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ABSTRACT

The estimation of the position and velocity of a target

moving in a two-dimensional frame is studied in this paper.

The estimator is a Kalman filter which processes noisy bear-

ings of the target gathered by the tracker.

The case of maneuvering targets is examined and a solu-

tion using a variable value of the system's noise covariance

matrix is studied.
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I. INTRODUCTION

The problem discussed in this paper is that of esti-

mating the position and velocity in two dimensions of a

target by means of processing passively obtained bearing

measurements

.

A single moving observer (tracker) monitors noisy sonar

bearings from a radiating acoustic source (target). The

geometric configuration is depicted in Figure 1.1.

The problem contains nonlinearities so the conventional

linear analysis is not possible. Also as it will be shown in

chapter IV the dynamic process remains unobservable prior to

tracker maneuver. That requirement of observer maneuvering

distinguishes this problem from the more usual target motion

analysis (TMA) problem.

In chapter II the basic concept of the Kalman filter is

described. Chapter III describes the non- linear case

(Extended Kalman filter) in which category the bearings only

tracking problem belongs.

In chapters IV and V the problem of bearings only

tracking with nonmaneuvering and maneuvering targets is

discussed. Some possible solutions from the literature are

referenced, and the case of solving the problem through a

specific approach, i.e by using a variable value of the

system's noise covariance matrix "Q" is tested.

Chapter VI contains the results of the computer simula-

tions on the subject and chapter VII contains conclusions

and possible topics for further investigation.
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Figure 1.1 Geometrical Configuration for che B.O.T Problem
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II. KALMAN FILTERING BASICS

HISTORY

In 1960, R.E. Kalman provided a new way of formulating

the least squares filtering problem using state-space

methods [Ref. 1] . Until that time the Wiener solution of

the optimal filter problem was applied , which was using the

concept of the "weighting function". In effect the weighting

function tells how the past values of the input should be

weighted in order to determine the present value of the

output, that is the optimal estimate. But the Wiener solu-

tion did not lend itself very well to the corresponding

discrete-data problem nor was it easily extended to more

complicated problems [Ref. 2].

The two main features of the Kalman formulation and

solution of the problem are:

Vector modeling of the random processes under

consideration.

Recursive processing of the noisy measurements

(input data). The key element in any recursive procedure is

the use of the results of the previous step to aid in

obtaining the desired result for the current step. This is

the main feature of the Kalman filtering and the one that

clearly distinguishes it from the weighting function

approach, which requires arithmetic operations on all the

past data.

The Kalman filtering technique has become very popular

in target tracking applications for the previous reasons

plus the following:

11



At a given time t, the filter generates an unbi-

ased estimate of the state vector, which means that the

expected value of the estimate is the value of the state

vector at time t.

The estimate is a minimum variance estimate

meaning that it has the property that its error covariance

is less than or equal to that of any other linear unbiased

estimate

.

The filter is linear and simplifies the calcula-

tions [Ref. 3].

B. THE DISCRETE KALMAN FILTER

Assume that the random process to be estimated can be

modeled in the form:

x(k+l)= 0(k)x(k) +Tw(k) +Au(k) (2.1)

and the observation or measurement of the process is assumed

to occur at discrete points in time in accordance with the

relationship:

z(k) = H(k)x(k) + n(k) (2.2)

where

:

x(k) = (nxl) ; is the process state at time t(k)

O(k) = (nxn) ; is the matrix relating x(k) to

x(k+l) in the absence of forcing function.

w(k) ; is the random forcing input at time t(k)

considered to be an uncorrelated sequence with zero mean and

known variance.

12



{"(k) = (nxp) ; is the matrix relating the random

forcing inputs to the state at time t(k). 1

u(k) ; is the deterministic forcing input at time

t(k)

/^(k) = (nxp) ; is the matrix relating the determin-

istic inputs to the state at time t(t).

z(k) = (mxl) ; is the measurement vector at time

t(k)

H(k) = (mxn) ; is the matrix which gives the noise-

less connection between the state vector and the measurement

equation at time t(k).

n(k) = (mxl) ; is the measurement noise error which

is assumed to be a white sequence with known covariance

structure and uncorrelated with the w(k) sequence.

The corresponding covariance matrices are given by . 2

Qoo
E[w w,' ] =

E[n n'] =

fc= i

K*t

Rco *=t

I o **<-

(2.3)

(2.4)

E[w n,'] = for all k and i (2.5)

*p<n
2 (') denotes matrix transposition

13



It is assumed that we have available an initial estimate

of the process at time t(k), which is based on the knowledge

about the process prior to time t(k). This prior estimate

will be denoted as x(k/k-l) where the "hat" denotes esti-

mate, and the (k/k-1) subscript means that this is our esti-

mate prior to processing the measurement at time t(k).

With the assumption of the prior estimate x(k/k-l), we

now seek to use the measurement z(k) to improve the esti-

mate. To do that we choose a linear blending of the received

noisy measurement and the prior estimate in accordance with

the equation:

x(k/k) = x(k/k-l)+G(k)[z(k)-H(k)x(k/k-l)] (2.6)

where x(k/k) is the update estimate, x(k/k-l) is given by:

x(k/k-l) =(£(k)x(k-l/k-l) (2.7)

and the G(k) is the blending factor. G(k) is going to be

determined later. At this time the problem is to find a

particular value of G(k) that yields an update estimate that

is optimal in s ne sense. The minimum Mean - Square error

is the require performance criterion for that "optimiza-

tion". To do that we need to define the term "error covari-

ance matrix" P(k), associated with the update (a posteriori)

estimate, which is a matrix representing the covariance of

the difference between the true state vector x(k) and the

estimated x(k)

.

P(k) = E [(x(k)-x(k/k-l))(x(k)-x(k/k-l))'] (2.8)

The optimization can be done by various mathematical ways as

treated in [Ref. 4] [Ref. 2] and [Ref. 5]. The mathematical

derivation which is omitted here shows that if

14



G(k)=P(k/k-l)H' (k)[H(k)P(k/k-l)H* (k) +R(k)] (2.9)

then this is the G(k) that minimizes the mean square estima-

tion error, and it is called the "Kalman gain" [Ref. 2].

Next the covariance matrix associated with the optimal

estimate may be computed and is given by: 3

P(k/k) = [I - G(k)H(k)]P(k/k-l) (2.10)

Now the updated estimate x(k/k) can be easily projected

ahead via the transition matrix by the equation:

x(k+l/k) =<^)(k)x(k/k) (2.11)

ignoring the contribution of w(k) because it has zero mean

and also it is uncorrelated with the previous W's.

Also, the equation

P(k+l/k) =0(k)P(k/k)0'(k) + Q(k) (2.12)

closes the loop and now, having the needed quantities for

the next moment with the next measurement we can start again

as in the previous steps.

Equations (2.6), (2,9), (2,10), (2,11), and (2,12) thus

comprise the Kalman filter recursive equation set.

In Figure 2.1 the Kalman filter loop is indicated.

1 . A Simple Example

Assume that a stationary tracker has the ability to

obtain range measurements in both X and Y directions of a

target moving as in Figure 2.2.

3 (I) is the identity matrix.

15



Ealet JPL lac _asllma L£_ x.ls/k_-l 1 jqo. lt&_ arxar_ ravflCLlIoci

i <
1

*

Compute Kalman gatn; -i

G(k)-P(k/k-l)H , (k)LH(k)P(K/k-l)H , (k)*R(k)]
(

E at_ec jneasticenieni_ zlk 1'

<

Project ahead:
*(k*l/k)«0(k)x(k/k) and

P(k*l/k)-O(kJP(k/k)0'(k)»0
(k)

update estimate *tth
measurement z(k):

*(k/k)-x(k/k-l j*G(k)tz(k)-
H(k)x(k/k-l)3

i i

Compute error covartance for updated
estimate: P(k/kW I-G(k)H(k) ]P(k/k- 1

)

„

Figure 2.1 The Kalman Filter Loop.

