are fattened in the centre to a ning of iron f, which turns freely round the spindle $f^{\prime \prime}$, Fig. 3680 . The turn-table rests upon these rollers, which are for the purpose oì causing it to turn round as freely as possible. Fig. 3682 shows the framework of the table $; h h h$, \mathbb{E}, are the outer rim $; i i i$ the arms; and $m n$ the inner rim, which is of the same diameter as the ring of iron $c c c$, and which rests on, and turns found upon, the periphery of the rollers $g g g$. The table is kept in its place by the vertical spindle f^{\prime} fixed upon the table at e, and turning with it upon the rest c^{\prime}.
The table, it will therefore be seen, turns round this rest as a centre, and revolving upon the periph. ery of the rollers, it moves round with very little friction. It is not intended that the spindle f^{\prime} should Eupport any part of the weight of the table, the use of it being solely to prevent any side motion. The outer ring h of the table projects above the level of the arms $i i$ and the inner part of the ring $h^{\prime} h^{\prime}$ Within this onter ring a platform of timber is laid, resting upon and fastened to the arms k, k, the bolt boles being shom in the figure; upon this platform the rails of the road are placed $n 2 n$. lig. 3680

Ehows the timber, the upper side of which in level with the top of the e uter ring k h. A circular ring oo of eat-iron, or of ma-on-work, is laid around the outer circle of the table, upon which the rails rest. and which abut agan-t the ents of the rails laid upon the turn-table.

We have sail that the top of the turn-table is covered with timber, on which the rails forming the railway is laid; in many ca-es the top is furmed of cast-iron, the rails being raised a little above the surface of the cast-iron plate.

friction-rollers is hotrever much greater, and on the whole the arrangement is superior to the English tables. This wheel is turned by means of a pinion working into the toothed seginent shown in plan Fig. 3683 . These tables are of wood, and were originally patented. The arrangement is shown in the Ggures so clearly as to require no further description.

TWISTING MACHINE FOR IRON-Melling's. The great adrantages of obtaining perfect homogeneity of matter in metal surfaces over which heavy loads are passed, either with an abrading or rolling morement, is obrious; and by a very simple process a vast increase in permanency may be conferred upon articles of this class as well as upon various othere, as axles, shafts, connecting-rods, and piston-rods. In shafts, for instance, where the mass is built up out of a series of bars, flaws are of frequent occurrence, through imperfect welds; and where the weld is good, a deficiency in strength and durability is generally the resulting effect of the parallelism of the fibre.

To overcome this practical mechanical difficulty, Mr. Melling, of the Rainhill Iron Works, Liverpool, has proposed to twist together the bundles of constituent bars which go to form a shaft, or other forging of large size, and for this end he has devised and introdnced the machine which forms the subject of our figures. This machine has now been in operation for a considerable period; it is not, therefore, held up simply as a novelty, but as a valuable workshop accessory.

Fig. 3685 is a complete longitudinal clevation of the machine in working order, having the front heavy driving geering removed to avoid obscuring the twisting details. In the same view are also shown the carriages on which the bars under treatment are conveyed to and from the machine.

Fig. 3686 is a corresponding plan, partly in section, showing the driving geering. In this view a bar is represented as in the act of passing through the twisting rollers.

Fig. 3687 is an end view, looking upon the delivering rollers.

Fig. 3688 is a side elcvation of a modification of the delivering rollers, differing slightly from the same portion in Fig. 3687 in point of regulation of the upper roller-bearing.

Fig. 3689 is a front clevation of the first or revolving set of rollers, exhibiting the actuating mechan$i s m$ whence the revolving movement round the axis of the twisting bar is obtained.

Figs. $3690,3691,3692,3693,3694$, and 3695 represent various kinds of work, as finished from the original pile of bars.

The machine stands upon a massive foundation of masonry, to the surface of which the cast-iron bedplate is bulted. The driving power is communicated to the shaft A , from which motion is communicated through the pair of wheels B B to the transverse shaft C C, passing right across the machine, and having a heary fly-wheel D at its opposite end. From this shaft the first pair of rollers E E, from their peculiar movement distinguished as the revolving rollers, are worked by the worm F , which geers with the large worm-wheel G, east in one piece with the back of the plate "II, and Lored out at the back to work upon a fixed carrier bolted to an upright bracket fixed to the back part of the bed-plate. The shafts T T carrying these rollers are supported in four bearings KK , fitted into a pair of transvere cheeks L. L, bolted and keyed between the two plates II M. The latter is supported by a corresponding plate N , into which is fitted a turned ring enst on the front of the plate M, and this mate N is again
bolted to flanges $O O$ on the upright cheeks of the delivering rollers. It is easy to see how hy this arrangement the revolution of the main shaft C communicates a rerolvins movement to the frime work carrying the rollers EE; but in addition to this movement they revolve also round their own axes, and this is obtained by means of the two plates If and M, which carry ruand with them two small spurpinions I'P, geering with the fixed toothed rim Q. This motion is then transmittel from these pinions to the rollers, through the two worms $\mathrm{R} \mathrm{R} \mathrm{apon} \mathrm{their} \mathrm{shafte} ,\mathrm{th} \mathrm{the} \mathrm{two} \mathrm{worm-wbech;} \mathrm{cut} \mathrm{upon} \mathrm{the}$ soller-shaftz.

In the plan, Figr. 36S6, the machine is shom as thrown out of geer with the driving-haft, whitst a a bar SS is passing through. This disengagement is effected by the two lever-handles T T acting each one upon a clutch-box, corresponding with similar clutches on the worms v and v, the latter being that through which motion is communicated to the front delivering rollers, which latter may be thrown in or out of geer by the attendant, when on the opposite side of the machine, by means of a shors handle at v.

The lower of the two deliwerine rellars W W, which simply revolve rombl then nwn nxes, reecove its motion from the math shaft, ihroneh the worng geerins with the worm wheld X on the secomb trams

 Vo.. 11.-50
may be required to suit the work, the upper being driven from the lower one by the pair of pinions af on the opposite side of the roller-standards $b b$. In the combined views of the machine, the pressure upon the upper delivering roller is represented as obtained from the weight c, adjustable on the long lever d having its fulcrum at e, and pressing upon the journals of the upper roller by the two spindles $f f$. Crane-power may be applied to raise or lower this weighted lever, by attaching a chain to either of the two loops formed for the purpose, both on the weight and on the lever. In Fig. 3685 the office of this weighted lever is represented as supplied by a pair of adjusting serews pressing upon the npper rollerbearings.

The bars to be operated upon are brought from the furnace in the carriage $g g$, ronning upon four wheele on a tramway. The body of this carriage carries two brackets supporting a cross-shaft, on which are two pulleys $h h$, employed for the withdrawal of the bars from the furnace. The pulley-shaft is worked by a short winch-handle, as in Fig. 3686, and the ends of the two chains, coiled on the pulleys, are attached to a box which is slipped over the bar whilst in the furnace. Guides are attached to the carriage at $k k$ for the support of the bar or pile of bars to be twisted; and to admit of their free revolution they are turned on the ontside and fitted into the east-iron rings, bored to correspond. These

3691.

3692.

oearng-rings are put together in halves, and are carried upon a pair of parallel longitudinal rods con nected with the body of the carriage, or they may be simply suspended from a crane. The carriage for receiving the twisted bar, as delivered from the machine, is at l on the opposite or delivering end. It is nothing more than a semicircular iron trough, mounted upon a pair of wheels, with a drawing handle.

3695.

The bar or pile of bars being entered between the revolving rollers, and passed throngh until the end reaches the delivering pair, the mper one of this latter pair is presed hard down upon it, so as to pravent it from turning. Being thus firmly held at this end whilst the after portion is carried ronnd by the revolvers, it is clear that a twist must take place, and so the simultments revolutions of each pair upon their own ases earry forward the bar; it is preserved perfectly straight, and an evell and regular twist is given to it. Fig. 3690 is the original pile of rectangular bars; fier, 3691 represents these bars as twisted together previons to the subsequent finish und r the hammer. In fig. 36% the twisted metal is shown nuder the form of a double-T rail. 3693 is an axle formed cut of rond bars twisted together, and welded only at each end for the wheels and journals; and fig. $3 b^{\circ} 4$ is a tire-bar exhibiting the striated texture, as in fig. 3692.

TYPE FOCNDING. There are two kinds of fonts which are used respectively for book printing and job printing, the latter including buch work as hand and posting bills, etc. Book types include elevers or twelve regular bodies, from Great Primer, which is the largest, to Dismond, which is the smallest type used for priuting books. The following are specimens ef book types:

Great Primer; English,
Pica,
Small Pica.

Long Primer,
Bourgeois,
Brevier,
Minion.
Nonpariel,
remerl.

Each of the above fonts of trpe consist of inve alphabets, viz.: A, , a, A, a, together with many other characters, about 200 in all, and these must all be exactly alike, except in device and width. The greatest width is for the W and M , and the least for the i and!.

Fivery one of these numerous characters requires for its formation a punch, a matrix, a mould, and trpe metal in a fused state. The punch is a piece of steel with a single letter at one end. It is formed by liammering down the hollows and filing up the edres of the metal in a suftened state. Each letter must harmonize with all the cthers in the font with regard to height, breadtl of struke whe her leeavy or fine.

The matrix is a small piece of copper about $1 \frac{1}{3}$ inch long, $\frac{7}{4}$ inch decp, and wide in proportion to the size of the type: into this the hardened punch is struck. This must be managed with care, so as to allow the faces of the typez, when composed or set up, to be in a perfect plane. Hence the depths of the impression in the matrix is of great importance, and it is usual to adjust this depth by filing down the surface of the copper. The matrix having thns received a sunken impression from the raised letter on the punch, all that is required is to pour a quantity of fluid metal into the matrix in order to reproduce the letter as it is engraven on the punel. But in addition to this the cast letter will require a support, or body, an appropriate wilth, and certain niks or notehes, which enable the compusitor to place the letter in the proper position in his compusing-stick without having to examine every letter by eye. The measure of the type $u \mathrm{ith}_{\mathrm{h}}$ regard to height, width, and body, is determined by the type monld. The mould is made in two parta, so contrived that on being jut together, the two lalves form in the centre a space or mould, in which the type is formed: the matrix is placed at the bottom of the mould, and is retained in its place by a spring. liy sliding one part upon the other, the square cavity in the centre, while retaining the same licinht, whuld have its wilth dimini-hed to any extent required. The extent to which the two parts of the mould slide upon each other is determined by the widels of the matrin. The metal is poured in at the oritiec formed by elosine the upper parts.

These detrils being understome, a li-w words will suffiee to explain the operation of casting. The raster stands by the side of a furmoe eontaining the melting-pot and the fured type-metal (see Mrams AsD Aldoss). He lidha the mould in his left hamd, and tuking up a portion of the metal, in a very small ladle, hemb in the rioht, he purs a sufficient quantity of it into the momh, and immediately jerks it up lir the gurpese of explling the nir from the cavity mind drivine the metal into the finest strukes of
 the letter. Tha small :and the large sians require more tiane: the lormer, on acenunt of the increaseal care, nud the lather, to allow the matal t set.

The tymes are remowd from the ca-ter's table ly a loy, who, sciziug the type by the edges, braks
 who, with his finger proted dy a pieee of tarred leather, rubs the sile of wery letter un a shab of
 linea, in a line ti k, or thellw frane, with the face mpprot, nol tho nichsoutnaris. With the
 with the fire duwnwnil, fare the lotem, and plan's the growse which brings the types to the re-

manner, that they reach the composing wheel p in the order in which the keys are struck. The types are delivered upon the composing wheel by an inclined conductor. The composing wheel delivers the typo in an upright position to the composing slide, from which they are taken and justified by the workman.

TYPE DISTRIBUTOR. Mr. Mitehel has also invented a simple and efficient distributing machine, of which the following is his description.
"Before the types are made use of or composed, each letter of the font is prepared, by cutting or otherwise forming (as the assorted letters are set up in line) one or more grooves or notches in the body of the type at a certain distance or distances from its bottom or lower end, each respective character having its notch or notches differently located relatively to the lower end of the body from those of any other varieties of letters or types, and around the edge of the wheel pins are inserted near the bottom of each groove therein, which pins, by the notches before mentioned, sustain the types in different positions, according to the position of the notch or notches in the types; hence, as said types are carried along on said pins, each respective letter is dropped into a groove or receptacle provided for it when it arrives opposite to said receptacle, by its lower end taking an off-set or incliue, which removes the type from its pin; or any suitable means may be made use of to deposit the type in the receptacle adapted to its pecnliar position on the revolving wheel; and by a peculiar arrangement of donble notches, a very great number of separate characters of types may be distributed to their respective receptacles by a very simple arrangement of inclines and off-sets. The lines of types in the receptacles or crooves are successively pushed along to give room for the succeeding types, and a stop motion is used, by which any misplaced type arrests the rotation of the machine.

TYPE DISTRIBUTING MACHINE, Beaumont's Patent. This machine is automatic and distribntes with perfect accuracy every thing but two-em and three-em quadrats, without any attendance except to supply the matter at short intervals. The types are carefully picked apart and are left standing in lines snitable for a type-setting machine, or tumbled unceremoniously into boxes, as may be desired, the latter being easier as requiring less labor and care in their removal by the attendants. The principle ou which the machine is able to discriminate and put each type in its appropriate place, is that of feeling, not the face, but the sides of the body. Each type is prepared expressly for the purpose by cutting three nicks on its edges, differently arranged for each letter. The letter a, for example, is manufactured with three nicks, called one, two and three, counting from the highest; c has one, two and four; b lias two, thrce and five, ctc. The channel leading to each box is provided with a mouth of the same furm, carefully executed in hardened steel to withstand the wear, and the lines of type are pressed up successively against all these channels until the right one is presented, when the first type in the line pops in, leaving the next to commence a similar round. The receiving channels are arranged in a circle, faces inward, and the lines of type to be distributed are ranged radially in a horizontal wheel of somewhat less diameter. This wheel is properly geared and rolls around within the enclosure, presenting each type rapidly, but gently, to every aperture. The lines are thrust ontward in the wheel by suitable springs, which are simultancously compressed by a simple movement when it is desired to supply more matter. In working out the details of this machine the most beautiful simplicity has been arrived at, and every type is seized, on entering its proper channel, by a spring lever of sufficient force to tear it from its fellows, however adhesive may be its alkaline and inky bond. Λ similar lever guards the exit of each type from the wheel, and the hold is slackened only during the instant it presses fairly against the steel month of a channel for its reception. Thirty lines are received at once in the wheel, and the machine has been for several months in operation without appearing to wear, or otherwise injure the sides of the typc. The nicks cause a slight annoyance by catching the rule in setting, but this evil will probably be overcome by practice. Each machine will distribnte but one size of type; but the inventor states that they may be so constructed as to be easily adapted to the different sizes of small type. If worked by haul, one man or boy can distribute 12,000 ems per hour, and with scarcely a possibility of an error of a single type; whereas by the usual process of hand distribution, 3,000 ems are about the average. The machines can be worked by steam, and one man can then attend to three of them. making the total distribution in one hour 36,000 ems.

URANICM. A metal discovered by Klaproth in 1780. The oxides of uranium are used irpainting upon porcelain, yielding a fine crange color in the enamelling fire, and a black one in that in which the porcelain itself is baked. S696.
Valles. (See Engines, Varietirs and Detais ue.) Carnell and Hosking's Treble Beat IIydraulic Valces. A is the vulve seat; B, the valve; $C C$, the passages through the seat, and D D, passages through and around the valve; E is the guard or stop to prevent the ralve from being thrown out of its seat by any sudden or musual action of the engine. In fig. 3696 the valve is shown in its "pen position, and the arrows indicate the course taken by the water in passing through it; $a, a, b b, c c$, are the seats or bearing surfaces. The most prominent adrantage of-
 fered by these ralves, is the larger opening for the passage oi the water than is afforded by the valves of the forms hitherto in use, while at the same time the lift is reduced, and consequently the concussion very considerably lessened.

VAIVES, BALANCED-Stevens' Improvements, 1851. The patentee's object is a conrenient adaptation to the double-acting steam-engines of balanced valves, commonly known as the Cornish double-beat valves. For the balanced spindle valve, as commonly constructed, is liable to two objec-

mons: in tho first place, the valve lurine furmend ly two disk comected by a spins 1he, the burce of tho

 the difference of expansion between the valve rpinalle, which is completely murromadel by mesan, and
the steam-chests holding the valves, which is on the outside, exposed to the atmosphere, will also cause the valves to leak. The ralves commonly known as the Cornish double-beat valves are obrionsly superior in principle to the spindle vaives just described, and having been invented nearly a century ago, and been in constant ase ever since, it may be presumed that their general introduction in the double-acting steam-engine, where balanced valves are used, has been prevented or retarded by the difficulties presented for their adaptation to that purpose. These difficulties might be of the space occupied, or of the expense, or of such an adaptation as would alter but little the arrangements of the existing parts of the engine. The object is to endeavor to arrange these valves in such manner that

the advantages gained by their superiority in principle may not be so counterbalanced by the difficulties above named, as to prevent their general introduction. To effect this, the valves are arranged on the name level, as this is the arrangement most generally adopted in engines having balanced valves; and for the same purpose certain peculiarities are introduced in the construction of the valve, that render it different from any hitherto in use.

Fig. 3698 represents a side view of one of each of the steam and exhanst valves; the steam-valve being the Conish ralve, and the exhaust-valve having Stevens' improvement.
Fig. 3699 represents a vertical section of the same valves both raised off their seats, which are alsen shown in section.

Fig. 3700 represents a horizontal view of the same valves.

Fig 3607 represents a rerlical section of the side-pipes, steam-chests, salves, and valve-seata.
Firg. 3701 represents a horizontal cross-section of the lower steam-chest valves and valve-seats, taken through the dotted line $x x$ of Fig. 3697.

Fig. $3 \pi(\underline{y}$ represents a horizontal view of the lower steam chest.
Fig. 3003 irpresents a vertical section of the side-pipes, taken through the dotted line $y y$ of $\mathrm{Fi} 5.4082^{\circ}$
In the drawings, a is the lower steam-chest; b is the upper steam-chest; c and c are the side-pipes, lealing respectively to the builer and condenser; d and d are the openings from the side-pipes into the cylinder nozzles; e is the opening into the condenser.
$h h$ represents the two stean-valves, differing but little, if any, from the Cornish valve; m and m represents the two exhaust-valves, showing the allerations made to adapt them to the position in which they are placed relatively to the steam-passages. In the first place we will describe the different parts of the Corni-h ralve.
f and f are respectively the lower and upper seats, the upper seat being formed on the circumference of a disk supported by a cross; $g g$, cast in the centre of the ring, forming the lower seat ; the valve h is formed by a hollow eylinder, the lower part of which being turned in, as shown, forms the valveface i; that rests on the seat f, and the upper part also turned in, forms the valve-face i; that rests on the seat $f ; k k$ are ribs cast on the inside of the valve to goide it $; l$ is a cross by which the valve is lifted by the valve-stem.
8703.

The stean-valve h, thus dramn and described, does not difer materially, if in any respect, from a Corni-h double beat valve; and we have been thus particular in describing it in order to explain the manner in which to alter it, the alteration constituting the material part of the invention.

It will be observed by a reference to the drawinge that the position of the exhaust-walve with respeet to the steam-passages, and also with regard to the direction in which it is opened, is such that if it were made similar to the yalve just described, the pressure of the stean would force it from its seat. It is necessary, therefore, in order that the valve shall be retained on its seat by the pressure of the sluam, that the seat formed on the disk supported by the ribs slall be larger in diameter than the seat that furms the circular opening through which the steam passes. In order to effect this, a ring is attached to the valve, forming the bearing for the smaller seat, this ring being smaller in diameter than the disk; there is aloo a ring attached to this disk, forming the larter seat. We are thus enabled to put the valve together by slipping the smalher ring over the disk, and then by attaching the larger ring to the disk, and finally by slipping the valve over the disk and attaching it to the smaller ring.

The faces of this valve having respectively the smaller and larger diameter are represented reppectively by n and n, restiner on the seats o and $u^{\prime} ; p$ is the disk supported by the cross q. The valve is formed in two pieces by bolting it to the ring r, on the edge of which the smaller valve-fice n is shown; the di-k is also formed into two pieces, by bulting to the disk p the rings on the edge of which the larger valveseat o' is hown. To put the valve in its place, the ring r mont be slipped ower the das p, then the ring s must be betted to the disk p, and finally the remainder of the ralve most he slipped over the disk p and ring s, and bolted to the ring r; u is a crons by which the valve is lifted by the valve-stom, $t t$ are rils to guide the valve. From the perition in which this valve m is shown in reference to the atean pabages, it will be -ewn that when the valve is elowed the pressure of nteam will be La low the valve, ard the racmum will her abow the valve; it will also be seen from the comerection of the valve that it will b : hede down on ita seat he the pressure of the steam acting from below.

VhBocinetlit. An upparatha for menaring the rate of speed of machanery. When tho velocity

 urer was conserneted lye lire onet, if l'aris, miner the direction of M. Narin, the prime iph of which may

 the !urpme

they respectively act. Thus, let F and F^{\prime} be two forces applied to the points p and p^{\prime} of a body whice is in equilibrium between their joint actions, and let s and s^{\prime} be the spaces which the points p and p^{\prime} would describe in the first instant of time, in case of the equilibrium being disturbed; then $\mathrm{F}: \mathrm{F}^{\prime \prime}:: s^{\prime}: s$, or $\mathrm{F} s=\mathrm{F}^{\prime} s^{\prime}$. The principle is thus enuaciated generally by Lagrange, (Méc. Analytique, p. 22 :)
"If any system of bodies or material points, urged each by any forces whatever, be in equilibrium, and there be given to the system any small motion, by virtue of which each point describes an infinitely small space, which space will represent the virtual velocity of the point; then the sum of the forces, multiplied each by the space which the point to which it is applied describes in the direction of that force, will be always equal to zero or nothing, regarding as positive the small spaces described in the direction of the furces, and as negative those described in the opposite direction."
In order to illustrate this principle we may take as an example the case of the bent lever, Fig. 3700. Let $P P^{\prime} \mathrm{P}^{\prime \prime \prime}$ be the points of application of the three forces $F F^{\prime} \mathrm{F}^{\prime \prime}$, acting on the lever BAC , in the directions $P Q \cdot P^{\prime} Q^{\prime}, P^{\prime \prime} Q^{\prime \prime}$, which are all supposed to be comprised in the same plane. Suppose the lever to describe an infinitely small angle about the fulcrum Δ, so that the points $\mathrm{P} \mathrm{P}^{\prime} \mathrm{P}^{\prime \prime}$ come into the positions $p p^{\prime} p^{\prime \prime}$. According to the definition given above, the infinitely small arcs $\mathrm{P} p, \mathrm{P}^{\prime} p^{\prime}, \mathrm{P}^{\prime \prime} p^{\prime \prime}$, which may be considered as straight Sines, will be the virtual velocities of the points of application $\mathrm{P} \mathrm{P}^{\prime} \mathrm{P}^{\prime \prime}$, of the three forces $\mathrm{F}^{\prime} \mathrm{F}^{\prime \prime}$. From the points $p p^{\prime} p^{\prime \prime}$ let there be drawn $p m, p^{\prime} m^{\prime}, p^{\prime \prime} m^{\prime \prime}$, respectively perpendicular to the lines $\mathrm{P} Q, \mathrm{P}^{\prime} \mathrm{Q}^{\prime}, \mathrm{P}^{\prime \prime} \mathrm{Q}^{\prime \prime}$; then $\mathrm{I}^{\prime} m$ will be the virtual velocity of the point P ' reduced to the direction PQ of the force F , and $\mathrm{P}^{\prime} m^{\prime}, \mathrm{P}^{\prime \prime} m^{\prime \prime}$ will in like man-
 ner represent the virtual relocities of the points P^{\prime} and $\mathrm{P}^{\prime \prime}$ reduced to the directions in which the forces F^{\prime} and $\mathrm{F}^{\prime \prime}$ respectively act. Let $\mathrm{P} m=s, \mathrm{P}^{\prime} m^{\prime}=s^{\prime}$, and $\mathrm{P}^{\prime \prime} m^{\prime \prime}=s^{\prime \prime}$; and as the force F acting in the direction P Q tends to turn the lever in the direction in which the motion has been supposed to take place, while F^{\prime} and $F^{\prime \prime}$ tend to turn it in the contrary direction, the space s must be regarded as positive, and s^{\prime} and $s^{\prime \prime}$ as negative.
Now, according to the principle of virtual velocities the sum of the given forces, each multiplied by the velocity of its point of application reduced to the direction of that force, is zero in the case of equilibrium ; and, reciprocally, when this sum is zero the system is in equilibrium; hence the equation of the equilibrium of the lever is

$$
\mathrm{F} s+\mathrm{F}^{\prime} s^{\prime}+\mathrm{F}^{\prime \prime} s^{\prime \prime}=0 .
$$

It is easy to verify this equation by slowing that it may be derived from the equation of equilibrium deduced from the principle of the lever. From A let $\mathrm{A} q, \mathrm{~A} q^{\prime}, \mathrm{A} q^{\prime \prime}$, be drawn respectively perpendicular to the directions $\mathrm{P} Q, \mathrm{P}^{\prime} \mathrm{Q}^{\prime}, \mathrm{P}^{\prime \prime} \mathrm{Q}^{\prime \prime}$, and let the angle $\mathrm{PA} p=\theta$; then, since the angle $\mathrm{A} P$ may be regarded as a right angle, $m \mathrm{P} p=\mathrm{PA} q$; whence the two triangles $m \mathrm{P} p, q \mathrm{AP}$, are similar, and $m \mathrm{P}: \mathrm{A} q:: \mathrm{P} p: \mathrm{PA}:: \tan \theta: 1$; therefore $m \mathrm{P}=\mathrm{A} q$ tan. θ, that is, $s=\mathrm{A} q \tan . \theta$. In like manner we have $s^{\prime}=\mathrm{A} q^{\prime}$ tan. $\theta, s^{\prime \prime}=\mathrm{A} q^{\prime \prime} \tan . \theta$; whence, by substituting in the above equation, and learing out the common multiplier tan. θ, we find

$$
\mathrm{F} \cdot \mathrm{~A} q+\mathrm{F}^{\prime} \cdot \mathrm{A} q^{\prime}+\mathrm{F}^{\prime \prime} \cdot \mathrm{A} q^{\prime \prime}=0
$$

which is the well-known equation of equilibrium.
The equation $\mathrm{Fs}+\mathrm{F}^{\prime} s^{\prime}+\mathrm{F}^{\prime \prime} s^{\prime \prime}=0$ may be extended to a solid body of any form, or to any machine whatever. Let $d m$ be an clement of the body, F an accelerating force applied to $d m, v$ the velocity of that element, z the angle comprised between the direction of the force F and that in which the element $d m$ moves; then the moving force of the element will be $\mathrm{F} d m$, and v cos. z, its velocity estimated in the direction of this furce; and consequently, by the principle of rirtual velocities, the equation of equilibrium will be $\int \mathrm{F} v \cos . z d m=0$.

The principle of virtual velocities is easily verified by experiment with respect to all the simple machines; nanely, the lever, the pulley, the wheel and axle, the inclined plane, and the screw. Its importance as a fundamental principle in rational mechanics was first recognized by John Bernoulli, (see the Nouvelle Mecanique of Varignon, tom. ii.;) and Lagrange has derived from it the whole theories of statics and dynamics in his celebrated work, the Jecanique Analytique. Fourier (Journal de l' Ecole Polytechnique, cahier v.) has demonstrated the principle from the properiy of the lever.
ventilation. Sce Warming.
VERNIER. A contrivance for measuring intervals between the divisions of graduated scales or circular instruments. The name is given from that of the inventor, Peter Vernier, who published an account of the contrivance in a work printed at Brussels in 1631. It consists of a emall morable scale, which slides along the graduated scale; the divisions on the one scale being to those on the other 4 the proportion of two numbers which differ from each other by unity. The theory of the instrument, and the manner in which it is used, may be explained as follows:

Let $\mathrm{A} \mathrm{B}=a$ be a distance on the scale containing n of its divisions. Let $n v$ be another seale equa m length to $n-1$ of the divisions on $A B$; and let $v v$ be divided into n equal parts Since the distance
$\mathrm{AB}=-a$, and contains n equal parts, each division on the scale $=\frac{a}{n}$. Hence the length of the vernier $v v=a-\frac{a}{n}$; and, as it is divided into n equal parts, each division on the vernier $==\frac{1}{n}\left(a-\frac{a}{n}\right)$ $=\frac{a}{n}-\frac{a}{n^{2}}$; and therefure the difference between a division on the scale and one on the vernier $=\frac{a}{n^{2}}$. Suppose the zero of the vernier to coincide with the division marked A on the sale; then the first division on the vernier will not coincide with the first after A on the seale, but fall behind it by a quantity equal to their difference, or equal to $\frac{a}{n^{2}}$. In like mamer, the next line on the vernier will fall behind the next on the scale by a quantity equal to twice the difference of the divi-ions, or equal to $\frac{2 a}{n^{\circ}}$. The third on the vernier will fall behind the third on the scale by $\frac{3 a}{n^{2}}$; and sif on to the nth division on the vernier, which will fall behind the nth on the scale by $\frac{n a}{n^{2}}-=\frac{a}{n}$, that i, by a whole division; and therefore the n the on the rernier coincides with the division $n-1$ on the scalc. Conceive the scale to be a scale of inches, and suppose it divided into tenths; then $\alpha=1$ inch, $n=10, \frac{a}{n}=\frac{1}{10}$ of an in., and $\frac{a}{u^{2}}$ (the difference betreen a division on the scale and on the vernier) $=\frac{1}{100}$; so that the $\frac{1}{10}$ th of an inch is exhibited on the scale, though its divisions are only to tenths.

The vernier is connected with the scale in such a way that it can be moved along it by means of a rack and pinion, or a tangent-screw, or some similar contrisance, and its zero be brought to coincile with any point on the scalc. If, when the vernier is thus adjusted, its zero coincides exactly with a divisun on the scale, the measure is read off at once; but if (as must gencrally happen the zero falls between two of the divisions on the scale, then sonte one of the lines on the vernier will soincide, or very nearly coincide, with one of the divisions on the scale, and the distance of the zeru beyond the last divi-ion on the scale behind it is expressed in hundredths by the number of the division on the vernier which is cor incident with a division on the scale. Suppose, for example, the position of the vernier with reepect te the scale be as represented in Fig. 3701 , where the zero of the vernier is brought to coincide with a cer

tain point p on the scale. The point p is read on the scale 29 inches, -10 hes, and a fraction, which is to be measured by the vernier. Here the division 5 on the vernier coincides with that which is marked 7 on the seale; therefore the distance of the zero of the vernier from the lat division (2) behind it on the scale is $5-100$ thes of an inch; for as 5 on the vernier coincides with 7 on the scale, the distance of 4 from ti is 1-100ths; of 3 from $5,2-100 t h s$; of 2 from 4,3 -100ths; of 1 from $3,4-100$ ths; and of 0 from 2 , 6 -I0nths. In like manner, if the vernier were pu-hed along till the divi-ion 8 coincided with 30 inches on the scale, then the reating of the zero point would be $2 y$ inches, $2-10$ the, and 8 -100tha. If, when the zeres is brought to coincide with p, none of the divisions on the vernier coincide exactly with a divi-ion on the scale; for example, if the 5 on the vernier should be a little past the 7 on the seate, and the 6 not up to the 8 , the reading would be between 5 -1noths and $6 \cdot 10$ ous; but its preciec amount could only be stated ly estimation. If the line 5 appeared nearer 7 than 6 to s. hee dreance mensured would be

The vernier is equally npplicable to circular seales at antronomical cireles; it is then cercular alow, and mat muve comentric with the limb of the cirche. Suppee the limb divided into intervals of In';

 $10^{\prime \prime}$; that in to say, (hue are may l_{2} real ato $10{ }^{\prime}$.

 in: 1) 1 ruch of minth

Instead of making the vernier equal to $n-1$ divisions of the scale it is sometimes made equal to $n+1$ divisions, and the object will still be accomplished in precisely the same manner. For in this case the length of a division on the scale being as before, $\frac{a}{n}$, and that of a division on the vernier $\frac{1}{n}$ $\left(a+\frac{a}{n}\right)=\frac{a}{n}+\frac{a}{n^{2}}$, the difference is still $\frac{a}{n^{2}}$. The principle is the same in both cases.

The venier is often called a nonius, but improperly, the contrivance invented by Nonius or Numez being on a quite different priuciple.

VICE, LEVER. This is an engraving of a vice invented by Mr. J. Peck, and improved by Mr. L. Pardee, of New Haven, Conn. It possesses great strength and great power. It is made of wroughtiron, and is claimed to have better qualities than any now in use. It is worked entirely by the foot withont laying down a tool for that purpose, and it can be changed to receive work from 1-16th to 8 or 10 inches in width, as quickly as any other vice can be moved one-fourth of an inch.
3702.

Description.- a, Fig. 3702 , sliding-jaw ; l, jointed or swing jaw; c, rail on which the sliding-jaw moves; d, click which catches in ratchet on rail c, and holds the sliding-jaw firmly where placed. E, jointed lever (elbow-joint) which turns on pins ee, and is attached to prong of rail c and the lower end of the swinging-jaw. g, foot-lerer with joint attached to leg of bench, and comnected by rod i with jointed lever. h, click which catches in ratchet at the foot of the forward bench-leg, and holds the jaws firmly as forced up by the combined levers; it is easily tripped with the foot. f is a spiral spring which lifts the foot-lever and throws open the jaw.

It will be recollected that when this vice is forced up it becomes very firmly attached to the bench, and very solid for chipping and other heavy work that is required to be put into a vice, and heavy work requiring both hands to lift can be very easily placed in it. It is certainly much easier for the mechanic, for the strain upon the breast in turning the screw is avoided. This vice has been tested and found to be a useful invention, and one of them weighing fifty pounds has been found to possess as much porer as an English vice weighing seventy pounds.

WARMING AND VENTILATION. Heat is given off from bodies by two distinat processes-radiation and conduction. In radiation, rays of heat diverge in straight lines from every part of a heated surface, and also from extremely minute depths below such surface. These rays, like rays of light, are subject to the laws of refraction and reflection, and their intensity decreases as the square of the distance. When we approach an open fire, or the surface of a stove, we feel its heat by radiation, and it has been ascertained that, at the ordinary temperature of hot-water pipes, about one-fomth of the total cooling effect is due to radiation.

But the amount of radiation of a body heated above the temperature of he surrounding atmosplere Jepends greatly upon the nature of its surface. If a vessel of hot water, coated with lamp-black, radiate 100 parts of heat within a given time, a similar vessel, containing water of the same temperature, coated with writing-paper, will radiate 95 parts of heat; resin, 96 ; China ink, 88 ; red lead, or isinglass, 80 ; plumbago, 75 ; tarnished lead, 45 ; tin, scratched with sand-paper, 22; mercury, 20 ; clean lead, 19 ; polished iron, 15 ; tiu-plate, 12.

In order to ascertain the velocity of cooling from a surface of a cast-iron pipe 50 inches long, $2 \frac{3}{2}$ inches diameter internally, and 3 inches diameter externally, the rates of cooling were tried with different states of the surface: first, when covered with the usual brown surface of protexide of iron; next it was varnished blaek, and finally the varmish was scraped off, and the pipe painted white with two coats it lead paint. The ratios of cocling 1° were found to be for the black varnished surface 1.21 minates.
for ihe iron surface, 1.25 minutes, and for the white painted surface, 1×3 minutes. "These ratios are in the proportion of $100,103.3$, and 1057 ; but, as the relative heating effect is the inverse of the time of cooling, we shall find that 100 feet of varnished pipe, $103 \frac{1}{4}$ feet of plain iron pipe, or $105 \frac{1}{}$ leet of irum pipe, painted white, will each produce an equal effect."

Tarmished surfaces, or such as are roughened by emery, by the file, or by drawing streaks or lines with a graving tool, have their radiating power considerably increasel. Lut, according to Melluni, the roughess of the surface merely acts by altering the superficial density which varies according as the body is of a greater or less denity, previous to the alteration of its surfice by roughening. The following experiment gives the data for this conclusion: Melloni took four plate of silver, two of which, when cast, were left in their natural state, without hammering, and the other two were phanished to a high degree under the hammer. All four phates were then finely poli-bed with pumice-stone and charcoal, and after this one of each of the pairs of plates was roughened by rubbing with coarse emery paper in one direction. The quantity of heat radiated from these plates was as fullows:

$$
\begin{aligned}
& \text { Irammered and polished plate } \ldots10^{\circ} \\
& \text { Hammered and roughened plate } \ldots . . .18^{\circ} \\
& \text { Cast and poli-lied plate } \\
& \text { Cast and roughened plate } 11.5^{\circ}
\end{aligned}
$$

Thus it appears that the hard hammered plate was increased in radiating power four-fifths by roughening its surface, while the soft east plate lost nearly one-fifth of its power by the same proces.

When a body is exposed to a source of heat, a portion of it is absorbed, and it has lieen proved, ex perimeatally, that the absorptive power of bodies for heat is precisely equal to their radiative power. It was long supposed that color had great influence on radiation and absorption. By exposiner variou-ly colored surfaces to the heat of the sun, their absorbing power was in the following order: black, blue, green, red, yellow, and white. Hence it would naturally be expected that the adiating powers of differently colured bodies rould be in this order, and that by painting a body of a dakk color we should increase its radiating power. Such, however, is not the case, for the absorption and radiation of simple heat, or heat without light, depend on the nature of the surfice rather than on color.

The numbers which represent the radiating powers of different bodies for invisible or non-luminous heat, or heat of low temperature, evidently bear no rclation to color, for lamp-black and writing paper are nearly equal; Indian ink is much less, and plumbago still less. A thermometer bulb, coated with a paste of chalk, is affected by invisible heat even more than a similar one cuated with Indian ink; but this result does not occur when the heat is from a luminous source. Thus it was found that when two spirit thermometers, one containing colored, and the other colurless alcohol, were exposed to the su:n, the colored liquil rose much more rapidly than the colorless, but when they were buth plunged into a ressel containing hot water, they rose equally in equal times.

The propagation of heat by conduction is a rery different proces from that of radiation. By condustion, the heat travels throurh or among the particles of solid matter, until the temperature of the body in contact with the source of heat is raised more or less above the temperature of the air. When 'eat is communicated to a fluid body, the process is different. In consequence of the great mobility of its particles, those which first come under the action of the source of heat, being raised in temperature, escape from its influence, and ascend through the fluid mass, distributing a portion of their acquired heat among other particles on its way; other particles immediately take its place, and being heated, a-eend in like manner and distribute their heat. By this process of convection, as it is called, the whole of the particles in a confined mass of fluid come under the action of the heating body; those first heated ese cape as far as ponsible from the source of heat, and becoming cooled, descend again to be heated, and again to ascend and descend. In this way a cireulation is maintained in the whole mass of thid.

It is omly by this process of emvection that air may be said to be a conducting boty, for if a mans of air be confined in such a way as to prevent the free motion of its particles, it ceases almost entirely to conduct heat, and may be nsefully employed to retain heat; as in the case of double windews, the inclosed mass of air prevents the heat from escaping from the apartment, and shields the glass which is in contact with the warm air of the room from the cooling action of the external air. Accoriing to some experiments each square fort of glass will cool loty culie fect of air 1° per minute, when the temperature of the ghas is 1° above that of the caternal air. 'This, however, is in a still atmophare.' Glass is a very bad conductor of heat, and the cooling efleet of wind upen it is not so great as is gememally suppreed.

Solids differ greatly in their hat-conducting powers. If gold conduct 100 parts of heat, platimn will

 warmer at the other cond. A practical application of this proprey is al-o to be fomat in the materats

 its heat longer.

process. By these two processes the body cools down to the temperature of the surrounding air, the conductive power of which varies with its elastieity, or barometric pressure; the greater the pressure the greater also the cooling power. It has also been shown by Dulong and retit that the ratio of heat lost by contact of the air alone, is constant at all temperatures; that is, whatever is the ratio between 40° and 80° is also the ratio between 80° and 160°, or between 100° and 200°.

It was long supposed that a certain relation existed between the radiating and conducting powers of heated bodies. This does, to a certain extent, apply where low temperatures are conceroed, but does not hold at high temperatures. Thus, in a set of experiments by Duong and Petit, the total cooling at 60° and 120° (Centigrade) was found to be about as 3 to 7 ; at 60° and 180°, as 3 to 13 ; and at 60° and 240°, as 3 to 21 ; whereas, according to the old theory, these numbers would have been as 3 to 0 , 3 to 9 , and 3 to 12. When the exeess of temperature of the heated body above the surrounding air is as high as 240° Cent., or 432° Fahr., the real velocity of cooling is nearly double what it would have been by the old theory, varying, however, with the surface.

Sinee the heat lost by contaet of the air is the same for all bodies, while those which radiate most, or are the worst conductors, give out more heat in the same time than those bodies which radiate least, or are good conductors, it might be supposed that those metals which are the worst conduetors would be best adapted for yessels or pipes for warming rooms by radiation. "Sueh would be the ease if the vessels were infinitely thin; but as this is not possible, tho slow eonducting power of the metal (iron) opposes an insuperable obstacle to the rapid cooling of any liquid contained within it, by preventing the exterior surface from reaching so high a temperature as would that of a more perfectly conducting metal under similar eircumstances; thus preventing the loss of heat both by contact of the air and by radiation, the effect of both being proportional to the excess of heat of the cxterior surface of the heated body. If a leaden vessel were infinitely thin, the jquid contained in it would cool sooner than in a similar vessel of copper, brass, or iron; but the greater the thickness of the metal, the more apparent becomes the deriation from this rule ; and as the vessels for containing water must always have some considerable thiekness, those metals which are the worst conductors will oppose the greatest resistance to the cooling of the contained liquid."

The reflective power of different substances for heat is inversely as their radiating power. If a surface of brass reflect 100 parts of heat, a similar surface of silver will reflect 90 parts; tin-foil, 85 ; blocktin, 80 ; steel, 70 ; lead, 60 ; tin-foil, softened by mereury, 10 ; glass, 10 ; glass, coated with wax, 5.

When similar substances are exposed to the same temperature they all become heated to the same degree, as measured by the thermometer; but if the temperatures of dissimilar substances have to be raised to the same degree, the quantities of heat required for the purpose will be very different for different substances. Thus, if we place side by side, upon a hot plate, two equal and similar vessels, one containing a certain weight of water, and the other an equal weight of mereury, the mereury will soon become much hotter than the water. So also, on lowering the temperature of dissimilar substances to an equal degree, some will give out more and others less heat. Different bodies, therefore, display different degrees of suseeptibility for receiving free heat within their molecules; this is called their capacity for heat, and the quantity required to raise equal masses or equal weights 1°, is termed their specific heat. The theory of specific heat is of great importance in a practical point of view, for on it depend many of the calculations for aseertaining the proportions of the various kinds of apparatus employed in warming buildings.

The speeific heat of different substances ean be ascertained by mixing together, with certain precautions, ascertained quantities of the substances under consideration, when their mutual capacities for heat are determined by the decrease in the temperature of the hotter body, and by its increase in the cooler. Thus, if 1 lb . of mercury at 32°, and 1 lb . of water at 62°, be mixed together, the common temperature will be 61°. The temperature of the metal has, therefore, risen 30°, while that of the water has fallen 1°. If the mereury had been at 62°, and the water at 32°, the common temperature of the mixture would have been 33°. In this ease the water would have gained 1° of temperature, and the mercury would have lost 30°. Thus it appears that the capaeity of water for heat exceeds that of mereury 30 times. If the water be taken as unity, the specific heat of the mereury will be $\frac{1}{30}$, or 0.033 .

Again, if 1 lb . of iron filings at 65° be mixed with 1 lb . of water at 32°, the temperature of the mixture will be 36°. That quantity of heat, therefore, the loss of which lowers the temperature of iron 32°, raises the temperature of water only 4°; so that eight times as much heat is required to raise on depress the temperature of the water 1°, as would raise or depress the temperature of an equal weight of iron 1°. Hence the specifie heat of iron is $\frac{1}{8}$, or 0.125 .

The eapacity of substances for heat may also be found by observing the quantity of ice which the body under investigation is eapable of thawing. Thus, if equal weights of iron and lead be operated on, it will be found that the iron requires a greater quantity of heat than the lead to produce the same change of temperature, in the proportion of nearly 11 to 3 . If a bar of iron, in falling from 100° to 95°, melt 11 grains of iee, then a bar of lead of equal weight, under similar cireumstances, would melt rather less than 3 grains; heat is, therefore, more effective in warming lead than iron. Again, an ounce of mereury and an ounce of water, in falling from 60° to 55°, will melt quantities of ice, in the proportion of 33 to 1000 , or very nearly 1 to 30 ; that is, to raise water from 55° to 60°, requires a greater quantity of heat than to raise an equal weight of mercury through the same range of temperature, in the proportion of 30 to 1 . The quantity of iee melted by different kinds of fuch athords a convenient method of estimating their relative values: Thus it has been found that

1 lb . of coal, of good quality.
melts 80 los . of ice.
" eoke,
" wood,
wood c
\qquad " 84 " wood chareoal, "
© peat,

One method of estimating how much of the heat of a common fire is radiated around it, and how mucl: combines with the smoke, is to allow all the radant leat to melt a quantity of ice contained in a ressel surrounding the tire, and all the heat of the smoke to melt the ice in another vessel surmombing tho chimney. liy comparing the two quatities of water thus obtained with the quantities of ice melted, it will be found, according to Dr. Arnott, that the radiant pertion of the heat is, in ordinary cases, rather less than the combined, or less than half the whole heat produced.

The specitic heat of bodies has been determined not only for equal weights, but also for equal volumes, and this is called their relutive hat, which is to the specitie heat of any sulstance directly at ite apecitic gravity. It may be fuand by multiplying the specific heat into the sjecifie gravity; and conwersely, the sfecitic heat may be found by dividing the relative heat by the specitic gravity. Sow as the quantity of lacat requirel to raise the temperature of 1 lb . of water 1^{2} is suthicient to raize 1 lb . uf meremy $: 0^{\circ}$, we say that tha specific heat of mercury is $\frac{1}{3}$, taking water as unity; and simee the specific gravity of mereury is abi ut 136 , it follows that the relative heat of an equall volume of has wetal is $\frac{1}{3} \times 106=045 \%$.

11 ith respect to gaseous bolics, it has been found that their specific heat is inversely as their specific gravity or density ; ind, conequently, equal weights of such gases contain a harger quantity of heat, less their specitic gravity. The capacity of atmospheric air is taken as the unit by which to estimate the specine heat of gateou-bodies; but sometimes that of water is assmmed as the mit, and then the capacities of gaves are comparable with those of solids and liquids. The latter values are ubtamed hy mattiplying the former intu 0.2069 , which is the index of the specilic heat of atmospherie air compared with that of water.

The fullowing table hows the specific heat of various subzances referred to water as the stanchard, and are surgic. 1 to represent the quantity of heat contaned hequal weights of the esomal sub. s!ances:

Water
.0000 Carbonic acid.
. 0.2910

Alculiol ...
Ether. 0.7000 .06600 .05200 .0 .2664 $3=2936$. $0 \cdot 250$ $.1) \div 361$
\qquad
Oxygen. U-2581
Charcual ...0.2631
Sulphur ... $0 \cdot 1850$
Wrought-iron...0.1110

1latinum.,.....................................0.031-1
Goht .. 0.0295
The method of ascertaining the specific heat of gaces is as fullows:-The gas to be examined is well dried, and then brought from a vessel, surrounded with water at 212°, gradually through a spiral tubne, surroundeal by cold water, the gas escaping through the opposite end of the spiral. La the course of its passage, the gas parts with a portion of its heat to the cold water which surrounds the spiral, and the temperature of the water gradually rises, until after some time it becomes stationary. The eguilibrimm thus establi-hed between the water and the gas is measured by a thermometer, so as to tind looth the rise in the temperature of the water, and the fiall in that of the gas. If the experiment be made wath sume rother gas, and the result should give a higher temperature to the water, then this seconsl gas ma-t hate imparted to the fluil a greater amount of heat than the former one did. If, on the conitray, the ternperature of watet he lens thin time than before, it will have given out less heat, and the rempective capacities for heat of these two gases will be fropertional to the temperatures of the water harough whel they have been almitted. The capacity of atmanherie air being taken as the unit, the apecitic heat of other gases may be expre seal by promertionate numbers. Tor raise 1 Jb . of water from sez to

 abrive table.

 tionary ; and although the heat be continally apphed, the temperature dee mot rive. 'The sobld is
 perature will be uls ared until the whole of the folid has become lignid. The perint nt which a lably

 concermed, is called latrut hat. What the benly is hyuetied, the temperature a rain bergins to rise, unt. 1

 heat absurlied durige the proce of lem ine or vapurization is alos called latent.

	Matame fount.	1t:olll Ite it.
W:ator	:3 devere.	
Sulphar	.114	1187
Spernatecti...	.112	15
latul	61:	16:
Bees'wax	154	17.

	Melting Poins.	Latent Ileat.
Zinc.	. 773 degrees.	493 degrees.
Tin.	.. 442 "	500 "
Bismuth.	476	550

In the following table, the boiling points of a ferw substances are given, together with the quantity of heat rendered latent by each in passing from the liquid into the aeriform state :

	Boiling Point.			Latent Heat.	
Water		gree		1000 de	grees.
Alcohol (sp.gr. 0.7947)	. 173		(bar. 29:5)	457	
Ether.	98	"		$312 \cdot 9$	"
Oil of Turpentine	. 814	"		$183 \cdot 8$	"
Nitric Acid (sp. gr. 150)	. 210	"		550	"
Ammonia..				. 865.9	"
Vi				. 03	"

These details respecting latent heat will euable the reader to compare the merits of the tro systems of heating buildings by pipes filled with hot water, and by similar pipes filled with steam.

Ta the former system, it is not desirable to raise the water to the boiling point (212°), because, in such case, steam would be formed, and this escaping by the safety-pipe, would abstract much useful seat from the apparatus. In the latter system, it is desirable to maintain the pipes at 212°, because, at a lower temperature, the steam would condense, and also absorb much useful heat from the apparatus. From the necessity of maintaining the temperature of 212° in steam-pipes, it is evident that a given length of steam-pipe will afford more heat than the same quantity of hot-water pipe; but the following remarks by Mr. Hood, on the relative permanence of temperature of the two methods, will show an advantage in favor of the hot-water system:
"The weight of steam, at the temperature of 212°, compared with the weight of water at 212°, is about as 1 to 1694 ; so that a pipe which is filled with water at 212° contains 1694 times as much matter as one of equal size filled will steam. If the source of heat be withdrawn from the steam-pipes, the temperature will soon fall below 212°, and the steam immediately in contact with the pipes will condense ; but in condensing, the steam parts with its latent heat; and this heat, in passing from the latent to the sensible state, will again raise the temperature of the pipes. But as soon as they are a second time cooled down below 212°, a further portion of steam will condense, and a further quantity of latent leat will pass into the state of heat of temperature; and so on, until the whole quantity of latent heat has been abstracted, and the whole of the steam condensed, in which state it will pessess just as much heating power as a similar bulk of water at the like temperature; that is, the same as a quantity of water oceupying $\frac{1}{16}+$ part of the space which the steam originally did.
"The speciinc heat of uncondensed steam, compared with water, is for equal weights as "8470 to 1 ; but the latent heat of steam being estimated at 1000°, we shall find that the relative heat obtainable from equal weights of condensed steam and of water, reducing both from the temperature of 212° to 60°, to be as 7425 to 1 ; but for equal bulks, it will be as 1 to 228 , that is, bulk for bulk, water will give out 228 times as much heat as steam, on reducing both from the temperature of 212° to 60°. A given bulk of steam will, therefore, lose as much of its heat in one minute, as the same bulk of water will lose in three hours and three quarters."

But when the water and the steam are both contained in iron pipes of the same dimensions, the rate of cooling will differ from this ratio, in consequence of the greater quantity of heat contained in the metal than in the steam. The specific heat of iron being nearly the same as that of water, the pipe filled with water will contain $4 \cdot 6$ times as much heat as that which is filled with steam; and if the Iatter cools down to 60° in one hour, the other will require about four hours and a half to do the same. There are other circumstances to be noticed hereafter, which cause the hot water apparatus to be six or eight times (instead of $4 \frac{1}{2}$) more efficient as a source of warmth than steam.

The process of boiling is by no means indispensable to the formation and escape of steam or vapor ; for at all temperatures below the boiling point, vapor is formed at the surface of liquids, and escapes therefrom by a process called spontancous evaporation. The difference between this process and ebullition is chiefly this:-When a liquid boils, the rapor which escapes therefrom constantly maintains the same temperature, provided the pressure remain the same; but evaporation may go on at all temperatures and pressures, the quantity of liquid evaporated depending on the temperature and the amount of surface expoed.

We have seen that the pressure or elasticity of vapor at 212° is sufficient to support a column of mercury 30 inches high. The force of vapor at lower temperatures is also measured by the length of the mercurial column which it will support. Vapor at 200° will support 23.64 inches of mercury ; at $150^{\circ} .742$ inches ; at $100^{\circ}, 1 \cdot 86$ inches; at $80^{\circ}, 1$ inch; at $60^{\circ}, 521$ inch ; at $50^{\circ}, 375$ inch; at 32°, -2 inch.

The amount of evaporation, however, is greatly influenced by the motion of the air, which carries off the vapor from the surface of a liquid as fast as it is formed. A strong wind will cause twice as much vapor to be discharged as a still atmosphere. Dalton ascertained the number of grains' weight of water evaporated per miunte from a ressel, six inches in diameter, for all temperatures between 20° and 212°, when the air was still, or in gentle or brisk motion. When the water was at 212°, the quantity eraporated was 120 grains per minute in a still atmosphere; 154 grains per minute with a gentle motion of the air; and 189 grains per minute with a brisk motion of the air. The following is an extract from tris table between the temperatires of 40° and 60°

Temperature. Fatronhei:.	Force of vapor in incties of mereury.	Evaporating force in erains of whter.		
		still.	tiente.	I'risk.
40 degrees.	$0 \cdot 63$ degrees.	1.05 degrees.	1.35j chegrees.	1.65 derrees.
42 "	$\cdots 30$	1.13 "	$1 \cdot 1 . j$.	1 \%s ${ }^{\text {\% }}$
44 "	815	$1 \because 2$	157	1.9.2
46	307 "	1.31 "	1.63 "	2.06 "
45 "	-351	$1 \cdot 40$ "	1-50	2.21) "
50 "	-375	1.50	192	\cdots
52.	-101	160	$\underline{2} 06$:	2.51 *
31	- 493	1.71	-20)	-63
56 "	409	1.53	2.35 "	2.55 "
5 5 "	$\cdot 490$	$1 \cdot 96$	2.5?	$3 \cup 5$ "
60	-524	$2 \cdot 10$	2.70 - "	3.30

The amount of spontaneous eraporation is also greatly influenced by the quantity of vapor already existing in the air. In order to find this, we must ascertinn the dex-point of the air, or the temperature at which the vapor in the air begins to condense, and then, by referring to the table, the quantity of vapor in the air at the time can be found; and this, eeducted from the quantity shown by the table to be given ofl at the ascertained temperature of the evaporating liquid, will give the quantity of water that whll be evaporated per minute. In funding the dew-point, we must bring some colder body into the air, or have the means of cooling sume boly to such a point as shall just condense the vapor of the air upon its surface. Dr. Dalton used a very thin glase vessel, into which he poured cold water from a well, or conded down the water by alditg a small portion of a freczing mixture. If the vapor was instantly con lused, he poured out the cold water and used some a little warmer, and so om, until he conhl ju-t perceive a slight dew upon the surface. The temperature at which this took phace was the dew-point. In Daniell's hygrometer, the cold is produced by the evaporation of ether. Now supose the dew point of the air to be 10^{3}, and the temperature of the air ind of the eraporating liquid to be $(0)^{2}$, with a still atmoz phere, the rapor in the air, as shown by the table at 400°, is 1.05 graine, which, subtractel from that at 80^{c}, or $2 \cdot 10$, gives $1 \cdot 5$ grains per minute as the quantity of vapor given oth from a -urface six inches in diancter.

Wuriny the spontaneous evaporation of wet surfaces, a considerable derree of cold is produced by the quantity of heat ren fered latent by the furmation of the vaper; and the heat in mostly derived from the lapuid itself, or the surface contaming it. liy proper contrivances, water may be frozen, in conserpurnee of the abstraction of heat during the rapid fimmation of vapor. When a per-on takes coll from wearing wet cluther, the vapor from the wet elothes obtains its heat from his body, and the chillime sensition is often the greater the warmer the ar. A person with damp clothes, chitering a rom tilled with lout dry air, is vory likely to take cold, on account of the poweriul efteet of warm air in absatacting moisture.

In a badly ventilated room, the moi-ture from the breath of the inmates, and from the combustion of lamps and candles, accumulates nearly to the juint of saturation. 'This is well show by in experi-
 fire was then lighted in it, the dow and window shat, and no air was allowed to enter. The thermoneter roee to $5 j^{2}$, but the point of condensation remained the same. I party of eight persoms afterward oceupied the rom for several hours, and the fire was kept up; the temperature rane to aso and the feint of condemation rose to" 520 . Now if this rom had heen propery ventilated, the waper would have bech remosed as it was formed, and with it the efllavia and impure air.

On the warming of buildings b! mouns of stom and hot water. - 'lhe a ethod of warming buikd ings by stoan, deperids on the rapill combensition of steam into watere whon admitted intuan! veal
 to the vassel containing it, and this diffuen the luat into the -urrounding-pace.

 faverable (1) rawliatwh.

water escaping by a pipe not shown in the figure. The transmission of the heated air was regulated by a valve at a, on the top of the brick-work. This apparatus was so effective, and heatel the staircase to such a degree, that after it had been in operation a short time, it was necessary to suspend its action by closing the valve at a, or by closing the valve which adnitted steam into the cylinder.

In establishments where a sterm-engine is in daily use, the steam-pipes may be supplied from the engine-boiler, its dimensions being enlarged at the rate of one cubic foot for every 2000 cubic feet of space, to be heated to the temperature of 70° or 80°. A boiler adapted to an engine of one-horse power is sufficient for lieating 50,000 cubic feet of space. Hence an apparatus specially erected for the purpose need not be of very large size, nor is the quantity of fucl consumed great. If the fire under a small boiler be carefully managed, 14 lbs . of coal will convert one cubic foot of water, at 50°, into 1800 cubic feet of steam, at 216°; and only $121 b s$. of coal are required to convert the same quantity of water into steam, at 212°. The shape of the boiler, and the method of setting it, must also be considered, and the furnace must be arranged so as to admit no more air than is requireci to support the combustion. The hat air must also be kept in contact with the sides of the boiler, until as much of the heat as possible be abstracted from it. In such
 an arrangenent, according to Dr. Arwott, nearly half of all the heat produced in the combustion is applied to use.

In estimating the extent of surface of steam-pipe required to raise the rooms to the proper temperature, it is necessary to consider how the heat is expended. This is done in three ways:-1, Through the thin glass of the windows. 2, More slowly through the walls, floors, and ceiling; and 3, In combination with the air which escapes at the joinings of the windows and doors, or through openings expressly made for the purpose of ventilation. The amount of heat lost in this way has been variously estimated by different writers ; but Dr. Arnott states it thus:-That in a winter day, with the external temperature at 10° below freezing, to maintain in an ordinary apartment the agreeable and healthful temperatare of 60°, there must be of surface of steam-pipe, or other steam vessel heated to 200°, (which is the average surface-temperature of vessels filled with steam of 212°,) about one foot square for every six feet of single glass window of usual thickness ; as much for every 120 feet of wall, roof, and ceiling of ordinary material and thickness; and as much for every six cubic feet of hot air escaping per minute as rentilation, and replaced by cold air. A window, with the usual accuracy of fitting, allows about eight feet of air to pass by it in a minute, and there should be for ventilation at least three feet of air per minute for each person in the room. According to this riew, the quantity of steam-pipe or vessel needed, under the temperature supposed, for a room 16 feet square by 12 feet high, with two windows, each 7 feet by three, and with ventilation, by them or otherwise, at the rate of 16 cubic feet per minute, would be-

Total of heating surface required.
.20 feet.
Which is 20 feet of pipe, 4 inches in diameter, or any other vessel having the same extent of surface, as a box two feet high, with square top and bottom of about 18 inches. It may be noticed, that nearly the same quantity of heated surface would suffice for a larger room, provided the quantity of windowglass and of the rentilation were not greater; for the extent of wall, owing to its slow conducting quality, produces comparatively little effect.

The same authority also supplies the following illustrations:-A heated surface, as of iron, glass, \&c., at temperatures likely to be met with in rooms, if exposed to colder air, gives out heat with rapidity, nearly proportioned to the excess of its temperature above tbat of the air around it, less than half the heat being given out by radiation, and more than half by contact of the air. Thus, if the external surface of an iron pipe, heated by steam, be 200°, while the air of the room to be warmed by it is at 60°, showing an excess of temperature in the pipe of 140°, such pipe will give out nearly seven times as much heat in a minute as when its temperature falls to 80°, because the excess is reduced to 20°, or $\frac{1}{7}$ of what it was. Supposing window-glass to cool at the same rate as iron-plate, one foot of the steam-pipe would give out as much heat as would be dissipated from the room into the externalair by about five feet of window, the outer surface of which were 30° warmer than that air. But as glass. both conducts and radiates heat about $\frac{1}{7}$ slower than iron, the external surface of the glass of a window of a room, heated to 60°, would, in an atmosphere of 22°, be under 50°, leaving an excess of less than 30°; and about six feet of glass would be required to dissipate the heat given off by one foot of the steam-pipe. In double windows, whether of two sashes or of double panes, only half an inch apart in the same sash, the loss of heat is only about one-fourth of what it is through a single window. It is also known that one foot of black or brown iron surface, the iron being of moderate thickness, with 140° excess of temperature, cools in one second of time 156 cubic inches of water one degree. From this standard fact, and the law above given, a rough calculation may be made for any other combination of time, surface, excess, and quantity. And it is to be recollected, that the quantity of heat which changes, in any degree, the temperature of a cubic foot of water, produces the same change on 2850 cubic feet of atmospheric air.

The arrangement of the steam-pipes has next to be considered. A common method is shown in Fig. 3704 , in which a is the pipe from the boiler, rising at once to the upper story. From this pipe proeeed horizontal branches $b b$ to each floor. Each brauch is furnished with a stop-cock at o, by which means the steam can be turned on or off at pleasure, in any one of the three stories. The water aris-
ing from the condensation of the steam in each pipe flows back into the boiler along the ascending pipe But if it be not convenient to place the boiler below the level of the lurvest fluor, the condensed steam is receised into a reservir, from which it is pumped into the feedin-ci-tern. At the extremity of each horizontal branch C is a stop-cock, wheh is opened when the steam is filling, to allow the air to blow off

Another arrangement of the heating pipes is shown in Fis. $370 \overline{5}$. Steam from the beiler enters by the connectionplipe a intu the heating-pipe b, placed near the floor ; and this is carried, with a gentle slope, to the opposite side of the rom, whence it rises intu the next story, and returns along its thoor to the opposite side, where it rise's to the third floor, and procueds as before. Here, also, the condensed water tlows baek in a direction contrary to the current of the steam, and is removed by a siphon at a. The air-vent is fixed at the highest point of the arrangement c.

It is necessary to prevent the condensed water from accumulating in the pipes, otherwise it woukl be imposible to maintain them at a uniform temperature. Moreover, this water condenses the stean so rapilly, that a yacuum is furmed within the boiler and pipes; and should
 thes not be tirm enough to resi-t the exterual pre-sure of the atnoophere, the builer may be erushed in, and the whole system deranged. By a special arrangement, the condensed water is collected at certain parts of the system, where it continues to give otit heat after the steam has ceased to flow into the pipes. In such eases, top-cocks may be employed, so arranged as to allow the water to be afterwards with fraten from the pijes; the same cochs also serve for letting the air ont of the pipes when the ateam is first admitted. But when the water is returved into the builer, the alvantare of this supply of heat cannot be reserved; and in these cases, a self-acting apparatus is used for takin; off the water of condensation. Such a siphon is represented in Fis. 3706 . The pipes are so fixed, that Λ is the lowest point of a branch pipe, so that any guantity of water that may be formed in it will tlow into the siphun, $A 13 \mathrm{C}$, at A, and eseape at (1 , where it nay be received into tuy veesel; for as the witter is pure distilled water, it may be useful for a variety of purpu-es. The water in the legs of the siphon acts as a trap to the steam in the pipe A; hence, the length of the leg $A B$ should not be lees than is equivalent to the force of the steam in the pipes, When, for example, the steam is worked at the rate of ten pounds jer square inch, the column of water should not be loss than ten feet; and even with this pressure, there will be considerable oscillations, uuless a valse be placed at sume intermediate point between A and 13. When the lerg are both filled with water, and at rest, this valve should be opens, so as to elose whenever the water hats a tendency to return into the pipe. The siphon humbl be large enough to carry off all the water of condensation, but mot too large, or there would be a luss of heat in the leg A B, from its being filled with steam; and, in all eaces, the siphon shouh be protectel from front. In connection with the siphon, it is usual to place a cock for letting the air out of the pipe, instead of the stop-cock abowe
 lower part of the pipe, becane the air being heavier than steam, will ocenpy only the lower portion of it.

In cases where suflicient depth cannot be atforded for a siphon, a steametrip or calve, made to onn+i ly a thot-hall, is employen. Trempolds arranement is as
 the stoma-pipe; 1) is a lumbow comper eylinder, tixen to a comical valve b: When stean is condenod, the a pare box will fill with water, which will float the hollow eylimber, and the water will cucape, ant run ly the pipe. F' into the drains. If henever the qume tity of water in the low in greater than is reguired junt to that thie cylmeler, and when there is leas tham whll that it, the valve will be clowed. In this case, alor, a stopenck $\$$ will be necewary to let ont the air while the pipt are bemp filled with steant

 rewnmmond the thimble jomt. Core bumt of conron be taken, in

 or shurt cylimerer of wrought-iron, to inclone them, leaving only a

 Vor. 11.- 1
the usual allowance for the expansion of east-iron pipes is one-eighth of an inch in 10 feet, or $\frac{1}{960}$ a their length. Cast-irou, heated from 32° to 212°, expands $\frac{1}{5}$. of its length, which is nearly $1 \frac{3}{3}$ of an inch in 100 feet. A similar expansion-joint applied to the spigot and faucet counection, Fig. 3709, an swered rery well. Lead cannot be sulsstituted for tin or iron cement in joints, for, by frequent heating it becomes permanently expanded; while the iron pipes always contracting in cooling, and the lead not participating in the contraction, the joints soon get loose. Count Rumford introduced an expansioudrum x, Fig. 3710 , of thin copper, between the extremities of two pipes $a j$, which, in elongating: pressed the sides of the drum inwards, and in cooling drew them outwards. The pipes should not be connected with any part of the building, but be quite independent thereof. All the horizontal branches should be supported on rollers, and nothing done to interfere with the expansion of the different parts

3710.

3711.

In private dwellings, where the appearance of the pipes is objectionable, they may be concealed behind perforated mouldings, or skirtings, or cornices; or the steam may be brought into ornamental vases dispersed about the room, each furnished with a small stop-cock, to allow the air to escape while. the steam is entering.

The method of heating buildings by steam has been superseded by hot-water apparatus of various kinds, which, however, may be resolved into two distinct forms or modifications, dependent on the temperature of the water. In the first form of apparatus, the water is at or below the ordinary temperature of boiling. In this arrangement, the pipes do not rise to any considerable height above the level of the boiler, so that the apparatus need not be of extraordinary strength. One pipe rises from the top of the boiler, and traverses the places to be warmed, and returns to terminate near the bottom of the boiler. Along this tube the heated water circulates, giving out its heat as it proceeds. The boiler may be open or closed. If open, the tube, when once filled with water, acts as a siphon, having an as cending current of hot water in the shorter leg, and a descending current of cooled water in the longer leg. If the boiler be closed, the siphon action disappears, and the boiler, with its tubes, becomes as one vessel. In the second form of apparatus, the water is heated to 350° and upwards, and is, therefore, constantly seeking to burst out as steam, with a force of 70 lbs and upwards on the square inch, and can only be confined by very strong or high-pressure apparatus. The pipe is of iron, about an inch in diameter, made very thich. The length extends to 1000 feet and upwards; and where much surface is required for giving out heat, the pipe is coiled up like a serew. A similar coil is also surrounded by the burning fuel, and serves the place of a boiler.

The heating of rooms by the circulation ol hot water in pipes seems to have occupied the attention of a few speculative individuals, long before the attempt was actually made. The first successful attempt, on a large scale, was made in France, in 1777, by M. Bonnemain, in an apparatus for hatching chickens, for the purpose of supplying the market of P'aris. A section of this heating apparatus is shown in Fig. 3711, in which a is the boiler, d a feed-pipe, o a stop-cock, for regulating the quantity of ascending foot water, b the pipe by which the hot water ascends from the boiler into the heating pipes $c c$ which traverse the hatching-chamber. These heating pipes have a gradual slope towards the boiler, to which the water returns by the pipe e, carried nearly to the bottom. In this way the water cooled by being circulated through a long series of pipes, is being constantly returned to the lowest part of the boiler, where it receives a fresh amount of heat; and being thus rendered lighter, rises up the pipe b, and descends the inclined planes of the pipes, losing a portion of its heat on the way, and at the same time increasing in density; the velocity of the current clepending on the difference between the temperature of the water in the boiler and that in the descending pipe. At the highest point of the apparatus is a pipe i, furni-hed with a stop-cock for the escape of the air which the cold water holds in solution on entering the boiler. The water that rises along with it is received into the vessel k.

Whatever be the arrangement adopted for warming buildings by this method, two considerations must be specially attended to, viz, sufficient strength to bear the hydrostatic pressure, and freedom of motion fur currents of water, of rarying temperatures, and consequently of varying densities. As fluids transmit their pressure equally in every direction, a column of water rising from a strong vessel to a certain height, may be made to burst the vessel with enomous force. Thus a tube whose sectional area is one inch, rising to the height of $34 \frac{1}{2}$ feet from the bottom of a vessel of water, will, if the tube be also full of water, exert a bursting pressure on every square inch of the inner surface of such vessel of one atmosphere, or 15 lbs . If the sectional area of the tube be increased, the pressure remains the same, because it is distributed orer a larger surface of the vessel. If a boiler be 3 feet long, 2 feet wide, and 2 feet deep, with a pipe 28 feet high from the top of the boiler, when the apparatus is filled with water, there will be a pressure on the boiler of $66,816 \mathrm{lbs}$, or very nearly 30 tons. This will show the necessity for great strength in the boiler, especially when it is considered that the effect of heat upon it is to diminish the cohesive force of its particles. But even supposing the apparatus were to burst, no danger would arise, because water, unlike steam, has but a very limited range of elasticity. The boiler just deseribed would contain about 75 gallons of water, which, under a pressure of one atmosphere on the

Equare inch, would be compressed about one cubic inch; and if the apparatus were to burst, the expansion would only be one cubic incl, and the only effect of bursting would be a cracking in some part of the boiler, oceitioning a leakage of the water.
The circulation of the water is brought about by the principle of convection. When heat is applied to a vessel containing water, the principle of conduction altogether fail, for water is so imperfect a coliductor of heat, that if the fire be applied at the top, the water may be made to boil there without greatly affecting the temperature below. But when the fire is applieil below, the particles in contact with the bottom of the boiler, being first affected by the heat, expand, and thus becoming specifically lighter than the surrounding particles, ascend, and other particles take their place, whiclı in like mann.r becoming heated, aseend also; and the process goes on in this way until the whole contents of the boiler have received an accession of temperature. If the process be continued long enough, the water will boil and pass off in steam. If the boiler be closed in on all sides, so as to prevent the escape of steam, it will burst with a fearful explosion. If a tube full of water rise from the top of the boiler in a vertical line to any required height, and then by a series of gentle curres descetrd, and enter near the bottom of the boiler, the process of heating is still the same. The particles of water first heated with rise, and, in doing so, distribute their heat to other particles, which will also rise. These in their turn will lose a portion of their heat to other particles, which rise in their turn ; until at length an equilibrium is estallished. But as the source of heat is permanent, other particles are rapidly brought under its action, and, being heated, ascend. By continuing tho process a short time, the particles in the vertical tube become heated, and, by their expansion, exert a pressure en the water contained in the lateral brancles. This, together with the increasing levity of the water in the builer, establisbes a current, and the water from the branches begins to set in in the direction of the boiler; the water in the lowest branch, where it enters the boiler, supplying colder and heavier particles every moment to take the place of the warmer and lighter partieles which are being urged upwards along the vertical pipe.
Now to ascertain the foree with which the water returns to the boiler, we must know the specific gravities of the two colunms of water, the ascending and the descending, and the difference between them will be the effective pressure or motive power. This can be done by ascertaining the temperature of the water in the boiler and in the descending pipe. When the difference amounts to only a ferv degrees, the difference in weight is very emall, but quite sufficient, in a well-arranged apparatus, to maintain a constant circulation. For example, suppose an apparatus to be at work, in which the tempernture in the descending pipe is 170 deg., aud the temperature of the water in the boiler, the height of which is 12 inches, is 178 d der. The difference in weight is 8.16 grains on each square inch of the section of the return pipe. If the boiler A, Fig. 8712 , be two feet ligh, and the distance from the tup of the upper pipe c to the centre of the lower pipe d be 18 inches, and the pipe four inehes in diameter, the difference of pressure on the return pipe will be $15{ }^{3}$ g grains, or about one-third of an ounce weight; and this will be the amonont of motive power of the apparatus, whatever be the length of pipe attached to it. If such an apparatus have 100 yards of pipe, four inches in dismeter, and the boiler contain 30 gallons, there will be 190 gallons or 1900 1bs. weight of water kept in continual motion by a foree equal to only one-third of an ounce.
Another method of estimating the velocity of motion of the water of a hot water apparatus, is to regard the two portoons of the system as the lighter and heavier thuids in the two limhls of a baromectical adriumeter. This instruncent is an inverted siphon, Fig. 3713 , and its use is to ascertain, in a rough way, the specifie gravities of immiscible fluids. If mercury be [nured into one liall, A and water into the other B, and the stop-eock between then he turned sol as to mablioh a communieation, it will be found that an inch of mereury FD in one limb will balanee 13 h inches of water I E in the other limb, thus showimg that the densities or sprecitic gravitios of the two lluids are as 13 f to 1 . If oil be used interad of merectry, it will require 10 inchess of oil to balamee ? inches of water. Or if equal bulks of oil and water be poured into, the limbs of the siphou and the stop-cork be then turned, the oil will be furced upwards with a velucity equal to that which a solid tholy would nequire in falling by it own gravity, throngh a pase equal to the addutional heipht which dhe lighter boly would oceupy in the siphon, Now as the relative weighte of water and cil are as 9 to 10 , the oil in one limb will be foreal upwards by the water with a velonity equal to that which a falling booly fin this ease the water) womld acepuire in falling througho one inch of apace, mad lhis velucity is equal to 188 feet pare minutes
In estimatim; the whely of motion of the water in a hat-whter apparatua, the same rule with apply: "If the nvernge" temperature be 170 dug, the dithermee between the

 that is, had the ditherence of tomprature In an lib inge, and the rettical hwight of the pipe tive feet
 where the vertieal hecight was III fiet, and the differente of tempreratures dey."

tion from the theoretical amount must still be made, to represent with any thing like accuracy the true velocity; and Mr. Hood states that in more complex apparatus the velocity of circulation is so much reduced by friction that it will sometimes require from 50 to 90 per cent, and upwards to be deducted from the calculated velocity, in order to obtain the true rate of circulation.
The amount of friction not only varies according to the arrangement of the apparatus, but also according to the size of the pipes. It is much greater in small pipes than in large ones, on account of the relatively larger amount of surface in the former; besides this, small pipes cool quicker than large mes, and this increases the velocity of the circulation, and with it the friction is also increased. When the velocity with which the water flows is the same in pipes of different sizes, the relative amount of friction is as follows:

Diameter of the pipes, $\frac{1}{2}$ in., $1 \mathrm{in}, \frac{2}{2} \mathrm{in}$., 3 in., 4 in .
The amount of friction, $8, \quad 4, \quad 3, \quad 1 \because, \quad 1$.
So that, if the friction in a pipe of 4 inches diameter be represented by 1 , the friction of a pipe 2 inches in diameter is twice as much, and a 1 -inch pipe four times as much. By increasing the relocity, the friction increases nearly as the square of the velocity; but as the water in a hot-water apparalus circulates with various degrees of speed in its different parts, it is not easy to calculate the amount of friction from this cause.

It will be seen, then, that when all the deductions are made, the circulation of the water is produced by a very feeble power, so that, as may be supposed, a very shight cause is sufficient to neutralize it. Mr. Hood has known so trifling a circumstance as a thin shaving accidentally getting into a pipe, effectually to prevent the circulation in an apparatus otherwise perfect in all its parts.

But the great point to be attended to, is so to dispose the pipes, that the water, in its descent, may not be obstructed by differences \approx level, or angles in the pipes, where air may accumulate; for this, by dividing the stream, effectually prevents the circulation. For example, in an apparatus constructed in the form represented in Fig. 3714, the motion through the boiler and pipe A B takes place by conrection, and through the descending pipe CD by the force of gravity, as already described. But it will be seen that, when the motion commences in the return pipe DB , in consequence of the greater pressure of CD than of A B, the water in A will be forced towards e, while the water in efghflows towards C. But when a very small quantity of hot water has passed from the pipe and boiler $\mathrm{A} B$ into the pipe ef, the column of water $g h$ will be heavier than the column $e f$, and the current will, therefore, tend to move along the upper pipe towards the boiler, instead of from it. This force, whatever its
$3: 14$.
 amoment, must oppose that in the lower or return pipe, in consequence of the pressure of $C D$ being greater than $A B$; and unless the force of motion in the descending pipe $C D$ be sufficient to orercome this tendency to a retrograde motion, and leare a residual foree sufficient to produce direct motion, no circulation of the water can take place.

With respect to the accumulation of air in the pipes, every part of the apparatus, where an altera tion of level occurs, must be furnished with a vent for the air. Thus, in Fig. 3714, if the air accumulate in the pipe between A and e, it is evident that a vent at C , although it would take off the air fror: $g h$, and from C D, conld not receive any portion of that which is confined between $\mathrm{A} e$, or between $e f$, because, in that case, it must descend through the pipe ef before it could escape, and as air is so very much lighter than water, it cannot possibly descend so as to pass an obstruction lower than the place where it is confined. The same remark applies to all cases, however large or small the descent may be, and the accidental misplacing of a pipe in the fixing, by which one end may be made a little higher than the other, will as effectually prevent the escape of air through a vent placed at the lower end, as though the deviation from the level were as many feet as it may, perhaps, be inches.

When it is required to heat a number of separate stories by the same boiler, one of two methods may be adopted. The vertical pipe from the boiler may be carried up to the highest story, and the return pipe meander through each story, until it finally terminates in the boiler. But it is obvious, that in such case, the top story will get the larger share of the heat, and the lower stories will be gradually less heated, on account of the cooling of the water in its passage to the boiler. The second method is to supply each story with a separate range of pipes branching out from the main pipe, and returning either together or separately into the boiler. The application of this principle, however, requires caution, for if the branch pipes are simply inserted into the side of a vertical ascending pipe, the hot current may pass by, instead of flowing into, them. Some contrivance is, therefore, necessary to delay the motion of the upward current, and to cause it to turu aside at the points required. This may be done by the arrangement shown in Fig. 3715, which is alsu coppied from Mr. Hood's work. Here it will be perceived, that as the water ascends from the boiler B it receives a check at b, whereby it tends to flow through the horizontal pipe, at that level. The same also occurs at c, and, by this means, a nearly equal flow of hot water may be obtained. If it be required to cut off the supply of heat from one story, while the others are being heated, this may be done by turning a stop-cock at s, by

which the heated current is prevented from flowing along the particular branch so elosed. But whenerer a branch is closed as at s, it is necessary also to close the other end t of the sane brameh, otherwise the water in the descending return pipe R, being warmer and lighter than that in the branch eloned at s, will circulate therein, and thus raise the temperature of the room intended to be kept cool.

In some arrangements, the hot aseending current of the vertical main is matle to diwharge into an open cistern at the top, as in Fig. 3716, and from the botom of this cistern the various flow-pipes are made to branch off. By this means, the expense of coeks or valves is avoided; for by driving a wooden play into one or more of the pipes which open into the ci-tern, the circulation will be stopped until the apparatus is heated; but, in that ease, water will flow back through the return pipe. This, however, may be prevented, by bending a lower portion of the return pipe into the form of an inverted siphon, as shown in the figure. This will not prevent the circulation when the fluw-pipe is open; but if that be closed by a plur in the eistern, the hot water will not return back through the lower pipe. Any sediment that may accumulate in the siphon may be removed, from time to time, by taking off the cap at the
 lower part of the bend.

In such an arrangement as that shown in the last two figures, the rertical main p.pe need not be or larger diameter than the branches, unless these extend to a very considerable distance, and then the diameter of the main pipe may be somewhat enlarged. It is not, however, desirable to increase the diameter of the main, because it is an object to economize the heat in this pipe, and there are circumstanees in which a small main loses less heat than a large one, as, for example, in the arrangement shown in Fig. 3716. If one main pipe, eight inches in diameter, supply four branches in a given time, it is evident, that by reducing the main to four inches in diameter, the water must travel four times faster through the smaller pipe to perform the same amount of work; and, under such circumstances, the water will lose only half as mueh heat in passing through the small main as it would do in ascending the larger one, for the loss of heat sustained by the water is directly as the time and the surface conjointly.

Hence, in warming by the same boiler two rooms separatel from each other by a considerable distanee, the pipe comecting the two rooms may be of smather diancter than the pipes used for diffusing the heat. Thus a pipe of one inch diameter imay be used to consect pipes four inches in diameter.

The great specific heat of water, whereby it is cmabled to retain its heat for a very lous time, has been already shown (page 743) to be a great advantage of this method of warming buildiurs. The rate at which this apparatus cools depends chiefly on the quantity of water contained in it with respeet to the amount of surface exposed, and the excess of temperature of the apparatus above that of the surrounding air; but for temperatures below the boiling point, this last circumstance need only be taken into account in estimating the velocity with which his apparatus cools. Now the variation in the rate of cooling fur bodies of all slapes, is inversely as the mass divided by the superficies. In cylindrical pipes, the inverse number of the mass divided by the superficies is exactly equal to the inverse of the diameters ; so that, supposing the temperature to be the same in all,

$$
\begin{aligned}
& \text { In pipes of } 1 \\
& \text { In } \\
& \text { The ratio of cooling will be } \ldots . .4 \\
& \hline
\end{aligned}
$$

That is, a pipe of one inch in diameter will cool fimer times as quickly as a pipe of four inches in diameter, and so on. These ratios, multiplied by the exeess of heat in the pipes above that of the surrounding air, will give the relative rates of eooliner for different temperatures below 212 theo ; but if the temperatures be the same in all, the simple ration given abow will show their relative rate of conling without multiplying by the temperatures.

These calculations supply practical rule for wamating the size of the pipes under different circumstances. If the heat be reenirent to be kept up leme ator the tire is extimisuished, large pipes should be ueed; if, on the contrary, the lwat is not wanted after the fire is put unt, then small ones will answer the purpense. lipes of larger diancter than four indne should never he used, because they repuire a very loner time in being hated to the proper tompromese. l'iges of four inches in dianetor are well
 for warming charehos, factories, mal iwelling han-w ; such pipes retan their heat for a sullicient bareth of time, and they ean be more quickly and more intenely hated than harger piper, so that, on this aceomat, asmaller guanty of phe will often sullice.

With reapect to the quanty of piper rentired for warming a buidding of ascertainend size, it is neces sury to hear in mital the rate at which a given gumbty of hat water, in an iron pipe, will impart its

 in th le Warmel

temperature of the room exceeds the temperature of the external air. If the diffcrence between thein be 30 deg., the $1 \because 29$ cubic feet of air will be cooled 30 deg. by each square foot of glass, that is, as much heat as is equal to this will be given off by each square foot of glass.

