Keeping Community in the Machine-Learning Loop

C. Estelle Smith
PhD Candidate in Human-Computer Interaction
GroupLens Research at the University of Minnesota

Wikimedia Research Showcase
May 20, 2020

@memyselfandHCI @FauxNeme
New Peer-Reviewed Paper (#CHI2020)

Keeping Community in the Loop: Understanding Wikipedia Stakeholder Values for Machine Learning-Based Systems

C. Estelle Smith1, Bowen Yu1, Anjali Srivastava1, Aaron Halfaker2, Loren Terveen1, Haiyi Zhu3

1University of Minnesota, 2Wikimedia Foundation, 3Carnegie Mellon University

smit3694@umn.edu, bowen-yu@umn.edu, anjali@umn.edu, ahalfaker@wikimedia.org, terveen@umn.edu, haiyiz@cs.cmu.edu

Full open access manuscript:
https://dl.acm.org/doi/abs/10.1145/3313831.3376783
“Human in the loop”

Algorithms to semi-automate the task

Repetitive Task (e.g. patrolling Wikipedia for vandalism)

Human judgment is “looped in” to complete the task

Robot-clip-art-book-covers-feJCV3-clipart.png by clipartkid (CC-BY-SA 4.0)
“Community in the loop”
How are we currently moderating content generated on Wikipedia?

- ML- and non-ML pipelines for reverting damaging edits (Halfaker & Geiger 2012)
- Newcomer motivation hurt by reversion (Halfaker et al. 2011, 2013)
- ML systems *always* carry risks of unintended consequences

How to build ML/AI systems for Wikipedia **without** harming the community?
ORES: “Objective Revision Evaluation Service”

(Halfaker & Geiger, 2019)

» Online since 2015
» Collection of Machine Learning algorithms
» Web service & API

ORES generates **predictions**

- Edit quality (eg. damaging, goodfaith)
- Draft and article quality
- Draft and article topic
Tools that call ORES

» Recent Changes

» Huggle

» ~30 more here:

https://www.mediawiki.org/wiki/ORES/Applications
How can we “keep community in the loop” while designing these ORES-based systems?
Value-Sensitive Algorithm Design (VSAD)
(Zhu et al. 2018)

Building from Value-Sensitive Design (VSD), VSAD is a tripartite approach:

1. Understand **stakeholder values** early in design
2. Use values to **guide algorithm design**
3. Evaluate algorithms on accuracy *and* satisfying **values**
Value-Sensitive Algorithm Design (VSAD)
(Zhu et al. 2018)

Building from Value-Sensitive Design (VSD), VSAD is a tripartite approach:

1. Understand **stakeholder values** early in design
2. Use values to **guide algorithm design**
3. Evaluate algorithms on accuracy *and* satisfying **values**
We used **qualitative methods** to gather in-depth perspectives across five community stakeholder groups.
Interviews

Participants (16)

- ORES’ Creator (1)
- Tool Developers (2)
- Wikimedia Product Teams (4)
- Editors (7)
- Researchers (2)
Interviews

Questions

- Role on Wikipedia?
- Experiences related to ORES?
 (Using, building tools, etc.)
- Opinions, ideas for the future?

speaking.svg by MScharwies (CC BY-SA 4.0)
Analysis using “Grounded Theory Method” (Charmaz 2014)

- Analyze and “code” *every* line of interview transcript
- Immersive group meetings to *cluster* codes
- *Discuss and iterate* on themes
Results

» 2 Creator Values
» 5 Convergent Community Values

» Will discuss a subset of them
Creator Values

1. Enable Consistency and Replicability
2. Facilitate Experimentation

``What I really hoped to see wasn't that we would do quality control better, exactly, but that more people would start experimenting with quality control tools.''

ORES Creator
Creator Values

1. Enable Consistency and Replicability
2. Facilitate Experimentation

```
What I really hoped to see wasn't that we would do quality control better, exactly, but that more people would start experimenting with quality control tools."
```

```
We need to build a contribution platform that allows people to plug their own algorithms in.
```

ORES Creator

WMF
Convergent Community Values

- Data from different stakeholder groups “converged”
- No conflict between stakeholder groups
- However, some intrinsic conflicts between values themselves
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement
5. Community Trust
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement
5. Community Trust
Convergent Community Values

1. Effort Reduction

Reduce the effort of community maintenance.

``If we can leverage the manpower that we do have with more automation, these people will have less backlog and can focus on other contributions."

Developer
Convergent Community Values

1. Effort Reduction

2. Human Authority

Maintain Human Judgement as the Final Authority.

```
ORES' purpose is more to create lists of possible problematic pages or edits for human editors to look at, rather than take action fully automatically.
```

```
I wouldn't rely on ORES 100% of the time. I would still have to use my brain to make a decision.
```

Editor

Editor

Editor
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement

Encourage positive engagement with diverse editor groups.

```
I think that article quality is driven to a large extent by the diversity of hundreds of users.
```

Researcher
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement

```
I think that article quality is driven to a large extent by the diversity of hundreds of users.
```

```
[The current ecosystem of Wikipedia] limits the diversity of the contributors. So the ecosystem needs to change in order to be more welcoming to certain kinds of people.
```

Researcher

WMF
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement
5. Community Trust
How to *practically* respect these values?