Let the target be moving with a tangential velocity of
o

1,660 m/min so that it covers the arc of 90 in 10 minutes.

The tracker makes its measurements every 1 min. It is

desired to estimate the state vector of the target defined

as X,VX ,Y, and Vy , i.e., range and velocity in X and Y

directions. Given are: an initial estimate x(k/k-l) and its

error covariance matrix P(k/k-l). Let them be:

16
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x(k/k-l) =

10000

o

o

1600

(2.13)

and

P(k/k-l) =

1000 o

o 1000 o

o o 1 o

o o o IOOO

(2.14)

Then we can calculate the Kalman filter gain G(k) as in

equation (2.9) where:

H(k) = constant =

IOOO
o o i o

(2.15)

and R(k) has the value

R(k) = constant =

o i

(2.16)

Next, given the measurement, the updated estimate is calcu

lated using equation (2.6) where:

z(k) =

2«

(2.17)

We can see here that the updated estimate x(k/k) depends on

the previous x(k-l/k-l) propagated for the instant (k) i.e.,

18



x(k/k-l), and another portion equal to G(k) [z (k) -H(k)x(k)]

.

That second portion depends on the G(k) and on how much the

estimated and the received measurements differ.

The updated error covariance matrix P(k/k) is then

computed using equation (2.10). The updated error covariance

P(k/k) is going to be less than the previous P(k/k-l) since

the filter processed an observation and thus the uncertainty

about the estimate is less. The term [I-G(k)H(k)] is always

less than unity if G(k) is not zero. That means that if we

used the last observation (i.e., G(k) not zero) then the

term in the brackets is less than unity and P(k) becomes

less than P(k/k-l)

.

Now having x(k/k) and P(k/k) we must propagate them

for the next instant when the next measurement will be taken

in order to be able to compare it with the real one through

the new measurement. So we project ahead our estimate by

the equation (2.11) where:

<J(k) =

/ / o o

O I o o

o I i

o o o I

(2.18)

and the error covariance matrix by equation (2.12) with Q(k)

such that:

Q(k) = r(k)E[w(k)w'(k)]f'(k) (2.19)

where

19



T(k) = T (2.20)

and w(k) is the random forcing input at time t(k) which is

to be formulated as a white noise with known variance.

Finally Q(k) is given by:

Q(k) =

r **

o o
r
4

_ T

a.

, wCk) (2.21)

and it counts for the uncertainty introduced by the fact

that we do not know if the target during the next coming

time interval will maneuver or not. A big value of w(k)

means that the target is very likely during the propagation

interval to maneuver. In this case the Kalman gain will also

be large and the filter will weight the observation moire

than the propagated state. On the opposite case if w(k) is

zero the filter assumes that the target did not maneuver

during that interval so it weights more the last estimate

than the measurement. In the above case it is also assumed

that the target acceleration in X direction is uncorrelated

to the acceleration in Y direction for simplicity.

Having the propagated values of x(k+l/k) and

P(k+l/k) we can start over again from the initial step.

The above algorithm was simulated in the computer.

The interesting result obtained is that for the case that

the target maneuvers the choice of w(k) is very important.

If it is small or zero the filter does not include any extra

20



uncertainty due to possible target maneuver. So at any

moment it gives more weight to the last propagated estima-

tion and less to the received measurement. Thus the tracking

accuracy is not good compared with that in which it includes

uncertainty as can be seen in the results shown in Figures

2.3, 2.4, 2.5, 2.6, and 2.7.

21



1

i

o
o

~"6 i~--.
o "* *

fc

o - *w_^

<$L

o

o
o o

o

o x a
o s

o "
\—^ o v

W XU
, o *>

&. 1 \

< X. \

0& \ *

' o \ \

r* o v*e

\

o v

o \
v

V y

Y *

LEGEND V x

a EiEAL t*
o ESTIMATED

e a" PROJECTED \ \

o

.

i i

o
CM

}

© -

i) 2000 4000 6000 8000 10000 ,

X (RANGE)

Figure 2.3 Filter Behavior for w=0.0

22



oo

oo©

o
o-

*r--

o
o
o

*—». ccU
<J

<
'— o
b-i °l" o

o

e
o
o

o
o
©

LEGEND
o REAL
"o~~EsfIMATEDV PROJECTED

i

2000 4000 eooo

X (RANGE)
8000 10000

Figure 2.4 Filter Behavior for w=0.5.

23



©
o©

a
o
o i

o
o
o

W
O
z
<
*"" o
!>- °

-A.

©
Oo

LEGEND
_g REAL
"3~ESTIMAl
a ' PROJECTED

2000 4000 eooo

X (RANGE)
8000 10000

Figure 2.5 Filter Behavior for w=1.0

24



14000

oo
o -

o
o

o©
o

.— . cw

<
***

^ o
«

No *

to*
o
o© \ \

oo
©
N

LEGEND
c HEAL
o ESTIMATED
a PROJECTED

V

o-
1) 2000 4000 6000 8000 10000

1 •

X (RANGE)

Figure 2.6 Filter Behavior for w=3.0

25



1

i

1

1
""'

"

1 o
o-
•••

o
o
o -

CM

•

3 ^^r^

ooo

"

^-v CDW
z
<
w' o
•^ o

•P

K^

V \

Va

ooo

"

oo

,

o 1

M

bA
\ \

\ \

y \

\ \

\ »W
\ *

\ i

\\
\ 1

ll

I 1

1 1

T7
li

li

|i

|i

LEGEND
a REAL
o ESTIMATED
a PROJECTED

1

1
1 1

—
3 2000 4000 0000

X (RANGE)
eooo

ii

10000

'

i

Figure 2.7 Filter Behavior for w=10.0.

26



III. NONLINEAR ESTIMATION

A. INTRODUCTION

The majority of physical phenomena are nonlinear in

nature. So as a result , usually ,the state and/or measure-

ment equations are nonlinear. Since the basic Kalman filter

theory deals with linear cases, it is necessary to find a

"method" to use it in nonlinear estimation problems.

There are two ways of solving that problem: [Ref. 4].

1. By deriving an optimal filter for the nonlinear

problem or

2. By linearizing (approximating) the problem and

applying the linear filter theory.

The first method is hard to follow and will involve

complicated mathematical computations. On the other hand the

second method is easier and the more usual. For the

reasons above the second method will be followed in this and

the following chapters.

B. ANALYSIS

In the following analysis it is assumed that both the

state and the measurement equations are nonlinear although

this is not always the case.

Assume that the random process to be estimated can be

modeled by:

x(k+l) = a[x(k),u(k),k] +w(k) (3.1)

with the measurement equation:

z(k) = c[x(k)] + n(k) (3.2)

27



It is necessary to have available a nominal trajectory

x (k) , k=0,l,2,.... about which the linearization will be

performed. The vector function a[x(k) ,u (k) ,k] is expanded in

Taylor series about the nominal trajectory x (k) . Then the

linearized state equations can be written:

x(k+l) = a[x C0,) (k),u(k),k]+ <9 a

3*

[x(k)-x (k)]+w(k) (3.3)

[x (k),u(k),k]

If A(k) is defined to be the first partial derivative of the

nonlinear function a[x (k),u(k),k], with respect to the

state vector x(k) , i.e.,

A(k) =
da

3,
[x

f
°CK),u (<>,*]

Then, the ijth entry of matrix A is given by

(3.4)

(A) *
9«:

1-3

3,
IV'Vk^ocXk]

CO

(3.5)

Also , the vector function a[x (k),u(k),k] is a known

function of k. Thus the linearized state equations can be

written as

:

x(k+l)=A(k)x(k) + a[x fo) (k),u(k),k]

- A(k)x<°(k)+w(k)

(3.6)

The accuracy of this approximation depends on how close

the nominal trajectory to the actual one was selected.