The quantity of air to be warmed per minute in habitable rooms and public buildings must be three and a half cubic feet for each person the room contains, and one and a quarter cubic feet for each square foot of glass. For conservatories, forcing-houses, and other buildings of this description, the quantity of air to be warmed per minute must be one and a quarter cubic feet for each square foot of glass which the building contains. When the quantity of air required to be heated has been thus ascertained, the length of pipe which will be necessary to heat the building may be found by the following rule :multiply 125 (the excess of temperature of the pipe above that of the surrounding air) by the difference between the temperature at which the room is purposed to be kept when at its maximum, and the temperature of the external air; and divide this product by the difference between the temperature of the pipes and the proposed temperature of the room; then, the quotient thus obtained, when multiplied by the number of cubic feet of air to be trarmed per minute, and this product divided by 222 (the number of cubic feet of air raised 1 deg. per minute by one foot of 4 -inch pipe) will give the number of feet in length of pipe four inches diameter, which will produce the desired effect.

When 3 -inch pipes are used, the quantity of pipe required to produce the same effect will, of course, be different. To obtain it, the number of feet of 4 -inch pipe obtained by the above rule must be multiplied by $1 \cdot 33$. If 2 -inch pipe be used, the quantity of 4 -inch pipe must be multiplied by two.

If we wish to determine the quantity of pipe required to maintain a constant temperature of 75 deg . in a hot-house, we must suppose the external air occașionally to fall as low as 10 deg., and calculate from this temperature. The amount of heat to be supplied by the pipes is obviously that which is expended by the glass, the cooling power of which is exactly proportioned to the difference between the intermal and the external temperature, the actual cubical contents of the house making no difference in the result. If such a house have 800 square feet of glass, it can easily be calculated, from the preceding data, that this quantity will cool down 1000 cubic feet of air per minute from 75 deg. to 10 deg., which will require 292 feet of 4 -inch pipe. If the maximum temperature of the pipe be 200 deg., and the water be at 40 deg. before lighting the five, the maximum temperature will be attained in about four hours and a half; with 3 -inch pipe, in about three hours and a quarter; and with 2 -inch pipe, in about two hours and a quarter; depending, however, upon the structure of the furnace, and the quantity of coal consumed. If the external temperature be higher than 10 deg., the effect will be produced in a proportionally shorter time.

In churches and large public rooms, with an arerage number of doors and windows, and moderate rentilation, a more simple rule will apply for ascertaining the quantity of pipe required. Where a uumber of persons are assembled, a large amount of heat is generated by respiration, so that a very moderate artificial temperature is sufficient to prevent the sensation of cold. In such a case, the air dues not require to be heated above 55 deg. or 58 deg ., and the rule is to take the cubical measurement of the space to be beated, and dividing this by 200 , the quotient will be the number of feet of 4 -inch pipe required.

The efficiency of any form of hot-water apparatus will, of course, greatly depend on the boiler, which ought to be so constructed as to expose the largest amount of surface to the fire in the smallest space; to absorb the heat from the fuel, so that as little as possible may escape up the chimney; to allow frce circulation of the mater throughout its entire extent, and not be liable to get out of order by constant use. A variety of boilers are figured in Mr. Hood's work, and their respective merits considered on scientific grounds. One of these boilers is shown in Fig. 3717. It is of cast-iron, and the part cxposed to the fire is covered with a series of ribs two inches deep, and about one-fourth or three-eighths of an inch thick, radiating from the crown of the arch at an average distance of two inches from each other. These rits greatly increase the surface exposed
 to the fire, exactly where the effect is greatest; for being immediately over the burning fuel, it receives the whole of the heat radiated by the fire. The form of this boiler being hemispherical, will also expose the largest amount of surface within a given area. The boiler show in Fig. 3715 being of wrought-iron, and, therefore, thinner than cast-iron, absorbs the greatest amount of heat from the fuel.

With respect to the size of the boiler, it has been shown by experiment that four square feet of surface in an iron boiler will cvaporate onc cubic foot of water per hour when exposed to the direct action of a tolcrably strong fire. The same extent of heating surface which will eraporate one cubic fout of water per hour from the temperature of 52 deg., will be sufficient to supply the requisite amount of heat to 232 feet of 4 -inch pipe, the temperature of which is required to be kept 140 deg. above the surrounding air ; or one square foot of boiler surface exposed to the direct action of the fire, or three square feet of flue surface, vill supply the necessary heat to about 58 superficial feet of pipe; or, in round numbers, one foot of boiler to 50 feet of pipe. But as this is the maximum effect, a somewhat larger allowance ought in general to be made. If the difference of temperature be 120 deg. instead of 140 deg., the same surface of boiler will supply the requisite amount of heat to one-sixth more pipe, and if the difference be only 100 deg., the same boiler will supply above one-third more pipe than the quantity stated.

With respect to the furnace, the rate of combustion of the fuel will depend chicfly on the size of the furnace-bars, provided the furnace-duor be double and fit tightly. The ash-pit should also be provided with a door to exclude the excess of air when the fire is required to burn slowly. A dumb-plate should also be provided, to cause the combustion to be most active at the hinder part of the furnace instead of directly undur the boiler. The fuel will thus be gradually coked, the smoke consumed, and the fucl cconomized.

In an apparatus containing 600 fest of 4 -inch pipe, the area of the furnace-bars shouk be 800 square
inches, so that 14 inches in width and 22 inches in length will give the amount of surface required. Tc obtain the greatest heat in the shortest time, the area of the bars should be proportionally increared, so that a larger fire may be obtained. The fire ought at all times to be kept thin and bright; and to obtain a good effect from the fuel, one pound weight of coal ought to raise 39 lbs . of water from 32 degrees to 212 degrees.

The best kind of pipes for hot-water apparatus are those with socket-joints, flange-joints having long been out of use for this purpose. Where the socket joints are well made, there is no fear of leakage, for the pipes themselves will yield befure the joints will give way, or before the faucet end of one pipe can be drawn out of the sucket of the other. The joints must be well caulked with spun yarn, and filled up with iron cement, or with a cement made of quicklime and linseed oil.

Soft or rain water ought always to be used in the hot-water apparatus, because, if hard water be used, its salts will form a sediment or crust in the boiler, and interfere with its action. But as there is rery little evaporation from this kind of apparatus, the boiler will not require cleaning out fur years, if a moderate degree of attention be bestowed on the water employed.

When the apparatus is not in use, care must be taken to prevent the water from freezing in the pipes, or the sudden expansive furce of the water in freezing may crack them. If the apparatus is not likely to be used for some time during winter, it is better to empty the pipes than incur the risk of freez ing. It has been proposed to fill the pipes with oil instead of mater, and as the boiling point of oil 14 nearly three times higher than that of water, it was thought that a temperature of 400 deg. might be sately given to the pipes. It was found, however, that the oil at high temperatures became thick and viscid, and at length changed into a gelatinous mase, completely stopping all circulation in the pipes.
In the forms of apparatus to which the preceding details refer, the temperature of the water never rises to the ordinary boiling point, (212 deop.;) but we have now to notice a method in which the temperature of the water is often beyond su0 deg.; this is the high-pressure method contrived by Mr. l'erkin-. In its simplest form, the apparatus consists of a continuous or endless pipe, closed in all parts, and filled with water. There is no boiler to this apparatus, its pace being supplied by coiling up a portion of the pipe (generally one-sixth of the whole length) and arranging this in the furnace. The remaining five-sixths of the pipe are heated by the circulation of the hot water, which flows from the top of the coil, and cooling in its progress through the building, returns to the buttom of the coil to be reheated. The diameter of the pipe is one inch externally, and half an inch internally, and is furmed of wrought-iron. The coil in the furnace being entirely surrounded by the fire, the water is quickly heated, and becoming also filled with innumerable bubbles of steam, these impart a great specific levity to the ascending current. At the upper part of the pipe, the steau bubbles condense into water, and uniting with the column in the return pipe, which is comparatively cool, the descent is rapid in proportion to the expansion of the water in the ascending column, or, in other words, according to the relative specific gravities of the two columns of water.

As the expansive force of water is almost irresistible, in consequence of its extremely limited elasticity, it is necessary in the high-pressure apparatus to make some provision for the expansion of the water when heated. The necessity for this will appear from the fact, that water heated from $39 \cdot 45$ der. (the point of greatest condensation) to 212 deg., expands about $1-23 \mathrm{~d}$ part of its bulk; and the furce exerted on the pipes by this expansion would be equal to $14,121 \mathrm{lb}$, on the square inch. The method adopted is to comect a larse pipe, called the expansion pipe, $\frac{2}{2}$ inches diameter, with some part of the apparatus, either horizontally or vertically. It should be placed at the highest point of the apparatus, and at the buttom of the expansion-pipe is inserted the filling-pipe through which the apparatus is filled. While the apparatus is being tilled with water, the expansion-tube is left open at the top; water is then poured in through the filhig tube, and as it ries in the pipes, drives out the air before it. When the pipes are full, the filling-pipe and the expansion-tube are carefully closed with screw-phors. It is important to exped all the air from the pipes, and this is done, in the tirst instance, by pumping the water repeatedly though them. The expan-in-pipe is, of course, keft empty, as its use is to allow the water in the pipes to expand on being heated, and thes prevent the danger of bursting. Firom 15 to 20 per cent. of expmosion space is generally allowed in pratice.

The fumace is gencrally so arramged in the buhting required to be heated, as to allow the tube proceeding from the top of the coil to bee carried ntraight up at once to the highest level nt which the water has to circulate; hare the expansion-tube is situated, and from this point wo or mere descendurg columns can be formel, which, after circulating through ditlirent and distant parts of the huiding, unite at lenerth in one pipe, just before contering the laitom of the coil in the furnace.

 stopeocks for turning oll the cire alation from the coils when desired.

The heat in commmicated th the nir of the romens from the external surfaee of the pipes, whichare coiled upe is at ece, and placed within pedentals, ramged about the remon with open trellis work in frout,
 being stopped, or arrangen in miy other comboment mamer.

 wot open it at the joint arow r than at my wher part.

When the tubes are screwed together at each end, they are proved by hydrostatic pressure, with a force equal to 3000 lbs , on the square inch of internal surface.

When the tubes are properly arranged and fixed in the building, the whole apparatus is filled witk water by a force-pump, and subjected to considerable pressure, before lighting the fire. In this way faulty pipes or leaky joints are detected.

The tubes are joined by placing the ends within a socket, forming a right and left hand screw, the edge of one tube having been flattened, and the other sharpened; they are then screwed so tightly together, that the sharpened edge of one pipe is indented in the flattened surface of the other. Another method of connecting the pipes is by a cone-joint. A double cone of iron is inserted into the ends of the pipes to be joined, and is made tight by two screw-bolts, as shown in Fig. 3719. This joint is quickly made, and is very strong.

The furnace varies in form and dimensions according to circumstances; but a very common arrangement is shown in Fig. 3720. The size is about three and a half feet square, increasing to six feet, according to the extent of pipe connected with it. The fire occopies a small space in the centre, raised about one foot from the ground, and the fuel is supplied through the hopper-door m at the top. The outer casing a is of common brick-work; cc are fire-bricks, supporting the coil $k ; d d$ reservoirs for the du-t and soot, which would otherwise clog the coil; g bearing-bars for the grate; h the grate: the fire-door is double, and there are also doors to the ash-pit and dust reservoirs. Fig. 3721 shows the descending tube entering the fire-chamber, and passing through the bearing-bars $g q$ of the grate h. Fig. 3722 is a section of the back well or reservir $d d$, formed so as to support the coil, and to cause the soot and dast to fall to the bottom.

In this arrangement of the furnace, the ignited coal is surrounded on three sides by a thickness ot uine-inch fire-brick; the hopper-door is also placed in one of these lumps; the coil is contained in a zhamber round the fire-brick, four and a half iuches wide ; the pipe enters this chamber, passmg thraugt
the bearing-bars of the grate, which tends to preserve the grate from burning; the pipe pasies out from the top of the coil, at the upper part of the chamber. The smoke passes througla the chamber containing the pipes, and escapes through an opening at the back. The coil is in actual contact with the fire only in frunt. The best fucl for this furnace is cole or Welsh hard coal, such as is not liable to cherg. The furnace may be placed in a cellar, or be completely removed from the building to be warmed. The heat of the furnace can be moderated by clusing the $: 1 / h_{1}$-pit dour, and opening the furnace door, us the reservoir doors, so as to lessou the draught and admit cold air to the coil.
In the apparatus crected at the British Juseum for warming the print-room and the bird-room, the furnace is in a valt in the basement story, and the pipes, entering a flue, are carried up about furty feet to two pedestals, one in each room ; one containing 360 feet of pipe, and the other fou feet. About 110 feet of pipe are employed in the flow and return pipes in the flue, and 150 feet are coiled up in the furnace. In this way, iujo feet of pipe are employed: the apparatus is very powerful, and supplies the requisite amount of heat. The print-room is about 40 feet long, by $\dot{0} 0$ feet wide, and the ceiling contans large sky-lights. The temperature of 65 deg. can easily be mantained in this room during winter. The fire is lighted at © A. M., and is allowed to burn briskly till sufticient heat is produced in the roums, when the damper in the flue is partially chosed. A slow fire is thus maintained: at 11 a. M., a fresh supply of fuel is added, and this supports the fire till 4 m. when whe the fires at the Muscum are extinguished.
The above details will suffice to show the nature and application of this apparatus.
It is, however, of great importance to ascertain whether this apparatus is perfectly safe, for even a doubt on the subject must be fatal to its gencral introduction. The average temperature of the pipes is stated to be generally about 350 deg.; but a rery material difference in temperature, amounting sometimes to 200 deg. or 300 deg., is saill to occur in different parts of the apparatus, in consequence of the great resistance which the water meets with in the numerous bends and angles of this small pipe. The temperature of the coil will, of course, give the working effect of the apparatus, but the temperature of any part of the pipe will furnish data for estimating its safety; for whatever is the temperature, and, consequently, the pressure in the coil, must be the pressure on any other part of the apparatus; for by the law of equal pressures of fluids, an increased pressure at one part will generate an equally increased pressure at every other part of the system.

A very elegant method of ascertaining the temperature of a heated surface of iron or steel, con-ists in filing it bright, and then noting the color of the thin film of oxide which forms thereon, as fullows:

Mr. Hood states, that in some apparatus, if that part of the pipe which is immediately abose the fur mace be filed bright, the iron will become of a straw color, showing a temperature of about 450 dec. In other in-tances, it will become purple $=$ about 530 ders, and, in some cases, of a full hue color $=$ 560 deg. Now, as there is always steam in some part of the apparatus, the pressure can le calculated from the temperature, and a temperature of $450^{\circ}=$ a pressure of 420 lbs , on the equare inch; $5: 30^{\circ}=$ 900 lhsis ; and $560^{\circ}=1150 \mathrm{lbs}$. per sipuare ineh.

Aldough these pipes are proved, at a pressure of nearly $3 u n o l b s$ per square inch, and the foree required to break a wronght-iron pipe of one inchexternal, and half an inch internal diameter, requires $88: 2 \mathrm{llm}$ per squaro meth on the internal thameter, yet these calculations are taken for the cold metal. l3y exposing irm to long continued heat, it loses its fibrous texture, and aeduires a erystalline charater, whereby its tomacity and collesive strength are greatly weakend.
In order to make this apparatus safe, Mr. Hend swergesta that, instead of hermeticatly sealine the expansinn-pue, it should be furnoned with in valve su contrived as to prens with a weight of 185 lln .
 pressure would then be nime ntmospheres, which is a limit more than sutlicient for any wowher apia ratits where afety is of impertance:

Bhat, supposing the apparatus were to har-t in any part, the df ets would, hy no menn, resemble thase

 Water under erdinary circumbtumes, but the herh preaure steam womb not reahd, herane ita copacts

 ansumit.

 nethonlo now it it :.

Culver's hot-air and portable furnaces.-These furnaces are represented in the accompanying draw ings, Firs. 3723,3724 , and 3725.

A, Fig. 3723, iron or brick ash-pit.
B, ash-pit door.
C, pot, or coal-burner, with or without soapstone lining.

D, fire chamber.
E , lower half of tubular drum.
F, elliptical tubes.
G, upper half of tubular drum.
H, top of tubular drum.
1, cap and smoke-pipe.
K , flat radiator.
L, water-basin, or evaporator.
M, smoke-pipe to chimney.
N , conductors of hot air.
O , cold-air conductor and chamber.
P, feed-door.
Q, hot-air chamber.
R, damper in globe with rod attached.
S, pendulum valve for cleaning.
The arrows show the direction of the currents of hot or cold air.
Fig. 3724 represents a large size portable furnace in outline or skeleton form, in double coverings of sheet-iron, tin. or zinc, with same letter references as in Fig. 3723.
These portables may be used to warm stores or buildings where it is not convenient or desirable to erect brick walls, and may be placed in basements or cellars, warming the rooms in which they stand,
 if need be, as well as those above. They have eufficient power to warm a moderate sized building, and can be removed as easily as a common stove.

Fig. 3275 represents a portable furnace with two metal coverings, with the inlets and ontlets of cold and hot air, smoke-pipe, de., with evaporating pan standing upon the top of the drum.

McGregor's hot-air furnace.-Fig. 3726 is a front view of largest furnace set in mason-work. 1, feed door ; 2, fire-chamber; 3, 4, and 5, hot-air pipes; 6, ash-pit door ; 7, cold-air box; 8, cylinder chamber for generatiug hot air.

Fig. 3727 exhibits an internal view of the structure of the furnace. A CD, the course of the heat ascending into the drum, descending ind passing off into the smoke-pipe. H, the feed-door for fuel, D , the back damper by which the fire is checked by admitting cold air into the smoke-pipe.
'The aim of this furnace is to exclude entirely the red and unwholesome heat made by the hot or fire chamber, in which the coal is burnt, from coming into the hot air chamber, and instead, all the heat is thrown into the large eylinder drum in the air-chamber, which is nerer allowed to become so heated ar

In burn the air; and into this chamber is continually allowed to pasa a large volume of fresh air, and from thence into the apartments. The serious objection to furnaces has been, not that they would not proluce sufficient heat, but that the air was burnt and poisoned by coming in contact with the red-hot cylinder as it passed through the hot-air chamber, which in this furnace is obviated by shutting off in a separate brick chamber all the heat thrown out from the cylinder.

Walker's hot-air furnace for heating and rentilating dwallings, churches, school-houses, dec.-Walker's hot-air furnace is now very much in rorne, and we extract froin his treatise on warming as follows:

The principle of heating by hot-air furnaces is to take fresh air from outside the building, warm it, and then let it flow into the rooms as temperature and rentilation require. Thus, a pipe conducts the air from oufside of the building to the air-chamber of the furnace, i. e., the space inclosed abont the furnace; here it is warmed, and is then comelucted by pipes into the apartments, while the smoke and gas generated by the combustion of the fuel pass off by another pipe to the chimnes:

But if the air-chamber and the pipes leading from it are snall, or if the furnace itself is so small that in order to get the heat required its surface must be kept at a high red heat, a furnace will be found to be one of the most expensive and disagrecable modes of beating. To construct a good furnace, therefore, several things must be considered.

1. Fentilation.-The problem is how to secure a pleasant, genial heat, with thorourh ventilation Fither of these alone may be very eacily and economically obtained. Stuves of various kinds will produce heat at little cost, but they afford no ventilation. Open doors and windows will produce ventila tion, but at the expense of that warmth which health and comfort require.

To make a furnace the means of ventilating an apartment does not appear to bave been thought of. The uniform plan was to admit into the apartments to be warmed by the furnace but a suall quantity of air, which, to produce sufficient heat, was mecessarily raised to a very high temperature-intencity of heat being substituted for quantity. This was in rarious ways productive of bad results. The small volume of air introduced into a rom from the air-chamber of the furnace was worth very little for ventilation.

But the question arises, how is the requisite amount of rentilation to be secured? What limit shall be assigned to the introduction of fresh air into an apartment which is to be heated to a given temperature? The answer to this question must vary with the relative importance of economy in fuel, and of the health and comfort of the nccupants of the room. The limit of the amount of ventilation mu-t sometimes be that which can be afforded. The heating of air for this process is just so much fuel thrown away.
The most cenomical stove is that which is placed in the roon: to he warmed, and the smoke of which is reduced to the temperature of the room; if no change of air then take place, by crevices or wherwise, we have arrived at perfection in the economy of fuel. Whether it is advisable to practise such economy, or rather parsimony, for this is its nature, is quite another question. It is upon this principle of the non-renewal of the air and low temperature of the smoke, that air-tight stores consmme but lithe woot ; that the odor of the rooms warmed by them, in which several people are assembled, is olfensive, and their influence upon the health injurious. In New England the winter temperature is such that the expense of heating up the air to a comfortable point is a serious item, and the temptation to economize in this respect is with some not encily resisted.

If pure and healthy air be morth what it will cost, then should hot-air furnaces be so constructed as to admit frecly large puantities of fresh air into the apartments. But while this object is secured, furnaces should be so constructed also that the ample volume of air thus freely introduced shatl be raised to the required temprature with the least possible expense of fuel.
2. Evajoration.-There appears to be a great want of information on this branch of the sulject, even among those who ought to lee sufficient masters of their business to know its use. Thus one mam will advertiee as a recommendution of his furnace, that " a large quantity of water is evaporated, to restore to the air the oxygen tiken from it by the heat of the furnace." Another has a furnace "so constructent that evaporation is not neco-sary, as it never becomes sulliciently hot to destroy the vitality of the nir," it being lined with soapstone, or something similar.

But all such statemuents are bawed upon an incorrect idea of the we of eraporation. They imply that heat destroys the vitality of the nir, and that the ceaporation of water will reatore it, meither of which is correct. "Heat withent cembu-tion does mot deatroy the ritality of the nir: nad if it did, evnparation would not be ar remedy: The necessity for ceaporation ariens wholly from the faet, that as the temper
 Thus a given solume of air ae the temperature of to der is capable, like a sponge, of holdine in su-pernsion a certain qumbity of water. If now, without meting to the quantity, the comperature be rained to

 the druiteg pomers of the air will her manifented in its retrects upen the wood work of the apartmeme

 miture require this expedient, to +uply nir at an incrembed temperature with the menture whe hit小-mande.

 When water honk, stemm will rian whether the nir reguires it or mot; but whom the water is hath tho

3. Temperature.-To keep the apartments at a comfortable temperature, well rentilated, without dust or gas, and without injury to furniture or to health by the extreme dryness of the atmosphere, in a word, to keep up a continual smpply of pure, fresh, invigorating air at summer heat, is the desideratem in a hot-air furnace. To effect this the heat must be imparted by a surface so large that no part of it will be highly heated in obtaining the requisite temperature. The chief objections against funnace, have arisen from the fact that very small surfaces have been used, and were heated to such a degree that the innumerable particles of animal and vegetable matter that are always floating in the air were burned, rendering the air offensive and unhealthy. The air also was very highly heated, which not only made it very unpleasant, especially when it came in contact with the person before its temperature was reduced, causing headache, lassitude, and other disagreeable sensations, but also very injurious to the bannels and other wood-work of the room, furniture, de., by reason of its extreme dryness.

When the temperature of the air cannot be dimini hed without depositing water upon the walls of the containing ressel, or appearing as a mist, it is said to be saturated. If the temperature of saturated air be raised, it will, to the feelings, become drier, and will immediately begin to take up water which is exposed to it ; air is dry or moist, not in proportion to the water it contains, but in proportion as it is more or less removed from the point of saturation.

Walker's patent improved hot-air furnace, manufactured at No. $89 \frac{1}{2}$ Leonard-street, New York, is represented in Figs. 3728 and 3729.
The objects aimed at by the patentee in the construction of his hot-air furnace are-
1st. By means of one fire to produce a mild, uniform, and agreeable temperature throughont several apartments, and to warm a whole house sufficient for sleeping-rooms, or to keep plants of all kinds in the coldest weather.
3720.

2d. To avoid all dust and gas, and to keep the apartments well ventilated by means of a constant supply of fresh air from without.

3d. To be simple, so that any one capable of manaring a stove can take care of it.
4 th. To be ceonomical in point of fuel.
5th. To be durable, so as not to require frequent or expensire repair:
The furnare is constructed of east-iron, is placed in the cellar and inclosed in brick walls, in such a manner that there is very litife heat wasted by escaping into the cellar or ehimney-tlue. Con-equently nll the fuel consumed is made available to heating the apartment; and in no ease where they have been erected, have they falled to give entire satisfaction.

Literal Refirencos.

A, upper smoke-pipe.
B, damper.
C, drum : or radiators.
D, feed-door.
E, fre pot, fluted.
F, coll-air tlues.

G, space betreen walls for cold air.
11, hot-air llues.
I, lower smoke-pipe.
J, evaporating pan-12 gallon-
K , door to put in or take out the hater.
L, duor to remove ashes.

We extract from the Journal of the Franklin Institute a report on warming and ventilating the west talf of the Lonatic Ay.jum of Blockley Alm-hou*e, Philadelphia, by steam :

Buch diffeulty was experienced in the adaptation of an old edifice, nut originally ducigneal fur such a system as has been alophted, and which added greatly to our labor and made it more difficult to elfeet our purpo-e.

In eenstrieting the heating diambers and necessary flues, we were obliged to cut through a sy-tem of areles, which, on account of the substantial maner in which the building was con-tructed, addert greatly th the expense and time attending the prosecution of the work. The want of proper flues and conduit- for the warmed and extracted or foul air, all of which we were obliged to con-truct, or alter to answer the purpose of the present arrangement; the insullicient height of the cellar ceiling for our purpures, and the imposibility of going any deeper on account of water, presented another serious lifficulty in the ereat di-tance the steam had to be conveyed and the condensed water returnet again to the builere, being 500 feet; a sreater depth would have faceilitated the return of the condensed water.

Liunning underneath the building are a number of sewers, into which the sinks are drained, consequently making them very foul. These made a system of veatilation very desirable, but at the same time greatly interfered with our eflorts to produce a pure atmosphere throughout the buiding. The building itself is one very difficult to warm, on account of the great height of the ceilings, the tirst story being 14 feet 11 inches, the second 16 feet 4 inches, and the third 14 feet 8 inches in heisht. The number and large size of the windows making the glass surface equal to 3.147 square feet, and the imperfect fitting of the windows, tugether with the large size of the dours, and the very exposed situation of the building, render it, perhaps, more diffieult to warm than any of the buildings comected with the Institution.

Explanation of the figures.-Fig. 3730, plan of building, and warming and ventilatin r.
Fig. 3731, clevation of heating chambers.
Firg. 3732 , longitudinal vertical section of the arrangement for warming and ventilating.
Fig. 3733 . plan of a part of the heating and ventilating chamber.
Fig. 3734, clevation of Fig. 3733.
Fir. 3731 is a plan of the west half of the Lunatic A sylum: the main building, running east and west, is 16 feet long he 59 feet wide, inside measurement, three stories high, with an attic. On each thonr of the main buibling there is a large hall rmming the length of it, a stairway, kitehem, dining-rom, and three large asomiate romes, in eade of which there is a murses room, wa-hrom, and water-choset.
 three stories hirh, with an attic. On ench thom of the wing there is a hall rmming the lemeth of it, and comected with the main building by anther hall, two stairways, a nuree's rom, a bath-rom, two as-u ciate rooms, and twenty ectls.

Great pais have lown taken to promure air for the sppply of the house from pure soureses and to kecp it from laing contanimated while in the equalizing and heatiog chambers umber the huidines. The ar
 any of the thes exempt those in the hatl, nor have they been found de-irable at there is but a trithes
 frem interfere nee with thetr).

 crom ing it at right anmes. For warming the hatly in the man buidding, mother chamber 13 is con

 $\mathrm{A}^{\prime \prime} \mathrm{A}^{\prime \prime} \mathrm{A}^{\prime \prime}$ are con-tructect.

 be wartneal.

from the yard. Their arrangements for the equalizing and heating chambers, flues, \&e., are the same as the others.

The arrangements by which the heated air is introduced and the foul air extracted from the rooms, will be understood by referring to Figs. 3732, 3733, and 3734, which represent the arrangement for warming and ventilating three of the large associate rooms in the main building, which are each 47 by 44 feet. The flues F F F lead from the heating chamber A to near the ceiling in the centre of the rooms; these supply the heated air for warming the roum- throwing it out in the directions as indicated ts the arrows.

The foul air is drawn off by means of the foul-air flues V V placed in the sides of the rooms, opposite to the entrance for warm air; they open close to the floor, thus produeing a downward ventilation. Through these it is conducted to the main foul-air flue K K, Figs. 3783 and 3734 ; from thence conducted to the extracting shaft E , which is 90 feet high, fitted with a cast-iron chimney 30 inehes diameter and 25 feet high, through which the smoke and gases from the fire are discharged. The extracting shaft is also fitted with a steam-jet, by means of which additional foree can be given to the ventilation if it should be desirable. There is also a small furnace in the base of the shaft, so arranged as to produce ventilation when the heating apparatus is not in use.

The main sewer which runs under the building is so connected with the fire under the boiler that the necessary air for supplying the furnace may be drawn from it, thus ereating a current of air into the sewer, and in a measure preventing the escape of fetid gases.

G G, Figs. 3730 and 3731, are two cylindrical boilers, 36 inches in diameter and 40 feet long, having a capacity, together, equal to 565 cubic feet. We would here assure you of the perfect safety of these
boilers. They are constructed of the beit Pennsylania iron, by experieneed workmen, and are of unmsual thickness; the heads, although of cast-iron, are concave ; the boilers weigh together $12,18 \mathrm{c} \mathrm{lbs}$, the great amount of water they contain, and con*equently the amount of time necessary to evaporate it, makes them safe as regarls explozion from the nowst frequent eause, the want of water; and theiz proportion in relation to the fire and radiating surfaces is such that, were the safety valves chaned down, it would be imposible to generate a pressure of 100 lbs , to the sguare inds. With the preant weight at the extreme end of the safety-valve levers, 72 fos, pressure would raise them. The builers will sustain a pressure of 300 lt . to the square inch without any danger; 30 lts , is the greatest pressure under which the apparatus is generally worked. Plain cylinder builers are always preferable to tubu lar boilers where there is rom enough to make them sufficiently large-they can be made stronger or: accunnt of their form ; they have, abso, more steam and water rom, The boiler of a firct-class hecomotive of ordinary construction will generate enough steam, whon the fire is in full operation, to till the steam space in four seconds, and enough, could there none escape, to burst the boiler in about tell minutes; they will evaporate the water so as to become dangerous in from 30 to 60 minutes when theo supply of water is stopped.

The smoke and gatees from the furmace are ennveyed through the smoke flue 1), Figss ar30 and 3731, within the heating chamber A, until it is "plosite the extracting shaft E ; from here it is comducted across and into the eat iron chimey P', whin the extracting shafe f: The smoke-flue withen the heating chamber A is covered with catotiron plates, and these with eloan samd. The arrampements ure such that the temperature of the smoke and gites is reduced below gou dey. Fialir. before they are permitted to recape, thus preventing any unnecessary wate of heat, and conserguenty of fuct.
'To the boilers are connectod, by muans of a 6 inch cast-iron main k, systems of radiating pipes $h h / 4$ of wronghtiren, finch im-ile diancter; they are distributed thromgh the deflewt hatmer chambers
 again comerted into stean, thut producing a circulation. There are between soou and ghan feet of radating fipe di-tributed threngh all the heating chambers.

If a rapiol cireulation thromgh the radlations pipes is denired, for the purpone of rati-ing the bumprature of the buibling in a comparatively short time, it is elliectend hy upening a blow wif eock which do char ".4 inte a nower; or lig theant of at Hean pump, 4t arranged as to tahe the water from the comlowe| water IM". and
 for sulplying the lmiters wath water when the presure of nte:am in tex) great to dome fiom the rear rusir.

In the thiral story of the wing it men iten tank, of a capraty of teng gatlonm, iu wheh the water

eastern or male part of the house is arranged in the same way. They are all supplied witls steam from the same source.

There is no fire in the west half of the Asylum excepting under the boilers $G \mathrm{G}$, and a small cooking stove for preparing food for the sick.

The cubical contents of the building warmed, without deducting partition walls, stairways, de., is 780,000 cubic feet; the amount actually warmed by the apparatus, deducting partition walls, stairways, de., is 730,000 enbic feet, or 90 rooms and 6 halls.

The consumption of fuel in cold weather is $1 \frac{1}{2}$ tons of coal per day, (24 hours;) allowing 75 days cold and 100 days moderate weather through the winter, the consumption would be 213 -say 225 tons; 30 tons of this should be deducted, which is the amount used in cooking, and 15 tons of this should be charged to the eastern or male part of the house. The consumption of fuel, as near as we can ascertain, for heating this part last year by close stoves, $\mathbb{d c c}$., and there was no ventilation, was from 275 to 300 tons of coal, say 275 tons, when but a portion of the rooms were warmed, and that imperfectly; while by the arrangement introduced by us, the whole of the building is warmed at a saving of at least 75 tons of coal, which, at $\$ 4$ per ton, would be $\$ 300$.

The advantages of the present arrangement are-
1st. Producing a pure atmosphere throughout the building, the air being supplied in great abundance from pure sources, and so arranged as to keep it from contamination.

2d. A system of downward rentilation, which diffuses the warmth uniformly throughout the various apartments; the air being admitted near the ceiling and drawn off at the floor is constantly sinking, and in this way the colder and impure air passes off by the foul-air flues, and is ejected from the extracting shaft above the building.

3 d . The safety from fire, both in the building and as regards the patients, which, in a lunatic asylum, is a very important consideration.

4th. The freedom from noise, dust, and dirt usually attendant upon fires in grates and stoves.
5 th. The whole heating arrangement being under the care of a single individual, is more easily managed than by a number of attendants, who are now dispensed with.

6 th. The economy of the arrangement, saving about 25 per cent. in fuel; the repairs will not exceed those of stoves and grates.

Ventilation.-The following hints on ventilation will be found of value in this place; they are by W. Walker, Engr., of Manchester.

However useful steam agency, as applied to ventilating purposes, may be in factories or buildings connected with them, and in theatres or other places liable to great and sudden influx or efflux of per-sons-and well as it has been fomnd to answer in its appplication to other buildings, such as club-houses, banks, collegiate institutions, and hospitals, in which manifest advantages have been derived from its employment-there will still be great numbers and many classes of edifices in which it would be from various causes inadmissible. Churehes, chapels, and houses for worship, may be enumerated under this head-the numbers contained within their walls being, on the whole, tolerably constant, and not liable to very sudden fluctuations; but especially from the circumstance that they are seldom used more than two days in the week, with intervals of two or three days between; and when used it is only for two hours consenutively, with intervals of tro or three hours between. With such proper quantity and sizes of ingress and egress flues as can readily be obtained in the thick walls and piers of such edifices, (if planned prior to their construction,) this short period of occupation will not permit their atmosphere to become very highly charged with impurities, while the intervals between the services will be found sufficient for an entire change of the whole atmosphere left in them at the close of each service, without resorting to mechanical means. In churches with lofty open roofs, of the mediæval or early English construction, without galleries, the total cubic space bears so large a proportion to that portion of it occupied at the floor level by the congregation, that scarcely any injurious vitiation of the entire atmospheric contents can take place during the short period of occupation, provided moderate preparations have been made for ingress and egress. Hence, very sudden and powerful reutilation is scarcely required in such churches, and the purifieation of their atmosphere may safely be left to the spontancous action of those preparations; but on special occasions, and in hot weather, the action of the fresh-air flues may be accelerated by the exhausting power of a shaft or trunk of adequate size running up within the tower or steeple, its upper end discharging into the external air, while its lower end communicates with the interior by openings in or near the roof; and this shaft may be made, in very hot weather, to perform two or three times its usual duty, by rarefaction produced at its lower end g, Fig. 3735, by a large number of gas-burners fixed there in tolerably close proximity with each other, and supplied with gas from the mains which furvish light to the whole building. These ideas have been successfully carried out in munerous instances, and in large buildings. The whole process recommended for such a building will be better understood by a reference to the upper portion of Fig. 3785, which represents a section of a church ventilated in this manner; a a are openings all round the church for admission of fresh air ; $b b$, hot-water pipes, over which it is made to pass on its way to the gratings $c c ; d d$ are openings, by which the vitiated air enters a horizontal trunk c, from the end of which rises the shaft f, with a collection g of gas jets in the bottom of it; $h i$ is the gallery line, and k an excarated room for the boiler, the floor of which should be five feet below the floor line of the church.

By simply turning the cock in the gas-pipe which supplies the jets, the rarefaction in the shaft, and, consequently, the velocity and quantity of the air passed through the church, may be controlled with tolerable accuracy, and instantly proportioned to any greater or smaller number of persons assembled. The cost of piping and cock for bringing the gas to the jets has been found to be but trifling; and as they need only be lighted during the time the chureh is occupied for worship, which is seldom of longer duration than two hours and a half, the consumption of gas is not very great, and amply compensated by the beneficial result obtained.

The means most proper to be adopted for the plentiful supply of fresh air in the low-roofed, galleried.
and crowded meeting-house, wili be found to con-ist in abundance of fre-h-air openings all round under the window:, communicating by brick llues with the lower part of the spaces under the ai-les and -eate in which the hot-water fipes that are to warm the air should he fixed. Fre-h-air flues should be constructed in all the piers betweet the windows, ruming as high as the gathere, to sulply it with fee-h wamed air. A ritiated air-flue should also commence in each pior un ler the gallery (in order to gise free egress to that which would otherwise be intercepted and detatited unler the gallery) and pase up into a horizontal trunk, ruming over the roof, along cach side, into the foot of the "pright shate beluw the gaf-jets, al= before explainel. Openings should abo be left in the roof, ectnmanicating with these horgontal trumks, ter carry off the bat and heated air over the gallenies. Hut-vater pipes-swuld be converal along the sitc-walls, uuder the floor, so as to warm the air that pans up wish the fivers inte the gatlery:

The leading points to be olserved in such a case are delineated in the luwer part of Fig. 6 oiss, beluw the line $/ \mathrm{i}$.

A much larger provision slmulal be mate for supplying fred air to such a bouse for wowship, or other

 com-iter the following facts and calculations. A chapel or mectionghonse with lange gatleries nearly all round, capable of accommontatimg on special ocea-ions enou persons, is frequently mate ubut is freit
 the authorities from Tredeghl to Rowl who have written on the sulgect of the guantity of fre-h air required por minte hy rach individual, to rephace that which such inslividual hat remberod untit for res-
 proper quantity, an nllowanee near the aserase of their scientife opminns will he given. The total guantity reguired, therefore, on this how stambard in auch a huildines, to maintain iss atmophere in a

ness, about 30 feet in average height. This church has often contained 1800 persons; its cubic contento being 156,000 feet, and the requirement of air, allowing, as before, seven feet per minute to each person, $(1800 \times T=12,600$ feet. The time in which the whole atmosphere of this church would, when containing its full complement of persons, require to be changed, is ($1500,000 \div 10,600 \Rightarrow 12 \frac{1}{2}$ minutes: and large openings will obviously be required to pass the quantity in the time.

These figures will suffice to show the necessity for a very much larger provision for ventilation that has been customary in buildings containing galleries, in which the cubic contents bear a small proportion to the numbers assembled.

The management of the warming of a church being a matter frequently intrusted to a sexton or verger charged with other duties, which necessitate his making a clean appearance, and demand his exelusive attention during the service, it is a matter of some importance, where hot-water apparatus are used, to adopt such form of boiler as will require the smallest possible attention. The kind shown in Fig. 378 fi , in section, will be fornd to fulfil this requirement. In this, a is the fire-box; b, ash-box; c, smoke-box; d, fire-bars ; e, smoke-tubes; f, fuel-box ; g, damper ; h, for or steam pipe; i, return or condensation pipe; j, ash-box door ; k, fire-door ; l, smoke pipe. Jany large churches have been kept by it at a unitorm temperature with only three attendances in twenty-für hours. This sort of boiler will be found very desirable in many other buildings besides churches. They are to be filled to the top with coke broken into small pieces, which falls on the fire as required. Λ very useful kind of Arnott stove has ree sargely adopted on the same prizeiple.

The stove here described appears to us a rery simple arrangement for effecting the purposes desjed, and to be well worthy of adoption.

In the whole range of ventilation there is, perhaps, nothing so much neglected as the rentilation of schools; and as it is most desirable public attention should be turned to the subject, we give room to Mr. Walker's statement of his views on the subject:

Schoels are frequently very crowded, and their atmosphere in a most unwholesome condition. The great increase in their number in the populous mannfacturing districts, is a gratifying sign of the times, and affords good reason to hope that the succeeding gencration will grow up with improved ideas and habits, and, as is most needful in those districts, stand some degrees higher than their predecessors in the seale of civilization.

Fig. 3737 is a section representing a boys' and girls' school ventilated (except as regards the windows) in a sati-factory mamer: a a are the fresh-air openings; bb, pipes for heating; $c e$, gratings for entrance of fresh warmed air; $d d$, openings for foul air, leading into a trunk c, whence it is drawn down the shaft f ly the rarefying furnace g, whence it is discharged up the shaft h into the atmosphere.
'This arrangement of a rarefied shaft, continued down to the ground for the purpose of obtaining a quick draught by a heated column, and requiring a dorm-shaft to comect the ventiating trunk from the top of the building with its lower end, so that the foul air may enter it below the fire, is the same that has been adopted, at very great cost, by Dr. Reid, in the new houses of Parliament. There is a complexity and expense abont this arrangement which would seem to be needless. The drawing down to the ground lesel of the whole of the vitiated air of the building, and then sending it up again; the cont of comecting the main down-shaft with the up-shaft, which circumstances may require to be at a considerable distance; and the trouble of forming air-tight connecting-flues to convey the vitiated air from numerous rooms to une main down-shaft, to say nothing of the double space and materials occupied by the tro shafts, would render this plan in numerous cases impraticable. To overcome some of theso
difficulties the fire has, in many cases, been provided for at the rorf hevel, ($\mathrm{i}, \mathrm{Fig} .3737$,) thus relinqui-1 ing the down-shaft and the lovier part of the up-shaft, and so for has been an improvement; but in many cases the trouble of carrying up fuel and ascendinz (o) attend to the fire was too great, and the ventilation was, therefore, uncertain. The best mode of effecting forcible ventilation by a shaft dutibeless is, to adopt the last-named arrangement; substituting gals rardiers for a furnace, as shown in the chureh, Fig. 6785. By bringing the pipe which supplies gas to the burners to sume acce-ible fuint near the ground-flour, with is stop-cock at that point, the handle of which should work in a graduate 1 quadrant, the ventilation can be regulated from below with great precision.

Window ventilation of a kind very frequently adopted in churehes and scluests, has been introluced into this firure, $(k$, Fis. 3737,) not with a view to represent it as part of Ier, lieid's system, but to illutrate its bad effects, either where it is the sole provision made, or where it is used in combination with a better process. If it be the sole provision made, and the room be heated by a fireplace or tove to Bu, a downward rush of air at 10° (should that low temperature happen to prevail outside at the time) will play upon the heads of those near it. If it bee in force, as in the figure, simultancou-ly with 1 roper means of introducing fre-h warmed air, its force will be modified, and partially deflected upwards, tuwnds the egress openings; but whatever cold air thus enters is so much deducted from that which urght t, Lave entered warmed through the proper chamel c.

Arnott's rentilutiny appuratus in use in the Jork County Lunatic Asylum, bingland.-The apparatias is shown in the amoxed engravings, of which Fig. 3738 is a plan, and Figg. 8739 it section, taken through the centre from A to B. It consists of a fixed cylinder, placed in the centre of a room, and which cylinder is about 5 ft .6 in . diameter and 5 ft . high, with a chamber above and below, each furmished with inlet-valves to receive the air from the fre-h-air shaft, and cotlet-valves to deliver the air into the adjacent chamber, and thence distributed throught the building. The eylinder is made of galvanized inon, is

weight to cause the bell to descend and expel the air in the lower compartment. Now, for the purpost of setting the beam in motion, it is necessary to have somo movable power to overcome the friction of the movable parts and the air. For this purpose Dr. Arnott has adopted a single-action water-cogine, haring a cylinder 2 inches diameter and 12 inches stroke; to be supplied by water from a resersoin placed on the top of the building, 60 feet above the engine. A column of water of this altitude act, with a pressure of about 30 lb . on every movable square inch of the piston; and if the piston be 2 inches diameter, it will be equal in round numbers to 3 square inches, consequently the force of the water acting on the piston will be $3 \times 30=90 \mathrm{lb}$. ; and this is the power with which the Doctor proposes to work the apparatus, and as the engine is single-acting, the cylinder will require about a pint of water for every stroke. Thus, if the engine works 8 strokes per minute, it will require 8 pints of water, or 1 gallon per minute, to keep the beam moving.

This engine is placed so that the connecting-rod is connected with the movable beam at 1 foot from the fulcrum ; and if the beam have a radius of 5 feet, and the working cylinder be suspended at the end of the beam, the bell will be elevated 5 feet at every stroke of the engine. When the piston has performed one upward stroke by the pressure of the water, the water is cut off by a slide-valve, and that which is within the cylinder is discharged into an open pipe; consequently, the cxtra weight of the movable parts will cause the piston to descend, and at the same time the working cylinder will also descend. Now, if we suppose that at the commencement of the working of the apparatus the working cylinder is close down on to the fixed cylinder, the upper compartment will be filled with air, and as it rises it will displace a quantity of air equal in capacity to the cubic contents of the working cylinder, and force it out of the valves that open outwards; and at the same time that the cylinder is rising, the space below is increasing equal in capacity to the cylinder, and a quantity of air rushes in through the valres opening inwards, and fills up the space; and when the bell begins to descend, the lower inletvalves close and the lower outlet-valves open, and the air that is below is forced out through the outletvalves of the lower compartment, and at the same time the air is being admitted into the upper compartment, as before described. By this means the action is double, and a constant stream of air is being taken in through either of the inlet-valves, and forced out through the upper or lower outlet-valves into the adjacent chamber, and thence through trunks and cases to all parts of the building.
Now, it has been shown that for every stroke of the engine the working cylinder displaces a quantity of air equal to its capacity in both the bottom and upper compartments; and as the capacity of the working cylinder is equal to 125 cubic feet, it displaces in both compartments 250 cubic feet for every upward and downward stroke of the engine, at an expeuse of one pint of water, descending from an altitude of 60 feet; and if the engine works 8 strokes per minute, it will displace 2000 cubic feet of air at an expense of 8 pints, or one gallon of water, which is equal to $2,880,000$ cubic feet of air displaced by the aid of 1440 gallons of water for 24 hours. These are the proportions proposed by Dr. Amott for ventilating York Hospital.
For the purpose of feeding the apparatus, pure air is brought down a shaft, the top of which is considerably above the top of the building, and which communicates at the bottom with the chambers before described; and if it be desired that the air be warmed, it is effected by allowing the air, as it is expelled from the chambers on its passage to the trunks, to pass between a series of hollow copper vessels filled with hot water.

The adaptation of the water-engine which Dr. Arnott proposes to adopt is particularly desirable, as it can be worked at comparatively little expense, and the water, after it has done its work in the engine, may be used for domestic purposes. It will also be seen that by this apparatus the whole of the air forced in for ventilation can be accurately measured if a counter be attached to the engine to show the number of strokes the engine has performed during the day.

Literal refcrences.--Similar letters refer to similar parts in each figure.
A is a fixed eylinder, open at both ends with outer case α, filled with water, forming an annular hydraulic joint.

B, working cylinder inclosed on the top and open at the bottom; the rim works up and down in the hydraulic joint a.

C C', upper and lower chambers, with inlet-valves $i v$ opening inwards to take in the air from the ex ternal air-shaft E ; and outlet-valves ov opening outwards to convey the air to the shaft D , and thence to the building through the trunk 'I'.

F , furnace-room, in which is placed the boiler with four square fire-boxes $f f f f$, to heat the water for supplying the copper cells g, when it is required to warm the air as it is being forced into the building; there are several of these copper heating cells placed side by side, with narrow spaces between for the air to pass through.

II, a water-engine, acted on by a colunm of water on one side of the piston, which is brought by a pipe h from a cistern placed on the roof 60 feet above; j is an air-ressel to prevent concussion by cutting off the water suddenly; k, geer for opening and shutting the eduction and induction valves; l, piston and connecting-rod.
K, balance-beam; at one end is fixed a chain to suspend the working cylinder, and at the other end is another chain to su-pend a balance-weight m.

WATCILMAKING, or Hobology-the construetion of instruments for the measurement of time. The most satisfactory of the ancient instruments for the measurement of time, was the Clepsydra or water-clock; in which the hours were iudicated by marks upon the side of a vessel filled with water, from whose bottom a small stream was allowed to flow out. As the water in the vessel ran off, its surface sank; and its height, as shown by the marks, indicated the time that had elapsed. It was soon found that the water does not run from such an orifice with a regular velocity; for, when the vessel is full, the pressure of the fluid is much greater than when it is nearly empty, and its flow will he proportionally faster.

The simplest mode of overconing the difficulty, arising from the unequal ilsw of water through an orifice in the botom of a vessel, is shown in Fis. 8740 . This clepiydra consists of a cylinder of glase, furnished with a float a, which carries the eiphon b. When this siphon his been once filled with water, the tluid will run out at the cock c, until the whole water in the vessel has been drawn off. The rate at which the water is discharged may be regulated by the cock c; and as, by the connection of the siphon with the flost, the month of the pipe is always at the same distance below the surface of the water, the quantity will allways be the same, whatever be the height of the fluid in the vessel; and a seale d, on its side. divided into equal parts, will always indicate, by the place of the float, the lapse of equal intervals of time.

All these instrument-, however, were but rude attempts to effect that which is at present accomplished for more perfectly by other means. By the combination of wheel-work (acting upon principles already described) with the penduhum, the haws of whose vibration have also been explained, clocks are now constructed, which indicate the passage of time with a degree of accuracy which it would have been thought but n short time since quite impossible to attain. It is to these instruments that the term Clock is now restricted. A wateh is a portable in-trument, in which the same meelanism is emplored as in the clock, but in which,
 instead of a pendulum, there is a balance-wheel, whose vibrations are regulated by a spring. Any clocks or watches might be termed chronometers or time-measurers; but this name is now appropriated to those which are constructed with the utmost attention to the perfection of every part, and with means for compensating certain errors to which they are lable. The most perfect clucks are those constructed for astronomical observations, in which the greatest possible accuracy is required; and hence these are ordinarily termed astronomical clocks. It must be borne in mind, however, that these ditler from ordinary cluck in ino essential particular; thouph their appearance is often puzclith to thuse who see them for the first time, in consequence of the hour and minute hands being fixed on distinct centres, and pointing to different circles, insteal of revolvine about the same centre, and pointinf to the same circle, as in ordinary clocks. Agan, the most perfect watches are those constructed tor the puposes of navigation, to which they give the most important assistance; and these, being much larecr than ordinary watehes, though constructed on the sane principle, are distinguished as matrine chronometers.

General prineiples-Moving and regulating povers.-The object of clock-work is to mantain the oscillations of a pendulum, by continually communicating to it a slisht ndlitional impulse; and, at the same time, to register the number of these oscillations, so as to indicate the passage of time. la order to effect these purposes, a train of wheels and pinions is put in motion by a power acting on the tir-t of them, whil-t the last is comected with the pendulum by a peenliar contrivance, termed the escapement. In clucts which are to remain stationary, and in which a saving of rom is no object, the moving [ower is a weight, which is su-pended by a string eoiled round a drum or barrel; this drum carries the first whel of the cluck, and inparts to the train the movenent it derives from the gradual de-cent of the weight. If the whole of this foree acted on the wheel-work alone, which it would do if the eseapement were taken off, the weight would run down comparatively fast, and the train would be caused to more with great rappility. But a part of it is expended in keejpins 4 , the vibrations of the promelnlum ; and the eomection of this with the wheed work is such, that not it theth of the latter can mbance, males permittel to do so by the swing of the pendulum. Hence a clack will not go, even when wound up, unkes the perdulum be set in motion; but when its vibrations have ance commenced, they will continne until the strim hats been mwound from the barrel by the deseent of the weghtt. In "winding up" the clock, we rai-e the wewht by arain cuiling its string round the barrel ; and the communicate (ats it wree) tu the machine a power which will kep it in action for a certain limited time. It would
 nary watchoe, and the commonest kinla of clecks, regnire to be woul uf "wery day; chronmmeters
 been constructel which only required winding once a month; and a few have heen mant. th cha for a year. It will b:abily understum, uph the prineiple of the whed and pmim, that the greater the

 propertion.

mner or central end of the spring is attached to a fixed axle. Hence, when the spring has been coiled up, its elasticity will carry round the barrel, in its attempt to uncoil itself. The barrel, in turning round, pulls a chain, which was previously coiled round a conical axle, which is termed the fusee. This axle carries along with it the first wheel of the train. In winding up the watch, we coil the chain round the fusee, and draw it off from the barrel; by which action the spring within the barrel is coiled up and its power becomes very strong. In attempting to uncoil itself, it pulls the chain, which
 now acts upon the small part of the fusec. When it has gradually uncoiled itself, the power of the spring is weakened; lut by this time nearly the whole of the chain is coiled upon the barrel, having been unwound from the fusee; and its pull or strain acts upon the large part of the fusec. Now upon the principles stated in a former part of this work, the more distant the point to which a force is applied from the central axis, the greater will be its power of giving the required motion. When the spring is acting most strongly, therefore, its power is applied at a far less mechanical advantage than when its power is nearly exhausted; and thus its action on the spindle of the fusee is equalized, so that from a variable power it is made to become nearly as regular as that produced by the descent of a weight.

The contrivance by which, in winding up a clock or watch, we can turn the fusee without influencing the wheel-work, is shown in Fig. 3742. The first wheel is holJowed out to receive the small ratchet-unheel d, of which the teeth are so cut as to slant on one side, but to be upright in the other. In the same hollow, there is a movable click or ratchet b, which is pressed down by the spring c. Now if the ratchet-wheel be turned in the direction of the slanting sides of its teeth (that is, from left to right in the accompanyins figure) it will not carry the large wheel with it; for the ratchet will be lifted by the inclined side of each tooth, and will consequently pass over them all. But if the ratchet-wheel be made to turn in the contrary direction, it will carry
 the large wheel with it; for the upright side of the tooth will be caught by the ratchet; so that any force applied to the ratchet-wheel will act upon the ratchet, and consequently upon the large wheel with which it is connected. Now the fusee is attached to the ratchet-whecl; and hence, when the fusee is being drawn by the chain in the direction last mentioned, it carries round the large wheel with it, and gives motion to the whole train; whilst, if the fusee be turned in the contrary direction, as it is by the key in the act of winding, the teeth of the ratchet-wheel lift the ratchet, and there is no motion given to the large wheel. The same contrivance is applied in clocks, to the drum round which is coiled the string that suspends the weight. In the better class of time-keepers, whether clocks or watches, there is another contrivance introduced into the fusec, by which the train of wheels is kept in motion luring the time when the weight or spring is being wound up; so that the ianccuracy that would be itnerwise occasioned by the stoppage of the movement (which any one may observe, who notices the fecond-hand of an ordinary clock or watch, whilst it is being wound up) is prevented. This contrivance is termed the maintaining power or going-fusee.
Having now considered the moving power, by which the train of whecls is kept in action, we shall examiue the regulatiny power, by which its action is controlled. This, in all clocks now constructed, is the pendulum; whilst in watches and chronometers, it is a wheel termed the balance. The balance of a watch serves the same purpose as the pendulum, having the advantage of occupying much less space, and of acting equally well in almost any position. It consists of a whecl, having an axle which terminates in two very fine pirots, and so exactly balanced, as to be capable of being moved with a very small impulse in either direction. To the axte, however, is attached one end of a very delicate spiral epring; of which the other end is attached to the frame-work of the watch, as shown in Fig. 3747. Now the action of this spring is like that of any other elastic body; it will produce a certain degrec of resistance to any change of position of the balance; and the greater the alteration of its place, the greater will be the resistance, until at last the force which set the balance in motion is overcome by it, and the rotation ceases. But the spring has been so much displaced, that it tends to bring the balance back to its original position, with a gradually increasing rapidity; and when it has arrived there, the force which it has aqquired will carry it as far on the other side. Again this force is resisted by the spring, and again will this bring back the balance to its former position.

Thus a balance, provided with a spring that possesses perfect elasticity, and uninfluenced either by friction or the resistance of the air, would go on vibrating backwards aud forwards without cessation. But three retarding influences really act upon it-want of perfect elasticity in the spring, so that each reacting force is somewhat less than the force which acted on it; friction of the pirots; and resistance of the air. Hence, in order to keep up these vibrations, it is necessary that a slight additional impulse should be continually given to the balance, as to the pendulum. When a balance is well constructed, its vibrations become almost perfectly isochronous, whether the space through which it moves be long or short; hence it is not much affected by moderate differences in, the strength of the impulses given to it by the moving power, and in this respect has even advantagee over the pendulum. It is found adrantageons to construct the balance-spring of the best chronometers not in the form of a flat spiral, like that of the common watch, shown in Fig. 3717, but in that of a helix or cork-screw, as shown in Fig. 3713. And the balance itself is not a complete wheel, but is made in a peculiar form, which will be described lereafter, for the purpuse of compensating the influcuce of heat or cold upon the spring. The time occupied by each vibration of the balance depends upon the strength of the sping-other things being supposed equal; and the strength is influenced by the length. A short spring, of equal thickness with a long one, is very much
 more elastic; hence, by shortening the balance-spring, we increase its clastic force; whilst by lengthening it, we diminish that force. The greater the elastic force, the shorter will be the ribr:ltions of the balunce, and the less will be the time occupied by each of them; consequently the time
piece will gain when the spring is shortened, and will luse when its length is increased. It is by thighty altering the length of this spring that a time-keeper is reyuluted, so as to gor faster or slowe than before.

The eontrivance by which the pendulun or the balanee is connected with the moving power, is termed the escapement. The simphet form of this is represented in Fir. 3744 . Let $x y$ be the axis on which the balance turns, or from which the pendulum is suspended; projectiner from it in defferent directions are two leaves c and d, which are terment pallets. At $f b$ is seen a crown-wheel, turning on a perpendicular axis oe e its tecth are cut like those of at saw ; and the direction of its movement is from right to left,--that is, f moves towards b, whilst on the further side i moves towards a, and a eomes gradnally round to f. This wheel, termed the balance-wheel, is connected with the rest of the movement by the pinion on its axis, as will be shown hereafter. The pillets are so placed, with regard to the teeth of this wheel, that, as - the axle turns from one side to the other by the swinging of the pendulum or the vibrations of the balance, the teeth are permitted to escape alternately lrom pach of them, and thes the whed turns round with an interrupted motion. In the figure, the pendulum or balance is represented as at the extremity of its excursion towards the right, and the movement of the axis his just allowed the tooth a to escape from the pallet c; whil-t at the same time the tooth b is just abut to fall on the pallet d. Now, whilst the pendulum or balance is moving to the left, that is, from p, to n, the tooth $\&$ still presees against the pallet d, and is prevented by it from moving further on, until the patlet has changed its position so far towards the left, as to allow the tooth to escape from it. During all the time that the tooth is presiur arginst
 the p.llet, the babance-wheel is communicating to the pendulum or balanee, through its means, a part of the power by which it is itself moved; and thus suphice the impulee required to keep its vibiations ap to the proper extent. When the tooth b has ereaped from d, the twoth i, on the other side of the wheel, will drop against the other pallet c; and will remain press ing against it, in like manner, until the return of the pendulum or balane to the position represented in the tigure lifts the pallet e sufliciently to allow the tonth i to eseape from beneath it, as a had pre visusly done. In this manner, then, the whee is allowed to advance by an interval of half a tooth at each vibration of the penduluns or balanee; and thus, if the wheel have 15 teeth, and the peudulum vibrnte seconds, it will make one revolution in half a minute:"

This escapement was in use long before either the pendulum or balance-spring was applied to the requlation of time-keepers.

The eseapement first used to connect the pendulum with the elock, precisely resembled that which has just been de-cribed. 'The axis of the crown-wheel wats vertical, as in Fig. 37.14 ; and the prendulum was attached to the horizontal axis $x y$. In fact, there was no essential maiation from that ropresentation, execpt that, instead of a cross-bar with weights p and q at either end, the lower portion onls, $x p$. was left, to serve as a pendulum. It was found, howerer, that the extensive vibrations which a perndulum must mate when so hunf were injurious to the regular going of the elock; and varous eontrivances have been devieed to prevent this sumee of error, by constructing the eseapement in such a mamw.r that the pendulum shall make shorter vibrations, These have comphetely superseded the use of this uriginal escaperment (termed the cromen-echeel and eregr) in cluck-work; but it is still weed is wathor- where, imbed, it is an oljeet tomake the vibrations of the labance ats extensive as porible. All ordinary wathes are constructed upon this plan; and they are distingninhed as rertian watches, becanse the last crown whed has a vertical or upright position, as seen in Firs. 3715.

The first watehes that were mate were as imperfect at the early chedis; and differed dity from them
 They had only mon hathl and wont of them reguired winding twien a day. The insenthe of the prial hatane-spring followel the application of the pendulam to the cleck, at melorg interval; and

 Hantefenill, a lirenchman, ath Dr. Hoeke, Whe re eam be lithe dombe that it in really due to the lat

plate and the dial, which really lie close together. The balance is seen at A; and on its axis or spindle are the two pallets $p p$, which together constitute what is termed the verge. At C is seen the balancc-wheel, the teeth of which resemble those of a saw. By the vibrations of the balance, the teeth of this wheel are permitted to escape from each of the pallets alternately, as already explained. On the axis of the bal-ance-wheel is a pinion d, which is driven round by the crown-wheel K . This wheel is termed by watehmakers the contrate-wheel. On the axis of this last is a pinion c which works into the third-wheel L ; and the axis of the third-wheel is another pinion b which works into the wheel M, termed the centrcwheel, from its position in the centre of the watch, (sce Fig. 3746, e.). The axle of this wheel passes up through the centre of the dial, and carries the minute-hand; making one complete revolution in an hour. Upon this axle is placed the pimion a which works in the great-wheel N. This wheel is acted on by the mainspring, which is either fixed upon its own axis, as represented at OP in this figure, or is contained within a barrel or circular box, which acts by means of a chain upon the fusee which carries the great-wheel, as already explained. Upon the axis of the centre-wheel, between the upper flate and the dial, is fixed the pinion Q; and this drives the wheel T. Upon the spindle of this wheel is a pinion g which works into the wheel V. The axis of this last wheel is hollow, so as to allow the axis of the centre-wheel to pass ap through it; and upon this hollow spindle the hour-hand is fixed.

It is seen, then, that in the watch, as in the clock, the moving power acts on a wheel which drives a pinion; that this pinion carries on its axis a wheel, which drives another pinion carrying another wheel ; and so on. Hence there is a continual increase of velocity, and at the same time a loss of power. The revolution of the balance-wheel c is very rapid in proportion to that of the great-wheel N, but its force is less in the same proportion; so that the slightest interruption (such as a thickening of the oil on the teeth and pivots) is sufficient to check the movement of the former, whilst the power of the latter, communicated to it by the spring, is sufficient to overcome a considerable resistance.

Many different trains may be adopted, to give the required proportions between the times of revolution of the several wheels; since their rates depend not upon their absolute number of teeth, but upon the proportion between the teeth of the whecls and the leaves of the pinions. The centre-wheel must, of course, make one revolution in an hour ; the balance-wheel is generally made to turn $9 \frac{1}{2}$ times in a minute; whilst the great-wheel makes one revolution in about four hours; so that, if the spring can turn it seven times round, the watch will go for 2 S hours. The following is the train (or arrangement of the number of teeth in the wheels and pinions) usually adopted in common watches. The gratwheel N has 48 tecth, and the pinion a into which it works has 12 teeth; consequently this pinion will make four revolutions whilst the wheel revolves once; and if the great-wheel turn round in four hours, the centre-wheel will make one revolution every hour. The centre-echeel M has 54 teeth, and the pinion b has 6 leaves; so that it, together with the third-wheel, turns round nine times, whilst the centre-wheel revolves once, and hence makes nine revolutions in an hour. The third-uheel L has 48 teeth, and the pinion c has 6 leaves, so that the velocity is again multiplied by 8 ; and the contrate-wheel which is on the axis of the pinion c will make $(8 \times 9) 72$ turns in an hour. The contrate-ulcel K also has 48 teeth, and the pinion d into which it works has 6 teeth, so that a further multiplication of velocity takes place, to the amount of 8 times; and the balance-wheel C, which is carried round by the pinion d, turns $(72 \times 8) 576$ times in an hour, or about $9 \frac{1}{2}$ times in a minute. The balance-whecl C has 15 teeth, and nalf of one of these escapes with every turn of the balance; hence there are about $\left(9 \frac{1}{2} \times 15 \times 2\right) 305$ impulses given to the balance in a minute, so that each of its vibrations occupies $60-305$ th parts, or about 1-5th of a second.

It is often an object, however, to cause the fourth or contrate wheel to revolve exactly once in a minute; so that its spindle may carry a hand which shall indicate seconds on the dial. This may be done by making the balance perform exactly five beats in a second, and by giving 15 teeth to the bal-ance-wheel, 6 leaves to its pinion, and 60 teeth to the contrate-wheel. The contrate-wheel, in turning once round, causes the balance-wheel to revolve 10 times; and hence the number of escapes its tecth will make is $(10 \times 15 \times 2) 300$ in a minute, or one in every fifth part of a second. Or the balance may be adjusted to beat nine times in two seconds; and then the number of teeth in the contrate-wheel must be nine times that of the pinion it turns-that is, 54 to 6 , or 68 to 7 . Or the number of beats may be four in a seconl; and for this arrangement the contrate-wheel must have eight times the number of teeth in the pinion at turns- That is, 48 to 6 , or 54 to 7 . When the contrate-wheel is to be thus mado to turn 60 times in an hour, instead of 72 , (as in the ordinary train.) the number of teeth in the centrewheel and third-wheel, and the number of leaves in the pinions they turn, must be recrulated acord-
ingly. The usual plan is to give the centre-wheel of teeth, and to the piniun it turns 8 leaves; so that this pinion, carrying with it the third-whel, revelves eirht times for each turn of the centre-whecl. The third-wheel, hasing 60 teeth, works into a pinion of 8 leaves; and this laat, carrying the contrate-
 60 times for eich revolution of the centre-wheel; and as the later makes one revolution in an hour, so does the former complete one in each minute.

The mode in which the parts of a watch are actually arranged is shown in ? 2.3746 , representins the interior of a wateh, from which one of the plates hat been removed, seen from above. Here a is the barrel, containin' the mainspring coiled within it. By the elasticity of this, the barrel is made eratually to wind upon itself the chain b, which was previotsly coiled around the fu-ce, and thus to give motion to that fusee, which carrics round with it the great-wheel c. The pinion turnell by the great-wheed is seen at d; and this carries on its axis the centre-wheel c. It is the spindle of this wheel which, prolonged through the dial, carrics the minute-hand. The wheel e turns the pinion i, which carries round the third-wheel g; and this works into the pinion (which cannot be shown is this view) that carries round the contrate-wheel h. This wheel tarns the pinion i, which carries round the ballance-wheel k : The balance itself and the verge are supposed to have been removed with the upper plate, which is shown sceparately in Fig. 3717. This gives a ricw of the back of the works of an ordinary wateh, as seen when the case is npened. The balance is seen at p; its spiral sprims is hown by s; and the emd of this is fixed at t. In order to regulate the length of this spring, so as to brin; the vibrations of the balance precisely to their required number in a minute, there is a mowable piece, marked o, throngh a slit in which the balance spring passes. This piece (which is termed the curb) can be mate to travel towards one side or the other, by means of a wheel acted on by the circular scale r, to which the key is applied for the purpose of regulating the watch. The position of the curb o determines the actin! lemith of the balance-spring, since the part between a and tis cut off, as it were from the rest. Hence, if the curble moved towards 1 , the actine length of the spring is increased; "hilst, if it be moved away from t, the spring is shartened. The eflect of this alteration lais been alreanly explained. At q is seen the square emb uf the spindle of the furee, to which the key is applied for wind-
 which lia + latwern the dal amb the phate on which it resthasing for its cliject to give motion to the hour hamb. The wheel r is turned hy a pimion on the axis of the centrewherl,

 giver notions the wherl r; and ons the hollow bindle of th i, lat the hoor lamd is tixal. The muntar of torth in the e
 whed r haill turn rot wid whemly 1 20th if the whecity of the coutral axia. Thus, spplowe thi centre pimen ta hase 15 theth, and the whel x th have to torth, the latter will wh rywolse one white the former remolors four tmese A sam, if

Watci, or by the aetion of the key in setting it. If the face of any ordinary wateh le examined, ther will be seen a small round spindle projecting in the centre. This is the spindle of the centre-wheel Inclosing this is the first hollow spindle, which carries the minute-hand, and which is squared at the rop to receive the key; and this is again inclosed in a seeond hollow spindle, to which the hour-hand is attached. These are seen in Fig. 3745. Preciscly the same means are adopted to connect the motion of the two hands in ordinary clocks; but where great accuracy is required, as in clocks used for astronomical observations, it is desirable to avoid unnecessary friction as completely as possible. This is done by making the hour-hand turn on a different centre from the minute-hand ; and the former receives its motion from the latter, by means of a wheel containing 12 times as many teeth as the pinion which turus it, and therefore making its revolution in 12 times the period. In astronomical clocks, however, the hour-circle is not unfrequently divided into 24 parts, instead of 12 ; and the hand requires a whole day and night to traverse it. The object of this is to avoid any mistake, arising from the same numbers being repeated twice between noon and noon, or midnight and midnight. Some clocks have been constructed, especially at Venice, to strike all the numbers, from 1 to 24 ; but in this there can be no advantage.

The mechanism of a portable eight-day clock is represented in Fig. 3749. Of the two tarrels, fusces, and trains of wheel-work here seen, the one on the right-hand side alone has for its office the measurement of time. The other is called the striking-train, and its otfice will be separately considered. The works are arranged, as in the watch, between the plates, in which are holes for the pivots of the anles of the various wheels, de. The front plate is attached to the dial, with an interval in which the hour hand movement is contained, as in the wateh. This interval also contains the mechanism by which the striking is regulated. The dial and the front plate are supposed to be here removed, so as to give an uninterrupted view of the train of wheels. The back plate is shown by the letters ABCD. The springs inclosed in the barrels E E give motion to the fusees F F, as in the watch, either by a chain or a piece of catgut. The mainwheel a of the going-train has 96 teeth, and this acts on the centrewheel pinion k, having 8 leaves. This pinion carries with it the cen-tre-wheel b; and on the same spindle, as in the watch, the minutehand is placed. The centre-wheel b acts on the pinion l; and this carries round with it the third-wheel c. This third-wheel, in its turn, acts on a pinion (not seen in the engraving) which carries round the ecape-wheel d; and this wheel, acting on the pendulum by the pal-
 lets $n o$ of the escapement, communieates to it the impulse received from the spring, whilst its own motion is entirely determined by the duration of the ribrations of the pendulum. For if, on the very same escapement, we were to hang a pendulum of $9 \frac{3}{7}$ inches, another of 39 inches, and another of 18 feet, the duration of each beat, and consequently the interval between the eseape of each tooth, would be half a second in the first pendulum, a second in the next, and two seconds in the last.

The number of teeth in the wheels and pinions, therefore, must depend upon the length of the pendulum. Thus, for a pendulum vibrating seconds, the number of teeth in the scape-wheel is usually 30 , since, as the wheel only advances to the amount of half a tooth at each escope, its revolution is then performed in a minute, and it may be made to carry a seconds-hand. If the centre-wheel and the thirdwheel have 64 and 60 teeth respectively, and their pinions have 8 leares, the multiplication of velocity will be $(60 \times 64 \div 8 \times 8)$ exactly 60 ; so that the scape-wheel will turn round 60 times for one revolution of the minute-hand. Where the pendulum vibrates half-seconds, however, it would be necessary to make the scape-wheel with 60 teeth, if it be required to perform but one revolution in a minute. Smatl portable clocks, however, such as those designed for a table or mantel-piece, are not made with a sec-onds-hand ; and in these the scape-wheel is made with a small number of teeth, and revolves in a shorter time; the number of teeth in the wheels and pinions which connect it with the centre-wheel being adjusted aceordingly. In a clock now before the author, the centre-wheel has $8 \pm$ teeth. This turns a pinion of 7 leaves, which must therefore revolve 12 times as fast, or once in every five minutes. This pinion carries round with it the third-wheel, which has 77 teeth in it; and the latter drives the seapewheel by a pinion of 7 leaves, so that a velocity of 11 to 1 is gained. The scape-wheel goes round, therefore, 11 times in five minutes, or once in somewhat less than half a minute. It has 32 teeth; and the pendulum, being not quite eight inches ong, allows each to escape in rather less than half a second.

Cluckescapments.-The constretion of the anchor-pallet escapement, so ealled from its having some resemblance to an anchor,) which is now applied to nearly all ordinary clocks, is seen in Fig. 3750 . The scape-wheel has its teeth eut upon its edge, and not raised up as they are in the scape-wheel of a verge watch. The centre. from which the pendulum is suspended, is seen at Λ; and the same point is the entre of motion of the piece of metal $\triangle 13 \mathrm{C}$, which is termed the crutch, the extremities 13 and O being the pallets. This crutch is usually not tixed to the pendulum, since it is convenient to detach the latter, when the clock is to be moved from one place to another ; but it is so connected with it, that, as the pendulum swings from side to side, the two ends of the cruteh move up and down. The position of the crutch shown in the figure is that which cor-
 responds with the direction A E of the pondulum. If the pendulum be tarried to ΛF, the end B of the crutch would be raised still more; whilst if it swing to the other side

A F^{\prime}, the end B of the erutch would sink between the teeth of the scape-wheel, whit-t the end C would be raised quite clear of them. The scape-wheel is drisen by it-pinn in the direction of the arrows; but its mution suffers interruption by the altermate locking inn disenfargement of its teeth againet the pallets of the crutch; and as the movements of these depend upon the pendulum, its time of vibration rerulates the period in which the wheel revolve:
In the pusition of the escapement hown in the figure, the permblum is to be supposed to be at L , and to be moving towards F. Now the elevation of the pallet lb, asatu-t whoe under sife tombs wa-previou-ly pres-ing, has disengaged the point of that torth; and the seape-whed is consequently at liberty to move onwards. But it is prevented from doing so to more than the interval of hali a torth; for whilst the pallet B was heing withlrawn from the pace between \bar{j} and $\mathcal{E}_{\text {, the pallet } \mathrm{C} \text { wats simkinf }}$ into the interval beween 2 and 3 ; consequently the whet's revilution is checkel ly the fall of the
 1 , the pallet C is still further lowerel ; and it gives a slight backward impulse to the towh which was reating upon it, and consequently to the whole whed. This backward movement, termed the recoil. may be seen in the seconds-hand of any common clock; this ham being attached to the ecape-wheel, and carried round with it. Having completed its swing to F , the pendulum begins to move back a gain, and in doing so it is assisted by the preseure of twoth o against the upper surface of the pallet $C_{\text {C }}$. This pallet is graduaity withlrawn from the tooth that rests upon it, so that this at la-t escapee. but in the mean time the pallet B has sunk into the interval leetween 5 and 4 ; so that when touth 2 hats e-carued from the pallet C , tooth 4 drops again-t the under side of pallet B . The further motion of phis palleet, which continues until the pendulum has reached the position F^{*}, again causes the recoil of the whed; Dut when the pendulum begins to swing batk towards 1), it is again assisted by the moving power of the wheel, which tends to make the tooth 1 ((mow resting on pallet B) press that pallet tuwards the lefe. When the pendulum hat moved to F , tooth 4 eseapes, ats 5 lad dme before ; and tooth 1 falls upon the patlet 13 , as 2 previously did; tooth 5 having in the mon time moved on to 6 , and tooth 2 to 3 .
The objection the the recoil escapement consist= chiefly in this, that the impelling power of the weitht, combennicated through the trian of wheele, is acting on the pendulum, hy me:ns of the inclined surfaces of the pallets, during the whole of each of its vibrations. Hence, any inequalities in the moving power are liable to produce a considerable etlect on the pendulum, so as to vary its mate of vibration; and =uch inequalities are continually liable to occur from varmo causes. It was to avoil thi- source of errur that the dead-beat escapement was invented by Graham, a celebrated clockmaker at the commencement of the las: century, to whom we owe aloo the invention of the mercurial pendulum. The peeuliarity of thin escapement consists in the form of the pallets; the surface of each of which is partly a cirche, hasine the point of suspension for it; centre, and partly an inclined plane. The construction and action of this escapre ment are seen in Fig. 3751. The centre of suspension is at A; whilst A B an! A C are the two legrs of the crutch, movine from site to sile with the vibratiens of the pendulum, whose line of direciton $\mathrm{i}=$ shown by $A \mathrm{D}$). The scapewheel moves in the direction shown by the arrow ; and the position of the whole is seen to be such in figs. 8751 , that the pendulum having nearle reached the limit of its vibration on the left hand, the tooth if has esecoped from the pallet Is, having iu-t shid whe the inclined pertions of its surface, of which the dutted line b shows the direction. The tooth ${ }^{2}$ now dreps agrain-t the pallet c, and the further motion of the scape-wheel is thereby mecked. The pendulum then burins to vibrate townods the risht, carying with it the cruteh; so that the pallet 13 enters the interval between the teeth 5 amb ti; whik the pallet C in drawn out from the interval between 1 and ?. Durines this nuwement, however, the seape-whed remains at reet: for so hons as the tooth 2 bears upon the circular part of the pallet C , it dowe not either whl vancs or recede, an ! it moving puwer is not communicated to the pemblalum. But as 50 ,n as the pallet (" has been sulticiently withlrawn lin the

 pemdulum, whids aids it in its vhration.

 interal between 5 an l 6 ; con upent the upter surfitere of the hitter.

 lesition of the to th if in Fir ioist.

maker possesses,) and also in many large public clocks, most of the readers of this description may ob tain the opportunity of observing its action.

Componstion pendulum.-Although every part of a clock may be constructed with the greatest perfection, its performance will be sery inaccurate, unless it be provided with the means of compensating for those changes which result from an altcration of temperature. A very minute difference in the length of a pendulum will produce a decided influence upon the rate of going of a clock. For if this alteration be so trifing as to cause an increase or decrease of the time of each vibration by $1-1440$ th part of its whole length, it will occasion the clock to lose or gain a minute in every twenty-four hoursa minute being the 1-1440th part of a day. The alteration in length required to produce a difference of a second a day will therefore be almost inconceivably small, and such as a trifling variation in the temperature of the air would be sufficient to produce. The amount will vary with the material cmployed. If the pendulum-rod be of dry varnished deal, an alteration of the temperature to the amount of 10° (Fahr.) will only affect its going by one second a day. But if iron wire be employed, the aiteration is three times as great; and it is increased to five seconds by employing brass. Hence, to insure the accurate going of a clock, some means must be devised to compensate for this source of error.

This compensation is sometimes effected in clocks by the apparatus termed the mercurial pendulum, the form of which is shown in the annexed drawing, Fig. 3752. The rod of the pendulum consists of a flat piece of steel, which is furmed at the bottom into a kind of stirrup, to carry a glass jar securely fixed to it. This jar is partly filled with mercury, which serves as the weight or bob of the penduIum. When a change of temperature causes the steel rod to expand downwards from its point of suspension, it also occasions an expansion of the mercury upwards from the bottom of the jar; and as the expansion of any given bulk of mercury is many times greater than that of the same bulk of steel, the rise of the mercury in the jar counteracts the lowering of the whole jar by the expansion of the rod; so that the place of the centre of oscillation remains the same, and the rate of vibration continues unaffected. The quantity of mercury requisite for the purpose can only be accurately determined by experiment; but in general it will be found that the height of the column should be about 6.7 inches. If the column is not high enough, its expansion will not counteract that of the steel rod; if it be too high, the pendulum will be over-compensated, so that heat will cause 'it to gain, and cold to lose,-contrary to the usual rule. Of course what has been said of the mode in which the two expansions balance each other, equally applies to the contractions which will take place, in the steel rod and in the mercury, from the operation of cold. The
 absolute length of the pendulum is adjusted by a screw at D , by turning which the stirrup is raised or lowered upon the rod. At C is a projecting index, which points to a circular scale below, by which the pendulum's arc of vibration may be observed from time to time.

A very simple compensation pendulum, which may be applied to any clock at the most trifling expense, consists of a wooden rod, dried and varnished; carrying at its lower end, by way of bob, a hollow leaden cylinder, which rests on a serew at the botton of the rod. If the rod be made about 46 inches long, and the lead cylinder about 14 inches long, it will nearly vibrate in seconds, (since the centre of oscillation will be at about the middle of the leaden cylinder, and therefore at about 7 inches from the end of the ron; ; and the expansion of the lead upwards is sufficient, or nearly so, to counteract that oif the rod downwards. There is another very ingenious compensation pendulum, which was invented by Harrison, to whom we are so much indebted for his improvements in chronometers. This is termed, from its form and aspect, the gridiron pendulum. (See Pexdulus.) Many other contrivances have been devised for the same purpose; but they are not superior to these.

The regular going of a clock will partly depend also upon the steadiness with which it is fixed; and it is therefore desirable that a clock for scientific purposes should be as firmly supported as possible. After all, however, there is one source of error for which it does not seem casy to devise a remedy ;this is the varying density of the air, which will produce a variation in the resistance to the motion of the pendulum. When the air is dense, as shown by a rise of the mercury in the barometer, the resistance is increased, and the clock will gro slower; the contrary result occurs when the pressure of the air is diminished, as shown by a fall of the mercury: An attempt has been made to correct this error, by attaching small barometers to the sides of the pendulum; it being intended that the rise of the mercury in the tube, by slightly raising the centre of oscillation, should counterbalance the effect of the increased resistance. This ingenious idea has not yet been properly applied to practice. To show the perfection at which clockmaking has arrived, it may be mentioned that several clocks are now going, whose errors are less than 1-10th of a sccond daily.

Hatch escrpoments.-As in the clock it is desirable to remove the penlulum as much as possible from the constant influence of the moring power, so is it desirable in the watch to withdraw the balance from the same influence, slight variations of which (such as must be continually occurring from various ramses) must otherwise greatly affect its regularity. In order to effect this, various kinds of escapements have been devised.

The vertical escapement is the oldest escapement of all, which, after haring first been adopted is clocks, was applied in the construction of watches. Tts mature is explaned by Fiv. 375t, (a contratewheel, b escape or wheel, c the rerge, d the balance.) That which is here called the balance-wheel ras, when oricinally applied in a horizontal position to the primitive clocks. frmed the crown-whed
evidently from its resemblance to a crown: this same wheel, when employed in the watchs, (supposir? the latter to be placed on its face of back, obviou-ly revolves vorticalty to the plane of the harizon; hence, watches made with this excapement are termed vertical. Wathele are vill manutaturet on this principle, which has its conveniences, as it is understuod in (every part of the work where a man pretends to repair watches, and is the cheapest of all movemente, and ferhapis fir this reasoul will never be wholly superseded.

In this escapement. as in the common recuil eseapement of cleck, the teeth of the halance-whecl are continually presing on the pallets, in such a mamer as to be exercising a con-tant intlence wer the vibrations of the balance; and a fresh impulse is communeated at cach vibration. In all the improver escapemente, the balance is so detuched from the train of wheck, that it unly recises at nomethary impuke from the moving power: and in the intervals, the whole train of wheels ivelecken. In geneat this impulse is communicated only at every second vibration of the balance; thet ie, the Lalance, afur receiving one impul-e, completes its vibration in that direction and returns to the same puist arme. before it receives the next.