- 25 specific *recommendations* in the paper
- **Consider** values at *every* phase of algorithm development
- Aim to balance *value conflicts*
Because we do everything in real time right now, it's very reactive and very combative. ... If [good-faith editors] do something, and a few seconds later, they immediately get a [reversion] notification, maybe those cases can be done later. What's the worst thing that will happen? Maybe somebody will see a syntax error for half an hour, an hour, or maybe even a day. That's maybe not so bad.”
Value Tensions

Effort Reduction

Positive Engagement

If interested, BLOG here: z.umn.edu/wikipediaAI
Three “levels” where we can integrate values

e.g. Human Authority & Effort Reduction

Algorithm
User Interface
Work Process
Three “levels” where we can integrate values

Algorithm

“Human Authority” vs. “Effort Reduction”

...to tweak algorithmic parameters. (precision, recall, etc.),
Three “levels” where we can integrate values

Algorithm

\[\min \text{false-negative} \]

Counter vandalism bot

positive == damaging edit
negative == good quality edit
Three “levels” where we can integrate values

- **Algorithm**
 - \min false-negative
 - Counter vandalism bot
 - \min false-positive
 - Semi-automated edit review

positive == damaging edit
negative == good quality edit
Three “levels” where we can integrate values

- **min false-negative**
 - Counter vandalism bot

- **min false-positive**
 - Semi-automated edit review

- **min false-negative**
 - for-newcomers
 - & overall-error < 0.1
 - Newcomer protection in quality control

positive == damaging edit
negative == good quality edit
Integrating Values in Algorithmic System Design

Interactive Visualization
- Inputs → Outputs
- Predictions & Errors
- Better tools
Three “levels” where we can integrate values

- Algorithm
- User Interface
- Work Process
Three “levels” where we can integrate values

1. Automated bot reverts highly likely damaging edits
2. Semi-automated review / reversion
3. Socialization tool
Value Tensions

Facilitate Experimentation

Effort Reduction
Human Authority
Workflow Support
Positive Engagement
Community Trust

``We definitely don't want to put barriers between people using ORES, [but] if you can use ORES, you can also use ORES inappropriately."

ORES Creator
Convergent Community Values for Machine Learning Systems on Wikipedia

<table>
<thead>
<tr>
<th>Effort Reduction</th>
<th>Human Authority</th>
<th>Workflow Support</th>
<th>Positive Engagement</th>
<th>Community Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>...reduce the effort of community maintenance</td>
<td>...maintain human judgement as the final authority</td>
<td>...support differing peoples' differing workflows</td>
<td>...encourage positive engagement w/ diverse editors</td>
<td>...establish the trustworthiness of people & algorithms</td>
</tr>
</tbody>
</table>

C. Estelle Smith
smit3694@umn.edu
@memyselfandHCI
[Q&A SLIDES]
Hey Patroller, we've got some Jedi material here... she just needs a bit of help!

My work here is done.

Which AI would you want on your team?

z.umn.edu/wikipediaAI
Three “levels” where we can integrate values

1. Automated bot reverts highly likely damaging edits
2. Semi-automated review / reversion
3. Socialization tool

1. Automated bot reverts highly likely damaging edits
2. Semi-automated review (no reversion)
3. Socialization tool
4. (Possible reversion)

OR, also considering Positive Engagement...

Work Process
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement
5. Community Trust

Support differing peoples’ differing workflows.

Establish the trustworthiness of people and algorithms within the community.
Value-Sensitive Algorithm Design (Zhu et al. 2018)

A value is...

```
`What a person or group of people consider important in life.`
```

(Borning & Muller 2012)
Convergent Community Values

1. Effort Reduction
2. Human Authority
3. Workflow Support
4. Positive Engagement

“Evolve the ecosystem”

- Understand when actions taken by humans vs. AIs
- Algorithms should *facilitate*, not replace, socialization
- Transparent explanations of algorithms
- Algorithms should help share ways to *grow* in the community
Workflow Support

Algorithmic tools should facilitate workflows that help to achieve users’ actual end goals.

Developers should identify sets of users’ priorities throughout their workflows, and build tools that are configurable to those different priorities.

Developers should create intuitive UI/UX elements that make it easy to select workflows based on users’ different priorities.

UI/UX elements in algorithmic tools should be designed to give users the flexibility to select and stay focused on the type of use case they want to work on, until they decide to switch to a different one.
Positive Engagement

Users should be able to understand which actions were taken by algorithms, which actions were taken by humans, and how to contest decisions.

Social connections within the community should be facilitated rather than replaced or weakened by algorithmic systems.

Algorithmic systems should provide transparent explanations of their behavior, and accessible training resources for effective interactions with them.

Algorithmic systems should provide and recommend helpful ways for users to learn and grow within the community.
Community Trust

Developers should continuously engage with the communities affected by algorithmic systems to build and maintain trust.

To aid in community governance efforts, algorithmic systems should provide mechanisms to assess the trustworthiness of community members based on their community contributions and behaviors.

Trusted users should be able to impact algorithms by providing feedback on their performance, even if they don’t understand all details of how the algorithms work.