Let us now consider the measurement equation. We have:

z(k) = c[x(k)] +n(k) (3.7)
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Again we can expand the nonlinear vector function c about

the nominal trajectory x (k) with the result:

» k)1+ 3 c

3,

Defining

H(k) =
3c

3,

we can write

[x(k)-x (0>(k)]+n(k)

x
(o)

(k)

(o)
CW)

(3.8)

(3.9)

(o)z(k)=H(k)x(k) + c[x (o)
(k)] -H(k)x Co) (k)+n(k) (3.10)

Again as in the linearized state equation, the two terms in

the middle of the equation (3.10) are known quantities and

they can be handled as if they were a time varying but known

measurement bias. For simplification if we will define"

(o)u'(k) = a[x ko; (k),u(k),k] - A(k) x lo;
(k)

<o)
(3.11)

and

z'(k) = z(k)-c [x (°>(k)] +H(k)x (0) (k) = z(k)-^(k) (3.12)

where

:

u (
'

) in this case means "prime"
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f(k) = cr
(o
>(k) - H(k)x (<r

>(k)] (3.13)

we can rewrite equations (3.6) and (3.7) as:

x(k+l) = A(k)x(k) + u(k) + w(k) (3.14)

and

z(k) = H(k)x(k) + f (k) + n(k) (3.15)

Then starting with these linearized equations, the appro-

priate Kalman filter equations are:

the gain equation:

-i

G(k) = P(k/k-l)H' (k)[H(k)P(k/k-l)H' (k)+R(k)] (3.16)

the covariance of estimation error equations:

P(k/K-1) = A(k-l)P(k-l/k-l)A' (k-l)+Q(k-l) (3.17)

P(k/k) = [I-G(k)H(k)] P(k/k-l) (3.18)

the filter update equation:

x(k/k) = x(k/k-l)+G(k)[z(k)-c(x(k/k-l))] (3.19)

and the prediction equation:

x(k+l/k) = a[x(k/k) ,u(k) ,k] (3.20)

Notice that in equations (3.19) and (3.20) the nonlinear

state and measurement relationships are used. An alternative

is to use the linearize relationships in which case we

have

:
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x(k/k) = x(k/k-l)+G(k)[z(k)-H(k)x(k/k-l)] (3.21)

and

x(k+l/k) = A(k)x(k/k) + u(k) (3.22)

One question to be answered now is how to determine the

"nominal" trajectory used before. One way is to use an

approximate trajectory that is known in advance. This

trajectory may be available from known data, or may have

been computed by solving the state equations:

x
(

°\k+l) = a[x
(o)

(k),u(k),k] (3.23)

with the initial condition x
(o)

(0) = E[x(0)]. Unfortunately,

if the uncertainty in x(0) is large the solution of equation

(3.23) may be "too far" from x(k), the linerization error

too big and the whole method inaccurate.

C. THE EXTENDED KALMAN FILTER

Another possibility is to use the estimates produced by

the filter as the nominal trajectory about which the linear-

ization is performed. The estimator equations are again

given by equations (3.21) and (3.22). The matrices A(k) and

H(k) must be used to generate G(k) so that it is available

to process z(k) when it is available. Thus the best informa-

tion we have when H(k) must be evaluated is x(k/k-l); when

A(k) is to be evaluated, however, x(k/k) is available.

Hence

:
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A(k) t-A (3.24)

[x(KU)
y
a(w\k]

and

H(k) =
3c

(3.25)

[x(kU-0]

The H(k) and A(k) matrices must be computed on-line

and not in advance since they depend on the last estimate.
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IV. BEARINGS ONLY TARGET MOTION ANALYSIS - NONMANEUVERING

TARGET

A. PROBLEM DEFINITION

The problem considered here is that of estimating the

position and velocity of a target, in two dimensions, by

processing passively obtained bearing measurements.

The main application area is the Antisubmarine Warfare

area where either a surface ship tries to locate a submarine

through its cavitation noise or sonar transmissions, or vice

versa

.

In the following discussion we will consider a moving

observer (own ship) that monitors noisy sonar bearings to an

acoustic source (target), and processes these measurements

to obtain estimates of target position and velocity. The

geometric configuration is shown in Figure 1.1.

B. FORMULATIONS OF THE PROBLEM

As it was mentioned earlier the problem contains nonli-

nearities, and the linear Kalman filter is not applicable.

Depending on the selection of the working coordinate system

the nonlinear term may be either the state equation or the

measurement equation. Even models with mixed elements from

different coordinate systems have been used. Following are

the most commonly used formulations of the problem:

1 . Modified Polar Coordinates

In the modified polar (MP) coordinates the state

vector is comprised of the following components:

. Bearing

. Bearing rate

. Range rate divided by range
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. The reciprocal of range.

In this case the measurement equation is linear and the

state equation nonlinear. The nonlinearities exhibited by

the state equations are considerably more complicated than

those exhibited by a formulation where the measurement equa-

tion is the nonlinear. Consequently the computational load

for this formulation is increased. Details about the modi-

fied polar coordinates formulation can be found in [Ref. 6].

2 . Mixed Coordinates

In this case as in the previous one the surement

equation is the linear one and the state eq_ ion non

linear. The state vector consists of:

. Bearing

. Range

. Velocity component in x-direction

. Velocity component in y-direction

Again in this formulation there is the same complexity in

linearizing the state equation as well as computational

load. Analysis of the mixed- coordinate formulation can be

found in [Ref. 7].

Pseudo- Linear Formulation

This formulation involves replacing of the measured

bearings with pseudo- linear measurement residuals, to

decouple the covariance computations from the estimated

solution. The attractive feature of this method is that it

permits a solution to the problem via linear estimation

techniques. This formulation is similar to the Cartesian

formulation which will be discussed in the next subsection.

How does it differ from the Cartesian formulation can be

found in appendix D. More details on this formulation can

be found in [Ref. 8].
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Cartesian Coordinates Formu lation

This is the traditional way of formulating the

problem. The state vector consists of:

1. Range in x-direction

2. Velocity component in x-direction

3. Range in y-direction

4. Velocity component in y-direction.

The state equation is linear and the measurement equation is

now the nonlinear part. However the exhibited nonlinearity

is easily circumvented without complicated or lengthy compu-

tations as it will be shown in the next section.

Finally the cartesian coordinate formulation will be

adapted in the following discusion mainly because of its

simplicity

.