One of the enntrivance; by which these objects are fulfilled, is that known as the dapere eacapenent, *o named from the eseapement-wheel hating two sets of teeth on its rim; the ate ion of which will be aatily conmpehended by reference to Figs. 3755 and 8750 . 1 A represents the seape-wheed, whel is provided with two sets of teeth;-1, , 3, de., projecting from its side and temmel the teeth of repuce ;-and abc, de., rising from the surface of the wheel. and termed the teeth of impul a. On the axle of the balance there is fixed a piece C D, termed the impulse-pallet; this stame just above the surfice of the ecano-wheel, s) that the tecth a be must. strike the projectin? portion 1), when th. wheed revolve=. On the same axis, but placed a little below it, so as to lie om the level of the teeth 1 ,
 The -cape-wheel is constantly being urged, by its connection with the going train, in the direction from 3 to 1 ; and consequently, in the position represented in Fig. 3iss, the touth a is jnet alrout to strike the impuleepallet 1). The impule beine given, the batance mowe round and the touth a exaper from the pallet. The next tonth b does not immediately fall arainst it, however ; since, befure it eats tho so, the tooth 1 has been stoppel arainst the ruby rofler. There it is heth, charing the vibratem of the halance and its return, until the roller comes hack inte the pmition shown in Fir. : iovs, which will premit the point of the tooth 1 to pase by the noth; so that the tooth b may fall (in the pallet J), and give the balance a renewed impulse just as its next vibration is commencing. Thus it is seen that the teeth a be are those which give the impulece to the pallet; whilst by means of the check which, in the intervals, the points of the tweth $1,2,: 3$ receive against the ruby roller, the train is kept in represe.

Fig 37.6 is a per-pective view of this eseapement, the cors a being placed upright wand the centre, whike the fong tecth b are in the plane of the wheel; bemee arises a double action: x is the
 to the chromometer in value, fartienlaly as resarets the lempth of time which they will continue to perfurm without cleaning, or reguiring a freshappitication of oil.
 struction, and if ant made and put torother by a workman of superior talent, the wath is lable to stop, in the poocket.

This weapement is not sa commonly employed, howewer, it the one known under the name of the

 motion, -hall give at momentary ingul- th a ruhy rollar fixed on the aske of the balanee, eath thme that enher of the pallets cecapuis.

moving further towards the right than the place in which it is seen. At the other end of the lever is an extremely delicate spring p, which extends a little berond the extremity of the detent. In the middhe of the lever is the pin o, which serves to stop the teeth of the scape-wheel, when the detent is in the position represented in lig. 3757, which is that of repose.

The following is the mode in which these parts act upon one another. The tooth 5 of the seapewheel is seen to be resting against the pin o; whilst the touth 1 is nearly ready to advance and strike the ruby face of the main-pallet 1 B B B , but is prevented from doing so by this locking of the wheel. The balance, however, being in motion from right to left, (by the elasticity of its spring,) earries round with it the lifting-pallet q, the projection on which acts against the end of the lifting-spring; and this spring, pressing against the end of the detent E E, raises it a little from its place, towards D, so as to withdraw the pin ofrom the point of the tooth 5 . The wheel being thas unlocked, the tooth 1 strikes ugainst the ruby face of the main-pallet, and gives the balance an impulse, which increases the extent of its ribration. Before the tooth has entirely escaped, however, from the ruby face, the lifting pallet q has completely passed the point of the lifting-spring p; so that the detent is at liberty to fall back into its place, which it is caused to do by the spring at its fixed end. Hence, by the time that the tooth 1 has escaped from the main-pallet, the pin o will be in a position to check the next tonth 6 , which adrances against it; and the whole train of wheels, therefore, again comes to repose. The balance, having completed its vibration formards, begins to return, by the elasticity of its spiral spring. In this return, the lifting-pallet q has again to pass the end of the lifting-spring p; but it now merely separates this from the end of the detent, and does not move the detent itself. The locking of the seape-wheel still continues, therefore, until the balance has completed its return vibration, and again begins to move forwards; the lifting-paltet will then again raise the detent and set free the seape-wheel; the balance will receive a fresh impulse from the action of the teeth upon the ruby face of the main-pallet; and the detent will again lock the wheel, as soon as the tooth has escaped. All this complex action, which occupies so long in the description, is really repeated in every halfsecond,-कthat being the time in which the balance is usually made to perform its double vibration.

Compensation balance.-It is essential to the aecurate going of a chronometer, that it should be furnished with some means of compensating the action of beat or cold upon the balance-spring, analogous to those by which compensation is made for the effeet of change of temperature upon the pendulum. This is here also effected, by taking advantage of the mequal expansion of different metals; so that the change produced in the length of the spring may be antagonized by a change in the form of the balance, producing a variation in the amount of force necessary to move it. From what has beeu formerly stated of the prineiples of the lever, and wheel, and axle, it is evident that, the nearer the chicf weight of the balance is disposed to the centre of motion, the less amount of force will be required to turn it. Consequently if-when the action of heat ripon the balance-spring has weakened it, by iucreasing its length-the same action can be made to cause the weight which the spring has to move to approach nearer the centre, a perfect compensation may be effected. In the same manner, the spring being shortened by cold, and thereby rendered more powerful, the weight ought to be carried further from the centre, so as to require a greater moving power.

These objects are accomplished by the compensation balances represented in Figs. 3755 and 3759. The principle of bath is the same; and the only difference consists in this, that the necessary weight is given in Fig. 3759 by a single piece W on each arm of the balance; whilst in Fig. 3758 it is distributed among the four screws $1,2,3,4$, which are inserted into each arm. These balances are not made in the

form of a complete wheel; but are composed of the cross-bar A B attached to the axis, and of the two cireular arms earried by its ends. Wach of these cireular arms is a compound bar of brass and steel, the brass being on the outside. As brass cxpands by heat much more than steel, the effect of a rise of temperature is to canse the curvature of the bars to increase, so that their ends a a curl in, as it were, towards the cross-piece A B, carrying inwards the weights W W, Fig. 3759, or the serews 1, 2, 3, 4, Fig. 3758 ; hence the balance will be more easily made to revolve, and the weakened action of the spring will be compensated. On the other band, the effect of cold will be to make the brass contract more than the steel, and thus to diminish the curve of the circular bars, rendering them straighter, so as to increase the distance of the weights from the centre, and thereby to increase the power requisite to move them; thus connterbalancing the increased power given to the spring by its own contraction.

There is much difficulty in exactly adjusting this compensation to the error it is desired to correct. It may be that it is too great; in which case the chronometer will gain by heat and lose by cold. This is corrected by shifting the weights W W, Fig. 3759, towards a part of the circular bars nearer to their attachment, so that they may be less influenced by the alteration of the curvature of the bars; and the same result is obtained in the other form of the balanee, lig. 3758 , by drawing out tbe serews 4,4 , and
screwing in 1,1 . On the other hand, if the compensation be not sufficient, the weights must be shifted towards the ents a a of the circular bars, so as to be more altered in phace, when the curvature of the bars is changed by an alteration of temperature. The serews C C are obvion-ly not atfected ly thee chames of curvature, since they pass into the ends of the straighe bar 11 ; but the effect of ecrewing them in or drawing them out, is to alter the rate at wheh the halanee will vibrate; for if the moring power remain the same, and a portion of the weight be carried to a dreater distance from the centreas it is by partly drawing ont the serews C C-the sibrations will be remated sower ; and the ecatrary effect will be produced by screwing them in. Sow in finally alju-time at chromometer, it is fomd mule sirable to alter the length of the balane-ijpring, after the point hat mace been asertained at which itvilrations are i-uchronous, or nearly so. Hence, in order to hring it to the preper rate, it is fomed andvintageous to make it go fister or shwer as required by slightly altering these serews, which are beme called, to distinguish them from the others, mean-time serews.
 elastie force of which, when womed up by the motive power, acting through the escapement, into a =tate of temsion, gives motion to the balance b. The clastic force of this balance-pring values by date of temperature, producing an error of six minutes in twenty-four hours in the time indieated by the elronometer, for is $^{\circ}$ of Fibrenheit. This irregularity is corrected by the batatace b varying its diameter, much in the same manner as the balls of a steamenrine govern that machine; with this exerption, that white the balls of a steam-engine act by gravity an I centrifugal force, the efiect is here mechanically produced from the different metats (trass and stect) expanding and contracting differently under is change of temperature, thas varying the diancter, and consequently the inertia of the badance in accordance therewith. It mut be recollected that no chronometer can keep a miform rate unk the tension of the balance-spring has an invariable ratio to the inertia.

Heat renders the balanee-pring e weaker, while the inertia of the compensation balance b is de-crea-el, thus compensating the luss oceasioned by the relaxation of the spring.

The compen-ation balance, by which the error is compensated, may be thes explaned: The compeneation, as already observed, is produced by the vamation in the dianeter of the cirele b. The intermal part of the run c is of sted, white the external part d is of brass; the-e are united by heat, camene a partial fusion of the brane, and con-equent union with the steel. The derree of expansion of thee metals upon application of the same degree of heat varies; the trass expands more than the sted, and as it cannot release itself from this, so neither has it the power of expanding iteelf in length, being restrained by the sted : con-equently an increase of curvature is produced by the brass foreing the sted to change its ariginal circular form, the inerta or power of the compenation batace hence varies, an I conpensates for the loss or gatin in the balaneespring oceasioned by a change of temperature. The rim of the balance is cut open at e, to admit of this variation in its fornt; the screws f can be inserted in any of the holes θ, and acemaline to their position in one or the vther, these seren's are moved more or lese in towards the centre by the increane of curvature of the rim before mentioned, thas contributing tos vary the inertia of the halance in in smatl derree, but admitting of wriginal adju-tment for this purpene-riving that finish to the principle of this contrivance on which the exyuisite acenacy of the chronmmeter m great measure depends. This principle of compenation is the same in all watches to which a compernation balance is applied, vize, to these of the duplex and lever
 kiml. 'Thee cocapement used in the chrmometer, as seen in lige. :Bitil, is termed is "detathed" une, whith means, that the vibrations perfurmed he the balanee are nearly thetached trom the pressure of the motive power during the greater part of its are of vibration; onio great advathan re is, that it requires no ul. This c-eapement is of French invention, lant inprosed ly Eurliflatiot.

Thase are the primejples on which the exectlence of a time-keeper depen lis. In their appliention to practue, however, every thing dopents on the perfertion with which the machine is con-ructed; mal

 not liverla 1 ons.

oil,) will greatly alter the result. Thus, as there are 1410 minutes m a day, any eause which makey each vibration of the balance (of which there are five in a common wateh) take place in 1-7200th part less or more than its usual time, will eause the time-keeper to gain or lose a minute a day. And as there are 86,400 seconds a day, any cause which makes each ribration of the balance of a chronometer (Which usually occurs 4 times in a second) take place in 1-432,000th part less or more than its usual time, will eause it to gain or lose a second a day-an error of rery considerable magnitude. When it was first suppoed that elronometers could be made sufficiently perfect to give important assistance in the determination of the longitude at sea, (the mode of doing which will be explained hereafter;) a parliamentary reward of $£ 10,000$ was offered in 1714 to any one who should construct a time-keeper capable of doing so within the limit of sixty geographical niles; $£ 15,000$ if to forty miles; and $£ 20,000$ if to thirty miles. Now a chronometer that has so moch changed its rate as to have gained or lost, in a fen weeks, two minutes more than it was estimated to have done, would gain the highest of these rewards; so that the utmost degree of accuracy which was contemplated as possible, at the beginning of the last century, when this act was passed, is far surpassed at present.

The reward was gained by John Harrison, who, in 1736, completed the first chronometer used at sea, after many years of patient study and laborious experiment. He gradually improved his machine; and in 1761 the first trial was made of it, necording to the regulations of the act of Parliament, by a voyage to Jamaica. In consideration of his adrancing years his son was allowed to take this voyage instead of himself. After eighteen dars' navigation the ressel was supposed by the captain to be 13° 50^{\prime} west of Portsmouth; but the watch giving $15^{\circ} 19^{\prime}$, or a degree and a half more, was condemned as uscless. Harrison maintained, however, that if Portland Island were correctly marked on the chart, it would be seen on the following day; and in this he persisted so strongly, that the captain was induced to continue in the same course, and aceordingly the island was discovered the next day at seven oclock. This raised Harrison and his wateh in the estimation of the erew; and their confidence was inereased by his correctly predieting the several islands as they were passed in the royage to Jamaica. When he arrived at Port Royal, after a royage of 81 days, the chronometer was found to be about 5 seconds too slow; and finally, on his return to Portsmouth, after a voyage of five montlis, it had kept time within about one minute and five seconds, which gives an error of about 18 miles. This amount was much within the limits prescribed by the act; but Harrison did not receive the whole reward until a second royage had been made; and large as the sum appears, it cannot be regarded as more than equivalent to the devotion of extraordinary talents, with unwearied perseverance, during 40 years, to the attainment of an object whose importance ean scarcely be estimated too highly.

As an illustration of the improvements which have been since made in the construction of chronometers, the following circumstance, mentioned by Dr. Arnott as having occurred to himself, is of great interest. "After several months spent at sea," he says, "in a long passage from South America to Asia, my pocket chronometer and others on board announced one morning that a certain point of land was then bearing north from the ship at a distance of fifty miles; in an hour afterwards, when a mist had cleared away, the looker-out on the mast gave the joyous call of 'Land aliead!' verifying the report of the chrononeters almost to one mile, after a royage of thousands. It is allorrable at such a moment, with the dangers and uncertainties of ancient navigation before the mind, to exult in contemplating what man has now achieved. Had the rate of the wonderful little instrument, in all that time, been quickened or slackened ever so slightly, its announcement mould have been useless, or even worse ; but in the night and in the day, in storm and in calm, in heat and in cold, its steady beat went on, keeping exact account of the rolling of the earth and of the stars; and in the midst of the trackless wares which retain no mark, it was always ready to tell its magic tale, indicating the very spot of the globe over which it had arrived."

It is surprising that, in spite of the great advantages resulting from the use of chronometers in navigation, many ships are sent to sea without them, even for long royages. Not unfrequently must it oceur that the knowledge of the exact position of the ship, which may be obtained by the chronometer, produces a great saving of time, as well as contributes to the avoidance of danger. A remarkable instance of this was mentioned to the author, a few years since, as having just then occurred. Two ships were returning to London about the same time, after long voyages, one of then provided with ehronometers, the latter destitute of them. The weather was hazy, and the winds bafling; so that no ship, whose position was uncertain, could be safely carried up the British Channel. Coufident in his position, however, the captain of the first ship stood boldly onwards, and arrived safely in the Thames, whilst the other ship was still beating about in uncertainty near the entrance to the Chamel. The first ship discharged her eargo, took in another, set sail on a fresh voyage, and actually, in runuing down the Channel, encountered the second ship still toilsomely making her way to her port!

Of the degree of accuracy which chronometers are capable of exhibiting, some idea may be formed from the following statement, kindly communicated to the author by a gentleman practically conversant with them. A clironometer made by Molyneux had its daily rate determined, in August, 1889 , to be a loss of 7 seconds per day. It was then placed in a ship which traded to the coast of Afriea, and was consequently exposed to great variations of temperature. Yet when again placed under eareful observation in November, 1810 , (sixteen months afterwards,) its daily loss had only elqunged to 6.7 seconds, leeiner a difference of only 3 -10ths of a second a day. As opportunities for ascertaining the real position of the ship, without chronometers, frequently occur at sea, any error in these may almost always be detected before it has accurnulated to any great extent; but even supposing that no sueh opportunity had occurred fur six months, and that the alteration of the rate had taken place at once, and had been entirely unknown, the whole error would have been under a minute of time, and consequently less than 15 miles of space. Another ehronometer, constructed by Muston, which had made the same royage, and been out about the same length of time, had its previous gaining rate of 1.9 seconds a day inereased to 2.3 seconds; the difference being here $4-10$ ths of a second. It is customary for two or more chronomcters to be earried by the same ship, that they may check one another; for if one aloae were
trusted to, an accidental irregularity in its going might lead to great error. The average of severaltheir errors connterbalancing each other-will be most likely to give the real tine with great exactness.
striking apparatus. - The apparatns for striking the hour is sonnewhat complex; but we shall endeavor to make its action intelligible, as it is a very beautiful specimen of ingenious meelani-m. The form which will be deseribed is that which i- adopted in the bet Engli-h clocks: : simpler phan is adopterl in the cheap German clocks, which are now so largely employed in thic comtry; but they are verv liable to get out of order. The diflerence consists, however, only in the apparatus by which the striking is regulated, as to time and number of strukes; the meedanion be which the hammer is made In strike the bell is the same in both cases. It consists of a train of wheds and pinions, put into action be the spring contained in the barrel E, Fig. 3749 , which turns the fusce 1 , The fusee carries romal with it the man-wheel e, which has 81 teeth; this drives the pinion p of $*$ leaves, which carries on its ascle the pin-ucheet f, having $6 \pm$ teeth. In the rim of this pin-wheel are 8 pins, which lift the hammer s by acting on its tail t when the train is in motion. The hammer beine gradually lifted by cach pin. is at lat let go by it, and is made to strike the bell by the spring u. The pin-wheel drives a pinion if of steaves, which carries round the pallet-veluel !f of 56 teeth: as the pin-wheel has if teeth, it turnthe pallet-whecl pinion 8 times for each revolution of its own, consequently this piniun makes one revo Intion fur every stroke of the hammer, an arrangement of which the use will be presenty fhown. The pallet-wheel acts on a pinion z of 7 leaves, on which is the warning-wheel h of 40 or 50 teeth, and this last turns the tly-pinion i. The object of this part of the train is only to equalize the motion which is principally effected by the con-tant resistance of the air against the surface of the plate (ternu-d the tly) which is whirled very rapidly round by the highest pinion. If it were not for this addition, the pin-wheel would move onwards with a jerk, alter each pin had escaped from the tail of the hammer.
The striking-train remains completely at rest during each hour's movement of the going-train, and is only allowed to act at the conclusion of one hour and the commencement of the next. The mode in which it is restrained in the intervals, and its action at the proper time permitted and regulated, will now be explained. The mechanism by which this is effected is shown in Fig. 3\%e. It is situated immediately behind the dial. The axis of the centre-wheel, as already mentioned, is prolonged throurh the dial, to bear the minute-hand. In the striking clock this also bears a small wheel a, which gives motion to another wheel b of the same size and number of teeth; hence this wheel, like the former, revolves once in each hour. On the centre of this wheel is a pinion of 6 or 8 leaves, which turns a wheel c with a hollow axle, movang on the same centre as a, but at a different rate, as in the watels. This wheel has 12 times the number of teeth that the pinion contains, and therefore moves at only $1-12 \mathrm{l}$ of the rate. To it the hourham is athixed; and it also carries a peculiarly slaped piece of metal d, which is called the suail. The edge of this snail is cut
 into 122 stepre, each of which is a twelfth of the circle of which it forms a part; but the distance of each from the centre increases regularly from 1 tu 12 . At e is -wem a circular reel;, fised to the end of a bent lever efgh, whose centre of motion is at f. By the actimu uf the bent spring i this rack will be made to fall towards the left, when permitted to ibo sor but the amomet to which it shall fall is governed by the pration of the smal, aqain-t the edre of which the fin Io will be brenght to bear. This sprimg is prevented from forcing the rack out of the po-ition :hown in the firmere, by means of the projecting piece on the lever k, which turns on the center l, ant drop- ly
 from lefe to rifht, the catch is lifted by them and allows them top pass: hut, = lome at it is allowed th drup between the teeth, it completely prevents the motion of the rack from right hefle. 'The lever k :
 on by a jin in the circumference of the wheel b, which is seen in the figure, chace :ugathet the tail of the lever.

Only ene other part remains to le described-that which is known as the guthering-pallet. The axle of the pultet-wheel g, Fig. 37d9, projects throurh the front plater: and is furm-hed weth a projection, sern at o, rexombling one leaf of a pinim. Shis work into the tecth of the rack in such a maner that,
 When the machinery is in the positinn shawn in the digure - which it has during the whol. time than the

 whole remander of the strikis train, he prewntol from ruming on.

Bhat when the time of striking it nearly come, the pin on the whed b acta on the tail of the hevr

 that, ot the same time that the kathering pulley is from, another doek is provited. Then end $\%$ of the

 Vol.. II.-n.:
the left to the amount of twelve teeth. This preparatory action is usually made to take place about 3 or 5 minutes before the expiration of the hour, and it is called giving warning.
The machinery remains in this position until the minute-hand points to XII., at which time the wheel b has so far adranced that its pin escapes from under the end of the lever, and thus allows it to fall, so that the end q no longer checks the pin on the warning-wheel. The striking-train is now set entirely free; the weight or spring that moves it produces a rapid resolution of its wheels; and the pins on the pin-wheel, acting on the tail of the hammer-lever, canse the successive strokes on the bell. This movement goes on until it is checked by the action of the gathering-pallet on the rack. It has been alreardy mentioned that the pallet-wheel, from the axle of which the gathering-pallet projects, turns round once for every stroke given to the hammer ; and in each turn it gathers up one tooth of the rack, causing it to move towards the right, so as to regain its original position. The projecting eatch of the lever $k \cdot l$ Irops between the teeth at each adrance, and presents the rack from heing moved back by the spring i. This goes on until the rack has been completely brought back to its first position, and then the projection on the gathering-pallet will be again checked by the pin r, and the striking-train would be brought to rest.

It is evident, then, that the number of strokes will be determined by the number of revolutions which the gathering-pallet is allowed to make; this depends upon the number of teeth on the rack which have to be gathered up by it; and this number is regulated by the extent to which the rack is permitted to fall, by the bearing of the pin $/ t$ against the edge of the snail. It is almost impossible for any error to be committed by a movement so constructed; but the striking-train of the common German clocks, now so largely imported into Britain, is regulated by an apparatus of simpler construction, which is very liable to give wrong indications. It principally consists of a large whecl, (termed the count-whecl,) usually placed at the back of the clock, on which are cut 78 teeth; this is so comnected with the striking-train, that it moves on one tooth for each stroke. The number 78 is the sum of all the strokes which the clock should make in 12 hours; consequently, after all these strokes have been made, the wheel returns to the same place again. From the surface of the wheel, near its edge, there projects a rim, in which are cut a scries of notches, at intervals corresponding with the number of strokes. Thus, between the first and second notches there is an interval amounting only to one tooth of the wheel; between the second and third notches an interval of two tecth; and so on up to the twelfth notch, the interval between which and the first is 12 tecth. The use of these notches is to receive a eatch or projection, which keeps the striking-train at rest during the hour, and regulates the number of strokes. When the clock gives warning, this catch is lifted out of the notch; but there is a temporary check applied to the warning-wheel as in the last case. When this check is removed, the train immediately begins to move, and continues in action until it is stopped by the falling of the catch into the succeeding notch. The number of strokes is determined, therefore, by the number of teeth which the countwheel shall have moved on before the catch falls into this notch-or, in other words, by the number of teeth between each notch and the succeeding one.

The advantage of this last plan consists in its simplicity, and the facility with which the apparatus may be constructed. Its disadvantage consists in the readiness with which it may be put out of order. For it will be easily scen that if, from any cause, the clock be made to strike at an improper time, the count-wheel advances, aud the number of strukes made will be one more than the last; so that, when it should next strike the hoar, the number of strokes is one too many. Or if any cause (such as neglecting to wind up the weight of the striking-train) should prevent the clock from striking at the proper time, the count-wheel remains stationary; and when the clock next strikes, it gives the number succeeding the one which it last struck, which may, of course, be altogether wrong. On the other hand, in the more perfectly constructed clock, the striking may be repeated any number of times within the hour, or it may be inade to cease for a time altogether ; and yet, when the clock next strikes the hour, it shall do it correctly. For the number of strokes, as just explained, is dependent upon the position of the snail, which is carried round by the hour-wheel whether the clock strikes or not; and which must, theretore, always correspond with the place of the hour-hand. In some clocks of this construction, there is a simple contrivance for causing the hour to be struck at any time. This consists of a lever x, to one end of which the string t is attached, whilst the other carries a pin that raises the lever m. The action of this lever is checked by the two pins s and z, which prevents it from being moved too far in either direction. When the string t is pulled the lever m is lifted, and all those changes take place which have been described as occurring in the ordinary voarning of the clock. When the string is let go, the lever is made to return to its place by the spring y; the lever m falls, the warning-wheel is released, and the proper number of strokes is made. Such a contrivance is convenient to those who desire to know the hour during the night.

Where a clock is made to strike the quarters as well as the hours, a third train of wheels is required. The incelanism is the same in principle with that which regulates the striking of the hours. The axle of the minute-hand carries round a snail cut into four steps; and on a wheel corresponding to b, and revolving therefore in an hour, there are four pins, one of which lifts the lever that sets free the rack every quarter of an hour. The rack has four teeth, corresponding with the four steps of the snail ; and the passage of each tooth permits one stroke on the quarter-bell. Most frequently the quarter-stroke is made upon two bells; and this is accomplished simply by having a set of pins on each side of the pinwheel, of which one set acts on one lever, and the other set (acting a little afterwards, so that the two strokes may not be made at the same moment) on the other lever. In clocks constructed for purposes ill which great accuracy is required, it is necessary to dispense altogether with the striking apparatus ; since a certain degree of force is required to set it in action, that would derange the very regular moreo ment of a delicate and perfect chock, in which the power of the weight onght to be no more than is requisite to keep the pendulum in action.

The same apparatus has been applied to watehes; but when made on so small a scale anl carried about in the rocket. its action is extremely liable to become deranged, and it is therefore of little use. The
ordinary repeating-wateses are made, not to strike the hours regularly, but merely to indicate them when desired to do so. In order tor effect this, it is not requisite that the watch shund be furni-lual with a second barrel and fusee with a distinct striking-train of whects, for it is ea-y to apply a prower sutficient to produce the strokes every time that the watch is applial to for this information. This is ustally accomplished by pu-hing in the pendent, or projecting portion to which the chain is attacherl: and hy this a spring is compresed, which sets in action the mechanism that prothees the strukes. The number of strokes is regulated by a smail, resembling that employed in elocks. The ordinary repeatinwatches are still very complex in their construction; and we prefer describing one invented"sone yearage by Mr. Elliott, of Clerkenwell, in which the number of parts is greatly reduced hy the combination
 mon- important part of it is a flat ring or centreles wheel, of nearly the same diancter with the watch, supported in its place so as to admit of a circular motion, by four grooved pulleys round its external circumference. In Fig. 3763 , A B represents the plate to which the dial is attached; and the that riner C D, with the rest of the striking mechanism, lies between this plate and the dial. The fome pulleys are seen at EFGH. This ring has teeth cut in the part of the outer edge b nearest to the pendant. and the rack may be thus turned by the whecl a, to which motion is given by turning the pendarit. At the lower part of this ring is a series of projecting pins, which, in the position shown in Fig. 3763. art upon the projecting pallet i; whilst in the position shown in Fig. 3764 , they act upon the pallet r. Of these, the former is destined to strike the hours, and the other the quarters. The internal edqe of the ring is cut into two series of steps, of which the one seen on the left-hand side of each figure contaime rwelve, and regulates the striking of the hours; whilst the one on the right contains only four, and rerulates the striking of the quarters. When the ring has had its position changed by turning the pendant, it is brought back agrain by a spring contained in the box or barrel V : the action of this sprimg is communicated to the ring by a chain which winds off the barrel, passes between the pulleys U and W, and is attachel to the ring at $\mathcal{\lambda}$. Hence, in whichever direction the ring is turned, the chain will he Arawn off the barrel, and the spring put on the stretch, as seen in Fig. 3764 ; and the elasticity of the spring will tend to bring back the ring to its provious position, shown in Fig. 3 atis.

The rogulation of the number of stroke is effected by means of a smail, exactly reambline that of a lock. At I in either of the tiphres is seen the quarter-smail, phaced on the axis of the minute hamd. .o of to rewolve every hume, and cont into four steps. The same axte carries a pregectine fincer os wheh

 the bent luver S $\mathrm{S}^{\prime} \mathrm{T}$ ', whane centre is R .

that the motion of the ring is not checked until it stops at the last step, by which time four pins have passed the pallet, and four strokes have been made.

Dent's new patent watch without a key.-There are two improvements which have recently been made in the construction of watches, and patented, which will now be described. The daily recurrence on the act of winding up our watch, and its imperative necessity, renders it obviously desirable that the power of doing this should be facilitated as much as possible; and that whatever may be the situation in which we may be placed, whether travelling, or in the dark, that we should be able to perform this operation with the greatest ease and certainty: now the use of a key detached from the watch, and requiring to be applied to a small hole, which must be seen to be u-ed, is dispensed with by the improvement alluded to, so that the winding up of the watch may be effected in the dark by simply turning part of the pendant, by which the watch is attached to the chain to connect it with our person.

But this improvement is not the only one now made: thus much has been partially accomplished by former artists, who, while they rendered the watch independent of a bey for winding it up, suffered the necessity for this adjunct, for the purpose of adjusting the hands, still to exist, and thus did not make the machine quite independent of appendages of any kind. By a simple contrivance, which will now be described, it will be seen that the adjustment of the hands can also be effected by the motion of the pendant at the pleasure of the wearer, and that with a greater latitude than conld be done under ordinary conditions.

In Fig. $3765, a$ is the knob next to the pendant-ring, but in the improved watch independent of it, and movable with a rotatory motion like a common watch-key: on the axis b of this knob there is a bevelled pinion which acts by means of an intermediate wheel c on a larger one d, which is carried on the axis of the manspring; this completes the arrangement for simply winding up the watch: flat for setting the hands consists of a pinion e attached to the arbor of the minutehand. This pinion, it must be observed, is free of the wheel d, or, in technical language, not in geer with it; but it can be put so by means of another and equal pifion f, which is carried on an arm, or lever, moving on a centre at g and terminating in a stud h, which projects through the rim of the case; if this stud is moved by the finger from the pendant, the pinion f will obviously be brought into geer with d, and thus will impart the motion of that wheel to e when the hands require setting ; but when the stud h is released, a spring removes the pinion f from d, and the winding-up part is detached as before. It must be mentioned, that as it is requisite to be able to move the hands either backwards or forwards, the wheel d is made to
 admit of motion from the knob a in either direction, for this purpose. Since the winding up must alwaysotake place in the same constant direction, there is a ratchet and click of the usual principle connected with the wheel d to admit of this double motion: by this arrangement also, the injury to the watch produced by over-winding is guarded against.

It will be inferred from the foregoing description that the frequent necessity for opening the watch is done away; hence results another, and not the least improvement effected by the contrivance: in the old construction of the wateh-case, dust will penetrate to the interior of the watch, however seldom it may be opened, through the number of passages necessarily consequent on the existence of hinges in the case ; these being dispensed with in the watch now described, the glass and case are as nearly airtight as possible, while the dust which makes its way in the ordinary watch to the works each time the case is opened for the purpose of winding up, or of setting the hands, is now altogether cxcluded; thus cleaning the watch will not be so freqnently required as heretofore.

WATER-CLOSET-By G. Jexnings. This closet is intended to remedy the defects of the pan and valve closet. It has neither the usual metal pan or valve, so that no chamber is required, which prevents displacement of pure air when used-an evil so justly complained of in pan or other closets.

The raising of the handle, as shown in Fig. 3768 , canses the water to fall from the cistem to the closet, and suildenly discharges the contents of the basin with all its force through a four-inch India-rub. ber pipe, flushing, as it is termed, the trap and soil-pipe each time the closet is used. The lowering of the handle, as shown in Fig. 3 676, compresses the tube, and retains the water in the basin. The surphe: water passes off through the overflow pipe, which also regulates the proper quantity of water to lig retained.

This closet in its action is perfectly silent, as the metal-flap= fall widhout noise againat the Indiarrbber tube. It is also free from all complication; and a fre- h_{1} piece of India-rubber tube, if ever needed, will make the closet as good as new.

WATElR-METlLE-lyy W. II. Lasusar, The invention of an instrument that will, on inspection, -how accurately the amount of water evaporated during any given time-as, for instance, during a vor-age-by a steam-boiler, is a desideratum which has long been sulyght after.

speration more or less every day for the previous five montlis. On measuring accurately the quantity of water passed through it, in the tanks that received it, and comparing the amount as indicated by the instrument, the difference on nine experimental trials, under different or varying circumstanees, was found not to exceed 30 cubic inches in one hundred thousand.

By the use of this instrument on board steam-ships, the owners will be enabled to place themselves in ds advantageous a position, in a peemiary point of view, as that of the Cornish mine-owners, who some vears since adopted the system of registering the duty performed by their engines, and the amount of fuel consumed; in other words, the work done in relation to the fuel consumed is registered. This object is accomplished there by means of a counter, which merely registers the number of strokes made by the engine; but this expedient will only answer where the load upon the engine is constant and easily measurable, but is of no avail in a steam-vessel, where the load is continually varying; which ean only be done by measuring and recording the quantity of water evaporated by the boilers, and converted into steam, which is the measure of the power exerted by the engines.

The best proof of the saving in fuel derivable from the plan of registering the duty performed by steam-engines, consists in the enumeration of the wonders it has already done. According to a report made by a committee of the House of Commons appoiuted to investigate the matter, it appears that the Cornish mine-owners, even in their limited operations, are saving the sum of $\$ 400,000$ per year, by the simple expedient of registering the duty of their engines. If such a saving can be realized by this system out of the contracted sphere of Cornish engineering, the results that would ensue by its adoption in our ocean steam-ships are incalculable. Such a practice insures a rigid attention to their duties on the part of the cugineers and firemen, as any negligence will be sure to tell to their disadvantage. Its adoption puts all the engineers upon their mettle, and induces an emulation, out of which improvement cannot but spring, with corresponding advantages resulting to the owners. Yet the saving of fuel in the ease of steam navigation, important as it would be, is not the greatest benefit that would be derived. The powers of steam navigation would be extended, and its profits correspondingly augmented. Requiring a less amount of fuel to perform the same duty, they could earry more cargo, and the growth of our steam marine would just be in proportion to the extension of the limit which now hinders its development. It is needless, however, to dwell further on the advantages derivable from the system of registration, as they must be conspicuous enough to every one who gives attention to the subject, the acknowledgment of which has been made by its adoption in the naval service, by order of the Navy Department. A series of experiments will shortly be commenced at one of our navy yards with one of these instruments, by a board of officers appointed by the Department, for the purpose of establishing ia standard of evaporation due the different varieties of coal used for the generation of steam, for the use of the naval and mercantile marine; also to institute a series of experiments to ascertain the relative merits of boilers of different construction, which may lead to the solution of the problem, what are the true principles which should govern their construction in every respect; and determine, beyond all cavil, the best-constructed boiler in use at the present time. The results that may be arrived at by the nse of this instrument will be a subject of much importance to all coucerned in steam navigation.

Having given an outline of the use of this important invention, we will proceed to give a description of the figures, de.:-Fig. 3770 is an elevation. Fig. 3769, sectional do. The figures are lengthened out, with the view only of showing the metre's general arrangement, without reference to the economy of space that may be attained by a compaet arrangement of its several parts.

Literal references.-D, connecting pipe from the feed-pump of the engine to the drop-valve chest, G; E, an overflow-valve chest bolted on the pipe E; F, air-chamber; G, drop-valve chest bolted to the forcing metre-chamber or cylinder II; T, plunger or ram working in the cylinder $\mathrm{H}: \mathrm{R}$, metre-cylinder ; L, plunger working in the metre-eylinder-the two plungers being comneeted by a conpling-rod; M, metre valve-chest bolted to the cylinder R ; N , stop-cock on the pipe O leading to the boiler ; R , feedpipe from the hot well bolted to the bottom of the ralve-chest M, for supplying the metre-chamber R : P. side-frames, to which the eylinders H and R are bolted.
l, valve in chest E , loaded by means of the springs attached to the eross-head on the valve spindle; c, drop or cut-off valve in the chest $G ; g$, cut-off valve spindle passing through a stuffing-box on the cover or bomet of the drop-valve chest; d, stud keyed on the spindle $g ; e$, an inclined slide receiving motion from the connecting link $\%$. It works in a slot in the shide-piece that springs in under the stud d. When the valve c rises, and when it is drawn down by the rod y, it draws back the slide-piece from under the stud d, thereby allowing the valve c to fall on its seat, and prevent the return of any more water from the forcing-cylinder H through the pipe D into the engine feed-pump, during its exhaust stroke. $h^{2} l^{2}$, seat on the frame f, on which the drop-valve slide (not shown) works, and through which. at the back part, the inclined slide e also passes; f, stand for the seat $k^{2} h^{2}$, its lower end being bolted on the bonnet of the ehest G. Its upper end is curved, the valve-rod g working through it, which confines the valve-rod to its place. There is a spring not shown fastened to the inside of the frame in its curved portion, the lower end of which being in contact with a small stud on the slide-piece working on the seat $h^{2} l^{2}$,springs it under the stud d. When the valve-rod g rises, by the water litting the valve c on its passage to the cylinder H, the slide-picce retains the valvo c, leaving a free passage for the water to and from the cylinder II and the engine feed-pump during the foree and exhaust strokes of the feed-pump plunger, until such time as the plungers T and L have completed their required amount of foree and exhaust travel, when, by the motion-rod l, on which is keyed the lracket s, in the slot of which is ad justed the pin t, coming in contact with the arm u, thereby giving motion to the arm u, the connceting link y, and the inclined slide c, the slide-piece is withelrawn from the under side of the stud d, and the valve c drops on its seat, having arrested the motion of the plungers T and L. It remains at rest until the feed-pump plonger again commences its force stroke, when the ralve rises as before, and is again locked by the slide-piece. The motion-rod has the same motion as the plungers T and L , being worked by a cross-arm from the plunger coapling-rod, (not shown,) the end of which works on the gride-rod k. The arm i being bolted to the cross-urm at the upper end, and keyed to the motion-rod
at the lower, the travel of the plungers is recorded by means of the rack, keyed on the rod b, giving motion to the segment n, which works freely on the pindle $u^{\prime \prime}$, on which the arm is keyed. The motion of the arm is comnanicated by the link h to the counter arm r, which bas a sot in it, hy which the required length of counter arm may be obtaised by means of a pin laving a mut on the back. 1 , feed-valve in metre-chest ; - , delivery-valve in same.

On reference to the sectiomal figure, it will be perceived, that by the drop-valve c and the delivery valve 2 being open, that the cylinder H is receiving water from the mone feed-punp during a foree stroke, and that the metre-crliuder R is diseharging, by the advance of the phunger L into it, a quantits of water through the valve ${ }^{2}$ and the pipe O, provided the stop-cock N is not closed, equal to its arma of surface and length of travel. But, supposing all the parts in the poition as repreanted, that the stopeock should now be closed, there being no pas-age for the water from the eylindse 1 , the plungerare at once brought to a state of rest, the water from the feed-pump finds ain escape hy lifting the loaded valve b, and passing off by the overflow pipe; so in like manner if the stop-ceck N is only part open, the plungers ' T ' and L will only move a di=tance equal to the quantity of water received into the cylinder Hf, he reat going to waste by the valve b.

On the engine feed-pump plunger commencing its exhanst stroke, the delivery-valie 2 baving clowd. the prewure of the water from the hot well canses the feed-valve 1 to rise, adnitting of a supply to the cylinder as the plunger L recedes, hy reason of the planger 'T being acted on by the vacuun cansed by the exlaust stroke of the engine feed-pump planger, and the pressure of the water from the hot well on the plunger L, by the plunger T fullowing the vacuum, the water in the cylinder If during the previons force stroke of the engine feed-pump is returned to it on the exhaust; and in case that only a part of the water diselarged by the feed-pump during its previons force stroke should have entered the
 then the cylinder If first returns all it received, the valverend g is disengaged, the valve c drops, and the deficiency is supplien to the feed-pump by the feed-pipe from the hat well.

From the above, it will be seen that the travel of the flungers L and T ' is dependent on the quantity of water received during each stroke of the engine feed-pump by the cylinder 11 , and the quantity of water displaced from the cylinder, and thence into the boiler, is depentent on the area of surface and length of travel of the phager $L_{\text {; }}$; from which it follows, that if the travel of the phumers is correctly recorded, we can at any time ascertain, by inspection of the counter-face, the actual amount delivered

WATER-PRESSURE ENGNE. The fir-t engine erected in England with eylituler or givennvalves, was that put up in the Alport mines, Derbyshere, in the year 1842 . This was at single cylimder engine. Its success was complete, and others were erected on the same plan. But in 1515 , a combined cylinder cogine was designed, and erected by the same engineer, which is found practically to have severat advantages for such large supphes of water as that cunsumed by the pumpingengine, of which we subjoin accurate reductions of the working-drawings.

tinked to the rod s, Fig. 3772 , (s, Fig. 3771 , is misplaced,) which again is linked to the auxiliary piston valve rod.

The play of the machine is now manifest. It is in every respect analogous to the Harz and Huel goat engines, described by Weisbach. The average speed of the engine is 140 feet per minute, or 7 double strokes per minute. This requires a velocity of something less than $2 \frac{1}{2}$ feet per second of the water in the pressure-pipes; and as all the valve apertures are large, the hydranlic resistances must be very small. The engine is direct-acting, drawing water from a depth of 135 feet, by means of the spear $w w$, Figs. 3771 and 37T2. The "box," or bucket of the pump, is 28 inches in diameter, so that

the discharge is 266 gallons per stroke, or when working full speed, 1862 gallons per minute. The mechanical effect due to the fall and quantity of water consumed is nearly 140 horse-power. The mechanical effect involved in the discharge of the last-named quantity of water is neärly 74 horsepower, so that supposing the efficiency of the engine and pumps to be on a par with each other, the efficiency of the two being $\eta_{1}=71 \cdot 15$, the efticiency of the engine alone $\eta=\frac{1+\eta_{1}}{2}=\frac{1+71}{2}=85$, or In the language of Cornish engineers, 85 per cent. is the duty of the engine.

WATER-WHEELS-Theory and Conathection of. Ahhough in localitie where mineral resersoirs of motive power are convenient, the ever-available stean-engine has much diminished the importance of hydrautic movers, these must always continue to be the mont economical, and thorefore the most frequently re-orted to, in situations where the liquid element can he attained in sufficient abundance, and under the necessary circumstances to answer the conditions contemplated. A waterfall is rendered available comparatively without labor, and furni-hes its supplies withont the intervention of human aid The energies of the stean-engine, on the contrary, ean be commanded in any sitnation, only by the influence of the miner; and in localities much removed from sources of fuel, can only be sutathed at an expense which falls heavily upon the operations to which they are subservient. That expense, it is true, is continually being diminished, and by means of the steam-engine itself, in its character of a carrier; but no happy discovery, no pos-ibility, em reduce it to the minimum at which our water-rums are maintaineal.

But while water-power has the advantage of economy, where it is abunchant and constant, in other localities where it is more immediately dependent ipon the condition cit the seasons, it io under the disadvantage of being less certain, and less under control, than the more artificial agency developed in the steam-engine. It is this intependence of time and season, of circumstances and lueality, which mark the great superiority of this potent creation of engincering skill, and which, in its multiform applications and applicability, have invested it with an importance and an interest which success secms only to stimulate and render more intense. The complexity of parts, and the diversity of combination, offer a scope for the exercise of ingenuity, alike highly inviting to the theoretical and the practical mechanic. The steam-engine, even as a stationary power, is, moreover, of recent origin; and contemplating the phases which it has already assumed, in connection with the general feeling that its energies have not yet been fully developed, it is not matter of wonder that it has diverted attention from the less inviting problen which we are about to diseuss. Wiater-power is an old, if not an antiguated subject, on which the light of modern improvement has been but feebly reflected since the days of Smeatun. With a few exceptions, it has been abandoned to the management of those who recognize in it no principle, and no ocope for improvement; and whose pratice is not more opposed to improvement than it is empirical and opposite to all true principle.

The fact that water-power is an ageney which camnot be augmented at pleasure, and which, in most situations where it is employed, has a full share of duty impoeed upon it, renders it desirable that the best oneans of economizing it be adopted. This implies a knowledge of some of the fundamental primciples of hydraulice, in addition to that acquaintance with the general laws of mechanics which every engineer is assumed to posesse. It is with the view of placing the subject in a di-tinct and concise form, and of pointing out precisely those principles which ought to guide the practice of the engineer in his dealings with this ageney, that we undertake a brief exposition of the general problem. Under the title assumet, is implied the ceonomy of water-power, and the various moms of remberine it arailable for purposes of industry. Without avoiding those abstract yuestions which beset the subject, aml which imply some aequaintance with elementary analysis, we shali endearer to keep in view that theory is valuable only in its relations to practice.

Characteristic varitics of water-wherls, amb the theory of beir action.- By far the must numerous, and, therefore, important order of hydraulie movers, are those which come under the denomination uf rertical wheds, from their movement being in wertical planes, and their axis of rotation consequently horizontal. Of these we have three varicties-named according to the points at whoh the water is received upon the periphery-orershot, undershot, and breast whed. This' lant is further dintimguished as high and low lireast, according as the water is received upon the wheel abowe or below the herizontal phane of the uxis. When the puint of reception approches the lowest point of the circle, it becomea ant und rehot-v/horl; and on the contrary, when the water is laid on withan a few degrees of the summit, it takes the name of owershot.
 denomination of herigonted whely, beeatow they nove in planes parallel with the horizon, and comquently have their axis of rotations vertieal. Of the ee, the beat blown types are the reation-wheed,
 F'renels,) amel the whelefs common in the sonth of l'rmace (in I'rowence and bathphé), and which consint simply of a sories of sporn-shaped (and somet imes that) padilles or thats, set un the prepiphery of a stroner wonden axis, and angainst which the water is projected from a conteal miljutape. 'The damble. better known to theory thm practice, belonigs to the same order.
 atetion. But instating these ne the primory mod simple elements of hydratic power, it is to be re marked that we very rarely find the ctfoct reducible to a sumbe mote of actim; more commaty we

 enter inte the calculation of the ultunate effect

by a rope passing over a pulley fixed in the month of a pit, of the depth H , equal to the length D , tho pulley being assumed to have no friction, and the rope no weight, (conditions which can be virtually attained, the weight W , which is a measure of the constant effort exerted by the animal, will descend and drag the carriage along the level road with the same uniform velocity, and arrive at the bottom of the pit at the same moment that the horse would have arrived at the extremity of the distance D . In both cases, the carriage passes over the same space and with the same velocity; the weight W is therefore capable of effecting all that the horse had done; as a prime mover, it is therefore identical. It has given the same quantity of action $W \times H$ or $W H=P D$ in the same time. Its dynamical effect may therefore be expressed in terms of the power of the horse, as a known unit. And in general the power developed by any mover, animate or inanimate, may in like manner be measured by that of a weight W descending through a certain height H , and expressed by the product W H .
neeping this principle in view, it is further obvious that the greater the height through which the weight descends, the greater will be the effect produced. But as a current of water may be regardect as a continuous succession of weights, descending from the higher to the lower level, it is necessary to ascertain the rate of succession-in other words, the measure of the weight which descends in a given unit of time. Let that unit be 1 minute, and let the quantity of water flowing be 500 cubic feet, which multiplied by $62 \frac{1}{2}$, the weight in lbs . of a cubie foot of water, gives $31,250 \mathrm{lbs}$. as the weight which has descended in a minute. Further, let it be supposed that the whole height II, through which it descends, that is, the whole height of the fall or head, is 120 feet; if this quantity of water be made to act upon the circumference of a gigantic overshot-wheel, so constructed as to be free from all those detrimental influences to be hereafter considered, and the wheel be attached by a suitable connection to a train of carriages upon an incline, which by experiment is found to require the application of a force (measured dynamometrically) of $31,250 \mathrm{lbs}$. to move it through 120 feet in a minute, then, the power and resistance being equal, the water will give motion to the wheel, and descend with it through the height of a fall equal to 120 feet in the same time that the load is moved throngh an equal distance upon the incline. In this case we have manifestly $W H=P D$, since $W=P$, and $I I=D$. The first of these conditions only is necessary to establish an equality of dynamical action. Let us assume the height of the fall to be reduced to 30 feet, and the force necessary and sufficient to drag the train of carriages up the incline, with a velocity of 120 feet a minute, to be only $7812 \frac{1}{2} \mathrm{lbs}$, the other conditions remaining unchanged. the quantity of water constantly in action upon the circumference of the wheel will be $\frac{1}{4}$ th of 31,250 $\mathrm{lbs} .=7812 \frac{1}{2} \mathrm{lbs}$, since the rate of descent is 120 feet per minute; and the distance $\frac{1}{4}$ th of 120 feet, or 30 feet. In this case, $\mathrm{D}=4 \times \mathrm{H}$, and $W=31,250 \mathrm{lbs}$. of water expended in the unit of time is equal to four times the load moved; but $\frac{1}{4} \mathrm{~W} \times \mathrm{H}=\frac{1}{4} \mathrm{P} \times \mathrm{D}$ is $\mathrm{WH}=\mathrm{P} \mathrm{D}$, by cancelling the common multiplier $\frac{1}{4}$.

The dynamical force of a current of water is therefore correctly represented by W H lbs. per minute; and since the height of fall H feet is independent of the time, W lbs. must express the weight of water which descends in a minute. A stream on which there is a fall of 30 feet, with a supply of 500 cubie feet of water per minute, will afford the same amount of power as another stream of 1000 cubic feet with a fall of 15 feet, the product $W H$ of the two factors being the same, whether we take $30 \times(50 n$ $\left.\times 62 \frac{1}{2}\right)$, or $15 \times\left(1000 \times 62 \frac{1}{2}\right)$.

In thus estimating the motive force of a current of water, the height H is the difference of level between the surface of the water at the higher and lower points between which its power is developed. This is termed the fall, and is either real or fictive : it is real when the fluid descends abruptly from a higher to a lotrer level, and fictive when it acts in virtue of a velocity of motion due to that height. Thus if a current, flowing in an inclined channel, be ascertained by experiment to have a uniform velocity of 12 feet in a second, then we know, from the laws of falling bodies, that the fictive head is 2.25 feet nearly, and is found from the formula $\mathrm{V}=\sqrt{2 g \mathrm{H}}$. In this formula, V expresses the velocity of the current in feet per second, and $g=322$ feet the velocity communicated to a falling body by gravity at the end of the first second, when it falls freely. H is the height capable of generating the velocity V , and is therefore represented by $\frac{\mathrm{V}^{2}}{2 g} 0.0155 \mathrm{~V}^{\mathrm{Y}^{2}}$; and if s be the area of the cross section of the fluid current in square feet, then the weight of water passing a given point in a second will be 62.5 s V ; and therefore the whole dynamical force in a second will be expressed by

$$
62.5 s \mathrm{~V} \times 0.0155 \mathrm{~V}^{2}=0.97 s \mathrm{~V}^{3},
$$

and this result multiplied by the number of seconds in a minute, the unit assumed in speaking of the dynamical value of a real fall of H feet, gives $W H=58.23 s \mathrm{~V}^{3}$.

In illustration: let the mean velocity of a current be 10 feet per second, the mean depth 2 feet, and the mean width 15 feet; then $\mathrm{V}^{3}=1000$, and $s=30$ square feet;

$$
\therefore W^{\top} \mathrm{H}=58.23 \times 30 \times 1000==1746900
$$

the dynamical force of the current, of which the fictive head is $0.0155 \mathrm{~V}^{2}$, equivalent to 1.553 feet, and the quantity of water flowing per minute is $1,125,000 \mathrm{lb}$.

The fictive head of a stream tlowing in an inclined channel may then be determined in terms of a real or sertical head, and measured accordingly. They are, indeed, mutually convertible ; and were it not that the expression $W \mathrm{H}$ is arithmetically more convenient than $58.128 \mathrm{~s} \mathrm{~V}^{-3}$, we might in every ase determine H in terms of V, and employ the latter formula in our calculations of the power of a waterfall. Thus generally $\mathrm{H}=\frac{\mathrm{V}^{2}}{64 \cdot 4}$; therefore, if H be known, the value of V can be readily determined; and conversely, if V be ascertained, the corresponding value of H may in like manner be found.

We have hitherto employed these expressions abstractly ; but in speaking of the dynamical force or
a fall of water, it is foum convenient to introduce a unit of comparion by which the amount may te more readily conceived. The mind does not readily apprehend the value of a product, even of such magnitude is $1, i+6,9015$; and it is often nece-sary to deal with much hirfher ye-ults. In this, ass in all other e-timate of mechanical power on a large scale, the unt alopted is the horse-pootr, reckoned at
 the bottom of a mine by a rope passing round a pulley. This is the unit introluced by What in rating his stean-engines, and is suppoed to have been taken as the maximum work of the London dray homses. The estmate is found to be a third part to o high, as applied to draught hor-e generally ; but as a measure of dynamical force, when applied to inanimate sorees of power, it is unexceptionable on that account. The object is served by a definition of the unit; and horse-poner is a mame lesoljecetionable than any others which have been proposed, unless we are to except the checul roper of the French writers.

We bave already slown that the magnitude of the individual facturs of the protuct $W \mathrm{H}$ may rel. atively change without affecting the result. Sow, in the estimate of the horse-power, we have iaken $150 \mathrm{lbs}=W$ raieed (or desemding) through 20 feet $=\mathrm{H}$ in a minute; but the numbers will mani-fe-tly bive the same product by multiplication as $38,000 \mathrm{lbs}=\mathbb{1}$, raisen or descendinge through 1 foot $=\mathrm{H}$ in a minute. This afforts the simpler enunciation, and is that unifurmly adopted.

To e-stimate, therefore, the moving force of a current of water in units of this kind, it is only necessary to divide the product $W \mathrm{H}$ by 33,000 , and the quotient will indicate the equivalent in horse-pocer. Thus in the example above, we find $\mathrm{W} \mathrm{H}=1$, it6, 400 dynamic units; which devided by 33, one gives $52-936$ as the hurse-pomer of the current

The sathe result may, of course, be obtaned by taking the reciprocal of $33,000=\cdot 100030,303$ as a multiplier. And if we take (ℓ to represent the number of cubic feet of water supplied in a mimute, we
 of the current. Thus in the preceding example, the fall due to a velocity of 10 feet per second is $1 \cdot 553$ fere $=H$, and the quantity of water $s u p$ pled per minute will be $(2 \times 15 \times 10) \times 60=15,000$ cubic

It may also be here observed, that $33,000 \mathrm{lb}$. rased a foot in a minute being the same as 5.50 lb . raisel to the same height in a seconl, if we take to to represent the weight of water supplied in the smaller unit of time, then will $\frac{W \text { II }}{5 j 11}=00152$ W H represent the horse-power of the stream. Thus in the preceding example, $t=300 \times 62 \frac{1}{2}=18,750 \mathrm{lus}$; and $\mathrm{II}=1.553$; therefore, $\frac{\mathrm{H} H}{500}=52.4 .4$ horaepower as before.

Alou, since $550 \mathrm{lbs}_{5}=8.8$ cubic feet of water, if y be the number of cubic feet furnished per second, then $\frac{q \mathrm{H}}{8.8}$ will in like manner represent the horse-power of the current.

As all calculations of the velocity are referred to a second as the unit of time, these forms of expression will sometimes be ureful in our subsequent investigations; and may be brone in mint.

Wre have hitherto spoken of the prwer of the water; but in the application of a motive power by meats of machinery, wo in no cave realize the thenretical effect. To produce an eftect hy amathine is to overcome the resiotances continually and periodically reproduced in at direction opposed to the lircetion of the movime force during the time of its action; but in this a certain losis invariahly oceurs. Thus, confuing wor attention to the agency under consideration, all the foree 11 H of n corrent of water directed upen the buckets of a water-wheel does not take effect. A part of the water ${ }^{1 /}$ commonly escaper, "-pecially in low breat and madershot wheds, between the whed and the are by which the water is confined; and a part of the head H is alo, loot, loth on the contrance of the watior upon the
 firee amibilated ley the comeraction or back lash of the water in strikinit the bucket-, and the contration of the atream at the penstoms. Thene circumatances, to which we shall return, prevem the tram-fir of a certain amount of the power panessed by the water th the wheel; hat there are, be-ides, absorbing intluences which dimini-l the uneful effect of the pewor actually develogned. In the mathene iteelf, we have the frietim of the jommals; and if the velocity be high, as in horizontal wheels working
 whish the pewer is tranomittoll th the working pmintes, another low takes phace ber the friction and
 sum leconnes tut appociable quantuty:

 noment of lows incturad by the lactor $\mathbb{I N} \times 11$.

expression of the whole dynamical effect of the machine, $w v+w^{\prime} v^{\prime}$. But as all resistances, active and passive, upon the machine are reducible to the common velocity v, we may put W to represent their entire sum; and, therefore, denoting by E the whole dynamical effeet, we shall have $\mathrm{E}=\mathrm{W}^{\mathrm{W}} x$. In words: the effect of the mover is equal to the resistances overcome.

From this, we observe that the effect does not depend upon the magnitude of the individual factors. but upon that of their product. By means of geering, the working speed may be made a hundred or a thonsand times greater or less than that of the first mover; but when this is the case, the weight elerated will be correspondingly dimimished or increased in amount, agreeably to the maximum univereally recognized in mechanies, that whatever is gained in speed is lost in force, and vice versa.

The factor v is in practice easily ascertained by observation; but W being the sum of resistances opposed to the movement of the machine, and often consisting of many particulars imperfectly aseertained, and only ascertainable by direct experiment, usually of some difficulty, this factor, and consequently the whole effect E , does not always partake of that certainty which is desirable, in comparing the work done with the power expended. But this last, which we have represented by W H, being always greater than E , we know that whatever may be the cfficiency of the wheel, these forces must. have the relation $\mathrm{E}=m \mathrm{WH}$, in which m is a fraction less than 1 , but different in different eases and conditions, and only determinable by direct experiment. Taking the foree expended, viz., $\mathrm{W} \mathrm{H}=1$, the coetticient m will express the ratio of the effect realized in the active and passive resistances of the mover to that foree. It can never equal 1, for then the whole moving force would be realized by the wheel, which cannot possibly happen by any adaptation hitherto discovered; much less can it exceed 1 . which would imply that the power realized is greater than that expended. The values which it bears in particular cases will be subsequently investigated at considerable length, taking as the basis of discussion the numerous experiments which have been directed to its determination. In the mean time, it will be sufficient to obserse, that it very risely exceeds 0.80 , and not unfrequently, in undershot-wheels, it falls below $0 \cdot 25$. In wheels coming under the denomination of high breast and overshot, the common value ranges from 075 to $0 \cdot 66$.

The formula $\mathrm{E}=m W H$ is general ; it applies to any hydraulic mover under any circumstances, and, therefore, the effect and producing cause may always be thus compared. When the fall is fictive, we have seen that it may be determined in terms of H, from the known relations of the velocity V generated in the current, to the generating head H. But in the case of an undershot-wheel acting by a fictive head, although the formula of ultimate comparison remains the same as for an overshot-wheel acting under a real bead, the mode of action is different, and requires a separate consideration. Taking a case of the most simple kind, in which the wheel is furnished with radial floats, and acts in a confined rectilineal course, in which the current of water flows with a velocity of V feet per second, it is obvious that the motion of the floats must, under the supposition of the wheel being burdened, be less than V when impelled by the current; since it is clear that the fluid could have no effect upon them if they moved at the same velocity, and would retard rather than impel the wheel at any higher velocity. Moreover, in impelling the floats at a given velocity v, there must remain in the water, after it has passed the wheel, a certain velocity which is always greater, and cannot manifestly be less than v. If, according to the supposition, the floats so completely occupy the watercourse that no particle of the fluid can pass without acting upon them, the velocity retained by the current would evidently be the difference between the initial velocity V, and that imparted to the surfaces opposed to its motion. But this condition, although not actually, is virtually fulfilled in every case analogous to that assured, however imperfect the arrangements in seheme and construction. Although a highly mobile fluid, there is a certain cohesion among the particles of a current of water, by which an equilibrium of motion is, if not uniformly maintained, at least quickly established in cases of disturbance. The interruption offered to one portion of the mass is speedily communicated to the whole. The uninterrupted particles, by the mutual cohesion existing in the mass, act upon those to which the interruption has occurred, and thereby reciprocally communicate and lose a portion of the velocity which they possessed. An equilibrium may not be thus instantaneonsly established. Like other ponderous bodies, the fluid particles possess inertia, and, therefore, require time to receive and communicate motion; but the action is no less certain and essential to the conditions assumed. We may, consequently, without risk of error, presume that in all cases the velocity retained by the water after it has acted upon the float of the wheel, will be fairly expressed loy $\mathrm{V}-u$. This velocity is, moreover, lost as respects the efficiency of the wheel: it has produced no effect. Now, from what has been before stated, we know that the head equivalent to the initial velocity V of the current may be expressed by $\frac{V^{2}}{2_{g}}$; and extending the same principle to the velocity v communicated to the wheel, the head equivalent will be expressed by $\frac{v^{2}}{2 g}$; and the head lost in consequence of the unemployed velocity $\mathrm{V}-v$ will, in like manner, be represented by $\frac{(\mathrm{V}-u)^{2}}{2 g}$. The vertical section of the stream being, therefore, designated as before by s, the whole weight of water acting upon the wheel, in a second of time, will be represented by 62.5 s V , and this multiplied by 60 will be the quantity acting in a minute $=\mathrm{W}$. The dynamical effect of the impulse will, therefore, be expressed by

$$
\mathrm{W}\left(\frac{\mathrm{~V}^{2}}{2 g}-\frac{v^{2}}{2 g}-\frac{(\mathrm{V}-r)^{2}}{2 g}\right) \text { reducible to } \frac{\mathrm{W}}{g}(\mathrm{~V}-v) v
$$

by performing the operations indicated. And designating by $h h^{\prime} h^{\prime \prime}$, the heights of head due to the three velocities V, μ, and $\mathrm{V}-v$, we have the equivalent expression

$$
W^{\prime}\left(h-h^{\prime}-l^{\prime \prime} L\right.
$$

The two hast terms in the parentheses manifestly dimini-h the effect produced. Were they zero, thieffeet would then be $\mathrm{W} h$, which is the whole dynamic force of the current, since h repre-enis the total head due to the velucity V . In order that the first of the two last terms may le zero, it is necusayy that $v=0$; and on this supposition, the whole expresjon vani-hes, showing that no eflect is realizedwhich is manifestly the cave where the wheel hat no velocity. The expressiun further shows that the velocity preserved by the water after it had acted upon the tloats depends upon the relation of V aud r, and in order that $\tilde{V}-u=0$, the wheel must have the same velrecty as the current. In this case al-o the whole exprewion vani-hes, or the power realized is nothing; for then the whole force of the water will be aboorbed by its own velocity, and could only turn the wheed at an equal velocity when the hurden (including its own weight and passive resitanees) of the wheel is nothing. The formula in Wherefore, consistent with itself in the most extreme cases, and may be accepted as a fair reprewntation of the effect realized in all intermediate conditions.

There are other modes of establinhing the rule, which it may be at lea-t sati-factory to state, more expecially as it will be necessary to resurt to them in a subsequent part of the inquiry:. According to a well-known notation in dynamies, the weight of a body divided by gravity g is called the mass; and the ma-s multiplied into the velocity in feet per second is denominated the quantity of movemont, or pressure of the borly.

Adopting this notation, and denoting the weight of tluid which flows in a second by 2 , and its velocity by Y; then the mass will be represented by $\frac{2 n}{y}$ and the quantity of movement or pressure by $\frac{2 c}{y} V$. But the floats of the wheel are assumed to recede from the impulse with a velucity of v feet per second ; the pressure exercised upon them will therefore be reduced to $\frac{w}{g}(V-v)$; but the space passed through by the wheel, impelled by this pressure, is v feet per second; consequently the dynamical furce (the product of the pressure and velucity) will be $\frac{w}{g}\left(V^{-}-v\right) v$ per second; or taking $W=60 u$, it will be $\frac{W}{J}(V-r) v$ per minute. But as before observed,

$$
\frac{W}{g}(V-v) v=W\left\{\frac{V^{2}}{2 g}-\frac{v}{2 g}-\frac{\left(\mathrm{V}-\mathrm{r}^{2}\right)^{2}}{2 g}\right\}
$$

as may be found by reduction of this last expression.
From the prineijle formerly adverted to of the relation of the velocity possessed by a falling body. Io the height throngh which it must have fallen to acquire that velucity, it fullows that the weight being wo pounds, and the velocity V feet per second, there must be accumulated in the borly a number of units of dynamical foree represented by the former $w \frac{V^{2}}{2 g}$ as before shown. After it has passed from the velocity V to the less velocity U, there will be accumulated in it the mumber of units of force rep resented by wo $\frac{U^{2}}{2}$. There will therefore have been taken from its dynamic foree a number of unita represented by $w \frac{V^{2}}{2 y}-\frac{V^{2}}{2} \frac{W}{2}=\frac{W}{2 y}\left(V^{2}-U\right)^{2}$. Now this must be equally true of a current of water
 and it escape with the reduced velucty L , the firce lost by its action will be expresced by

$$
\frac{W^{2}}{2}\left(V^{2}-U^{2}\right) .
$$

But this furce bas been luat by impalse unon the dhats, and onght, thenretically, to have bera entirely commanicated to them. On this ammotion, if v denote the velocity of the whed in feet per ceconl, and p the pressure owereme, then will $\eta^{\prime \prime}=\frac{1 \mathrm{~V}}{2!}\left(\mathrm{V}^{2}-\mathrm{I}^{2}\right)$.

But on the asumption that the water meete the fle ats of the wheed withont shere, it will leave them

$$
\mathrm{K}=m\left\{\begin{array}{l}
11 \\
\{2 \\
2
\end{array}\right.
$$

 in feet prer secoms.

This furmula wav tiret girom in nll ite prea-ion and gemerahty ly berds, in his memour on water

abandons the machine, and $\frac{\mathrm{P}}{\mathrm{g}} 22^{2}$ the sum of the losses of $v i s$-viva sustained by the fluid, he gives, as a gen eral corollary to the principles demonstrated in his memoir, the relation,

$$
p v=\mathrm{P}\left(h-\frac{z^{2}}{2 g} \frac{u^{2}}{2 g}\right)
$$

which is exactly the same as that above established, p being the pressure overcome by the wheel, v its velocity in feet per second; P ' the total pressure due to the weight of water, and h the head real on fictive; $u=V-v$ the difference of velocity of the current and of the periphery of the wheel. Deceived by his formula, he, however, remarks that in the case of the greatest effect $u=0$ and $z=0$; whence $p^{\prime \prime}=\mathrm{P} l$, Which in plain language signifies that the wheel being at rest, the whole power of the stream is realized. This is evidently absurd; but the absurdity is in the interpretation, not in the formula. When u and z are respectively $z c r o$, no power is realized, but the floats of the wheel entirely obstruct the passage of the water, and sustain the whole pressure Ph. But pressure without motion is not power. The error has, however, been reiterated until it has assumed the position of an established principle. Thus every writer since Carnot has laid it down, as the basis of the theory of hydranlic machines, "that in order that the machine may produce the greatest possible effect, it is necessary that the water shall arrive and act upon it without shock, and quit it without velocity." That the maximum effect be obtained, it is admitted that there must be no percussive action; the fluid must lose its velocity by insensible degrees; but to suppose that it shall quit the wheel without relocity, is to suppose that the wheel itself has motion equal to that of the stream, and consequently produces no mechanical effect. The doctrine is, however, true, if, instead of velocity, we read "relative velocity." In this case no water will escape that has not given up a certain amount of its movement to the wheel, and it will clearly posseas the least quantity of motion consistent with its action upon the floats, namely, an absolute velocity equal to theirs. On this condition we shall have $v=\mathrm{V}-v$ and therefore $v=\frac{1}{2} \mathrm{~V}$, which implies that the wheel ought to take half, and only half, the velocity of the current.

We shall hereafter find that this conclusion requires modification; but in the mean time it is sufficient to intimate the mode of calculation, and to point out the theoretical conditions which form the banis of inquiry.

It now only remains in this place to indicate the geueral principle of the reaction of water. According to Newton's third law of motion, action and reaction are equal in amount and opposite in direction. This proposition assumes the character of an axiom, when the mind is directed to the reciprocal action of solids, since it is clear that any hody acting upon another by pressure, for example, must itself experience a reaction equal and directly opposed to the action which it exercises. In the same manner, whenever a force, as that of gravity, pressing upon a fluid, causes it to issue through an orifice formed in the side of a containing ressel, a force equal and contrary to that with which the stream issues will, in consequence, be expended upon the side of the vessel opposite to the orifice of escape. To explain this very briefly: when a part of the weight of a fluid is expended in producing motion in any direction, an equal pressure is necessarily deducted from its pressure in the opposite direction, for the gravitation employed in generating velocity cannot at the same instant be causing pressure. Supposing an orifice to be made in the bottom of a vessel filled with water, a column of the fluid will descent through it, and will expend during its descent a quantity of yressure equal to a column of t wice the depth of the fluid in the ressel, and having an area equal to the least section of the stream. For example: suppose the vessel to be 16 feet deep, and to be kept constantly full, the velocity of the stream will be 32 feet in a second; and, therefore, a column of 32 feet of length will pass through the orifice in each second, with the whole velocity derivable from its weight acting for the time. It is therefore clear that an equal amount of the pressure of the fluid in the ressel must be expended in producing that velocity, and must of course be deducted from the weight of the whole fluid-that is, from the entire pressure which it would otherwise exercise on the bottom of the vessel. Now, what is true with respect to vertical descent, is equally true when the motion is in any other direction. When the orifice is formed in the side of the vessel, the pressure upon that side will be diminished by as much as the pressure employed in producing the motion; and the effect of the diminution of the pressure in that direction will be the same as if the vessel were subjected to an equal pressure of any other kind in an opposite direction. And, moreover, the pressure being lateral, and therefore perpendicular to the only direction in which a vertical force, like that of gravity, can itself act, it must be derived from reaction of the opposite surface of the ressel upon the moving particles of the fluid, and may be assimilated to the constant pressure of a spring interposed between the moring particles and the part of the vessel immediately opposite to the orifice. In this position the spring must needs act in a direction exactly contrary to that of the movement impressed upon the fluid, and with au intensity cxactly equal to the hydraulie pressure-that is, to the force due to the volume of water issuing by the orifice. Now, if s be taken to denote the cross sectional area, in square feet, of the stream, and h the deptly of the water above the centre of the orifice, then the quantity of water discharged in a second will be $s \sqrt{2 g h}$ cubic feet, and the weight $62.5 \mathrm{~s} \sqrt{2 g h}$. But the hydraulic pressure due to this volume of water will be 62.5 $s \times 2 h$, which is the weight in prouds which would be necessary and sufficient to prerent the ressel from receding in a direction opposite to that in which the water issues. To approach the actual conditions: suppose a rertical cylinder with two hollow tubes inserted near its base, and projecting laterally at right angles to its axis; that these tubes are closed at their outward extrenities, and communicate freely with the interior of the crlinder; that an orifice is pierced near the extremity of each on opposite sides of their common axis, and in a phane passing through that axis perpendicular to the axis of the sylinder. If this apparatus be placed un a vertical axis, round which it is free to revolve, it will constitute that varicty of hydraulic machine known as Barker's Mill, and may be considered a.type of those machines which derive their power from the reaction of fluids. Water being let in to fill the vertical
cylinder, it will flow into the horizontal tubes, and issue by the lateral orifices, but in thus fiading vent into the atmosphere through the (contrary) sites of the tuiber, the-e will be made to recede in a direc. tion opposite to that in which the water flows out, and thereby produce a circular motion of the appa ratus round the axis by which it is confined.

To arrive at a general notion of the power developed by the revolution of the machine, let us denote the depth of the cylinder above the level of the oritices by H , and the sum of the cros-sectional areas of the jets by S; if the cylinder be kept constantly full of water to the depth II, then the weight which must be applied in an opposite dircetion to that in which the machine tend- fo revolse, and at the same di-tance from the axis of revolution as the centres of the oritices, to prevent the machine from getting into motion, will be $62 \frac{1}{2} \mathrm{~S} \times 2 \mathrm{II}$ lbs., this beimy the hydranlic pressure due to the quantity of water S $\sqrt{2 y H}$ cubic feet discharged each second. Otherwise exprested, the weight necessary and sufficient to balance the hydraulic pressure, and thereby to prevent the machine from resolving, is that of a colamm of water equal in length to twice the head, and having an areanof bave equal to the sum of the cross-sectional areas of the two jets. This is found to agree withexperiment, and it may be determined from a priori reasoning. In every body falling freely, the velocity aeguired in a given unt of time is such as would carry it through donble the space which it has fallen during the next equal umit of time, *upposing gravity to ceave to act upon it. There must, therefure, have issued by eacli of the orifices of the machine, a column of water equal to double the height of the surface abore the urifices, that $\mathrm{i}-\boldsymbol{2} \mathrm{HI}$, and the weight of such colunn is manifestly $62 \frac{1}{2} \mathrm{~S} \times 2 \mathrm{If}$.
This will then be the condition of the machine held in a state of rest by a weight balaneing the hy: dramic presure of the water di-charged by its orifiecs. But when it is allowed to get into motion another important condition is superaded. Centrifugal foree is brought into action, and inerases the pressure of the water at the orifices, and thereby augments the guantity discharged in a given time. and also the inteusity of the reaction, exactly as if the head-pressure or depth of the cylinder were correspondingly increased.

A common expression for the centrifugal fore of a body revolsing in a circle at a distance x from the centre of motion is $\frac{v e}{g} \omega^{2} x$, in which ω is the angular velocity at the distance x, and is $=\frac{r}{x}$ when u ex presses the absolute velocity in feet per second, at the distance x. Now, if the mass $\frac{t r}{9 /}$ of the body advance in the direction of the radius outwards, throngh the element of space $d x$, in an instant of time, the 'Iuantity of action (vis riect) created by the centrifugal force will be $\frac{2 \prime}{3 \prime} \omega^{3} x d x$. But this being true of : oolid boty, will be equally true of the molecules of water in the arms of the machine. If, therefore, these arms commence at a distance r and extend to a distance R (the centres of the oritices) from the centre of rotation, we shall have, by integrating for the space between r and R. the leneth of cath tims.

$$
\int_{r}^{R} \frac{1 /}{\|} \omega^{2} x d x=\frac{1}{2} \frac{\| n}{!} \omega^{2}\left(R^{2}-r^{2}\right)
$$

Amb since $\omega=\frac{v}{R}$, if we take the quantity of water $n=1$, we have, as the pressure at the oritices due to the velucity of rotation,

$$
\frac{1}{2} \frac{!\prime \prime}{!/ \prime} \omega^{2}\left(k^{2}-r^{2}\right)=\frac{r^{2}}{2!}\left(1-\frac{r^{2}}{1!^{2}}\right) .
$$

If, therefure, wee add this to the initial head-pre--ure II, we shatl have as the whole pre-sure at the writices of the machane,

$$
H+\frac{r^{2}}{\because!}\left(1-\frac{r^{2}}{R^{2}}\right)
$$

Sow, umber this premure, the expenditure of water will be incteaned as

$$
\begin{gathered}
\sqrt{2}-y \| \text { to } \sqrt{ }-y \|+r^{2}\left(1-\frac{r^{2}}{k^{3}}\right) \text {, thait } i+, \\
H+1 \text { tu } \sqrt{ } 1+\frac{r^{2}}{r^{2}}\left(1-\frac{r}{k^{2}}\right)
\end{gathered}
$$

putting V for the velocity due to the initial hearl 11 ; mul mumping the fermanent hemb 41 thave been incrataed lyy the quantity $\frac{1^{3}}{2 / y}\left(1-\frac{r^{2}}{f i^{2}}\right)$, by directly incrastang the depth of the oghater, it in

$$
\left.11+5: \frac{1^{2}}{2!}\left(1-\frac{r^{2}}{1^{2}}\right)\right\}
$$

machine, with a velocity of v feet per second; a portion, therefore, of the whole reaction due to tie quantity of water expended, must have been consumed in communicating that velocity to the volume of water discharged in that second of time. The pressure thereby withdrawn from that due to the condition of rest will be expressed by the mass x into the relocity, that is, by

$$
\frac{62.5 \mathrm{~S} \sqrt{2}-g \mathrm{H}+v^{2}\left(1-\frac{r}{\mathrm{~K}^{2}}\right)}{g} \times v
$$

and this pressure being subtracted from the pressure due to the whole force of reaction, there remains the whole effective pressure, that is, the resistance or load which the machine can orercome at the given velocity, v feet per second. The operation being performed, we obtain

$$
\frac{62 \frac{1}{2} \mathrm{~S}}{g}\left\{2 g \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)-v \sqrt{ } 2 g \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)\right\}
$$

But the weight of water diseharged in a second is

$$
62 \frac{1}{2} \mathrm{~S} \sqrt{\because 2 \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)}=w ;
$$

therefore,

$$
62 \frac{1}{2} \mathrm{~S}=\frac{v}{\sqrt{ }\left\{2 g \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)\right\}}
$$

If, then, we put for $62 \frac{1}{2} \mathrm{~S}$ in the foregoing expression this equivalent, and reduce, we obtain the convenient formula,

$$
\left.\frac{w}{g}\left\{\sqrt{2 g \mathrm{H}+v^{2}\left(\mathrm{I}-\frac{r^{2}}{\mathrm{R}^{2}}\right.}\right)-v\right\}
$$

Now, this being the pressure acting upon the machine, and the velocity being v feet per second, the power transmitted, supposing no loss, will be

$$
\frac{w}{g}\left\{\sqrt{2 g I I+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)}-v\right\} v
$$

and putting $\left.\mathrm{V}=\sqrt{ } \sqrt{2 g \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right.}\right)$, the formula takes the form

$$
\frac{\imath v}{y}(\mathrm{~T}-v) v
$$

in which $w=$ the weight of water discharged in a second; V the velocity of the issuing jets, and v the absolute velocity of the machine, in feet per second. The theoretical rule thus agrees with that established for wheels which derive their efficiency from the impulse of the stream, thereby verifying the doctrine that action and reaction are equal. There still remains, however, to determine the value of the experimental coefficient m, with which this expression must likewise be affected to render it available in practice; but this being different for differently constructed machines, we cannot pursue the inquiry in this place.

The rule may be otherwise established thus: The whole laboring force, or mechanical efficiency of the water, expended under a head-pressure of $\mathrm{H}+\frac{v^{2}}{2 g}\left(1-\frac{r^{2}}{R^{2}}\right)$ feet, will be

$$
\frac{w}{2 g}\left\{\sqrt{2 g \mathrm{H}}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)\right\}^{2}=\frac{w}{2 g}\left\{2 g \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right) .\right.
$$

But of this efficiency there is consumed in giving rotatory motion to the water, and thereby raising the head-pressure $\frac{v^{2}}{2 g}\left(1-\frac{r^{2}}{R^{2}}\right)$, the quantity $\frac{x}{2 g} v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)$, which consequently falls to be deducted from the entire efficiency of the fluid.

Again, the water leaves the machine with a certain amount of velocity remaining in it, namely, a velocity equal to the difference between that with which it issues from the orifices under the virtual head II $+\frac{x^{2}}{2 y}\left(1-\frac{r^{2}}{R^{2}}\right)$, and the velocity of the machine measured on the tangent to the circle through which the orifices revolve; this difference of velocity will the expressed by

$$
\sqrt{2 g \Pi+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)}-v
$$

and the quantity of laboring force due to it will be

$$
\frac{v}{2 g}\left\{\sqrt{\prime 2 g I+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)}-v\right\}^{2}
$$

This likewise falls to be deducted from the laboring force due to the water expended under the head $\mathrm{H}+\frac{v^{2}}{2 g}\left(1-\frac{r^{2}}{\mathrm{I}^{2}}\right)$, leaving the efficiency communicated to the machine

$$
w \mathrm{H}-\frac{w}{2 g}\left\{\sqrt{ } \because g \mathrm{H}+v^{2}\left(1-\frac{r^{2}}{\Gamma^{2}}\right)-v\right\}^{2}=\frac{v r}{g}\left\{\sqrt{ } \because g H+u^{2}\left(1-\overline{r^{2}} \frac{R^{2}}{2}\right) 1-v^{\prime}\right\}
$$

which is the same formula as we obtained by the preceding investigation, and which, it may be well to nowerve, would correctly represent the action of the machine, were it not that it is liable to imodification by eertain incidental influences, which remain to be examined when we come to treat of the details of construction, and other circumstances by which the efficiency of the machine is affected.

We now pass to the examination of the different varieties of wheels before indicated, and hall take them nearly in the order given, but under a somewhat more convenient division

Bucket-rifels.-Under this head we include those nominal varieties of vertical wheels-orershot and breast-which are provided with buckets upon their peripheries for the reception of the water, and which, therefore, derive their efficiency chiefly from the werght of the tluid received into the buckets. This form of wheel, at whatever point the water may be received upon its circamference, is the most obvious in its action. So hydraulic machine could be more simple: a given weight descends from a given height; a known power is thus expended, to which the work performed ought to bear an assignable relation.
The older bucket-wheels which we encounter are constructed of wood; but that material, once of almust unver-al use in constructive mechanice, is fast giving place to iron, and in a few years hence we may expect that a wooden water-wheel will be as rare, and as much an object of antiquarian interest to those who take pleasure in reviewing the progress of the industrial arts, as wooden geerine has already become. Mimy of those wheels still continue to exhibit in their constructive details a very superior style of workman-hip, and an attention to durability which, in several instances within the kiomledge of the writer, the lapse of a century has hardly conquered. The best specimens, mo doubt, only remain of the truly old construction, while those of an inferior grade have disappeared and been replaced by wheels of modern construction, in which iron, if not the sole material, holds at least a prominent place.

 ees, consi-te in pasuing the water over the summe of the wher into the berchety in the maner

 Vol. I1.-.:
some under the designation of high-breast wheels. One of the finest specimens of this construction yet erected is that represented in Figs. 3778 and 3779, in which the height of the fall bears to the diameter of the wheel the relation of 9 to 10 . In the purely overshot-wheel this relation, as we shall immed:ately liave occasion to show, is very nearly inverted.

In the construction of wheels of this class, the technical points which remain to be considered, after determining the diameter and breadth of the wheel from the height of fall and quantity of water furnished by the stream, are the axle and its journals, the arms and their comections, the shrouding, sole, and buckets.

The subject of the axle and journals has already been very fully noticed when treating of shafts in the article on Geerise, (which see;) but it may be here added that in iron wheels of great weight and breadth, in which the axle is consequently of corresponding diameter and length, and especially when the whecl is to be transported to a considerable distance from the work at which it is constructed, it is not uncommon to make the axle of two, or even of three parts. When the axle is formed in this manner, the parts are fitted together by turning, and are secured by bolts in strong flanges cast upon the contrguous extremities. Fig. 3755 will convey an idea of this arrangement in its best and most enduring form- that in which it is least liable to objection. But no force of ingenuity can render it safe; the constantly changing position of the weight ultimately, and sometimes, indeed, very speedily, acts injuriously on the bolts, thereby relaxing the joint, which it is all but impossible to refit with any prospect of durability. This result is greatly delayed by boring the bolt-holes in the flanges, and turning the bolts exactly to fill them. In fitting the parts together permanently the bolts ought to be inserted hot and have the nuts fully serewed up before they have contracted to their normal length. As a further precaution, the bearing surfaces may be rusted together by washing them immediately before they are put together with a dilute solution of sal-ammoniac.

In wheels composed entirely of wool, the eight principal arms are commonly disposed in parallel pairs, crossing each upon the axle to which they have no positive attachment. The arms at the points of crossing are bolted together in sets of four, and the two frames thus formed are set apart upon the axle at a distance from each other, determined by the intended breadth of the wheel, and are bound together by tie--\%ls, and not unfrequently by diagonal struts when the breadth of the wheel is considera ble, yet not enföcient to require the introduction of an intermediate set of arms and partition shrouding

The framing is further securet in its place upon the axle by wedging. The material used for this pur pose is commonly oak, which, on being driven as tirmly as the nature of the material will admit, is interspersed with thin iron wedres to give further compactuess and solidity to the joint, and to prevent the packing from relaxing. These crosees of four arms cach thus fixed in provition sustain the two lateral shroudings between wheh the buckets of the wheels are inserted. They are termed the master, main, or principal arms; and in wheels of very small diameter-lif feet and under-there are no other employed. But when the diameter of the wheel exceeds the limit at which the ares of the throuding would be safely supported at that minimum number of phints, a =eries of auxiliary arms are introduced, in sets of four, on each side of the wheel. These seeondary arms to not cross each uther at the asle as the principal arms do, but are simply made to abut aggant its faces, where they are secured by tilling blocks, laid in in diflerent ways, according to the number of auxiliaries intronluced. They are further secured by bolts to the master-arms, which they are always made to crosis in the mamer represented.