C. DESCRIPTION OF THE FILTER IN CARTESIAN COORDINATES

1 . Derivation of the S tate Equations

If we will consider the geometric configuration of

Figure 1 and with the restriction of target and tracker

being in the same horizontal plane, the Cartesian formula-

tion state vector may contain relative ranges and relative

velocities in X and Y directions. The state vector that will

be followed in this analysis is:

x, (t)

x
a
(t)

x3 (t)

x<,(t)

x(t)

v, (t)

y(t)

Vy(t)

(4.1)

with:
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x(t) x t (t)-x (t)

v* (t) vxt (t)-vxo (t)

y(t) yt (t)-y (t)

Vy (t) Vyt (t)-Vyo (t)

(4.2)

where x
t

( t ) ,yt ( t ) , vxt (t),vvt (t) are the target absolute

components of position and velocity in X and Y directions,

and x (t),ye (t),vKO (t), and vyo (t) are the tracker absolute

components of position and velocity. The linear differen-

tial equations of motion of the model are given by:

•

x, (t)

xa (t)

x 5 (t)

x4 (t)

x t (t)

a,(t)

x„(t)

a
y
(t)

(4.3)

with

a, (t

(t>

a#t (t)-a -0 (t)

a yt ( t )- a
yo (t)

(4.4)

where a. x ( t ) and a
y

( t ) are the relative accelerations in both

directions, and a xt (t),a y4 (t),a KO (t) and a yo (t) are the

corresponding absolute accelerations of target and tracker

in both directions correspondingly.

The solutions of the differential equations above in

matrix notation give:

x(t) = A(t,tO)x(tO) + u(t 1) (4.5)
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with

(t.O"

1 (t-tO)

1

1 (t-tO)

1

(4.6)

and

U (t/t.-)

u, (t,tO)

u
3

(t,tO)

u 3
(t,tO)

u v (t,tO)

/(t->)a x (>)d>
to

,<

/(t->)a y (>)d>
to

7a
y
(>)d>

(4.7)

and (tO) denotes any arbitrary fixed value of time.

Although (4.5) is valid for unconstrained vehicle

motion, solution requirements necessitate that the bearings-

only target motion analysis be formulated under the restric-

tive assumption of constant target velocity. [Ref. 9]. In

this case a x<t (t) and ayt(t) become zero and u(t,tO) reduces

to a deterministic input vector which depends only upon the

tracker's acceleration (maneuvers). So

u(t,tO) = -u (t,tO) (4.8)

where

:
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Uo( t/t^ =

"o. (t,tO)

u oi (t,tO)

u 0i (t,tO)

".» (t,tO)

f
j](t->)a X0 C»d>

Ja*o (^)d^

i(

t

t->)a yo (^)d^

(4.9)

2 . Derivation of the Measuremen t Equation

The measurement process is described by a scalar

time varying equation of the form:

•P(t) = h[x(t)] + n(t) (4.10)

where

h[x(t)]= arctan x s (t)/x i (t) (4.11)

and -P ( t ) represents the measured target bearing corrupted

by additive measurement noise n(t). It is assumed that n(t)

is a white noise with zero mean and known variance

i.e.,

d 2
,

E[n(t)]= (4.12)

and

E[n(t)n(t+»] = -

<5 A= °

S *o

(4.13)

D THE DISCRETE TIME MODEL

• The previously defined model in discrete form is

described by:
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x(k+l) = A(k)x(k) - u(k) (4.14)

and

f (k) = h[x(k)] + n(k) (4.15)

where

:

x(k) is the (4x1) state vector consisted from rela-

tive range and velocity of the target in X and Y directions.

A(k) is the (4x4) state transition matrix which is

constant and given by:

A(»o =

1 T

1

1 T

1

(4.16)

u(k) is the (4x1) vector of deterministic inputs

due to tracker's movement and given by Equation (4.9).

$00
at time t (k)

.

is the scalar noisy bearing measurement taken

n(k) is the scalar additive measurement noise at

time t(k).

Equation (4.14) assumes that the target moves with zero

acceleration, (non maneuvering). Also it is assumed that the

additive measurement noise n(k) has zero mean and a known

variance d 2 (k). Finally an initial estimate of the state

vector and its error covariance matrix is presumed to be

given.
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The extended Kalman filter technique is applied to the

problem and yields:

x(0/0) is the initial estimate of the state vector

which is considered to be given.

P(0/0) is the initial estimate error covariance

matrix which is also considered to be given.

x(k/k-l) = A(k)x(k-l/k-l)-w(k) (4.17)

is the projection ahead of the estimated state vector.

P(k/k-l) = A(k)P(k-l/k-l)A' (k) + Q(k) (4.18)

is the projection of the error covariance matrix and Q(k) is

the maneuver excitation covariance matrix (assumed zero if

the target does not maneuver)

.

H(k) =

3,

x=x(k/k-l)

is a (1x4) matrix given by

(4.19)

H(k) = [x 3 /(x1
2 + x^),0,-x

I
/(x

t

2 + x.2 ),0]

x=x(k/k-l)

G(k)=P(k/k-l)H f (k)[H(k)P(k/k-l)H' (k)+o 2 (k)]
-i

(4.20)

(4.21)

is the gain equation

•x(k/k) = x(k/k-l)+G(k)[^(k)-hx(k/k-l)] (4.22)

is the update equation and
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P(k/k) = [I-G(k)H(k)]P(k/k-l) (4.23)

is the error covariance update equation.

The above algorithm was formulated in computer simula-

tion program as in Appendix B and tested for the situations

shown in Figure 4.1 and Figure 4.2.

In the first case (Figure 4.1), the target was moving

from east to west on a constant course and speed of 20

m/sec, while the tracker was maneuvering following a sinuso-

dial track with main course from east to west also, and a

velocity of 10 m/sec in x-direction. The target had a rela-

tive velocity of 10 m/sec with respect the tracker in the

X-axis and m/sec in the Y-axis.

In the second case (Figure 4.2), the target was moving

as the first case but the tracker was following a circular

path of radius 2000 m with a turning rate of 2° /sec.

The measurement error was taken as zero mean and 0.1

covariance and the measurement interval 1 sec. The behavior

of the filter is displayed in the following Figures and is

considered to be satisfactory.
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V. MANEUVERING TARGET

Up to this time we made the assumption that the target

does not maneuver. However in real world applications this

is not the usual case and hence the assumption is unreason-

able. Specifically, in the main application area of the

bearings-only tracking, i.e., in the A.S.W scene, it is

expected that the target will not keep constant velocity but

instead it will command some kind of zig-sag during the

normal open sea transit and strong maneuvering or evasion

after detection of a potential threat. It is evident thus

that there is a need to accommodate the maneuvering case.

A. POSSIBLE APPROACHES

There are various approaches relative to the problem in

general. Some found in the literature are following:

1 . Variable Dimension Filter

In this case, the filter operates in its normal mode

in the absence of any maneuvers. A detection scheme is used

to determine that a maneuver is indeed occuring. Once a

maneuver is detected, a different state model is used. The

extent of the maneuver as detected is then used to yield an

estimate for the extra state components. The tracking is

then continued with the augmented state model until it will

be reverted to the normal model by another decision. The two

models are a constant velocity and a constant acceleration

model for the maneuvering case. Details on the analysis of

that method can be found in [Ref. 10].
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2. Expanded Number of States

In this case the model includes the acceleration

component in it. This method has the disadvantage that if

the target does not have acceleration, using a third order

model increases the estimation errors for both position and

velocity [Ref. 10]. Also, the computational load increases

drastically by augmenting the model by one term.

3

.

Modeling Target Acceleration as Random Process of

Known Form

This method is based on the fact that the target

acceleration and thus the target maneuver, is correlated in

time; i.e., if the target is accelerating at time t, it is

likely to be accelerating at time t+&tau for sufficiently

small £. A typical representative model of the correla-

tion function r( ) associated with the target acceleration

is given by:

r(t) = E [a(t)a(t+£)] = cr
2 e ,a>0 (5.1)

where (o*
2

) is the variance of the target acceleration and

(a) is the reciprocal of the maneuver time constant. The

maneuver excitation covariance matrix Q(k) then depends on

the correlation function r('fc), which also depends on the type

of the target

.

The above formulation includes the acceleration term

in the state vector. So the performance of the filter is

degraded by the computational overhead. The quality of the

estimate is also degraded when the target is moving with

constant velocity.

Analysis of the above method can be found at

[Ref. 11].
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4. Use Variable Maneuver Excitation Error Covariance

Matrix

The filter is modeled as a second order and it does

not include acceleration term in it. The idea is [Ref. 12].

to use a set of different values for the forcing input

covariance Q(k) . The filter monitors the innovation error

in the equation:

x(k/k) = x(k/k-l) + G(k)[?(k) - h(x(k/k-l))] (5.2)

i.e., the term [$(k) -h(x(k/k- 1 ) ) ] in every iteration. If

that error becomes larger than a predetermined threshold,

that means that the received bearing measurement does not

agree with that the filter generated and was supposed to

receive. Correspondingly, the estimated vector does not

agree with the actual. So the filter assumes that the target

made a maneuver. Depending on the size of the innovation

error, a value for the excitation covariance matrix Q(k) is

applied to the error covariance propagation equation:

P(k/k-l) = A(k)P(k/k-l)A' (k) + Q(k) (5.3)

The effect of the above is to increase the uncertainty of

the filter which consequently causes an increase of the gain

G(k). The bigger the G(k) the more the filter "believes"

the measurements rather than the previous estimates.

So the filter is "partially" reinitialized. By

partially is meant that the new initial estimates of the

state vector and specifically the range terms are very close

to the real ones estimated just before the maneuver. Thus

the filter has good conditions to start over and estimate

the new state after the maneuver.
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B BEARINGS -ONLY TRACKING WITH MANEUVERING TARGET.

From the previously mentioned methods of dealing with

maneuvering targets, we are going to develop the last one

i.e., that of using a variable maneuver excitation error

covariance matrix Q(k)

.

This method uses a four-state model, so it is faster

than the others using a six-state models and is the simplest

of all. Actually only a few extra lines of program are

added to that of a nonmaneuvering target.

1. Determination of the Q(k) Matrix

If we will suppose that the target made a maneuver,

(acceleration (a)) during the state propagation time from

(k) to (k+1), in one direction say X, then the error intro-

duced to our propagated estimate in the range term will be

(l/2)aT 2 and the error introduced in the velocity term will

be aT . Combining that fact in both direction and with the

assumption that an acceleration in X is uncorrelated to an

acceleration in Y the resulting Q(k) is given by:

Q(k) = f(k)E[w(k)w'(k)]f '(k) (5.4)

where

% _
7_

f(k) = (5.5)

o

o
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2 . Simulation Results for Cases 3 and 4 with w= 1 , <5
Z =0 . 1

The above method was modeled and simulated in the

computer. Two geometric configurations of target and

tracker as shown in Figures (5.1) and (5.2) were tested.
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In the case 3 the target was following a steady course from

east to west and a constant speed of 20 m/sec. At the 700th

second it changed course to the right and speed components

to 12 m/sec in X and -10 m/sec in Y direction. After

another 700 seconds it changed course again that time from

west to east and resumed a speed of 20 m/sec. The tracker

was moving as in case 1 of the nonmaneuvering target. The

intervals displayed in the Figures (5.1) and (5.2) corre-

spond to time intervals of 100 seconds.

In the case 4 the target was following the same

track as in case 3 but that time the tracker was maneuvering

as in case 2.

In the following simulations the measurement error

was supposed to have zero mean and 0.1 variance. The meas-

urement interval was again taken as 1 sec which is also

considered as reasonable for a real application. The (W) was

taken equal to 1.0.

The simulation program (Appendix C) for the above

conditions gave the results shown in the following Figures

5.3 to 5.16. In both cases the filter detected the maneuver

and very rapidly after approximately 300 seconds estimated

the new target parameters. The fluctuations of the errors

due to the target maneuver are smaller than those during the

first initialization of the problem. This can be explained

by the fact that after the target maneuver detection the

filter had an "accurate" reinitialization state from the

previous tracking.
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3 Filter Behavior Under Different Values of w and d 2

In order to investigate the behavior of the filter

for more extreme conditions, simulations where conducted

with various values of measurement error variance (cf
2

) and

various values of (w) . The following combinations where

tested for the case 3 configuration and the range error was

obtained in each of the combinations.

w d_^

0.1 0.5

0.1 2.0

0.1 4.0

1.0 0.5

1.0 2.0

1.0 4.0

3.0 0.5

3.0 2.0

3.0 4.0

10.0 0.5

10.0 2.0

10.0 4.0

In the following Figures 5.17 to 5.28 the filter

behavior is displayed. It is characteristic that the filter

tracking accuracy and quality is related to both values of

(w) and (d 2
). For the specific configuration it came out

that if the (d 2
) was more than 0.5 then the filter was very

sensitive to the value of (w) . The best results were

obtained with the smallest tested value of w=0.1. This

should be expected because in the case that the measurement

noise is too big and we additionally introduce uncertainty
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due to the target maneuver, then the filter assumes a lot of

uncertainty and at any time behaves erratically following

the noisy received measurements. It seems that for each

kind of target and environmental condition (i.e. measurement

noise variance) there will be an optimal (w) to account for

the target maneuvers.
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VI. CONCLUSIONS

The proposed way of solving the problem of tracking a

maneuvering target using noisy bearings-only measurements

was tested and it exhibited satisfactory behavior. The main

characteristics of it are:

1. The filter responds satisfactorily in the case

that the target maneuvers. The filter appears to be very

sensitive to the value of o 2
. The results were satisfactory

up to the value of o 2 =0.5. After that the behavior of the

filter depends very much on the value of w. The smaller the

value of w the better the filter tracks.

2. The design is simple and almost no extra compu-

tational power is needed beyond that of a nonmaneuvering

target filter.

3. The estimation is accurate for a nonmaneuvering

target as well, and it does not pay the overhead of reduced

accuracy as the other methods do in the nonmaneuvering case.

4. Some other target- tracker configurations were

tested which are not referenced in the previous chapters. In

some of them the filter exhibited disability to track the

target. In those cases the characteristic event was that the

target was moving in such a way that even the tracker's

maneuvers did not cause significant changes in the measured

bearings. So the tracker maneuvers are very important in the

bearings-only tracking problem. They must be such that will

cause changing bearing rates. Of course the tracker's

maneuvers are restricted by various factors as speed capa-

bility, tactical situation, intentions (evade or attack),

etc

.
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Possible subjects for further investigation:

1. Analytically how does the filter behave in a

variety of tracker- target , w - d 2 configurations? For

example, for a given value of (tf
2
), what is the optimal (w)?

2. In the simulations the tracker was supposed to

move with a continuously changing course which is not the

real case. Also the tracker was supposed to assume huge

amounts of acceleration during its maneuvers, i.e. it was

supposed to change course and speed in one second which also

is not realistic. How does this assumption differ from the

real case?

3. Investigate the tracker motion under realistic

constraints with the requirement of obtaining tactical

advantage and simultaneously providing needed bearing rate

to accurately solve the tracking problem.

4. Investigate the effect of assuming realistic

constraints on target motion.