When the wood is sound, and no particular circumstances intervene to increase the strain upon the wheel, the strength of the arms may be computed by the ordinary rules applicable to the kind of wool employed in the construction. In a very elegant specimen of 48 feet diameter the arms at the base are 8 inches square, and taper to 6 inches at the extremities.
In wonden wheels of more modern construction, instead of the arms being framed together upon the axle in the manner just described, their bases are inserted, and generally fixed by wedges in iron centres previously fitted upon the axle. This is a much more elegant and substantial arrangement, and is applicable to all the varieties of vertical wheels, and to all diameters; but it docs not always happen Hhat the mode of fitting is the best adapted for durability or convenience of repair. Very commonly the centres are solid castines, with recesses in the perijphery corresponding in number and size to the arms which they are intended to recejve; and when the arms are formed of malleable-iron bars, this arrangenent is all that could be desired. But for wooden arms, the recesses onght to be considerably mure in breadth than the butts to be iaserted into them; and these ought to be fixed, not with iron, but by wooden keys, and without the aid of belts. If the outside cover be cast separately as a louse rine, and bolted upon the centre after the butts of the arms are fitted, it will allow of the recesses to be formed widest at botom, and the butts to be made dovetail-shaped, and secured by paralled beys a u, in the nommer represented by the arms A A, in Jig. sitio. These recesses, when the work is of a superior character, would be planed on all the bearings surfaces, and the cover might be fitted by turning.

This monde of fitting is equally suitable for cast iron arms, except that the keys are in that case remdered unnecessary by the butt being made th till the recesses, and are carefully fitted by paming. They are also secured by bolts, and it is not often that any cover is empleyed.

When the wheel is of small diameter the centres and ams are sometimes, and advantacreonsly, formed of one catting. In this cate no fitting is required ; and although the monder's labor is greater, there is an ultimate economy, when the diameter does not much exceed 12 feet, which more than balanew the excess of fundry cont. In one small example we have oberved the primeiple extended to the - homat ing; each side of the whed eonsisted of a single easting, and the two were simply bomod torether by a few tie-rods, and the sheet-iron plates, of which the buckets were compued.

The -hrouding is formed of two ammlar plates, which, in wonden wheels, are componed of plank, of Bt inches to 7 inches thick, shaped and jointed togetber similarly to the fellues of a carriage-wherel. Intead, however, of the joints being formed by simply abotting the extremity of une piece upn that adjaernt, the extremities are checked to half the ir thickness ughen opwite sides and werlappol. sometimes also the joints are made by scarting, when wot chpesite to, the arms, and strenthemed ly
 tremitice of the arma are halfechecken on the exterior surface, and are comeeted he the palms. wheh are unally countereheched on the imer tace, to fall then into the recenes prepared for them in the enta of the pinces whish they are intended to commet. With the whe millw righte it was mot memmon
 method which sems to us cypally eflicient and hase rxpernive.

In the older woulen whed the shomang is usually of a gratur depth than is com-i-tent with ment-

 "hich will remuire to beconsidered sulmequently, as alan the width of the whed or distance leetwem the chroult.

 we find this arrangement adepted in the entirety "ahibited by the wher she eimene lon then the for

allows for the repair of the sole, as the planks may be taken off without disturbing the buckets in thein vicinity. When the sole is completed the wheel has the appearance of a large drum with radial flanges, between which the buckets are to be fixed. The extremities of the planks of which the buckets are formed are commonly received into mortises cut in the contiguous faces of the shroud-plates; or intc grooves formed by narrow runners of wood nailed upon the plates. A still better mode of fitting is to sprig the buckets in their places, or to mark off their form and positions upon the inner surfaces of the shrouding, and fill in the spaces between them by plates of board cut to the proper form. When the first method is adopted it is hecessary to insert the radial part D F of Fig. 3780 , before fixing the soleplanks; but by forming grooves according to the latter methods, the sole may be completed previons to any part of the bucketing being prepared. When the method of mortising is adopted it is, on the contrary, more convenient to make the bucketing precede the application of the sole-planking. It is of little moment which of these methods be adopted in practice, and the circumstances of the particular case will invariably determine that which may be resorted to with most advantage; but it is of the utmost importance that in the process of cleeding the wheel be not thrown out of truth. To avoid this, the operations ought to proceed from at least two points; and if the wheel be of large diameter it will give a better chance of correctness to distribute the operations over the four quadrants of the wheel, taking alternately that immediately opposite and contiguous as the next in succession to be operated upon.

Each bucket consists usually of two plates placed at a determinate angle A D F, Fig. 3780 ; and sometimes of three, as in the form indicated at P M. The bucket is an essential part of the wheel, which ought to be determined not by the rule-of-thumb practice admissible in some of the less important details, but from a competent regard to the conditions involved. Upon their form depends, in a great measure, the efficiency of the wheel as a hydranlic motor; and although with wood the true conditions which lead to the best effect can only be very disiantly approximated, it may still be of advantage to indicate these as nearly as the circumstances will admit.
Having determined the diameter of the wheel and the depth of the shrouding-the rules for which will be hereafter adverted to at length-let portions of their circles A.S and BQ be described from a common centre, as O in Fig. 3780. Let the depth A B of the buckets be ctivided into three equal parts and with a radius to C , making $\mathrm{BC}=\frac{1}{2} \mathrm{~A} C$ describe the are CDE of the third cireumference upon which the centre of gravity of the water contained in the buckets will always be found, at least very nearly. This radius, marked $\mathrm{O} r$ in Fig. 3774, is termed the dynamic radius of the wheel, and it is of importance that it be correctly defined. The distance of one bucket from that succeeding it is measured upon this last circumference, and may be taken generally at 12 to $13 \frac{1}{2}$ inches. The common practice is to divide the circumference into four equal parts, and in each quarter is inserted the same number of buckets, the distance being made to vary slightly with the size of the wheel. But it also follows from this practice that the number of buckets will not be exactly proportional to the diameter. An approximate rule is to double the number expressing the diameter of the wheel in feet, and call that or the next higher number clivisible by 4 , the number of buckets.

Thus the diameter being 12 feet, the number of buckets 24 .

$"$	$"$	17	$"$	$"$	$"$	36.
$"$	$"$	21	$"$	$"$	$"$	44.
$"$	$"$	25	$"$	$"$	$"$	52.

In greater diameters, the proportion inereases thus

We do not instance these as examples to be copied, but simply in illastration of a practice not yet quite obliterated, of referring the most vital conditions of the question to a haphazard empiricism, which pretends to no better foundation than its affording an easy approximation. The proper elements from which the capacity of the buckets onght to be determined are the quantity of water to be used and the angular velocity of the wheel, subjects which will be subsequently considered in relation to this and other que-tions of equal importance.

The circumference deseribed by the dynamical radius of the wheel being divided into equal part-, $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{dc}$., in number equal to the number of buckets which the wheel is intended to have, the radial limes C B, D F, E G, de., will determine the direction and breadth of the starts of the buekets. The flats A I, HE, de., are determined ly regarl to the condition that the angle H E (f , comprised hetween the start and flat of the same bucket, onght to open as little as po-sible, in order that the bucket may retain its water as long as possible; but at the same time the angle must be sufficiently great that the water shall have free admission throngh the space $\mathrm{D} b$, otherwise a portion of it would be thrown back nhefly by the action of the air confined in the bucket-an evil now ahost entirely remedied by the sys tem of ventilation introduced in the construction, but which in wooden whech could only be effected rent
imperfectly: In all cases it is esentially and obviously requisite that the space between the lats bed considerably greater than the thickness of the sheet of water wheh is thrown upon the wheel. It is true, that by inerensing the breadth of the stream, its thicknens may be diminished at phasure, still it is necessary to give to $\mathrm{D} b$ a minimum of 5 to 6 inches, to insure free ingress to the water in all pusitions of the lincket, while receiving its charge. This condition is attaiued by giving to the angle HE (; a value of 110° to $11 \mathrm{~s}^{\circ}$. supposing the wheel to have a dianeter not less than 15 leet. Lubler this arramgement, the flat will have an inclination to the interior circumference-rather to a tangent drawn to that circunference from the point of intersection with the exterime circumference-of about 31°, and not more than 3.0°. This angle is indicated by the tament in Fig. 37it.

Some inillwrights have endeavored to lessen the evil experienced in the water being thrown out of the buckets by increasing the breadth of the starts, as in the bucket $\mathrm{L} K \mathrm{I}$, in which $1 \mathrm{~K}=\frac{1}{2} \mathrm{I}$ '. And as an approach to the more modern curved bucket, the form P It has been employed, in which the that is compoed of two parts, l' $O, O N$, joined together at an angle of about 150°. 'This form hats an advantage in so far as it retains the water longer; but besides increasing the labor and difficuly of fittiner and repairing the bucket-, it has the further effect of contracting the space through which the water is received into the bucket, which, under the very imperfect system of ventilation practicable in woal wheels, is an evil more than equivalent to the adsantage secured Even the mode of fitting the two plates of the bucket together by a bevel joint, as at D, is considered by some milhwrights as an unnecessary technical difliculty, which they avoid by fitting the start-board at an angle of 90° with the hatboard. This practice has an advantage in point of simplicity of construction, and it does not seem liable to any seriou: theoretical objection. Bat the diticulty complained of is more ethectually removed by the introduction of sheetiron buckets, which is not now uncommon, even in wheels principally consstructed of wool. The u-ual practice is to curve the plate into the form S (2 , in which the start to tie point R on the dynanical circumference approaches the circumference of the wheel at an angle of $9{ }^{2}$? and the extremity is meets that circumference at an angle of not more than 3^{3}. In this mote of bucketine, which, when introluced, was reckoned an improvement of much value, and which in modern practice is the simplest that cann be adopted, the buckets carry their water to the lowest point of the revolution of the wheel ; but like that previously noticed, alhough it has atn adsantare in this re-pect, it has been con-idered liable to the ohjection of athording a less ready admission to the water in tilling. In early practice, and, indeed, until very recently, the necesity of facilitating the escape of the air from the buckets, when receiving their charge of water at the summit, was not understood. The importance of making the buckets of a form to carry the water to the lowest point of the revolution of the whed was obvious; but when thi- wat- accomp! i-hed, it was usually found that the wheel neither received hur parted with the water freely. The late Professor leubinson seems to have been the first to give a full explanation of these circuminances, and to have pointed out at least a partial remedy. In reference (1) the first, he observes that " the half-taght millwhight attempts to retam the water a longer time in the buckets, but finds that it gets into them with a ditliculty for which lec cannot accoment, and spills it abont wen after they have ceased to receive any from the -pont. This arises from the air, which mat dind its way eut to admit the water, but is ob-tructed by the cmering water, amd occasom- a great -plutterime at the entry. This obstruction is vastly greater than one would imagine, for the wather draga alons with it a great quantity of air, as is evident in the water-blast described by many authors."

After observing that "this evil may be entirely prevented by making the sout comsiderably marrower than the wheel, and thereby leaving room at the two ends of the buckets fur the escape of the air," he proceeds to consider the circumstanees attending the emptying of the buckets. He observen. "There is mother very serious obstruction to the motion of an oser-hot or bucketed wherl, epecially when it revolves in batek water. It is not much resisted by the water on aceont of the showess of it: motion ; but it lifts a great deal of the water in the ri-ing buckets, In some particular states of backwater the descending lucket tills itself completely with water; and in wher catse it contains at wery con-iderable quantity of air of common den-itg, while in some rure cases it contains both water mal ar in a compressed state. In the tirst case, the riving bucket munt come up tilled with water, whel it cantot drop till it mouth gets wit of the tail wather. In the seeond cane, part of the water soes cout before this; but the air rareties, and therefore there is still some water tragered or lifted up, be the

 the dencenting side, bring (hy the form of the buchet) nearer th the vertieal lise drawn through the axis,"
 it is mot dithente to perceise that if the lancket he quite nir thelt, mat of such a form he to carry thecharge

 tial vacum formed in the borket, med tio that extent the efleet of the wheel will be dimimshal. If

 ubowe the water level; and in consergmene of the rosstance otrered to the deacent of the watr, the

water escaping by the sluice and falling upon the wheel runs through the air-holes without accumula ting in the buckets of the wheel, and starting it into motion at intervals.

Mr. Fairbairn, of Manchester, to whom we owe the present improved system of ventilation, relates in a paper submitted to the lnstitution of Civil Engineers, that about twenty years ago he constructed a wheel for Mr. James Brown, of Linwood, near Paisley, " which in floodwaters, when the wheel wan loaded, every bucket acted as a water-blast, and threw the water and spray to a height of six to eight feet above the orifice at which it entered. This was complained of as a great evil; and in order to get rid of the difficulty, incisions were made through the sele-whates, and small interior buckets were attached to the inner sole-plates, as represented in Fig. 3781. "ithe air made its escape by the openings

a a a into the interior buckets $b b b$ inside of the wheel during the time of filling; and, when working in backwater, it presented the same facilities for its emission before even a partial racuum could be formed in the ascending bucket when rising through the tailwater. The changes which this remarkable alteration effected can scarcely be credited; the wheel not only took and parted with the water with perfect freedom, but an increase of power of nearly a fourth was obtained. The wheel is still in the same state, and continues in all states of the water to perform an apparent and satisfactory amount of duty."

This was an important advance on the scheme of piercing the starts of the buckets; and although in this case applied to an iron wheel, it admits of easy application to wooden wheels, by making a species of internal sole, and dividing it of into portions answering to the small buckets $b b b$, and of course equal in number to the number of main buckets in the wheel.

The improvement effected upon Mr. Brown's wheel subsequently induced Dr. Fairbairn to extend the principle of ventilation; and instead of waiting to ascertain the action of the wheel when started, to apply it as a fundamental requisite to be provided for in the construction. The primary form or the contrivance, although very effective, is manifestly liable to objection in respect of the additional workmanship which it required; and besides, if thoroughly carried into effect, would tend to weaken the sole-plate of the wheel. To obviate these objections, Mr. Fairbairn introduced the elegant arrangement depicted in Fig. 3782, by which the integrity of the sole is preserved, and in which, with very little additional cost of construction, the object is most effectually accomplished. The method consists in forming the buckets-each consisting of a single plate-with independent soles, which are applied parallet with the sole of the wheel, leaving betreen the two contiguous surfaces a vacant space of about an inch, for the escape of the air into the superior bucket during the process of filling, and which will obviously serve to readmit the air to replace the water when the bucket begins to empty itself towards the lowest point of its revolution and begins to ascend. When it has attained this position, it ought manifestly to be entirely relieved of its burden; but it has been already intimated that, in certain conditions of backwater, this can be accomplished only by some contrivance for admitting the pressure of the atmosphere upon the water in the bucket immediately on its beginning to ascend. If the atmosphere be then excluded, and the bucket be full of water, a certain amount of weight will be made to act adversely to the motion of the wheel, and to that extent will diminish its efficiency. This takes place more commonly with iron than with wooden buckets destitute of provision for their ventilation, on account of the more contracted form of the inlet
 passages produced by the curvature of the flats of the former.

On this subject Mr. Fairbairn remarks, that "water-wheels constructed entirely of iron, and laving thin plates instead of wood for the buckets, give decreased facilities for the admission of the water, and for the escape of the air contained in them. So great difficulty is experienced in effecting the discharge of the air in a close bucket through the same orifice, and at the same time that the water is being ad. mitted, as in some wheels almost entirely to prevent the entrance of the water; and in cases where the buckets are closely formed, the wheel is deprived oi almost half its power by the reaction of the inclosed air. 'this defect is most obvious in water-wheels having contracted openings-which mary be easily accounted for in every case where the water is discharged upon the whel in a larger section than the opening between the buckets. Under these circumstances the air is suddenly condensed, and again reacting by its elastic force, throws baek the water upon the orifice of the cistern, and thas allows the buckets to pass without being more than half filled."

These remarks are intended to show the extent of the difficulties which have been removed by the introduction of the ventilated bucket, and to induce the adoption of that system, which, we may remark
-always appicable, and presents none of those constructive objections which are so often fatal to the introduction of technical improvements in lydraulic machinery. This has, indeed, beeu acknowledged by the alnost unversal adoption of the principle by those engineers capable of appreciating its advantages; but examples in which it has been disregardel-possibly through ignorance of its usehave fallen under our notice very recently, and in more than one instance very fully illustrated the danger of dealing with hydraulic porer on mere empirical rules.

When the wheel is wholly constructed of ircn, the buckets are usually supported at their extremitie W marrow thanges, cast of the intended form upon the inside faces of the shrouding, and secured by -mall bolts, (usually half inch in diameter,) for which the holes are east in the flanges, and bored in thi bucket-plates. They are further supported upon each other by intermediate stays, cast with palms of "pposite curvature at their extremities, to meet the interior and exterior surfaces of the buckets which they are intended to connect. The details are fully illustrated in Figs. 3783 to 3745.

It is, however, to be remarked that, exeept in the under:hot-wheel of M. Poncelet, no attempt hav hitherto been made to give the buckets a detinite form with reference to the action of the water upon them on its admio-ion; and pussibly under the system now generally adopted, of introlucing it below the smmint, nem under as small a lead-presane as can be obtaiael, consistently with the rolume to be Heed, it is of little impertance to bring that mencnt into the calculation. It may, however, be remarked that, in strictuess, when the water is allowed to fall simply over the lip of the bucket, the curve ought

 trated by the well known experimenta wi Mr. sumatom, to which we shall herather have wectaton more

the water was 27 inches, the maximum effect of the wheel was 76 per cent. of the power of the water but when jncreased to 35 inches, the ratio fell to 52 . In other words, the head being increased in the ratio of 7 to 9 , the increase of effect is only in the ratio of 81 to 81 , and, consequently, the increase 0 : effect is not 1-7th of the increase of perpendicular height. From this he concludes, and correctly, as respects purely overshot-wheels, "that the higher the wheel is in proportion to the whole descent, the greater will be the whole effect." But the explanation which he offers is founded entirely on the opinion "that the effect of the same quantity of water, descending through the same perpendicular height, is double when acting by its gravity upon an overshot-wheel, to what the same produces when acting ty its impulse." It is unnecessary, in the mean time, to examine this proposition, as it is sufficient for our present purpose to intimate that a high velocity of the current entering the buckets is attended with a loss of effect, and that at least a portion of that loss seems to us to result from the reaction of the water against the sole of the bucket into which it is received, and against the bottom of the next succeeding bucket; and it is obvious that any impulsive force expended on these surfaces must proportionally resist the motion of the wheel in the contrary direction.
As respects the mode of supplying the water to the overshot-wheel, the arrangement is sometimes made to differ slightly, accordiug as the level of the water in the reservoir or dam is nearly constant, or varies between wide limits. In the first case, especially if the dam be close at hand and the duty of the wheel nearly constant, the channel is simply formed of the proper width to bring forward the maximum quantity which is intended to be employed upon the wheel; and a sluice is placed at the origin of the channel in the dam-breast to regulate the quantity drawn off for immediate use. From this sluice, the channel-often formed of wooden troues-follows the most direct line wer the summit of the wheel, and is terminated by a spout inclined at an angle sufficient to throw the water perpendicularly upon the start of the second or third bucket counted from the summit. The apron or sole of this spout is usually from 18 to 24 inches long, and declines from the bottom level of the channel at an angle of 12 to 18 degrees, forming an incline plane on which the water attains the required velocity before entering the buckets, and which ought to be at least equal to that of the circumference of the wheel; otherwise it is struck, and some portion of it thrown off by the flat-boards of the buckets as they successively come into position with the current.

When the dam is at some considerable distance, rendering it inconvenient to have recourse to the sluice there situated, on every occasion that it may be necessary to modify the power of the wheel, a second sluice or sluttle is placed contiguous to the spout, and which, in the common elass of wheels, is usually set by hand at the required height, often directly, but sometimes a simple contrivance, consisting of a weighted lever, iutervenes, by which the shuttle can be adjusted by a cord brought inside of the building. In the higher class of wheels, and especially when great steadiness of motion is required, the shuttle is worked by a self-acting apparatus-shown in its most complete form in Figs. 3796 to $\therefore 803$, with all the improvements and appliances of modern mechanism, as applied to the large wheel at Greenock.

When the course is of considerable length, and the level of the water in the reservoir or dam is subject to sudden variations, it is of advantage to adopt a slight modification of the spout by which the water is thrown upon the wheel. If the sluice in the dam-breast be set to furnish the proper supply of water under a given head, and the level be increased, it will, of course, discharge a greater quantity than is required, and thereby produce an increased head-pressure upon the shuttle. This may be lowered to diminish the quantity thrown upon the wheel; but. in consequence of the head-pressure arcu-
malated in the course, the relucity of ciflux would be increared often to such an extent az, withont precaution, to throw the water entirely over the buckets. To prevent this, and, at the same time, to take advantare of the increased impulse of the water, the - pout is provided with a cover inclined to the axis of the orifice, and connected, water-tight, with the back-plate of the shuthe. The spout has thus the outhe of a truncated pyramil, of which the faces converge towards the extremity at an angle of 6 te 7 degrees with the axis, whieh is directed towards the superior surfice of the start of the bucket in mediately in atsance of it. The direction of the current upon the wheel is thus preserved under atiy variation' of head pressure upon the shattle; and the impulse beine directed as warly as posible in the line of motion of the point impelled, its value becomes an inerement to the force of grasity of the water, and, to some extent, econonizes a power which would otherwise act injuriou-ly in prajecting the water beyond the proper range. The horizontal dimension of the orifice, miler this arrampement, and especially when the system of rentilation is incomplete, ought to be a litule less than that of the bucketand the freight perpendicular to the axis onght not, in general, to be more than four inches, and it is almost always better to be less.

This form of spout is represented in Fig. 377:. It has not been in very general use in this combtry, although examples are still met with; but it is still very ecomanaly employed in Europe, "ppesially in France, where it bears the sirnificant name of "duck's-hill." In some casere, also, the spout is attached to the feed-box or small reservoir formen over the whel in some works, where the water is brought forward from the main dam by a latge pipe or covered combuit pasing along the surface of some intervening ground situated on a lower level han the summit of the wheel, and sometimes entirely unler ground, when it is necessary to keep the surfice free of juterruption for any particular reason, as the crowing of a rosd and the like. In this arrangement, there is always a certain amont of lose of hemd incurred by the pasiage of the water through the condnit, which must be taken into account in the con-truction of the wheel. The effect of this diminution of head-pressure is to prevent the water from ri-ing to the same level in the feed-box as in the recervoir, by dimini-hing the force of the curtont ; mad this lose, which is also a lois of fall upan the whed, and comequently a lose of moving foree, withon any compen-ating advantage, except the convenience alforded under particular cirembstances, mant lo. beflucted from the height of the fall in determining the diameter of the whem.

The natural situation for the opering the the culvert for carrying nway the tail-water is on the side (1) the whed dip, which it almont insariably dons, from the dase entertained by the millwright to emonmize the fall as mach ats possible, the rum of the water will imperde it less than if its motion were opr poed to the motion of the whed. When the whend is kept mirely ntere the lesel of the tail-water,
 into the whed pit, except that the water wall rive higher when the direction of its motion is changel

ples of its application speedily became numerous. This was favored by the theoretical notion, that a wheel of large diameter is, in all cases, the most economical ; and, as already observed, this arrange ment gives free scope to the millwright to adopt any diameter of wheel he may think fit. The system has now become general, and constitutes one of the main characteristic features of the modern bucketed wheel. It has, besides, removed the distinction between overshot and breast wheels, which was formerly significant. The term overshot is, indeed, not now applicable to any of our larger modern examples, except by a forced interpretation of the term, and instead we ought, in strictness, to employ the tern high-breast, as better expressing the actual conditions. We have still, indeed, some wheels of a minor class scattered over the country, and employed chiefly for agricultural purposes, which belong to the primitive order ; but they are only retained in situations where the power is superabundant, and where it is, therefore, not necessary to look narrowly into the economy of its employment.

In the higher class of wheels constructed according to this principle, and which were originally de nominated breech-wheels, the shuttle consists of an accurately fitted sluice, usually commanded by an adjusting apparatus bearing the name of governor, which regulates the supply of water admitted upon the wheel to the power required. The technical details and mode of action of this apparatus are fully shown and described, in reference to the large wheel erected at Greenock for the Shaws Water Spirning Co., and need not be here recapitulated; but it may be well to observe that a fault is often committed in making the governor not only bring the sluice-geering into action, but to hold it in action until the motion of the wheel has been sufficiently increased or diminished by the elevation or depression of the sluice-plate. This is done for economy; and it is admitted that the apparatus is thus greatly simplified in its constructive details. But as all the pressure of throwing the geering out of action must be overcome by the centrifugal force of the pendulum balls, these must, therefore, of necessity be of great weight, and consequently less susceptible of being affected by slight variations of motion, on aecount of their greater inertia. But the far greater evil consists in the geering being kept in action until the movement has been so far altered that the balls have acquired sufficient power to overeome the friction due to the pressure of the geering, and disengage itself; and which cannot possibly happen until the speed has been increased or diminished beyond the point required. To correct this, the govemor immediately falls into action to produce the contrary effect, which again is overdone, and must again be: corrected. From this cause, the movement of the wheel is never steady, but continnally oseillates between two extremes, and the governing apparatus, though, in the tirst instance, less expensive, is speedily worn out, being constantly in action, and is never satisfactory. The frinciple to be kept in view is, to allow the pendulum balls to adjust themselves with perfect freedom to the velocity of the wheel, by giving them no other duty to perform ; and, by a cam, obeying the motion of the balls, and shifting its position in obedience to theirs, to throw the geering into action in the manner done in the example above referred to.

When the height of the fall is considerably less than the diameter of the wheel, we then apply the
term breast as expres-ing the relation. The wheel depicted in Fi; 53804 and 3805 comes under this general denomination ; and to denote that the water is received above the lime passing horizontally Chrough the axis, it takes the mame of high-breast. These terms, however, are manestly only relative, for if the wheet had been made of somewhat larger diameter, the water would have been thrown upon a lower point of the circumference, and changed the character of the wheel to that of lom-breast. The-e terms, therefore, convey no other positive intimation reapecting the size of the wheel than that its axiis below, above, or in the plane of the water level. It, however, usmally subgents that the fall is low, and, consequently, that every precaution is taken to render it, as much is posible, available upon the Wheel. For this purpose are in usually constructed of the same radius as that of the wheel, to cun

 of the run th the example refersed to, this are is bult of hewn stome ; hat emmetime it is comstracted

liminished proportion to the whole effect realized. In the breast-wheel, the buckets are marke more flitl and radial than in wheels which receive the water near the summit, and are therefore not so well adapted to retain the water. The only reason assignable for this difference of form is, that it to some exten; economizes the fall; for in every wheel the lip of the bucket must descend below the water-level before any water can enter it, and consequently there is a loss of fall incurred in filling equal to something more than the depth of the bucket; and the lower the fall is, this will evidently bear a greater ratio tu the entire value of the water.
The power of all large wheels is taken off by a second shaft carrying a pinion, which geers with a large spur-wheel bolted upon the shrouding of the water-wheel. This spur-wheel is cast in parts ur secrments and bolted together, and is generally, though not invariably, an interual wheel. When there if considerable breadth between the shrouds, it is of importance to take the power at both sides, in hown in Figs. 3801 and 3805, and always from the loaded are of the water-wheel. By this arrangement. all strain is taken off the arms and journals of the wheel, which otherwise would be excessive. This: circumstances also accommodate themselves to this arrangement, in so far as the centre of pressure of the mass falls usually within the depth of the shrouding, and renders any calculation unnecessary.

Wheels of a diameter up to 20 feet are frequently fitted with cast-iron arms, instead of being of the spider construction of that above referred to; and they have an advantage in being more rigid though more heary, and merefore more severe on their journals. The common and best mode of fitting the cast-iron arms to the centres is shown by Fig. 3806. The arms A A are cast with projecting cheeks on their lower extremities, which are planed and fitted into the dressed recesses of the centre, and are secured generally by three, but sometimes by one bolt. The other extremities are cast with T ends, which are likewise planed and fitted into corresponding recesses in the shrouds, and fastened by two bolts, and sometimes by ad-
 justable keys.

It is not uncommon to find the arms of spider-wheels secured with nuts instead of cotterals, as shown in the two examples given; but the latter mode is usually reckoned preferable, on account of the difiiculty of maintaining the truth of the wheel in screwing up the nuts to the requisite degree of tightuess; ond the cotterals has the further advantage, that they are more secure, and less expensive. The conatructive details of this mode of fitting have been already shomn, and have been highly approved by some of the first builders both in Europe and in this country. The example to which these drawings refer is not only one of the very largest, but perhaps the most complete in its details, of any waterwheel yet constructed.

To determine the capacity of the wheel answering to a given supply of water, it is necessary to take into account the rapidity with which the buckets are filled and emptied; in other wordz, the angular velocity of the wheel. This relocity, it has been remarked, ought to be slightly less than that of the lamina of water falling into the wheel to prevent the back of the buckets, as they pass the receiving point, from striking against the descending stream, and thereby not only wasting a portion of the water by throwing it over the circumference of the wheel, but also diminishing the useful effect of that which passes into the buckets by the counteraction produced on the wheel.

The velocity of the stream may be generally determined in the following manner. Thus at the dam-sluice-if H be the depth to the centre of the sluice-opening, the velocity U of efflux will be expressed by

$$
\mathrm{U}=\sqrt{\frac{2 g \mathrm{H}}{1+\left(\frac{1}{m}-1\right)^{2}}}
$$

m being a coefficient depending for its value upon the particular form of the sluice-gate, but which may be taken generally $=0.6 \pm$; and g the symbol of gravity $=32 \cdot 2$. Consequently, if we substitute the numerical values of these symbols, we shall have the simple arithmetical rule

$$
\mathrm{U}=r \cdot 183 \sqrt{\mathrm{H}}
$$

And if the lead or course be short, and h the total fall from its origin to the extremity where the water is delivered upon the wheel, the velocity u at that point will be found from the formula

$$
u=\sqrt{\mathrm{U}^{2}+2 g h},
$$

m which U and g have the same significations as above.
But if the lead be of considerable length, it will be necessary to take into account the retardation which the water experiences in its passage. This is found from a calculation of the surface which the water passes over in its transit, and knowing approximately the velocity with which it moves. If we all u (tound as above) the ultimate velocity of the stream, and U that at its origin, calculated at the dam-sluice, then $\frac{1}{2}(u+U)$ will be nearly the mean relocity in the lead; and dividing the number of rubic feet of water to be delivered in a second by this mean velocity, the quotient will be the mean transerse area A of the current; and this divided by the mean width of the channel will give the depth of water. Now, the frictional retardation of a stream of water varying accordiug to the amome of surface of the fluid in contact with the bed upon which it mores. is, therefore, inversely as the whole quantity of fluid-that is, for any given quantity of water, the resistance being as the surface of the bottom and sides of the chamel directly, and as the whole quantity of water inversely, the diminution of velrcity will be as $\frac{S L}{A}$ in which L is the length of the channel in feet, and S the surface (bottora ano sides) over which the water grlides. The retardation is expressed by

$$
\sqrt{ }\left\{c \frac{\mathrm{SL}}{\Lambda}\left(\frac{U+w}{2}\right)^{2}\right\}
$$

in which c is a coefficient determined by experiment $=007$. If, therefore, U be the velocity due to the pressure at the sluice, and h be the total fall upon the channel, the ultimate velocity will be ex pressed by

$$
Y=\sqrt{\mathrm{U}^{2}+2 g h-1000 \pi^{S} \frac{\mathrm{~L}}{\Lambda}\left(\frac{\mathrm{U}+u}{2}\right)^{2}}
$$

It is scarcely necessary to remark that this is only an approximation, which, howeyer, may be condilered -ufficiently correct for all practical purposes; and if greater exactuess be desired, the value of ${ }^{r}$ thus fond may be substituted for u and the equation resolved anew for a nearer salue of V V.

As the value of h can be modified at pleasure in making the channel, it is of moment that these calculations be considered previous to determining the position of the shutile. If the channel be already existing, and it is wi-hed to determine the quantity of water flowing in it, this may be done wilh suffi cient correctness, by finding the surface velueity, and multiplying it by the mean eross-sectional area of stream: four-fifths of the quantity thus found will be very resily the actual quantity flowing in the clamel.
This rule, although often employed, and without material error when the quantity of water flowing is considerable and the velocity not great, is not to be relied upon when more than it rongh approximation is desired. In sume cases it is of importance to determine exactly the quantity of water suppliel. as when a rental is paid for the power, when testing the efficiency of a wheel, or determining the power necessary to impel certain kinds of machinery; in these, and analogous eases, we must have recomse to more accurate formube. When the surface of the stream can be enrrectly ascertained over a portion of the channel, of which the cross-section is nearly unifirm, the following rule, which is founded on that of 31 de Prony, may be employed with considerable confidence. Let L' denote the mean relocty of the strean, (which is suught to be determined,) and V the surface velucity measured by a tloat in the middle of the stream, both reckoned in feet per secomal, then

$$
\mathrm{U}=\frac{\mathrm{V}+6.50}{\mathrm{~V}+5.22} \times \mathrm{V}
$$

As an example-let the surface velocity be 5 feet in a second, then will $\mathrm{V}+6.5=115$ and $\mathrm{V}+5.92$ $=1392$, and

$$
\frac{\mathrm{V}+6.5}{\bar{V}+5.5}=\frac{11.5}{18.5}=82.4 \text {; therefore, } \frac{V+6.50}{V+5.20} \times \mathrm{V}=8.4 \times 5=4.12 \text { feet, }
$$

Hat i , the surface velucity of the strean being 5 feet p^{ec} second, the mean veheity U is 412 feet. And his velocity being multiplied by the sectiomal area of the stream, the result will be the velume inf water flowing in a seemend; and therefore,

$$
\mathrm{l}=60 \mathrm{~s} \times \mathrm{U}
$$

will be the quantity furni-hed in 60 seconds or 1 minute.
The maintinining power in a meving volume of water is mbvionsly proportional to the guantity of de--cent in a given space; when, therefore, the motion is unifurm, and is weither retarded nor acceleraten\} by the firece of gravitation, it is namite-t that the whole weight of the water is empheyed in overoming the frictional re-s-tance offered by the buttom and the sides of the channel; and to the jaclination vars, the relative weight, or the furce which arges the particles aleng the inclined I plame, will vary ats thic hueirht of the plane when the length is given, or as the fall in a given distance. The retardmig firce. which is equal to the relative werisht, mum theretiore also vary ns the fall, mad the velucity, which is as the equare ront of the imperting influme must be as the sguare ront of the fall; and supposing the hydraulic thean depeth-that is, the depth which a current of water would tihe if spread cut unhen a
 Alination remaining the sane, the firetimal resitance would be dimini-hed or increa-ed in the samo ratio; and, therefire, in order the prosere its equality with the relative Weight, it mat he propertiont
 hoph, or the veleceity in the ratio, of it - gquare rout. Wi" maty, therefore, expect that the veleneities will

$$
\frac{1 I I 1}{\sqrt{32 n 11} \sqrt{3!}}=\frac{11}{4 \sqrt{3 j}}
$$

$$
\frac{11}{x} \cdot 15 \sqrt{i}=\frac{1 i}{11 i} \sqrt{j j}
$$

This rule, which is that decuced by Sir John Leslie for the relocity of water in rivers, may be compared with the result of Eytelwein's formula for the same purpose, as rendered by Dr. 'T. Young Taking two English miles as a given length, he finds a mean proportional between the hydraulic mean depth and the fall in that space, and inquiring what relation this bears to the velocity in a particular case, finds that, in general, the mean proportional sought is $\frac{11}{10}$ ths of the relocity in a second.

In order to test the accuracy of this rule, Dr. Young takes an example which could not have been known to Eytelwein. Mr. Watt observed, as Prof. Robison informs us in the article River, of the Eucyclopædia Britannica, that in a canal 18 feet wide above, and 7 below, and \& feet deep, having a fall of 4 inches in a mile, the velocity was 17 inches in a second at the surface, 14 in the middle, and 10 at the bottom; so that the mean velocity will be 14 inches or somewhat less in a second. Now, to find the hydraulic mean depth, we must divide the area of the section, $2(18+7)=50$, by the breadth of the bottom and length of the sloping sides added together, whence we have $\frac{50}{20.6} \times 12=29.13$ inches; and the fall in two miles being 8 inches, we have $\sqrt{(8 \times 29 \cdot 13)}=15.26$ for the mean proportional of which $\frac{10}{11}$ is 13.87 , the mean velocity in inches each second.
To test Sir John Leslie's rule by the same example, we have $f=\frac{1}{3} \mathrm{ft}$. and $\delta=\frac{29.13}{12}=2.4275 \mathrm{ft}$; therefore, $\delta f=8092$ nearly, and $\sqrt{\delta f}=8996$. Hence, $\frac{11}{8} \sqrt{\delta f}=\frac{11}{8} \times 8996=1.236$ feet; that is, 14.83 inches, a result in excess of that found by Eytelwein's rule of $14.83-13.87=0.96$ inch.

By M. de Prony's rule we have, $V=\frac{17}{12}=1.4167$ feet, and

$$
\frac{V+6.50}{V+8.92}=.77
$$

which, multiplied by 17, the surface velocity gives $13 \cdot 1$ inches as the mean velocity. And, taking the common rule of deducting a fifth from the surface velocity for the mean relocity of the current, we have $17-\frac{17}{5}=18.6$ inches, which does not differ greatly from M. Eytelwein's rule, in which we have most confidence, from our own experience, when the volume of water is very great. For smaller quantities of water, such as we find in leads cut to supply bucketed wheels, the modification which we have given of De Prony's rule is much more convenient, and we have found it, in general, very correct.

It is frequently difficult, and sometimes impossible, to apply any of these rales to determine the volume of water furnished; and it is often of importance, as when considerable accuracy is desired, to resort to more than one mode of measurement. In all ordinary experiments of this kind, there is a certain degree of uncertainty arising from inaccuracy of measurement; it is therefore of importance to have the means of checking the result of one rule by that obtained by a different process. The following method, which is not only simple and generally applicable, but likewise admitting of considerable

accuracy, will therefore be useful. This consists in erecting a notch in some convenient part of the watercourse where the velocity is not great. The notch is easily formed in leads of moderate size by a board A A, Fig. 3806, stretched across the chamel, and having a rectangular part $A c d A$ cut o: notched out in the manner shown in Fig. 3807, and through which the whole of the water will be made
to pass. The notch-board being fixed, a rod 13 must be fixed reetically in the chamel a few yards behind, and having a mark n upon it at exactly the level of the edge $c d$ of the noteh. The water being then permitted to descend in the lead, let its depth n un upon the rod B be carefully noted in inches, then taking from the second or third column of the anmexed table the quantity corresponding to one inch of width at the depth noted, multiply that quantity by the whole width in inches, and the result will be the whole quantity flowing through the noteh in" cubie feet per minute.

Thus, if the depth from m to n on the rod B be 16 inches, and the width of the noteh $a b$ be 7 feet $=84$ inches, then corresponding to 16 inches is 25.5 cubic feet in the second column, and which multiplied by S 1 gives 2167.2 cubic fect as the whole quantity passmy through the notch in a minute.

The quantity corresponding to 16 in the third column is $2-713$ cubic feet, which multiplied by $8 . t$ gives $\because 2027$ cubie feet as the supply per minute, which is :ifis cubic feet in excess of the result obtained by empheying the second column. This diserepancy arises from the third column being calculated for weirs which discharge more water in a given time than tintelies, on account of their offering lees impediment (1) the motion of the fluid. A weir is a wall built wenerally of solid masonry across the channel, with a parallel plank fixed horizontally on edge alung the (11) of the building. The plank is termed the wasteluart, and the water flows over it along the whole breadth of the chamel, and thus suffers no lateral wh-truction as it does in mecting the notch-board, in which the passage is usually contracted. But if the motch be made equal in width to the width of the Wamel, then this column ought to be employed, since ander the-e circumstances the conditions are strictly malngous, and the noteh may be called a weir.

Whew the preceding table cannot be conveniently :1plied, the value of (Q, the quantity of water dischatred in a miante, will be found very natarly from the exprestion,

$$
\mathrm{Q}=200 \mathrm{HL} \sqrt{ } \mathrm{H},
$$

Depth of the upper edse of the wasleboard below the surface, in minches.	coubic feet of water discharged in a mins ute by every inch of the boleh, aceurding (t) Du Bual's formula	Cubic feet of watcr diecharged in a minlute by every iach or the waste-buard of a weir, frum experi- ments made by Mr. sineatoll.
1	$0 \cdot 413$	$0 \cdot 105$
\simeq	1.140	$1 \because 11$
3	2095	2906
4	3.205	$3 \cdot 427$
5	4507	4*789
6	5905	6.295
7	7.46	7.93:3
8	912.2	9.692
9	10.884	11.50 .1
10	12.748	13.535
11	14.707	1548
12	16.758	$17 \cdot 805$
13	$15 \cdot 895$	20.076
14	$21 \cdot 117$	$\cdots 2137$
15	23.419	$0.15 ヵ 3$
16	$\bigcirc 5.800$	$2-113$
17	2¢-25	30024
18	30.786	$3 \pm .711$

II which II is the height $m n$ of the surface level of the water above the sole of the noth, and L the width, all in feet. Thus taking the example given above, we have $I f=\frac{1}{3} \mathrm{ft}$, and $\mathrm{L}=7 \mathrm{ft}$, therefore,

$$
Q=200 \times \frac{4}{3} \times 7 \sqrt{\frac{4}{3}}=21053 \text { cubic feet. }
$$

Tof find the mean curve de-cribed by the lamina of fluid di-charged upne the circumference of the wherel, when the water is carried ower its summit, it is neesoary, in the tirst place, te determine the whecty of the tluid vein at that point. Ita rate of descent from the lurizantal line m, in Figa Bras. maty thol be assigned by the following tatethen:

Let us designate the veloeity of the water at thee ex trematy of the course, and a the angle, which the direet:0n leard of the spout furms with the harizantal hase mo and which expmesors the deflectent of the lom Ionotmer the velowity u from the plate of the harizan: then the curse deacribet by the shect of water will the cxpterand by the equation
r bring the ab-ci-na measured upent the lorizantal
 pane, tuken at half the depth of the thut rim, where
 Thin cumation maty be expremal varbally then:

 of y, and at curve beitge tracol thenght them, will give the phath of the mat the fitmo wator

When the direction-board is horizontal, we have

$$
\alpha=0, \cos a=1, \tan \alpha=0,
$$

and, therefore,

$$
y=\frac{g x^{2}}{2 u^{2}}=\frac{g}{2 u^{2}} x^{2},
$$

which is the following verbal rule: divide 32.2 by double of the square of the velocity of the water at the extremity of the course, and multiply the quotient by the square of the given abseissa x. The product will be the ordinate y, corresponding to the value assigned to x.

If the water falls over ia waste-board, as in breech and breast wheels, the mean velocity of the sheet will be obtained by taking $4-5$ ths of that due to the whole height H of the level of the water above the edge of the board.

$$
\text { Thus, } u=\frac{4}{5} \sqrt{2 g \mathrm{II}}=6 \cdot 4 \sqrt{\mathrm{I}}
$$

This velocity will project it only slightly in a horizontal direction ; and, if much accuracy is required, it is easy to retermine for any such case the parabola described by the stream.

To exemplify the rule, as applied to the overshot-wheel, we must, in the first place, determine the point of the circumference where the mean jet encounters the wheel, draw a tangent to the parabolic curve described by the fluid in the direction of its final velocity Y; and, having cone this, we calculate the height due to the velocity u, adding the distance of the point of contact below the origin of the curve. The velocity due to the sum of these heights is that with which the water falls into the buckets.
Thus let it be required to find the final velocity of the water falling upon a wheel of $11 \frac{1}{2}$ feet diameter, of which the axis is 10 inches before the vertical line, falling from the extremity of the directionhoard, which has an inclination of 1 in 12? If we suppose that the extremity of the direction-board is $\cdot 8$ inch above the wheel, and that the mean velocity of the lamina of water is 4 inches, and its velocity 9.84 feet in a second, then,

$$
\begin{gathered}
\tan a=\frac{1}{12}=0.083, \cos a=0.995, u=9.84 \mathrm{ft} \\
y=\frac{32.2 x^{2}}{2(9.8 \pm \times 0.995)^{2}}+0.083 x=0.168 x^{2}+0.083 x
\end{gathered}
$$

Taking, therefore, any values of x at pleasure, we find the value of y by a simple arithmetical process. Thus, let $x=3$ in., we have $0.168 x^{2}=0.168 \times 9=1.512$ and $0.083 x=0.747$; hence $y=1.512+$ $0.747=2 \cdot 259$ inches .

The intersection of the curve thus determined with the circumference of the wheel is about $2 \frac{3}{4}$ inches below the middle film of the vein at the extremity of the direction-board; that is, from the origin of the curve, and the height due to the velocity, 9.84 feet, a second being 1.52 feet, the total height due to the required relocity is 1 foot 9 inches, and, consequently, the velocity with which the water will strike the bottom of the buckets will be $\sqrt{64.4 \times 1.75}=10.6$ feet in a second.

The lead or channel by which the water is supplied to the wheel ought obviously to be so constructed that it shall consume as little as possible of the available fall. As a first condition, it ought therefore to be as nearly straight as the local circumstances will admit; for at every bend which it makes, a portion of the impulse of the water will be absorbed by the concave side of the chamnel, and therefore a greater declivity will be necessary to bring forward a given quantity of water in the unit of time. Moreover, the centrifugal force created at the sinmosities has the effect of raising the surface and augmenting the abrasion of the banks at those points; and if by any accident a breach be produced, the sweep of the current must necessarily tend to enlarge the concavity with an accelerated progression. The inclination ought likewise to be as nearly as possible uniform-more correctly, it ought to be so regulated that the transverse sectional area of the stream shall remain constant throughout its whole length. If the course be constructed of masonry, it is obvious, from the remarks made respecting the effects of the hydraulic mean depth on the velocity of the current, that it will be of adrantage to build the side-walls vertically; and in order that the resistance may be the least possible, the depth of the stream should be equal to half the width. This rule may be followed when the quantity of water is small ; but in leads of large area, the width at bottom is usually from four to six times the depth. When the depth is considerable, the walls are moreover built with a certain amount of batter. Mr. Eytelwein, indeed, recommends that the breadth at the bottom be $\frac{2}{3}$ ds of the depth, and at the surface 8_{3}^{1}. The area of such a section is twice the square of the depth, and the hydraulic mean depth $\frac{2}{3}$ ds of the actual depth.

The slope here recommended is 4 to $\%$, forming an angle to the plane of the horizon with the waterway of 37°; whereas, in this country, the ratio commonly adopted for canals is a to 2, making an angle of 34°, which is far more than sufficient for any watercourse intended merely for the purpose under consideration. The best angle to insure durability will, however, very much depend upon local circumstances, and the material of which the banks are constructed or composed.

Hasing fixed upon the dimensious of the lead and the intended depth of the current, if we call A the area of its transverse section, and q the volume of water to be brought forward in a second, the mean velocity U , which the water must have, will be expressed by $\mathrm{U}=\frac{q}{\mathrm{~A}}$. And ealling S the perimetrical surface, (bottom and sides,) and I the inclination or fall in 100 feet, which the channel ought to bave to give the velocity U required, we shall have

$$
\mathrm{I}=\frac{\mathrm{S}}{\mathrm{~A}} \mathrm{U}(\cdot 00042 \mathrm{U}+\cdot 00444)
$$

That is, to find the fall in 100 feet of length of the channel, multiply 00942 by the given velocity U; add to the product 0044 ; multiply the sum again by the velocity, and the product by the permetrical surface, and divide the la-t product by the transverse sectional :area of the channel.

Thus, if the quantity of water to be brought furward be 40 cubic fect every second, in a channel of 18 feet width, the depth of the water not to extend $2 \frac{1}{2}$ feet, we Hall have,

A the area of the section $=10 \times \div 5 \mathrm{ft} .=\stackrel{5}{ } \mathrm{sq} . \mathrm{ft}$.
U the mean velocity $=\frac{40}{25}=16$ feet in a second.
S the perimetrical surface $=10+\left(2 \times \frac{1}{2}\right)=15$ feet ; therefore $I=\frac{15}{25} \times 1.6(0.00442 \times 1 \cdot 6+$ $.0044)=0585$ feet, the fall in 100 feet of length of the channel.
Thi rule, at least the latter part of it, referring to the inclination, may be lispensed with when the channel is short. In cases where the whole run does nut exceed a length of two or three humbed feet, the botom may be made quite level, as the depth of the water in the chamel will give sufficient fall for the velocity required, provided the area of section be made of ordinary magnitude.

Equal care is usually necessary in the construction of the tail-race as in that of the lead-run; for it is of quite as much importance that the water leave the whel pit freely, as that it be bought forward with as little luss of fall as possible. The same rule will apply in both cases; but without some jullyment in the engineer to apply it, with allowance for sinuosities, it is better to err on the side of excess in the case of the fail-race, than to encounter the risk of flooding the wheel in backwater.

The quantity of water to be used being ascertained by the preceding methods, the capacity of the wheel may be readily determined. If q denote the volume of water flowing in a second of time, d the dintafice between tro buckets reckoned upon the exterior circumference of the wheel, and v the velnety of those points of the circumference, it is evident that in one second there will pass under the apron of the shuttle a number of buckets equal to $\frac{\eta}{l}$, and consequently that each will receive a volune of water equal to q divided by $\frac{v}{d}$; that $i s=q \frac{d}{v}$. Wut it is manifestly necessary that the bucket le eapable of containing not only this quantity, but even a quantity about three times as great, otherwiee a portiun of the water will be spilt from the buckets too som, and without protucing it- effect upon the wheel. If l represent the width of the bucket, that is, the width of the wheel within the shrouds, and s the areat of its transerse section-more correctly, the areat of the section of the mass of lluid which it contains at the moment it passes the jet-s l will represent its capacity, and in relation to the section of the bucket it-elf we shall have

$$
s l=3 \frac{l}{l}=180 \frac{\eta}{M N}=3 \frac{l}{M N},
$$

II being the number of buckets in the wheel, and N the number of revolutions which the wheel makes in a minute. And since

$$
d=\frac{\pi \mathrm{I}}{11} \text { and } v=\frac{\pi \mathrm{D} \pi}{60}, \text { therefore } l=\frac{3(?}{\mathrm{M}} \mathrm{I}
$$

Which is the width of the wheel when Q is the volume of water to be employed upon it in a minute, and when it is expected to realize the maximum mechanical eflect of the water.

We proved to establish the values of these symbols from considerations involved in the motus moerandi of the wheel; but for practical purposer, we may remark that, with slight variation, s may be

Wr have alrealy seen that the while dymaneal fore of the strean of water employed in impelling a wheel of any form is expresed by W 11 ; but as the whole height 11 can in mone be remberal effective, we have foun! it mecessary to affect this pronduet by a coetlicient m, which is atways a proper frace tim, wpresting the ratin of the force expembed to that iealized by the particular mons. Twasertain the thenretical value of m, which oftea, luwerer, dithers con-iderably from the actad value, let 1 a take,

 cal di tance A 13 will then indeate the entire haight If of the fall. If we divide this hemphe into there

 Vin. 11.—
periences in its passage through the orifice of the shuttle; secondly, from the resistance offered by the surfaces over which it passes; thirdly, from the dispersion of the filaments of the fluid by striking against the oblique plates of the buckets; and fourthly, from the oblique direction with which the mean volume of fluid arrives at the bottom of the buckets. This obliquity may, in general, be taken at 30°, causing a diminution in the value of h of $0 \cdot 14$, and consequently a corresponding diminution of the force of the impulse. All these causes combined are found according to local circumstances, such as a good or bad arrangement of the shuttle and direction-plate or apron, to be equivalent to form two tenths tc three-tenths of the whole value of h. Let $A a$ be the portion of the height $\mathrm{A} c$, representing the value of μh, the remaining part $a c$ will then represent the height $h-\mu h$, due to the actual velocity V of the jet, and consequently equal to $0155 \mathrm{~V}^{2}$.

From what has been before explained regarding the impulsive action of a current of water, this height will be subject to two other reductions: the one $h^{\prime}=0155 v^{2}$ is that due to the velocity v of the wheel in feet per second, and therefore increases with that velocity; the other $h^{\prime \prime}=\cdot 015$ o $(\mathrm{Y}-v)^{2}$ is the height due to the velocity lost by the shock, and which, on the contrary, decreases as the velocity v increases. The sum of these losses will be the least possible, or $0155\left\{v^{2}+(V-v)^{2}\right\}$ will be a minimum
 the two together, that is, $a b+b d$, will be equal to $\frac{1}{2} h(1-\mu)$. In this ease of minimum loss, the remaining part $d c$, which is all of the fall $\mathrm{A} c$ that can be regarded as effective, will therefore be equal also to $\frac{1}{2} h(1-\mu)=\frac{1}{2} a c$, and consequently less than $\frac{1}{2} h=\frac{1}{2} \mathrm{~A} c$, that is, than half the head reserved between the surface level of the water and the point at which it is received upon the wheel.
Although the sum of the two losses h^{\prime} and $h^{\prime \prime}$ cannot thus be less than $\frac{1}{2} h(1-\mu)$, we know that it can be, and is, indeed, almost always considerably greater, and increases as the difference between h^{\prime} and $l^{\prime \prime}$ increases. It will obtain its maximum, if one of the two quantities, $h^{\prime \prime}$ for example, should become zero, giving rise to the condition $\mathrm{V}=v$. In that ease we have $\ell^{\prime}=\cdot 0155 \mathrm{~V}^{2 / 2}=h(1-\mu)$, that is, $a b=a c$, showing that no part of the fall $\mathrm{A} c$ remains effective. But in practice this condition can never arise, unless by miscalculation of the primary values of V and v. This last must always be less than the former, and consequently $h^{\prime \prime}$ must always have a real value; and in every case where $h^{\prime \prime}$ is greater than zero, it is manifest, from what has gone before, that a certain portion, however small, of the height A c must remain effective. Theoretically, this is shown to be less than $\frac{1}{2} h$; and under the very best arrangements it cannot, in practice, be expected to amount to $\frac{2}{5} h$, and in ordinary cases it ought not tc be issumed greater than $\frac{1}{3} \%$. As a general rule in practice, it may therefore be admitted, that in bucketwheels, about two-thirds of the part of the fall comprised between the level of the water at the shuttle, and the point where the fluid encounters the wheel, is lost, as respects the effect produced. The actual value of this height h, which may be generally expressed by $\mathrm{W}^{\prime}\left\{h(1-\mu)-h^{\prime}-h^{\prime \prime}\right\}$, will therefore le reprosented by

$$
\mathrm{W}\left(h-\frac{2}{3} h\right)=\frac{1}{3} \mathrm{~W} h
$$

a result which we shall subsequently find is closely analogous to that obtained experimentally as the rffect of the best forms of impulsive wheels.

Since, then, a third only of the part of the fail above the wheel is arailable as power, whilst the whole of the part from that point downwards to the turn of the tackets, namely, $c \mathrm{D}$, the height of the loaded are, is entirely realized, it is manifestly of advantage to angment this latter part as much as possible, at the expense of the former. But this augmentation has a near limit, since there would be no economy, but the converse, in raising the point of reception so much, that the water, in arriving at the wheel, would have a less velocity than the buckets. In this case, it could not begin to act upon the wheel, except as a retarding influcuce, until, by an acceleration of its velocity, it established the necessary coudition $\mathrm{V}=v$.
The portion of the fall D B, from the bottom of the loaded are downwards, is evidently lost, without answering any beneficial purpose. This loss arises from two causes-rather consists of two parts. The part $c \mathrm{~B}$ is a measure of the loss resulting from the form of the buckets, and the small portion $\mathrm{D} e$ of that caused by the velocity of the wheel, or, more correctly, it is a measure of the loss oceasioned by the centrifugal force produced in the fluid by the angular velocity communicated to it in its descent in the buckets. Leaving this effect out of view in the mean time, it is evident that, if not influenced by any central foree, the surface of the water contained in the buekets would continue horizontal. In proportion as the buckets descend, in consequence of the revolution of the wheel, this surface gradually approaches the lip of the contaiuing or front plate of the bucket; and the instant after it arrives at this position, maked $h i$, it begins to be discharged, and the bucket will be completely emptied when the fice has attained the horizontal position marked $k l$. The are $F h$, which measures the distance of the base of the wheel to the point where the water begins to be discharged, will therefore include the partially loaded are $h k$ and the empty are $k \mathrm{~F}$. This last is equal to the angle $u k l$, which the front plate of the bucket makes with the tangent to the circumference, an angle which is known from the rules employed in tracing the lines of the buckets, and which we may here designate by a. The are $\mathrm{F} h=\mathrm{F} k$ + $k h$, and this last $k h$ is equal to the angle $x h i$, which the front plate of the bucket makes with the surface of the water at the point where the fluid besins to be discharged, and which, for brevity, may be called z. We have therefore $\mathrm{F} h=a+z$.

Whatewer may be the magnitude of the two ares of discharge, from these data we can always deternine the rate of diminution of the quantity of water remaining in the buckets between the extreme points where it begins to overflow and where it leaves the bucket entirely empty, and therefore can determine the mean are of discharge, and from this the mean quantity of effect due to the water carried below the commencement of the are at h, in terms of the whote quantity which the buckets would be eapable of carrying in their horizontal position in passing through the height $c \mathrm{D}$. By deterrining the mean of this are, we find the point at which, if the whole water were instantly diseharged rom each becket as it passed, the effect upon the wheel would be the same as takes place when it is prolonged
over the whole length of the are $h k$ ．Generally，indeed，the mean is the arithmetical mean distance between h and k ，and may be expressed by $a+\frac{1}{2} z$ ．If upon $A B$ we take e at such a height that a lorizontal line meeting the circumference of the wheel at at point equidistant from h and k ，then wh！ $e \mathrm{~B}$ be the total loss of fall arising from the reversion of the luckets；and the wheel will yiehl the samed result as if the entire water，in－tead of being gradually di－charged between these points，were carried down to the point e ，and then instantly thrown from the buekete．The are below that point may there－ fure be regarded as entirely empty，and producing no cilect；and to designate its relation，we have eli equal to the versed sine of that mean are，of which the semi－diameter of the wheel is the radins；an is therefore putting D to denote the diameter，we shall have

$$
e \mathrm{~B}=\frac{1}{2} \mathrm{D}\left\{1-\cos \left(a+\frac{1}{2} z\right)_{i}\right. \text {. }
$$

it may be remarked that the angle z ，which the surface of the fluid makes at the commencernent of the discharge with the front plate of the bucket，will depend upon the volume of water in the buckets． as well as upon the furm and dimensions of these，both of which are，of course，either known from the rules employed in the design of the wheel，or may be ascertained by direct measurement．
It remains to determine the loss of head resulting from the centrifugal force produced in the fluit filling the buckets，by the motion of the wheel．This loss is sometimes considerable，although mot com－ monly reckoned among the influences to which wheels of this class are liable．M．Poncelet was the first． we believe，to direct attention to it，and has established a theorem for its determination，which may be said to complete the theory of the modus operandi of bucketed wheels．
It has been already stated that if a body muve in a circle at a distance x from the centre，its centrifugal furce will be express－ ed by $\frac{w}{!} \omega^{2} x=\frac{v o}{!} \cdot \frac{v^{2}}{x}$ ，when $\frac{v}{x}$ is put for ω ，the angular relocity with which the boly revolves．Now，since every molecule of fluill contained in the buckets of a wheel in motion is subjected to the action of the two forces－that of gravity and the centrifu－ gal action－we may confine our attention to one such molecule e of which the mass $\frac{t 0}{!}$ may，for brevity of expression，be called m ． If e $i p$ in the annexed diagram，Fig． 3509 ，represent the force m ！！ of gravity acting vertically，and eq，measured in the direction of the ratius $\mathrm{C} e$ ，represent the centrifugal force $m \omega^{2} \gamma$ ，the diagonal er of the parallelogram will be the resultant of the two forces， and may be regarded as representing the measure and direction of a new force replacing the tro actual furces $c p$ and $e q$ ，and producing upon the molecule the same．intensity of action．If we prolong er until it meets the vertical line EO passing through the centre C in O ，this point will be such that $\mathrm{CO}=\frac{!}{\omega^{2}}$ ，and， therefore，is independent of the position of the molecules，and the same for all－all the resultants of the forces converging to that point，which is therefore the centre of action whence all the forces are directed．The surface of the fluid being always perpemblien lar to the direction of the force which acts upon the molecules， that of the fluid contaned in all the buckets will be so to the： lines passing to the point O from any point of the whect，ant， consequently，the sectionst of ayy biven surface will be an are of a circle having 0 for its contre．
In the revolution of the wheel，the extremity s of this are ap－ proaches gradually the lip of the front plate of the bucket，and will arrive at it whenever the hucket shall have come into the pasition A B I．Immediately after it will berin te，be disehargeel， and the di－charge will continue until the bueket has devecnded to the position $\Lambda^{\prime} 1^{\prime} I^{\prime}$ ，where the limiting are of the Hum surfuce
 will have passed under the bucket phate $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ ．
 phanes prependienlar to lines drawn th them from the centre O．Un this supposition the two ares ef diseharg＂，A E and A＇E，may be thus eletermined．The tirst，that is，the whele are meatored by the angle ACB，is cequal tu

$$
\left(B A F=\left(i A B+B A t^{\prime}+t^{\prime} \Lambda F=a+z+y\right.\right.
$$

 A C u ；and

$$
\angle O a C=\angle y a t=\angle \| A t^{\prime}-b .
$$

Horever，the triangle 0 a $\mathrm{C}^{\text {gives }}$

$$
\begin{aligned}
& \text { inaいし: al: : Mnいaじ: いじ } \\
& \text {-in } y: \rho:: \sin (11+\%-b): \frac{y r^{2}}{v^{4}}
\end{aligned}
$$

What is，
in which r is the dynamical radius of the wheel, and ρ the same radius, diminished by half the depth or the buckets. From this analogy we obtain

$$
\sin y=\frac{\rho v^{2} \sin (a+z-b)}{g r^{2}}
$$

The angle b being generally very small, will very slightly influence the value of y, and may, there fore, be neglected in determining the angle of discharge without sensible error; but by way of compensation, we may substitute for ρ the dynamical radius γ, making

$$
\sin y=\frac{v^{2}}{g r} \cdot \sin (a+z)
$$

To find the measure of the arc $\mathrm{A}^{\prime} \mathrm{E}$: if we take y^{\prime} to denote the angle $a^{\prime} \mathrm{OE}$ we shall have $\mathrm{A}^{\prime} \mathrm{E}$ $=L\left(a+y^{\prime}\right)$. And from the same species of reasoning employed for y we find

$$
\sin y^{\prime}=\frac{v^{2}}{g r} \cdot \sin \alpha .
$$

From these values we might establish a general expression for the mean arc of discharge; but, as already remarked, this does not differ sensibly from the arithmetical mean, and may therefore be represented by $a+\frac{1}{2} z+\frac{1}{2} y+\frac{1}{2} y^{\prime}$. And reverting to Fig. 3808 , its versed sine will be represented by $D B$, which is the whole loss of head resulting from the form of the buckets and the centrifugal force conjoinedly, and may thus be calculated previous to the construction of the wheel. If we designate this loss by $h^{\prime \prime \prime}$, we shall have

$$
h^{\prime \prime \prime}=\frac{1}{2} \mathrm{D}\left\{1-\cos \left(\alpha+\frac{1}{2} z+\frac{1}{2} y+\frac{1}{2} y^{\prime}\right)\right\}
$$

As an example of the arithmetical process of determining this loss of head from a priori data, let the diameter of the wheel be $37 \frac{1}{2}$ feet, the number of buckets 92 , the width $l=3.55$ feet $=3$ feet $6 \frac{1}{2}$ inches and the depth 12.8 inches. The breadth AB of the first plate of the buckets is 1.522 feet, and a line joining AI $=1 \cdot 683$ feet. The angle G AB which AB makes with the tangent A G to the circumfer ence is $31^{\circ} 37^{\prime}=a ; \mathrm{BAI}=9^{\circ} 8^{\prime}$; and $\mathrm{AIB}=53^{\circ} 10^{\prime}$; the surface of the triangle BAIB is therefore $=\cdot 20344$ square feet $=s^{\prime}$. The dynamical radius r of the wheel is 17.935 feet, and the distance d between the buckets measured on the circle described by that radius is 1.225 feet; the velocity v at the same circle $=8.2$ feet in a second. The quantity of water furnished in the same unit of time is 5% cubic feet $=q$. The section s of water contained in a bucket before it begins to discharge will thercfore be

$$
s=\frac{q d}{l v}=\frac{5.3 \times 1.225}{3.55} \times 8.2=0.22299 \mathrm{sq} . \mathrm{ft} .
$$

But this section being greater than $0544=s^{\prime}$, shows that the water surface meets the sole at some point t^{\prime} higher than I. Now the angle z, that is, the angle which the surface of the water makes with the face-plate of the bucket, will be equal to the sum of the angles B A I and I A t^{\prime}.

To find this last we may take, without sensible error,**

$$
\tan \mathrm{IA} t^{\prime}=\frac{2\left(s-s^{\prime}\right)}{\mathrm{A} I^{2}-2\left(s-s^{\prime}\right) \tan \mathrm{ABI}}=\frac{.0391}{2 \cdot 8325-\cdot 006286}=\tan 0^{\circ} 47^{\prime} 34^{\prime \prime}
$$

therefore, $z=\mathrm{ABI}+\mathrm{IA} t^{\prime}=9^{\circ} 8^{\prime}+0^{\circ} 47^{\prime} 34^{\prime \prime}=9^{\circ} 56^{\prime}$ nearly.
To find y and y^{\prime} we have, for the first,

$$
\begin{aligned}
\sin y= & \frac{v^{2}}{g r} \sin (a+z)=\frac{(8 \cdot 2)^{2}}{32 \cdot 2 \times 17 \cdot 935} \times \sin \left(31^{\circ} 37^{\prime}+9^{\circ} 56^{\prime}\right)=\sin 4^{\circ} 26^{\prime} \text { very nearly. } \\
& \sin y^{\prime}=\frac{v^{2}}{g r} \cdot \sin a=\frac{\left(8^{\circ} \cdot 2\right)^{2}}{32 \cdot 2 \times 17 \cdot 935} \times \sin 31^{\circ} 36^{\prime}=\sin 3^{\circ} 30^{\prime} \text { very nearly. }
\end{aligned}
$$

For the whole ineffective are of discharge we have, therefore,

$$
a+\frac{1}{2} z+\frac{1}{2} y+\frac{1}{2} y^{\prime}=40^{\circ} 33^{\prime}
$$

and from this we obtain as the total loss

$$
h^{\prime \prime \prime}-\frac{1}{2} \times 37 \frac{1}{2}\left(1-\cos 40^{\circ} 33^{\prime}\right)=4.502 \text { feet }
$$

If we decompose this into the losses incurred by the form of the buckets and the centrifugal force, we find for the former

$$
\begin{aligned}
& c \mathrm{~B}=\frac{1}{2} \times 37 \frac{1}{2}\left(1-\cos 36^{\circ} 35^{\prime}\right)=3.694 \text { feet; } \\
& \text { and } \cdot \therefore c \mathrm{D}=(4.502-3 \cdot 694) \text { feet }=0.808 \text { feet. }
\end{aligned}
$$

These parts are, therefore, very nearly as 100 to 22 ; consequently, retaining these umbers, the loss of fall below the loaded are is shown to be increased by the centrifugal force communicated to the dluid from 100 to 122.

In conformity with the principle before indicated, we must, in order to arrive at a complete theoretical expression of the value of the fall, subtract these several losses, and multiply the remaiuder by the weight of water for the total effect, which will then be expressed by

$$
\mathrm{W}\left(\mathrm{H}-\mu h-h^{\prime}-h^{\prime \prime}-h^{\prime \prime \prime}\right)
$$

But this expression being deduced entirely from theoretical considerations, we must, in order to colu

[^23]pare it with the results of experience，applicable to every particular case，introduce our coefficient of reduction m ，when we will have as the actual eflect developed by the wheel
$$
\mathrm{E}=m \mathrm{~W}\left(\mathrm{II}-\mu h_{t}-h^{\prime}-h^{\prime \prime}-h^{\prime \prime \prime}\right)
$$

From this it therefure appears that in every bucket－wheel the ukimate effeet will be increased as the five quantitie；$\mu, h, l^{\prime}, h^{\prime \prime}, h^{\prime \prime \prime}$ are diminished．Now these have respeet，
μ, to the con－truction of the shuttle and watercouree，which ought accordingly to be adapted with eare to the particular case；
h ，to the diameter of the wheel，which，therefore，ought to be as great as the other conditions will admit，（it being under－tood here that the wheel is con－tructed on the overshot principle；）
h^{\prime} and $h^{\prime \prime}$ ，to the difference of velocity between the water and the whecl fur a given value of $h ;$ a condition which will be satisfied the more nearly as the velucity of the wheel approaches half the ve－ locity of the water at the moment it arrives at the bottom of the buckets；
$h^{i \prime \prime}$ ，to the proper disposition and form of the buckets，and a small velocity of the wheel，by which the water will be carried to the lowest point possible of the fall before it is diselarged．
The only trustworthy experiments on wheels of this class，which have been published，are those of Mr．Smeaton，made in 1759，upon a small model wheel of two feet diameter．Various details are， however，wanting to enable us to compare his results with the preceding formulx－especially the furm and dimensions of the buckets．The following table contains the summary of his results：

No．	Whole descent．		Turns at the max－ imum in a min－ ule．	Weicht ratsed 11 the max－ imum．	Power of the whole descent．	Power of the whet．	Effect．	Ratio of the whole power and edect．	Ratio of pow－ er of the wheet and effect．	Mean Itatio．
	Jnch．	$l b$.		lb．						$\bar{\infty}$
1	27	30	19	$6 \frac{1}{2}$	810	720	556	$10: 6.9$	10：7\％	\cdots
2	27	$56{ }_{3}^{2}$	$16 \frac{1}{}$	$14 \pm$	1530	1360	1060	$10: 6 \cdot 9$	$10: 7 \cdot 8$	$=$
${ }^{3}$	27	$56 \frac{2}{3}$	203	$12 \frac{1}{2}$	1530	1360	1167	111： $7 \cdot 6$	$10: 8 \cdot 1$	三
1	27	$63 \frac{1}{3}$ ．	204	$13 \frac{1}{2}$	1710	15 － 4	1245	110：73	10：-2	E
5	27	$76{ }^{2}$	$21 \frac{1}{2}$	$15 \frac{1}{2}$	2070	1－10	1500	10：73	10：8\％	三
6	$28 \frac{1}{2}$	73%	$18 \frac{3}{3}$	172	2090	1761	1476	$10: 7$	$10: 8 \cdot 1$	© 8
7	$28 \frac{1}{2}$	963	204	$20 \frac{1}{2}$	2755	2320	1 A 68	10：6．8	$10: 8 .$	$\stackrel{\text { ¢ }}{ }$
8	30	90	20	$19 \frac{1}{2}$	2700	2160	1755	10：65	$10: 5 \cdot 1$	－1
9	30	$96{ }_{3}^{2}$	203	$20 \pm$	2900	2320	1914	$110: 60$	10：8．2	\cdots
10	30	$113 \frac{1}{3}$	21	$23 \frac{1}{2}$	3400	$\because 20$	22ッ1	10：65	10： $5 \cdots$	$三$
11	33	$56 \frac{2}{3}$		$13 \frac{1}{2}$	1870	1360	1230			is
12	83	$1116{ }_{3}^{2}$	204	$21 \frac{1}{3}$	3320	－56）	2153	$10: 6 \cdot 1$	$10: 8 \cdot 4$	\cdots
1：	83	$116 \frac{3}{3}$	23	27さ	4540	3520	28.16	$10: 5.9$	10：5．1	$=$
11	$\because 5$	6.5	193	$16 \frac{1}{2}$	2975	1560	11166	10： 5.5	$10: 51$	3
15	85	120	21	$25 \frac{1}{2}$	12101	2858	$\because 117$	111：59	10： 8.6	－
16	35	$16: 31$	$\because 5$	26.6	5728	3921	2981	$10: 52$	10：76	E
1.	2.	3.	1.	5.	6.	7.	\＆．	4.	11.	11.

From this table we perecive the small elfects problucel by minerease of the head $\mathrm{A} c=h$ abowe the whecl．On the ferneral resulta，he ohareses，that＂the power of the water computed from the height of the wheel only，appar－to observe a more constant mis＂than that hetween the pawe of the water reckoned from the whele descent and the ultimate efliet．Thus the ratios in colmun ！dither from that of $10: 76$ to $10: 5 \%$ ；wherest，taking the mean set down in column 11 ，we find the ex （remes to differ no more than from the ratio of $10: 8 \cdot 1$ to 11 ） 85 ；and ns the second term of the rathen
 athoes s－l is to be inputel to the superior impulate of the water at the heal of 11 inches nhose that of

 of water and the perpendewlar heighes multiphed turecher reapertively．＂

Bcends, the greater will be the portion of the action of gravity applicable to the producing a mechanical effict; and in consequence the greater that effect may be.
"If a stream of water falls into the bucket of an overshot-wheel, it is there retained until the wheel by moving round disclarges it: of consequence the slower the wheel moves, the more water each bucket will receive; so that what is lost in speed, is gained by the pressure of a greater quantity of water acting in the buckets at once; and, if considered only in this light, the mechanical power of an overshot-wheel to produce effects will be equal whether it moves quick or slow: but if we attend to what has been just now observed of the falling body, it will appear that so much of the action of gravity, as is employed in giving the wheel and water therein a greater velocity, must be subtracted from its pressure upon the buckets, so that, though the product made by multiplying the number of cubic inches of water acting in the wheel at once by its velocity will be the same in all cases; yet as each cubic inch, when the velocity is greater does not press so much upon the bucket as when it is lcss, the power of the water to produce effects will be greater in the less velocity than in the greater: and hence we are led to this general rule, that cæteris paribus, the less the velocity of the whecl, the greatcr will be the cffect thereof."

According to this riew of the subject we ought to introduce into our formula a further reduction oif H depending upon the velocity of revolution, and which would therefore be a function of v. But if the mode in which $h^{\prime \prime}$ has been obtained be observed, it will be found that the circumstance which Mr. smeaton had in view is there included. It is admitted that the gravitation of the fluid in the buckets cannot at the same time be producing pressure and velocity; but we have laid it down as a condition, which Mr. Smeaton also insists upon, that the water must have a higher velocity than the eircumference of the wheel at the moment of its passing into the buckets. This condition being fulfilled, it is then clear that as no additional velocity has been generated in the fluid, after it has entered the buckets, no part of its power is thereby consumed below that level, and that all its effect will be realized upon the wheel. In other words, the effect of the volume of water on the loaded are will be expressed by II $\times c \mathrm{D}$.

This may be exhibited somewhat more formally, and as a preliminary step let it be required to prove that the weight of fluid carried in the loaded are of the wheel, from the level of c to the lower level D, is equal to the effort which would be exercised by the weight of a prism of water G II placed at the extremity of the dynamical radius OP, the height of the prism being equal to $c \mathrm{D}$, and the area of its base equal to the cross-section of the fluid are, if the water in the buckets were uniformly distributed, and formed a continuous arc. To show that this is true statically, it will be sufficient to prove that the moments of pressure are in the two cases equal. For this purpose let it be supposed that the lengtl of the fluid are is divided into an infinite number of small elementary arcs, such as $m n$ having a cross section σ. If then we designate by ϕ the specific gravity of the fluid, we shall have $\sigma . m n \cdot \phi$ as the weight of the small are $m n$. And since it acts vertically, the distance between the dircetion of its pressure and the centre of rotation will be the horizontal line $r s$. Thus then we have as the moment of its pressure $\sigma \cdot m n \cdot \phi \cdot r s$. But the triangles $m n t$ and $r \mathrm{O} s$ are similar; hence $m n \cdot r s=O r \cdot p q$, and therefore,

$$
\sigma \cdot m n \cdot \phi \cdot r s=\sigma \cdot \phi \cdot \mathrm{O} r \cdot p q
$$

Now the sum of all the partial moments will be the moment of the entire arc, and will be found by multiplying the common factor $\sigma . \phi . \mathrm{Or}$ by the sum of all the small heights $p q$ of the elementary ares; this sum is evidently $f g=c \mathrm{D}$, the entire moment will therefore be $\sigma \cdot \phi \cdot \mathrm{O} r . c \mathrm{D}$. But that of the prism G H is manifestly $=c . \neq \mathrm{GH} . \mathrm{OP}$; and since G H $=c \mathrm{D}$ and $\mathrm{O} r=\mathrm{OP}$, the two moments are equal.

If we now bring into view the dynamical conditions imposed by the motion of the wheel, and keep in riew that no motion is commznicated to the water within the limits of the are, we have as data a pressure applied at P in the direction of movement $\sigma . \phi . c \mathrm{D}$, and a velocity at that point of v feet per second: the force impressed will therefore be expressed by $\sigma \cdot \phi \cdot c \mathrm{D} . v$. And if q be the volume of water flowing in a secoud, with a continuous section σ, and velocity v communicated independently of the motion of the wheel, and acquired before it reached it, we have $q=\sigma . v$; and w being the weight of the volume q, we have besides $w=\phi . q$. Taking the values of σ and ϕ in these two cqualities, and substituting them in the expression above of the force impressed, it becomes

$$
\frac{q}{v} \cdot \frac{w}{q} \cdot c \mathrm{D} \cdot v=v \cdot c \mathrm{D}
$$

which is the condition we undertook to demonstrate, and upon which, it will be observed, the relocity of the wheel has no influence.

The best data which we possess for determining the ralue of the coefficient m in our formula of the actual efficiency of the wheel is a table of experiments furnished by M. D'Aubuisson containing all the conditions. The mean of these cases gives $m=8997$, and the highest value is 917 , and the lowest - 74. We may, therefore, without serious error put $m=9$. The other terms may also be simplified for the purposes of ready application. Thus the three terms $\mu h, h^{\prime}, h^{\prime \prime}$, taken together, we have already shown, do not differ widely from $\frac{2}{3} h$; and, except in extreme cases, $h^{\prime \prime \prime}$ will not vary more than between $\frac{1}{4}$ and $\frac{1}{5}$ of the diameter of the wheel. Let us assume the mean of these extremes, namely, $\frac{1}{6} \mathrm{D}$, and substitute these quantities with a value of $m=0.9 \mathrm{in}$ our formula, it will then be reduced to the following:

$$
\mathrm{E}=0.9 \mathrm{~W}\left(\mathrm{H}-\frac{9}{3} h-\frac{1}{6} \mathrm{D}\right),
$$

and by putting $Q=$ the number of cubic feet of water furnished in a minute, and expressing the effect in units of horse-power, conformably to the principle before explained, wo have

$$
\mathrm{E}=\cdot 0017 \mathrm{Q}\left(\mathrm{H}-\frac{2}{3} h-\frac{1}{4} \mathrm{D}\right) .
$$

As an example, let the quantity of water be 1000 cubic fiet a minute, and the fall 95 feet ; in this case the wheel would be mate about $2 \underline{2}$ feet diameter; therefore $\frac{2}{3} h=?$ feet and $\frac{1}{5}=8 \frac{2}{3}$ feet. Hence, the value of the fall would be reducel to $\because 5-\left(2+3 \frac{2}{3}\right)=19 \frac{2}{3}$ feet, and this multiplied by $1000=$ 19833. Finally, $19333 \times \cdot 0017=32.57$ horse-power.

This furmula may also be emplosed to determine the volume of water which it would be necesary to amploy, with a given head, to obtain any required amount of power-a problem which very frequently oecurs in practice.

In this we have contined our attention to the case of the overshot-wheel, on account of is being the mont obvious; but the same formula may, by a very slight modification, be applied to determine the effect of a breech-wheel. The modification referred to is simply the replacing of of D by its an-umed equivalent $l^{\prime \prime \prime}$, by which we have

$$
\mathrm{E}=0017 \mathrm{Q}\left(\mathrm{H}-\frac{2}{3} h-h^{\prime \prime \prime}\right)
$$

We replace $h^{\prime \prime \prime}$, because in wheels of this kind its value ought to be always less than in the wershot arrangements. The brech-wheel, as we have already seen, has usually a diameter somewhat greater than the height of the fall; and as $h^{\prime \prime \prime}$ is proportional to the diameter, we hase by this aramgement the advantare of making it as small as possible within the limits of practice. We can, imleed, inerease the diameter at pleasure, and thereby proportienally increase the length of the loated are-the grame source of power in the bucketed wheel of whatever form.

Rubertson Buchanan, in his Essay on Water-Wheels, has endeavored to fix the proportion of the radius of the wheel to the heirht of fall to yield a maximum effect, but seems to have left out of view the effect of the centrifugal fince, and to have supposed the whed to revolve in an are-which is, indeed, the usual arrangement now adopted. The following is his mode of calculation :-Let $c=$ that purtion of the circumference which is to be loaded with water-that is, the portion of the half circumference below the point at which the water flows upon the wheel; and let $x=$ the are comprehended between that point and the horizontal plame passing through the axis of the whel; also make $b=$ the area of the strean -upplying the buckets. Then the solid which represents the cllective furce, that is, the are of water below the point of reception, will be $\frac{1}{2} b\left(\frac{c^{3}-2 x^{2}}{c-x}\right)$, and this is to be the greatest pus. sible, or $\frac{c^{2}-2 x^{2}}{c-x}=$ a maximom. By the principle of maxima and minima, this thkes place when $x=c$ $(1-\sqrt{2})$ or $x=0.209 \mathrm{c}$. Accordingly, the are $c-x$ must be a quadrant, and the are $x=37 \cdot 7^{\circ}$.

From this it appears that the wheel will produce its greatest cflect when the dia:neter is an fropur-
 527° (nearly 503 degrees) di-tant from the summit of the wheel.

If R, then, be radius of the wheed to the extreme edge of the bucket, and h the height of fall measured to the point where it may be delivered upon the wheed, and which may be catled the effective beight, then we shall have

$$
\mathrm{R}=\frac{h}{1+\sin 37 \frac{1}{4}}=\frac{h}{1 \cdot 605}
$$

Since sin 解 derrees $=305$. We have also by reduction $\mathrm{l}=623 \mathrm{~h}$.
The cflective height of the fall in lese tham the entire height II by as much as is necessary to give the water the required velocity, which may be taken generally at 10 feet in a second, or lif feet of fall.
The French mechanician* calculate a sumewhat greatere diameter for their wheels than that civen by
 done in thas conntry, they lay it oin at a distance of 100°, that is, 80 degrees above the hormontal phane
 membed, $1 \frac{1}{2}$ fere of the fall th give the rempured velacity to the water.

Nol line of demareation has yet been determined to separate this speceis of whed from the breastWhecl, exenpt that thin mame is applied when the water is received apon the wheel at a greater ditance from the summit than 5 ? dengrens. But it has not been decided when this ruke onght to beet
 wrights that at when of haree diameter is more ndvantagems tham ofe of small dimmeter: in a whell of large dianeter the indurnce of the entrifugal foree is low, and the mans in motion bing greater, the movement is more uniform and maty Ire proportionally shower, which, in the cone of a how fall, in

 erntrifural fores.

As the quention is therefore entirely une of practioe, and ineapable, we believe, of of thenetion molu
 for very lar fe gmatition of water, may be mado to conform to the rule nlewe ghom, down to l: fal

water meets the circumference of the wheel and the level of the tail-water, and which may be calculated by the methods above indieated.