In this Thesis we dealt with the problem of maneuvering

target passive tracking using a simple method. The first

results are satisfactory, however the method needs further

detailed investigation for even better performance.
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APPENDIX A

SIMPLE EXAMPLE SIMULATION PROGRAM

REAL*4 P(4,4),H(2,4),HT(4,2),F(4,4),FT(4,4)
J

*S7(4,4),

*X(4,1),T,TT,Z(2,1),XPR(4,1),PPR(4,4),Q(4,4),DET,

*G(4,2),

*hX(2,l),ZHX(2,l),Sl(4,2),S2(2,2),S6(2,2),GH(4,4),

*FX(4,1) ,R1,R2,XI(4,1),R(2,2) ,W,FPUP(4,4) ,FPUPFT(4,4)

,

*A1,A2,A3,R3

INTEGER N,M,KK,I,J,K,L,NR,S

N = 4

W=0.5

M=l

S = 2

NR=15

DO 1 1=1,

N

DO 1 J=1,N

F(I,J)=0.

F(l,l)=l.

F(l,2)=l.

F(2,2)=l.

F(3,3)=l.

F(3,4)=l.

F(4,4)=l.

DO 2 1=1,

N

DO 2 J=1,N

FT(I,J)=F(J,I)

DO 3 I=1,N

DO 3 J=1,N

S7(I,J)=0.

DO 4 1=1,

N
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DO 4 J=1,N

4 S7(I,I)=1.

X(l,l)=10000.

X(2,l)=0.

X(3,l)=0.

X(4,l)=1600.

R(l,l)=l.

R(l,2)=0.

R(2,l)=0.

R(2,2)=l.

DO 5 1=1,

N

DO 5 J=1,N

5 P(I,J)=0.

P(l,l)=1000.

P(2,2)=1000.

P(3,3)=1000.

p(4,4)=1000.

DO 6 1=1,

S

DO 6 J=1,N

6 H(I,J)=0.

H(l,l)=l-

H(2,3)=l.

DO 7 1=1,

S

DO 7 J=1,N

7 HT(J,I)=H(I,J)

DO 71 1=1,

N

DO 71 J=1,N

71 Q(I,J)=0.

Q(1,1)=.25*W

Q(3,3)=.25*W

Q(1,2)=.5*W

Q(3,4)=.5*W

Q(2,1)=.5*W

Q(4,3)=.5*W

Q(2,2)=W
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Q(4,4)=W

DO 999 KK=1,NR

T = FLOAT (KK)

L=KK-1

TT=FLOAT(L)

Z ( 1 , 1 ) = 10000 . -COS ( . 157*TT

)

Z (2,1)= 10000. *SIN( . 157*TT)

CALL MM(P,HT,S1,N,N,S)

CALL MM(H,S1,S2,S,N,S)

DO 8 1=1,

S

DO 8 J=1,S

8 S2(I,J)=S2(I,J)+R(I,J)

DET=S2(1,1)*S2(2,2)-S2(1,2)*S2(2,1)

S6(1,1)=S2(2,2)/DET

S6(1,2)=-S2(1,2)/DET

S6(2,1)=-S2(2,1)/DET

S6(2,2)=S2(1,1)/DET

CALL MM(S1,S6 ,G,N,S,S)

CALL MM(H,X,HX,S,N,M)

DO 9 1=1,

S

DO 9 J=1,M

9 ZHX(I, J)=Z(I, J)-HX(I, J)

CALL MM(G,ZHX,XI,N,S,M)

DO 10 1=1,

N

DO 10 J=1,M

10 X(I,J)=X(I,J)+XI(I,J)

CALL MM(G,H,GH,N,S,N)

DO 11 1=1,

N

DO 11 J=1,N

11 IGH(I,J)=S7(I,J)-GH(I,J)

CALL MM(IGH,P,PUP,N,N,N)

CALL MM(F,X,XPR,N,N,M)

CALL MM(F,PUP,FPUP,N,N,N)

CALL MM(FPUP,FT,FPUPFT N,N,N)

DO 13 1=1,

N
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DO 13 J=1,N

13 PPR(I,J)=FPUPFT(I,J)+Q(I,J)

WRITE (6,106)Z(1,1),Z(2,1),X(1,1),X(3,1), XPR (1,1),

*XPR(3,1)

X(1,1)=XPR(1,1)

X(2,1)=XPR(2,1)

X(3,1)=XPR(3,1)

X(4,1)=XPR(4,1)

DO 14 1=1,

N

DO 14 J=1,N

14 P(I,J)=PPR(I,J)

106 FORMAT(6(F8.1))

999 CONTINUE

STOP

END

SUBROUTINE MM(A,B , C ,N1 , N2 ,N3

)

REAL-4 A(N1,N2) , B (N2 ,N3 ) , C (Nl ,N3

)

DO 100 1=1, Nl

DO 100 K=1,N3

C(I,K)=0.

DO 100 J=1,N2

100 C(I,K)=C(I,K)+A(I,J)*B(J,K)

RETURN

END
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APPENDIX B

B.O.T NONMANEUVERING TARGET SIMULATION PROGRAM,

REAL*8 P(4,4),H(1,4),HT(4,1),Q(4,4),AX,

*XA(1,1),YA(1,1),

*RI(1,1) ,VV(4000,4) ,RR(4000) ,S7(4,4)

,

*GRT(4,4) ,VXA(1,1) ,VYA(1,1)

*,V( 1,4000), Z( 1, 1),Y(1,1),S1(4,1),

*S2(1,1) ,XI(4, 1) ,TT,X1,X3,E1,UU,

*HH(1,1),HI(4,1),X(4,1),G(4,1),

*S6(1,1),GY(4,1),HX(1,1),TY,W,

*GHX(4,1),F(4,4),FT(4,4),XPR(4,1),

*PPR(4,4),FP(4,4),GT(1,4),R(1,1),

*GH(4,4) ,IGH(4,4) ,IGHT(4,4) , PUP (4, 4)

,

- IGHP (4,4), IGHPT ( 4 , 4 ) , GR ( 4 , 1

)

INTEGER N,M,NN,NR,L,KK,I,J,K,NS

N=4

M=l

NN=1

W=3.D0

NR=2000

NS=4000

SB=. 1D0/57.295779D0

SX=50. DO

SY=50. DO

SVX=1. DO

SVY=1. DO

DS=211133.D0

DS1=333333.D0

HHH=O.DO

DO 1 J=1,N
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DO 1 1=1,

N

Q(I,J)=0.D0

1 F(I,J)=0.D0

F(1,1)=1.D0

F(1,2)=1.D0

F(2,2)=1.D0

F(3,3)=l.DO

F(3,4)=1.D0

F(4,4)=1.D0

DO 2 I=1,N

DO 2 J=1,N

2 FT(I,J)=F(J,I)

C

C GENERATION AND STORAGE OFF I. C. NOISE

DO 10 1=1,

N

CALL GGNML (DS,NS,RR)

DO 10 J=1,NN

10 VV(J,I)=RR(J)

C

C MAKE MATRIX S7= IDENTITY.

DO 11 1=1,

N

DO 11 J=1,N

11 S7(I,J)=0.D0

DO 12 1=1,

N

12 S7(I,I)=1.D0

C

C START THE FIRST RUN, INITIAL STATE VALUE

DO 99 JJ=1,NN

X(l,l)=-4000. DO

X(2,1)=+12.D0

X(3,1)=5000.D0

X(4,1)=2.D0

C

C DEFINE R AND RI MATRICES.

R(1,1)=SB**2
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RI(1,1)=1.D0/R(1,1)

C INITIALIZE P MATRIX

DO 13 1=1,

N

DO 13 J=1,N

13 P(I,J)=0.D0

• P(1,1)=SX**2

P(2,2)=SVX**2

P(3,3)=SY**2

P(4,4)=SVY**2

C GENERATION OFF MEASUREMENT NOISE - STORAGE.