Undershot-wheels.-By undershot we understand here those varieties of wheels which move chiefly by the direct impulse of the fluid. In construction they differ little from the bucketed wheel, exeept that the buekets are replaced usually by radial floats upon which the impulse of the current is received. They are, also, usually confined in an are, below the level of the water-line, to confine and economize the motive power; but, as this arrangement is also common to bucketed wheels, especially when the fall is low, it cannot be regarded as a peculiarity. In this form of wheel, especially if the volume of water be considerable, the spider construction is, however, only admissible when the power is taken off at the circumference by a pinion placed slightly abore the point of impulse and on the same side. There is, then, only the small portion of the sole-frame put on strain by tension, between the two points. But, when the power is taken off at the axis, the construction ought to be of the more rigid kind, otherwise the continually changing direction of the strain, acting through a leverage equal to the radius of the wheel, will specdily prove fatal to the points of connection, if in any degree elastic.
The water is admitted upon the wheel by a sluice or shuttle in its immediate vicinity, as in the case of the bucket-wheel. What has been stated in reference to the loss of head experienced by the water passing through an opening in its course is therefore applicable in this case as before. It is also of moment, both on theoretical and practical grounds, that the sluice be placed as closely upon the wheel as other considerations will permit; and that the retaining cheeks of the aperture, inside of the sluice, be slightly contracted, answering to the natural contraction of the stream after passing through the orifice, in consequence of the resistance which it there encounters. The sides of the course or are in which the wheel moves, must necessarily be parallel; but, immediately on passing the vertical plane passing through the axis of the wheel, the floor ought to deepen and the sides expand and leave the water as much space to diffuse itself over as possible. This arrangement is shown in Figs. 3810 and 3811, as far as it is applicable with a sluice-framing entirely constructed of mood; but, when the con struction is of iron, the confinement of the water may be made much more complete.

Supposing the floats to be placed radially, their breadth or depth in the direction of the radius ought obviously to be such, that in the rising of the water against the float which it first strikes, the portion which tends to pass over its superior edge shall not be thrown against the back of the succeeding float. Any action of this kind would manifestly be attended with a corresponding diminution of the effect of the wheel; and ought, therefore, to be avoided, as perhaps the most serious error which is liable to be committed in this form of wheel. This source of loss may, however, be, in general, entirely aroided, by giving to the floats a depth of about three times the thickness of the lamina of water acting upon them. The thickness of the lamina is usually from four to six inches, giving the range of depth of the floats from twelve to eighteen inches. The velocity with which the fluid precipitates itself upon the floats, ought also to be taken into account in providing for its expansire movement. The distance of the one float from the other, measured upon the exterior cirenmference of the wheel, may be generally taken equal to the depth. Their number will, of course, depend upon the diameter of the wheel, and this is almost arbitrary. We will, however, endeavor briefly to indicate the general principle which ought to be kept in view in fixing the diameter, without entering upon any ctrict investigation of the question.

As a consequence of the general theory already explained, it follows that the dynamical effect of the wheel is dependent upon the relation which the velocity of the floats bears to that of the water; but this relation is manifestly independent of the diameter: "The velocity due to the current of water to bo nsed is always an ascertainable quantity, and may therefore be regarded as known. Another deter minate element of the caleulation is the number of revolutions which it is desirable the wheel should make in a certain unit of time, as a minute, in order that the effect may be transmitted to the working points, with a rate of velocity the most advantageons fur the particular purposes intended, and ubtainet

in the simplest manner powible, and with the least quantity of intermediate geering. It is also impor tant that the wheel have a velocity and dimensions rendering it capable of fulfilling the purpose of a tly at the rate of motion which it is intended to maintain. If we put u to denote the velocity of the extremities of the floats, and N the number of turns desired in a minute, the diameter will be expressed by

$$
\frac{60 u}{\pi \mathrm{~N}}=19 \cdot 1 \frac{u}{\mathrm{~N}}
$$

And to obtain an effect approaching the maximum, we may arsume $u=0.4 \sqrt{\bar{I}}$; nnd therefore the diameter expressed in terms of the velocity and height of fall will be

$$
19.1 \times \frac{2.4 \sqrt{ } H}{N}={ }_{5}^{46} \sqrt{ } \text { H very nearly. }
$$

Thus, supposing the fall to be 6 feet, and the number of turns per minute required to be $10=\mathrm{N}$; then the dameter will be ${ }_{10}^{48} \times \sqrt{ } 6=46 \times 245=114$ feet nearty. This is nearly the minimum diameter of wheel which would under any circumstance- be employed; 12 feet to 25 feet may indeed be taken as the a-mal ramge; but unless the volume of water be extraordinarily great-and then breadth is better than dianeter-we camot conceive of any advantage, other than may arise from some pechliarity in the nature of the machinery to be impedled, which may not be obtained with a dameter of 16 feet to 15 feet. It is, however, to be observed, that the smaller the diameter the greater is the nievty of adjustment required to make the water yield its eflecet upon the buekets; and pomsibly the errory which have been committed in this particular have led to the commons opinion that a whed of largo diameter is alwayo in practice the mont effective.

Angle of thatt,	110	40	12°	16^{0}
Compuratio. eflicet,	1	$0: 19$	11256	119

Showing that at least no advantage is derived from feathering the floats, as it is denominated. In an indefinite volume of flnid, the case is, however, different; the inclination of the floats favors, not the action of the impelling fluid, but their disengagement. This is manifest when it is observed that ats soon as the radial float passes into water, having a less velocity than its own, it begins to be retarded; and besides, in rising to the surface, it tends to lift with it a portion of the fluid, which, acting by ita weight in the contrary direction to that of the wheel, also proportionally diminishes the useful effect.

This is sometimes obviated at great expense, in large wheels placed in situations where the fall is very small and liable to be flooded, by rendering them capable of being raised and lowered at pleasure, in conformity with the state of the river. The mechanism for this purpose is generally worked by manual labor; but sometimes also it is rendered self-acting, as in the case of some wheels worked by the tide in situations where the tidal oscillations are considerable. In these the floats are usually, though not always advautageously, inclined to the radius to assist the other arrangements.

Various other schemes for increasing the efficiency of impulsive whecls have been resorted to. One of these was to place a ledging on the ends of the floats to confine the action of the fluid; but witl) very little beneficial effect; and, it is obvious, that if any arrangement of this kind was likely to be or advantage, it could be most effectually secured by placing the floats within shronds, as in the common bucket-wheel-a form of construction not uncommon. Another supposed improvement, still common in some parts of Europe, though never introduced into this country, and only applicable to very narrow wheels, is to form the floats of cylindrical ares, with the axis of the cylinder in the direction or the radius of the wheel, and the concave face of the are opposed to the motion of the water. Thiarrangement is stated to possess certain advantages, but we camot conceive that they can possibly be so marked as to compensate the additional cost of construction; and we must still believe that the plain float with shrouding is both the simplest and most complete of all the deviations which have been attempted, excepting, indeed, M. Poncelet's application of the curved float, and even in this the advantage does not so much consist in the form of the float, as in the other beneficial adaptations with which it is associated.

To understand the action of the water upon the floats of a wheel of the kind under discussion, it is necessary to observe that the moment the sluice is raised, the fluid precipitates itself against the first float which obstructs its passage, and, in consequence, an accumulation takes place, which ultimately succeeds in putting the wheel in motion, and gradually accelerates its velocity until an equilibrium is established between the force of the current and the resistances to be orercome. In proportion as the velocity of the wheel increases, the pressure of the current becomes less, since this action is proportional to the relative velocities; and very soon the acceleration, which gradually diminishes, becomes imperceptible, and finally ceases; and the wheel, after a certain number of revolutions, in consequence of the velocity impressed upon it, and in consequence also of its inertia, continues to revolve as of itself, sither with a motion perfectly uniform, or with a velocity oscillating between limits imposed by the varying nature of the resistances, and which may be reduced in effect to a mean continuous velocity always ascertainable.

Supposing the wheel to derive its effect entirely from the impulse of the current, and to obtain no advantage from confinement in an arc, by which a certain amount of the weight of the fluid is made to act in aid of the impulsive force, the dynamical effect, considered theoretically, of any given weight W of water upon a float receding before the stream with a velocity of v feet in a second, is expressed br

$$
\frac{W}{g}(\mathrm{~V}-v) v
$$

But it may be questioned whether the same effect will be produced upon a suite of floats presenting themselves successively to the current, usually two and three at a time, and under various angles of inclination. On this point we derive our most important information from experience ; but admitting, in the mean time, that the action of the impulse, although not equal, is of the same kind, and susceptible of an expression of the same form as that above, we shall ultimately succeed in comparing the resultof experiment with those of calculation.

In the expression above, when the wheel is moved by a confined current, v is the only variable quantity. If $v=0$, the effect is also cipher, for a machine which does not move yields no power. The power will also be cipher, when $\mathrm{T}=v$, since, as before remarked, if the wheel move at the same rate as the current, it can receive no motive effect from the fluid. It is still more obvious that v cannot be greater than V . The limit is therefore between $v=0$ and $v=\mathrm{V}$, and between these extremes there will be a maximum of effect. If, then, we differentiate the variable part ($\mathrm{V}-v$) v, and equate to zero in the usual manner, we have

$$
\mathrm{V} d v-v d v=0 \text {; whence } v=\frac{1}{2} \mathrm{~V} \text {, }
$$

showing that the effect of the wheel is the greatest possible when it moves with half the relocity of the stream.
Now, the pressure of the water upon the floats being $\frac{\mathrm{W}}{g}(\mathrm{~V}-v)$, this will also be a measure of the resistances (including all the passive resistances) overcome by the wheel, since the moments of pressure must obviously be equal in every case of equilibrium; hence, if in this expression we substitute for v its equivalent $\frac{1}{2} \hat{V}$, we have, as the measure of the load when the dynamical effect is a maximum,

$$
\frac{W \times V}{2 g}
$$

And the dynamical effect being equal to the load multiplied into the velocity of motion, viz., $v=\frac{1}{2} \mathrm{~V}$, we have, using this last as the measure of the velocity of the wheel.

$$
\frac{1}{2} \mathrm{~W} \times \frac{\mathrm{V}^{2}}{2 y} \text { equivalent to } \frac{ \pm}{2} \mathbb{W} \mathrm{H} \text {, }
$$

when H is put to denote the height of fall due to the velocity V ，as before explained．
If，therefore，V be the whule velocity of the strean，and II the entire fall due to that velocity，thie result show that the greatest posible effect which can be realized from a wheel moved enturely by the impulse of the tluid，is only half of the mechanical power of the water expended；that is，considering buth ca－es theoretically，is ouly equal to half the effect which a wheel actiug entirely by the gravity of the fluid，ought to realize．But even this moiety is sulject to reduction，and can be only distantly ap proached in practice．

W＇e do not，unfortunately，posecse many experiments upon which we can implicitly rely，with wheels of this kind．We have many of a mixed kind，in which the effects of impulse and gravity are combined， but fow in which the impulsive action alone appears．Those of Mr．Smeaton，indeed，stand nearly alone in importance and accuracy；and，fortunately，they are complete in the neeessary data．Although the model apparatus with which they were made was small，the well－known accuracy of the experimenter， and the purpose for which the investigation was undertaken，warrants the confidence which they have lony commanded．The wheel was the same in diameter as his overshot model，viz．，el feet，and was，indeed． adapted to the same apparatus．The power was measured directly by raising a weight vertically by a cord over a pulley；and perhaps the only objection which can be validly urged against the results． consists in has neglecting the additional friction thereby produced at the journals of the wheel．The datar for this correction is，however，furnished，and may still be applied．

We subjoin the author＇s table of results，the columas of which are fully explained by the heading： placed over them：

－		$\begin{aligned} & \text { Turns of the wheed the } \\ & \text { londed. } \end{aligned}$	疗						范				$\frac{x}{n}$
1	In. 33	85	$\begin{aligned} & \text { In. } \\ & 15: 55 \end{aligned}$	30.	1b．oz． 11 1310	$\begin{array}{cc} \text { 1b. } & 0 z . \\ 10 & 9 \end{array}$	275.	43.55°	11.				
$\underline{2}$	30	56	150	30°	1210	9	－ 64.7	39.0	1266°	10：0：${ }^{\text {a }}$	10：35	10：7．4	
3	27	$8:$	$13 \cdot 7$	28.	112	86	243°	3329	1014.	10：315	10：3 4	1 $11: 5$	
1	24	78	$12 \cdot 3$	27%	910	$7 \quad 5$	235.	$2890{ }^{\circ}$	$901 \cdot 4$	10：3．12	10：3＊5	10：153	At
5	21	75	114	25.9	S 10	65	214.	$2+39$	735．\％	10：302	10：3 45	10：7．32	the
；	15	70	9.95	29\％	－10	5	199.	1970°	561.6	10：2．85	10：336	10：502	1－t
7	15	65	851	234	5 2	44	175\％	15：20	412×5	10：2．9	10：3．6	10：5\％	sule．
S	12	60	7.29	2－	310	35	161.	1173	328	10：2．8	10：377	10：9•1	
9	9	52	$5 \cdot 47$	19	212	28	131．	$733 \cdot$	$213{ }^{\circ}$	10：2．9	10：3．65	10：9•1	
10	6	42	3.55	16.	112	110	114.	404%	117．	10：2．5\％	10：3 3	10：0：3	
11	21	81	142	3075	131010	1014	31%－	4590°	1505	10：3．075	10：366	10：7：9	
112	21	81	13.5	$\because 4$	11111	96	297°	$1009{ }^{\circ}$	12．23	10：3＊） 1	10：30 ${ }^{\circ}$	10：5－115	
13	15	72	1115	ご号	9111	\＆ 7	－¢5	－99\％	975	10：3\％5	10.36	10：- \％	It
1.1	15	159	（9．1）	$\because 0$	7111	© 11	27\％	$\because 659^{\circ}$	77.10	10：2．92	10：302？	10.9 ．	the
15	12	63	5%	$\because 5$	510	$+1.1$	23.	ハッマゴ	5.43	111：2：4	10：397	11：\％\％	$\because 1$.
16	9	$51 ;$	6%	$\because 3$	111	313	201.	1280	591	110：3＊ 15	10：1•1	10：95	
17	6	46	42.5	21.	\because	$\because 4$	1675	71%	$\because 1 \%$－	10：2：48	10：155	10：3．	
1.8	15	7：	10\％	23°	11111	9 ©	357	37ヶ゙	1210	10：3：3	10：102	10：×05	
19	1：	ib）	0.75	$2+75$	510	7 G	$331)^{-}$	2 24：	875	10：3．0．5	10：105	10：ヶ－1	The
$\because 1$	9	5.5	6.4	215	5 5	511	こち5	1731	511.	10：301	10：102	10：9•1	31.
$\because 1$	$1 ;$	18	4.7	23%	3	311	ごら5	10tit	317	10：2．99	10：19	110：3．0	
2－	12	68	$9 \cdot 3$	\because	9	¢ is	359°	3334	1006．	10：3．02	10：307	10：217	
23	9	55	¢人		6 ＂	$51:$	：3\％	2．257	CS 6	10：3．01	$10: 15 \%$	11：95	4th．
－1	15	18	4%	$\because 15$	$31:$	2	2102	1231．	Sas．	110：3．13	10：5．1	10：93．	
25	3	B1）	$7 \because \%$	$\because \div 3$	A 1 12	f）if	355	25くら	7－3．	10：3．03	10.453	10：9．4	
$\because 6$	$1)$	50	5． $11: 3$	$\because 1 \%$	1 i	1	二山＂	151t	4，51）．	10：24．42	10：1！	10：9 ，	
27	ii	511	5103	$\because 3$	115	1 ！	isio．	14．1．	534	$10: 295$	$10.5:$	111！ $2:$	cith．
1.	2.	3.	1.	\％．	6.	7.	\star	9.	10．	11.	12.	13.	

But it may bo oberved that uneral ohere columes of ratios might be dedued from the data thereme

the scale were placed diagonally, and to these a pin was fitted; so that when the pin was in the same hole, the opening for the water continued the same for all the experiments of that series.

From this table we find, on comparing the effect $p v$ produced at the maximum with the product $\frac{1}{2}$ W h, in which h is the virtual or eflective head, that the coefficient of reduction m is very nearly 0.64 ; consequently, we shall have

$$
\mathrm{E} \text { or } p v=064 \times \frac{1}{2} \mathrm{~W} h=0.32 \mathrm{~W} h .
$$

The ratio of $p v$ to Wh, we observe, varies from 0.28 to 0.32 , giving a mean of 0.30 . This led Mr. Smeaton to infer that one-third of the force produced on the floats by the current, may be realized in the larger wheels.

If we compare the effect realized with the entire power of the water expended, we find that the ratio increases from 0.16 in the first experiment, when the total head was 33 inches, to 0.25 in the last, when the entire head was reduced to 6 inches. From this it therefore appears, that the greatest effect which can be obtained from a given head of water, acting impulsively, is between a sixth and a fourth of the entire motive force expended; and in the case of large wheels, it is very doubtful whether even this last result can be obtained, although, as we have already seen, theory indicates as much as $\frac{1}{2} \mathrm{~W} \mathrm{H}$. or double.
The ratio of the velocity of the wheel to that of the current gradually augments from 034 to 0.52 , giving a mean of 043 . Mr. Smeaton, however, takes 040 as the mean; and it is worthy of remark that Bossut, in an analogous series of experiments, also adopted the same number. It, however, seems to us , from the nature of the case, that the proper velocity will approximate much more closely to the maximum limit, and will not deviate greatly from 0.50 of the mean velocity of the current, as indicated by theory. 045 will at least be, in general cases, a safe number to adopt in practice; that is, $v=0.45 \mathrm{~V}$.

Another result worthy of notice is, the weight or "load at the equilibrimm "" that is, the weight which is just sufficient to keep the wheel at rest against the force of the current. This, at an average, is little more than two-tenths greater than the load which the wheel was capable of carrying when yielding its maximum effect. According to theory it ought to be double, for, as already shown, the weight corresponding to $v=0$ is $\frac{\mathrm{W} \times \mathrm{V}}{g}$, and that at the maximum is $\frac{\mathrm{W} \times \mathrm{V}}{2 g}$.

The cases to which these observations apply are those in which the velocity of the wheel is adapted strictly to that of the current. But this is not always obtained, and accordingly the coefficient m being a function of v, fluctuates between extremes which it is impossible to comprehend in a general formula. Howerer, when the velocity of the wheel does not fall below certain limits-from a third to two-thirds of that of the current-we may, without much chance of error, especially in excess, assume 0.60 as the r_{1},efficient, and accordingly we shall have as a general rule,

$$
\mathrm{E}=0.60 \frac{\mathrm{~W}}{g}(\mathrm{~V}-v) v=\frac{1}{107} \mathrm{~W}(\mathrm{~V}-v) v=1.54 \mathrm{Q}(\mathrm{~V}-v) v
$$

The velocity V with which the water arrives upon the floats cannot always be easily assigned. It experiences certain losses between the sluice and the point of impulse, but it is not perhaps possible to give a general expression of their amount, even for an individual case, and much less for different forms and conditions of construction. Independent of any reducing influence, we have $\mathrm{V}=\sqrt{2 g h}$, in which 7_{1} denotes the difference of level between the surface of the water in the lead and the centre of percussion of the floats, and which can readily be measured. But from Mr. Smeaton's observations on this point, it appears that the loss is sometimes as much as a fifth of this velocity ; and he further remarked that the difference between the actual and calculated velocities diminished as the vertical opening of the sluice was augmented. In some instances, indeed, where the volume of water was very great, and the head small, he found that V hardly differed from $\sqrt{2 g h}$. M. Poncelet also remarked the same circumstance-that the loss of velocity diminishes with the magnitude of the aperture through which the fluid issues. Even in the case of an opening of about $8 \frac{1}{2}$ iuches in height, and with a head of $4 \frac{1}{2}$ feet, he had $\mathrm{V}=0.99 \sqrt{2 g h}$. This, however, supposes the sluice to be constructed to the best advantage; and to make a slight allowance for untoward circumstances, we may take $\mathrm{V}=0.95 \sqrt{2 g h_{6}}$ $=7 \cdot 6 \sqrt{ }{ }^{h}$. Substituting this value of V in the preceding result, we have

$$
\mathrm{E}=1.54 \mathrm{Q}(7 \cdot 6 \sqrt{ } h-v) v
$$

And, again, putting for v its equivalent $\frac{1}{2} \mathrm{~V}=3.8 \sqrt{ } h$, this expression is reduced to the following convenient form,

$$
\mathrm{E}=22 \not \mathrm{Q} h \text {, or } \frac{1}{148} \mathrm{Q} h,
$$

When expressed in units of horse-power.
This is the case of the purely impulsive wheel ; but in practice it is very rarely found that some slight amount of head cannot be reserved to act by its gravity. Under these circumstances an are is formed concentrically with the wheel between the point at which the water strikes the wheel, and the lowest level terminating in the vertical plane passing through the axis. The clearance need not exceed \ddagger inch, and may, if the arc be carefully constructed, be reduced to 3 inch. To indicate the effect, let II, as before, be the whole height of fall; and let h be the portion employed in generating the required velocity. After that the water has struck the first float at the level $H-h$ it will afterwards descend by its weight through that height, producing an effect expressed by W (II - h) ; and the effect of the mpulse being as before $\frac{W}{/ \prime}(W-v) v$, we shall have as the sum of these partial actions,

$$
\mathrm{W}\left\{(\mathrm{H}-h)+\frac{1}{g}(\mathrm{~V}-\mathrm{r}){ }^{v}\right\}
$$

But we formerly found in discussing the impulsive action in the case of the overshot-wheel that

$$
\frac{\mathrm{W}}{g}\left(V-v^{\prime}\right) v=\mathbb{W}^{*}\left(h-\mu h-h^{\prime}-l^{\prime \prime}\right)
$$

in which the thre quantities $\mu, h^{\prime}, h^{\prime \prime}$ have the significations then assigned. We may therefore make use of this expression as more definite. It is, however, in this case subject to two corrections which may be thus exhibited.

In the first place, when the whole volume of water las expended its impulsive effect upon the first that which it encounters, it immediately begins to descend by its pressure to the botom of the are; but let us observe what takes place in the spaces between the floats during the deseent. The are sustains it certain amount of the pressure of the fluid, and there is moreover a certain amount of clearance between it and the radial extremities of the floats. A portion of the fluid will therefore escape through this space without producing any effect, since its pressure is entirely exerci-ed upon the superficies of the arc. This must, consequently, be subtracted from \mathbb{W} in the expression $\mathbb{W}(H-h)$. This lues cannot, indeed, be rigorously assigned, but may be pretty closely approximated by considering that the resistance experienced by this water against the face of the are diminishes the velocity which gravity tends to give it, and that this diminution increases with its descent: also, that this velocity is further diminished by the continual entanglements to which the water is subjected by the varying conditions of the intervals between the floats, and which likewise become greater towards the bottom of the are; amt, fimally, that the velocity is altered by the continual mingling of the descending lamine, corre-ponding to the several spaces between the floats and the varyiny positions of the portions of fluid therein contained. We may therefore conceive, with all these retarding influences in action, that the velocity of the ineflectual portion will not differ greatly from that of the floats; accordingly, in this state of things if we denute by A the cross-section of the plate of water falling upon the wheel, and by a that corres ponding to the iutervals between the extremities of the floats and the are, then will $W^{-} \frac{a}{A}$ be the por tion of fluid lost as regards the effect of pressure ; hence, by subtracting this from W, the expression of the effect given abore, we shall have

$$
W\left(1-\frac{a}{\Lambda}\right)(I T-h)
$$

In the second place, the portion of the base of the wheel which dips in the water containel in the lower part of the course, loses there a part of its weight equal to the weight of water diaphaced. Ins consequence of this loss the equal distribution of the veight of the wheel about the axis of rutation no longer exi-ts; and the wheel tends to turn in a direction contrary to that of the current. If we represent by p^{\prime} the diminishing influence of this temdency, this will be a new resistance which the whed has to overcome, and which ought, consequently, to be added to these other resistances of which the sum is p. We shall then have, taking m as the cocflicient of reduction of the results of caleulation to those of obserration,

$$
\left(p+p^{\prime}\right) u^{\prime}=m W^{\prime}\left\{(\mathrm{II}-h)\left(1-\frac{a}{A}\right)+h+\mu h-h^{\prime}-h^{\prime \prime}\right\}
$$

In practice this formula may be considerably simplified. The quantities p ' and $1-\frac{a}{A}$, suppowing the construction judieiou-ly and carefully fini-hed, will be very nearly proportional to the pown of the wheel, that is, to W ; ibey may, con-rguenty, be comprisell in the ralue of m . We have alon before shown that the quantity $\mu h+h^{\prime}+h^{\prime \prime}$ is ulway greater tham $\frac{1}{3} h$, and differs little in ordinary cases from $\frac{2}{3} / h$. Nence our furmula may be reducut by these substitntions to the convenient furm,

$$
\mathrm{F}:=m W\left(\mathrm{H}-\frac{2}{3} h\right) .
$$

In this the indefinite guantity is m, and, perhaps, the bent anthentieated experiments, bey whels itw value may le a cigned for the particular cane asmmed, are those of M. Morm, on a wheel eombructed

 number of thats 32, of which the brealth in the sherection wif the radins is 1 foest 4 inches. The whole
 over the waste board of aluice, of the satue wildh as the whel. The remules varied wath the thich. ne 4 of the lamim of water admited upen the where, ne whibited in the table on the following pabe.
 structed when-com-iderably abse the userame we may the gencrally mate in taking m=015, hy whech our formula is realucent to

$$
f=115 \%\left(H-\frac{3}{3} / h\right)
$$

 nary character umber hoke circumbtamen, whis Will
 place, that the wheel is at ret, and that a tibon of that arrives lorizontally wath a velocity 1 ybun that

alience to which the fluid immediately begins to descend upon the curred surface of the float, over which it ascended, and quits it with the same velocity V, which it possessed at the moment it arrive \bar{G} upon it. This velocity is acquired by falling from the height $0.0155 \mathrm{~V}^{2}$, and under the cireumstances we have supposed to exist, its direction would be contrary to that first impressed upon the fluid. Let us now assume that the wheel turns with a velocity of v in a second at its periphery. When the filat ment of fluid, having the velocity V , shall have arrived at the float, it will then have a relative velocity

Velacity of the wheel in feet per second. θ	Thickness of lamina of water upon thewaste-board of the sluice.	Ratio	
		of effect to power expended W 1 $\frac{p v}{W H} .$	of effect to virtual head $\mathrm{H}-\frac{5}{3} h$ $\frac{p v}{W^{v}\left(I I-\frac{2}{3} h\right)} .$
$7 \cdot 65$	$\begin{aligned} & \text { Feet. } \\ & 0.719 \end{aligned}$	$0 \cdot 707$	0.762
$3 \cdot 83$	0.711	0.734	0.792
$3 \cdot 18$	0.711	0.726	0.783
$2 \cdot 71$	0714	0720	0.757
2.40	0.714	0.716	0.778
$2 \cdot 13$	0.718	0.700	0.755
	Mean.	0.717	0.772

of $\mathrm{V}-v$, and it will only be with this velocity that it will commence to ascend upon the curved sur face of the float; it will therefore rise to a height of only $0.0155(\mathrm{~V}-v)^{2}$, and after descending, will quit the lower edge of the float with the same velocity $\mathrm{V}-v$. But this element will now have itself a velocity v in the contrary direction, for it partakes of the motion of the wheel; the absolute velocity with which it escapes will therefore be $V-(v+v)$. Consequently, if $v=\frac{1}{2} V$, the absolute velocity of escape will be $V-V=0$, showing, that if the velocity of the wheel be half of that with which the water arrives, its absolute velocity in quitting the floats will be nothing. We have, therefore, the case of a motive current, which experiences neither shock nor loss of velocity at the moment of impulse upon the wheel, and which possesses none at the moment it quits the float; it has then expended all its movement upon the wheel, and communicated to it all its force. The two conditions, shown to be unattainable in the bucket and common impulsive wheels, is therefore theoretically attained with this arrangement, so that, if W be the weight of water, and h the height of fall due to the velocity V , we shall have as the expression of effeet W h.

But although this may be nearly true for a simple film, it is not true for a volume or sheet of water of a certain thickness. Those molecules which strike the floats, making an angle more or less great with the element struck, lose both a portion of their velocity and force; and at the monent when the mass of particles quit the float upon which they have expended their action, their direction is not exaetly opposite. Besides, as with all wheels which revolve in an arc, a part of the motive fluid escapes without yielding any useful effect. We may, therefore, conclude that the real effect is not W h, but $i n \mathrm{~W} h$, in which m is some fraction less than 1 .

A series of experiments was undertaken by M. Poncelet for the purpose of determining this fraetion; that is, the ratio between the actual effect realized and the power expended. The annexed table contains the most important conclusions. The wheel, it may be observed, had a diameter of $11 \frac{3}{4}$ feet; 30 floats of $12 \frac{1}{2}$ inches depth in the direction of the radius, and 25 inches breadth between the shrouds. From these experiments and observations M. Poncelet concludes:

1. That the velocity of the wheel which gives the maximum of effect is 0.55 of the velocity of the current ; but that it might be varied from 0.5 to 0.6 without any marked disadvantage.
2. That the dynamical effect is not under $0.75 \mathrm{~W} h$ for low falls with large volumes of water, and may be taken at $0.65 \mathrm{~W} h$ when the volume of water is small and the fall considerable.
3. That this same effect, compared with the entire

Rise of sluice in inches.	$\overbrace{\frac{v}{\frac{v}{\mathrm{~V}}}}$	$\frac{p v}{\mathrm{~Wh}} \cdot$	$\frac{p v}{\mathrm{WII}}$
3.937	0.46	0.51	0.46
8.268	0.52	0.70	0.56
8.661	0.60	0.68	0.56
7.874	0.52	0.60	0.52
11.969	0.69	0.81	0.55
$"$	0.61	0.74	0.55
$"$	0.59	0.63	0.52

For those cases which ordinarily present themselves in practice, and supposing the wheels constructed with due eare, and to be adjusterl to velocities differing little from 55 of the current, we may therefore take

$$
\mathrm{E}=0.75 \mathrm{~W} \text { h or } \mathrm{E}=060 \mathrm{~W} \mathrm{~J} .
$$

Comparing this result with that determined for impulsive wheels having radial floats, it appears that the effect is more than doubled. This conclusion, to which we arrive in both cases by experimental guidance, ought, of course, to decide which of the two forms of wheel ought to be employed in general
cases. It is admitted that M. Poncelet's wheel involves a more precise aequaintance with the nature of the force emplosed than the common tloat-wheel ; but nothing beyond the application of a few rules. Which any millwright may readily comprehend and apply. These have in fart been given in our description of Figs. $5 \leqslant 10$ to 3512 . The cxtreme and interior cireles of the shrouds being drawn such, that o $k=\frac{子}{4}$ the effective fall when not mure than $4 \frac{1}{3}$ feet, the circle m is described with a radius determined by the following considerations. From the point k at which the water is suppoed to meet the exterior cireumference of the whecl, drair the line $k p$ perpendieular to the direction of the tluid. It will form an angle of 24° to 25° with the radius. In that line take a point p equal to abont a sixth of its length between the circles of the shrouding, within the inner circle, and through that point from the ceutre of the wheel describe the circle $m n$. Then will $p k$ or $p q$ be the radius of the curved fluatt $k q$: and similarly all the radii of the other tloats will terminate in that circle. Having determined the number of tloats, and marked their extremities upon the external circle of the wheel, draw radia from then 1mints to the axial centre, and upon the circle $m n$ set off the corresponding distances from these radii equal to $l p$, and the points thus found will be the centres of curvature of the thoats. The distance between the tloats will be about half that recommended when placed radially, and ought to be furmed of sheet-iron both for convenience of making and subsequent economy of action.

The mode of constructing the are at the base of the wheel has been explained in deseribine the tigures referred to ; it is further only necessary to observe that every eare ought to be emplowed to ab). sorb as little as possible of the velocity of the water previous to the moment of impulse, and to provile for its escape when it has expended its force upon the whecl.

It is also to be understood that this species of wheel, or, more correctly, the mode of supplying the water, will not be economical for falls of more than $4 \frac{1}{2}$ feet; when the fall exceeds this limit, advantare ught to be taken of its weight as well as of its impulsive furce. We conceive, howerer, that the form of wheel is itself well adapted to this double purpose; but the water, instead of issuing from the undel eders of the sluice-plate, ought to be directed over it, as over a waste-board; and the height of the are unisnt, at the same time, to be proportionally increased.

Wheels which more in an indefinite current of water, as a river, are usually of a heavier con-truction than those we have been considering ; but differ only in that respect, and in the inclination of their float-, from the common impulsive wheel. It is nsually found of adrantase to make them of a diame ter of 15 to 20 feet, with 12 to 16 floats, of which the be-t inelination appears from experiment tu be 30°. Their best velocity-that at which the effect is a maximum-is a third of that of the current anel, under these conditions, it will be found that they yield an effect of about $006 \mathrm{~W}^{-3}$ of the water received upon the area of the floats-that i , alout ${ }_{5}^{5} \mathrm{~W}^{\mathrm{H}} h$ if $h=0.0155 \mathrm{~V}^{3}$. This result maty seem, at tirst sight, surprising, when it is remembered that the effect of the undershot-wheel workine in a con tited rectilineal course, does not yied more than $\frac{1}{3} \mathrm{~W} / t$; but it is to be observed that in this hite we include the whole volume ol water acting; whereas, in the other, we take into account only the guan tity received upon the floats, without reference to the large amount which escapes without prodncin, any effect whatever, and which we cannot attempt to estinate.

This species of wheel is of very rare occurrence; yet there are numerous situations where it might be (mployed with good elfect.

Horizontal Huter Hheeli. In horizontal water wheels, the water produces its effect by impact, by forgsure, or by reaction, or by an minn of these forees, but never directly by its weight. Inpaet wheels have plame or hollow pallets or floats on which the water acts more or hess perpendicularly: The pressure whends havecurved buckets along which the water llows, and the reaction whels have ts their type a dhes 1 ife from which the water diecharges more or less tamentially. Presare wheels mal reaction wheds are generally very similar to cach other in construction; the "ssential difference in them being that in the tormer the ules or coudnits between two aljacent luckets are not tilled by the water tlowing throurh them, while in reartion wheels the sertion is quite tilled.

Impret $1 W^{\prime} \%$ ols. To this class belong that variety of horizontal wheels usmally callew cub whels, They con-ist of inclined pallets or floats on the inmer or chter periphery of a lrum, and the water is taid on by a short ineline at such an angle that it strikes the flat at right angles. The inclination of the
 in all garts of the worth. In the wher satw mills it was ahmot invariahly wed for the ruming back of the carringe. The simpltity of its constration is its chiof reoommendaton: it seldom exceds in mechanical efloct $3: 3 \frac{1}{3}$ per cent. of the water "xpembed. The effert of impart wheds is incraved by surromding the buchets with a projecting border or frame, and liy forming their surtaces like the howls
 the whe 1 in menrly in herizontal direction, the water then not ouly impluges on the bueket, hat exerts a

 - inne ed by the liruch ne rome on rumes.

 sides. if how the central the be thed with water, the disharge throtgh tha critice gise a rotars
motion to the machine, and if the supply be maintained, a permanent motion results, available for prac tieal purposes; by eurving the arms, and properly proportioning the capacity of the tubes, the effect may be increased. Reaction wheels have from time to time been popular in this country from their cheapness, but till very recently they have not been introduced into the larger mills from the defects in their construction and rudeness of workmanship.

Among the first reaction wheels introduced here were those patented by Q. and A. Parker of Olio, in 1829 , which embodies many improvements which have since been claimed by foreign inventors.

The elaims of the original patent of 1829 which expired 1850 , were for the compound vertical percussion and reaction wheel, for saw-mills and other purposes, with two, four, six, or more wheels on one horizontal shaft. The concentric eylinder, with the manner of supporting them. The spouts which conduct the water into the wheels from the penstoek, with their spiral terminations between the cylinders.

Second, the improvement in the reaction wheel, by making the buckets as thin at both ends as they can safely be made, and the rim no wider than sufficient to cover them. The inner concentric eylinder, the spout that directs the water into the whecl, and the spiral termination of the spont between eylinders.

Third. The rim and blocks; planks that form the apertures in the wheel, and the manner of forming the apertures. The conical covering on the blocks, with eylinder or box in whieh the shaft runs, and the bollow or box gate, in any form, either cylindrical, square, rectangular or irregular.

Another patent was issued to Messrs. Parker for improvements in water wheels, June 27, 1840, which expired June 27, 1854. The elaim is, the placing of the said wheel, or wheels analogous thereto in their construction and mode of operation, within air or water-tight cases or boxes denominated drafts, substintially in the manner, and for the purpose set forth.

It will be observed that in the first patent, the wheels are placed vertically; thris is a convenient form of application to saw-mills; the shaft of the wheel being used as the crank shaft, connected directly with the saw gate. For most other applications the horizontal wheel is more suitable, and is most economical in the use of water.

The varieties of reaction wheels at present in operation tbroughout the country are innumerable, differing in the form of floats, of guides, and of discharge. Among the most prominent are the Fourneyron and Jouval Turbine, and the Whitelaw reaction wheel.

Fourneyron's Turbine. Fig. 3813 represents a general rertical section of the entire machine, showing its internal construction. Fig. 3814 is a lalf vertical scetion, on an enlarged scale, of the turbine and erown, showing the mode in which these are-fixed to their respective centres, and exhibiting distinctly the manner in which the sluice-cylinder operates. Fig. 3815 is a quarter plan of the same parts as the above, with the sluice-cylinder and top plate of the turbine removed, in order to exhibit the form and relative disposition of the partition-plates of the turbine, and the direction-plates of the erown.

In 1834 M. Fourneyron received the prize of 6,000 francs offered by the Society for the Eneouragement of the Arts at Paris, for the construction of the best borizontal wheel on the large scale. This was his first turbine erected at Pont, on the Oguon. In consequence of this decision the turbine excited great attention and discussion among the continental savans; and it must be remarked, that matters of practical utility are more subjeets of interest among scientific men, especially in France, than elsewhere, where every thing of a technical character is considered to belong exclusively to the workslop.

In an elaborate report of this machine submitted to the Academy of Sciences of Paris by M. Poncelet, it is stated that the essential quality of the turbine consists in its high velocity, and its capability of working under water without much loss of effect. The expedient of bringing the water horizontally over all the interior circumference of the wheel, and of making it issue through the greater exterior
circumference, allows also a large expenditure of power with a machine of very moderate diameter. Finally, it operates favorably under almost any fall, and at any velocitr, without suffering any reduction of its effect from the hydrostatic pressure of the water, and which is stated to be a source of great ineonvenience in wheels of this class.
The peculiar character of the machine is sufficiently explained in the description of the figures re ferred to, and which are supposed to represent one of the inventor's most succeseful applications of his principle; but, in order to bring the value and relation of the furces more elosely into view, the actim of the water may be here briefly indiented. Supposing the amular sluice to be so far let down as ent tirely to close the spaces d, which form the communcation between the interior ci-tern b and the channels c of the revolving disk e, which is the turbine, properly so called, if the sluice botween the res r voir and the supply-pipe a be opened, the water will precipitate it-elf into the cistern b and entirely till it. The pressure on the interior of this cistern, as well as on the ammar sluice at the orificessit, will be in proportion to the depth from the higher level of the water, and, therefore, for a unit of are: of the surface acted upon, the pressure will be directly as the height II. If, then, the sluice be raised, the water rushes into the channels c with the velocity due to the head of pres-ure, and in the direction prescribed by the guide-curves, and impinging against the diaphagms of the channels catses the disk e to revolve in a direction opposite to the direction of impule, and finally escapes by the external extremities of the chamels at the greater circumference of the turbine-disk.
The lower divisions of the sluice-ring, it may be remarked, are considerably increased in thickne-4 and rounded to aroid the contraction of the reins of fluid $i=-n i n g$ into the channels c, and which woukd take place, if no provision were made for correcting the oblique motions impresed, when the water is projected through the apertures at the extremities of the guide-curves in a horizontal direction.

The construction of the machine depends upon the application of a few fundamental principles. Like all other hydraulic motors, its size ought to be proportioned to the effect which it is intended to pru-duce-that is, in effect to the quantities W^{\prime} or Q and H . Thus the interior diameter D , one of the principal dimensions, is directly as the ratio of these two quantities; and as the turbine ought to be capable of expending the volume of water (2 , arriving to it with the velocity V, the orifices must have an area, deternined from the condition $Q=A V$, in which we denote by A the sum of the orifices of admission. On the water arriving in the same time upon atl the wholo interior circumference of the turbise, A will be equal to that surface, (after sul,tracting the area oceupied by the thickneses of the diaphragm-, and. coneequently, will be equal to $\pi 10 d$, in which d denotes the depth of the courses. The propurtion fixed by M. Fourneyron, is $l=\frac{1}{7} \mathrm{D}$; and, therefore, by making this substitution, we shall ha ve

$$
\begin{aligned}
& \Lambda=!-D^{2}=0.15 D^{2} . \\
& \text { But } Q=A V^{\circ}=0.15 \mathrm{D}^{2} V^{2} \text {. } \\
& \text { And } V=6 \cdot 66 \sqrt{\Pi} \quad \text { therefore } Q=3 D^{2} \sqrt{\Pi} \\
& \text { From this we have the diameter } D=\sqrt{3 \sqrt{ } \|} \text {. }
\end{aligned}
$$

This value of D ought, according to the views of the inventor, to be further affected by a coefficient, to allow for the entanglements which the fluid experiences in the eylinder and in entering the turbine, and for the effect of the obliquity with which the water is thrown by the diaphragms upon the moving c:rcumference. This coetlicient being introduced according to the practice of Mr. Fourn'yron, we have

$$
D=1 \cdot 3 \sqrt{\sqrt{\sqrt{11}}}
$$

It is here assumed that Q is the greatest volume of water which the machine is cap:able of dischares. ing; but it is to be understool, that smaller guantities may lee employed, ami that the machme is capable of working with atmo-t any lon equatity without Lusing atmy remarkable anmunt of its proportional eflicieney.

The diameter !) may thas be taken as a fumetion of the pewer of the machine, that $i=$, of k, the dynamical ellect in units of horse-pmor. Xins, u-aming the machine to realize Top pre cent. of tho power which it expende, an I that t? is the sobune of water supplied in 1 minute, we hase

$$
\mathrm{K}=\frac{211}{700} . \quad \text { Henee, } 1=\frac{7001}{11}
$$

And, substituting this value of Q in the expresion for D) above given, it beomen

$$
11=1 \cdot 3 / \frac{700 E}{11 \sqrt{ } 11}=35 \sqrt{11 \sqrt{ } 11}
$$

 the latst.
The number of channels, of comrer, ulen sarie as the diameter, but not propertionalts. In the mhen

「1... |1.-.1!;
a third of it will be the number of these fixed compartments. It is, however, easy to percerve that this rule must only be a distant approximation; but esen an approximation is better than no rule where theory seems insufficient to determine the question. The number, according to Prof. Rühlman, depends principally upon the available quantity of water; they must be greater as more water is discharged in a given time. In auy case, a large number of channels is an advantage, when they are formed of thin sheets, as thereby a greater number of filaments of water act directly upon their surfaces, and not indirectly through a mass of other water interposed.

We have above, following the rules laid down by M. Fourneyron, giving the depth of the channels as a seventh of the inside diameter of the turbine; but when the sluice is raised only a small part of this height, as it must be at times when the supply of water is searce, the effect is not only absolutely less: it is relatively so on account of the water losing a portion of its force in diffusing itself over too much epace. To avoid this, M. Fourneyron, in some of his last constructed machines, has divided the turbine, as before intimated, horizontally into two or three stages, by means of thin plates of sheet-iron placed in the channels.

The curvature of the water channels of the turbine and of the guide-curves in the fixed crown, may be determined by the following mode. Describe the interior circumference with radius $o a=\mathrm{D}$, found as above directed ; also the external or greatest circumference of the turbine with radius $o G=14 \mathrm{D}$. These circumferences being described, draw a / b making sin $h a o=\frac{\mathrm{V}}{2 v}$. From the centre o draw od, making with $a o$ an angle $d o a=d a o$; and from the point e, where o d cuts the circle representing the tube or pipe through which the spiadle of the turbine ascends, take $e b$ parallel to $o a$; from b draw $b e$ perpendicular to $a d$, and from d draw $d c$ perpendicular to $e b$; the point c where these two perpendiculars meet will
 be the centre of the fixed or guide-aurve $e d b a$.

To find the curre of the vertical diaphragm $a \mathrm{I}$ of the turbine, draw $a p$ a tangent to the point a; and let $a p$ and $a h$ be proportional to the velocities v and V of the turbine and water: the diagonal $a q$ of the parallelogram constructed upon these two lines will be the direction of the first element of the curve. Prolong aq to G, making a G perpendicular to $a \mathrm{~L}$, which is p a prolonged indefinitely, cutting in K the exterior circumference of the turbine-disk. The point I at which the extremity of the curve terminates, is 2-oth of GK . The two extreme points being thus found, the currature is determined as follows:-From the point K as a centre, and with a radius IK , describe the arc of a circle $\mathrm{I} i$, and prolong indefinitely the right line IK. Measure the line αi, with any scale of equal parts, and divide the number expressing its length by $1-\cos M \mathrm{KL}$, and the quotient number of this division, taken in units of the same kind as αi, will express the length KM . From this point M drarv ML perpendicular to K L; divide ML into any number of parts as $m, m \ldots \ldots$ as many as convenient, and the more the better; from each of these points draw a straight line passing through the point K , and with the length I 1 I in the compasses mark off equal distances from the points $m \ldots \ldots$ on their prolongations beyond K_{K}. and the points thus marked off will be points in the curve $a \mathrm{I}$, which may accordingly be traced through them.

* The attention of American engineers was directed to the improved reaction water-wheels in use in France and other countries in Europe, by several articles in the Journal of the Franklin Institute ; and in the year 1843, there appeared in that journal, from the pen of Mr. Elwood Morris, an eminent engineer of Pennsylvania, a translation of a French work, entitled " Experimeuts on Water-Wheels having a Vertical Axis, called Turbines, by Arthur Morin, Captain of Artillery," etc. In the same journal, Mr. Morris also published an account of a series of experiments, by himself, on two turbines constructed from his own desigus, and then operating in the neighborhood of Philadelphia. The experiments on one of these wheels, indicate a useful effect of seventy-five per cent. of the power expended, a result as good as that elaimed for the practical effect of the best overshot-wheels.

BOYDEN'S TURBINE.* In the year 1844 , Uriah A. Buyden, Esq., an eminent hydraulic engineer of Massachusetts, designed a turbine of about seveuty-five horse-power, for the Picking House of the Appleton Company's cotton-mill, at Lowell, in Massachusetts, in whicli wheel, Mr. Boyden introduced several improvements of great value. The performance of the Appletou Company's turbine, was carefully ascertained by Mr. Boyden, and its effective power exclusive of that required to carry the wheel itselt, a pair of hevel gears, and the horizontal shaft carrying the friction pulley of a Prony dynamometer, was found to be secenty-eight per cent. of the power expended. In the year 1846, Mr. Boyden superiutended the coustruction of three turbines of about one hundred and ninety horse power each, for the same company. By the terms of the contract, Mr. Boyden's compensation depended upon the performance of the turbines, and it was stipulated that two of them should be tested. The mean maximum effective power of the two turbines tested, was eighty-eight per cent. of the power of the water expended.
The principal points in which one of them differs from the constructions of Fourneyron are as follows.
The wooden flume, conducting the water immediately to the turbine, is in the form of an inverted truneated cone, the water being introduced into the upper part of the cone, on one side of the axis of the cone (which coincides with the axis of the turbine) in such a manner, that the water, as it descends
in the cone, has a gradually increasing velocity, and a spiral motion; the horizontal component of the spiral motion being in the direction of the motion of the wheel. This horizontal motion is derived from the necessary velocity with which the water enters the truncated cone; and the arrangement is such that, if perfectly proportioned, there would be $n o$ loss of power between the nearly still water in the principal penstock and the guides or leading curves near the wheel, except from the friction of the water against the walls of the passages.

The guides or leading curves are not perpendicular, but a little inclined backwarls from the direction of the motion of the wheel, so that the water, descending with a spiral motion, meet only the edges of the guides. This leaning of the puides has also another valuable effeet; when the regulating gate is raised only a swall part of the hejorht of the wheel, the guides do mot completely fultil their office of iijrecting the water, the water entering the wheel more nearly in the direction of the radius, than when the gate is fully raised; by leaning the guides, it will be seen that the ends of the guides, near the wheel, are inclined, the bottom part standing further forwarl, and operating more efliciently in directing the water, when the gate is partially raised, than if the guides were perpendieular.

In Fournegron's constructions, a garniture is attached to the regulating gate, and moves with it, for the purpose of diminishine the contraction; this, considered apart from the mechanical difliculties, is probably the best arrangement. In the Appleton Turbine, the garniture is attached to the guidec, the gate (at least the lower part of it) being a simple thin eylinder. By this arrangement, the gate mects π ith much less obstruction to its motion than in the old arrangement, unless the parts are so loosely fitted $a=$ to be objectionable ; and it is believed that the coetlicient of effect, for a partial gate, is proportionally as good as under the old arrangement.

On the outside of the wheel is fitted an apparatus, named by Mr. Boyden the diffuser. The ohject of this extremely interesting invention, is to render nseful a part of the power otherwise entirely lost, in consequence of the water leaving the wheel with considerable volocity. It consists, essentially, of two stationary rings or dises, placed concentrically with the wheel, laving an interior diameter a very little larger than the exterior diameter of the wheel; and an exterior diameter equal to alout twiee that of the wheel; the height between the dises, at their exterior circumference, is a very little greater than that of the orifices in the exterior circumference of the wheel, and at the exterior circumferenee of the dises, the height between them is about twice as great as at the interior circumference: the lirm of the surfaces comecting the interior and exterior circumferences of the dises, is gently romded, the first elements of the curves, near the interior circumferences, being nearly horizontil. There is, consequently, included betreen the two surfaces, an aperture gradually enlariug from the exterion cirumberne of the wheel, to the exterior surkee of the ditfuser. When the rerulating gate is rasel to it tull height, the section, through which the water passes, will be increased by insensible degrees, in the proportion of one to four, and if the velocity is uniform in all parts of the diffuser at the same distance from the whecl, the relocity of the water will be diminished in the same proportion ; or its velucity on learing the diffinser, will be one-fourth of that at its entrance. By the dortrine of living forecs, the pwwer of the water in passing through the diffuser must, therefore be diminished to one-ixteenth of the power at it centrance. It is essential to the proper action of the diffu-er, that it should he entirely under water; and the power rendered usethl hy it, is expended in diminishing the presum uraint the water isuing from the exterior orifices of the whecl; and the effect producel, is the same as if tha available fall under whels the turline is acting, is increased a certain amount. The action of the ditulaeer depents upon similar principles t" that of diverging conical tubes, which, when of certain proportions, it is will known, increase the diselarge. Experiments on the same turbine, with and without a diffuser, slow a gain in the coefficient of effect due to the latter, of about three per cent.

Suspeming the wheel from the top of the vartieal shatt, instemb of ruming it on an step at the bottom. This had been previonsly attempted, but nut with sum sheees as to warrant it cempral whytion.

The manner adopted by Mr. Boyden is fully illustratel in the aceompanyine phane.
T'LIBHNE: WHLEL. P'late V'IIl, is a vertical sortion thromgh the centre of a thrline when, and the axis of the supply pipe. J'late XI. is a phan of the turbine and wheelpit. Fig. isllifisa plan of the whole wheel, tie guides and garmiture. This turhine was cometructel for the Tremont Manfactur-
 penditure of water, umber $1: 3$ fiect hend and fall, is ahout $1: 3$ cul ie teet per secomd, and its ratio of useful etfiect to the power expendel, nhont ia per eent.
13 , the surtuce of the water in the whenhit, represented at the howe heright at wheh tho turhine is
 greut upwarl gressure which tukes place when the whenpit is hept dry by pump, three enst-iron beans
 lail thick phaks, which are firmly sement to the cont-iron beams ly bolt \& To protect the thith phathing fron twing worn ont by the contant mand of the wher, they ure coverat with athoring of ate

 and the leak box 11 , to eatech the hahngen of the hand gate, whenewer it is chasel fir mairs of tho wheel.

 holted at indis end.

proper directiens. They are made of Russian plate iron, one-tenth of an inch in thicknese, secarel to the dise by tenous, riveted on the unler side. The upper corners of the guides, near the wheel, are connected by the garniture L , which is intended to diminish the contraction of the streams entering the wheel, when the regulating gate is fully raised. The garniture is composed of thirty-three pieces of cast-iron, carefnlly fitted to fill the spaces between the guides; they are strongly riveted to the gui le; and to each other.

The upper flange of the dise pipe is furnished with aljusting screws, by which the weight is suppert ed npon the upper curb. The escape of water between the upper carb and the npper flange of the dispipe, is prevented by a band of leather on the outside, which is retained in its place ly the wroughtiron rint P. The top of the dise pipe, just below the upper flange, has two wings, fittinir into recesses in the top of the carb, to prevent the disc from rotating in the opposite direction to the wheel.

In, R, the regulating gate. Represented Plate XI. as fully raised. The gate is of cast-iron ; the upper part of the cylinder is stiffened by a rib, to which are attached three brackets S S. 'To these brackets are attached wrought-iron rods, by which the gate is raised or lowered. To one of the rols is attachell the rack V. The other two rods are attached by means of links, to the levers 'T T. The other ends of these levers carry geered arch heads, into which, and into the rack V, work three pinions, W, of equal pitch and size, fastened to the same shaft. so arranged that by the revolution of the pinion shaft, the gate is moved up or down, equally on all sides. The slaft on which the pinions are fastened, is driven by the worm wheel \boldsymbol{X}; this is driven by the worm a, either by the governor \mathbf{Y}, or the hand wheel Z. The shaft on which the worm a is fastened, is furnished with movable couplings, which, when the speed gate is at any intermediate points between its liighest and lowest positions, are retained in place by spiral springs; in either of the extreme positions, the couplings are separated by means of : lever moved by pins in the rack V ; by this means, both the regulator and hand wheel are prevented from moving the gate in one direction, when the gate has attained either extreme position. It, however, the regulator or hand wheel should be moved in the opposite direction, the couplings would catch, and the gate would te moved. The weight of the gate is counterbalanced by weights attached to the levers T T, and by the intervention of a lever to the rack V.
$b b$, the wheel consists of a central plate of cast-iron, and two crowns cc, of the same material to which the buckets are attached. The buckets are furts-fuur in number, made of Rusian plate irmon, of of an inch in thickness, and are secured to the crowns by grooves cut in the crowns of the exact form of the bnekets, and by tenons entered into the mortises in both crowns, and riveted on the opposite sides.
$d d$, the vertical shaft, of wrought-iron, runs upon a series of collars, resting upon correspon lius projections in the suspen-ion box e^{\prime}. The part of the shaft on which the collars are placel, is mate strarate from the main shaft, and is pinned to it at f, by means of a socket in the top of the main shalt, which receives a corresponding part of the collar piece. The collars are made of cast stect: they are exparately screwed on, and keyed to a wrought-iron spimdle.

The suspension box is made in two parts, to admit of its being taken off ant put on the shat ; it is lined with Bablit metal. It is found that bearings thus lined will carry from fifty to a hundred poumls to the square inch, with every appearance of durability.
$f f f^{\prime}$, the upper and lower bearingz, are of east iron, lined with loabhit metal, aljustable horizoutally by means of serews. The surpention box e^{\prime}, rests upon the gimhal g. The gimbal itself is supported on the frame h h by autjusting serews, which give tho means of raising und hwering the suspen-iou box, and with it, the vertical shatit and wheel. The lower enl of the shaft is fittel with a cast-stecl pius i. This is retained in its place by the step, which is made in three parts, and lined with em-e-hardemel wrought-iron.

The weiflit of the wheel, upright shaft, and bevel geer, is supported by means of the sn-jention hox e^{e} on the frame k, which rests umon the long beams m, reaching:acrons the whelpit, :and supprod at the ends by the masonry, and also at intermediate points by the braces $n n$.

Mr. Francis doduces the fidowing rules for propurtioning turbines:
The sum of the shortest distanes letween the luckete, shomble lee equal th the dinmeter of the wheet.
The with of the crowns should be fine times the shortert distmee between the burkets.
The sum of the shortent di-sames between the cursed guides, taken near the wheel, shouk be epmat to the interior dianneter of the wheel.
'Tho mumber of buckets is, to a certain extent, arbitrary: As a gate in practiee, to be controlled by farticular circumatances, tum limital th dimucters of nut less than two heet, the mamber of buekets should be three times the diancter infere, phas thity. The trenont Tarbine is of fice in diameter,
 of the guides is also to n certain cxtent arlitrary; the proctice nt lawell hus been, 11 suatly, to have from a half to threc-furthe of the numiner of buckets.

As turbines are gromerally used, a velority of the interior ciremaferenen of the wheed, of about fitrysix per cent, of that due the fall neting upon the whed, uphears mont mitable.

Tin lity out the currer of the buckets-

4.tantly on the directrix $m l$, the curve described shall just touch the arc $n o$. A convenient line for a irst approximation, may be drawn by making the angle $O g p=11^{\circ}$. After determining the directrix according to the preceding method, if the angle $O g p$ should be greater than 12°, or less than 10°, the length of the are $g d$ should be changed, to bring the angle within these limits.

The trace adopted for the corresponding guides is as follows:-The number n having been determined, divide the circle in which the extremities of the guides are fond into n equal parts, $v w, w x$, dc. Put ω^{\prime} for the width between two adjoining guides, and t^{\prime} for the thickness of the metal forming the guides We have by rulc $\omega^{\prime}=\frac{d}{n}$. With w^{\prime} as a centre, and the radius $\omega^{\prime}+t^{\prime}$, draw the are $y z$; and with x as a zentre, and the radius $2\left(\omega^{\prime}+t^{\prime}\right)$, draw the arc $a^{\prime} b^{\prime}$. Through v draw the portion of a circle $v c^{\prime}$ touching the arcs $y z$ and $a^{\prime} b^{\prime}$; this will be the curve for the essential part of the guide. The remainder of the guide $c^{\prime} d^{\prime}$, should be drawn tangent to the curve $c^{\prime} v$, a convenient radius is one that would cause the curse $c^{\prime} d^{\prime}$, if continued, to pass through the centre O.

Passot's Turbine, Figs. 3818, 3819, 3820.
"Are composed of cylindrical ressels fixed to vertical arbors, and supplied at the circumference: with orifices intended for the introduction or ejection of the water. The modification which M. Passot has introduced into the old reacting whecls, and which he claims as his invention, consists of having suppressed or got rid of the internal partitions, and reduced the old wheels to their ouly true essential elements-a motive cylinder to contain the motive fluid, with surfaces to receive its action, and corresponding orifices for discharge. The surfaces and the orifices are exactly included between two concentric circumferences; that is to say, that he carefully retrenches all other surface, or projection, capable of impressing the water with the angular movement of the wheel before having reached the parts destined to receive its action, as well as the orifices of discharge. "I form the new wheel," says M. Passot, "simply by placing either in the interior or exterior of a cylindrical drum, according as I want the pressure of the fluid to be exerted on the interior or exterior corved ranes in the arc of a circle, such as $a b c d$, Figs. 3819 and 3820 ; then I make orifices of discharge, by removing from these vanes and from the cylinder the part in form of a wedge, $a b d$, and the motion is effected by virtue of the pressure on the faces $c d, c^{\prime} d^{\prime}, \mathrm{c}^{\prime \prime} d^{\prime \prime}$.
"While the machine is very simple, its properties are rery remarkable. When the wheel turns without load or work, under a given difference of level or fall, its vanes take exactly the theoretical velocity due to the fall. It is no longer the same when in any manner the form of the new wheel is altered so as to approach those formerly known; all partitions, projections, and asperities which are either within or without two concentric circumferences, considerably diminish the theoretic velocity of rotation due to the fall, on account of the continual shock of these bodies in motion against the water in reposc. Then it is not surprising if the useful effect of reacting wheels, when experimented upon, has never risen above 50 per cent. ; that, is to say, about the rate of breast-whecls of the usual varieties.
"The expenditure of water in Fig. 3820 with the internal action, is sensibly independent of the greater or less reaction of the wheel. In Fig. 3819, with external action, this cannot take place on account of the counter-pressure arising from the formation of an eddy in the interior; but this counterpressure is, however, much less than might be supposed. I have demonstrated that when a fluid forms

an eddy in the interior of a cylinder, the effects of the centrifugal force show themselves differently sccording to the different inclinations of the projections or orifices made on the circumference.
"In Fig. 3819 the orifices are di-posed in the direction in which the centrifugal force can least influ
ence the expenditure of mater. Thus the coefficient of theoretical expenditure due to the work, during the experiments on the turbine which I constructed at Bourges, has been found very little different from that which agrees with the openings of ordinary sluices disposed so as to avoid contractions on rhree of the sides. The wheel which turned in work, with aboat halt the velocity due to the fall, and the coefficient, was 0.70 to 0.79 ."
M. Poncelet, adopting an arrangement the reverse of that of M. Fourneyron, has proposed a system of turbines of the nature of the horizontal wheels used in the centre and south of France. The water enters by a spout placed on the outside, stretches the vanes, and is discharged by two openings made tomards the centre. M. Cardellace has constructed at Toulouse turbines on this plan; and Mesirs. Mellet and Sarrus, of Lodeve, have exhibited one with the same arrangement. The principal part ut their turbines consists in a case of particular form, proviled with three openings, of which une is fur the water to enter, and the two others to allow it to escape after its action un the wheel. In cun-equence of the spiral form of this casing, the water arrives on the wheel placed in the interior without any =hock, and with a relocity due to half the height of the fall. Each of these veins ur streams of water acts at the same distance from the axis, as if it were isolated and independent of the other. Its velocity is transformed into pressure by insensible degrees, and without any loss of power.

11 hitelaws reaction-wheel-Figs. $381+$ to 3821 .-The principle of this machine has been already exphaned, it therefore only remains in this place to indicate briefly the practical details and features of the construction. In this latter respect it is a much simpler machine than that above de-cribed; but still its efficiency depends in nearly an equal degree upon a correct appreciation of the principles in. volved in its modus operandi. The merely technical details have already becn pretty fully pointed out in describing the figures enumerated above, but it may be necessary to indicate the rules employed in assimilating these to the conditions furni-hed by the particular circumstances of the individual case.

As in all other hydraulic machines, the data necessary to be assigned as the basis of any calculation of the size and angular velocity of the reaction-wheel, are the values of H and Q, that is, the height of fall under which it is intended to act, and the volume of water to be used. We have before seen that if the water in the arms of the machine experienced no increase of pressure from centrifugal force, the discharge assigned by theory is expressed by $\mathrm{S} \sqrt{2 g I I}$; but in consequence of the centrifugal force produced by the rotation of the machine about its axis, this quantity will be increated to $\mathrm{s} \sqrt{-g \mathrm{H}+v^{3}\left(1-\frac{r^{2}}{R^{2}}\right)}$. But we know from experiment that in consequence of frictional diaturbance of the fluid in passing through the apparatus, the real quantity discharged is uniformly lese than that assigned by theory, and that the reduction depends upon conditions which to some extent are within the control of the mechanician. On this subject we quote, with slight modification, from a paper read by Mr. W. M. Buchanan before the Philosophical Society of Glasyow (1846) on the theory of this species of machine. After stating the loss of head, observed in his experimental apparatus, by comparing the actual fall with the quantity of water actually discharged by a machine, of which the jetorifices were accurately determined, the author assigns, as the sources of that reduction,

1. The pressure absorbed by the friction of the water in passing through the supply-pipe. This he regards as a known quantity, which is expressed in character and amount by

$$
\simeq f \cdot \frac{\mathrm{C}}{\Lambda}, \mathrm{~L} \cdot \frac{u^{2}}{2 g},
$$

in which C denotes the internal perimeter, A , the cross-sectional area, and L the length of the pipe; t , the velocity with which the water descends through it, and f an empirical coetlicient $=0035$, lf, therefore, S denote the sun of the areats of the orifiee I 1 the velocity of efllux, and D the diameter of the pipe, all in feet, this expression may be put under the form

$$
8 f \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~S}^{2}}{\Lambda^{2}} \cdot \frac{\mathrm{~V}^{2}}{2 g}=a \frac{\mathrm{~V}^{2}}{2!}
$$

․ The loss of head arising from the acceleration of the water in passing from the supplype into the interior of the machine through the water-joint neek, formed by the mouth piece and eentral opening, and which is commonly lens in diancter than the supplypipe, as shown in lige asts. This he expresses by the formula

$$
\frac{\Lambda_{u^{3}}{ }^{3}}{\Lambda^{3}}\left(\frac{1}{m}-1\right)^{2} \frac{L^{3}}{!!}=\beta \frac{V^{3}}{L_{y}}
$$

in which $A_{\text {" }}$ is the area of the central opening, and it the velocity of the water passing through it: m a coeflicient determined from experiment to be $=933 \mathrm{~s}$.
3. The small losy of heal resulting from the reastance encombered by the water in traverains the arms of the machine, which he expresses by
 from their origin.
4. The lows resulting from what is called the contracted vein. Although the wohme of water dis. charged by any oritice under a given head prew ure in invariably proportional to the area of that ortice
 oritice through which it issues. If the thit loe conlumed in a vessel of thins matenal, and the oratice to
simply a hole pierced in its side, the discharge in cubic feet per sccond will be nearly expressed by $\frac{5}{8} \alpha \sqrt{2 g \mathrm{H}}$, the area of the orifice being α. If the jet from an orifice of this kind be closely observed. it will be perceived to converge through a short distance from its origin, forming, when the orifice is circular. a conoid, of which the area of the least section is $\frac{5}{8}$ ths of the area of the orifice. If advantage

ve taken of this circumstance to apply an ajutage to the orifice of the form assumed by the jet, the discharge will be found to approximate very closely to that assigned by the theoretical formula.

This difference of discharge in the two kinds of aperture is usually ascribed to the inclined directions which the molecules of the fluid assume previous to their exit, and which they tend to retain after passung the thin parictes of the simple orifice. For greater clearness, let us assume that the aperture is

horizontal, circular, and of small area in comparison with the area of the containing vessel ; under these conditions a large portion of the fluid will be put in motion, and will slowly approach the orifice during the efflux, in the form of an inverted cone, of which the orifice is the apex. The particles, as they come opposite to the orifice, are therefore impressed with motions converging to an axis ; but these motiona, in consequence of the mutual cohesion of the particles, must tend to a common velocity in that axis; and the length of the external conoid will express the time in which the oblique motions are converted into motions parallel to the axis of the jet. It is therefore only at the point of least section that the molecules of fluid have attained the effective velocity due to the head under which they issue; and it is therefore only in reference to that point that the hydranlic pressure of the jet is equal to a column of the fluid of double the actual head. By adopting an ajutage to the orifice of the shape indieated, the oblique motions of the particles are corrected in passing through it, and reduced to parallelism with the axis at the moment of efflux into the atmosphere. There still, however, remains to depreciate the discharge assigned by the formula $q=a \sqrt{2 g \mathrm{H}}$, the imperfections of wormanship in the construction, and the adhesion of the fluid to the perimeter of the ajutage, with possibly a slight atmospheric influence not yet defined. But assuming the ajutage to be made with all possible care, both as to form and finish, if we call the area of the orifice 1000 , that of the contracted vein will be 975 ; and these numbers taken inversely will express the velocity of the jet at the two points measured by the discharge. The value of q for an orifice of this form will therefore be

$$
q=.975 a \sqrt{2 g \mathrm{H}},
$$

showing a loss of head-pressure, as measured by the discharge, of

$$
\left(1-.975^{2}\right) \frac{\mathrm{U}^{2}}{2 g}=.049375 \mathrm{H}
$$

when $\mathrm{U}=\sqrt{2 g \mathrm{H}}$ the theoretical velocity due to the head H . And generally, if V be the actual velocity of efflux, and k the practical coefficient of discharge for any orifice, so that $\mathrm{U}=\frac{\mathrm{V}}{k}$, the headpressure not realized in the measure of q, will be $\left(\frac{1}{k^{2}}-1\right) \frac{\mathrm{V}^{2}}{2 g}=\delta \frac{\mathrm{V}^{2}}{2 g}$. And the pressure not rcalized in the measure of the reaction, will be expressed by

$$
\operatorname{Sin} \phi\left(\frac{1}{h^{2}}-1\right) \frac{\mathrm{V}^{2}}{2 g}=\delta_{i} \frac{\mathrm{~V}^{2}}{2} g
$$

in which ϕ denotes the mean angle formed by the filaments of water of the jet with the axis.
But betwist this the least contraction of the fluid vein, and that which takes place when the orifice is formed in a thin plate, we may evidently have a series of any number of terms expressing successive degrees of approximation of the ajutage to the theoretieal form of least contraction. This is obvions, as regards the discharge from a fised ajutage; and it is equally obrions, that if an ajutage be constructed to fulfil the conditions of least contraction when the ressel is at rest, it will no longer answer that condition when it moves in the line of the jet with any given velocity. If its motion be in the durection of the jet, its length will manifestly be virtually increased, and the contraction will approach to that of a jet issuing from a parallel pipe, the coefficient for which is 8 ; and if the movement be in the contrary direction, the length of the ajutage will be in effect diminished, and the contraction will approach that from an orifice in a thin plate. This last is the actual case which falls to be considered in the reaction machine; the ajutages lave a determinate velocity, in an opposite direction to that in which the fluid issues, and accordingly have their length rirtually reduced. This must necessarily be provided against in the construction of the machine, and a length and form of the ajutages determined, which shall exactly correspond, at the given angular velocity of the machine, to the proper dimensions at which, if stationary, they would yield their maximum discharge. This is a problem which requires to be resolved for every machine.

It may, however, be stated as a general rule, that the contraction of the channels towards the orifices is half of that which would give the maximum discharge if the machine was at rest, and may therefore be taken at 7°.

If to these absorbing influences we add $\frac{\mathrm{V}^{2}}{2 g}$, comprehending the loss of atmospheric pressure due to the head H, and the effect of the cohesion of the water to the perimeter of the orifices, (not valucd,) we shall have as the total calculated loss of head-pressure,

$$
(a+\beta+\gamma+\delta+\varepsilon) \frac{\mathrm{V}^{2}}{2 g}
$$

and putting $a+\beta+\gamma+\delta+\varepsilon=\mathrm{K}$, we shall have as the velocity of efflux, taking the formula of p. 792,

$$
\frac{1}{\sqrt{1+\mathrm{K}}} \sqrt{2 g \mathrm{II}+v^{2}\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)}
$$

In those machines constructed according to the proportions usually adopted by the makers, tho quantity $\frac{1}{\sqrt{1+K}}$ does not differ sensibly in ordinary cases from 0.94 ; and it bas been stated that $R=2.5 r$; if, therefore, we substitute these numbers in this formula, it is reduced to the following:

$$
0.94 \sqrt{2 g \mathrm{H}}+8.8 y^{2}=7.5 \sqrt{11+\frac{1}{77} v^{2}=} \mathrm{V}
$$

And multiplying this last expression by 60 times the area of the two orifices, (in feet,) we shall have, as the quantity of water discharged in a minute, $450 \mathrm{~S} \sqrt{I+\frac{1}{7 T} r^{2}}$ cubic feet $=\mathrm{Q}$.

We have already found as the measure of the effict of the machine $\frac{10}{g}(\mathrm{~V}-v) v$; if, therefure, in this expression we substitute the actual value of V^{\prime} found above, we shall have

$$
\mathrm{E}=\frac{v}{g}\left(r \cdot 5 \sqrt{\mathrm{II}+\frac{1}{77} v^{2}}-v\right) v .
$$

But, in practice, the velocity v of the machine is taken equal to $\$ \sqrt{ } \mathrm{H}$. If, therefore, we substitute this value in that found for E , and put for w its equivalent $62.5 q$, and for g its value $39 \cdot 2$, we shall have

$$
\mathrm{E}=50 q \mathrm{H} \text { very nearly. }
$$

Or, taking the quantity of water expended in a minute, and expressing E in units of horse-power, we have

$$
\mathrm{E}=\frac{\mathrm{QH}}{660},
$$

Which is this rule: Multiply the quantity of water expended in a minute by the given height of fall, and divide the product by 660 : the resulting quotient will express the effect in units of horse-power, (the horse-power being $33,000 \mathrm{lbs}$. raised through a height of 1 foot in a minute.)

This rule shows that the machine ought to yield, in practice, an effect of $79 \frac{1}{3}$ per cent. of the power expended, independently of the partial losses of head above enumerated, taking the fall from the middle of the depth of the machine to the surface of the water in the reservoir.

Height of fall. tI.	Quantity of waler expended in 1 minute. Q.	Weight on tho arms of the friction brake. p.	Velocity in the circle of the brake. r.	Percentage of etfect. $100 \frac{\mathrm{~V} \text { II }}{p \mathrm{o}}$.	Diameter of mudel.
Feet.	Cubic feet.	Oz.	Feet.		$7 \frac{1}{2} \mathrm{in} \text {. between centres of jets. }$
9.385	10.169	9	5910	75-212	
10-3์0	11.530	93	9510	76.664	
10.355	10.360	$10 \ddagger$	78.0	74.933	
10.110	10.330	10	7820	$74 \cdot 433$	
10.040	10.338	"	7900	T6:333	
9.735	10250	97	7820	76.830	
9.575	9790	"	7330	76460	
9.390	$9 \cdot 305$	"	6690	74.868	
$10 \cdot 335$	11.090	"	8960	76.440	
10.165	11.010	"	S840	77.236	
9.830	10.350	"	8030	57.173	
$9 \mathrm{9b5}$	10.080	"	8420	77.857	
	10.710	"	8580	78.040	
10.790	13.69	$20 \pm$	5340	74.945	
10.515	13:14		$5 \geqslant 10$	76.015	
10.415	13.05	"	5040	$76-37$	
10-250	12.74	"	49190	56845	
$10 \cdot 130$	12.73	"	. 15%	77.64	
9-9<0	12.18	"	. 1630	$76 \cdot 125$	
9,420	12.41	"	4500	75.75	
9650	11.92	"	1250	56420	
$9 \cdot 510$	12.33	$20\}$	4690	75000	
$9 \cdot 7100$	12.45	193	1750	57910	
9450	12.40	2016	1700	75.320	
10.80	1265	21	17.10	76860	
$10 \cdot 160$	10.17	2	1510	76500	
	1.124				
$8 \cdot 05$	56238	14	37620	72.69	
"	56033	113	36×51	7113	
"	5585	15	36.473	75.81	
"	55361	15.5	31545	7601	
"	518:36	16	33 sid	7654	
"	$530 \cdot 10$	1 il	$320: 5$	77.89	
"	5112	17	29737	$76: 31$	

 In elfict is attamable: In the experments with the firat motels, the fall was varibhe, mat the proper relocity of the machine whe, therefore, in the cave stractly uttamed. The correct velocity was mot at.
tained in the third set of experiments, although the fall was constant, in consequence of the successive variations of load being too great. The maximum of effect is therefore not obtained in any of the results given, but some of the results approach it very closely.

The mode of performing the experiments was nearly the same thronghont. The load was applied upon the equal arms of a friction brake of 1.59155 feet radius, (as nearly as could be measured,) so that its circle was exactly 10 feet. The repolntions of the machine were iscertained by a counter worked by a screw cut on its vertical spindle; and the water discharged was received into a cistern, of which the dimensions were accurately determined. The circle of the arms of the brake at the points where the weight was attached being 10 feet, the numbers in the colnmn stating the velocity in that circle being divided by 10 , the quotient will, of course, show the number of revolutions made by the machine in the unit of time, 1 minute.

The constructive rules, published by Mr. Whitelaw in the Artizan for Nov. 1845, are as follows, the height of fall and the quantity of water furnished in a minute being known:

A horse-power being taken at $33,000 \mathrm{lbs}$ raised one foot in a minute, this will be represented by $43,421 \mathrm{lbs}$. of water per minute, with a fall of one foot, supposing the machine to realize only 76 per cent. of the power expended; and the weight of a cubic foot of water being taken at 62,321 lbs., the equivalent of $43,421 \mathrm{lbs}$. will be 696.73 cubic feet. Taking Q and H as before, the quantity of water furnished in a minute and height through which it descends, we have as the value of E in units of horsepower,

$$
\mathrm{E}=\frac{\mathrm{QH}}{696.73}
$$

From this the dimensions of the principal parts and the velocity of the machine are determined, as stated in the following expressions-it being understood that the machine has two, and only two jet orifices, and these so formed as not to cause the issuing jets to contract more than in the proportion of 97 to 100 after the fluid has left the orifices.

$$
\text { Width of each discharging orifice }=\sqrt{1000 \mathrm{H} \sqrt{ } \mathrm{H}}=\mathrm{w}
$$

Width of each arm of machine $=4 w_{l}=w_{\|}$
Diameter of the machine $=50 \mathrm{~W}=\mathrm{D}_{l}$
Diameter of central opening $=10 \mathrm{~W}=\mathrm{D}_{1 /}$

$$
\text { Number of revolutions in a minute } \frac{1494338 \sqrt{ } \mathrm{H}}{\mathrm{D}_{i}}
$$

All these rules, except the last, may be departed from with impunity ; but it is impossible to enumerate the circumstances and conditions under which modifications may be safely introduced, and where they would be prejudicial. These can only be appreciated by practice and a close investigation of the action of the machine. The rules are, however, safe within a wide range of fall-in fact, for all ordinary cases.

Comparison of the different species of wheels.-From what we have seen of the different conditions necessary to produce the maximum effect, it is evident that we ought not to be indifferent to the kind of wheel to be adopted in any particnlar case. The wheel ought especially to be adapted as far as possible, net only to the height of fall and quantity of water to be employed, but also to the kind of machinery which it is intended to propel. If the motion required be slow, and especially if it be besides irregular, a vertical wheel, of large diameter and considerable weight, will in general be the most sat isfactory. On the contrary, where a high velocity is required, a horizontal wheel will be the most economical. The undershot-wheel is only commendable in cases where no other is applicable, on account of the lowness of the fall and large supply of water. It has the advantage, however, of being constructed at comparatively small cost, and if the run of the water be considerable, its velocity will be proportionally high in order that it may yield its maximum effect. Its great inconvenience is the smallness of that effect, which is in part remedied by employing the arrangement recommended by M. Poncelet now extensively adopted on the continent. This may be made to yield an effect of 50 to 60 per cent. of that of the water, when the head of water does not exceed $4 \frac{1}{2}$ feet. It also takes comparativcly a high velocity, and it is to be kept in mind that the higher the relocity of any wheel of this species, the less will be its breadth, size of sluice, are, and other parts influenced by the volume ot water. It will, moreover, continue to work in backwater until the levels before and behind approach equality, and is therefore particularly fitted for level districts subject to inundations. It is, however, liable to this inconvenience, that its velocity cannot deviate sensibly from that at which it yields its maximum effect without losing greatly in power.

From falls from 4 to 7 feet, the breast-wheel with radial floats inclosed in an are may be employed with advantage. If well constructed, and the arc be accurately fitted, to prevent waste of water, this species of wheel is capable of yielding from 60 to 70 per cent. of the power of the water expended. It may besides deviate very considerably from the correet velocity without losing much in effect; but it is to be observed that this velocity ought never to be very high. This species of wheel is therefore particularly applicable in cases where the ultimate velocity of the machinery impelled is low; but it lies under the disadvantage that, on account of the slowness of its motion, its breadth must be great, and all its constructive details conformably large and heavy. It is, besides, not well suited for situations subject to backwater, which very speedily brings it to rest. The bucket-wheel is applicable for higher falls and smaller supplies of water. It has all the advantages of the breast-wheel, with some of its defects. It may have a velocity varying from 3 feet a second to 7 feet; and adopting this higher speed, and allowing the buckets to be half filled with water, its expense will be greatly lessened
tamef of the fropontions of water-whele constrelted hy mr. whllam rahemalrn, of manchester.

When the fall is high， 18 feet and upwards，it is not common to provide any are to economize the wa． ter at the lower part of the revolution；and when the buckets are properly formed，an are is not greatly wanted．But in general cases the buckets are formed without much attention seemingly to the func－ tions which they are intended to perform，and，accordingly，a large waste of power is incurred whick an are would go far to prevent．
The inconvenieuce of the bucket－wheel is the low rate of its maximum speed where high working velocities are required．This occasions the multiplication of intermediate geering with all its concomi－ tant evils．It is applicable，we have said，to high falls；but this has its limits．To obtain the full value of the water，the diameter must increase as the fall，and the dimensions and weight assume cor－ responding proportions．The construction，accordingly，becomes expensive in a high degrec．
The preceding table of the proportions of wheels of this class，constructed by Mr．William Fairbairn， of Manchester，will be useful．
When the height of fall exceeds that for which it would be judicious to attempt to construct a bueket－ wheel，it is then necessary to have recourse to one or other of the horizontal wheels described－namely， the turbine of M．Fourneyron，or the reaction－wheel of Mr．Whitelaw．The first of these may be made to yield an effect of about 50 per cent．of value of the water even on very low falls，and when immersed in tail－water；and about 70 per cent．on higher falls．The latter has also been made for situations in which it was intended to work occasionally in backwater，and with very considerable suceess；and，for high falls，we have seen that it is capable of yielding an effect at least equal to the bucket－wheel．It has advantage of the turbine in being less expensive，much more simple，and，we believe，is essentially more effective，on account of there being less loss of vis viva of the fluid in passing through the ma－ chine．Both have the advantage of being applieable to falls of any height，and of moving at relocities differing widely from that at which they yield their maximum，without much loss of effect．On low falls they have，what is generally reckoned，an advantage；they give immediately a comparatively high velocity which，in the case of cotton factories and the like，allows much heavy geering to be dis－ pensed with．They have also a further very marked advantage in the little space which they occupy Several reaction－wheels，of 50 horse－power and upwards，might be referred to，placed in situations where，it may be said，they literally occupy no room，being situated in a small pit under the floors of the factories to which they furnish the motive power．In eases where the fall is very bigh－and both the turbine and reaction－wheel have been applied to falls which could not have been employed on wheels of the common kind－the high speed beeomes an inconvenience，causing the use of intermediate geering for the purpose of reducing it．This can be remedied，to a certain extent，by increasing the diameter of the machine；but，when it is desired to take advantage of falls of 100 feet and upwards， perhaps some little incouvenience may be submitted to without reluctance．

There remains to be exhibited the turbine of Jonval，now being introduced in this country extensively．
Jonval＇s Turbine，as built by E．Geyelin，Mydraulic Engineer，Philadelphia．－The Jonval turbine was invented and patented in France a few years since，by a Freneh gentleman whose name it bears．

The first turbine of this species，made by Messrs．André Koechlin \＆Co．，was ereeted and put in operation in a large paper mill at Pont d＇Aspach，in the vicinity of Mulhouse，upon which a committee of the Société Industrielle de Mulhouse experimented，and reported the following tables of the results．
The experiments were made with the friction brake of Prony．
Table of experiments with the Friction Brake，made on the Turbine of Pont d＇Aspach，and reported by Mr．Amedé Rieder，Mcmber of the Committee of the Industrial Socicty of Mulhouse．

					Theoretic pow－ er of the Motor．			$\begin{gathered} \text { Number of revolutions } \\ \text { of the Turbine. } \end{gathered}$			Effectiv of the M．\exists 		
	1	$0 \cdot 187$	439	2.87	1.259	16\％$\%$	70.00	76.00	38.00	12．29	856	924	6
	～	$0 \cdot 190$	447	$2 \cdot 87$	1\％82	17．10	65.00	96.00	48.00	$15 \cdot 448$	1004	14.72	86
	3	$0 \cdot 195$	463	$\underline{2} \cdot 90$	1－351	18.03	57.00	134.00	$6 \because 00$	19.94	11：36	15．15	8.
	4	$0 \cdot 195$	463	$2 \cdot 82$	$1 \cdot 305$	$17 \cdot 47$	$47 \cdot 00$	$134 \cdot 00$	$67 \cdot 00$	21.56	1013	13：50	7
	5	$0 \cdot 195$	463	9.71	1.254	16.73	37.00	164.00	82.00	26.39	976	13.02	77
	6	$0 \cdot 198$	473	$2 \cdot 93$	$1 \cdot 399$	$18 \cdot 65$	35.00	$178 \cdot 00$	89.00	$28 \cdot 64$	1002	13：36	$i=$
	1	$0 \cdot 39$	639	2.78	1.776	23.68	89.80	84.00	49.00	13.51	1913	16.17	68
	$\stackrel{9}{2}$	0：243	651	2.78	1．818	24．24	67.25	124.00	69.00	19.94	1341	17.85	73
．	3	0.34	（6．） 4	$2 \cdot 78$	1818	24.24	6.500	128.00	64.00	20.59	1338	$17 \cdot 4.5$	73
5	4	$0 \cdot 230$	641	$2 \cdot 78$	1.782	23.76	$67 \cdot 35$	$128 \cdot 00$	64.00	20.59	1385	$18 \cdot 17$	77
	5	0295	581	9.78	$1 \cdot 618$	21.57 ．	52.00	$134 \cdot 00$	67.00	21.56	14：1	$14 \cdot 95$	69
\％	8	$0 \cdot 20$	669	2.8	1.859	2478	60.00	142.00	71.00	22.8	1371	17．06	73
告	8	0.245	669	9.78	$1 \cdot 859$	$\stackrel{2178}{2}$	57.25	144.00	$72 \cdot 00$	$23 \cdot 15$	1326	17.68	71
	9	0.248	678	2.78	1.884	$2 \cdot 13$	$50 \cdot 00$	164.00	82.00	$26 \cdot 39$	1319	17.59	70

General Obscrvations．－The metre is 3 feet 3 and 1－8 inches．
It will be obscrved here，that only a very strong change in the speed will alter the percentage of the wheel．The large wheel was in bad condition，as the guide－wheel rested on the turbine and created friction．

M. Amedé Rieder, in his report on Jonval's turbine, enumerates the following as its advantages:

1 st. Its superior mechanical construction and simplicity.
2d. The great amount of power obtained from the quantity of water used.
3 d . The regularity of its motion, and the facility of access to it.
4 th. The great practical advantage of its being placed at the top of the fall.
Experiments have been made on a Jonval turbine at the powder-works of Messrs. E. J. Dupont, by Professor Cresson, and Messrs. Alfred Dupont, Alexis Dupont, S. V. Merrick, G. Harding, and E. Geyelin, members of the Franklin Institute. The following is the report, published in the Journal of the Institute, vol. xx., No. 3, 1850.
The Foechlin turbine.-The hydraulic motor known by this title has just been introduced in this vicinity by Mr. E. Geyelin, at the powder-works of the Messrs. Dupont, near Wilmington, Delaware, and at his request a trial was recently made by certain members of the Institute, to determine the practical coefficient of the wheel.