DO 14 1=1,

M

CALL GGNML(DS1,NS,RR)

DO 14 J=1,NR

14 V(I,J)=RR(J)

C

C TIME EVOLUTION

C

DO 9 99 KK=1,NR

T=DFLOAT(KK)

L=KK-1

TT=DFLOAT(L)

C GENERATION OFF MEASUREMENT DATA

Xl= - 5000 . D0+ 10 . DO*TT

X3 = 8000. D0 + 2000. DO*DCOS( 0.0 35 D0*TT)

UU=X1/X3

Z ( 1 , 1 ) =DATAN2 (XI , X3

)

C ADD NOISE

Y(1,1)=Z(1,1)+SB*V(1,KK)

C PROJECTION OF X: XPR = X(K+1/K) = F * X(K/K)+ D*U

CALL MM(F,X,XPR,N,N,M)

C

AX=0.D0

VY = - 70 . DO-DSIN ( . 035D0* (TT + . DO )

)

AY=-2.45 D0*DCOS(0.O35D0*TT)
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D(1,1)=0.D0

D(2,1)=0.D0

D(3,l)=AY/2.0 DO

D(4,1)=AY

C

DO 77 1=1,

N

DO 77 J=1,M

77 XPR(I,J)=XPR(I,J)+D(I,J)

C

C PROJECTION OF P : PPR = P(K+1/K) = F * P(K/K) * FT + Q

CALL MM(F,P,FP,N,N,N)

CALL MM(FP,FT,PPR,N,N,N)

DO 78 1=1,

N

DO 78 J=1,N

78 PPR(I,J)=PPR(I,J)+Q(I,J)

X(1,1)=XPR(1,1)

X(2,1)=XPR(2,1)

X(3,1)=XPR(3,1)

X(4,1)=XPR(4,1)

C

DO 6 8 1=1,

N

DO 68 J=1,N

68 P(I,J)=PPR(I,J)

C H- MATRIX

U=X(1,1)**2+X(3,1)**2

H(1,1)=X(3,1)/U

H(1,2)=0.D0

H(l,3)=-X(l,l)/U

H(1,4)=0.D0

C H- TRANSPOSE MATRIX

HT(1,1)=H(1,1)

HT(2,1)=H(1,2)

HT(3,1)=H(1,3)

HT(4,1)=H(1,4)

C MEASUREMENT UPDATING
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C COMPUTATION OF GAIN MATRIX G=P*HT/ (H*P*HT+R)

CALL MM(P,HT,S1,N,N,M)

CALL MM(H,S1,S2,M,N,M)

DO 23 1=1,

M

DO 23 J=1,M

23 S2(I,J)=S2(I,J)+R(I,J)

S6(1,1)=1.D0/S2(1,1)

CALL MM(S1,S6,G,N,M,M)

C

GT(1,1)=G(1,1)

GT(1,2)=G(2,1)

GT(1,3)=G(3,1)

GT(1,4)=G(4,1)

C ERROR COVARIANCE MATRIX UPDATE:

C P(K+1/K+1) = {I-G"H}"P(K+1/K)

CALL MM(G,H,GH,N,M,N)

DO 73 1=1,

N

DO 73 J=1,N

73 IGH(I,J)=S7(I,J)-GH(I,J)

CALL MM(IGH,P,IGHP,N,N,N)

DO 75 1=1,

N

DO 75 J=1,N

7 5 PUP(I,J)=IGHP(I,J)

DO 76 1=1,

N

DO 76 J=1,N

76 P(I,J)=PUP(I,J)

C STATE UPDATE AT MEASUREMENT

C X(+)=X(-)+6*(Y-H(X(-))) !! BUT FOR E.K.F.

CALL MM(H,X,HX,M,N,M)

HH(1,1)=Y(1,1)-DATAN2(X(1,1),X(3,1))

CALL MM(G,HH,XI,N,M,M)

DO 80 1=1,

N

DO 80 J=1,M

80 X(I,J)=X(I,J)+XI(I,J)

E1=DSQRT((X1-X(1,1))**2+(X3-X(3,1))-— 2)
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E2=(X1-X(1,1))

E3=(X3-X(3,1))

TY=X(4,1)-VY-AY

WRITE (6,107)T,E2,E3,E1,X(2,1),TY

107 FORMAT(6(3X(F14.4)))

999 CONTINUE

99 CONTINUE

STOP

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE MM(A,B , C ,N1 ,N2 ,N3

)

REAL-8 A(N1,N2) ,B(N2,N3) ,C(N1,N3)

DO 100 1=1, Nl

DO 100 K=1,N3

C(I,K)=O.DO

DO 100 J=1,N2

100 C(I,K)=C(I,K)+A(I, J)-B(J,K)

RETURN
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APPENDIX C

B.O.T MANEUVERING TARGET SIMULATION PROGRAM.

C

REAL*8 P(4,4) ,H(1,4) ,HT(4,1) ,Q(4,4) ,AX,AY,

*D(4,1),XA(1,1),YA(1,1),RI(1,1),VV(4000,4),

*RR(4000),S7(4,4) ,GRT(4,4) ,VXA(1,1) ,VYA(1,1)

,

*V(l f 4000),Z(l l l),T(l > l),Sl(4,l),S2(l,l),

»XI (4,1) ,TT,X1,X3,E1,UU,HH(1,1) , HI (4,1) ,X(4,1)

,

*G(4,1) ,S6(1,1) ,GY(4,1) ,HX(1,1) ,TY,HHH,W,

*GHX(4,1),F(4,4),FT(4,4),XPR(4,1),PPR(4,4),

*FP(4,4),GT(1,4),R(1,1),GH(4,4),IGH(4,4),

*IGHT(4,4) , PUP (4, 4) ,IGHP(4,4) ,IGHPT(4,4) ,GR(4,1)

INTEGER N , M , NN , NR , L , KK , I , J , K , NS , HHHH , HHHHH

C

N=4

M=l

NN=1

cccccccccccccccccc

W=1.D0

CCCCCCCCCCCCCCCCCC

NR=2000

NS=4000

CCCCCCCCCCCCCCCCCC

SB=.1D0/57.295779D0

CCCCCCCCCCCCCCCCCC

SX=50. DO

SY=50. DO

SVX=1. DO

SVY=1. DO

DS=211133.DO

DS1=333333.D0

HHH=O.DO
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DO 1 J=1,N

DO 1 1=1,

N

Q(I,J)=O.DO

1 F(I,J)=0.D0

F(1,1)=1.D0

F(1,2)=1.D0

F(2,2)=1.D0

F(3,3)=1.D0

F(3,4)=1.D0

F(4,4)=1.D0

DO 2 1=1,

N

DO 2 J=1,N

2 FT(I,J)=F(J,I)

C

C GENERATION AND STORAGE OFF I. C. NOISE

DO 10 1=1,

N

CALL GGNML (DS,NS,RR)

DO 10 J=1,NN

10 VV(J,I)=RR(J)

C MAKE MATRIX S7= IDENTITY.

DO 11 I=1,N

DO 11 J=1,N

11 S7(I,J)=0.D0

DO 12 1=1,

N

12 S7(I,I)=1.D0

C START THE FIRST RUN, INITIAL STATE VALUE

DO 9 9 JJ=1,NN

X(l,l)=-4000. DO

X(2,1)=+12.D0

X(3,1)=5000.D0

X(4,1)=2.D0

C DEFINE R AND RI MATRICES.

R(1,1)=SB**2

RI(1,1)=1.D0/R(1,1)
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C INITIALIZE P MATRIX

DO 13 1=1,

N

DO 13 J=1,N

13 P(I,J)=0.D0

P(1,1)=SX**2

P(2,2)=SVX**2

P ( 3 , 3 ) = SY**2

P(4,4)=SVY**2

C GENERATION OFF MEASURMENT NOISE - STORAGE.

DO 14 1=1,M

CALL GGNML(DS1,NS,RR)

DO 14 J=1,NR

14 V(I,J)=RR(J)

C TIME EVOLUTION

DO 999 KK=1,NR

T=DFLOAT(KK)

L=KK-1

TT=DFLOAT(L)

C GENERATION OFF MEASURMENT DATA

Xl= - 5000 . D0+ 10 . DO-TT

X3 = 8000. D0 + 2000. D0*DCOS( 0.035 DO-TT ) +2000 . DO

IF (KK.LT. 700) GO TO 33

Xl=-100.D0+3.D0*TT

X3=8000 . DO + 2000 . DO-DCOS (0 . 035 D0*TT) - 10 . DO-TT+9000 . DO

IF (KK.LT. 1400. AND. KK.GE. 700) GO TO 33

Xl=46100.D0-30.D0*TT-6500.D0+6500.D0

X3 = 8000. D0+ 2000. DO*DCOS( 0.035 DO*TT) +7000 .DO- 12000 .DO

33 CONTINUE

Z(1,1)=DATAN2(X1,X3)

C ADD NOISE

Y(1,1)=Z(1,1)+SB*V(1,KK)

C PROJECTION OF X: XPR = X(K+1/K) = F * X(K/K)+ D-'U

CALL MM(F,X,XPR,N,N,M)

AX=0.D0

VY= - 70 . DO-DSIN (0 . 035D0- (TT + . DO )

)
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AY = - 2 . 45 DO-DCOS (0 . 035D0*TT)

D(1,1)=0.D0

D(2,1)=0.D0

D(3,l)=AY/2.0 DO

D(4,1)=AY

C

DO 77 1=1,

N

DO 77 J=1,M

77 XPR(I,J)=XPR(I,J)+D(I,J)

C PROJECTION OF P : PPR = P(K+1/K) = F * P(K/K) * FT + Q

CALL MM(F,P,FP,N,N,N)

CALL MM(FP,FT,PPR,N,N,N)

IF (KK.LT.600.) GO TO 86

IF (KK.GT.600.AND.HHHHH.LT. 1. ) GO TO 6 6

IF (KK.GT.600.AND.HHHHH.GT. 1. ) GO TO 6 7

66 DO 79 1=1,

N

DO 79 J=1,N

79 Q(I,J)=0.D0

GO TO 86

67 Q(l,l)=.25 D0*W

Q(l,2)=.5 D0*W

Q(2,l)=.5 D0*W

Q(2,2)=W

Q(3,3)=.25 D0*W

Q(3,4)=.5 DO-W

Q(4,3)=.5 DO-W

Q(4,4)=W

86 CONTINUE

DO 78 1=1,

N

DO 78 J=1,N

78 PPR(I,J)=PPR(I,J)+Q(I,J)

X(1,1)=XPR(1,1)

X(2,1)=XPR(2,1)

X(3,1)=XPR(3,1)

X(4,1)=XPR(4,1)
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DO 68 1=1,

N

DO 68 J=1,N

68 P(I,J)=PPR(I,J)

c H- MATRIX

U=X(1,1)**2+X(3,1)**2

H(1,1)=X(3,1)/U

H(1,2)=0.D0

H(l,3)=-X(l,l)/U

H(1,4)=0.D0

C H- TRANSPOSE MATRIX

HT(1,1)=H(1,1)

HT(2,1)=H(1,2)

HT(3,1)=H(1,3)

HT(4,1)=H(1,4)

C UPDATING AT MEASUREMENT

C COMPUTATION OF GAIN MATRIX G=P*HT/ (H*P*HT+R)

CALL MM(P,HT,S1,N,N,M)

CALL MM(H,S1,S2,M,N,M)

DO 23 1=1,

M

DO 23 J=1,M

23 S2(I,J)=S2(I,J)+R(I,J)

S6(1,1)=1.D0/S2(1,1)

CALL MM(S1,S6,G,N,M,M)

GT(1,1)=G(1,1)

GT(1,2)=G(2,1)

GT(1,3)=G(3,1)

GT(1,4)=G(4,1)

C ERROR COVARIANCE MATRIX UPDATE : P (K+ 1/K+ 1)

{I-G*H}*P(K+1/K) { }

CALL MM(G,H,GH,N,M,N)

DO 73 1=1,

N

DO 73 J=1,N

73 IGH(I, J)=S7(I, J)-GH(I, J)

CALL MM(IGH,P,IGHP,N,N,N)
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DO 75 1=1,

N

DO 75 J=1,N

75 PUP(I,J)=IGHP(I,J)

DO 76 1=1,

N

DO 76 J=1,N

76 P(I,J)=PUP(I,J)

C STATE UPDATE AT MEASURMENT

C X(+)=X(-)+G-(Y-H(X(-) )) !! BUT FOR E.K.F.

CALL MM(H,X,HX,M,N,M)

HH(1,1)=Y(1,1)-DATAN2(X(1,1),X(3,1))

HHH=HH(1, 1) -150. DO

HHHH=SNGL(HHH)

HHHHH = IAB S (HHHH

)

CALL MM(G,HH,XI,N,M,M)

DO 80 1=1,

N

DO 80 J=1,M

80 X(I,J)=X(I,J)+XI(I,J)

E1=DSQRT((X1-X(1,1))**2+(X3-X(3,1))**2)

E2=(X1-X(1,1))

E3=(X3-X(3,1))

TY=X(4,1)-VY

TX=X(2,1)+10.D0

C WRITE (6,107)T,E2,E3,E1,X(2,1),X(4,1)

C WRITE (6,107)T,X1,X3

WRITE (6,107)T,TX,TY,HH(1,1)

107 FORMAT(6(3X(F14.4)))

999 CONTINUE

99 CONTINUE

STOP

END

cccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE MM(A,B , C ,N1 ,N2 ,N3

)

REAL- 8 A(N1,N2) ,B(N2,N3) ,C(N1,N3)

DO 100 1=1, Nl

DO 100 K=1,N3
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C(I,K)=O.DO

DO 100 J=l, 2

100 C(I,K)=C(I,K)+A(I,J)*B(J,K)

RETURN

END

END
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APPENDIX D

PSEUDO-LINEAR FORMULATION

If we will start we the Cartesian formulation equations

$(k) = h[x(k)] n(k) (D.l)

h[x(k)] = arctan[xx (k)/x 3 (k)] (D.2)

E [n(k)J =

E [n(i)n(j)J = >

a Cw> t = 3

Q I* J

then after algebraical manipulations yield

(D.3)

(D.4)

= H(k)x(k) + R(k)n(k) (D.5)

where

H(k) = [cosj(k), -sin^(k), 0, 0]

R(k) s ^/x 1
2 (k) + x 2 (k)

(D.6)

(D.7)

The nonlinearity has been embeded in the measurement noise

If

€ (k) =R(k)n(k) =ef fective measurement noise at time kT
(D.8)
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it can been shown [Ref. 13]. that £(k) has the following

statistics

:

E [6(k)J = (D.9)

E
[ e

2 (k)] = R 2 (k)cr 2 (k) (D . 10 )

Finally the pseudo- linear model is analogous to that of

Cartesian formulation model with the following modifica-

tions :

1. replacing H(k) with that given by equation ( C.6)

2. replacing cr (k) with R(k/k- 1) <J(k)

3. replacing ^(k) -h [x(k/k- 1)] with -H(k)x(k/k- 1)
f

Detailed analysis on the subject can be found in

[Ref. 8].
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