The turbine experimented upon is intended to produce 7 horse-power under a fall of 10 feet, and to drive the machinery of the new mixing mill at the lower works. It is $21 \frac{1}{4}$ inches in diameter, $3 \frac{1}{2}$ inches deep, and is to make 190 revolutions per minute, giving $63 \frac{1}{3}$ revolutions of a horizontal shaft, to which it is geered 3 to 1 . To this shaft was attached a Prony dynamometer, whose lever was 7.96 feet long, giving 50 feet circumference. At the time of the experiments, a wooden box, nearly water-tight, was placed in the tail-race, surrounding the lower part of the wheel. One side of it was cut away, forming a waste-board 3.83 feet wide, over which the water was discharged, and at the same time diminishing the usual head and fall about 9 inches.

Experiment No. 1. -The distance between the level of water in the penstock or forebay and that of the bottom of the waste-board was $10^{\prime} 1^{\prime \prime}$, and the depth of water flowing over the waste-board $8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, learing the actual head and fall $10^{\prime} \cdot 1^{\prime \prime}-8 \frac{1}{8}{ }^{\prime \prime}=9^{\prime}, 4 \frac{7}{8}=9.34$ feet. By Morin's formula, (Aide Memoire, p. 37,) $\mathrm{Q}=m \mathrm{~L} h \sqrt{2 z h} ; Q$ being discharge per second, m the constant, which for $\cdot 74$ depth $=383, \mathrm{~L}=$ width of waste-board, $=3.83$ feet, and $h=$ depth of water p pon $\mathrm{it},=74$. Then in this case $\mathrm{Q}=383 \times$ $3.83 \times 74 \sqrt{6 \pm \times \cdot 74}=7.468$ cubic feet, and the theoretical power due to the water was 7.468×62.5 $\times 9.3 \pm \times 60=261,037 \mathrm{lbs}$. raised 1 foot per minute $=7.92$ horse-power.

It was found that at 63 revolutions per minute of the horizontal shaft, 63 pounds balanced the lever Hence the power developed by the wheel was $63 \times 63 \times 50=198,450 \mathrm{lbs} .=6.014$ horse-potrer.

Experiment No. 2.-The gates from the head-race were so far closed as to reduce the head 1 foot, and maintain it at that level during the experiment. The depth of water on waste-board was $8 \frac{1}{3}{ }^{\prime \prime}$, su that the head and fall was $9^{\prime} 1^{\prime \prime}-8_{\frac{1}{8}}^{\prime \prime}=8^{\prime} \cdot 4 \frac{7^{\prime \prime}}{8}=8^{\circ} 41$ feet. Therefore, by the same formula, m being ' 39 for this depth, $\mathrm{Q}=39 \times 3.83 \times \cdot 677 \sqrt{64 \times \cdot 677}=6.66$ cubic feet, and the theoretical power due to the water was $6.66 \times 62.5 \times 8.41 \times 60=210,000 \mathrm{lbs}$. raised 1 foot per minute $=6.36$ horse-power.

It was found that 63 pounds balanced the lever at 49 revolutions per minute of the shaft. Hence the power developed by the wheel was $49 \times 63 \times 50=164.350 \mathrm{lbs}$. $=4.98$ horse-power.

$$
\text { The coefficients are, then, for experiment No. } 1, \frac{6 \cdot 014}{7 \cdot 92}={ }^{\circ} 60 \text { per ct. }
$$

$$
\text { " « " No. 2, } \frac{4.98}{6.66}=783
$$

And making allowance for leakage around the waste-board box, which was partially counterbalanced by the friction of the geering and horizontal shaft, the useful coefficient of the wheel may be taken at 75 per cent., and, as has been seen, remains the same when the wheel is working at 5 horse-power, which is but 70 per cent. of its full power.

For the information of those who are not familiar with this wheel, it may be stated that it is placed as noar the top of the fall as possible, and revolves within a cast-iron pipe leading below the level of the tail-race. The "curved guides" are directly over the wheel, and may, therefore, be easily reached for cleaning or repair These curved guides are disposed radially around a hub, curving spirally around It as they descend, in such a manner that any horizontal linear element of a guide is in a radial line drawn from the axis. The buckets of the wheel are similarly curved, but in an opposite direction.

The following experiments were made on one of the 60 -horse power turbines of Messrs. Jessup \& Moore, with a dynamometer of Prony, and the quantity of water calculated by an overflow discharging in the open air.

Effctive power $=\frac{\mathrm{R} \times \mathrm{C} \times \mathrm{W}}{33000} \mathrm{R}$, number of revolutions per minute; C , circumference of the lever; W , the weight of the lever and balance.

$$
\begin{aligned}
& \mathrm{R}=104 . \quad \mathrm{C}=80 \text { feet. } \mathrm{W}=223.50 \mathrm{lbs} . \\
& \text { Effective power }=\frac{10 \pm \times 50 \times 223.50}{33000}=56.30 \text { horse-power. }
\end{aligned}
$$

Theoretical power of the water $=\frac{\mathrm{Q} \times 62.5 \times \mathrm{F}}{33000}$. Q, number of cubic feet of water discharged through the wheel per minute. 62.5 , weight in pounds of the cubic feet of water. F , fall of the water in feet and fraction.
The quantity of water was measured by an overflow of 172.875 inches width. The depth of water discharging through it was $13 \frac{11}{16}$ inches. This, with the coefficient of contraction, $0 \% 55$, adapted by Mr Poncelet for large overflows, gives $359 \pm$ cubic fect of water per minute. The total fall during the operation of the turbine was 8 feet $10 \frac{3}{4}$ inches, $=8.89$ feet.

Hence the theoretical power is $\frac{3594 \times 62.5 \times 8.59}{33000}=63.22$ horse-power.
Effective power, $\quad 56.30\} 0.88$ coefficient of the turbine. Theoretical power, 63.92
General description of the Jonval Turbine.-Fig. 3823 represents a vertical section of a turbine. A represents the movable wheel, consisting of a cast-iron rim, having a given number of wrought-iron buckets, of the proper curre, mortised jato and riveted to it, and occupying the space marked B; it is keyed to the main or upright shajt C , and revolves freely in the cylinder D , the outside of the buckets and tho cylinder having a small space between them. The stationary ucheel E cousist: of a cast-iron rim, hav

ing also a given number of wrousht-ironguides mortieed into and riveted to it, and weupring the space F. This wheel occupies the conical part of the cylinder, just abowe the mosable whed, with sufficient space between them to allow the movable whed to revolve freely. The upper edses of the guiders are level with the upper surface of the hanch of the cylinder. The upri ht shatt Chas its hower bearing or ktep ruming in the oil-bex 15 ; the upf"r bearing " $C^{\prime \prime}$, runs in a peethotal attached to the hridge G. This bridge, made of east-iron, is supportal on some: of the cross timbers of the fircbay, and supports also the peedestal for the journal of the line-shaft J .

Vof. 11.-57

The serew R is moved by the hand-wheel or governor S . The cylinder D D D, east in one or more pieces, is supported by the timbers TT. U represents a section of the forebay and tail-race. The oilbox is filted with oil through the gas-tube a, which runs from the top of the forebay. The tube marked b is to allow the air to escape from the box when it is being filled; that marked c is for drawing off the oil when it is necessary to change it. Should the step wear any, the toe can be changed with great ficility. The oil-box is held to its proper position in the bridge by set-screws $h h$. As it is represented in the different figures of this article, there are sometimes wooden steps where it is preferred.

The operation of the rcheel.-The operation of this wheel is very simple; the top of the cylinder 14 placed from 4 to 6 feet from the upper level of the water, or at a sufficient distance to prevent the water from becoming agitated; thus it will be seen that the movable wheel or turbine is suspended between the two levels of the fall. The water is made to come on the wheel and leave it so as to exert
its utmost effect by the proper construction of the guides and buckets, which, together, form an annular section. The following is the action of the water di-charging through the whects.

The water, as it leaves the forebay, follows the guides of the stationary wherel, curved in a spiral form, and leares them at an angle of 16° to the horizontal line and tangential to the circumference, and thus presses on the movable wheel, which, by the proper course of its buchets, retrogrades and hets the

 a conic:al pile, and has the affect of throwint the phes liak.

 tangential to the circmonference.

The water discharged through this contracted space falls in a large air-tight cylinder, and descends, partially suspended by the tendency of vacuum, to the tail-race. The following is the effect of the col ums of water on the wheel.
As mentioned above, the column of action on these kind of turbines is divided into two distinct onesIst, from the upper level of the fall to the upper part of the turbine; $2 d$, from the upper part of tha turbine to the lower level of the fall.

The first part of the column operates by the same laws as in ordinary wheels, that is to say, the fuantity of water multiplied by the velocity corresponding to the height of the fall. The second part of the column, that is to say, from the turbine to the lower part of the fall, would, in ordinary wheels Which discharge in open air, be of no additional effect to the wheel, as the water would leave this point without velocity, and would only fall by its gravity; but by this peculiar arrangement of excluding the air from the whole column by means of an air-tight cylinder immersed in the lower level of the fall, the water passing through a contracted part of the air-tight cylinder discharges in a larger part, which also, below, has a larger discharge than admission from the wheel.
The water, consequently, cannot fill the whole space of the cylinder below the wheel, and the ait would rush in to fill the vacant space, but this element being completely excluded, the tendency th
form a vacuum keeps the column of water su-pended to the proportion of the height to that of perfect vacuum; and the velocity which the water would, through its gravity, acquire at the lowest part of ita fall, would be communicated to the upper part, where, instead of presure, the water acts as suction.

This principle is true as far as the tendency of vacuum can be rendered perfect, (hat is to suy, to the height of $s \geq$ feet) and thus produce by suction an equal in effect to the atmospheric pressure; abure this the surplus of pressure would force air in the column from belorr, and so reduce the effect, which, in placing the whecl below 32 feet from the lower lesel, would be equal to pressure.
licduction of pover in the whel. -The difference of quantity of water in dry and wet seasons, and also the difference of power used in certain kinds of mills, at different times, in the working operations, have shown that it is necessary for these iron wheels to be adaptable to these changes.

In consequence of their operating with much higher speed than wooden wheels, the difference of power affects its operation more sensibly if there is no means to regulate it.

Various forms of gates have been tried, but not found to give full satisfaction. In theae whects there have been employed a series of morable divisions, by which a part of the inmer periphery of the wheed is inclosed, and the whole water to be absorbed is thrown to the external periphery. This arramgement has been most satisfactory in its operation, and a wheel used for 60 horse-purter in wet feasons can operate at 40 horse-power in dry seasons, and does not vary in its percentare more than 5 to 6 per cent. in its effect by this change.

 in elfect.

 ol fall, but shoul! the fall remain the satue, the batkwater would mot hawe it boul eflicet.

 pumped ont of the tril race.

The Jonval turbines are guarantied to give, 1 st, 75 per cent. of its effect with a fall from 30 feet and abore down to 12 feet. 2d, 70 per cent. of its effect with a fall from 12 fect to 6 feet. $8 d, 60$ per cent. of its theoretical effect from 6 feet to 4 feet.

These wheels are built by Mr. E. Geyeliu, Philadelphia.
Figs. 3827 and 3828 , elevation and plan of a 15 horse-power turbine, built by E. Geyelin for Mr. Le Carpentier, Philadelphia. Fig. 3824, section of the turbinc-wheel of the same.
Figs. 2840 and 3841 , plan and elevation of a turbine of 50 lorse-power, 22 feet fall, in operation in the paper-mill of Messrs. Manning, Peckham, \& Howland, of Troy, New York, built at the West Point Foundry, by E. Geyelin.

Fig, 3842, turbine built at the powder-works of the Messrs. Dupont, Wilmington, Delaware.
Fig. 3843, turbine built for the Fairmount Water-works of Philadelphia.
WEIGHTS AND MEASURES. The weights and measures of this country are identical with those of England. In both countries they repose, in fact, upon actually existing masses of metal (brass) which have been individually declared by law to be the units of the system. In scientific theory they are supposed to rest upon a permanent and universal law of nature-the gravitation of distilled water at a certain temperature, and under a certain atmospheric pressure. And in this aspect, the origination is with the giains, which must be such, that 252,458 of these units, in brass, will be in just equilibrium with a cubic inch of distilled water, when the mercury stands at 80 inches in a buxometer, and in a thermometer of Fahrenheit at 62 degrees, both for the air and for the water. Unfortunately, the expounders of this theory in England used only the generic term brass, and failed to define the specific gravity of the metal to be employed; the consequence of this omission is to leave room for an error of $\frac{1}{10000}$ in every attempt to reproduce or compare the results. This is the minimum possible error: the maximum would be a fraction of the difference in specific gravity between the heariest and lightest brass that can be cast.

Length. -1 yard $=3$ feet $=36$ inches $=432$ lines $=5184$ seconds $=62,208$ thirds.
In the actual government standards at the custom-houses, the yard is divided decimally into tenthe and hundredths.

In the measurement of cloths, muslins, linens, cottons, silk, and in general of what are termed dry furds, the yard only is used-subdivided into halves, quarters, eighths, sixteenths, and half-sixteenths. Mis lowest denomination $=1 \cdot 125$ inch.

Surreyors and engincers employ neither the yard nor the inch, but use the foot and its decimal divisions.

Architects and artificers reckon by the foot and subdivisions, as given above. Nevertheless, the most usual and most recent workmen's scales bear the foot divided into inches, and eightlis and sixteenths of an inch.

Mariners measure by cable-lengths and fathoms:
1 cable-length $=120$ fathoms $=240$ yards $=720$ feet.
The unit of length—the yard, upon whose subdivisions all the weights and capacity measures repose for verification-is, in fact, derived from ancient arbitrary standards of England. In theory, the inch-the $1-36$ th of the yard-is presumed to be contained $39 \cdot 13929$ times in the length of a pendulum that, in a vacuum, and at the level of mid-tide, under the latitude of London, vibrates seconds of mean time.

Itinerary- 1 statute mile $=2$ half miles $=4$ quarter miles $=7 \frac{1}{3}$ cable-lengths $=8$ furlongs $=80$ chains $=320$ perches or poles $=880$ fathoms $=1760$ yards $=5280$ fect $=8000$ links $=63,360$ incles.

1 nautical league $=3$ equatorial miles $=3.457875$ statute miles.
Chains and links are denominations employed by land surveyors, thus:
1 chain $=4$ poles $=66$ feet $=100$ links.
Agrarian and superficial. -1 square mile $=640$ acres.
1 acre $=4$ roods $=10$ square chains $=160$ square perches $=4840$ square yards $=43,560$ square feet 1 square yard $=9$ square feet $=1296$ square inches.
Architects and builders reckon 1 square $=100$ square feet.
Liquid capacity. -1 gallon $=2$ half gallons $=4$ quarts $=8$ pints $=16$ gills.
The gill is not among existing standards of public authority, though it is used in commerce. There are other denominations higher than the gallon, such as barrels, hogsheads, pipes, ctc., but these are only vessels, not measures, and are always gaged and sold by their actual capacity in gallons. The gallon, in fact, is almost exactly equivalent to a cylinder 7 inches in diameter and 6 inches high. In theory, it must contain just 231 cubic inches; and, filled with distilled water at the temperature of maximum density, (say $39^{\circ} .8$ Fah., weighs, according to the official report, at that temperature, and at 30 inches of the barometer, 8.339 commercial or avoirdupois pounds; or, mere nearly, $58372 \cdot 1754$ grains. It is in the temperature only that this unit differs from the former wine-gallon of Great Britain.

The apothecaries use the same gallon, but divide it differently, as follows:
1 gallon $=8$ pints $=128$ fluid ounces $=1024$ fluid drachms $=61,440$ minims (or drops) $=231$ cubic inches.
These are gradnated measures: they also use sometimes the following approximate ones from ressels in domestic use :

$$
1 \text { tea-cup }=2 \text { wine-glasses }=8 \text { table-spoons }=32 \text { tea-spoons }=4 \text { fluid ounces. }
$$

Dry capacity. -1 bushel $=2$ half bushels $=4$ pecks $=8$ gallons.
There are also in this, as in the former measure, higher denominations (barrels, sacks, etc.) known in commerce, whose capacity is intended to be constant. They are, however, always gaged by the bushel. This bushel is the old Winchester bushel of England. In fact, it is a cylinder 18.5 inehes in
diameter, and 8 inches deep. In theory, it must contain 215042 cubic inches, and holdz, of distilled water at the temperature of maximum density, and at 30 inches of the barometer, 77.62 .4 commercial or avoirdupois pounds; or, more nearly, 543391.89 grains.

Solid.
1 cubic yard $=27$ cubic feet $=46,656$ cubie inches.
1 cubic foot $=12$ reduced feet (plank measure) $=1$ i.2 cubic inches.
1 reduced foot (plank measure) $=1$ square foot $\times 1$ inch thick $=14.4$ cubic inches.
In practice, all planks and scantlings less than an inch in thickuess are reckoned at an inch.
1 perch of masoury $=1$ perch ($16 \frac{1}{2}$ feet) long $\times 1$ foot lijgh $\times 1 \frac{1}{2}$ foot thick $=25$ cubic feet.
In fact, the dimensions given for the perch do wot result in 25 cubic feet, but this last number has been adopted for convenience.

1 cord of fire-wood $=S$ feet long $\times 4$ feet high $\times 4$ feet deep $=12 S$ cubic fert.
Weight.
1 mint or troy pound $=12$ ounces $=240$ pennyweights $=5760$ grains.
1 apothecary pound $=12$ ounces $=96$ drachms $=288$ scruples $=5760$ grains.
1 commercial pound $=16$ ounces $=256$ drachms $=7000$ grains.
1 long ton $=20 \mathrm{cwt} .=80$ quarters $=2240$ commercial pound.
1 short ton $=20$ hundred weight $=2000$ commercial pounds.
In the actual goveroment standards the ounce troy is divided, decimally, down to the $\frac{10}{\text { Io }}$ ou part.
tables of toitrd states weigits ind medsures.
MEASURES OF LENGTII.

Estimating a mile at $6139 \frac{1}{3}$ feet, and using a $20^{\prime \prime}$ glass. If a $2 S^{\prime}$ glass is used, and eight divisions, then

The line should be about 150 fathoms long, having 10 fathoms between the chip and first knot for stray line.

Note.-Bowditels gives 6120 feet in a sea mile, which, if taken as the length, will make the divisions 81 fect and $51-10$ feet.

Cluth.

Shocmakers'.

No. 1 is $4 \frac{1}{8}$ inchew in longth, and every succeoding number is $\frac{f}{6}$ of an inch.
There are 28 divisions, in two series of numbers, viz., from 1 to 13 , mid 1 to 15 .

Circles.

Miscellaneons.

The standard of measure in a brans rod, which, at the temperature of $y^{2} \mathrm{~J}$ finhenheit, is the standerd yurd.

United States standard bushel.-The standard bushel is the Winchester, which contains 2150.42 cubic inches, or $\uparrow \uparrow 627413 \mathrm{lbs}$ a avoirdupois of distilled water at its maximum density.

Its dimensions are $18 \frac{1}{2}$ inches diameter inside, $19 \frac{1}{2}$ inches outside, and 8 inches deep; and wher heaped, the cone must not be less than 6 inches high, equal 2747.70 cubic inches for a true cone.

measures of weigitt.
Avoirdupois.

Coals are usually purchased at the conrentional rate of 28 bushels (5 pks .) to a ton $=43^{\circ} 56$ cubse feet MEASCRES OF VALUE.

1 eagle	58	troy grains.
1 dollar	$=4125$	
1 cent.	$=168$	"

The standard of gold and silver is 900 parts of pure metal, and 100 of alloy, in 1000 parts of coin. measlres of lejgtif.
Bertisu.-Yard is referred to a natural standard, which is the length of a pendulum vibrating secands in vacno in London, at the level of the sea; measured on a brass rod, at the temperature of 62° Fabrenheit, $=39 \cdot 1393$ inches.

Frexcii.	Old system.-1	Linc..... $=12$ points..... $=$	0.0888 .4	Unitel	tates inches
		Inch...... $=12$ lines...... $=$	1.06604	"	" "
	1	Foot..... $=1 \underline{\text { 2 }}$ inches..... $=$	12\%7025	"	.
		Toise ... $=6$ feet........	76755	"	" "
		League.$=2 \leq 80$ toises	(common).		
		League $=2000$ toises	(post).		
		Fathom . $=$ o feet.			
*	Fero system.-1	Millimetre.	-0395S	"	" "
		Centimetre	-39380	"	" "
		Decimetre	3.93809	"	" "
	1	Metre..	39.38091	"	- "
		Dccametre	343.80917	"	" "
		Hecatometre.............. $=$	8938.09171	"	"
Austrian	1	Foot...................... $=$	124.15	"	" "
l'bessias	... 1	Foot....................... $=$	12.561	"	- "
Stredett.	.. 1	Foot....................... $=$	11.690	"	"
sipasisit.	. 1	Foot.	11.03 .4	"	" "
		League (common)	3418 U'		

Table showing the relative length of Foreign Mecasures compared with those of the United States.

Thable showing the relative length of Foreign Road Measures compared with those of the United States.

Places.	Measures.	Yards.	Places.	Measures.	Yards.
Arabia	Mile	2148	Hungary	Mile	9113
Bohemia	"	10137	Ireland		3038
China	Li	629	Netherlands ...	"	1093
Denmark......	Mile	8244	Persia	Parasang	6086
England	Statute	1760	Poland	Mile, long............	8101
	Geographical.	2025	Portugal	League .	6760
Flanders	"	6869	Prussia	Mile	8468
France.........	League, marine	6075	Rome	,	2025
	" common...	4861	Russia	Verst	1167
"	post	4264	Scotland	Mile	1984
Germany	Mile, long............	10126	Spain............	League, common...	7416
Hamburgh	"	8244	Sweden........	Mile	11700
Hanover	"	11559	Switzerland ...		915.3
Holland.........	"	6395	Turkey	Berri	1826

Measures of Surface.

Table showing the relation of Foreign Measures of Surface compared with those of the United States

Places.	Measures.	Sq. yards.	Places.	Measures.	Sq. yards.
Amsterdam ...	Morgen	9722	Portugal	Geira	6970
Berlin .	great	6786	Prussia	Morgen.	3053
"	small	3054	Rome	Pezza	3158
Canary Isles...	Fanegada	2422	Russia.	Dessetina	130666
England	Acre ..	4840	Scotland	Acre	6150
Geneva	Arpent.	6179	Spain...........	Fanegada..	5500
Hamburgh	Morgen.	11545	Sweden........	Tunneland	5900
Hanover		3100	Switzerland ...	Faux.	7855
Ireland	Acre	7840	Vienna	Joch	6889
Naples	Moggia	3998	Zurich	Common acre	3875.6

Measures of Capacity.

Britisu. The Imperial gallon measures 277.274 cubic inches, containing 10 lbs , avoirduposs of distilled water, weighed in air, at the temperature of 62°, the barometer at 30 inches For Grain. 8 bushels $=1$ quarter.

1 quarter $=10.2694$ cubic feet.
Coal, or heaped mcasure. 3 bushels $=1$ sack.
12 sacks $=1$ chaldron.
Imperial bushel $=2218 \cdot 192$ cubic inches.
\%Heaped bushel, $19 \frac{1}{2}$ inches diameter, cone 6 inches high $=2815.4872$ cubic inches.
1 chaldron $=58 \cdot 658$ cubic fect, and weighs 3136 pounds.
1 chaldron $($ Neweastle $)=5936$ pounds.
Frenci. New system.-I Litre $=1$ cubic decimetre, or 61.074 U. S. cabic inches.
Old system.-1 Boisseau $=13$ litres $=793.964$ cubic inches, or $3 \cdot 43$ gallons.
1 Pinte $=0.931$ litres, or 56.817 cubic inches.
Seanish. I Wine Arroba $=4.2455$ gallons.
1 Fanega (common measure) $=1.593$ bushels.

Table showing the relative Capacity of Foreign Liquil . Measures compared with those of the United States.

Places.	Measures.	Cub. inch.	Places.	Measures.	Cub. inch.
Amsterdam ...	Anker	2331	Naples	Wine Barille	2511
	Stoop	146		Oil Stajo	1138
Antwerp		194	Oporto.	Almude	1555
Bordeaux	Barrique	14033	Rume .	Wine Barille	2560
Bremen	Stubgens	1945		Oil	2010
Canaries	Arrobas	949	"	Boccali	80
Constantinople	Almud	319	Russia	Weddras	75:
Copenhagen ...	Anker	2355		Kunkas.	91
Florence	Oil Barille	1946	Scotland	l int	103:5
	Wine	2197	Sicily.	Oil Caftiri	66:
France.........	Litre.	61.07	spain.	Azumbres	2.25
Genera	Setier	2760		Quartillos	30\%
Genoa	Wine Barille	4530	Sweden	Eimer	4794
."	Pinte.	90.5	Trieste.	Orne	\& 1007
Hamburgh	Stubgen	221	Tripoli	Mattari	1370
Hanover		231	Tunis..	Oil ".	1157
Mungary	Fimer	4.474	Venice.	Secchio	628
Leghorn	Oil Barille	1942	Vjenna	Eimer	$3 \cdot 5$?
Lisbon	Almude	1040		Dlaas.	86.33
Malta	Caftiri	1270			

Table showing the relatise Cupacity of Forcign Dry Measures compared with those of the United States.

Places.	Measures.	Cub. inch.	Placts.	Netasures.	Cub. inch.
Alexandria .	Rebele	9587	Malta	Salme	16930
	Kislos	10418	Marseilles	Charge	9111
Algiers	Tarrie	1219	Milan.	Moggi	814t
Amsterdam ...	Mudde	6596	Niples.	Tomoli	3122
" ...	Sack	4947	Oporto.	Alquiere.	1051
Antwerp......	Viertel	4705	Persia.	Artala..	41613
Azores.........	Alquiere	- 931	doland	Zorzec	3120
Berlin	Scheffel.	3180	Rigat	Loop.	3975
Bremen.	${ }^{\text {" }}$	4339	liome	liublio	16901
Candia	Charge	9288	"	Quarti	
Constantinople	Kislos	2023	Rotterdam	Sach	6361
Copenhagen ...	Toende	8459	Russia	Chet wert	$12+15$
Corsica ...	Stajo.	601.	Sardinia	Starelli.	2958
Florcnes .	Stari	1419	Scotland	Firlut	2197
dineva	Coupes	4739	Sicily..	Salme gres.	21011
(ienca.	Mina.	735:		." generale	16540
Grecece	Medimni	2390	Smyrna	Kislos	2111
Hamburgh....	Scheffel	6.420	Spain.	Catrize	-11269
Hanover	Malter	cose	Sireder	Tumar	8910
Legharn	St:ajo.	1501	Trisste	Stari	15:1
	saceo	4503	Tripoli	Catliri	19750
Linton.	Alquiere.	817	Tunis..		21835
	Fimega	8265	Venice	Staju..	49.5
Marleira.	Alquiere	6is 1	Vienna	Metzers	3753
Dalag:	Fimegrat	3780			

- Hetsures of Weight.

Note.-In the new French system, the values of the base of each measure, viz., Metre, Litre, Stere Are, and Gramme, are decreased or increased by the following words prefixed to them. Thus,

Hecato expresses 100 times the value.

Chilio "	1000	"
Myrio	10000	

Table showing the relative value of Foreign If eights compared with those of the United States.

Places.	Weights.	Number equal to 100 avoirdupois pounds.	Places.	Weights.	Number equal to 100 avoirdupois pounds.
Aleppo	Rottoli	$20 \cdot 46$	Hanover	Pound	93.20
	Oke	$35 \cdot 80$	Japan	Catty	76.92
Alexandria	Rottoli	$107 \cdot$	Leghorn	Pound...............	133.56
Algiers		84°	Leipsic	" (eommon)...	$97 \cdot 14$
Amsterdam ...	Pound	$91 \cdot 8$	Lyons	" (silk)........	$98 \cdot 81$
Antwerp......		96.75	Madeira	"	143:20
Barcelona		112.6	Mocha	Maund	33.33
Batavia .	Catty	76.78	Morea	Pound.	$90 \cdot 79$
Bengal	Seer ..	53.57	Naples	Rottoli	50.91
Berlin	Pound.	96.8	Rome	Pound.	$133 \cdot 69$
Bologna........	"	125.3	Rotterdam	,	91.80
Bremen	،	90.93	Russia.........	"	110.86
Brunswick......	"	$97 \cdot 14$	Sieily...........	"	$142 \cdot 85$
Cairo	Rottoli	105.	Smyrna........	Oke.	36.51
Candia	"	85.9	Sumatra	Catty	$35 \cdot 56$
China...........	Catty	75.45	Sweden........	Pound...............	106.67
Constantinople	Oke...	$35 \cdot 55$.	"	$120 \cdot 68$
Copenhagen ...	Pound	$90 \cdot 80$	Tangiers	" (miner's)	94.27
Corsica	"	131.7	Tripoli.........	Rottoli	89.28
Cyprus	Rottoli	1907	Tuuis...	"	90.09
Damaseus.....	,	25.28	Venice	Pound (heavy).....	$94 \cdot 74$
Florence	Pound..........	133.56	Vi . \quad.	" (light)......	150
Geneva	" (heavy)	82.35	Vienna		81.
Genoa Trmbur	" "	92.86	Warsaw		112.25

To convert English Imperial gallons into United States gallons, multiply by 1×20032. And to con,ert United States gallons into English Imperial gallons, multiply by ' 83311.
For an extended riew of the various systems of weights and measures in use, see a work on this subject by Professor J. H. Alexander, of Baltimore.
WHEELS. Under this head we give a few of the best forms of railroad-car wheels in use. See also Appendix.

$$
384 \text {-G. Hawks' patent, } 1807 .
$$

$3845,3846-W$. Losh \& G. Stephenson's patent, 1816.

385:-W. Frost's model, 1830.

3eis5-C: Forrester's patent, 1831.

$3 \times \mathrm{H}^{2}-13$. Hichs' patent, 1834.

3=61-1. Day y fatent, 1835 .

3etit-A. Tien' Merk. Msg. rul. xxv.

3-ini......... I. Hanus's patent, :-37.

3e62-R. F. Reinagle's patent, 1836.

3857-Mechanics Mag. $1=32$

$3 \varepsilon 60-$ WF. B. Adams patent, 1-3.5.

3E63-H. Van Wart's patent, 1-Mi

3*6-1: Cottam's patent, 1-iti

3-60-J, (irimes praterit, 1-3t

3870....I F. Romrue \& I. Bartley's patent, .838.. . 3871.

$3872-$ I. Rivington, 1839.

3873.... I. G. Haddan \& G. Hawkes.

Patented in 1839

3877 -Truscott \& Co.'s Mag. vol. xxxi.

3880-D. Gooch's patent, 1840.

3878-Bonney \& Co.'s Mag. vol. xxxi

3579-II. Dirck's patent, 1340.

3881-J. Beattie's patent, 1840.

3882............... Ed. Tavier.

Patented in 1841 3884.

Patented in 1841.
$.388 \%$

3z88-E. TayIer's patent, 1841.

3889-Hossack, 1842.

3890-II. R. Palmer's patent, 1842

3894-T. Banks' patent, 1842

3eyi-G. Parlby's patent, 1843.

3900..............Thomas Melling.

3898-C. II. Greenhow's patent, 18 说.

3895-F. Lipscombe's patenl, 1843.

.3901.

Patented in 1842.

$389 t-1$. Faunders' patent, I 3.3.

$3 \times 99-1 \mathbf{H}$. Greaves' patent, $1=44$.

Palentoti in 1846.

3903............ Thomas Melling. \qquad
\qquad . Patented in 1810. \qquad . 350.5.

$3902-11$. Giranon's patent, 1292

3912-W. E. Newton's patent, 1847.

3915-1. G. Bodmer, 1842.

3918-Bristol and Exeter Railway, 1840.

3913-G. Stephenson \& Co.

3916 - The Pimlico wheel, 1843.

3917-R. Roberts, 1833.

3919-Sharp, Brothers \& Co., 1846.

WHEELS, PADDLE, the wheels employed in the propulsion of steamboats. Common paddlewheels mostly consist of iron framing, supporting paddle-boards or floats fixed at equal distances around the rim, and radiating from the centre; they are placed one upon each side of the vessel, and are secured to a strong shaft passing across it, which is turned round by the engines, each engine working a crank fixed upon it; and are placed at right angles to each other. Fig. 3920 represents the common paddle-wheel.

There is a supposed loss of power attending this description of wheel, on account of only one of the floats striking the water in a rertical position at the same time, the action of the others being oblique; some of them, in fact, backwater, or partially oppose the motion of the vessel. Attempts have been made to obviate these defects by construeting improved wheels, the paddles of which maintain a vertical position in their passage through the water, when in front of the wheel, by having feathering floats, and these are called vertical paddle-wheels. Figs. 3921 and 3922 represent a section and elevation of the vertical paddle-wheels of the "Medea." They have been found to answer well for sea-going packets, where the paddle-wheels are deeply immersed in the water; but they are more liable to derangement than the ordinary wheels; the floats may be made to leave the water at any required angle. Mr. P. W. Barlow, C. E., states the proportion of the power expended on Morgan's vertical wheels at 546 , and of the former at 151 to 197.
The Cycloidal paddle-wheel, Fig. 3923, (the paddle-wheel of the "Creat Western,") forms, the most recent improvement, and is said to possess the advantages of each of the former, being effective and strong, yet simple, in point of construction. It was patented by Mr. Galloway in the year 1835, although first used by Mr. Field in 1833. The floats are divided into a number of parts, which are placed upon
the wheel in the curve of a cycloil, so that they enter the water at the same spot, and follow one another so rapidly as to cause little resiatance to the engine; in passing the centre, there is full scope to their action, and in coming out they allow the water to escape readily from them.

The draught of the vesel is necessarily greatest at the commencement of a voyage, particularly it it should be a long one, on account of the full quantity of coals for the whole voyage increasing the amount of tonnace, and other similar contingencies; the wheels are, therefore, immerwd very deep in, the water, which has the eflect of increasing the resistance; but this loss of power dimini-hes ats the.

vessel procecds. The adjusting of the floats of padde-wheels to the reguisite whth of immerson $1=$ called reafing the floats, and there is some difficulty connected with it ; but this defiect may be partly rectified with the cycloidal whects, as the outer floats need not be tixed at starting. lout filtid on as the vorage proceeds; and the larger the wheel, the less will the versel be adlected by thin defect, as the diameter of the wheel increases in a greater proportion than the variation of inmersion of the veand; the latter is eonsequently proportionately less than other vessels, when each are laden.

WIRE COVFRRNG̈ MACHINE. Fig. 3924 is a simple machine for coveriner bonnct or telerraph wire, and which may be easily constructed. There are other kinds of machines which we have seen in opreration that ean cover five and six wires at once, but this one is certainly not surpassed for -implicity:

I A, sole of machine, made of wood, into which are morti-ed the two uprights 1313 , only one of which is shown-they are placed about three inches apart ; \cup, upright frame for carrying shaft 1) athl thbe $\mathrm{E} ; \mathrm{FF} \mathrm{F}, \mathrm{two}$ rollers for drawing through the wire as it is covered: the top roller is mate of lead, an as to give pressure to the wire to take: it through; le, tube or bodlow rpindle through which the wire p:asea; (i G, spur-wheel and pinion for driving bollow spindlu and boblein A; I, brackins for carrying end of hollow spindle; J, wdlesseseren for working the jullery-whel 0 , tixad on the out r rand of the under-roller F'; K, smport fir
 steadvins the wire nt it prosed thronsh the spindle E. HI, Imblnin connming the thrand for covering the wire ; Lis a mall eve tixed into the fanm that carries the Denhlin, thromeh which the throad patsees on to the wire. In using the machime the

 When compared with lomp, is span into at rope, is mont simple and complete, mad hats heon patentel in Einglam hy Mr. Smith. As the druns on which the wire is womd deliver it to the - pinninz ponton
 tapidny, and the harmony, smothome, and fremhom from jar or stran with which the whole wenhe is

 seriptun:

 Vol. II.—is
for that purpose represented in Figs. 3925 and 3926, the former of which is a plan of the machinery or the line $y x$, and the latter a side elevation thereof. The bobbins or reels g g (of any convenient number) are mounted in a circular frame A, whieh is upheld by serew-rods $v v$, with an outer framerwork A^{2} consisting of a basement k, four pillars $p p$, an entablature y^{1}, spandrills $x^{1} x^{1}$, and conical apex w. The priweipal parts of the frame A are three six-armed rings $\mathrm{R}^{2}, \mathrm{R}^{2}, \mathrm{R}^{3}$, which are connected vertically to

gether in the manner to be presently explained, and two laying-plates t at top of all. The undermost ring R^{1}, is connected by a series of cranks $C e e$, with the sceond ring R^{2}, and R^{2} with the third ring R^{3}, by straight vertical rods $s s$. The centre crank C is stationary, and stepped by its short arm in a pedestal N , attached to the basement of the outer framework A^{2}, while the undermost ring R^{1} is attached to a loose boss r, slipped over the short arm of the crank C, so that on a rotating movement being given

to the ring R^{1}, it carries round with it the ring R^{2} by means of the side-cranks ec-that is to ery, the side-cranks $e c$, which may be called live cranks, are made to revolve round the centre or dead crank C ; while the ring R^{2} in its turn imparts, through the medium of the vertical rods $s s$, a simultaneons rotary movement to the top ring R^{3}. The long arms of the connecting cranks ee carry the reels or bobbins $g g$, on which the yarn or wire is wound, and as they revolve at fixed and invariable distances
ronal the centre or dead crank C, any twist of the yarn or wire, which is in the course of being laid, it etfectually prevented. The requisite rotary motion is given to the machine by means of a pair of bevelwheek B^{i} and B^{2}, the former of which (B^{i}) is attached to the louee boes r on the short am of the deal cramk C^{1}, and the litter $\left(13^{2}\right.$, to a shaft s, which is turned by ateam-engine, or other first mover, through the medium of the riggers a a. The long am of the dead arank C'earries at top a reed or bublin of trom which the heart or core for the rope or cordage of whatever material such heart or core may l... is supplied. The yarns or wires from the different bobbins past through guide holes in the topmasi rit : R^{3}, and meet and unite with the core at the laying-plates $t t$. Tou the revolviner shaft s, ame at a hate disance from the riggers u a, there is attached a wom-wheel h. the threals of which take intu: atan-
 - erves to receive or take away the strand or rope as it js delivered from the twiting or bubberanue A wer the pulley (Q. The whelps $l l$ of the wheel j are mowable to and fro in fots, as u-mal, oo that they may expand or contract (as it were) in proportion to the lay of the strand or rope. (1s the and E of the wheels i and j, and outside of both, there is keyed a llat erooved risger m, which is connected by a band n to a similar that growed rigger o, keyed on a separate shaft l', which carries a double whelp-wheel q, by which the strand or rope is carried along as it is completed.

Aml, secondly, my insention, in so far as it regards the fitting and using rope a cordare, ha- - peeiat relation to the application of wire rope or cordage to the standing rigging of ships, and consints in the improved eontrivance for the purpose represented in the firwe ; a represents the side of a vemed: I: the chain-plate; D, a spring lanyard of the ordinary furm; f, a tube, in which the lnyard is inclued \because a -lip shackle; c, a stud attached to the front of the tube f, and having an orifice in it, through whin the forelock ${ }^{3}$ is paswed. By taking out the forelock ${ }^{2}$, and pulling down the tube f, the shackle =hy up and upens out, whereby the rupe can be instantly disengared as may be required.

IIHNGG MACHINE, for the manfucture of tin. shect-iron, and other plate-vene-iatented loy a IV. Wimteex, Woodetock, Vemmont, 1517.

The face plates or rolls H H are made of cast-steed of an improved form, having the journal-buxes of their shatts in a eav-iron frame. This frame consi-t of two pieces, titted tugether at A, and at the that of the upright piece moder K . The journal-box A hat two projueting ears or bearinge, (one of which is seen at A, , at righo angles to the shalt 1 BH , wn which cars i: is supported, forming a fulcrum to the shatt B II: thus preserving the bearing of the shatt i pertect, while the end H is raised and depressed in the process of working. 13 is a movable collar for adju-tiner the -haft and rolls longitudinally. with ereat nicety. (1- a limhers serew for keepinir the cullar in place. In the shate concealed by the collar 1 , is a ppinal groowe. inte which the binding sorew enters. Thas, by turning the cullar on the shaft, a nice longitudinal adjustmont can readily be obtainel. The movement of the roll: 11 H is securev in the usnal manner by the con-
 the rolls, with a sprine F, and a thumb-nut L, fur adinstment. I is a lirming gage, consioting of a friction roll attached to the side of a short rod or shate, and hasing it journal bearing in the frame. On the inter

 If in always immedintely molequate.

 pranemes.

 .is the barks sure the mealullars rage or phates

Figs. 3929 and 3930 are vertical sections of an older piece of beech-wood. Fig. 3929 is cut through a plane, such as from α to a, in which the edges of the amual rings appear as tolerably parallel fibrez ruuning in one direction, or lengtlways through the stem; the few thicker stripes are the edges o' some of the medullary rays.

Fig. 3980 is cut radially, or through the heart, as from b to b. In this the fibres are observed to be arranged in two sets, or to run crossways ; there are, first, the edges of the annual rings, as in Fig. 3929: and, secondly, the broad medullary rays or plates.

The whole of these figures, but especially the last, show the character of all the proper woods, namely. those possessing two sets of fibres, and in which the growth of the plant is accomplished, by the yearly aldition of the external ring of the wood, and the internal ring of the bark, whence these rings arcalled anmual rings, and the plants are said to be exogenous, from the growth of the wood being external.

In Fig. 3928 the medullary rays are the more distinctly drawn, in accordance with the appearance ol the section, as they seem to constitute more determinate lines; whereas the annual rings consist mathe of series of tubes arranged side by side, and in contact with each other, and which could not be represented on so small a scale. At the outer part of each annual ring these tubes or pores appear to be smaller and closer; the substance is, consequently, more dense, from the greater proportion of the matter forming the walls of the tubes; and the inner or the softer parts of the annual rings have in genema larger vessels, and therefore less density.

In many plants the wedge-form plates, intermediate between the medullary rays, only appear as :m irregular cellular tissue full of small tubes or pores, without any very definite arrangement." The medullary rays constitute, however, the most characteristic part of the structure, and greatly assist in deterinining the difference between the varieties of the exogenous plants, as well as the wide distimetion between the entire group and those shortly to be described. The medullary rays also appear, ly their distinct continuity, to constitute the principal source of combination and strength in the substance of the woods; most of the medullary rays, in proceeding from the centre to the circumference, divide into parts to fill out the increased space.

In the general way, the vertical tibres of the annual rings, and the horizontal fibres of the medullary rays, are closely and uniformly intermingled; they form collectively the substance of the wood, and they also constitute two series of minute interstices, that are viewed to be either separate cells or vessels, the majority of which proceed vertically, the others radially. In many, as the oak, sycamore, maple, and sweet chestnut, the medullary rays, when dissected, exhibit a more expanded or foliated character, and pervade the structure, not as simple radial tubes, but as broad septa or divisions, which resemble flattened cells or clefts amongst the general groups of pores, giving rise to the term silveryrain, derived from their light and glossy appearance: they vary considerably in size and number.

The beecl-wood, Fig. 3930 , has been selected as a medium example between this peculiarity and the ordinary crossings of the fibres, which in the firs and several others seem as straight as if they were lines mechanically ruled, and, even in the most dense woods, are in general easily made out under the microscope.

The vescels or cells running amidst the fibres are to the plant what the blood-vessels and air-cells are to the animal ; a part of them convey the crude sap from the roots, or the mouths of the plant, through the external layers of the wood to the leaves, in which the sap is evaporated and prepared; the fluid afterwards returns through the bark as the elaborated sap, and combines with that in the external layers of the wood, the two constituting the cambium. The latter ultimately becomes consolidated for the production of the new annual ring that is deposited beneath the loosened bark, and which is cventually to constitute a part of the general substance or wood; the bark also receives a minute addition yearly, and the remainder of the fluid returns to the earth as an excretion. \dagger

The other order of the plants grows in an entirely different manner, mamely, by a deposition from within, whence they are said to be endogenous; these include all the grasses, bamboos, palms, de. Endogens are mostly hollow, and have only one set of fibres, the vertical, which appear in the transverse section, Fig. 3931, as irregular dots elosely congregated around the margin, and gradually more distant towards the centre, until they tinally disappear, and leave a central cavity, or a loose cellular structure. Fig. 8932 represents the horizontal, and Fig. 3983 the vertical section of portions of the same, or the coconnut palm (Cos mucifera) of half their full size.

[^24] grows exteriurly, and pusse-sts the two sets of tibres hown in Fig. 3930, whereas the endorrenous plants have only the une set, or the vertical fibres; and although many of this tribe vield an abumlance of valuable crifts to the natives of the tropical climates in which they flouri-h, only a 1 ention of the luwer
 aner of water, and the latifer pieces as juists and beams.

The larger palms generally reach us in slabs measuring about the sixel or cipheth part of the cincle, as in Fig. 3981 , the -maller sizes are sent entire; Fig. 3432 represents a mall piece wear the wit- . with the fibres half size; but the ditlerent palme vary com-iderably in the shapes, magnitule , in id. timees of the fibres, and the colors and densities of the two parts.

In the rertical section, Fig. $39: 3$, which is aloo drawn halt size, the fibres look like streak= or wom imbedded in a substance similar to cement or pith, which is devoid of fibrous structure. The inhabitants of the Isthmus of Darien pick out the fibres from some of the palms and wee them as nail; ; they are generally pointed, and in the specincus from which the drawing was made, they are as hard its rosewod, whereas the pithy substance is quite friable. Some of the smallest palins are importel into this country for walking-sticks, under the nanes of partritere ant Penang canes; de. The ordinary canes and hamboos are too well known to require more than to be named.

Toureturn to the more particular examination of the woods that most concern us, it will be observel that the central pith in Fig. 392s happens to be of an irrecrular triangular shape. 'lhis, the primary
 form which is very freguently lexagonal) from the compressien to wheh it is subjected. The pith guwerne, in a com-iderable degree, the rencral tigure or section, as all the series of rimgs will he whr
 the angular form is gradually lowe, as it would he if we wound a riblon mon a small tramgular wirn for, after at time, no material departure from the eircular form whald be observable.
 year-, and to the ditherent expubure of the tree to the sun and air, which chowhp that -ide of the phat In an alditional diree; wheras the tree growing againet a wall or my other obstrnction, beromes remarkably stunted on that side of its axio, from heng so shicheml.

 face, they froquenty surwe to domite wery aceurately, in the wonds growing in cohl and temperate di-

[^25]The horizontal section of a tree oceasionally looks as if it were the result of two, three, or more sepa rate shoots or stems consolidated into one; in some of the foreign woods in particular this irregularity often gives rise to deep indentations, and most strange shapes, which become eventually surrounded by mine single covering of sap; so that a stem of considerable girth may yicld only an insignificant piece of wood, scarcely available for the smallest purposes of turnery, much less for cabinet-work."

The circulation of the sap is considered to be limited to a few of the external layers, or those of the sap-wood, or alburnum, which are in a less matured state than the perfect wood, or duramen, beneath The last act of the circulation, as regards the heart-wood, is supposed to be the deposition of tine coloring matter, resin or gum, through the agency of the medallary rays that proceed from the bark towards the centre, and leave their contents in the layer outside the true wood perfected the year previous. We may fairly suppose by analogy, that as one ring is added each year, so one is perfected ammully, and thrown out of the circulatory system.
That the circulation has ceased in the heart-wood, and that the connection between it and the bark has become broken, is further proved by the fact, that numbers of trees may be found in tolerably rigorous growth within the bark, whereas at the heart they are deeared and rotten. In fact, some of the lardest foreign woods, as kingwood, tulip-wood, and others, are rarely sound in the centre, and thus indicate very clearly that their decay commenced whilst they were in their parent soil; and as in these the appearance of annual rings is scarcely to be distinguished, this also appears to indicate a great term of age, enough to account for this relatively premature decay.

The quantity of sap-wood is various in different plants, and the line of division is usually most distinctly marked; in some, as boxwood, the sap-wood is very inconsiderable, and together with the bark is on the average only about the thickness of a stout card, whereas in others, as the snakewool, it constitutes fully two-thirds of the diameter, so that a large tree yields but an inconsiderable stick of wood, of one-third or fourth the external diameter.

It may be presumed that, in the same variety of wood, about an average number of the layers exist as sap-wood, as in cutting up a number of pieces of the same kind, such as the black Botany-Bay wood. and others, it is found that, in those measuring about two inches diameter, the piece of heart-wood is only about as large as the finger, but in pieces one, two, or three inches larger, the lieart-wood is al-o respectively one, two, or three inches larger, or nearly to the full extent of the increase of the diameter:
The sap-wood may be therefore, in general, considered as of about an average thickness in each kind of wood: it is mostly softer, lighter, more even in color, and more disposed to decay than the heart-wood. which prove it to be in a less matured or useful state, whether for mechanical or chemical purposes.

At the time the tree is separated from its root, its organic life ceases, and then commences the gratual evaporation of the sap, and the drying and contracting of the tabes, or tissucs, previously distended by its presence.
The woods are in general felled during the cold months, when the vegetative powers of the plant are learly dormant, and when they are the most free from sap; but none of the woods are fit for use in the state in which they are cut down, ior although no distinct circulation is going on within the heart-wood still the capillary vessels keep the trees continually moist throughout their substance, in which state they should not be employed.

If the green or wet woods are placed in confined situations, the tree or plank first becomes stained or doated, and this speedily leads to its decomposition or decay, effects that are averted by careful drying with free access of air. \dagger

Other mischiefs almost as fatal as decay also occur to unseasoned woods; round blocks cut out of the entire circular stem of green wood, or the same pieces divided into quarterings, split in the direction of the medullary rays, or radially, also, though less frequently, upon the annual rings. Such of the round iblucks as consist of the entire section contract pretty equally, and nearly retain their circular form, but those from the quarterings become oval from their unequal shrinking.

* This is not peculiar to the Iropical woods; for example, some of the yew-lrees in Hampton Cont gardens appear to tave grown in this manner from three or four separate stems, that have joined into one at a short distance above the grount. As an instance of the singular manner in which the separate branches of trees thus combine, 1 may mention that ctones, pieces of metal, and other substances, are oceasionally met with in the contral parts of timber, from having been accidentally deposited in a cleft, or the fork of a branch, and entirely inclosed or overgrown by the subsequent increase ol the plant.
+ On this account the timbers for ships are usually cut out to their shape and dimensions for about a year before they are framed together, and they are commonly left a twelvemonth longer in the skeleton state, to complete ihe suasuning. as in that condition they are more favorably situated as regards exposure to the air than when they are closely covered in with the planking.
Ar. Fincham considers that the destruction of timber by the decay commonly known as dryorot eannot occur, unless air. musture and heat, are all present, and that the entire exclusion of any of the three stays the mischiel. By way of expe. ment, he bored a hole in one of the timbers of an (ll ship, buitt of oak, whose wood was at the time perfectly sound; the a linission of air, the third element, to the central part of the wood, (the two others being to a certain degree priseat.) cimed the hole to be lilled up in the course of twenly-four hours with monldiness, a well-known vegetation, which very speedily becane so compact a fungus js to admit of being withdrawn like astick. He consider the shakes or splits in timber to predispose it lo decay, in damp and confined situations, from admitting the air in the same manner.
The woods ditler amazingly in their resistance to decay: some perish in one or two years, whereas others are very durabir. and even preserve their fragrance when they are opened afier many years, or almost centuries

Mr. G. Loddiges says the oak-boxes, for the plants in his ereem-honses, decay in two or three years, whereas he has fomal thene of teak to last fulty six or seventimes as fons: the situation is one of severe triat for the wood.
There are two quarto works on dry-rot; the one by Mr. M'William, lele; the other by Mr. John Kinowles, Surveyor of ller Majesty's Navy, 1と:
The process of kyanizing is inkended to prevent the revegetation of timber, by infusing into its pores an antiseptic salt : the corrosive sublimate is generally employed, other metallic salts are also considered to he uppli-able, but the general utility of the process, especially in thick timbers, or those exposed to much wel, is still unsetted amons: practical inem.
The Kyanizing is sometimes done in open tanks, at others, (by Timperley"s process, Inall and Selby Railway, in close pessels hom which the air is first exhansted to the utmost, and the lhid is then admitted moler a pressure of about lot prounds on the inch.

As a general observation, it may be said the woods do not alter in amy material degree in rospect ic length. Boards and flat pieces contract, however, in width, they warp and twist, and when they are nitted as panels into loose grooves, they shrink away from that edge which happens to the the mose slighty held; but wheu restrained by nails, mortiees, or other unviehliner attachments, which dos mos allow then the power of contraction, they split with irrevistible foree, and the materials and labor tha, improperly employed will render no useful service.

In general, the softest wools slirink the most in width, but no correct obeervations on this subject have been published. Mr. Fincham considers the rock-elm to shrink as much as any woud, namely, about half an inch in the foot, whereas the teak scarcely shrinks at all; in the "Tortoise" store-ship. when fifty years old, no openings were finud to exist between the boarls.

In the woods that have becn partially dried, some of these effects are lescened when they ar defended by paint or varmi=h, but they co not then canse, and, with dry wod, every thme a hew surfare \therefore expued to the air, even should the work have been made for many yars, there perplexing alterationwill in a degree recommence, even independently of the changes of the atmosphere, the thuctnations o! which the wools are at all times too freely di-poued to obey.

The disposition to shriuk and warp, from atmospherie inthence, appeare indeed to be never emtirety subdued; some bog oak, =upposed to have been buried in the i-land of sheppy not lus than an thousimit years, wats dried for many monthe, and ultimately made into chairs and furniture ; it was still found ic Ahrink and cast, when divided into the small pieces reguired for the work.

Siasoning and preparing the woods.-Haring briefly alluded th the mischiefs conseqnent upon time use of woods in an iuproper condition, I shall proced to describe the general modes pursue 1 for avodiar auch mischiefs by a proper course of preparation:

The wools, immediately after being felled, are sometmes immersed in roming water for a few daysweeks, or months, at other times they are boiled or steamed; this appears to be done umber the expece tation of doluting and wa-ling out the sap, after which it is said the drying is more mpidly and better accompli-hed, and also that the colors of the white wools are improved, (see article Ilowsy in Catalogue. alou Eboxy; but the ordinary course is simply to expose the lors to the air, the enfect of which is assistend by the preparation of the wood into smaller pieces, approaching to the sizes and forms in which they will be ultimately u-ed, such ats square lows and beam-, planks or boards of various thickneseses, short lengthe or quarterings, we.

The stems and bramehes of the wonds of our own comery, such as alder, bireh, and locech, that ate: used by the thener, freduenty require no reduction in dianeter; but when they are beyond the size wi the work, they are split into quarterines and stacked in heaps to dry, wheh latter prexeceding thenth never be forgotten under any circum-times.

We know but litte of the early treatment of the foreigu woods wed for eabinet-work and tarning some few of them, as mahorany and satin-woul, are imported in square logs ; whers, as rosewond, ebony, or Cormaniel, are sometimes shipped in the hates of trees, or in thick phank; bue the general. ity of thene uned for turning are small, and do not require this reduction; theer only reach us in billet--ometimes with the rind or bark opon them, and sometimes cleaned or trimmed.

Thu smaller hard wouds are very much more wasteful than the timber wools; an many of the formes, inden monden of their thich bark, the section is very far from cireular, as they are ofien exceedingly incorular, melented, and ill-defined; whers are ahost constantly unsom in their growth, and either preent central hollows and eavities, or cracks and radial divisions, which separate the stem into timet ar finur ierrerular pieces.

I'rubably none of the hard woons are so defective as the black Botany-IBay wond, in whith s!e avalable produce, when it is trimmed ready for the lathe, may be considered to be about one diad on fouth of the origimal weight, sometimes still las; but unfortunately many others appoith ton mearly to this comlition, as a very large propertion of then partake of the imperfection- referred to, man especially the crack; the larger hand wouls are by comparion much leat wateful.
 (1) the sun or het wmis in their mative elimates: their greater impenetratulity to the air the more diopenes dwom to crack, whl their comparative satreity and expen-a are also powerful arguments on the seore of precautom. It is therethere de-irable to prepare them for the tramsition fom the yard or cellar to the turning reom, by removing the parts whely are necematy wated, the mome inmately th
 atway from the fire, or at fir-t in a rom alturether without one.

It is unal to bergin bex cutting the luge inte pheces a few inche or upward in hength, to the gemeral size of the work; ant if pussible te prepare every pince inte at round hack, or inte two or throe, when the woul is irregular, hallow, or eracked. In the lntere eave, at thin wedge it inserted into the promejat

[^26]a curved edge like a gouge, and is used in many shaping operations in wood, as in the manufacture of shoe-lasts, clogs, pattens, and toys.**

In the absence of the paring-knife or hatchet, the work is fixed in the viee, and rounded with a coarse rasp, but this is much less expeditious: by some manufacturers the preparation both of the foreign and English woods is prosecuted still further, by cutting the material into smaller pieces, rough turned and Lollowed in the lathe, to the forms of boxes, or other artieles for which they are specifically intended; and in fact every measure that tends to make the change of condition gradual, assists also in the reonomy, perfection, and permanence of the work.
Many of the timber-woods are divided at the saw-pit into planks or boards, at an eariy stage, in order to multiply the surfaces upon which the air may act, and also to leave a less distance for its penetration: after sawing, they should never be allowed to rest in contact, as the partial admission of the air often causes stains or doating; but they are placed either perpendicularly or lorizontally in racks, or they are more commonly stacked in horizontal piles, with parallel slips of wood placed between at distances from about three to six or eight feet, according to the quantity of support required; the pile when carefully stacked forms a press, and keeps the whote flat and straight.

Thin pieces will be sutficiently seasoned in about one year's time, but thick wood requires two or three years, before it is thoroughly fit to be removed to the warmer temperature of the house for the completion of the drying. Mahogany, cedar, rosewood, and the other large foreign woods, require to be carrefully dried after they are cut into plank, as notwithitanding the length of time that sometimes intervenes between their being felled and brought into use, they still retain much of their moisture whilst they remain in the log.t
In some manufactories the wood is placel, for a few days before it is worked up, in a drying-room heated by means of stoves, steam, or hot water, to several degrees beyond the temperature to which the finished work is likely to be subjected.
Such roums are frequently made as air-tight as possible, which appears to be a mistake, as the wrod is then surrounded by a warm but stagnant atmosphere, which retains whatever moisture it may have evaporated from the wood. Of late, a plan has been more successfully practised in seasoning timber for building purposes, by the employment of heated rooms with a free circulation of air, which enters at the lower part in a hot and dry state, and escapes at the upper charged with the moisture, which it freely absorbs in the heated condition. The continual ingress of hot dry air, greedy of moisture, so far expedites the drying, that it is accomplished in one-third of the time that is required in the ordinary wey in the open air. +
Hard and soft woods, etc.-The relative terms lard and soft, elastic or non-elastic, and the proportions of resins, gums, \&ce, as applied to the woods, appear to be in a great measure explained by their examiration under the microscope, which develops their structure in a very satisfactory manner.

The fibrec of the various woods do not appear to differ so materially in individual size or bulk, as in their densities and distances: those of the soft woods, such as willow, alder, and deal, appear slight and loose ; they are placed rather wide asunder, and present considerable intervals for the softer and more spongy cellular tissue between them; whereas in oak, malogany, ebony, and rosewood, the fibres appear rather smaller, but as if they possessed a similar quantity of matter, just as threads containing the same number of filaments are larger or smaller, accordingly as they are spun. The fibres are also more closely arranged in the harder woods, the intervals between them are necessarily less, and the whole appears a more solid and compact formation.

The very different tools used by the turner for the soft woods and hard woods respectively, may have assisted in fixing these denominations as regards his art; a division that is less specifically entertained by the joiner, who uses the same tools for the hard and soft woods, excepting a trifling difference in their angles and inclinations; whereas the turner employs, for the soft woods, tools with keen edges of dliirty or forty degrees, applied obliquely, and as a tangent to the circle ; and for the hard woods, tools of from seventy to ninety degrees upon the edge, applied as a radius, and parallel with the fibres, if so required. The tools last described answer very properly for the dense woods, in which the fibres are close and well united; but applied to the softer kinds, in which the filaments are more tender and less firmly joined, the hard-wood tools produce rough, torn, and unfinished surfaces.
In general, the weight or specifie gravity of the woods may be taken as a sure criterion of their hardness; for instance, the hard lignum-vite, boxwood, iron-wood, and others, are mostly so heavy as to sink in water; whereas the soft firs, poplar, and willow, do not, on the average, exceed half the weight of water, and other woods are of intermediate kind.. S

[^27]The den-ity or weight of many of the wouls may be increased by their mechanical compression, which may be carried to the exteat of fully one-hind or fourth of their primary bulk, and the weight and hardness obtain a corre-punding increase. This has been practisel for the compression of tree-nails for ships, be driving the pins through a metal ring smaller than themelves directly into the hole in the ship's sile ;" at other timez, (for railway purpo-es,) the woud hate been pas-ed throwh rollers, bur this practice has been disentinued, as it is finmel to spoad the fibes laterally, and to that them a-unter \dagger an injury that dues not occur when they are furcel through a ring, whicle condernes the woud at all parts alike without :uny disturbance of its fibuns structure, teven when tented by the microsepp; after compression, the wow is so much harder that it cuts very diflerently, and the pieces almont rims when they are struck torether; fir may be thus compessed into a substance as cloee as piteh-pine.

In many of the more dense wods, we also find an abondance of gum or resin, which fills up many of thoee spaces that would be otherwise roid: the gum not only makes the wood so much the heavier, but at the same time it appears to act in a mechanical manner, to mingle with the fibres as a cement, and to unite them into a strunger ma-i for example, it is the curpentine that gives to the outer surface of the annual rings of the red and yellow deals the hard, horny character, and increases the elasticity of thowe timber:

Those wools which are the more completely impregnated with resin, gum, or oil, are in general also the mure durable, as they are better defended from the attack of moi-ture and ibsects.
Timbers alternately expoied to wet and dre, are thought, by Tredgold and others, to suffer from lo-ing every time a certain portion of their soluble parts; if so, those which are naturally impregnated with sub-tances in-oluble in water may, in consequence, give out little or none of their component parts in the change from wet to dry, and on that account the better resist decay: this ha been artificially. imitated by furcing ail, tar, de., through the pores of the wood from the one extremity.

Many of the wouds are very durable when constantly wet; the generality are so when alvays dry, although but few are suited to withstand the continual change from one to the other state; but the e particulars, and many points of infurmation respecting timber-wools that concern the general practice of the builder, or naval architect, euch as their specific gravities, relative strengethe, resistances to bending and compresion, and uther characters, are treated of in Tredgold's Element: of Carpentry, at con-iderable lenizth.|

Elastic aud uonflastic rombs.-The most clastic wonds are those in which the annual or longitulinal fibres are the straighte-t, and the least interworen with the medullary rays, and which are the least interrupted by the presence of knots; such woods are also the mont easily rent, and the phane-t in firsure, as the lancewool, hickory, and a-h; whereas other womels, in which the fibres are more erosed and interlaced, are con-iderably tougher and more rigid; they are alow les disposed to split in a straight or economical manner, as oak, beech, and mahogany; which, although moderately elatic, do not bemd with the facility of those before named.

Fi-hing-rods, umless made of bamboo, have generally a-h for the lower juint, lickery for the two middle pieces, and a strip cut out of a bamboo of three or four inches diameter as the tup joint. Arelure bows are another example of elastic works; the " singlepiece bow" is made of one rexl of hickory, lane wood, or yew-tree, which last, if perfectly free from knots, is cun-idered the most suitable wool: the "back or union bow" is made of two or sometimes three pieces glved towether. The buek piece or that furthest from the string, is of rectangular section, and always of lancewood or hiekory; the lirl! ! which is nearly of semicircular seetion, is made of any hard wood that can bo obtatined strajght ant elean, at ruhy-wool, rosewond, greenhurt, kingwood, shakewond, and several uthers: it is in a great measture a matter of ta-te, as the elasticity is principally due to the back-piece; the palmyra is alon usel for bowe.

The ela-ticity, or rather the tlexibility of the woods, is greatly increased fur the time, when they are heated by steaming or hoiling ; the proces is continually cmployed fur bending the wak and other timbere for ship-building, the lancewond shafts for carriages, the staves of caske, and varimes other works.
 their length, in contact with rigid patterns or monds, and whint under this restraint they ure allowed to beenthe perfectly culd; the pieces are then released. Theoe hemt works suffer very hithe departure from the froms thus given, and they possess the great ahtrantage of the grain heing purallel with the curse, which adds materially to their strength, stses much cont of material and time in the preparation, and pives, in fact, a new chiracter to the timher.

The imer and onter plankines of ships are stemed or builed before they are mplied; they are brought into contact with the rilis hy femprary acrew feolte, which are ultimately repheed by the cop

per bolts inserted through the three thicknesses and riveted: or they are secured hy oak or locust tree nails, which are caulked at each end.*

Boiling and steaming are likewise employed for softening the woods, to facilitate the cutting as well as bending of them.t
When the two sets of fibres meet in confused angular directions, they produce the tough cross-grained woods, such as lignum-vite, elm, de., and, like the diagonal braces in carpentry and shipping, they deprive the mass of elasticity, and dispose it rather to break than to bend, especially when the pieces are thin, and the fibres crop out on both sides of the same ; the confusion of the fibres is, at the same time, a fertile source of beauty in appearance to most woods.

Elm is perhaps the toughest of the European woods; it is considered to bear the driving of bolts and mails better than any other, and it is on this account, and also for its great durability under water, constantly employed for the keels of ships, for boat-building, and a varicty of works requiring great strength and exposure to wet.

A similar rigidity is also found to exist in the crooked and knotted limbs of trees from the confusion amongst the fibres, and such gmarled pieces of timber, especially those of oak, were in former days particularly valued for the knees of ships: of later years they have been in a great measure superseded by iron knees, which can be more accurately and effectively moulded at the forge to suit their respective places, and they cause a very great saving in the available room of the ressel.

The lignum-vitæ is a most peculiar wood, as its fibres seem arranged in moderately thick layers, crossing each other obliquely, often at as great an angle as thirty degrees with the axis of the tree: when the wood is split, it almost appears as if the one layer of annual fibres grew after the manner of an ordinary screw, and the succeeding layer wound the other way so as to cross them like a left-hand serew. The interlacement of the fibres in lignum-vite is so rigid and decided, although irregula:, that it exceeds all other woods in resistance to splitting, which cannot be effected with economy; the wood is consequently always prepared with the sam. It is used for works that have to sustain great pressure and rough usage, several examples of which are given under the head Lignum-tite in the Catialogue already referred to.
Fibre or grain, knots, etc.-The ornamental figure or grain of many of the woods appears to depend as much or more upon the particular directions and mixings of the fibres, as upon their differences of color. We will first consider the effect of the fibre, assisted only by the slight variation of tint, observable between the inner and outer surfaces of the annual layers, and the lighter or more silky character of the medullary rays.

If the tree consisted of a series of truly cylindrical rings, like the tubes of a telescope, the horizontal section would exhibit circles; the vertical, parallel straight lines; and the oblique section would present parts of ovals; but nature rarely works with such formality, and but few trees are either exaetly circular or straight, and therefore although the three natural sections have a general disposition to the figures described, every little bend and twist in the tree disturbs the regularity of the fibres, and adds to the variety and ornament of the wood.

The horizontal section, or that parallel with the earth, only displays the ammal rings and medullary rays, as in Fig. 3928; and this division of the wood is principally employed by the turner, as it is particularly appropriate to his works, the strength and shrinking being alike at all parts of the circumfer ence, in the blocks and slices cut out of the entire tree, and tolerably so in those works turned out of the quarterings or parts of the transverse pieces.

But as the cut is made intermediate between the horizontal line and the one parallel with the axis, the figure gradually slides into that of the ordinary plank, magnified portions of which are shown in Figs. 3929 and 3930 ; and these are almost invariably selected for carpentry, de.

The oblique slices of the woods possess neither the uniformity of grain of the one section, nor the strength of the other, and it would be likewise a most wasteful method of cutting up the timber; it is therefore only resorted to for thin veneers, when some particular figure or arrangement of the fibres has to be obtained for the purposes of ornamental cabinet-work.

The perpendicular cut through the heart of the tree is not only the hardest but the most diversified because therein oceurs the greatest mixture and variety of the fibres, the first and the last of which, in point of age, are then presented in the same plank; but of course the density and diversity lessen a* the board is cut further away from the axis. In general the radial cut is also more omamental than the tangential, as in the former the medullary rays produce the principal effect, because they are then displayed in broader masses, and are considered to contain the greater proportion of the coloring matter of the wood.

The seetion through the heart displays likewise the origin of most of the branches, which arise first as

[^28]knots, in or near the central pith, and then work outwards in directions corre-ponding with the arms of the trees, some of which, as in the cypress aml oak, grow out nearly horizontally, and others, as in the poplar, shout up almo-t perpendicularly.

Thone parts of woot described as curls are the result of the confused filling in of the space between the forks, or the springinge of the branches. Fis. 3934 repreent - dicesection of a piece of yew-tree, which shows remarkally well the direction of the main stem A B, the ming of the brand C, and likewise the formation of the corl between 13 and C ; Firs. 3985 is the end view of the tem at A. In many wouts, mahogany e-pecially, the curl- are particularly large, hand-ome, and variegated, and are generally produced as explained.

It would aplear na if the germs of the primary branches were set at a very early period of the growth of the central stem, and gave rise to the knots, many if whid, hewever, fatil to penetrate to the exterior so as to froduce branches, but are covered over by the more virarous deposition of the ammal ringe. All these kots tand Dramelies act a- so many disturbances and interuptions to the unifurmity of the princijal zones of fibers, which appear to divide to make way for the pa-arse of the offshoote, each of whict! p sesesses in its axis a filament of the pith, a that the brameh resemble the reneral trunk in all re-pects except in bulk; and again trom the principal trateles smatler ones continually arise, ending at last in the most minute twirs, each of which is distinctly continuous with the central pith of the man stem, and fultil- its individual share in causing the diversity of tig-

A ure in the woot.

The knots are commonly harder than the general sul-tance, and that more particularly in the softer wools; the kinots of the deals, for example, begin mear the axis of the tree, and at first show the mingling of the general fibres with those of the hoot, much the same as in the orimin of the brameh of the yew, in Fig. 3934 ; but after a little while it appears as if the branch, from elongating so much more rappilly than the deposition of the anmual rings upon the main stem, soun shot fhrough and beeame entirely detached, and the future rings of the trunk were bent and turned slifhtly a-ide when they enenutited the knot, but without unting with it in any respect.

This may explain why the smooth cylindrical knots of the outer boards of white deal, pine, de., su frequently drop out when expesed on both sides in thin boards: whereas the turpentine in the red and yelfow deals may serve the jart of a cement, and retain these kinds the mure firmly.

The elliptical form of the knots in the phank is mostly due to the oblique direction in which they are cut, and their hardness (equal to that of many of the tropical hard wood-) to the close gromping of the ambal rines and tibres of which they are themselves composed. These are compresed by the surrounding woul of the parent stem, at the time of the dejowition; whereas the principal lavers of the sten of the tree are upposed alone by the lousened and yielding bark, and only ubtain the urdmary dem-ity:

The hoots of large trees are sometimes of considerable size. The writer has portions of one of thome of the Nontolk Island pine, (Aremearios excelse,) which attaned the enormons size of abme four feet long, and four to six inches diancter. In substance it is throughout compatet and solicl, of a somi-transparent hazel-fonsu, and it may be cut almont as well as ivory, and with the sane tools, either intu -crew, or with eecentric or drilled work, de. ; it is an excedingly appopriate material for omamental turning.
 there ari bramehor, and that, -peaking generally, the ronts - pread aromal the trunk waler gromad to

 threther in the sharter jortion huried in the earth.

If thio be trae, we have a sutheient reaton for the beantiful but knarled character of the ronts of trees when they are cut up, for the arts; many a bleck of the renit of the wanat tree, thas made ap of small

 - Hilf lowes.

Ainboyna, is, in like manner, the excrescence of a large timber-tree. Its character is very similar to the hurr of the yew-tree, but its knots are commonly smaller, closer, and the grain or fibre is more silky The Kiabooca has also been supposed to be cut from around the base of the cocoanut palm, a surmise that is hardly to be maintained, although the latter may resemble it, as the Kiabooca is imported alone from the East Indies, whereas the cocoanut palm is common and abundant both in the eastern and we-tern hemispheres. (See hiabooca in the Catalogue.*)
The bird's-cye maple shows, in the finished work, the peculiar appearance of small dots or ridges, in of little conical projections with a small hollow in the centre, (to compare the trivial with the grand Bike the summits of mountains, or the craters of volcanoes,) but without any resemblance to knots, which are the apparent cause of ornament in woods of somewhat similar character, as the burrs of the yw and kiabooca, and the Russian maple, (or birch-tree:) this led us to seek a different caluse for at formation.

On examination, we found the stem of the American bird's-eye maple, stripped of its bark, presented little pits or hollows of irregular form, some as if made with a conical punch, ethers ill-detined :inl. thattened like the impression of a hob-nail; suspecting these indentations to arise from internal spines or points in the bark, a piece of the latter was stripped off from another block, when the surmise was rerified by their appearance. The layers of the wood being moulded upon these spines, each of their fibres is abruptly curved at the respective places, and when cut through by the plane, they give, in the tangential slice, the appearance of projections, the same as in some rose-engine patterns, and the more recent medallic glyptographic or stereographic engravings, in which the closer approximation of the lines, at their curvatures, causes those parts to be more black, (or shaded,) and produces upon the plane surfaces the appearances of waves and ridges, or of the subject of the medal.
The short lines observed throughout the maple-wood, between the dots or eyes, are the edges of the medullary rays; and the same piece of wood, when examined upon the radial section, exhibits the grdinary silver grain, such as we find in the sycamore, (to which family the maple-tree belongs,) with a very few of the dots, and those displayed in a far less ornamental mauner.
The picce examined measured eight inches wide, and five and a half inches radially, and was apparently the produce of a tree of about sixteen inches diameter; the effect of the internal spines of the bark was observable entirely across the same, that is, through each of the 130 zones of which it consisted. The curvature of the fibres was in general rather greater towards the centre, which is to be accounted for by the successive annual depositions upon the bark, detracting in a small degree from the height or magnitude of the spines within the same, upon which the several deposits of wood were formed. ()ther woods also exbibit spines, which may be intended for the better attachment of the bark to the stem, but, from their comparative minuteness, they produce no such effect on the wood as that which exists, we believe exclusirely, in the bird's-eye maple.
This led me to conclude that in woods, the figures of which resemble the undulations, or the ripplemarks on the sands, that frequently occur in satim-wood and sycamore, less frequently in boxwood, and also in mahogany, ash, elm, and other woods, to be due to a cause explained by Fig. 3936, namely, a serpentine or guilloche form in the grain: and on inspection, the fibres of all such pieces will be found to be wavy, on the face, at right angles to that on which the ripple is observed, if not on both faces. Those parts of the wood which happen to receive the light appear the brightest, and form the ascending sides of the ripple, just as some of the medallic engravings appear in canco or in intagho, according te the direction in which the light falls upon them.
完

The woods possessing this wayy character generally split with an undulating fracture, the ridges being commonly at right angles to the axis of the tree, or square across the board; but in a specimen of an Indian red wool, the native name of which is Calintour, the ridges are inclined at a considerable angle, presenting a very peculiar appearance, seen as usual on the polished surface.

In those woods which possess in abundance the septa or silver grain, described by the botanist as the medullary plates or rays, the representations of which, as regards the beech-tree, are given in Fig. 3930, another source of ornament exists; namely, a peculiar damask or dappled effeet, somewhat analo gous to that artificially produced on damasked linens, morcens, silks, and other fabries, the patterns on which result from certain masses of the threads on the face of the cloth ruming lengthways, and other groups crossways. This effect is observable in a remarkable degree in the more central planks of nak, especially the light-colored wood from Norway, and the neighborhood of the Rhine, called wainscot and Dutch oak, de., and also in many other woods, although in a less degree.

In the oak plank, the principal streaks or lines are the edges of the annual ringre, which show, as usual

[^29]parallel lines more or less waved from the curvature of the tree, or the neighboring hanets and branclacs and the damask pencillings, or broad curly veins and stripes, are caused by groups of the medullary rays or septa, which undulate in layers from the margin to the centre of the tree, and creep in betwixt the longitudinal fibres, above some of them and below others. The plane of the joiner, here and there, intersects portions of these groups, exactly on a level with their general surface, whereas their recent companions are partly removed in shavings and the remainder dip bencath the edges of the annual ringe, which break their continuity; this will be seen when the septa are purposely cut through by the joiner's plane.

L pon in*pectiny the ends of the most handsome and showy pieces of wainseot oak and similar wooks. it will be fuund that the surface of the board is only at a small angle with the lines of the medullary ravs, so that many of the latter "crop ont" upon the surface of the work: the medullary plates being echlom flat, their edges assume all kinds of curvatures and clongations from their oblique intersections. All these peculiarities of the grain have to be taken into atcount in cutting up words, when the mot showy character is a matter of con-ideration.

The same circum-tances occur in a less degree in all the woods containing the silver grain, as the oriental plane-tree, or lacewood, sycamore, beech, and many others, but the figures become grimdually *maller, until at last, in some of the fureign hard woods, they are only distinguishable on clo-e in-pection under the magnifer. Some of the foreign hard woods show lines very mearly parallel, and at right angles to the axis of the tree, as if they were chatters or utters arising from the vibration-of the planearm. The medullary rays cause much of the beanty in all the show \boldsymbol{y} woots, notwithstanding that the rays may be less defined than in the woods cited.*

In many of the handsomely firsured wonds, some of the effects attributed to color would, as in dam ak, be more properly called those of light and shade, as they vary with the point of view selectent for the moment. The end grain of mahogany, the surfaces of the table-cloth, and of the mother-of pearl shell, are respectively of nearly uniform colir, hat the figures of the wood and the damask arise from ${ }^{-1} h_{\text {e }}$ various ways in which they reflect the light.

Hal the fibres of all these sub-tances been arranged with the uniformity and exactitude of a piece: of plain cluth, they would have shown an even unintermptel color, but fortunately for the beautiful and pieturesque, such is not the case; most tibres are arranged by nature in irregular eurved lines, and therefore almost every intersection through them, by the hand of man, partially removes some and expo-cis othere, with boundle-s variety of tigure.

If further pronf were wanted, that it is only the irregular arrangement that causes the damat-k or variourated effect, we might observe that the phain and miform silk, when pased in two thickneses litce (1) face, between smonth rollers, cones out with the watered pattern; the respective fibres mutually rmboss eath other, and with the luss of their former regular character they cease to retlect the mifoms lint +
To su boundless an extent do the interferences of tints, fibres, curls, knots, de, exist, that the cab-inet-maker scarcely seeks to match any pieces of ornamental wood for the olject he may be constructine. He covers the nost of drawer-, or the table, with the neighboring vaneers from the same bluck, the proximity of the sections cau-ing but a gradual and unobserved diflerence in the respective portions: as it would be in rain to attempt to find wo different pieces of handsomely figured wood exately alike:

V'ariutions of colur.-The figures of the woods depend also upon the color as well as on the fibre: in some the tint is nearly uniform, but other partake of several shades of the same hue, or of two or there different colors, when a still greater change in their appearance rewults.

In the horizontal section of such wouls, the stripes wind partly round the centre, as if the trece hail chothed itself at diflirent parts with conat of varied colors with something hike caprice : tulip. Womel,
 these markinge get drawnont intostripes, fande, and pateles and show mothed, dappled, or wase tigure

 be melored figure- \ddagger

 are more generally employed for ohjects with smooth surfiees, such as cabiner-work, vates, and turned ormanents, as the beantios of their entors and tizures are thereby the teat diphayed. Livery hate detat

 demal interections of the meripes in the womh.

 b.rithre winula.

furfaces. In the same manner the beantifully tesselated wood floors, abundant in the buildings of one or two centuries back, which exhibit geometrical combinations of the various ornamental woods, (an art that has been recently pursued in miniature by the Tunbridge turners in their Mosaic works,) are other instances, that in such cases the plain smooth surface is the most appropriate to display the effect and variety of the colors, for such of the last works as rre turned into mouldings fail to give us the same pleasure.

Even-tinted moods are best suited to the work of the eceentric chuck, the revolving cutters, and wher instruments to be explained; in which works, the carving is the principal source of ornament: the rariation of the mood, in grain or color, when it occurs, together with the cutting of the surface. is rather a source of confusion than otherwise, and prevents the effect either of the material, or of the work executed upon it, from being thoroughly appreciated.

The transverse section, or end grain of the plain woods, is the most proper for eccentric turning, as all the fibres are then under the same circumstances; many of the woods will not admit of being worked with such patterns, the plankway of the grain: and of all the woods the black Botany Bay wood, or the Black African rood, by which name socrer it may be called, is most certainly the best for eccentric turning; nest to it, and nearly its equal, is the cocoa-wood, (from the West Indies, not the cocoanut palm;) several others may also be used, but the choice should always fall on those which are of cueiform tint, and sufficiently hard and close to receive a polished surface from the tool, as such works . dinit of no subsequent improvement.

Contrary to the rule that holds good with regard to most substances, the colors of the generality of the roods become considerably darker by exposure to the light; tulip-wood is, we believe, the only one that fades. The tints are also rendered considerably darker from being covered with oil or lacker, and although the latter checks their assuming the deepest hues, it does not entirely prevent the subsequent change. The yellow color of the ordinary varnishes greatly interferes also with the tints of the light woods, for which the whitest possible kinds should be selected." When it is required to give to mood that has been recently worked the appearance of that which has become dark from age, as in repairing any accident in furniture, it is gencrally effected by washing it with lime-water; or, in extreme cases, by laying on the lime as water-color, and allowing it to remain for a few minutes, hours, or days, according to circumstances. In many cases the colors of the woods are heightened or modified, by applying coloring matters either before, or with the varnish; and in this manner handsome birchwood is sometimes converted into factitions mahogany, by a process of coloring rather than dyeing, that often escapes detection.

The bog-oak is by some considered to assume its black color from the small portion of iron contained in the bog or moss, combining with the gallic acid of the wood, and forming a natural stain, similar to writing ink. Much of the oak timber of the Royal George, that was accidentally sunk at Spithead, in 1782, and which has been recently extricated by Colonel Pasley's sub-marine explosions, is only blackened on its outer surface, and the most so in the neighborhood of the pieces of iron; the inside of the thick pieces is, in general, of nearly its original color and soundness. Some specimens of camwood have maintained their original beantiful red and orange colors, although the inscription says that they were "washed on shore at Kay Haven, in October, 18 40 , with part of the wreck of the Royal Tar, lost near the Needles twenty years ago, when all the crew perished."

The recent remarks on color apply equally to the works of statuary, carving, and modelling generally: the materials for which are either selected of one uniform color, or they are so painted. Then only is the full effect of the artist's skill apparent at the first glance; otherwise it frequently happens cither that the eye is offended by the interference of the accidental markings, or fails to appreciate the general form or design, withont a degree of investigation and effort that detracts from the gratifeation which would be otherwise immediately experienced on looking at such carved works.
This leads me to advert to modes sometimes practised to produce the effect of carsing; thus, in the Manuel du Tourneurf a minute description will be found of the mode of making embossed wooden boxes, which are pressed into metallic noulds, engraved with any particular device. The wood is first turned to the appropriate shape, and then forced by a powerful screw-press into the heated mould, which is made just hot enough to avoid materially discoloring the wood;) it is allowed to remain in that situation until it is cold; this method, however, only applies to subjects in small relicf, and is principally employed on knotty pieces of boxwood and olive-wood of irregular curly grain.

The following method may be used for bolder designs, more resembling ordinary carving: the fine sawdust of any particular wood it is required to imitate, is mixed with glue or other cementitious mat$t w$, and squeezed into metallic moulds; but in the latter case the peculiar characteristic of the wood, mamely, its fibrous structure, is entirely lost, and the eye only views the work as a piece of cement or compusition, which night be more efficiently produced from other materials, and afterwards colored.

Each of these processes partakes rather of the proceeding of the manofacturer than of the amateur; extensive preparations, such as rery exact moulds consisting of several parts, a porerful press and other apparatus, are required, and the results are so proverbially alike, from being "formed in the same mouk," that they lose the interest attached to original works, in the same manner that engravings are less valued than the original paintings from which they are copied.

Another method of working in wool may be noticed, which is at any rate free from the objections recently advanced: we will transcribe its brief description. \ddagger
"Raised figures on wootl, such as are employed in picture-frames and other articles of ormamental cabinet-work, are produced by means of carving, or by casting the pattern in Paris plaster or other

[^30]composition, and cementing or otherwise fixing it on the surface of the wood. The folmer mode is expensive, the latter is inapplicable on many occasions.

The invention of Mr. Straker may be ued either by itself or in aid of carving; and depends an the fiets, that if a depression be made by a blunt instrument on the surface of wool, such depresed part will again rise to its original level by subsequent immersion in water.
"The wood to be onamented having first been worked out to its propurad shape, is in a state to recuive the drawing of the pattern; this being put in, a blunt steel toul, or burni-luer, or die, is to be applied successively to all those parts of the patiern intended to be in relicf, and at the same time is tu be driven very cautiously, without breaking the grain of the woud, till the depth of the depre-aion is equal to the subsequent prominence of the figures. The grommel is then to be reduced ley phanes or filing to the level of the depresed part; after which, the piece of wood beine plate 1 in water, cither hot or cold, the part previously depresed will rise to their former height, and will thus firm an embosed pattern, which may be finished by the n-ual operations of carvingo'

Shrinking and rarping. -The permanence of the form and dimen-ions of the wouls remure particular consideration, even more than their comparative degrees of omament, e-pecially as concerns mose works which consist of varions parts for unless they are combined with at dee regarel to the strength of the pieces in dillerent directions, and to the manare and dergree in whieh they are likely to be influenced by the atmosphere, the works will split or warp, and maty probably be rendered entirely ureless.
The piece of dried wood is materially smaller than in its first or wet state, and as it is at all times liable to reabeorb moi-ture from a damp atmosphere, and to give it off to a dry one, even affer baving beent thoroughly seasoned, the alterations of size again oceur, although in a lese degree.
The change in the direction of the length of the fibres is in general very inconsiderable.* It is so little in those of straight grain, that a rod split out of clean fir or deal is sometimes employed ats the pendulum of a clock, for which use it is only inferior to some of the compensating pendulums: wherate a piece of the same wood taken diametrically out of the centre of a tree, or the crossway of the gratin. forms an excellent hegrometer, and indicates by its change of length the comparative degree of moi-ture of the atmosphere. The important diflerence in the general circumstances of the woms, in the two directions of the grain, we propose to notice, first as regards the purposes of turning. and afterwards thane of joinery work, which will rember it necessary to revert to the wood in its original, or unseaterned stite.

The turner commonly employs the transerse -ection of the woul, and we maty suppose the anmal ring- then exhibited to con-int if circular row of fibres of uniform size, each of whieh, tur the satie of explamation, I will suppose to be the one-humdredth of an inch in diameter.

When the lug of green wool is expused to at dry atmonghere, the outer fithes contract buth at the -ides and ends, whereas thoe within are in a measure shielled from the immediate effect of the atmon
 the one hundred and tenth, or the one hundred and twentieth of an ineh, at the external subionan mon longer fill out the original extent of the ammal ring, the stme at they did before they were dried ; they

 the natural indentations of the maryin, which appear to indicate the jhace where the phlits are likel! to commence.
The ent, beine the mo-t expmed to the air, are the first attacked, atml thore the thlits are primepally radial, with ocestional diverwins comembric with the latyers of thores, ats in liz. : ; luy the sphti brenme gralually extended in the diree

 phowe, will contimes pril the ratire les. and the more papmity the hater the womt, from its -mather

 phere ter the wther, to expen them expally th the and
 lust, dry air.

Thn formantat lies or Whe of the antire tre is the

[^31]alike, and the contraction occurs without causing any sensible departure from the circular form. Although thin transverse slices are necessarily weak from the inconsiderable length of the fibres of which they are composed, (equal only in length to the thichuess of the plate,) they are strengthened in the generality of turned works by the margin, such as we find in the rim of a snufl-box, which supports the bottom like the hoop of a drum or tamborine.
The entire circular section is therefore most appropriate for turning; next to it the quartering, Fig. 3939 , should be chosen, but its appearance is less favorable ; and a worse effeet happens, as the shrinking causes a sensible departure from the circle, the contraction being invariably greater upon the cireular ares of fibres, than the radial lines or medullary rays. If such works be turned before the materials

are thoroughly prepared, they will become considerably oval; so much so, that a manufacturer who is in the habit of working up large quantities of pear-tree, informs me that hollowed pieces rough-turned to the circle, alter so mueh and so unequally in the drying, that works of three inches will sometimes shrink half an inch more on the one diameter than the other, and become quite oval; it is therefore necessary to leave then half an inch larger than the intended size. Even in woods that were comparatively dry, a small difference may in general be detected by the callipers, when they have been turned some time, from their unequal contraction.

In pieces cut lengthways, such as Fig. 2940 , eircumstances are still less favorable; there being no perceptible contraction in the length of the fibres, the whole of the slirinking takes place laterally, at right angles to them, and the worl becomes oval to the full extent of the contraction that occurs in the filmes.

The plank-wood is almost solely employed for large disks which would be too weak if cut out transversely; and in some cases for objects made of those ornamental woods which are best displayed in that section, as the tulip, rose, king, zebra, partridge, and satin woods. Specimens of oak from ancient buildings are sometimes thus worked, but in all such cases the wood should be exceedingly well dried beforchand; otherwise, in addition to the inconvenience arising from the greater departure from the circle, the pieces will warp and twist, an effeet that more generally concerns the joiner's art, and to the consideration of which we will now proceed.

When the green wood is cut up into planks, boards, and veneers, the splitting which occurs in the eransverse section is less to be feared than distortion or warping, from the uuequal contraction of the fibres. Thick planks are partially stayed from splitting and opening, by eleets nailed upon each end; bourds are left unprotected, and veneers are protected from aceidental violence by slips of cloth glued upon eath end.

One plank only in each tree can be exactly diametrical, the others are parallel therewith, and, as shown in Fig. 3937, the two sides of all the boards, but that from the centre are differently cireumstanced as regards the arrangement of the fibres, and contract differently. It will be generally found that the boards exposed to similar conditions on both sides, become, from the simple effeet of drying, convex on the side towards the centre of the tree; this will be explained by a reference to the diagram.

Fig. 3941, which shows that the longest continuous line of fibres is concentric with the axis of the tree. Thus let a, b, c, d, e, f represent the scetion of a board, the line $b e$ of which is supposed to contain five fibres, and the are $d b f$ thirty: therefore, supposing every fibre to shrink alike in general dimensions, the eontraction on the are will be six times that upon the short radial line, and the new margin of the board will be the dotted line which proceeds from g to h, the departure of which from the original straight line will be fire times as much at d as at e.

This is not imaginary, as it is in all cases borne out by observation, where the pieces are exposed to similar circumstances on hoth sides. When a true flat board is wanted, it is a common practice to sar
the wide plank in two or four pieces, to change sides with them alternatels, and glue them togethes again, as in Figs. 3042, so that the piece; $1,3,5$ may prement the sile tuwards the axis of the tree, and $2,4,6$ those towards its circumference ; the curvature from shrinking will then become a serpentine line consinting of six ares, instead of one continuous crrcular sweop).

When the oppesite sides of a board are expoedel tor unequl comelitions, the moisture will swell the fibres on the one ride and make that convex, and in the oppo-ite mamer that expered to the dry air or heat will contract and become concave; from the-e circumstances, when several pieces of wool are placed around the room or before the fire, " t, air," the sides should be comtinually chaned, that both may have equal treatment, so as to lessen the tendeney to curvature. 'To remedy the defect when it may have oecurred, the joiner expuses the convex side to the fire, but it is obsionsly better to be spar ing of these suchlen changes.

Any unequal treatment of the two sides is almo-t stre to curl the board; if, fere instance, we pate a hheet of paper upon one side of a buard, it will in the first intance swell the surface and make it convex ; as the paper dries it contracts, it forees the wool to accompany it, and the papered -ide becomes hollow ; when two equal papers are pasted on opposite sidec, this change due hot gemerally occur. A similar effect is often observed when a venecr is glued on a piece of werd; henee it is matil to swell the surface on which the vencer is to be laid, by wetting it with a sponge dippeel in thinsize, so as to make it moderately round; in this case, the wetted surfice of the hoard, and the ghed surface of the vencer, are expanded nearly alike by the moisture, and in drying they abo contract alike, so that under farorable manarement the board recovers its true that figure.

The woods are much less disposed to become curved in the direction of their lenglh, than cromways: but another evil equally or more untractable is now met with, as the general figure of the board is more or less disposed to twist and warp, so that when it is laid upon a flat surface it touches only at the two diagonal comers, and is said to be "in mindeng." This crror is the less experienced in the straightgrained pines and mahorany, which are therefore selected for work in which con-tancy of tigure is a matter of primary importmice, as in medels for the foumdry, and objects exposed to great vici-situdes of climate.

The warping may arize from the curved direction of the fibees in reapect to the lemph of the phank, and also from the spiral direction in which many trees grow; in some, for example, the furrows of the bark are frequently twisted as much as fifteen or twenty degrees from the perpendicular, and somes. times even thirty and forty: The woods themselves when shit thrmgh the centre of the tree differ materially; they sometimes present a tolerably flat snrface, at whers they are much in windins or twisted, at further corroboration of the "spiral growth;" we camot be therefere muth -urprivel that the planks cut out from such woods shonh in a degree pursue the pathe thas early inprewed upm the m.

Buxmond is often rery much twisted in this mamer. The writer had a block, the diameter wf which was bine inches; its surface was split at five parts, with spiral groves, at an :nfle of nearly thirty derrees with the axis; theee made exactly one complate row tution, or one turn of a serew in the lemgith of the piece, which was jusi three fert.
()n the other hand, the - lever, a pine growing in the inland of Chilue in south Amerie:, to the diameter of about four foet, and whese wool resembles the cedar of Lebomon in coher, is an remarkably straight in the grain, that it is the cu-tom of the combry to split it into phanks about eighe freet long ame seren inches wile, which are ahnost as troe as if they were eut with the saw, aldhough of conse mot guite so moseth.

Tin correct the errors of winding and curvature in length, the joiner, 'n womker unn risil pieces, first

 and the pres-ure is applad twerem them.

Broat thien pieces are sometimes warmed on beth -ibles before the fire tolewn their rigitity; they are then dixed hetwom twor atont
 mathl they are quite cold; this is just the re veran of the mathe of hand-
 claborate mamer.

 after they hase hion preporly dient; but the diverity of gram, a

 on (1) purabe many palhe, (which are paralle I whb the fibrew, haseror

 is reatramal by the pernharity of grewth.

 Von. 11.-5!
be always borne in mind. Provision must be made that the shrinking and swelling are as little res:trained as possible, otherwise the pieces may split and warp with an irresistible force: and the principal reliance for permanence or standing, slould be placed on those pieces, (or lines of the work,) cut out the lengthway of the plank, which are, as before explained, much less disposed to break or become erooked, than the crossway sections: these partieulars will be more distinetly shown by one or twe illustrations.

Let $a b c d$ represent the flat surface of a board; $c f$, the edge of the same, and $g h$ the end; no contraction will oceur upon the line $c f$, or the length, and in the general way, that line will remain pretty straight and rigid; but the whole of the shrinking will take place on $g h$, the width, which is slender, flexible, and disposed to become curved from any unequal exposure to the air; the four marginal lines of $a b c d$, are not likely to alter materially in respeet to each other, but they will remain tolerably parallel and square, if originally so formed.

A dovetailed box consists of six such pieces, the four sides of which, A B C D, Fig. 3944, are interlaced at the angles by the dovetails, so that the flexible lines, as $g h$; on B, are conneeted with, and strengthened by, the strong lines, as $c d$, on A , and so on: the whole collectively form a very rigid frame, the more especially when the bottom piece is fixed to the sides by glue or serews, as it entirely removes from them the small poryer of racking upon the four angles, (by a motion like that of the jointed parallel rule,) which might happen if the dovetails, slown on a larger scale in Fig. 3945, were loosely fitted.
3945.

3944.

When the grain of the four sides A BCD runs in the same direction, or parallel with the edges of the box or drawer, as shomn by the shade lines on A and B, and the pieces are equally wet or dry, hey will contract or expand equally, and without any mischief or derangement happening to the work; to insure this condition, the four sides are usually cut out of the same plank. But if the pieces had the grain in different directions, as C and D , and the two were nailed together, D would entirely prevent the contraction or expansion of C, and the latter would probably be split or cast, from being restrained. When admissible, it is therefore usual to avoid fixing together those picces, in which the grain runs respectively lengthways and crossways, especially where apprehension exists of the occurrence of swelling or shrinking.

A wide board, Fig. $3945 \frac{1}{2}$, composed of the slips A B C D E, (reversed as in Fig. 3942,) is rendered still more permanent, and very much stronger, when its ends are confined by two clamps, such as $G \mathcal{H}$, (one only seen;) the shade lines represent the direction of the grain. The group of pieces, A to E, contract in width upon the line $A \mathrm{E}$, and upon it they are also flexible, whereas the elamp G H is strong and incapable of contraction in that direction, and therefore unless the wood is thoroughly dry the two parts should be connected in a manner that will allow for the alteration of the one alone. This is effected by the tongue and groove fitting as represented; the end piece $G H$ is sometimes only fastened by a little glue in the centre of its length, but in cabinet-work, where the seasouing of the wood is generally better attended to, it is ghed throughout.

If the clamp (II were fixed by tenons, (one of whieh, $i j$, is shown detached in Fir. 3916, the con raction of the part of the boardibetween the tenons might cause it to split, the distance betwepn the
nortiees in G H being unalterable; or the swelling of the board might cause it to bulge, and becont rounding; or the entire frame would twist and warp, as the expansion of the centre might be morpowerful than the re-istance to change in the two elanps, and force them to bend.

It is therefure obvinus that if any question exist is to the entire and complete dryness of the wonl, the we of clamp-is hazuduns: althuygh incir abence, the shrinking might tear away the wind from the flain glue-joint, even if it extended entirely acrose, without calusing any further misehief, bat more generally the shrinking would aplit the soid hoard.

Another mode of clamping is represented at \bar{k}; it is there placed edreways, and attached hey an undercut or dovetailed groowe, slighty taper in its lengeth, anl is fised by a litte glue at the larger mad, which lolds the two in firm contact: each of theee modes, and fonse others, are frepuently ent ployed for the large drawing-boards required by architects and engineers for the drawings made woth squares and instrument-

From a similar motive, the thin bottom of a drawer is grooved into the two sides and fromt, an $\}$ ondy fixed to the back of the drawer by a few small screws or brade, so that it may swell or shrink without splitting, which might result were it confined all around its margin. It is more usual, hwever, to glue thin slips alung the sides of large drawers, as in Fig. 39t7, which strengthen the sides, and being grourad to receive the bottom, allow it to shrink without interfering either with the front or back of the drawer.
In an ordinary door with two or more panels, all the marginal pieces run lengthways of the grain, the two sides, ealled the stiles, extend the whole height, and receive the transeree picces or rats, now morti-ed through the stiles, and wedged tight, but without risk of splitting, on account of their small wilth; every panel is fitted into a grouve within four edges of the frame. The widh of the pand should be a trifte les th:m the extreme width of the grooves, and even the mouldings, when they arm not workel in the solid, are fixed to the frame alone, and not to the panel, that they may not interfere with its alterations; therefore in every direction, we have the framework in it- stronge-t and me-t permanent position as to grain, and the panel is unrestrained from alteration in width if so disposed.

This system of combination is carried to a great extent in the tops of mahogany billiard-tablez, wh in h con-ist of numerous panels abont s inches square, the frames of which are $8 \frac{1}{2}$ in. wide and $1 \frac{1}{2}$ in. thick the pancls are ploughed and tongued, so ats th be level on the upper side, and from their smath size tho individual contraction of the separate pieces is insigniticant, and consequently the general tigure of tha table is comparatively certain. Of late yeare we are told that slate, at material minduencel be the atmosphere, has been ahmost exelusively used; the top of a full-sized table, of 12 by 6 fect, consi : of four -labs one inch thick, ground on their lower, and planed by machinery on their upper surface: the iron tables are almo-t abamduned fir several reatsons. Lame thin slates, from their permanemee a fiom, are sometimes used by engineers and others for drawing upon, and also in carpentry for th. pancl of sujerior door:

On glueing rarions uorks in roonl.- (hlue is the cement usel for joining different pieces of whed it is a common jelly, made from the serap; that are pared ofl the hides of ammals leffere they are
 with a considerable portion of the lime used for removing the hair from the skins, but the better cof:tre trancparent, especially the thin cakes of the Salisbury glue, which are of a clear amber color.

In preparing the glue for wee, it is nust weally broken intu small piecoc, and suaked for abont twelve hours in as much water as will cover it; it is then mehted in a chluekettle, which is a donh) ve-sel or water-bath, the inner one for the glue, the outer for the water, in order that the temprateri applied may never cecod that of builine water. The ghe is allowed at first to simmer genty ior one or two hours, and if needful it is thimed by the ahhtion of lot water, until it runs from the bru-h in a tine stream; it shoukd be kept free from ilust and dirt by a eover, in which a motch is mathe for the hru-h. Sometimes the glue is covered with water, and boiled without beiner soaked.
 the air, Fon as to bring into action the presare of the atmophere. The hater, however, al ine is an in-ufficient explamation, $n=$ the strengh of a well made ghe-joint is frequently groater than the kinma presure of the atmo-phere: imbenl, it often excende the stremsth of the whid woml, the the frature does not at all times cheur through the joint, sum when it does, it almon insariahly tars out some of
 worиlo.
It is a great mi-take to depmil upon the quatity or thickness of the erhe, at that juint foldo the

 is powible, as will be explailu-l.

 tamer, the monle of frocecting is at completely simbar to that practiond in joinery work, thit on
 example in 'lublorise ware, partahe anme wht of the nature of juinery-work.

 behts an well urem the entway in the hemethway of the fithome

position and left to dry; or as the bench cannot in general be spared so long, the work is cautiously removed from it, and rested in contact with a slip of wood placed against the wall, at a small inchnation from the perpendicular. Two men are required in glueing the joints of long boards.

In glueing a thin slip of wood on the edge of a board, as for a moulding, it is rubbed down very close and firm, and if it show any disposition to spring up at the ends, it is retained by placing thereon heary weights, which should remain until the work is cold; but it is a better plan to glue on a wide piece, and then to satw off the part exceeding that which is required.

Many works require screw-clamps and other contrivances, to retain the respective parts in contact Whil-t the glue is drying; in others, the fittings by which the pieces are attached together supply the needful pressure. For instance, in glueing the dovetails of a box, or a drawer, such as Fig. 3944, dovetails, if properly fitted, hold the sides together in the requisite manner, and the following is the order of proceeding.
The dovetail pins, on the end B, Fig. 3944, are first sparingly glued, that piece is then fixed in the chaps of the bench, glue upwards, and the side A, held horizontally, is driven down upon B by blows of a hammer, which are given upon a waste piece of wood, smooth upon its lower face, and placed over the dovetail pins, which should a little exceed the thickness of the wood, so that when their superfluous length is finally planed off, they may make a good clean joint. When the pins of the dovetails come flush with the face, the driving-block is placed beside them to allow the pins to rise above the surface. The second end, D, is then glued the same as B, j is also fixed in the bench, and A is driven down upon it as before; this unites the three sides of the square. The other pins on the ends B and D are then glued, and the first side, Λ, is placed downwards on the bench, upon two slips of wood placed close under the dovetails, that it may stand solid, and the remaining side, D, is driven down upon them to complete the connection of the four sides.

The box is then measured with a square, to ascertain if it have accidentally become rhomboidal, or out of square, which should be immediately corrected by pressure in the direction of the longer diagonal; lastly, the superfluous glue is scraped off whilst it is still soft with a chisel, and a sponge dipped in the hot water of the glue-kettle is occasionally used, to remove the last portion of glue from the work.

The general method pursued in glueing the angles of the frame for a panel is somewhat similar, although modified, to meet the different structure of the joints. The tenons are made quite parallel both ways, but the mortises are a little bevelled or made longer outside, to admit the small wedges by which the tenons are fastened; and the stiles are made somewhat longer than when finished, to prerent the mortises from being broken out in driving the wedges, which are mostly cut out of the waste pieces sawn off from the tenons in forming their shoulders or haunches. These details are seen in Fig. 3946.
In glueing the frame for a single panel which is fitted into a groove, the whole of the frame is put together before commencing the glueing, and the stiles are knocked off one at a time, by which the misplacement of the pieces is avoided. The tenons are glued, and a little glue is thrust into the two mortises with a thin piece of wood; when the stiles have been driven down close, the joint is completed by the insertion of a wedge on each side of the tenon; their points are dipped.in the glue, and they are driven in like nails, so as to fill out the mortises, after which the tenons cannot be withdrawn: sometimes the wedges are driven into saw-kerfs, previously made near the sides of the tenons; the other stile is then knocked off, glued, and fixed in the same manner. Occasionally all four tenons are glued at the same time, and the two stiles are pressed together by screw-clamps, stretehing across the frame just within the tenons; the wedges are lastly driven in, before the removal of the clamps, and the door, if square and true, is left to dry.

In many other cases also, the respective pieces are pressed together by screws variously contrived ; the boards employed to save the work from being disfigured by the screws are planed flat, and are warmed before the fire, to supply heat to keep the glue fluid until the work is serewed up, and the warmth afterwards assists in drying the glue : such heated boards are named cauls, and they are par ticularly needed in laying down large veneers, which process is thus accomplished.

The surfaces of the table or panel, and both sides of the veneer, are scratched over with a tool calles a toothing-plane, which has a perpendicular iron full of small grooves, so that it always retains a notehec or serrated edge; this makes the roughness on the respective picces, called the tooth or key, for the hold of the glue. A caut of the size of the table is made ready; and several pairs of clamps, each consisting of two strong wooden bars, placed edgeways, and planed a little convex or rounding on their inner edges, and comected at their extremities with iron serew-holts and nuts, are adjusted to the proper opening; the table is warmed on its face, and the veneer and caul are both made very hot."

All being ready, the table is brushed over quickly with thin glue or size, the veneer is glued and laid on the table, then the hot caul, and lastly the clamping-bars, which are screwed down as quickly apossible, at distances of three or four inches asunder, until they lie exactly that. The slender veneer is thereby made to toneh the table at every point, and almost the whole of the glue is squeezed ont, as the heat of the caul is readily commonicated through the thin veneer to the glue and retains it in a state of fluidity for the short space of time required for serewing down, when sereral active men are engaged in the process. The table is kept under restraint until entirely cold, generally for the whole night at least, and the drying is not ennidered complete under two or three d:ays.t

[^32]When the objeets to be glued are curved, the catule, or monldy, must be made of the cuunterpars curse, so as to fit them; fur example, in glucins the someding-turard upon the body of a harp, which may be compared to the half of a cone, a trough or caul is wed of a corresponcling curvature, and furnished all along the edge with a series of screws to brime the work into the elowet posible contact.

In glueing the vencers of maple, oak, and other woots upon curved mouldingr, such as thane fur pic-ture-frames, the cauls or counterpart moulds are made to fit the work exactly: The moulding is usually made in long preces and polished, previously to being mitrel or joined together to the sizes required.

In works that are curved in their length, as the circular fronts of drawers, and many of the foundry patterns that are worked to a longsweep, the pieces that recoive the presure of the serews used in fixing the work together " whilst it is under glue," are made in marrow slips, and pierced with a small hole at each end; they are then strung together like a necklace, but with two strings. This flexible caul can be used for all curves; the strings prevent the derangement of the pieces whilst they are bemer fixed, or their lus when they are not in uee.

We have mentioned these cases to explain the general methode, and to urge the necesity of thin glue, of a proper degree of warmsth to prevent it from being chilled, and of a prewtre that may cause the greatest pos-ible exclusion of glue from the joint. But for the comparatively nall purgeises of the amatuer, four or six hand-screws, or ordinary clamps, or the screw elaps of the bench, atded by a string to bind around many of the curvilinear and other works, will generally suffice.

A; however, the amateur may occasionally require to glue down a piece of veneer, we will, in conelusion, describe the method of "Jaying it with the hammer," which requires none of the apparatus ju-t decribed, but the veneering hammer alone. This is cither made of irom with a very wide and thin plane, or more generally of a piece of woud from three to four iuches square, with a round handle projecting from the centre; the one edre of the hammer-head is sawn down tior the insertion of a piece of thectiron or steel, that projects about une-guarter of an inch, the edge if which is mate very straight, anowh, and round; and the opsosite side of the square wooden head of the veneering haminer is rounded, (1) aroid its hurting the hathe.

The table and hoth sides of the veneer daring been touthed, the surfate of the table is warmed, and the outer face of the veneer and the surface of the table are wetted with very thin glue or with a stind size. The inner face of the vencer is next glued; it is held for a few moments berore a blazing tire of -havia, to remaler the glue very tluid, it is turned quickly down upon the table, and if large is rublend down by the outstretched hamls of several men; the principal part of the remainder of the ghe is then forced out by the veneering hammer, the edge of which is phaced in the centre of the table; the warkman leaus with his whele weight upon the hammer, by means of one hand, and with the other he wriggles the tool by its handle, and draws it towards the edge of the table, continuing to bear heavily unh it all the time.

The pressure being applied upon so narrow an edge, and which is gradually traversed or semped over the entire surface, syueezes uut the glue before it, as in a wave, and forees it out at the elige; having proceeded along one line, the workman returns to the centre, and wrigeles the tend along another part elon by the side of the former; and in fact as many men are generally engaged upon the surface of the table as the shop will supply, or that can cluter" aromel it. "The vencer is from time to time wetted with the hot size, which keeps up the warnth of the glue, and relieves the friction of the han mers, which might wharwise tear the fiace of the wood.
The wet and warmbalso render the voneer more plable, and prevent it from cracking amb curling up at the edgee, as should the erlue become chilled the vencer would beak from the sud len bombing to which it might be subjecten, by the prowure of the hammer just hehind the wave of elue, which latter would be then ton stiff to work ont freely, owing to its gratlual luas of thidity ; the "peration mu-t. therefore, be emelueted with all posil)le expertition.

The concluding procem in th tap, the surfice all wer with the bate of the hammer, an l the dull hallow shand will immediately indicate where the eontact is incomplete, and here the applicatom of the
 the plue-p, or heated irent are laid on to rintore the warmith. liy some, the table is at the somblutent

 for the smaller piecten nus strips of venmer.

 phaner; it is highly e termad in thy hathars.

 grent watle, near in Now In, hlani.

 imployed in tamme leather.

Alder, (Alnus glutinosa,) Europe and Asia. There are other species in North America and the Himalayas. The common alder seldom exceeds 40 feet in height, is very durable under water, and was ured for the piles of the Rialto at Tenice, the buildings at Ravenna, \&c.: the mood is also much used for pipes, pumps, and sluices. The color of alder is reddisl-yellow of different shades, and nearly uniform; the wood is soft, and the smaller trees are much used for inferior turnery, as toothpowder boxes, common toys, brushes and bobbins, and oceasionally for foundry patterns. The roots and knots are sometimes beautifully reined, and used in cabinet-work. The charcoal of the alder is employed in the manufacture of gunpowder.
Aloks-wood. See Calembeg.
Almond-Tree, (Amygdalus communis,) is very strongly recommended by Desormeaux, as being hard, heavy, oily or resinous, and somewhat pliable; he says, the wood towards the root so much resembles lignum-vitee as to render it difficult to distinguish between them. It is sometimes called false lignim-vitce, and is used for similar purposes, as handles, the teeth and bearings of wheels, pulleys, de., and any work exposed to blows or rough usage. It is met with in the south of Europe, Syria, Barbary, dec. The wood of the bitter almond, grown in exposed rocky situations, is preferred.
Amborna-wood. See fiabooca-wood.
Axgica-wood. See Cangica-wood.
Aps. See Poplar.
Apple-tree, (Pyrus Malus.) The woods of the apple-trees, especially of the uncultivated, are in general pretty hard and close, and of red-brown tints, mostly lighter than the hazelnut. The butt of the tree only is used; it is generally very straight and iree from knots up to the crown, whence the branches spring. The apple-tree splits very well, and is one of the best woods for standing when it is properly seasoned; it is very much used in Tunbridge turnery, for bottle-cases, de.: it is a clean-working wood, and being harder than chestnut, syeamore, or lime-tree, is better adapted than they are for screwed work, but is inferior in that respect to pear-tree, which is tougher. The millwright uses the crab-tree for the teeth of mortise-wheels.
Apricot-tree, (Armeniaca vulgaris,) a native of Armenia, is mentioned in all of the French works on turning, beginning with Bergeron, (1792,) who says the wood of the apricot-tree is very rarely met with sound, but that it is agreeably veined, and better suited to turning than carpentry. He elsewhere very justly adds, that we are naturally prejudiced in favor of those trees from which we derive agreeable fruits, and expect the respective woods to be either handsome in appearance or agreeable in scent, but in each of which expectations we are commonly disappointed: this applies generally to the orange and lemon trees, and we may add, to the quince, pomegranate, and coffee trees, the rine, and many others oceasionally met with, rather as objects of curiosity than as materials applicable to the arts.
Arbor vite. The different specics of Thuja are called Arbor vitce, and are chiefly found in North America and China. T. occidentalis, or American Arbor vitcc, attains a height of from 40 to 50 feet, and has reddish-colored, somewhat odorous, very light, soft and fine-grained wood. It is softer than white pine, and much used in house-carpentry, and also for fences.

The Chinese Arbor vitce, or T. arientalis, is smaller, but the wood is harder. T. articulata, a native of the north coast of Africa, is the Alerce of the Moors, and was employed in the roodwork of the mosque, now the cathedral, of Cordova. The plant is now called Callitris quadrivalvis.
Asir, (Fraxinus cxcelsa;) Europe and north of Asia; mean size, 38 feet long by 23 inches diameter, sometimes much larger. 'The young wood is brownish-white with a shade of green; the old oakbrown, with darker veins. Some specimens from Hungary with a zigzag grain, and some of the pollards, are very bandsome for furniture.

Ash is superior to almost any other timber for its toughness and elasticity; it is excellent for works exposed to sudden shoeks and strains, as the frames of machines, wheel-carriages, agricultural implements, the felloes of wheels, and the inside work of furniture, dc. The wood is split into pieces for the springs of bleachers' rubbing-boards, which are sometimes 40 feet long; also for handspikes, billiard cues, hammer handles, rails for chairs, and numerons similar works, which are much stronger when they follow the natural fibre of the wood.

Ash is too flexible and insufficiently durable for building purposes; the young branches serve for hoops for ships' masts, tubs, churns, de.

Several species are found in North America: of these it is thought that the white-ash, or Fraxinus americana, comes the nearest in quality of wood to the common ash. Fi.floribunda and zarthoxyloides are two ashes found in the Himalayas.
Fraxinus ornus produces manna; Fraxinus excelsa produces a manna somewhat similar.
Ash, the Mountqin Ash, or Quicken or Rowan tree, Pyrus Aucuparia, grows in almost every soil or situation, has fine-grained hard wood, which may be stained of any color, and takes a high polish, and is applied to the same purposes as the wood of the Bean and Service trees. See Service-trec.
Aspex. See Poplar.
Bamberx-wood, (Berbcris vulgaris,) is of small size, generally about 4 inches diameter; the rind is yellow, and about half an inch thiek: the wood resembles elder, and is tolerably straight and tenacious.
Banwood, Africa. Two kinds are imported from Angola and Gaboon respectively, in split pieces 4 to 5 feet long, 10 to 12 inches wide, and 2 to 3 inches thick. It is used as a red dyewood-the wood is dark-red, but the dye rather pale; it is also used for riolin-bows, ramrods, and turning.
Bar-tree. The sweet bay-tree, (Laurus nobilis, a native of Italy and Greece, grows to the height on iof feet, and is an aromatic wood. It is the laurel that was used by the ancients for their military crowns.

Beecr. Only one -pecies (Fugus syiluatica) is common to Europe; in England the Buchinghamshre and sussex beech are esteemed the be-t. Mean dimmsims of the tree, 44 feet long and 27 inche: diameter. The color (whitish-brown) is intluenced by the soil, and is described as white, brown and black.-(Tredyold.)

Beech is used for piles in wet foundations, but not fur building; it is excellent from its unifurtu texture and closeness for in-door works, as the frames of machines, common bedstends and furniture it is very much used for planes, tools, lathe-chucks, the keys and eogs of machinery, shoe-last, pattens, toys, brushes, handles, de. Carved moulds for the composition ornaments of piture-frames, and for pastry, and large wooden types for printing, are commonly made of beech: the wood is often attacked by worms when stationary, as in framings, but towls kept in wee are not the injured.

Beed is stained to imitate rosewool and ebony, and it is con-idered to be almest chemically free from forcign matters; for example, the glan-bluwers use the woud almost exelu-ively in uelding, or fusing on, the handles of glass jugs, which process fails when the smallest portion oit sulphur, de., is present: onk is next in estimation for the purpose.

The white-bech of North America, Fragus sgleestris, is little valued in this country ; the bark howerer, is employed in tumning.
Beefwoons. Iied-colured woods are sometimes thus named, but it is generally applied to the Lutany bay oak-which see.
Bitle-vets, or Areca-nets, are the fruit of the Areea cutedre, or Fuuft; they have a thin, brown rind, and in size are intermediate between walnuts and hazehut-; their gencral sulntance is of a faint oily-gray color, thickly marked with curly streaks of dark-brown or black. The hetle nuts, although softer, resemble ivory, as regards the art of turning; they are made into necklaces, the tops of walking-sticks, and wher small objects. The substance of the betle-nut, tergether with quicklime, is chewed by the generality of the natives of India.

Fig. 3947 is the section of the betle-nut full size, and at rirht angles to the stalk. Firs. 8918 is the section through the line of the stalk, whin shows the central cavity. Externally the marks constitute a tortuous running pattern, as seen in the turned knob, Fig. 3019.

1Btan awomp. I forestree eommon to Eurupe and North Ameriea; the fine is from Canala, st. Juln's, aml lictou. It is an excellent wool for the turner, beine light-colored, compatet, and easily workenl: it is in grencral softer and tarker than beech, ant malike it in grant.

Jirchwonl is not fery durable; it is consjerably used in furniture. Fome of the wond is almons: a- bambomely firurend as Hunduras mahogany, and when colored oand vami-hed is mot easily dis. motai-hed from it. The bark of the hirch-tree is remarkable for being barder and more durable dian the wood itvelf: amongst the Vorthern mations it is used for tiles for routi, for shoes, hati, di: and in Canadat for boats. The liussians employ the tan of one of the birch-trees to impart the
 for making the Jenssis mats.

The Engli-h birch is much smaller than the Smerioan, and lighter in coblor; at as chatefly usel fin commen turnery. Some of the lassim bireh atalled Ra-sian maple is very beantiful, ame of a full yellow culor.
 Fingire. 'The liusaian maphe of comaneree is thonght to be the wored of the hireh. lielula

 guantitien to Emelamel under the name ot Amerionn birch.

 mal woft in the gram, mome thag like walmut.
 lichory, tere prolsally the tree which wifll thas wome.

 the oritmary siza

The wood, when fresh cut, is of a bluish-black, with dark-gray streaks, but soon changes to an intense jet black; of the few sound pieces that are obtained, the largest may perhaps be five inches, but the majority less than two inches in diameter. It is most admirably suited to eccentric turning, as the wood is particularly hard, close, free from pores, but not destructive to the tools from which, when they are in proper condition, it receives a brilliant polish. It is also considered to be particularly free from any matter that will cause rust, on which account it is greatly esteemed for the handles of surgeons' instruments.

The exact locality of this wood has long been a matter of great uncertainty. It has been considered to be a species of African ebony, but its character is quite different and peculiar; we have however recently heard, from two independent sources, that it comes from the Nauritius, or Isle on France. Col. Lloyd says the wood is there called Cocobolo pricto; that it is not the growth of the Mauritius, but of Madagascar, to the interior of which island Europeans are not admitted; and that it is brought in the same ressels that bring over the bullocks, for the supply of food. The stonemasons of the country use splinters of it as a pencil for marking the lines upon their work; it makes a dark-blue streak not readily washed off by rain.

We have only met with one specimen of this wood in the numerous collections we have searched, namely, in Mr. Fincham's: he assures us that his specimen grew in Botany Bay, and was brought direct from thence, with several others, by Captain Woodroffe, R.N. As we have recently purchased a large quantity imported from the Mauritius, it is probable that this wood, in common with many others, may have several localities.

It would be very desirable for the amateur turner that the wood should be selected ou the spot, and the better pieces alone sent, as a large proportion is scarcely worth the expense of shipment, but the tine pieces exceed all other woods for eccentric-turned works.
Blue Gumwood. See Gumwood.
Botayy-Bay Oak, sometimes called Beefwood, is from New South Wales; it is shipped in round logs, from 9 to 14 in . diau. In general color it resembles a full red mahogany, with darker red veins; the grain is more like the evergreen oak than the other European varieties, as the veins are small, slightly curled, and closely distributed throughout the whole surface. It is used in veneer for the backs of brushes, Tunb idge ware, and turnery; some specimens are very pretty.

The trees called oaks in New South Wales do not belong to the genus (Uuercus, like the European, North American, and Himalayan oaks. There, the tree called Forest Oak, is Casuarina torulosa; Swamp Oak is C'.palulosa; He-Oak is C. equisitifolia; while C. stricta is called SheOak, and also Beefwood.
Boxroon (Buxus sempervirens) is distinguished as Turkey and European boxwood. The former is imported from Constantinople, Smyrua, and the Black Sea, in logs felled with the hatchet, that measure from 2 to 6 ft . long, and $\perp \frac{1}{2}$ to 14 in . diam. The wood is yellow, inclining to orange; it has a thin rind with numerous small knots and wens; some of it is much twisted, and such pieces do not stand well when worked; on the whole, however, it is an excellent, sound, and useful wood.

Boxwood is much used for clarionets, flutes, and a great variety, of turned works; it makes excellent lathe-chucks, and is selected by the wood-engraver to the exclusion of all other woods. It is also used for carpenters' rules and drawing-scales; although lancewood, satin-wood, and elder, are sometimes substituted for it. Boxwood is particularly free from gritty matter, and on that account its sawdust is much used for cleaning jewelry; it is frequently mentioned by the Roman authors as a wood in great esteem at the period in which they wrote.

Some of the boxwood is as handsomely mottled as fine satin-wood; but it differs much in color, apparently according to the age and season at which it is cut, as only a small portion of the Turkey boxwood is of the full yellow so much admired.

European boxwood is imported from Leghorn, Portugal, \&c. The English boxwood is plentiful at Boxhill in Surrey, and in Gloucestershire; it is more curly in growth, soiter and paler than the Turkey boxwood; its usual diameters are from 1 to 5 in.; it is used for common turnery, and is preferred by brass-finishers for their lathe-chucks, as it is tougher than the foreign box and bears rougher usage. It is of very slow growth, as in the space of 20 to 25 years it will only attain a diameter of $1 \frac{1}{2}$ to 2 inches. A similar wood, imported from America under the name of Tugmutton, was formerly much used for making ladies' fans.
Murraya, (Mackay B. f r. Tavoy, specimen of Dr. Wallich's and of Captain Baker's Collection of Indian woods, and the Garipe apugne bravo, from the Brazils, seem fully equal to bowwood in most respects.

Buxus sempervirens, or common evergreen box, is found throughout Europe, attaining a height sometimes of from 15 to 20 feet. Turkey box is yielded by Buxus balcarica, which is found in Minorea, Sardinia, and Corsica, and also in both European and Asiatic Turkey.

A new species has lately been introduced from the Himalayas, Buxus emarginatus, of Dr. Wallich: this is found of considerable size and thickness, and the wood appears as good and compact as that of the boxwood in use in Europe. Royle, Illust. Himal. Bot. p. 327. On actual comparison the Himalayan boxwood is found to be sufter than the common kinds, but is like them in other respects.
Brazil-woon, called also Pernambuco, was supposed by Dr. Bancroft to have been known as a red dyewood before the discovery of the Brazils, which country, he says, was so named by Europeans from its abounding in this wood. The best kind is from I'ernambuco, where it is called Pao da rainha, or queen's-wood, and by the natives Ibirapitanga; it is also found in the West Indies generally, and is often called Pernambuco-wood. The tree is large, crooked, and knotty, and the bark is so thick that the wood only equals the third or fourth of the entire diameter; the leaves are of a beautiful red, and exhale an agrecable odor. The Pao da rainhu grows to the diammis
of 15 or 15 inches, the Peo Ifrazil, an inferior kinul, to 50 or 60 in. Brazil-wood is a royal monepoly, and the beat quality has the imperial brand mark at the end; it is shipped in trimmed sticks from 1 to 4 in . diam. and 3 to 8 ft . long, amd its culer becones darker by exposure to the air. Its principal use is for dyeing ; the best pieces are selected for violin-bows and turning.

Cirsulpiniu cehinata, the lbirapitunga of l'iso. yield the Brazil-wood of conmeree. De Candolle inguires whether it is not rather a =pecies of Gimilandind. C. crista, a mative of the West Indies, is called Bresillct, because its wowl is reddi-l-colored hke Brazil-wool. C: Sapun is a mative chictly of the A-hatic l-les and of the Malayan Peninsula; its wood is like Brazilwood, and well known in commerce as Sapan-wool.
Brazaletto is quite unlike the Brazil-wood; its culor is rudly orange, sometimez with streaks; it is imported from Jamaica in sawn logs from 2 to b ft. long and 2 to s in. diam, with the bark (which is ot the ordinary thickness) left on them; and also from New Providence, in small cleaned sticks. brazaletto is thought to be an inferior species of Brazil-wood; it is principally used for dyeing, also for turnery and siolith-bows.
It is con-ilered to be botanically allied to the abose, and is called Ciesalpiniu braziliensis, a mative of the WHest Indies, but also found in Brazil.
Bcllet-wod, from the Virgin Isles, West Indies, is the produce of a large tree, with a white sap; the woud is greenish-bazel, close and hard. It is used in the country for building purposes, and resembles the Greconheart.
The name of Bullet-wood is perlaps taken from the Bois de balle or Bullet-wood of the French, Guarea trichitioides, which in Jamaica is called musk or alligator wood. Bullet is perhaps a change from Jully-wood, which is that of the bully-tree, called also Naseberry bullet-tree, or Achras supota of botanists, described as one of the best timber-trees. The bully-tree of Ginima is also an Achras. The bastard bully-trees of Jamaica are species of Lumelio.
Bellet-wood, another species so called, is supposed to come from Berbice; its color is hazel-brown, of an esen tint without reins; it is a very close, hard, and grod wood, well adapted to general and to eccentric turning, but is not common.

The latter agrees pretty closely with a wood deseribeld by Dr. Bancroft as Bow-wood, or II esecba, of Guiana,

Diflerent specimens marked Nasebery bullet-wood, and one of an iron-woud, were exceedingly near to the above, if not identical with it, and the Bull Hoof and Bread-nut Heart, all from Jamaiea, appruached more distantly.
Button-wood Tref. See Plune-true.
Cabbage-woud. Sce l'urtrillge-wood.
Cabmander, II iospyros hirsuta. Sice Coromandel.
C'slamberra, S'e Coromandel.
Calembeg. A wood similar to Sandal-wool in grain, and similarly, but less powerfully, scented; its color is olive-green, with darker shades. It appears entitled to the name of Greens sumbl-womd
Catembeg, or Calambac, sometimes called Aloes-wood, is the Agallochum of the ancients, and the Agrila or Eagle-wood of the modern:. It is produced in Siam and sillet hy Aquilaria Agullucha.
Campeachy Lugwoud. Sce Logzooil
Campon-wood is imported from China, the Ea-t Indies, and Brazils, in logs and planki of large size ; it is a cuarse and soft wood, of a dirty grayish-yellow color, sometmes with broad iren-gray streaks, and is frequently spongy, and difficult to work. It is primeipally used in Englat fur cabinet-worh and turnery, on account of its secint.
The Camphor-tree of Sumatrat is Iryobalemops Cumphere, of which the wood is hard, compact, amd brownish-colured; there is a genuine specimen in the masem of King's College, lomblan. The fragrant light-culored onf wood of which the trumbs and hoxes from (himatare mate, is

 and much thed in the lruld ling of beats.
 and-plinters. Whon first opened, it is tinted with red amb uramge; the duat is very pungent, likis
 inclining to brown. Camwonel is the best and hardent of the red dyewonde; it is very fine and

('s.sans-wom, from the Brazils, I'ara, fe.; known at the hathma of Darien as A marillo. It is imported in round loge from 9 to 1 t in . dam., mul monetimes in aquared pieces. 'The wood is of it light

 the Jirazils umber the rame name.

 mad turnine.
 much confu*"日.

are 50 feet high and 39 inches diameter. The wood is of a rich yellowish brown, straight-grained and it has a peculiar odor. The tree is famous in Scripture for its size and durability, (Ezekiel xxxi $3,5,8$;) it was used in the construction of Solomon's temple at Jerusalem, and many Grecian tem. ples and statues. A few fine trees are said still to remain on Mount Lebanon; but the wood wa also procured, in the time of Titruvius, from other parts of Syria, and from Crete, Africa, de.Tradyold.

The Pencil cedar is the Jumiperus virginiana; it is also of the same natural order as the pine tree. It is a native of North America. The grain of the wood is remarkably regular and soft, ons which account, principally, it is used for the manufacture of pencils, and from its agreeable scent, for the inside work of small cabinets; from the same reason it is made into matches for the drawing-room.

Another species is the Juniperus bermadiana; it is a much harder and heavier wood than the pencil cedar, with a similar smell and appearance. It was formerly mueh used in ship-building ; many of the timbers of the Spanish ships taken in the last war were of the Bermuda cedar.

The cedar known to cabinet-makers by the name of Havana cedar, is the wood of the Cedrela odorata of Linnæus, and belongs to the same natural order as mahogany, which it resembles, although it is softer and paler, and without any variety of color. It is imported in considerable quantities from the island of Cuba, and is excellent for the insides of drawers and wardrobes: all the cigar-boxes from Havana are made of this kind of cedar; the wood is brittle and porous. Some kinds of the Havana cedar are not proper for cabinet-work, as the gum oozes out and makes the surface of the work rery sticky and uupleasant.

There is another kind more red in color, called red cedar ; there are also white cedars common to America: one kind is called prickly cedar, from its being covered with spines; this is very like the white hemlock, and grows to 4 feet diameter, and 60 to 70 feet high, and is mueh used for railway works.

Another sort, from New South Wales, is the wood of the Cedrela Toona; it is somewhat similar to the Havana, but more red in color, and of a coarser grain ; it sometimes measures 4 feet diameter. This kind is also found in the East Indies; it is in common use in joinery-work. Nost of the cedars have been used for ship-building.

The Himalayan cedar (Juniperus exeelsa) is harder and less odoriferous than the pencil cedar, but is an excellent light wood between pencil cedar and deal in general character.

The cedar of Lebanon is usually called Pimus Cedrus, but sometimes Cedrus Libanns; the lofty Dcodara, a native of the Himalayas, with fragrant and almost imperishable wood, and often called the Indian cedar, is sometimes referred to the genus Pinus, and sometimes to that of Cedrus or Larix, with the specific name of Deodara.
The wood of several of the Conifere is, however, called cedar. The wood of Juniperus wirgimiana is called red or pencil cedar, and that of J. bermudiana is called Bermuda cedar ; of J horbadensis is called Barbadoes cedar; while the Jumiper of the North of Spain, and South of France, and of the Levant, is called J. oxyeedrus: the white cedar of North America, a less valuable wood than the red cedar, is yielded by Capressus Thyoides, and the cedar-wood of Japan, according to Thunberg, is a species of cypress.
The name cedar is, however, applied to a number of woods in our different colonies, which are in no way related to the Coniferce: thus the cedar of Guiana is the wood of Icica altissimu, white wood or white cedar of Jamaica is Dignonia lezcoxylon, and bastard cedar is Guazzmet ulmifolia. In New South Wales, again, the term white cedar is applied to Molia Azederach, and red cedar to that of Flindersia australis, as well as to the wood of the Toon-tree, or Cedrela Toona.
jherry-tree is a hard, close-grained wood, of a pale red brown, that grows to the size of 20 or 24 inches, but it is more usually of half that size. When stained with lime, and oiled or varnished, it closely resembles mahogany; it is much used for common and best furniture and chairs, and is one of the best brown woods of the Tunbridge turners. The wood of the black-heart cherry-tree is considered to be the best. The Spanish American cherry-tree is very elastic, and is used for felucca masts.

Cerasus aviam is the wild cherry. C. duracina is the heart cherry or Bigarreau. The wood of C. Mahaleb is much used by the French, and is called bois de Sainte Larcie.

Chestrut (Castanea vesea) is common to Europe; mean size 44 feet high, 37 inches diameter; is very long-lived and durable. The sweet, or Spani-h chestnnt, is very much like oak, and is sometimes mistaken for it; it was formerly much used in house-carpentry and furniture. The young wood is very clastic, and is used for the rings of ships' masts, the hoops for tubs, churns, de., but the old wood is considered to be rather brittle. See IIorse-ehestnut.

The edible or sweet chestnut is the Castanea vesea, but the horse-chestnut (which see) belongs to a very different genus. The wood, formerly much used in house-building and carpentry, and which, famed for its durability, has been mistaken for chestnut, is now considered to be that of an oak, Qucreus sessiliffora.
Lurod-woon, or Cocus, is imported from the West Indies in logs from 2 to 8 inches diameter, samn to the length of 3 to 6 feet, tolerably free from knots, with a thick yellow sap: the heart, which is rarely sound, is of a light yellow brown, streaked, when first cut, with hazel and darker brown, but it changes to deep brown, sometimes almost black. Cocoa wood is much used for tmery of all kinds, and for flutes; it is excellent for eccentric turning, and in that respect is next to the Afriean blackwood.

An apparent variety of cocoa-wood, from 2 to 6 or 7 inches diameter, with a large proportion of hard sap of the color of beechwood, and heartwood of a chestnut-brown color, is used for treenails and pins for ship-work, and purposes similar to lignum-vite, to which it bears some resen-
blance, although it is much smaller, has a rough bark, the sap is more red, and the heart darker and more hand-omely colored when first opened than lignum-vite; it is intermediate between it and cucoa-wood. Another but inferior wood exactly agrees with the ordinary cocoa-wood, but that the heart is in wary riners, alternately hard and =oft.

Cocoa-wod has no comection with the cocoanut, which is the fruit of a palm-tree common to the Eint and Weet Indies, the Cocos mucijira; neither can it have any relation th the wher eado genmus trees which produce the coquilla-nut, the Altaliz funifera accordins to Martius, and Cocos Papide of (iestner, or of the Cacao Theobroma, or the chocolate-nut tree.

It is really singular that the exact localities and the botanical name of the cocoa-woot that is so much used, should be uncertain: it appars to come from a comntry produciner surar, being often imported as dunnage, or the stoware upon which the sugar hog-theads are packed: it is atso known as frown ebony, but the Amerimnum Ebenus of Jamaica seems diwimilar:

The cocus-wod of commerce is not casy to trace to any of the trees of the Wert Indies ; the cocoa plum is Chrysobetanus Itaco, which forms only a shrub; Coccolubt uriti ru, or tanagrow, grape-tree, grows large and yields a beautiful woud for cabinet-work, but which is light and of a white color. In appearance and description it comes near to the (ireenheart or Leumes chluroxylon, whicls is also called Cogwood.
Coconint-tree. See P'alms.
Cocoanct-aneld. The general characters of this fruit, the proluce of the palm Cocos mucifira, are too well known to need particular description : in India its thick fibrous lusk is made into the coiriope, and in Europe juto rope, mating, brushes, de. The substance of the shell is very britte, and its -tructure is somewhat fibrous, but it admits of being turned in an agreeable maner: Those shells which are tulerably circular are used for the bodies of cups and visew, the feet and covers being made of wood or ivory. Common buttons are also made of the cocoanut-shell, and are considered hetter than those of horn, as they do not, like that material, absorb moisture, which calses them to swell and twist.
Cocts. see Coroa-zood.
Coffee tree, (Coffica arebica.) The mood is of a light grecnish-bromn or du-ky-yellow, with a bark externally resembling boxwood, but thicker and darker; it has no smell, and but little taste. The tree does not grow more than a few feet high, and it is cut down in the plantations to five or six feet, and is not therefore useful in manufactures.

The tree called Kentucky coffee tree, or hardy bonduc, is very different from the common coffee: it furms a large tree called Giymnocladus canadensis; the wood is compact, of a roy loue, and used by cabinet-makers.
Corat-wom, says bergeron, is so named from its color. When first cut it is yellow, but sonn changes to a fine red or superb coral; it is hard, and receives a fine polish: he also :peaki of a damasked coral-roonl. It is difficult to associate these with the red moods; they are, perhape, from the descriptions, nearest to the camwood from Atrica.

The coral-tree, so ealled from the color of its flowers, is Erytheina Curallodentron; but the buis de coruil of the French is the wool of Alenanthera peetonime, which is hatrd, reddishcolored, and sometimes confounded with red sanders-woot.
Jecmen-xets are produced in the Brazils by Altulia funifere, according to Nartius, ur the Ceros lapilea of (raertner; the latter title is highly descriptive. The coquilla-mut is represented in seetion, half size, in Fig. 3950: the shell is nearly solid, with the exception of the two separate cavitie repre-ented, each contaning a hard, flattered, greasy kernel, generally of a disagreeable flavor: the cells occa-ionally incloee a grub or chrysilis similar to that figured, which consumes the fruit

ornamental works, botl turned and filed; coquilla-nuts are extensively manofactured into ths knobs of cmbrellas and parasols, small toys, de.
Soromandel, or Calamander, the produce of Ceylon, and the coast of India, is shipped in logs and planks from Bombay and Madras. The figure is between that of rosewood and zebra-wood; the color of the ground is usually of a red hazel-brown, deseribed also as chocolate-brown, with black stripes and marks. It is said to be so hard as almost to require grinding rather than cutting; this is not exactly true, as the veneer saws cut it without particular difficulty : it is a very handsome furniture wood, and turns well ; it is considered to be a rariety of ebony.

There are three varieties of Coromandel: the Calamander or Coromandel, which is the darkest, and the most commonly seen in this country, the Calemberri, which is lighter colored and striped, and the Omander, the ground of which is as light as English yew, but of a redder cast, with a few slight veins and marks of darker tints. The wood is scarce, and almost or quite limited to Ceylon; it grows between the clefts of rocks ; this renders it difficult to extract the roots, which are the most beautiful parts of the trees.

The Calamander-wood tree is Diospyros hirsuta, and Kiadum Bèriya is D. Ebenaster, according to Moore's Catalogue of Ceylon Plants, and therefore of the same genus as the true ebony.
Coromsndel, falsely so called, has a black ground, and is either striped, mottled, or dappled, with light vellow, orange, or red; it is a description of accidental or imperfect East Indian black ebony. Some of the pieces are very handsome; it is used for similar purposes to the true coromandel, from which, however, it is entirely different, and generally inferior, although it is considered a variety of the same group.
Corosos, or Irory-nuts, are produced by Phytelephas macrocarpa, growing in Central America and Columbia.-(Humboldt.) They are described as seeds with osseous albumen; the tree is a genus allied to the Pandanece, or Screw Pines, and also to the Palms. The nuts are of irregular shapes, from one to two inches diameter, and when inclosed in their thin hasks, they resemble small potatoes covered with light-brown earth: the coat of the nut itself is of a darker brown, with a few loose filaments folded upon it. The internal substance of the irory-nut resembles white wax rather than irory; it has, when dried, a faint and somewhat transparent tint, between yellow and blue, but when opened it is often almost green from the quantity of moisture it contains, aud in losing which it contracts considerably. Each nut has a hole, which leads inte a small, central, angular cavity; this, joined to the irregularity of the external form, limits the purposes to which they are applied-principally the knobs of walking-sticks, and a few other small works. Fig. 3951 is the section of the ivory-nut at right angles with the stalk, and half size; and Fig. 3952 is the section through the stalk itself, which proceeds from s.
Cowbre. See Pines.
Crab-tree, the wild Apple-tree; principally used by millwrights for the teeth of wheels. See Apple-tice.
Cspress-tree. Of this there are many varieties; the principal are the Cubressus sempervirens, and the white eypress or white cedar of North America, the Cupressus Thyoides; the latter is much used as a timber wood; it is an immense tree, and is considered to be more durable even than the cedar of Lebanon. The Cupressus sempervirens is said to have been much used by the ancients; by the Egyptians for the cases for some of their mummies, by the Athenians for coffins, and for the original doors of St. Peter's at Rome, which, on being replaced after six hundred years by gates of brass, were found to be perfectly free from symptoms of decay, and within, to have retained part of the original odor of the wood.-Tredgold.

It is probable that the wood of Thuja artieulata (see Arbor vite) was also used by the ancients, and has sometimes been mistaken for that of Cypress.

Deal. See Pincs.

Dogwood, a small underwood, which is so remarkably free from silex, that little splinters of the wood are used by the Watchmaker for cleaning out the pisot-holes of watches, and by the opti cian for removing the dust from small deep-seated lenses; dogwood is also used for butchers' skewers, and tooth-picks.
'The charcoal of the black dogwood is employed in the manufacture of the best sporting gun powder, alder and willow charcoal for the government powder.- Wilkinson's Engines of Wrar 1841.

Cornus sanguineu is the wild cornel or common dogwood, C. mas. is the male dogwood or Cornelian cherry, while C! florida is an American species; others are found in the Himalayas. The name dogwood is applied in Jamaica to Piscidia Erithrina.
East Indian Blackwood, (Dalbergia latifolia, ealled Blackwood-tree by the English and Sit Sul by the natives of India, on the Malabar coast, where it grows to an immense size. The wood of the trunk and large branches is extensively used for making furniture; it is heary, sinking in water, close-grained, of a greenish or greenish-black color, with lighter-colored reins rumning in various directions, and takes a fine polish.
Eboxy is described as of several colors, as yellow, red, green, and black. The existence of yellow and red cbonies appears questionable. The black ebony is the kind always referred to when the name is mentioned alone; in fact, "as hack as ebony" is an old proverh. The wood is surrounded by a white sap 3 or 4 inches thick. The green ebony is an entirely different tree, with a thin smooth bark, growing in the West Indies.

Three kinds are imported: No. 1, from the Mauritius in round sticks like scaffold poles, they seldom exceed 14 in. diameter ; No. 2, the East Indian, which grows in Ceylon, the East India islands, and on the continent of India; this is mostly shipped from Madras and Bombry in logs from 6 to 20 and sometimes even 28 in. dianeter, and also in planks; and No. 8 , the African ebony, shipped from the Cape of Good IIope in billets, the general sizes of which are from 3 to

6 it . long, 2 to 6 in . wide, and 2 to 4 in . thick; these are rent out of the trees, and are thence often called billet-word.

No. 1, the Mauritis, is the blackest and tinest in the grain, a well as the harelest and mos: beautiful of the tbree, but also the most costly and unsund; No. n, the East ludian, is leso wasteful, but of an inferior grain and color to the above; and No. 3, the African, is the leasr wanteful, as all the refuse is left behind, and all that is imported is useable, but it is the most porous, and the worst in point of color.

They are all used for cabinet, mosaie, and turnery works; also for flutes, the handles of dours knives, and surgeons instrunents, and many other purposes. Pianoforte keys are generally made of the East Indian varicty.

The African stands the best, and is the only sort used for sextants.
Colnel Lloyd says, the Damritius ebony when first cut is beautifully sumnd, but that it splits like all other woo fs from neglectinl exposure to the sun. The workmen who use it, inmerse it in Water as som as it is felled for 0 to 18 months; it is taken out, and the two ends are securen from splitting by iron rincs and wedges. He con-iders the Mauritius ebony to be the finest, nexa the Madagasear, and afterwards the Ceylon.

The black elony is aloo met with in South America, but much less generally than in Asia ane Africa.

The ebony of Mauritius is yidled by Diospyros Ebemes, that of Ceylon is D. Ebenaster, white the ebony-tree of the Curomandel coast is D. melanoxylon; other species, as II. tomentuss and D. lioylri, yield ebony on the continent of India. The tree yidding the African ebony is not ascertained. A kind of ebony is produced by Amerimnum Ebemus, in the West Indies, and called Jamaican ebmes.

Monntuin Ebony. The different species of Inculinie are so callod: B. porrectu grows on the hills in Jamaiea, and has wood which is hard and veined with black.
See Green Libony and Coromandel.
Elder, (Sumbenes nigra). The branches of the elder contain a very light kind of pith, which is used when dried for electrical purposes. The surrounding woul is peculiarly strong and elastic. The trunk-wond is tough an! cluse-grained; it is frequently used for common carpenters rules ane inferior turnery-wirk, for weavers' sluttles, (many of which are also made of boxwood,) for fishermen's netting pins, shomakers' perss, ice.
Ela, (CTmus, a timber-tree, of which there are five species; mean size, 44 ft . lung, 32 jn. dianeter. The heartwoul is rell brown, darker than oak, the sap yellowish or brownish white with pure inclining to red; the wood is porous, cruse-graned, and shimks and twists mueh in dryine. Elras is mot liable to split, an! bears the driving of unils or bole- better than any other timber, and is is exceedingly durable when cuntantly wet; it is therefore much used for the keek of vessels, and for wet foundations, waterworks, piles, pumps, am! buards for coflins; from its tourhmes, cha is selected for the nares of wheels, shell for tackle-blecks, and sumetimes for the ghawales of ships, and also for many purposes of common turnery, as it bears very rough nsage without splittinu.

11 ych Elin. This sumetimes grow's to the height of 70 feet, and the diameter of $3 \frac{1}{2}$ fuet ; the brameles are principally at the top, the wond is lighter and more yellow in eobor than the aluse. al-n straighter and tiner in the grain. It is tongh, similar to yomes sweet chesturt for bendiug,

Romk flom appears very like the last; it is extensively useil for boat-huilding, and sometimes for archery bows, is it is con-ilemed to bemb very well.

 inforior in gnality. Ľ, fuldet and ulatu are other Amerienn species, and several spectes are fomen in the Himadityal.

 turtimes.

 It is fregnently impreted without the s:lp.
 callal rial drmy ly their mhinet makere.

 lighter yollow coloni

Greenheart ; from Jamaica, Demerara and the Brazils, bears a general resemblance to cocoa-wood both in size and bark, but the latter has a redder tint. Greenheart when first cut is of a light green brown, and striped, but it changes to the color of Lignum-vitce, and is by some considered to be bernicions. It is used for turnery and other works, but its texture is coarse, and it will not cleave at all profitably.

Greenheart used in ship-building is entirely different from the above, and runs into several rarleties.

Dr. Bancroft describes Greenheart, or the Sipiera-tree, to be in size like the locust-tree, say 60 or 70 ieet high: there are two species, the black and the yellow, differing only in the color ul their bark and wood. He says there is also a purple-heart wood, of a bright crimson color, but which changes to purple, and is esteemed more valuable than the preceding.
The Greenheart of Jamaica and Guiana is the Laurus Chloroxylon of botanists; it is also ealled Cogwood in the former, and Sipieri in the latter locality.
fromwood. er blue Gumwood, is the produce of New South Wales; it is sent over in large logs and planks ; the color is similar to that of dark Spanish mahogany, with a blue, sometimes a purplegray east : it is used in ship-building. There is also a variety of a redder tint, called red Gumwool, which is used for ramrods; both are also employed by the turner.
Eucalyptus piperito, is the blue gum-tree of Nev South Wales, while red gum-tree is another species, probably E. resinifera.
Hackmetack Larcil. See Pines.
Harewood. See Sycamore.
Hiwtions (Crategues oxyacantha) has hard wood of a whitish color, with a tinge of yellow; the grain is fine, and the wood takes a good polish; but being small and difficult to work, it is not much used.
Hazel, a small underwood, but little used for turning, except for a few toys. It is very elastic, and is used, as well as the ground-ash, for the rods of blacksmiths' chisels, hoops of casks, de. Its botanical name is Corylus Avellana.
Hickory, or White Walnut, (Juglans alba,) is a native of this country; it is a large tree, sometimes exceeding 3 ft . diameter. The wood of young trees is exceedingly tough and flexible, and makes excellent handspikes, and other works requiring elasticity. The bark of hickory is recommended by Dr. Bancroft as a yellow dye.
Holly (Ilex aquifolium) is a very clean, fine-grained wood, the whitest and most costly of those used by the Tunbridge-ware manufacturer, who employs it for a variety of his best works, especially those which are to be painted in water-colors. It is closer in texture than any other English woods, and does not readily absorb foreign matters, for which reason it is used for painted screens, the squares of draft-boards, and for the stringings or lines of cabinet-work, both in the white state and when dyed black, also for some of the inside works of piano-fortes, harps, for calico-printers' blocks, \&c. When larger wood than holly is required, the horse-chestnut is employed, but the latter is much softer.

The holly requires very particular care in its treatment: immediately it is felled it is prepared into pieces of the form nltimately required, as planks, reneers, or round blocks for turning. The reneers are hung up eeparately to dry, as resting in contact even for two or three hours would stain them; the round blocks are boiled in plain water for two or three hours, and on remoral from the copper they are thrown in a heap and closely covered up with sacking to exclude the air, which would otherwise cause them to split. The heap is gradually exposed as it dries; at the end of about four weeks the pieces look greenish, and are covered with mildew sometimes as thickly as one-sixteenth of an inch; this is brushed off at intervals of three or four weeks, and in about six months the wood is fit for use.

Holly is a remarkably tongh, clean wood, and is used for clucks; but this troublesome prepa ration to whiten the wood (and which is not generally practised on other woods) is not then required, although a good boil hastens the extraction of the sap, and the subsequent seasoning of the wood.
The American species of this genus is the Ilex opaca, opaque-leaved or American holly, of which the wood is employed in turnery and cabinet-making; there are other species in the Himalayas.
Hornbeam, (Carpinus Betulus,) sometimes also called yoke-elm, is a very tough and stringy wood, which is used by millwrights for the cogs of wheels, plumbers' dressers or mallets, and a variety of things required to bear rough usage. Hornbeam is sometimes used for planes; it turns rery well.
Horem-ciestive' (Asculus hippocastum) has no relation to the Spanish or sweet chestnut, which latter is more nearly allied to the oaks. The horse-chestnut is one of the white woods of the Tunbridge turner; it is close and soft, even in the grain, and is much used for brush-backs; it tums very well in the lathe, and is a very useful wood. It is softer than holly, but is preferable to it for large painted and varnished works, on account of its greatly superior size. It is but little useū in this country.
Horse-flesh Wood, one of the Mangroves, which see.
Indian Blacewood. Sce East Indian Blackwood.
[ron-wood is imported from the Brazils, the East and West Indies, and other countries, in square and round \log, 6 to 9 in . and upwards through. Its colors are very dark browns and reds, sometimes streaked, and generally straight-grained.

The iron-woods are commonly cmployed by the natives of uncivilized countries for their sereral sharp-edged clubs and offensive weapons; in England they are principally used for ramrods, walking-stick, for turning, and various purposes requiring great hardness and durability: the more red varieties are frequently called beefwood.

Iron-wood is a term applied to a great variety of woods, in consequence of their hardness, and almont every country has an iron-wend of its own. Iftsue firren, which has reecived its specific name from the hardness of it wood, is a mative of the penin-ula of India and of the islands.
Ifetrosid ros veru is called true iron-woul: the Chinese are said to make their rudders and anchors of it, and among the Japancese it is so searce and raluable, that it is cmly allowed to be manufactured for the service of their king. The iron-wood of southern China is Boryxylam rufium; of the ishand of Bourbon stuelmannia s゙eleroxylun, and of the Cape of (iood Hope sideroxylon melanophleum, which latter is very hard, clusegrained, and sinks in water
The iron-wood of Guiana is L'obinin Panncoco, (of Aublet;) that of Jamaica is Fiugnra l'terota, and also Erythroxylum arcolutum, which is also called redwool. Etinphilat martinicensias and Cocolobe latifolia, are other West Indian trees, to the woods of which the name of ironwood has been applied.
Ostrya virginica, called American hop hornbeam, has wood exceedingly hard and heave whence it is generally called iron-wood in this country, and in some places lever-wood.
Fakwood is the wood of Artocarpus integrijoliu, or the entire-leaf bread-truit tree, a native of India is imported in logs from 3 to 5 feet dimmeter, and also in planks; the grain is coarse and crooked, and often contains sand. The wood is relkow when first eut, but changes to a dull red or mahogany color. It is very much used in India for almost every purpose of house-earpentry and furniture. The jakwood is very abundant, and its fruit is commonly eaten by the natives, and also sometimes by Europeans at dessert, with salt and water, like olives. The jakwond is sometimes misnamed orange-wood from its colur, and also jackwood, Juack-wood, and huthnl. Sce Bukrr's I'apers.
Jackabasd.s, the Portuguese and contimental name for Rosewood, which see.
Jusiper-woon, The wool of all the species is more or less aromatic, and very durable; they are foum in the cold and temperate parts of the world. Some have already been mentionod under the heal of Cedar. The common juniper, Juniperus communis, has wood which is aromatic, fincly veined, and of a vellomish-brown color; J. cxcelsa, lofty or Ilimalayan cedar, is found on those montans, at well as in Siberia and North America.
Finabonca-woon, or Amboyndewoul, impurted from Sineapore, appears to be the exeresence or burr of some large tree; it is sawn offi in slabs from 2 to $t \mathrm{ft}$. long, t to 2 t in. wide, and 2 to 8 in . thick; it resembles the burr of the yew-tree, is tulcrably hard, and full of small curls and knot-: the culor is from orange to chestnut-brown, and sometimes red-brown. It is a very urnamental woul, that is also much esteemed in China and Judia, where it is made into smatl buxes and writing-de-ks, tend other ornamental works, the same as by ourselves.

The Jiabueca is satil by Prof. Reinerardt, of Leyden, to be the luer of the I'terospermeen isdiceme ; be others that of P'erucarpes sleem, from the Moluceas, the island of Barneo, Ambuyas de. The native name appears, from Mr. Wilsm samelers' -pecimen, to be seriouleut: the wan! it eclf is of the same colur ats the burr, or rather liehtere, and in grain resembles phan matheng.
"The ront of the comanut-tree is su smilar, when dry an! seasomed, to the " birl's eye" part
 and silky fracture, almost like imdurated asbestos,"-(iol. (i, .I. J.luyd.

 a few places with anft triable matter much revembline it = erment

 of the harel wereds in anperames.
Koter: Siq Pines.

latkils. Sin l'ime.

lacen, and is one of the most abundant woods of the country. When first cut, it is soft and easily worked, but it becomes much harder on exposure to the air. The wood is cross grained, covered with a smooth yellow sap like box, almost as hard as the wood, which is of a dull brownish-green, and contains a large quantity of the gum guaiacum, which is extracted for the purposes of medieine. Lignum-vitæ is much used in machinery, \&e., for rollers, presses, mills. pestles and mortars, sheaves for ship-blocks, and a great variety of other works requiring hardness and strength. It was employed by the Spaniards for making gun-earriages and wheels.

The fibrous structure of this wood is very remarkable: the fibres eross each other sometimes as obliquely as at an angle of 30 degrees with the axis, as if one group of the amual layers wound to the right, the next to the left, and so on, but without much apparent exactitude.

The wood can hardly be sphit, it is therefore divided with the saw; and when thin pieces. such as old sheares, are broken asunder, they exhibit a fracture more like that of a mineral than an ordinary wood. The chips, and even the corners of solid blocks, may be lighted in the candle, and will burn freely from the quantity of gum they contain, which is most abundant in the heart-wood.

The Bahama lignum-vite has a very large proportion of sap-wood; pieces of 8 or 10 inches diameter have heart-wood that scarcely exeeeds 1 or 2 inches diameter. One variety of cocoawood, and also the almond-wood, are somewhat similar to lignum-vite.

There are two species, Guaiacum officinale and G. sanctum, both of which probably yield the
lignum-vite of commerce. This name is also sometimes applied to the wood of Arbor vitce.
Lime-tree, called also the Linden-tree, Tilia. This wood is very light-colored, fine and close in the grain, and when properly seasoned it is not liable to split or warp. It is nearly or quite as soft as pine, and is used in the construction of piano-fortes, harps, and other musieal instruments, and for the cutting-boards for curriers, shoemakers, de., as it does not draw or bias the knife in any direction of the grain, nor injure its edge; it turns very cleanly; this wood has recently been used for the frames of the best japanned chairs inlaid with mother-of-pearl. Lime-tree is particularly suitable for carring, from its even texture and freedom from knots: the works of Gibbons, at Windsor Castle and St. Paul's, London, are of lime-tree.

The lime-tree, Tillia europea, is usually divided into several species: as T. intermedia, mierophylla, vulra, and platyphylla.
Locust-tree. The locust-tree of North Ameriea is Robinia psendacacia. The wood is greenish-yellow, with a slight tinge of red in the pores; it is used like oak. Locust is much esteemed for treenails for ships, and for posts, stakes, pales, de., as it is very tough and durable; it works similarly to ash; and is very good for turning.

It grows most abundantly in the Southern States; but it is pretty generally diffused throughout the whole conntry. It sometimes exceeds four feet in diameter and serenty feet in height. There are no less than 140 species of forest-trees indigenous to the United States which excecd thirty feet in height. In France there are about thirty, and in Great Britain nearly the same number.
The loeust-tree of the West Indies and Guiana is Mymenea Courbaril, (Semiri,) a tree from 60 to $\delta 5$ feet in height, and fire or six feet in diameter: the color of the wood of West Indian locusttree is light reddish-brown, with darker veins, and the main size 36 inches. The wood in its native country is used for mill-rollers and cogs of wheels. Another tree, called honey locust, Gileditschia triacauthus, of which the wood splits with great ease, is coarse-grained, and but little used.
Logwood, ealled also Campeachy logwood, is from the bay of that name, and from Jamaica, Honduras, de. It is scarcely used for turning, and is a dark purple-red dyewood, that is consumed in large quantities: its botanical name is Hematoxylon eampechianum.
Manogany, the Surietenia Mahogoni, is a native of the West Indies and the country round the Bay of Honduras. It is said to be of rapid growth, and so large that its trunk often exceeds 40 feet in length and 6 feet in diameter. This wood was first brought to London in the year 1724; its Spanish name is Caôba.
Spmish mahogany is imported from Cuba, Jamaica, Hispaniola, St. Domingo, and some other of the West India islands, and the Spanish Main, in logs from about 20 to 26 in . square, and 10 ft . long. It is close-grained, hard, sometimes strongly figured, and generally of a darker color than Honduras mahogany; but its pores frequently appear as if chalk had been rubbed into them.
Honduras mahogany is imported in logs of larger size than the above, that is, from 2 to 4 ft . square, and 12 to 18 ft . in length: sometimes planks have been obtained 6 or 7 ft . wide. Honduras mahogany is generally lighter than the Spanish, and also more open and irregular in the grain: many of the pieces are of a fine golden color, with showy veins and figures. The worst linds are those the most filled with gray specks, from which the Spanish mahogany (exeept the Cuba) is comparatively free.

Both Spanish and Honduras mahngany are supposed to be produced by the same tree, Suietenia Mrethornoni of botaniste, but some supqose that the Honduras is the wood of a different species, (Y. Don, Syst. 1. p. 688 ;) but Long, in his history of Jamaica, says, "What grows on rocky grounds is of small diameter, but of eloser grain, heavier weight, and more beantifully veined; What is produced in low, rich, and moist land is larger in dimensions, more light and porous, anid of a pale complexion. This constitutes the difference between the Jamaica wood and that which is collected from the coast of Cuba and the Spanish Main; the former is mostly found on rocky eminences, the latter is cut in swampy soils near the sea-coast."
African mahogany, (Susetenia senegalensis.) from Gambia, is a more recent importation ; it twists much more than either of the above, and is decidedly inferior to them in all respects, except hardness. It is a good wood for mangles, curriers' tables, and other uses where a hard and cheap wood of great size is required : it admits of heing turned equally as well as the others.

African mahogany is the wood of fikaya senegalensis, a genus very closely allied to the Swietenia

Mahogany shrinks but little in drying, and twists and warps less than any other wood; on which account it is used for founders" paterns, ant other work in which permanence of form is of primary importance. For the same reason, and from its comparative size, abundance, coundnesa, and beacty; it is the most useful of the furniture woods, and it holds the glue the best of ath Mahogany is also used for a rariety of turned work-, apart from upholstery and cabinet-work The Spani-h mahogany is, in general, by far the best, although some of the II onduras nearly approaches it, except in hardnest and weight. The African is by $n 0$ means so u-eful or valuable as either of the above, eapecially as it alters very much in drying.

There are two other species of Sicieteniu, berides the mahogayy-tree, whicln are natives of the East Indies: the one, a large tree of which the woud is of a dull red color, and remarkably hard and heavy; the other is only a middle-sized tree, the wool of which is close-grained, heavy, and durable, of a deep yellow color, and much reembles bowwood; but neither of these species is in common use in this country.-Tredyold.

The first of these trees was formerly referred to Swietenia, but is now sommide fobrifure; the second is probatbly Chlorozylon Serchenia, which is the satin-wood of hadia and Ceylon. A third species, much admired for its light culor, close grain, and being eleganty veined, is the Chikrassee of the natives, and Chikrassia lebuluris of botanists: the woud is imuch employed in makine furniture and cabinet-work. The wood of the Toon-tree, Codrelu 'Toone, is sometimes called Indian Mahogany.
Mascminef, a large tree of the West Indies and South America; the wood possesses some of the general characters of mahogany, and is similarly used, but it is much less common. The wood is described as being yellow-brown, beautifully clouded, and very close, hard, and durable. It is said the Indians poisun their arrows with its juice, und that the wood-cutters make a tire around it before felling it, to eause the poisonous sap to ruen out, to avoid injuring their eyes.

Thi- has been accurately described in Bancroft's Guiama, p. 36-7: "The juice of this tree is a deadly poison; it bears a little apple appearing so tempting, that many new-comers have been poisoned by eating it. The tree is poisonous white green; sleeping under it has been satid to have the most deadly effect.

Hippomane IIancinclla is the Manchincel-tree of the West Indies. Giemeraric lutifuliu is calles biatard Manchineel.
Masgrove. Native moods of the shores of the tropics, bearing this mame, and thuee of Mango, Mangle, Maniglier, (F'r.) de., differ very much in kind: some bear the appearance of very inditierent ash and elm, othere of good useful wood of the same kimi, some are dark-colured, and many of them have the red mahogany character.

One of the latter kind known to cabinet-makers has less of the brown and more of the red tint than mahogany; it becomes darker on expo-mre, but not in general as much so ats mabugany. This Mangrove is straight-grained, hard, and elastic, and stands better than Spani-h mahogay, and it is therefure preferred for straight edges and squares.

The Mangrove-tree is Rhizophort Memgle, of which the woot is employed in making stave for sugar bogeheads. Growing in the same situations. with it are two trees to which the name mangrove is also applied : the Conocurpus racemosa is called the white Mangrove by slame, and - Lvicennia tomentosa, olive Mangrove. Coccoloba urifera, set-side grape, aloo grows in the same situations, and is a large tree, of which the wool is of a reddish color.
Marle is considered to be allied to the syemore, which is sometimes called the great maple, (ateer l'senelo-platanns,) or the plane-tree. The Fanglish, or common manle, is of this kind; it-colnr is pale yellow-brown.

The American is very bemaful, and di-tingui-hed as birds-rye maphe anl moteded maple. The latter is principally used for picture-frames ; the former is full of small kats that give rime (1) it mame: the gram varios accordingly as the saw has diviled the eye tramsersely or lompitudinally, as piecea cut out in circular sweeps, such as chair backe, sumetimes whibit buth the hirds-eye amd mottled figures at different parts. Much shgar is made from this variety of maple.

These-called liascian mande is comsidered to be the wool of the birch tree; it in marked in at

 are very beantaflly thowa in turned worlis.

 strintum, and eriururpum, are other American speins of which the timber is complosal and morn wr len valuml. Aer oblumetum, cultrutum, candutum, sterculaterum, nud rallus m, are Hemadayan sprecies, of which the timbery mat he employed for the same purpunes.

 the cedar, alehough it maty grow in the vieninty of the Bay of Maracay los.
 copt for walkws stich -
Micocoltis.n. Sen Villle trer.
Shena-won. Specinens of the Mora tren have beron described hy Mr. Bemphan mader the hath U ira

 in color atromblay monderately red mahogaty.

Sin, 11.-1, 1

Mosatahiba. See Mustaiba.
Mllberrittree, (Morus,) consists of about twenty varieties, of which the yellow fustic is one that is imported in considerable quantities from Rio de Janeiro. Bergeron very strongly recommends the white mulberry, which he describes as similar to elm, but very close in the grain, and suitable for furniture. He says the white is greatly superior to the black mulberry.

Morus nitra is the black, and Morus Alba the white mulberry; there are several other species of which the wood is esteemed for its toughness, as of Morus parvifolia in Iudia, for hardness and tenacity. See Fustic.
Mustalba, from the Brazils and Rio Janciro, is imported in logs about 7 by 10 in., also in planks; it is generally of an inferior roserood character, but harder, and is sometimes equally good; the veins are of a chestnut brown, running into black. In its grain it resembles some of the iron-woods and black partridge-wood; it has fewer resinous veins than the rosewoods. Mosatahiba, as well as lignum-ritæ, cocoa-wood, dc., is used at Sheffield for the handles of glaziers' and other knives; some of the better hinds are rery good for turning, as the wood is close, sound, and heary.
Nettle-tree, (Celtis australis.) Micocoulier of the French, has wood that is compact, between oak and box for density, and takes a high polish; it is described in the French works as a heary, dark, close wood, without bark, very durable and free from flaws. It is said to be used for flutes, and for carving; it is also called bois de Perpignan.
Nicaragla-wood, a native of South America, is imported from the bay of Nicaragua, and also from St. Lucia, Rio de la Hache, Mexico, de., in rough groory logs without sap, that measure from 2 to 9 inches through, and 2 to 3 feet long.

Another sort, from Lima, Jamaica, and Pern, called by the dyers Peachwood, apparently from the color for which it is used, is shipped in logs sometimes as large as 18 inches diameter, and 6 feet long. Both are similar to Brazil-wood in color, and are generally too unsound for turning.

The trees vielding Nicaragua and Peach woods have not been yet ascertained, but have been supposed to be species of Cissalpinia, or of Hematoxylon, but they may be very distinct, as colored woods belong to other genera.
Nutusg-wood. See Palm.
Oar, (Qurreus.) Of this valuable timber there are great rarieties. Oak of good quality is more durable than any other wood that attains the same size; its color is a well-known brown. Oak is a most raluable wood for ship-building, carpentry, frames, and works requiring great strength or exposure to the weather; also for the staves of casks, spokes of wheels generally, and the naves of wagon-wheels, for tree-nails, and numerous small works. The red varieties are inferior, and are only employed for ornamental furniture.

The English oak is one of the hardest of the species; it is considerably harder than the American, called white and red oak, or than the wainscot oak from Memel, Dantzic, and liga; the latter, which are the more interspersed with the ornamental markings or flower, from the septa or me dullary rays in the wood, are the least suitable as timber.

The wainscot oak of Norway is remarkably straight, and splits easily; so much so, that it is the practice of the country to bore a small hole in the top of the tree at the beginoing of the winter, and to fill it with water, the expansion of which in freezing reads the tree from top to bottom.

The live oak is a fine tree, that is met with in the southern States; it is very different in appearance from the others, as the reins are small, and more evenly distributed throughont the wood; it is used in this country, along with the North American red cedar, for our finest ships; it is considered to be durable when dry, but not when exposed to wet.
"The sea air seems essential to its existence, for it is rarely found in the forests upon the mainland, and never more than 15 or 20 miles from the shore." "The live oak is commonly 40 or 50 feet in height, and from 1 to 2 feet in diameter, but it is sometimes much larger."

There is also a fine evergreen oak in the Cordilleras of the Andes.
The A frican oak is well adapted to the construction of merchant ressels, but it is apt to splinter when struck by shot; it is therefore less used for ships of war. They are all softened by steaming, and are then much more easily cut or bent; the African bends less than the others, and is the darkest in color, but it has not the silver grain nor the variegated appearance of the others: it is sometimes called Teak, (which see.)

Of the British oak there are two distinct species according to modern botanists. The Quereus Rotur, sometimes called pedunculeta, has acorns which are supported on long footstalks or peduncles; this timber is considered by some superior to that of the other species Q. sessiliflore, but this probably depends on situation, as the strength and toughness of this kind, as well as its durability, have been proved to be great. Dr. Lindley says its wood may be known by its mednllary rays or silver grain being so far apart that it cannot be rent, and this gives it quite a peculiar aspect.
Quercus Ilcx, the evergreen or holm oak, is common to the South of Europe; the wood is hard heavy, and tough. Q. Suber is the cork-tree. Q. Cerris, called the Turkey oak, is common in the sontheast of Europe; its timber is ornamental, being beautifully mottled, in consequence of the abundance of its silvery grain, and is supposed to be often as good as any other ; the Sardinian oak is apparently prodnced by it. The Wainscoat oak is supposed by some to be produced by (c. Cerris. Dr. Lindley considers it to be a rariety of ©. sessiliftora, grown fast in rich oak land. (2. hisponica, the Spanish oak, and (2. austriaca, the Austrian oak, are found in the countrics from which they are named; and Q. Ayilops is the Valoma oak abounding in Greece and Asia Minor, from which countries such large quantities of its acorns are imported into England. Q. Crinita is common in Asia Minor, jields excellent timber, and is employed by the Turks in naval architecture.
The American oaks are numernus, but the timber of Quercus alba, or the white vak, comes near
est to the English oak, and is largely exported to England as well as to the Went Indias. Q. virens, the live uak, is confined to the suathern of the United states, and i= alou foum in Texas; it is said to yield the best oak in America, the timber being heary, compact, and finm grained.
Q. tinctoriu, dyers' or black oak, is best known from its inner bark being ued ats a yellow dre, under the name of (Gueretron; its woud is strons, but coarse. The other American waks are inferior in the quality of their timber. Be-ides these there are Iudian and Himalityan makthe timber of some of the latter is excellent in quality.
The African oak, or Teak, as it is also called, is not a species of Qucreus, V. Teak.
Olive-woud, principally imported from Leghon, is the wood of the fruit-tree, (Olect europea; it is math bike box, but sofer, with darker gray-colured reil-. The routs have a very pretty knottel ant curly character; they are much estecmed on the Continent for making embused boxes, preand into engraved metallic mould.

There is another wood, apparently from South America, ealled Olive-wood, but it dows mot apree in color, cither with the fruit or wood of the olive-tree, but is of a grecni-h urange, with hrabl stripes and marks of a darker brown tint; it is a handsome wood for turning, but not very hard.

Eluodendron glanchen is called bois dolive, but there is no prow that it yiehds the dive-woul alluded to, as the country from which this is imported is nut distinctly known.
Omander. See Coromendel.
Grange-Tinee. The ormge, Icmon, and lime trees, (C'itrus,) are evergreens that seldon excreal abomb 15 feet in height. The wood is only met with as an object of curiosity : it is of a yotlow eol ir. lut devid of smell. See Apricot-tree.

The oratre is Citres Aferentium, the lemon C'. Linomum, the lime C. Limetta, and the citren r. Mrdica.
fandrefs. Several varieties of the four or five hundred which are said to exist are imported from the Eant and West Indies: they are known by the names palm, palmetto, palnyra, and nutmerg leopard, and poreupine wood, de, from their tancied resemblances, as when they are cut horizon tally they exhibit dots like the spice, and when obliquely, the markings assimilate to the quill- of the porcupine.

The trunks of the palms are not con-idered by physiologieal lontanists to be true wend ; they all grow from within, and are always soft and spongy in the centre, but are gradually harder towardthe outside: they do mot possess the medullary rays of the proper woods, but only the vertheat fibse, wheh are hed together by a much softer substance, like pith or cement, so that the harizontal section is always dotted, by which they maty be readily distinguished from all true wowh

The Areca Ceteche, or bette-nut padme, is remarkably perpendicular; it grows to the height of ahout 30 feet, and rarely exceds of or 5 inches dimeter; it bears a small tuft of leaves, and the frus is in elusters like grapes. The betle-nut is chewed by the Indians alung with quicklimen, and the leaf of the l'iper Betle, in the mamer of tobaco. The general color uf the wowl in a lifht yelluw-hrown; the fibres are large, hard, and only a few shates darker than the cementitions portions.
 -rmetimes grows to sh feet in heirht and 3 foet in diameter, but is generally less; it is rarely quite atraight or perpendicular, and has broad pendent leaves from 12 to 11 fect long, in the mak of which is a sort of eabbage, which, as well as the frnit, the coco:mat, is caten; Hue hurk of the nut supplies the material for coir-rope and matting. Nop part of this interesting tree is withom 16 -
 his dwelling ; he aloo obtains from this tree cil, sugar, palm-wine, and arrack; and althonsh the "four part of the trunk is soft and tringy, the lower suphlies a weful wow, the tibres of wheh

 no material distatection is obervathe luetwen them.

 and ntreak a mones the ade of the nathe.

The bamboos, which like the palms are endogens, are used in India and China for almost every purpose in the arts; amongst others, in working iron and steel, as the bamboo is preferred as fuel in this art: the large pieces serve as the blowing cylinders, the small as the blast-pipe, and alsu when combined with a cocoanut-shell constitutes the hookal of the artisan. The bamboos, and several of the solid canes, are used as walking-sticks, and for umbrella and parasol sticks.
The shells of the cocoanut and coquilla-nut, and the kernels of the areca or betle-nut, and those of the corosos or ivory-nut, have likewise their uses in our workshops.
Palisaxder, a name used in Europe for rosewood.
There is considerable irregularity in the employment of this name; in the work of Bergeron a kind of striped ebony is figured as bois de Palixandre; in other Freneh works this name is considered a synonym of bois violet, and stated as a wood brought by the Dutch from their South American colonies, and much esteemed.
Parmbide-wood is the produce of the Brazils and the West Indian Islands; it is sent in large planks, or in round and square $\log ^{2}$, called from their tints red, brown, and black, and also sweet partridge; the wood is close, heavy, and generally straight in the grain. The colors are variously mingled, and most frequently disposed in fine hair-streaks of two or three slades, which in some of the curly specimens cut plankways resemble the feathers of the birl; other varieties are called pheasantwood. The partridge-woods are very porous; cut horizontally the anmual rings appear almost as two distinct layers, the one hard woody fibre, the other a much softer substance thickly interspersed with pores: this circumstance gives rise to its peculiar figure, which often resembles that of the palm-tree woods.

Partridge-wood was formerly employed in the Brazils for ship-building, and is also known as cabbage-wood: the red-colored variety is called Angelim and Cangelion in the Brazils, and Yaro in Cuba.

It is now principally used for walking-sticks, umbrella and parasol sticks, and in cabinet-work and turning ; the ladies have patronized it also for fans.

The partridge-wood imported from the West Indies is yielded by Heisteria coccinea. The wood of several trees is no doubt included under this name.
Peachmood. See Nicaragua-wood.
Pear-tree (Pyrus communis) is a native of Europe. The wild trees are prineipally used, and they may be obtained from 7 to 14 inches diameter. The color is a light brown, approaching that of pale mahogany or cedar, generally less red than the apple-tree; and it is esteemed a very good wood for carving, as it cuts with nearly equal facility in all directions of the grain, and many of the old works are cut in it. It is now much used for the engraved blocks for calico-printers, paperstainers, and pastry-cooks; it does not stand very well, unless it is exceedingly well seasoned.
some pieces of pear-tree much resemble lime-tree from being, in the language of the workmen, " without grain," but the pear-tree is harder and tougher, and has a few darker streaks: they are used, however, for similar purposes.
P'ersambouca. See Brazil-wood.
Perdyini-wood, a fine sound wood so called, is of a rosewood character, and measures about 12 to 16 inches through; it is harder, eloser, and lighter in color than rosewood, with a straighter distribution of its dark red-brown and black veins; it has no scent. Its true name and locality are unknown. PIGEON-wood. See Zebra-wood.
Priss and Firs (Pinus) constitute a very numerons family of cone-bearing timber-trees, that thrive the best in cold countries. The woods differ somewhat in color, partly from the greater or less quantity of resinous matter or turpentine contained in their pores, which gives rise to their popular distinctions, red, yellow, and white firs or deals, and the red, yellow, and white spruce, or piteh pines, and larches. They are further distinguished by the countries in which they grow, or the parts from whence they are shipped, as Norway, Baltic, Memel, Riga, Dantzic, and American timber, de.

The general characters of the wood, and its innumerable uses besides those of ship and house carpentry, are too generally known to call for any description in this place; but those who may require it will find abundant information in Tredgold's Carpentry, pages 208 to 218 . The Swiss pine, imported under the name Belly-boards, are used for the sounding-boards of musical instruments The larch is particularly durable, from the quantity of turpentine it contains; it has of late been considerably employed for naval architecture, as likewise the Hackmetack larch: lareh is considered the best wood for the sleepers of railways; its bark is also used for tanning. The American piteh-pine is likewise exceedingly durable, and is much used for tlooring. The white hemluck contains very little turpentine, and is remarkably free from knots: it is sometimes from 2 to 3 feet square, and 60 to 70 feet long, and is suitable for piling, the staves of dry caskis, de. ; it stands extremely well.
The Cowdie, Kaurie, or New Zealand line, or Dammara australis, is the most magnifiecnt of the coniferous woods, although not a true pine. It is said to grow from 4 to 12 feet diameter; wne that had been blown down by the wind was fond to measure upwards of 170 feet. The Norfolk Islamd jine, Arancaria cxcelsa, has enormous linots.
In Norway, when they desire to procure a hard timber with an overdose of turpentine, they riug the bark of the branches just before the return of the sap; the next year they ring the upper part of the stem; the third year the central, and lastly, the lower part near the ground. By these means the sap or turpentine is progressively hindered from returning, and it very much increases the solidity and durability of the timber. The roots of some of the red deals so abound in turpentine, that the Seotish Highlanders, the natives of the West Indies, and of the Himalayas, use splinters of them as eandles. The knots of deal, especially white deal, are particularly hard; they are altogether detached from the wood in the outer planks, and often fall out when expried in thit boards.

The pines and firs being so mmerous, and the timbers of many being known in conmerce by such a variety of name-, it is difficult to aseertain the trees which yield them.
The l'inus syluestris, however, called the wild pine, or scotek fir, yields the red deal of Rifa, called yellow deal in London; Hies eseelsu, or Norway spuce fir, yields white deal, -1bies picea, or silver-fir, has whith wood, much ueed fur theming; Larix eurepen is the larch common on the Alpine diotricts of Germany, Switzerland, and Italy. Several other pines, as P '. Pinaster, Pinca, 'imbre, censtrine and pyrenaies, are found in the south of kurone, but their tinuber is less known in commerce.

The North Anserican pines, P. strubus, or Weymouth pine, called white pine in Nonth America, and much wed throughout the Northorstates; P. mitis or latet, the yellow pine, is chietly employed in the Northern and Niddle States for house and ship, building; it is considered next in durability to P. unstrulis, southem pine, called al-o P. pratustris, and yellow pine, pitch pine, and red pine in different districts: it is said to form for-fiths of the houses in the southern States, and to be preferred for naval architecture. Its timber is exported to the Weat Indies and to Liverpoal, where it is called Georgia piteh-pine. Pinus fula, framkincense pine, called white pine in Virgimia; P. rigide, Virginian or pitch-pine; P '. Lunksiance, Hudson's Bay or Labradur pine; I^{\prime}. inops, Jersey or poor pme, and 1'. mainsos. The American pitch-pine of red pine, ealled Norway pine in Canada, and yellow pine in Novat Scutia, and many others, yield deals of various qualities, mure or less used in ditlerent districts.

The American spruce firs are the Abies alba, nigra, and rubec, the white, black, and rel spruce firs; the lita is sometimes called Newfoudtand red pine, and employed in shipbulding; buth it and the black pine are exported to England; Abies comelensis, hembuch spruce fir, and -1. bnlsamea, balm of Gilead tir, are also employed, although le-s vatued tor their timber, but the American larch, Lerixe americonu, is much esteemed. Un the west coant of America some nagniticent pines have been discovered, as I. Domplasie and Lembertiana and whers in Mexico. In the southern bemisphere the Cowde pine or New Zealand pitchtree, Dummuru austrulis, considered so valuable for matst, belomgs to the same genus its the Demmer-tree, V. Orientulis. The Himalayas abound in true pines: a splendid species is the
 with I bies Mibbiuna, Pindrour, and uthers.
Piane-tree, (the P'latunes oceilemedis,) a buttonwod-tree, is a mative of North America; it is ubundatat on the banks of the Mi-sissippi and Ohin. This, perhaps one of the largent of the Ameriean trees, is sometimes 12 ft . in dianseter; it is much ured in the W^{2} estem states. The color of the wood resembles beech, but it is solter. The American varjety is sometimes called water-heceh and syeamore. Plancetree is used for moscal instruments and other works requriner a chean light-colored wooul.

The Platanus orientalis, called atso lacewood, is a native of the Levant, and other Fiastern countries; it is smaller, softer, and more ornamental than the above; the beauty of its septa gives it the damasied appearance from which it is sumetimes named It is commonly u-cil by the P'ersians for their doors, windows, and furniture, and is suitable to ornamental cabinet-work and various kinds of turnery. The first kind also hats septa, but they are smaller.
The true lacewood-tree is the Japhine Layitta.
I'les-Thee, (I'runus domestice and P 'spinuse, Europe, similar in gencral character to pear-true, is used principally in turning. This is a handome wond: in the endway of the grain at resembles cherry-tree, but the ohd trees are of a more reddish-brown, with dather marks of the satue color. It begins to rot in small hole- more gencrally away from, sather than in the entre of the tree, and it is rery wasteful on that aceomet.
Poci-wood, or l'en-wood, of singapere, is of a light perven texture, and lighterravi-h cedar color; it is used in ship-builaling for plathe, and makers cxeellent pars. The Caleuta ponn i- prefermed
 koxburgh says, is a native of l'enamy and of comentes eastward af the Bay of bempal, and
 for the mats of ships.

 eat ; the sapheorl rimemblea dark birchworl. It is primpally whel fier turning.
 :Heners to be detlerent.

 not really take tire. The bark of whete puphar in ahmont as linht as cork.

 but with very small vins.

 in North Americat mal the Mmablayas.
 athl gemerally wr redhal cold.
 the wunl mat dencribeed.

Purple-wood, or Amaranthus, from the Brazils, is imported in \log from 8 to 12 in. square and 8 te 10 ft . long, or in planks: its color is dark gray when first cut, but it changes rapidly, and altjmately becomes a dark purple.

Varieties of Kingwood are sometimes called purple and violet woods: these are variegated. but the true purplewood is. plain, and principally used for ramrods, and occasionally for buhl work, marquetry, and turning. A few logs of purple-wood are often found in importations of Kingwood; it is probable also that the purple-heart is thus named oceasionally.
Qcassra-woon. The quassia-tree is a beantiful tall tree, of North and South America and the West Indies. The wood is of a pale yellow, or light brown, and about as hard as beech; its taste is intensely bitter, but the smell is very agreeable; the wood, bark, and fruit are all medicinal.
"This wood is well known in the Isthmus of Darien, and is invariably carried by all the natives as a 'contra' against the bite of venomous snakes; it is chewed in small slices, and the juice is swallowed."-Col. G. A. Lloyd.

Quassia amara, is a small tree ; Simaruba amara is the Mountain damson of the West Indies, and Picrena excelsa, the lofty Bitter-wood. All have a similarly colored wood, which is intensely bitter
Queenwoon, from the Brazils, a term applied oceasionally to woods of the Greenheart and Cocoawood character.
Qunce-tree, (Cydonia vulgaris.) See Apricot-tree.
Red Guxwood. See Gumwood.
Red Sacxders, or Ruby-wood, an East Indian wood, the produce of Pterocarpus santalinus, is principally shipped from Calcutta in logs from 2 to 10 in . diameter, generally without sap, and sometimes in roots and split pieces; it is very hard and heavy; it is very mueh used as a red dyewood, and often for turning. The logs are often notched at both ends, or cut with a hole as for a rope, and much worn externally from being dragged along the ground; other woods, and also the ivory tnsks, are sometimes perforated for the like purpose.

The wood of Adenanthera pavonia (see Coral-wood) is similar in nature, and sometimes confounded with the red saunders.
Rosetta-woon is a good sized East Indian wool, imported in logs 9 to 14 in . diameter ; it is handsomely veined; the general color is a lively red-orange, (like the skin of a Malta orange,) with darker marks, which are sometimes nearly black; th; wood is close, hard, and very beantiful when first cut, but soon gets darker.
Rosewood is produced in the Brazils, the Canary Isles, the East Indies, and Africa. It is imported in very large slabs, or the halves of trees which average 18 inches wide. The best is from Rio de Janeiro, the second quality from Bahia, and the commonest from the East Indies: the latter is ealled East India blackwood, although it happens to be the lightest and most red of the three ; it is devoid of the powerful smell of the true rosewood, which latter Dr. Liudley considers to be a species of Mimosa. The pores of the East India rosewood appear to contain less or none of the resinous matter, in which the odor, like that of the flower Acacia armata, arises. Rosewood contains so much gum and oil, that small splinters make excellent matches.

The colors of rosewood are from light hazel to deep purple, or nearly black: the tints are sometimes abruptly contrasted, at other times striped or nearly uniform. The wood is very heary ; some specimens are close and fine in the grain, whereas others are as open as coarse mahogany, or rather are more abundant in veins: the black streaks are sometines particularly hard, and very destructive to the tools.

Next to malogany, it is the most abundant of the furniture woods; a large quantity is cut into veneers for upholstery and cabinet-work, and solid pieces are used for the same parposes, and for a great variety of turned articles of ordinary consumption.

In the Brazils, the ordinary rosewood is called Jacaranda Cubuna; there is a sort which is much more free from resinous pores that is ealled Cabuna only : and a third variety, Jacarande Tam, is of a pale red, witha few darker veins; it is close, liard, and very free from resinous veins; its colors more resemble those of tulip-wood.

Mr. Edwards says, that " at the time when rosewood was first imported into England, there Was on the scale of Custom-honse duties, 'Lignum Rhodium, per ton, £40, referring to the wood from which the 'oil of Rhodium' was extracted, which at that time realized a very high price. The officers claimed the like duty on the furniture rosewool; it was afterwards imported as Jacaranda, Palisander, and Palaxander-wood, by which names it is still called in Europe. The duty was first reduced to six guineas, then in i842 to one pound, and in 1845 the duty was entirely removed; the consumption has proportionately increased. It is now only known as rosewood, some logs of which have produced as much as $£ 150$, when cut into veneers."

Rosewood is a term as generally applied as iron-wood, and to as great a variety of plants in different countries, sometimes from the color and scmetimes from the smell of the woods.
The rosewood which is imported in such large quantities from Bahia and Rio Janeiro, ealled also Jacaranda, is so named according to Prince Maximilian, as quoted by Dr. Lindler, because when fresh it has a faint but agreeable smell of roses, and is produced by a Jimosa in the forests of Brazil. Mr. D. Lodliges informs ns it is the Mimosn Jacaranda.
The rosewood, or candle-woor, of the West Indies, is Amyris balsamifcra according to Browne, and is also called Sweetrood, while Amyris montanc is called Tellow candlewood, or rosewood, and also yellow saunders. Other plants to which the name is also ap. plied, are Licaria guiancnsis of Aublet, Erythroxylum arcolatum, Colliguaya odorijera, Molina, de.
The rosewood of New South Wales is Trichilia glambulosa; that of the East Indies, if the same as what is there called Blackwood, is Dalbergia latifolia.

The ligmum rhodium of the ancients, from which the oil of the same nane and having the odra of roses wat prepared, has not yet been ascertained ; it has been supposed to be the Genista cunariensis, and by others, Coneolveus scopurins.
Ruby-wood, Sec licel Sanuders.
Sallow (Salic cuprea) is white, with a pale-red catt, like red deal, lout without the veins. The wood is soft, and only used for very eommon works, such as children's tors: like willow, of which it is a variety, it is planed into chips, and made into bomets and baskets; it splits well. sion l゙:llur.
SAvdil-wob is the proluce of Sentalun album, a tree having somewhat the :rpearance of a lar fe myrtle. The wood is extemsely empleyed as a perfume in the funeral ceremonies of the Hindeos. The deeper the color, which is of a yellow brown, and the nearer the root, the better ithe perfume. Mababar produces the fincet sandal-wood; it is alson fund in Cerlun and the South Sea Iflands. It is imported in trimmed lorgs from 3 to 8 and rarely 14 in. dismeter; the wood is in general softer than boxwond, and easier to cut. It is used for parts of cabinets, neek laces, ornaments, and fans. The bark of the sandal-wood gives a mos beautiful retl or lighe claret-colured dye, but it fades almost immediately when used as a simple infusion; in the handof the experienced dyer it mipht, it is supposed, be very useful.

Thure are woonds described in the French works as red sandal-woods. See Culembey.
The sandal-wood tree of the Mababar coast is the Nomtalum album; that of the south sea Nands is con-idered tolse a distinct species, and has been named somtalum Fremeintiunum. there is a spurious sandal-weod in the sandwich Isles, called by the natives Nifilio, (Mynporsem tinuifulium.)
Saras-woor, ur Buckium-wood, (Cusulpinia Sapan,) is obtained from a species of the same gemuthat yields the Brazil-wond. It is a middle-sized tree, indigenous to Siam, Pegru, thee eoist of Coromamel, the Ea-tern lslands, de. It is imported in pieces like Brazil-wood, to which, for the purdeese of dyeing, it is greatly inferior; it is generally too unsomed to be uscful for turning.
Satis-wons. The be-t varicty is the Weat ladian, imported from St. Domingo, in square logs and planks, from! to 20 in. wille; the next in quality is the East Indian, shippeld from simgame and bumbay in round log: from 9 to 30 in . diancter ; and the most inferior is from New Providence, in sticks, from : $\frac{1}{2}$ to 10 ins, square; the wood is close, not so hard as boxwood, but somewhat like it it color, or rather more orampe; some pieces are very beautifully mottled and curled. It was much in vorute a few years back for internal decoration and furniture ; it is now principaly wed for brusher, and somewhat for turning; the finest kimb are cut into veneers. which are then expen-ive; the Naseatwood is gemerally used for brushes. satin-wool, of hambsome firure, was formerly imported in large quantities from the island of Doninita. The wond has an agreeable scent, and is sometimes called yellow samders. Bergeron mentons a "hois sutine rouge."

The satin-woud of Guiana is stated by Aublet to be vielled by his Firoliu quiuncusis, which has both white and reddish-colored wood, both satiny in appearance. 'like satin-woud of India and Ceylon is yichded by ('hloroxylon siwitemiat.
Shafras-woun is a species of laurel, (siussafras officinalis;) the root is used in mulicine. The small woul is of a light brown, the harge is darker; buth are patan, solt, and cluse. Sassafran word measures from 1 to 12 in . diancter; it is sometimes chosen for cabinet-work and turning. (in :tceount of its seent.
SALL, or Sal, an East Indian timber-tree, the Shora robusta, (see 3th, Dr. Wallichis Catalurur:) this wernd is in very gemeral use in India for beans, rafters, and varinus buiding purpuees; sial is closegrained and havy, of a light brown color, not so clurable, but stronger ani tonsher than
 howsenver applied, better than any other Indian timber; he says the Dormer sat is the bent.
 Binkers I'oper re.
Sampans. Soe lided Sutenelers.
Sempereme This is a kind of thon, and hears the service-herry, which is eaten; it is very math like bughth syeanare in every charater ato reward the wowl.
 center, med well adapent to the ern-truction of aill himats of rarpenters tmots. Ho sals they will

 woul-

Dr. Bancroft says, "Bourra courra, as it is called by the Indians, by the French bois du lettre and by the Dutch Letter hout, is the heart of a tree growing 30 feet in height with many brauches," de.
"The above must not be confounded with the Snakewood of the West Indies and South. America, the Cecropia, of which there are three species, all furnishing trees of straight and tall growth, and a wood of very light structure presenting sometimes distinct and hollow cells. The Balsas, or floats, used by the Indians of South America for fishing, \&c., are very commonly constructed of this wood."

It is thought by some to be the Tapura guianensis, of Aublet.
Speckled-wood. See Snakewood.
Spanish Cuestaut. See Chestnut.
Spindle-tree (Euonymus curopa) is a shrubby tree, with a yellow wood, similar to the English boxwood, but straighter and softer : it is turned into bobbins and common articles. Bergeron says the wood is used in France for inferior carpenters' rules, and that its charcoal, prepared in a gun-barrel or any closed vessel, is very suitable to the artist, as its mark may be readily effaced.
Sycamore, the Acor pseudo-platanus, is called in Europe the great maple, and in Scotland and the north of England, plane-tree; its mean size is 32 ft . high. Sycamore is a very elean wood, with a figure like the plane-tree, but much smaller; it is softer than beech, but rather disposed to brittleness. The color of young sycamore is silky white, and of the old brownish white; the wood of middle age is intermediate in color, and the strongest; some of the pieces are very handsomely mottled. It is used in furniture, piano-fortes, and harps. Sycamore may be cut into very grod screws, and it is used for presses, dairy utensils, dc. See Maple.
Teakwood is the produce of the Tectona grandis, a native of the mountainous parts of the Malabar coast, and of the Rajahmundry Cirears, as well as of Java, Ceylon, and the Moulmein and Tenasserim coasts.

It grows quickly, straight, and lofty; the wood is light and porons, and easily worked, but it is nerertheless strong and durable; it is soon seasoned, and being oily, does not injure iron, and shrinks but little in width. Its color is light brown, and it is esteemed most valuable timber in India for ship-building and house-carpentry; it has many localities. The Malabar teak grown on the western side of the Ghaut mountains is esteemed the best. Teak is considered a more brittle wood than the Saul or the Sissoo.

In 25 years the teak attains the size of two feet diameter, and is considered serviceable timber. but it requires 100 years to arrive at maturity. There is a variety, says Dr. Roxburgh, which grows on the banks of the Godavery in the Decean, of which the wood is beautifully veined, closer grained and heavier than the common teak-tree, and which is well adapted for furniture.

Some of the old trees have beautiful burs, resembling the Amboyna, which are much esteemed.

The woods in general do not very perceptibly alter in respect to length; Teak, says Colonel Lloyd, is a remarkable exception. He found the contraction in length, in the beams of a large room he erected in the Manritius, to be three-quarters of an inch in 38 feet.

The teakwood when fresh has an agreeable odor, something like rosewood, and an oil is obtained from it. He adds, "The fimest teak now produced comes from Moulmein and other parts of Burmah; some of this timber is usually heavy and elose-grained, but in purchasing large quantities care must be taken that the wood has not been tapped for its oil, which is a frequent custom of the natives, and renders the wood less durable."
"At Moulmein, so much straight timber is taken and the crooked left, that thousands of pieces called 'shin logs,' and admirably adapted for ship-timbers, are left. Teak contains a large quantity of silicions matter, which is very destructive to the tools."

African teak does not belong to the same genus as the Indian teak; by some it is thought to be a Euphorbiaccous plant, and by Mr. Don to be a Vitex.
Toonmood has already been mentioned under the head of Cedar, as being similar to the so-called Havana cedar, the Cedrela odorata. The toon-tree is C. Toona; its wood is of a reddishbrown color, rather coarse-grained, but much used all over India for furniture and cabinetwork.
Tulip-wood is the growth of the Brazils. The wood is trimmed and cut like Fingwood, but it is in general very unsound in the centre, its color is flesh-red, with dark red streaks; it is very handsome, but it fades. The wood, which is very wasteful and splintery, is used in turnery, Tunbridgeware manufactures, and brushes.
A wood sometimes called French tulip-wood, from its estimation in that country, appears to resemble a rariegated cedar: it is much straighter and softer in the grain than the above, the streaks are well contrasted, the light being of an orange red; it appears to be a very excellent furniture and turnery-wool, but has no smell; it contains abundance of gum, and is considered to come from Madras, but which peninsula has no pines.
Viniatico. The Portuguese name for several yellow and yellow-brown woods. See Canary-wood.
Vrolet-wood. See hïngwood.
Vinewood. See Apricot-tree.
Walnet. The Royal or Common Walnut (Juglenes regia) is a native of Persaa and the north of China. Walnut was formerly much used in England before the introduction of malogany. The heart-wood is of a grayish lrown, with black-brown pores, and often much veined with darker shades of the same color; the sap-wood is grayish white. Some of the handsome veneers are now used for furniture, but the principal consumption is for gun-stocks, the prices of which in the rough vary from a few pence to one and two guineas each, according to quality. An inferior
kind of walnut is very much used in France for furniture, frames of machines, de. ; it is less brown than the fine sert.
The Black Virgiman Walnut (Juglans nigru) is found from Yemeylvania to Florida, It is a large tree, has a fine grain, is beautifully reined, and is the most valuable of the American kinds for furniture.

The White Walunt is the Hickory, which sec.
Hillow. There are many varieties of the willow, (Salis.) It is perhaps the softest and lightent of our woods. Its color is tolerably white, inclining to yellowish-gray ; it is planed into chips fos hat-boxes, baskets, and wove bonnets; it has been attempted to be used in the manufacture of paper. The small branches of willow are used for homps for tubs, the large wood for cricketbats. From the facility with whieh it is turned, it is in demamd for boses for drugyists and perfumers, which are otherwise made of small birchwowl.

The wood of the willow is described by Mr. Loudon as suft, smouth. and light; the woud of the larger species, as Salix aluba and Russelliana, is sawn into boards for flooring. The redwood willow, s. frugilis, is said to produce timber superior to any other species: it is used for building light and swift-sailing vessels; S. liusselliana, being clocelv allied to s. frugilis. is probably allied to it in properties. The wood of s.caprea is heavier than that of any other species. Ilats are manufactured in France from strips of the worl S. alba.
Yaces-woon, or Yiacher, from Jamaial, is sent in whort crooked pieces like roots, from 4 to 19 in, thick. The wood is pale grown, with streaks of hazel brown ; it is principally used for orammental cabinet and matyuetry work, and turning ; some pieces are very handsome.
Yellow-woon. There is a fine East India woul thas called; it appears to be larger and seraigher than boxwood, but not so close-grained.
'This is probably a Fauclea. The woml of Nencles cordifulin, according to Dr. IWaburgh, is exgeedingly beautiful in color, like boxwool, but much lighter, and at the same time vary close-grained. It is used by the inhabitants of Northern India to make combs ot.
Yew: The yew-trce is common in Spain, Italy, and England. The tree is not larye, and the wewe is of a pale yellow-red color, handzomely striped, and often dutted like Amboyna. It has been long famed for the construction of bows, and is still so employed, althergh the undivided sway it held in the days of Rubin Hoot has ceasul. The Engli-h species (Tisus baccata) is estecmed a hard, tough, and durable wool: it is a common saying amongst the inhabitants of the New Forent in Hanp-tire, that a post of yew will outlive a poit of iron; it would appear the yewtree lives to a great age, as some of those in Nortury Park are said to have been recurded in Domesday book. The yew-tree is used for making chairs, handles, archery-bows and walkingsticks. some of the older worl is of a darker color, more resembling pale walnut-tree, and rery beautifully markel; the finer pieces are reserved for cabinet-work, and it is a chean wood for turning. The lrish yew is preferred for buws.

The burr of the yew-trees are exceedingly beatiful, and although larger in figure, they sometimes almont equal the Kiabouca.

The American yew, Taxus canadensis, is supposed to be unly a variety of T. buccuta; the Ifmalayan species are elosely allied to this and to 'T, nueifira.
Zaste, or Youne Fustic, from the Mediterramean, is a species of smiach, (Tihus C'otinus.) It is small, and of a golden yellow, with two-thirds sap; it is only wed for dyeing, and is quite distinct from the Morus tincturia, or ohd fustic.

Speaking of this tree, Dr. latneroft says: " I distinction was improperly created at least 130
 woul of a small shrubs, amd that of Morus timetorin, (which is always imported in the firm of large burs or blucks, Old Fiustic."-Bhencraft's I'lil. of Colors, v. i. p. 113.

The Zante is alsu called (hlororylone; its mondern (ireck mane is Imphore.
Zebra-wond is the produce of the Brazils amel Kio Jimeiro; it is sent in loge and phank, ns large as twonty-fur inchen. The color is orame brown, and dark-brown varionsly muxd, generally in strainht atripes; it is suitable to cabinct-work ant turnery, as it is wery handomac. A wemal from New sonth Wates buring smme resemblance to the abrive is sometimes called by the same mane, at are alos some other wemplo in which the stripes are of a distinet and decided character.

The \%ebratwad is convidered by upladsterers to be intermediate in general nppearmee be. tween mahmany and romeweot, on at 20 firm "thensing centrant with cither of them. The

 wonde are usunly lighter, and of tuore yollow-browns.
 sprcions.

[^33]Dr. Boucherie argues, that all the changes in woods are attributable to the soluble parts they contain. which either give rise to fermentation or decay, or serve as food for the worms that so rapidly penetrate even the hardest woods. As the results of analyses, he says that sound timbers contain from three to seven per cent. of soluble matters, and the decayed and worm-eaten rarely two, commonly less than one, per cent.; he therefore concludes that "since the soluble matters of the wood were the causes ot the changes it undergoes, it is necessary to its preservation, either to abstract the soluble parts in any way, or to render them insoluble by introducing substances which should render them infermentable or inalimentary;" which he considers may be done by many of the metallie salts and earthy chlorides.

Dr. Boucherie shows, by parallel experiments upon "vegetable matters very susceptible of decomposition, as flour, the pulps of carrot and beet-root, the melon, de., (which only differ from wood, of whieh they possess the origin and constitution, by the greater proportion of soluble matter which they contain,") that in the natural states they rapidly alter, but are preserved by the pyrolignite of iron, (pyrolignite brut de fer, a cheaper material than the corrosive sullimate commonly used, and one very desirable in several respects. He presumed that by immersing the end of a tree immediately after it was felled into a liquid, the vital energies not having ceased, the tree would then absorb such fluid through all its pores, by a process which he calls aspiration; and in this fortunate surmise he was entirely suceessful. This led step by step to numerous practical results, which their inventor enumerates as follows, and describes in separate chapters.

1st. "For protecting the woods from the dry or wet rot."
2d. "For augmenting their hardness."
3d. "For presersing and developing their flexibility and their elasticity."
4th. "For rendering impossible the changes of form (jeu) they undergo, and the splits (disjonetions) which take place when they are brought into nse, or are submitted to atmospheric changes."

5 th. "For greatly reducing their inflammability and combustibility."
6 th. "For giving them rarious and lasting colors and odors."
We shall endeavor to convey a general notion of the methods in the same order.

1. Durability. He took a poplar tree measuring 28 mètres in height and 40 centimètres diameter, simply divided from its root with its branches and leaves undisturbed, and immersed it ereet to the depth of 20 centimetres in a vessel coutaining pyrolignite of iron; in six days it was entirely impregmated even to the leaves, and had absorbed the large quantity of three hectolitres. This method required powerful lifting apparatus, and a support for the tree to lean against, and hence was objectionable.

He repeatedly operated upon trees lying on the ground, by attaching to their bases water-proof bags containing the liquid: the experiments were varied in many ways; sometimes portions of the branches were lopped off, but the crown or tuft was always left upon the principal stem; at other times the aspiration was effected by boring detached holes near the earth supplied with different fluids, which gave rise to all kinds of dirersities in the result; and other trees were piereed entirely through, and a horizontal eut extending to within an inch or so of each side was made with a thick saw, leaving only sufficient wood for the support of the trees.

For fear of losing the trees upon which he had the opportunity of experimenting, the process was not deferred beyond 24,36 , or 48 hours after they were felled, as the vigor of the absorption was found to abate rapidly after the first day, and that at about the tenth day it was scarcely perceptible: it was also found the aspiration entirely failed in dead wood, whether oceurring at the heart of old trees, or at parts of others from any accidental interruption of the flow of the sap during the growth; and abo that resinous trees absorbed the fluids less rapidly than others.

Observations were also made of the quantities of the liquids taken up; these fluids, when of a nentral kind, as the chloride of soda, often equalled in bulk that of the wood itself, without eausing any addition to its weight; the acid and alkaline fluids were less abundantly absorbed, apparently from contracting the ressels by their astringent action. It is stated that the pyrolignite of iron effected the preservation of the substance when equal to less than a fiftieth of the weight of the green wood. These points are all separately treated in the original paper.
2. The hardness of the wood was considered by various workmen to be more than doubled by the action of the pyrolignite.
3. The flexibility (due to a certain presence of moisture) was increased in a remarkable manner by the chloride of lime and other deliquescent salts, the degree of elasticity depending upon their greater or less concentration. As a cheap substitute for the above, the stagnant water of salt marshes was adopted, with a fifth of the pyrolignite, for the greater certainty of preservation. Pieces of prepared - deal, 3 millimètres thick and 60 coutimètres long, were capable of being twisted and bent in all directions, as into screws, also into three circular coils; the wood immediately regained its figure when released; this condition lasted eighteen months, that is, until the time his paper was read.
4. The warping and splitting, principally due to the continual effect of the atmosphere in abstracting and restoring the moisture, was stayed by impregnating the wood with a weak infusion of the chloride, so as always to retain it to a certain degree moist; one-fifth of pyrolignite was also added in this case The seasoning of the wood was atso considered to be expedited by the process, and which was not found to interfere with the ordinary use of oil-paint, de. Large boards of the prepared wood. some wh which were painted on one or both vides, and similar boards of unprepared wood, were compared; at the end of twelve months, the former were perfect as to form, the latter were warped and twisted as usual
5. The inflammability and combustibility of the woots were also prevented by the earthy chloridewhich fuse on their surfaees by the application of heat, and render them diffieult of ignition. T'we similar eabins were built of prepared and of ordinary wood respectively, and similar fires were lighted in each; the latter was entirely burned, the other was barely blackened.
6. In respeet to colors infosed by the aspiratory process, the vegetable colors were found to answer less perfectly than the mineral, anil the latter succeeded best when the color was introduced at two processes, so that the chemical change (that of ordinary dyeing) occurred in the pores of the wood
itself. Odurous matters, required to be infused in weak alcohohe solutions, or essential oils, they were considered to be equally durable with those supplied by the hand of atture; and resins similaty introduced were found to increa-e amazingly the intammability of the wouds, and to render them imper rious to water.

On the whole, the method is considered to promise the neans of working almost any desired chanse in the constitution and properties of woods, when the theids are presented to them before the vitahty af the tree has ceased. It is true we have as yet only two years' trial of these experiments, but they have been seientifically deduced, and their inventor is still corgaged in frovecuting them. It is to be binged, and also expected, that these interesting and flattering promises of suceess will be realized, and Wen extended, when tried by that most severe of all tests, time.*

For the preceding article on Woods, we acknowledge our indebtedness to Holzapticl's Turning and Mechanical Manipulation, a work we cmence of great merit.

WOOD STEAJ CARBONIZING MACHSNE. Description of an apparatus for carbonizing wood by means of heated steam. By M. Violette. It is well known that the nature of the product of the earbonzation of wood, in a close ressel, varies according to the temperature: for instance, a very great heat proluces a black charcoal, deprived of the greater part of its volatile hydrogenated parts ; whike a more moderate lieat gives a red clarcoal, retaining more of the properties of wood, and still charged with volatile principles. It is this latter quality of charcoal which pruduces the best gunpowder; and it is therefore impertant to diseover the best means of preparing it. With this object in view, 31 . of iolette hats, by experiment, determined the limits within which a red charcoal may be obtained: that is to say, a product which is not wood, and yet is not perfect chareoal. To effect this object he enrploye a bath of metal, fusible at l $6^{\prime} \rho^{2}$, composed of one part bismuth, 4 parts of lead, and $3 \frac{1}{2}$ parts of tin. This metal he keeps in fusiun in a deep glass vessel, suspended over a Careel lamp. A thermometer, graduated at 350°, is immersed is this bath to show the temperature. The pieces of wood to be experimented upon are fastened to the ends of platina wires, and put into glass tubes, closed at one end, amd immersed in the metallic bath. By this arrangement the wood is maintained at the temperature indicated by the thermometer, and sufficiently protected from contact with the atmosphere. The wowd may be withdrawn fur inspection, when required, by means of the platina wires. I suitable and unvaried temperature may be maintained by raising or lowering the wick of the lamp at the beginning of the operation. The wod exposed in this apparatus during an hour to a temperature of from 200^{2} to 250, does not become converted into charcoal ; at the fad of two hours, at the same temperature, it is converted into red charcoal, its surface being properly carbonized, but its interior being still wood: at the end of thres hours it is conserted into a hard red charcoal, brittle, and burning with flame, but ineapable of extending its combustion ; if submitted for an hour to a heat of 310° a very good red chareval is obtained, of sufficient hardness, but easily pulverizable; on the prolongation of the experiment (1) two hours a more jerfect charcoal is obtaned, which burns with flame; and lastly, at a temperature of 350°, and at the end of half an hour, a charcoal is obtaned which is back, friable, and easily imunded.

The first experiments were made with a small apparatus, capable of containing about 2 Its of worl; ant, independently of the superior quality of the powder manufictured with the charcoal thus obtaised, it was found that the product was augmented to ats much as 42 per cent. of the weight of the woul.

The apparatns now emphoged for this purpoee is shown below, Fig. 3953 being a longitudinal revtical eection, and Fig. 3954 a transerse section in the line $a b$ of Fig. 3953 . It consists of two hollow con-
$3!51$.

3953.

 sumer "ylinder 11. A is the fire place, (whith mas be fiat with weat or coke, or some other suitable

[^34]The wood to be carbonized is first placed in a cylinder, made either of wirework or perforated metal, which is introduced into the cylinder K ; by this arrangement, should the charcoal become ignited on being taken out, the flame will be prevented from spreading. The charge in this apparatus weighs from 30 to 40 lbs .

Mode of operution.-The first thing to be done is to get up the steam, until the manometer indicates one atmosphere; the fireplace for heating the steam-pipe is then to be lighted, and in about a quarter of an hour the doors may be opened, and the perforated cylinder containing the wood introduced into the cylinder K, which is then closed by means of the cover I; a luting of clay being made round the edge thereof, and a screw m applied to fasten the cover in its place, the outer doors may then he closed. After the lapse of ten minutes, when the luting has become sufficiently dried, the induction steam-cock is opened, and the steam rushes into the steam-pipe C, where it becomes heated; from thence it passes into the outer cylinder H, and into the inner cylinder K at its open end, where it gradually insinuates itself into the pores of the wood, acting, by its great heat, in such a mamer as to carbonize it, and finally makes its escape through the pipe L, carrying with it the gases evolved from the wood. In order to keep the fire at a certain temperature, there is a small glazed opening at a, through which the workman can see that the flame acts properly upon the steam-pipe. After some time, a thermometer, (specially constructed for the purpose,) on being introduced into the cylinder K, shows that the temperature has reached such a height as to melt tin; and the steam which escapes shows, by its color and odor, that it is mixed with the first products of distillation of the wood, and that the earbonization has commenced. The smoke or vapor thickens, and takes successively various aspects, which are certain signs of the progress of the operation. After about two hours from the time the distillation was first apparent, the smoke shows that the operation is finished. The attendant then proceeds to discharge the charcoal; and for this purpose two other attendants are ready with what is called the cxtinguisher, a large iron eylinder, about three fect in diameter, and about six feet in length, to receive the charcoal. The chief attendant then shuts off the steam, opens the doors F, turus the screw m, lays hold, by means of wooden handles, of the respective ends of the cross-bar J, which keeps the disk in its place, detaches it, and plunges it into a vessel full of water close by; then, by means of the same wooden handles, he takes hold of the disk, and twisting it round, so as to break the luting, detaches it, and plunges it also into the vessel of water. The attendants holding the extinguisher put it in a horizontal position in front of the cylinder K , so as to close the orifice. The chief attendant then pushes a long rod through the pipe L, so as to push the cylinder containing the charcoal into the extinguishing cylinder, which is then quickly placed on the ground, and the hydraulic joint with which it is provided is filled with water. The operation is then completed.

The inventor has observed that there are no traces of tar in the apparatus, as it is all driven off by the steam. The charcoal obtained is of very fine quality, and varies according to the temperature: that is to say, is red or black, according to the degree of heat and the length of time during which it has been maintained. The former is suitable for manufacturing the finer sorts of powder for sporting pur poses, and the latter, inferior powder, for blasting mines, de.

The apparatus above described has been in operation more than a year, and has produced 5000 lbs . of superior clarcoal, and is now in very good condition.

Various modifications may be made in this apparatus without in any manner altering the main feature of the invention; for instance, the inventor proposes, in some cases, to use an apparatus containing three carbonizing cylinders, one of which shall not be supplied with steam, but merely serve to dry the wood, and prepare it for either of the other cylinders, on either side of the steam-pipe; this arrangement has the effect of rendering the operation continuous.

Wrenci, CILINDER. Invented by S. Merrick, of Springfield, Massachusetts, and patented January 2, 1849.

This wrench is designed for grasping and turning round bolts, nuts, gas and water pipes, and other cylindrical substances.

By reference to the accompanying drawings, its construction and operation will be readily understond.

Fig. 3955 is a side elevation; Fig. 3956 a central vertical section. The same letters refer to like parts in each figure. A, main bar: B, nut, fitted to a screw, ent on the two opposite edges of the main bar; C, slide, made to move easily
3955.
 upon the main bar, and connected with the nut by a collar on the end of the nut and a groove underneath the end of the slide; D, tighteming levir. attached to slide C by a joint, as seen at H ; E, spring for the purpose of pressing the lever D upon the main bar; F, handle. The end of the lever D is made circular, the centre of which eirele is chown at G, for the purpose of pressing more firmly against the cylinder I, as the end of the lever is forcect down towards the main bar. The circular end of the lever is also indented or roughened that it may not slip on the eylinder I. H, joint of the lever D and slide C; I, the cylindrical substance to be turned.

To operate the wrench, it is placed upon the cylinder to be turned, as seen in Fig. 3955, and the indented end of the lever D is brought in contact with it by means of the nut B. The handle is then moved backwards, and the lever advanced at the same time, until the end of the lever is somewhat raised from the main bar ; the handle is then carried forward in the direction shown by the arrow, which causes the lever to take firm hold of the cylinder and carry it around in the same direction: and hy reversing the motion of the handle, the cylinder is instantly released for a new hold. It will be obvious that the wrench can be readily adajited to any size of eylinder within its compas, and will thus suply the place of a pair of tougs (the ouly tool in use for the same purpoce previous to this inser
tion) for each particular size of cylinder. It also possesses the advantage of being worked with coe hand after being set to the particular size required.

Wresch, screlf. Invented by S. Merbick, of Springfield, Mansachusette, and patented Aogust 17,1835 ; patent extended May it, 1849.

In the drawings, Fig. 3957 denotes a side elevation; Fig. 3958, a rertical central section. The same letters refer to like parts in each figure.

A is the main bur; B, the mut fitted to a screw, cut on the two opposite edges of the main bar; C, a strap, which passes around in a groove formed in the nut 1 , and is riseted to the end of the slide-jaw D. The collar on the end of the nut 1 l takes into a corresponding groove in the slite $\mathrm{D} ; \mathrm{E}$, the end of the main bar, which forms the stationary jaw of the wrecel; F, the handle. The nut is made to move frecly in the strap C, and, by turning it to the right or left, the slide D is moved to any desired point on the main bar.

The principal advantages possesed by this π rench are, its simplicity of construction and consequent cheapness-its compactness, durability, and strength; the size of the main bar being duly proportioned to the power applied, as will be seen in the figure.
7.INC, composition and use of. Zine or Spelter has a crystalline texture, is brittle at ordinary temperatures, and of a bluish-white color: at 300°, it is both malleable and ductile, and at a white heat it is converted into vapor. When pure zine is exposed to air and moisture, it acquires a dull color from partial oxydizement; and great electric action takes place when it is in contact with copper, and the zinc decays in consequence. Its specific gravity is 7 ; and it has a great attraction for oxygen; the weight of a cubic foot is $439+$ pounds.

Oxide of zinc is obtained by intensely heating the metal exposed to air; it takes fire at a red heat, if the air is freely admitted, burning with a very bright tlame.

Sulphurct of zine (blemete) is found natise, and is a brittle, soft metal, of a brown and hlack color; itd primitive form is a thomboidal dodecabedron, and it is a most abmedant mineral. The pure metal is abtained from it by roasting the oar, and afterwards distilling it when mixed with chareval.

Zinc.	1	32	L6 6
Sulphur	1	16	33.5
	1	45	100

Curbonate of zinc, (calamine:) when found cry:tallized, its primitive form is an obtuse rhembeid.

Zine is obtained from the sulphuret and carbonate; the ore when broken is submitted to a dull red beat in a reverberatory furnace, when the carbonic acil is driven off from the calamine, and the sulphur from the blende : it is then mixed with one-eminth of its wempt of powdered charcoal, heing tir-t ground and thoromehly wa-hed, and distilled hy the application of a red heat; the metal being jut into earthen poot with iron tubes cemented into the lower parts, dipping into water, where it is collected, and atterwarls cant into cates. A bar of zinc 12 inched leng and 1 ind -quare, weirhing 3 on pombs,
 alteration, a preware on a square inch of 5 T00 pounds.

Zine is used for the prearvation of itom, by eleetrodeporition. The iron is first rembered perfeetly chan and free from oxile, by placine it in a hath of heated sulphurie acid mad water; then in a colld solution of sulphate of zinc. 'The puritive pole of a galvanic lattery it atsached to a zine plate, and the negative the the iron th be conered; the prore metal is eleponted, and the zine and iron are amalgamatal. Wismen tromphate employed for the procese, and irmplates son covered are extemsively aned for rootine, and do not after mang months exhibit any signs of decay. The iron leeine conted with zine in a cold molution. lecen not in any way change its cendition; but whon the zincing of iron in performed hy feteping it in a bath of metted zine, a combinaton taked flace betwert the two metat, mat a brittle alloy is the connerpores, the irm loning all ita tenacity:

I'in is umally prepared from the nation oxide its axyen being removed by charemal: the puser kinds are called grain tin, and the where hlock tin. The commom ores are kmen nomer the mame of

 into a white oxide by vipu-nre to heat and nir.

Jrotocide of tin: 4pecitic gravity in :

Bisulphuret of tin (Aurum musivum, Mosaic gold) is a mixture formed by heating peroxide of tin which contains two of oxygen and one of tin, with its weight of sulphur. Bisulphuret of in is also formed by decomposing perchloride of tin by sulphuretted hydrogen; it is quite insoluble in the acids, except nitro-muriatic; it forms the bronze powder used by paper-stainers.

Tin	1	58	$64 \cdot 4$
Sulphar.	2	32	356
	1	90	100

The weight of a cubic foot of cast tin is 455.7 pounds, and the weight of a bar 12 inches long and an inch square is 8.165 pounds; it expands, according to Smeaton, at one degree of heat ${ }_{\overline{7} 2} \frac{1}{51} \frac{1}{0}$, and melts at 442°. It will bear on a square inch 2880 pounds without any permanent alteration, and an extension of length of $\frac{1}{7600}$. Compared with cast-iron, its strength is 0.182 times, and its extensibility 0.75 times, and its stiffiness 0.25 times, cast-iron being considered as unity.
Zinc white, a carbonate of zinc, which is destined to supersede the white-lead as a paint. It is equally durable with lead as a color, and does not turn yellow as does lead. It is also free from the poisonous qualities possessed by preparations of lead which render its effeets upon the workmen who use it so disastrous.
Brooman's improvements in the manufacture of zinc.-The general object of this invention is to do a way with the tronblesome and expensive processes of assorting, pounding, and crushing, now ordinarily followed in order to the extraction of zinc from its ores; and this is effected by a method of direct reduc. tion. We extract the following description of the apparatus employed, and of the peculiar processes followed in connection therewith, from the patentee's specification:

Fig. 3959 is a vertical section of the apparatus on the line A D of Fig. 3960, which is a horizontal section on the (dotted) line A, B, C, D of Fig. 3959. C is the hearth of the furnace; F, F, F are the tuyeres, which are three in number; N is the shoot; U the chamber of the furnace. So far the parts of the structure are very similar to those of a small blast-furnace. At IK the upper part of the chamber U is suddenly contracted, so as to form a neck V, or narrow passage, between the upper and lower parts of the furnace. The charge, as it falls through this nock, leaves, necessarily, a vacant annolar space at $x x$, between it and the sides of the furnace, where the volatilizable matters may collect. F F are four rectangular passages, formed of cast or sheet iron, which lead off at right angles, and in an

melined direction, from the ammlar space $x x$, and each passage is encased for a certan distance witha a chamber G, through which cold water is kept continually circulating, flowing in from the tube P, Q, R, and escaping through the pipe SS. At the lower end of each of the rectangular passages there is a tubular passage Λ^{1}, by which the uncondensed gases of the furnace are carried off to different points, to be employed for heating purposes, as hereafter explained; and each passage is provided at its lower end with a sliding door A^{2} which may be closed or opened as required. W is a lid or cover by which the furnace is closed at top, and which fits into a groove made for it, so that there may be no escape ot the gases at that part. All the interior parts of the furnace are formed of fire-brick, with an outer wall or casing V1, which may be made of ordinary brick; and between the outer and imer walls there is left a space $Z Z$, which is filled with some substance which is a bad condactor of heat. H HI are strengthening plates of cast-iron, which are inserted into the lower brick-work T^{-1}, immediatelo over the tuyere openings $\mathrm{E}^{1} \mathrm{E}^{1}$. L^{1} are cast-iron frames, which carry the passages $\mathrm{F} F$ and cold-water chamber G.

The mode of operating with the apparatus is as follows:- Λ fter the furnace has been built, it is left
to dry; then a fire is kindled on the hearth, and kept up for about three weeks by supplies of fuel by peeference coke) introduced through the throat. The furnace being in this mamer filled with ineandescent fuel, a small charge of quicklime is thrown in. As soon is this charge has deseenden as far down as the tuyeres, a mixture of ore, Ilux and fuel is fed into the furnace, the torp of the fornace closed, and a moderate blast of atmo-pheric air applied by means of a blowing machine.
The fuel, the flux, and the ore are in such proportivns to one another that the whole of the zine contained in the ore shall be reduced, and then volatilized, while all the foreigramaters =hall form with the flux a residual slag of more or leas tluidity when in the heated -tate. The fuel employed may be either charcoal, or coke, or common coal, or anthracite, or turf, taking care alwaty that it is of a sulfecienty hard nature to resist the incumbent presure of the charge in the furnace.
The quantity of fuel employed should be greater at the commencement than during the subeguent -tares, and should in all cases be sufficient not only for the complete reduction of the zine. Int also to leave so considerable an excess that when it arrives directly befure the tuyeres, the combution of the fuel shall not give rise to any gaseous oxidating product; such, fir example, as carbonic acir. The flux (the selection of which, as well as that of the fuel, depends on the quality of the ore) must be usen in *uch a state as not to produce any oxidating matter durimer the formation of the slar. For this rea-on, when the nature of the ore requires the employment of lime as a flux, the lime should be used in a can-tic state, and not as a carbonate; and for the same reason it is advisable to use a blast of atry air, that is to say, air deprived of aqueous vapor. The prolucts of the furnace are, in the nirst place, the grases arisiry from the combustion of the fuel ; secondly, the vapors of zine; thirdly, the non-volatilizable matters, consisting of scorize or slag, and of reduced metallic substances of greater density than the einc. The threat of the furnace being closed, "the gases arising from the combustion of the fuel" pass

 ame winch is carrived ower in a state of vapor, or to dre and rant the ores. The " vapurs of zine" me

The flux employed in this case is quicklime; and if the ore contain a portion of baryta or gypsum. then fluorine is added. The quantity of quicklime employed depends on the quantity of eartly matters contained both in the zine and iron ores. The iron ore best suited for this purpose is that contain ing zinc, but in too small a quantity to be treated separately as a zine ore. When, however, the iron ore contains water or carbonic acid, it is necessary that these should be expelled by roasting, in orden that no substance susceptible of oxidizing the zinc may be introduced into the furnace. If the iron ore contain too great a quantity of oxidating matter, then it is preferable to expel the sulphur from the zinc ore by means of cast-iron or malleable iron. This plan presents the advantage of driving off the whole of the substances capable of reoxidizing the zine which has been reduced. When a sulphuret of zine in which there are several other metals, such as iron, copper, lead, silver, de., is treated in the furnace, there collects on the sole, besides the slag, a stratum of argentiferous lead, on which is superimposed a stratum of cast-iron arising from the excess of iron ore used in the process. Again above the stratum of iron there collects a mass composed principally of sulphuret of iron, sulphuret of copper, and portions of the sulphurets of other metals.
If white, gray, or yellowish oxide of zinc should be formed accidentally in the passages $F F$, it can De made use of directly as a coloring matter, and sold as such; or else it can be mixed with damp clay, made up into blocks, dried, and again passed through the furmace; in which case a sufficient quantity of quicklime should be added, to convert all the clay into a fusible slag.

When ores containing zinc in a state of oxide have to be treated, they should be previously assayed. in order to effect an analysis, and to ascertain the quantity of earthy matters contained therein capable of being converted into scoria, and which will determine the proper proportion of quicklime to be added. The lime and magnesia contained in the ore are also taken into account.

When ores containing zinc in the state of sulphurets have to be treated, the quantities of sulpinar, earthy matters, and metallic substances contained therein should also be ascertained by preliminary assay, so that the quantity of iron ore used in the charge shall be sufficient to produce the cast-iron requisite for combining with all the sulphar that may be in the zinc. In order that the combination of the sulphur and iron may be the more completely effected, it is adrisable to employ a slight excess of iron ore. But if there should be reason to apprehend that the iron ores might produce too great a quantity of oxidating matter, and thereby create too great a quantity of oxide of zinc, then cast or malleable iron may be directly used for the purpose of combining with the sulphur, in which ease the proportion of cast-iron or malleable iron is to be determined by the quantity of sulphur contained in the ore, always employing a slight excess of the iron. The proportion of quicklime or of fluorine used for making a fusible slag will depend on the quantity of earthy matters contained in the ore to be treated, as well as in the iron ore when used for combining with the sulphur. The quantity of fuel employed-in this case will depend not only on what has been already stated, but also on the richness and fusibility of the iron ores, and in all cases should be so regulated that the working of the furnace shall in all respects resemble that of a blast-furnace for casting purposes.

As sulphuretted ores contain generally other metallic substances besides zinc, a great quantity of reduced metals, and of crude metals, composed principally of sulphuret of iron, will collect on the hearth of the furnace, and combine with the sulphuret of copper and a portion of the sulphurets of the other metals. In this case, therefore, it is better to run off the metal more frequently than in the preceding cases. The lead thereby obtained can be recast into pigs ready for sale, or submitted to the process of cupellation, if it should contain silver ; and any other masses of crude metal may be treated by any of the well-known processes, in order to extract the copper therefrom. As in the preceding cases, the whole of the zine will be volatilized, and collected condensed in the passages FF, and chamber G.

I N D EX.

Abacus
2. benbing and Productive Caseade.
Acceleration.
Aftinity.
Air Eseape.
Air-Gun.
Air-Valve.
Air-Vessel.
. Sir in motion, or Wind and WindMills.
. ir-1'umps, in general.
" Kevsedy's Horizontal
Double Cylinder.
. A - P 'ipes.
Alarm, Fire-Damp.
Whistle.
Amcrican Steam Exeavating Machine
Anchur.
Anemumeter.
Aune:aling.
Angle, I) Clinition of.
Animal Kiugdom, Materials from :
ac, I' reclanous and Nuereous Shells, Bones, cte.;

Horn;

Tortoise-shell;
Ivory:
Ambracite Coal.
S.puceduct, Wire Suapension.

Aymeducta, Mendern.
Aypurduct, Croton.
Archinete can Boiler-Furnace, and Self-Acting Stern-Prompller.
Artesian We.lls.
" (inlielle's Bur-
mes Apraratua of.
Auger, - 'lips C'appenter's.
Improwed.
Augers, Mathmery for makins: Double and Singla T'wit.
Sugur Mnchime.
Automatic Dividing Machine.
Axle Circase.
Axles for turning narrow Curses. " V'ibrating Box, for Lowes motives.
Axte ned Whed.
Backwater er Scouring I'ower.

Ballast-Wagon.
Ballasting, or Metalling.
Balustrade.
Bar.
Barrel.
Barrow.
Base-Lines.
Bath-Stones.
Batter.
Bearings.
Bectle.
Bench, or Berm.
Teetling Machine.
Bench-Marks.
Béton.
Belting.
Biram's Tell-Tale.
Blasting, under water.
Blast-Furnace.
Blast-l'ipes.
Blasting.
Block Machinery.
Blucks
Blund.
Bloom.
Bluw- P'ipe Analyzer.
Blowing Machine.

> " ". or Air-Fan.

Blow-1'ipe.
" " Jr. Hare's Mydro-
exymen.
Bublimet Machinery:
Bonlar- l'lates, Machine for Punchimb.
Builera, Varietica of, and ciretam stancest attending their nse and construction.
Bolting-Mall for Flour.
Bulte, Iron.
imolatery.
Bonsl.
Borit ge Mahthe, Vertical, by Massrs. Nisulyth, Gaskell is (in.
Moring Machine, Cireat, hy the s:the.
Buring Machine, Vertical, by Manery, Mhos. Huk \& Sun.
Borine Texala.
Finw string Bridge, or Ten ionBridsto.

Brake, or Consor
Bran Separator
Breakwater.
Breakwater Glacis.
Breasts.
Breast-Wrall.
Brick-Machine.
Brick-DIaking.
Bridges.
Bronzing, Improvements in.
Buffing Apparatus.
Bullet-, Mamufacture of by rolling
Bung-Cutting Machine.
Bush.
Button Machincrs.
Byrnegraph, or new Proportiona Comparees.

Calender, with fise Rollers.
Calender.
Calico, Machine for Printing it four Culors.
Candles, II:
Stearine, Maufacture of
Cannous, or Cireat (iuns.
Carding Fingine.
Cask-Gaging.
Casting and Fomding.
Centre of Gravity.
Checese l'reso.
Cider-Mill :mbl Press.
Circular saw fur cutting Vener.
Chuth-sharing Dichime.
Conden-ing Machine, hy Nefleor und Miteluti.l.
Goining Mathine.
Commecting Cramk.
Conway Tinbular Jhidge
Copspinner.
Corm-Nill.
Coal, Authracite.
Corm Sheller.
Combter I'ropertinmal
Cracker Madrine.
Irame, Movalile.
Crame, loundry.
C'uttung mul Coirsing Xachma.
C'uttllys 'Tinde.
Deal sawin, Machine.
Derricha, stume batyiná

Distillation.
Diving-Bell.
Docking Ships, Apparatus for.
Dredging Machine.
Dredging and Raising Machine.
Dresser.
Dressing Machines.
Dressing Millstones, Machine for.
Drilling Machines.
Drilling Machine, Vertical.
Dry Dock.
Dynamometric Crane.
Dynamometer.
Earthwork, Wagons for Executing.

Electricity

Electric Light.
Electric Clock.
Electro-Metallurgy.
Electro-Motive Engine.
Electro-Magnetic Ore-Separator.
Elevators.
Elliptograph.
Embossing Machine.
Embankments, Movable Machine for executing.
Engines, Details of :
Pumping Engine.
Rotative Engines.
The Parallel Motion.
Marine Engines.
Boilers.
Locomotive Engine.
Fire-box.
Smoke-box and Chimney.
Framing.
Steam-dome, pipes, and regulator.
Safety-Valves and Fusible Plugs.
Cylinders and Valves.
Wheels.
Cranked Axle.
Counecting-rods.
Eecentric and Eccentric-rod.
Valve motion.
How to set the Valves of Locomotives.
Miscellaneous Remarks respecting Locomotives.
Rules for Calculating the Parts of.
Yarieties of the Steam Engine.
Engraving on Copper
on Steel.
on Stone.
on Silver and Gold
on Wood.
Envelope Machinery.
Etching
Fan.
Falling Stocks.
Felloe Machine.
Felting.
Files.
File and Rasp Machine.
Filing.
Filtration.
Fire-Annihilator.
Fixe-Bricks.

Fire-Engine.
Flash-Boards.
Flax, Machinery for Preparing and Spinning.
Floating Sectional Docks.
Floor-Cloth.
Fly-Wheel.
Focus.
Folding and Measuring Machine.
Force.
Forge.
Forging.
Fortification.
Foundations.
Foundry Crane.
Freezing Apparatus.
Friction.
Friction-Rollers.
Fringe Machine, Shawl.
Frog.
Fulerum.
Fulling.
Fulling-Mill, for Cloth.
Furnace.
" Reverberatory.
Fusible Metals.
Futtock, or Ship Timber Converting Machine.
Futtock Plates.
Futtocks.
Galvanism.
Galvanized Irou.
Galvanometer.
Gas, and the Hachinery employed in the Manufacture of.
Gates, Wrought-iron, for the Uni-
ted States Dry Dock at Brooklyn.
Gates, Floating, for the United States Dry Dock at Brooklyn. Gates, Guard.
Geer Cutting Machine, Bevel.
Geer Cutting Engine.
Geering.
Geodesy.
German Silver.
Gig.
Gilding.
Gimbals or Gimbols.
Gin.
Glass.
Glue.
Glyphography.
Gold.
Gold-Beating.
Goniometer.
Governors.
Grain Separator.
Graphometer.
Gravity, Centre of.
Gravity, Specific.
Grinding Machine, Double.
Grinding Mill, Eccentric.
Grindstone.
Grist-Mill.
Gage, Steam and Water-Safety, for Steam-boilers.
Gage, Telegraphic Steam.
Gudgeon.
Guns.
Gun-Barrels, Lathe for Turning.
Gun-Cottou.

Gun-Metal.
Gunpowder.
Gunter's Chain.
Gunter's Line.
Gunter's Scale.
Gutta Percha.
Gyration, the Centre of.
Hammer, Anderson's patent.
Hammer, Steam.
Hammer, Tilt or Trip. See Tilt. ing.
Harvester. See Reaper.
Hat-Making.
Hay and Corn Cutter.
Heart-Wheel.
Heat.
Heddles, Machine for making
Weavers'.
Heliotrope, Reflecting Lantern.
Heptagon.
Hexædron.
Hexagon.
High-Pressure Engine.
High-Pressure Steam-Engine.
Hinge.
Horn.
Horse.
Horse-Power.
Horse-Shoe.
Hydrodynamies.
Hydro-Electrical Machine.
Hydro-Extractor.
Hydrometer.
Hydrostatic Press.
Hygrometer.
Hyperbola.
Hyperbolic Logarithms.
Ice.
Ice-Boats.
" House.
" Saws.
" Trade.
Icosahedron or Icosaedron.
Illumination.
Impact.
Impenetrability.
Impetus.
Incidence.
Inclination.
Inclined Plane.
Indicators.
Indigo.
Inertia.
Involute Curve.
Iron.
Jack.
Jack-Screw.
" Lever.
" Traversing Screw.
" Traversing.
Jacket, Steam.
Jacquard.
Japanning.
Joint, Clasp Coupling.
Joint, Patent Expansion.
Joints, and Joining Timbers.
Kaleidoscope.
Kedge.

Ǩeel.
Kicelson.
Kiln.
Kite.
Kneading.
Kuives.
Kinife Sharpeners.
Laburnum Wood.
Lac.
Lace.
Lacquering.
Lactometer.
Ladder.
Lamps.
" Spirit Gas.
Lathe for Turning Irregular Forms.
Lathe for Small Engine.
" Boring and Reaming.
" Engine.
" Large Boring and Reaming.
Gun Boring, Turning, and Planing.
Small Self-acting and Screw Cutting.
Boring and Turning.
Buring-Mill and Large Turning.
Lap and Lead of the Slide-Valve.
Lead.
Lens.
Lever.
Lewis.
light.
. Artificial.
Light-IIouses.
Lirhtning Conductors.
Lite-Buat.
Lime.
Lithography.
Lucks of Cinals.
Locomotive Engine.
Logarithm.
Lrigwout.
Lom, Porer.
" Bigeluw's Counterpane.
" Duable-Stroke.
" lower Carpet.
Machines.
Marnet-Maructism.
Mahogany:
Manometer.
Mamyle.
Maple- Wood.
Marth Siswing and Polishing Machimery.
Marine steam-1"_je.
Matcher.
Matorials.
Man.
Mosare.
Mechanical Powers.
Mechanical l'uwer of Stean.
Mcnguration.
Metals mul Alloys.
Metallurgy.
Micrometer.
Microscope.
Mile.
Mill.

Millstone.
Mineral Kingclom.
Mines, Engines for.
Modulus.
Momentum.
Mortar.
Mortising Machine.
Motion.
Moulding Machine.
Mule.
Nail Machine.
Ňeedles.
Nickel.
Nonagon.
Normal.
Nut-Cutting Machine.
Octagon.
Octohedron.
Odometer.
Oils.
Oil Test.
Ombrometer.
Operameter.
Opsiometer.
Ordinate.
Ore-Separator.
Orthochronograph.
Oscillation, Centre of
Oscillating Engines.
Oyster Opener.
Paints, Grindiug of.
Paper, Manufacture of.
" Cutting.
Parallel Mutions.
l'arameter.
Pendulum.
Pens, Steel.
1'ercussion.
Percussiun-cap Machine.
l'erpetual Motion.
l'ersian Wheel.
1'hotograply.
I'hotometer.
l'ile-Driver.
Piling Machine.
D'in Making Machine.
l'iston.
P'aning Jachine.

> " ". liami.

Ilate-Jending Machine.
Platinum.
Preumatics.
Polarization of Lifht.
Patascian.
Presa, Anti-Friction Cun.
I'rnating I'rens, Lithagraphic.
1'regs, P'rngresoive lever Steam,
I'rimting. l'res.
I'rojectom.
Proving Machime, Mydrontatic.
l'uddler's Balls, Machine for compres ing.
l'ulley:
Purny

Steam

I'mach, Revolving Steman.
I'unchiny Machine, Stemu.
l'unching and Plate C'uttintr Ma
clune.

Punching and Shearing Machine
Pyrometer.
Picker, Kag and Waste.
Railroads.
Retorts.
Rice-Cleamer.
Kivets and Blank Screws, Ma.
chine for making.
Riveting and Steam Punching Machine.
Rolling Machine.
Ropes, Stilliness of.
Sawing Machine.
Saw-Filing Jachine.
Screws, Selfoperating Shaver.
Screw-Blanks.
Screwe, Burring Machine for
Screw-cutting Machine.
Screw-Finisher.
Screns, Machine for Nicking.
" Machine for Sharirg and
Turning.
" Machine for 'Threading.
Screwing Machine for Bols.
Sea-Lights.
Scaming Machine.
Sewing Jachine.
Shears, Rotary.
Shingler.
Shingle Machine.
Shot.
Slotting Machine.
sluice-Cocks.
Smut Machine.
suldering.
Spike Machine.
Spiming-Frame Banding, Machine for making.
Stave-Dressing Machine.
Stave-Joining Machine.
stecl.
Strength of Materials of Construction.
Sugar-Mills and Machinery:
Switel.
Telegraph.
Telescope.
Temperims, Hardening, and Soft ening Mctals.
Thermoneter.
Threshing Machite:
Thiruntle.
Tilting Hammer.
Tubace-Cutting Machine.
Torl*, C'utting, 1)rilling, 'Turning dc.

Torsion.
Transit.
Trip Hammer.
Tube Concha.
Turbine.
Turu'Tablo.
Twisting Machine for Ireas
Iranitur.
Vulses.
Valve, lixpmasion.
Celerity.

Ventilation.
Vernier.
Vice, Lever.
Warming and Ventilation.
Watchmaking.
Water-Closet
Water-Metre.

Water Pressure Engine. Water-W heels.
Weights and Measures.
Wheels, Railway.
Wheels, Paddle.
Wire-covering Machinery.
Wire Rope Machinery.
Wiring Machine.

APPRNDIX.

Boilers, American.
Brick-Making Machine:
Cart-Whecls.
Cask-Making Machine
Iron Rolling Machine
Planing Machile.
A P P D
umping-Engine, from the United
States Dry Dock at Brooklyn.
Railway Bars.
Regulating and Numberina Ma-
chine.
Sewing Machine.

Woods, Variety of.
Wood, Steam Carbonizing Ma chine.
Wrench, Cylinder.
Wrench, Screw.
Zinc.

Smut Machine.
Spark Arrester
Stove, Cooking.
Sugar, Manufacture of
Tube-Making Machine

RYY ENGINE.

*

囬

[^0]: $Q=$ the quantity discharged in cuhic：liect per secomel．
 ${ }^{\prime}=$ a constant condlicient．
 $l=$ the total lemgth of the weir in finet．
 $b=n$ constant con licient．
 $n=$ the mumber of emi contrnctions．In at single werir having comphete contractin，n nlway
 it，$n=0$ ．
 $A=$ the depth of water flowing over the weir，taken fine conompheremm from the we ir，to be ma－ atferetel by thos curvature in the surlice cmased by the diveharge．
 $a=a$ constant power．

[^1]: - Vhare alriclly, 15% g

 from the up,

[^2]: * We ought further to remark, that there is a difference between the motion of the slide in the up and down stroke. When the centre of the eccentric has reached that part of its orbit furthest removed trom the slide, the motion of the 4 lide is slowest ; and when at that part nearest to the slide, the slide's motion, thoush slow, is comparatively quich. But at such times the piston is moving very quick, and, consequently, in the former case the steam-line is further extended than in the latter. This will therefore help to account for our getting a better diagram from the top of the eylinder of a beam-engine, and from the bottom of a direct-engine; and the difference becomes more marked in engines having a short connecting-rod. This is fortunate, for it assists in balancing the engine.
 + In most direct-engines a pin can be fixed on the main centre of the airpump beam. In Seaward's direct-engine the khing may be attached to the centre-finc of the radins-bar.
 \ddagger This will be the case in one engine, but not necessarily so in another encine; and moreover, if the string be led in nother direction the reveree will happen; but this the practical inan can corret for himself aecording to circumstuncs, find substitute ascending for descending, and ricc rersio.
 \$ These diagrams should be reversed; that is to say, the right side should be in place of the lef.

[^3]: - A doubt has been expressed by some as to whether this is really the force exerted by the shaft on the vessel, on account of the thaft acting on a lever that yields to its force; but independently of the fact that none of the thrust can De lost, it is clear that the thrust at C is equal to the thrust at D and that at E , and these are the two forces acting on the ressel.

[^4]:

[^5]: ．

[^6]: Vot. H. 117

[^7]:

 It having lee buit up by bualnesg consoguent upon his dnvention.

[^8]: - This is exclusive of friction, which in this machine is very sreat.

[^9]: * The allows are in general arranged under those metals which constitute respectively their largest proportional parta but in some few instances under those from which they derive their peculiar characters.

[^10]: (ireme groll:
 5 dwt. 11 grse gald.
 2! krs. shser.
 5 Nwt. : 1 hr
 Gray gold: (Ilatimm is aton callad artaly gohl by jewellers:)

 3 小wt. 15 gra. kuhd.
 1 dwt. ${ }^{9}$ gre uls r.
 ! dwt. (0) grw.

[^11]:
 ditemal of gold are amadly mhled to erory utace.

[^12]: * By others, 4 grains of brass are added to the solder; it then fuses beautifully and is of good color. Zine is sometimes added to other gold solders to increase their fusibility; the zinc (or brass, when used) should be added at the last moment, to lessen the rolatilization of the zinc.

[^13]:
 $+11.1 .12 .30$.

[^14]: will wher rotith
 tratiare。

[^15]: * For eonvenience, we assumb that the piston deseends in all these machines, as it matters butlittle in cincidating the prineiple whether the piston desends or the eylinder ascends, but the former method is more easily comprehended.

[^16]: * It.iltapifel.

 Vor., 11-: :

[^17]: * These are subjeets of but little interest to the general reader, and the student in the science of engineering shouid look disewhere than in a dictionary, however comprehensive, for the principles of his profession.

 In the first volume of this Dictionary reference is frequently made to "railway engineering;" but the subject is, we conceive, foreign to the character of this work, which is a dictionary of "machines," showing the priaciples of their coustruclion and working, or the "enginecring of machinery".simply.-[En, ©d. VoL.]

[^18]:

[^19]:

[^20]:

[^21]: tote nute explos.

[^22]:

[^23]: * When the point t^{\prime} falls below I, that is, when s^{\prime} is greater than s, the formula for z becomes

 $$
 \tan z=\frac{2 s \cdot A B}{A B^{2}+9 s \cot \left(180^{\circ}-A B I\right)}
 $$

[^24]: * In the Cissampelos Pareira, belonging to the natural order Menispermacca, his structure is singularte villent: Hhe medullary rays are very thick, and almust detached from the intermediate wedte-form ptates, which are nearly suld, except the few pores by which they are pierced, much like the substance of the common cane.
 "t The reader is referred to the following articles in the three editions of Dr, Lindley's Introdnction to Botany, mamely,
 "Exogrenous siructure" and "Of the stem ond origin of wood;" and also, "Exogrcus" and "Endogens," by the sume whori, in the Pemy Cyclopadia; all are replete with physiological interest.

[^25]: beo furn tion of the ababial ring.

[^26]:

[^27]: * A parint-knife working in a guide, and with an edge twelve or fourteen inches long, is a most effective instrument in the hands of the toy-makers. The pieces of birch, alder, \&e, are boiled in a candron for about an hour to soften them. and whilt hot they may be worked with great expedition and periection. The workmen pare off slices, the plankway of the grain, as large as four by six inches, almost as quickly as they can be counted: they are wedged tight in rows, tike books, to canse them to dry that and straight, and they seldom require any subeeguent smoothing. In making the little whech for carts, \&e., say of ono or two ines diameter, and one-quarter or three-eighths of an inch thick, they cut them the cross-bcay of the grain, out of cylinders previously turned and bored; the fiexibility of the hot moith wood being such that it yields to the edge of the knife, without breakitg transversely as might be expected.
 + tcientifieally considered, the drymg is only said to be complete when the wood ceases to lose weight from evaporation: this docs not occur ather twice or thrice the period usually allowed tor the process of seisoning.
 In many modern buildings smalt openings are left, through the watis to the external air, to allow a partial circulation anidst the beams and joists, as a preservative from decay, and tor the entire completion of the seasoning.
 \ddagger Irice's l'itent.
 8 The most dense wood is the fron Bark wood from New South Wales: in appearance it resembles a close hard mahogany, but more brown than red; its specifie gravity is $1 \cdot 4: 20$, its strength (compared with English onk, taken as usual at $1 \cdot 000$ is $1 \cdot 557$. On the other hamd, the lightest of the truc woods is probably the Cortica, or the Anona palustris, from Brazil, in Mr. Mies's collection; the sjecific eravity ot this is only 0*oti, whereas that of cork is $0 \cdots 40$; it has only onte seventh the weight of lron Bark wood. The Cortiga resembles ash in color and gruin, except that it is pale;, finer, anc anuth softer ; it is urerl by the matives lor wooden shou's. \&e:

[^28]: * See the description of Mr. William Jookey's apparatus for bending ships' timbers, rewarded by the Society of . Irts, and described in their Trans., vol. 3:, p. 91.
 Preference is now given to the "Statm kiln" over the "Whater Kiln," and the time allowed is one hour for every inch of the thickness of the timber; it loses much extractive matier in the process, which is never attempted a second time, as: the wood then becomes brittle.
 Colonel G. A. Lloyd devised an ingenious and economical mode of bending the timbers to constitute the ribs of a teakbridge which he built in the Namritus. Wvery rib was abont 180 ft . long, and of 8 ft. rise, and consisted of five thicknemec of wood of various tenghs and widths. The wood had been cut down about a month; it was well stemmed and brought into contact with a strong mould, by means of an jron chain attached to a hook at the one extremity of the moukd and passed under a roller tixed at the other; the chain was drawn tight by a powerful capstan. Whilst under restraint the neighboring picees were pinned together by treemais, after which a further portion of the rib was proceeded with: the seasoning of the timber was also effected by the process.
 + Thas in Taylor's Patent Machinery for making casks, the blocks intended for the staves are cut out of white Canada oak to the size of thirty inches by live, and smatler. They are well steamed, and then sliced into picees one-half or tive eighths inch thick, at the rate of 20 in each minute, by al process tar more rapid and economical than sawing; the instriment being a revolving iron jute of 12 or 14 feet diameter, witl two radial knives, arransed suparhat like the irons of m ordinary plane or spokeshave.

[^29]: the plant to maintain life, by the reparation of any injury it may have received.

[^30]: * Epecimens of woods for cabinets should be left in their matural state, or at most they should be polished by frietion arly; or, if varnished, then upon the one side alone. Their color are best preserved when they are excluded from the light, either in drawers or in glass eases cowered with some thick blind.
 \dagger Second edition, vol. ii., pp. 141-431.
 \ddagger Transactions of the Eswiety of Arts, xlii.,]. 52.

[^31]:

[^32]: * If the clamps were straight, their pressure wouk be only exerted at the sides of the table; but being curved to the extent of one inch in three or four teet, their pressure is first exerted in the centre, and gradually extends over their entire length, when they are so far straned as to make the rounded edge bear that upon the table and caul respectively.
 + In some of the large manufactories fior cabinct-wonk, the premises are heated by steam-pipes, in which case they have frequently a close stove in every workshop, heated many degrees beyond the generat temperature. for giving the tinal keasoning to the wood, for heating the eanls, and for waming the glue, which is then done by opening a smalt steam-pips into the onter vessel of the ghasol. The arrangement is extremsly clean, sato from lite, and the degree of the hesit 1 . Fery much under control.

[^33]: Memoir on the preservation of aconls-- A paper hearing this titlo way lately rend hefore the l'rumeth

 gemeral arplicatins.

[^34]:

