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ABSTRACT 

This research contributes to multiple spacecraft control by developing an 

autonomous distributed control algorithm for close proximity operations of multiple 

spacecraft systems, including rendezvous and docking scenarios.  The proposed control 

algorithm combines the efficiency of the Linear Quadratic Regulator (LQR) and the 

robust collision avoidance capability of the Artificial Potential Function (APF) method.  

The LQR control effort serves as the attractive force toward goal positions, while the 

APF-based repulsive functions provide collision avoidance for both fixed and moving 

obstacles.  The combination of the LQR and APF control logics, referred to as the 

LQR/APF control algorithm, yielded promising results as demonstrated by the numerous 

multiple spacecraft maneuver simulations reported in this dissertation. 

In order to validate the proposed control approach, a multiple spacecraft model 

validation and visualization technique was developed using a versatile MATLAB-

Satellite Toll Kit (STK) interface to propagate the spacecraft models, compare against 

STK generated ephemeris, and animate for analysis.  The MATLAB-STK interface 

efficacy was demonstrated during the evaluation and analysis of the innovative LQR/APF 

multiple spacecraft control algorithm. 

The LQR/APF multiple spacecraft close proximity control algorithm was 

developed, refined, and thoroughly simulated using high fidelity six Degree of Freedom 

(DOF) spacecraft models.  In order to evaluate the stability and robustness of the control 

approach a Monte-Carlo simulations set was run. The LQR/APF control algorithm was 

further evaluated by virtual hardware-in-the-loop implementation at the NPS Spacecraft 

Robotics Laboratory.  The laboratory hosts the Autonomous Docking and Spacecraft 

Servicing testbed which allows for on-the-ground testing of close proximity multiple 

spacecraft control concepts. 
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EXECUTIVE SUMMARY 

As spacecraft technology has advanced, simultaneous control of multiple 

cooperative spacecraft has become a desired mission capability.  The first generation of 

spacecraft were individually stabilized in orbit by manual control from ground stations.  

The second generation of spacecraft were placed in stable constellations by ground 

stations, with some basic controls automated on-board the spacecrafts.  The next 

generation will be required to reliably perform autonomous multiple spacecraft close 

proximity operations while avoiding collisions.  Therefore, a need exists for robust and 

efficient automated and distributed control of multiple spacecraft for emerging servicing 

missions, involving simultaneous rendezvous and docking scenarios. 

In this research a novel multiple spacecraft close proximity control algorithm was 

developed, refined, and thoroughly simulated using high fidelity six degree of freedom 

spacecraft models.  The developed control algorithm combines the dynamic optimization 

of a Linear Quadratic Regulator (LQR) and collision avoidance capability of Artificial 

Potential Field (APF) approaches.  Development and evaluation of the LQR/APF control 

algorithm was supported by the realization of a MATLAB and Satellite Tool Kit (STK) 

simulation interface technique.  This versatile MATLAB-STK simulation interface 

allowed for both multiple spacecraft model validation and simulation visualization.  The 

LQR/APF multiple spacecraft control algorithm was further evaluated by virtual 

hardware-in-the-loop (VHIL) configuration at the NPS Spacecraft Robotics Laboratory 

(SRL).  The VHIL structure utilizes independent processors which simulate spacecraft 

and interact as multiple spacecraft. 

Analysis of numerous close proximity maneuvers proved the LQR/APF to be both 

effective and efficient in conducting simultaneous spacecraft missions.  The LQR/APF 

avoids actuator saturation while avoiding both stationary and moving obstacles.  Monte 

Carlo simulations showed the multiple spacecraft control to be both stable and robust.  It 

also established a parametric baseline for future multiple spacecraft close proximity 

control algorithms, by evaluating collision avoidance requirement, fuel efficiency, and 

maneuver duration objectives.  The LQR/APF control algorithm’s desirable performance 
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gives spacecraft designers and mission planners a useful means of developing and 

forecasting maneuvers.  Finally, successful implementation of the multiple spacecraft 

control algorithm in a VHIL configuration paves the way for future terrestrial and orbital 

hardware testing. 
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I. INTRODUCTION 

A. MOTIVATION AND BACKGROUND 
As spacecraft technology has advanced, simultaneous control of multiple 

cooperative spacecraft has become a desired mission capability.  Therefore, there is a 

need to develop an autonomous distributed control algorithm for multiple spacecraft 

during close proximity operations.  The first generation of spacecraft were individually 

stabilized in orbit by manual control from ground stations.  The second generation of 

spacecraft were placed in stable constellations, and formations by ground stations, with 

some basic controls automated on-board the spacecrafts.  The next generation of 

spacecraft will be required to reliably perform autonomous close proximity operations, 

including multiple spacecraft dispersion, rendezvous, and docking maneuvers. 

There are numerous mission concepts that involve the convergence of multiple 

spacecraft in close proximity.  At present, these missions are parameterized through pre-

determined (a priori) orientations and trajectories, and executed with centralized manual 

control.  This approach is extremely cumbersome with respect to time and computational 

expense, relies on high communication capacity between spacecraft, and allows for no 

dynamic reconfiguration in spacecraft control.  While, large spacecraft formation tracking 

and keeping has received a great deal of study, research in the area of practical multiple 

spacecraft close proximity operations is limited [1].  Current spacecraft rendezvous and 

docking require that the spacecraft cooperate and are deliberately designed to work 

together.  Approaching spacecraft usually use tracking based algorithms, with advanced 

sensors and processors, to approach the desired position. Additionally, these close 

proximity spacecraft maneuvers are typically manually operated.  The need for advanced 

sensors, processors, and actuators limits the application of previous spacecraft control 

algorithms to a wide variety of spacecraft platforms and mission. 

These issues could be addressed with a computationally efficient, robust, 

distributed control algorithm allowing for multiple spacecraft close proximity operations, 

with the capacity for dynamic reconfiguration for collision avoidance.  Research and 

experience with terrestrial based robots have matured the application of iterative artificial 
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potential field (APF) based control algorithms [2][3][4][5].  These APF algorithms are 

geometrically based with converging minimization searches along the direct Steepest 

Descent path.  The APF have been refined to include obstacle repulsion potentials which 

allow for robots to avoid collisions in moderately dynamic environments [6][7].  

However, these algorithms have not been widely applied to the unique challenges 

presented in spacecraft control.  The simplicity of the potential field based control 

algorithms are a good match for spacecraft application with limited proximity sensors and 

processing capability.  Previously proposed spacecraft potential field based controllers 

have been task and platform specific and not robust in the full range of possible close 

proximity operations.  Also, fuel efficiency and optimization has been limited to 

maintaining spacecraft formations.  The consideration of efficiency while maintaining 

collision avoidance in close proximity operations has been limited, and typically requires 

dramatic increases in computation or centralization. 

Efficiency concerns have driven spacecraft control system designers toward 

optimal control algorithms [8].  However, the restricted computation capability onboard 

the current generation of spacecraft forces trade-offs between such algorithms and simple 

feedback architectures which can be hosted locally.  An original solution to the efficiency 

demands and the collision avoidance capability required for the emerging autonomous 

close proximity operations is the combination of optimal control and geometric collision 

avoidance.  An iterative Linear Quadratic Regulator (LQR) control algorithm can be used 

as driving force toward the desired goal, replacing the more conventional force due to the 

attractive potential.  The LQR has the advantage of incorporating the spacecraft 

linearized relative dynamics by utilizing variable state and control effort gain matrices in 

order to solve for an optimal cost solution at each iteration.  These allow variation for 

state weighting during convergence toward the goal. 

The fusion of a LQR, including relative dynamics, and an APF based collision 

avoidance capability yields a new and promising multiple spacecraft control algorithm.  

The LQR control effort serves as the attractive force toward goal positions, while the 

APF-type repulsive functions provide collision avoidance for both fixed and moving 

obstacles.  This LQR/APF multiple spacecraft proximity control algorithm offers 

desirable performance in a robust close-proximity, and establishes a baseline for fuel 
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efficiency while maintaining collision free operations.  Critical evaluation of the multiple 

spacecraft control algorithm utilized high fidelity six DOF spacecraft models, allows 

assessment with realistic spacecraft dynamics and constraints.  The multiple spacecraft 

close proximity control algorithm was evaluated for several multiple spacecraft emerging 

maneuvers, which may require gathering, rendezvous, and docking operations. 

This dissertation includes the requirement, development, simulation, refinement, 

evaluation, and analysis of an autonomous distributed control algorithm for multiple 

spacecraft during close proximity operations.  Literature reference and review material is 

presented in each applicable dissertation chapter.  This ensures topical material is 

presented as research concepts are presented and developed.  Chapter I closes with a 

summary of the research and its contributions.  The mission profile and requirements are 

presented in Chapter II.  The space environment and a high fidelity six DOF spacecraft 

model are developed in Chapter III.  The equations of relative motion between multiple 

spacecraft in close proximity and the typical rendezvous control are introduced in 

Chapter IV.  The close proximity spacecraft control algorithm is developed in Chapters 

V–VII.  A detailed evaluation of the LQR/APF performances during convergence, rally, 

rendezvous, and docking maneuvers is presented in Chapter VIII, followed by a Monte-

Carlo method analysis of the heuristic control algorithm in Chapter IX.  Finally in 

Chapter X, a virtual hardware-in-the-loop (VHIL) implementation of the multiple 

spacecraft control algorithm is discussed. 

 

B. RESEARCH GOALS 
This research is intended to advance the field of multiple spacecraft control by 

developing an autonomous distributed control algorithm for multiple spacecraft in close 

proximity operations, including simultaneous rendezvous and docking.  The architecture 

of the controller is designed to convolve the collision avoidance capacity of APF 

approaches with the LQR capacity to address dynamic platform constraints.  The 

developed approach, referred to as the LQR/APF control algorithm, is an iterative 

feedback based algorithm which allows for efficient and timely proximity spacecraft 

maneuvers. The LQR/APF control algorithm combines efficient LQR performance,  
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utilizing linearized relative dynamics, and APF with geometric collision avoidance.  This 

convergence of efficiency and collision avoidance into a control algorithm is an enabler 

for future spacecraft missions. 

The developed control algorithm was thoroughly simulated with a high fidelity 

six degree-of-freedom (DOF) spacecraft model operating in 3D space.  Next, the 

simulation model was fully developed with consideration of both perturbation forces and 

torques.  The control algorithm takes into account considerations on realistic actuators 

and sensors performances.  Finally, the control algorithm was tested and evaluate by 

VHIL implementation in the dedicated Spacecraft Servicing and Robotics Laboratory 

located at the Naval Postgraduate School (NPS).  This allows for validation of the control 

algorithm with independent processors simulating spacecraft performance based on 

limited and incremental state information.  The laboratory also hosts the Autonomous 

Docking and Spacecraft Servicing test-bed, whose task is to simulate on-the-ground the 

navigation and control of the docking between multiple free-flying small spacecraft. 

 

C. MAIN CONTRIBUTIONS 
Specific research contributions include: 

• Development of a MATLAB-Simulink interface with STK which allows 
for multiple spacecraft model validation and dynamic environment 
visualization.  This developer friendly tool proved critical for engineering 
analysis of control algorithm performance.  The use of STK, which is a 
key spacecraft industry standard, allows for clear presentation of 
developed control algorithm performance to the spacecraft field. 

• Development of a multi-purpose APF based control algorithm which 
performs close proximity operations in the spacecraft environment with 
realistic spacecraft constraints.  This algorithm was refined with the 
addition of collision avoidance capability to be effective in a broad range 
of spacecraft maneuvers involving multiple spacecraft and obstacles. 

• Development of an iterative LQR control algorithm, with variable gain 
matrices, which performs close proximity operations in the spacecraft 
environment with realistic spacecraft constraints. 

• Combination of the LQR and APF control concepts.  The iterative LQR 
generated control effort serves as the attractive force toward goal 
positions, while the APF repulsive functions provide collision avoidance 
for both fixed and moving obstacles.  This algorithm was further refined 
for a full range of maneuvers involving stationary and moving obstacles. 
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• Thorough comparison of maneuver performance, efficiency, and duration.  
This research established a parametric baseline for future multiple 
spacecraft close proximity control algorithms, by evaluating collision 
avoidance requirement, fuel efficiency, and maneuver duration objectives. 

• Implementation and evaluation of the control algorithm in a VHIL 
configuration.  Utilizes independent processors which simulate spacecraft 
and interact as multiple spacecraft. 
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II. OVERVIEW OF MULTIPLE SPACECRAFT MISSIONS  

A. MULTIPLE SPACECRAFT CONTROL 
The controlled spatial interaction of systems involving multiple vehicles, robots, 

aircraft, or spacecraft in close proximity is a complex task.  How multiple vehicles are 

controlled depends on a wide range of operating environments, missions, objectives, and 

organizational combinations.  Developing systems consisting of multiple autonomous 

vehicles that cooperatively perform a task or behavior is of paramount importance to the 

engineering community [9].  The distinctive space environment makes for particularly 

interesting and challenging control algorithm requirements based on orbital dynamics, 

communication limitations, and tight spacecraft sensitive to disturbances and constraints.  

The dynamics of the orbital spacecraft is affected by disturbances and perturbations.  

Traditionally, individual spacecraft maneuvers have been based on fuel efficiency 

requirements, since fuel is a critical resource in the life of a spacecraft.  During large 

early staging maneuvers, the conservation of fuel is generally more critical then the 

timeliness of any particular task.  Once in the desired mission orbit, the only regular 

translational maneuvers which most individual spacecraft perform are for general station 

keeping.  Also, due to the relatively large distances between typical orbital objects 

collision avoidance maneuvers are rarely necessary and seldom executed.  However, due 

to spacecraft technology improvements, there is now a greater desire to control multiple 

spacecraft in close proximity operations.  These multiple spacecraft, close proximity 

operations require collision avoidance while each spacecraft executes the desired close 

proximity task.  

Advances in technology continue to decrease the size, weight of components 

while increasing the capability of payloads, sensors and processors.  This trend has 

enabled the space industry to decrease the size of spacecraft.  Small satellites with mass 

less than a few hundred kg are becoming more common.  Launch opportunities are more 

readily available for smaller spacecraft since more launch vehicle can support them.  

Many of these relatively small satellites can be deployed into orbit from the same launch 

vehicle.  Once in orbit the spacecraft will need to disperse or converge, relative to each 

other depending on their mission.  As spacecraft get closer to each other the execution of 
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collision avoidance, rendezvous, and docking maneuvers over a short timeline may take 

priority over optimizing individual spacecraft's fuel consumption.  During these close 

proximity maneuvers, the desires are to maintain efficient fuel management while 

accomplishing the maneuver objective quickly.  The longer each spacecraft stays in 

transition during close proximity the more precise station keeping is required; therefore 

more propellant may be used. 

 

B. MULTIPLE SPACECRAFT MISSIONS 
Control algorithms for multiple spacecraft need to take the similarity and 

differences of each spacecraft into consideration, which is discussed in detail in Chapter 

II.B.1.  In this research cooperative homogeneous spacecraft with similar sensors and 

control algorithms are considered.  Additionally, it is useful to define the phase of the 

spacecraft mission in relationship to the distances from other spacecraft or the goal 

position.  A discussion of relative orbital mission phases is presented in Chapter II.B.2.  

Also, the organizational grouping of spacecraft depends on the manner in which the 

spacecraft maintain position with respect to each other.  The various organizational 

groupings of spacecraft are discussed in Chapter II.B.3.  Precision control may be desired 

in some applications, such as pointing spacecraft with high resolution imagery payloads, 

and loose control may be desired in other applications, such as station keeping of 

communication satellites. Mission motivations for autonomously controlled and 

synchronized multiple spacecraft in precise spatial configurations are numerous, and 

include interferometry, communications, and power generation.  These cooperative 

spacecraft may need to be able to converge or diverge in a safe and efficient fashion.  For 

servicing missions, it may be necessary for two or more spacecraft to rendezvous, or even 

dock. 

First, multiple spacecraft interferometry is based on the idea that the precise 

control of the relative position and orientation of multiple spacecraft payloads could 

result in performance equivalent to a much larger spacecraft payload.  Multiple spacecraft 

are positioned in order to form a distributed array.  Distributing spacecraft payloads (e.g., 

sensors) into precise spatially configurations, or assembling multiple spacecraft on orbit, 

require higher level control algorithms.  Required control algorithm capabilities include 
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the establishment and maintenance of a given formation and any possible reconfiguration 

of the formation.  Formation maintenance control has been given its due of attention [10] 

[11]. 

Second, reconfigurable cooperative formation mission concepts are based on 

collectives of small spacecraft working in unison to perform a greater function.  For the 

purpose of spacecraft formation control it is generally assumed that each spacecraft is 

relatively homogeneous and executes centralized control strategies in order to minimize 

fuel consumption during formation flight.  Each small spacecraft coordinates with others 

in the group and shares processing, communication, and payload or mission functions.  

Defense Advanced Research Projects Agency (DARPA) is currently studying the idea of 

fractionated spacecraft architectures which decompose the overall spacecraft function 

into a free-flying network of component modules.  The traditional monolithic spacecraft 

might be replaced with a group of smaller spacecraft interacting wirelessly [12].  

Individual spacecraft may be required to perform close proximity maneuvers 

autonomously while the mission or configuration changes. These fractionated, modular 

spacecraft have advantages over traditional monolithic spacecraft, as analyzed and 

assessed in [12][13].  Upgrading the group can be done iteratively in order to increase 

overall performance and mission duration.  This can substantially enhances the 

flexibility, responsiveness, robustness, and lifecycle of the overall spacecraft function. 

Third, rendezvous mission concepts are usually based on a cooperative spacecraft 

approaching another spacecraft within a common spatial region.  The goal position is 

usually occupied by a cooperative spacecraft in the same orbital plane as the 

maneuvering spacecraft.  The Space Transportation System (STS), often referred to as the 

Space Shuttle, and the ISS are often shown docking in orbit.  The Space Shuttle is 

astronaut controlled as it docks to the ISS.  This process is not autonomous, but there is 

autonomous docking of Russian Soyuz and Progress spacecraft with the ISS.  The 

process of automated spacecraft docking was pioneered by the Soviet Union; however the 

automated system occasionally fails to complete the task.  According to NASA, current 

state of the art Russian automated rendezvous and docking systems have a current failure 

rate of approximately 10-15 % [14].  As a result, ISS’s Zvezda module is equipped with 

the Russian built Telerobotically Operated Rendezvous Unit (TORU) manual docking 
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system which can be operated by cosmonauts [15].  However, manual rendezvous control 

can not be relied upon since human space flight is very dangerous, impractical, and 

unnecessary for most on orbit missions.  The European Space Agency (ESA) is currently 

developing the Automated Transfer Vehicle (ATV) to automatically dock with the ISS.  

However, close proximity operations of spacecraft are often complicated by momentary 

communication and autopilot navigation failures. 

The motivation to rendezvous is not limited to manned-spaceflight.  Rendezvous 

technology has also evolved with small spacecraft development, such as the NASA’s 

Demonstration for Autonomous Rendezvous Technology (DART) [16], Air Force 

Research Laboratory’s (AFRL) Experimental Satellite Systems (XSS)-10 and XSS-11 

[17][18], Naval Research Laboratory’s (NRL) Spacecraft for the Universal Modification 

of Orbits (SUMO) [19], and DARPA’s Orbital Express [20].  The SUMO program has 

evolved into the Front-end Robotics Enabling Near-term Demonstration (FREND) 

program, which maintains the objective of autonomous rendezvous and grapple 

operations.  For a full discussion on the SUMO/FREND in context of the current status of 

autonomous rendezvous and capture missions, refer to Creamer [21].  Although, the most 

well known of these programs may be the XSS-11. The AFRL Space Vehicle Directorate 

at Kirtland Air Force Base in New Mexico developed the XSS-11 in order to exhibit the 

ability for a small satellite to autonomously plan and rendezvous with passive and 

cooperative objects in LEO [22].  The use of micro-satellites to monitor, inspect, service, 

repair, and re-fuel larger spacecraft is a long term goal.  The closest the XSS-11 

approached and maneuvered around another object in space was approximately 500 

meters.  The XSS-11 used on-board laser range finders to measure the distance to target 

objects.  Most of the XSS-11 flight is being conducted manually with autonomous 

planners running in the background.  In addition, DARPA’s Orbital Express Advanced 

Technology Demonstration Program is intended to validate the technology and 

techniques for on-orbit refueling and reconfiguration of two satellites.  The mission, 

which launched in late 2006, is intended to perform seven autonomous rendezvous and 

capture scenarios [23].  These will include component exchange and propellant transfer 

events.  There is also research to apply rendezvous technology to smaller spacecraft, such 

as DARPA’s Tiny, Independent, Coordinating Spacecraft (TICS) program [24].  These 
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small spacecraft programs are leading the way for advanced autonomous close proximity 

operations by supporting the development of enabling technologies. 

There are several research groups contributing to the development of autonomous 

formation flight and docking control algorithms.  Examples of recent progress in the field 

include such projects as Massachusetts Institute of Technology's (MIT) Space Systems 

Laboratory’s Synchronized Position Hold Engage Reorient Experimental Satellites 

(SPHERES) [25] [26] and AFRL TechSat 21 projects.  The TechSat 21 program, which 

was cancelled in 2003, was intended to develop the concept of using clusters or 

formations of collaborative small satellites to fulfill complex missions, such as distributed 

aperture remote sensing, geo-location, of moving ground targets.  As with most 

fractionated spacecraft architectures, the key motivating design concepts were that 

distributed mission architecture is more tolerant to damage and can also reduce the 

overall system cost.  The SPHERES are intended to be used as a test bed for formation 

flight and reconfiguration, as well as autonomous rendezvous and docking technologies 

[26].  The first SPHERES satellite reached the ISS in May 2006 and has begun testing 

scenarios.  These major research activities emphasize the challenge and ongoing 

requirement of developing a multiple spacecraft control algorithm.  

Maintaining tight formations for interferometry and other cooperative missions 

for long durations, is extremely taxing on spacecraft fuel.  Also, thruster firings result in 

out gassing of propellant in close proximity may cause problems for spacecraft sensors 

and payloads.  So, one way to ensure proper positioning and attitude relative to multiple 

spacecraft is to actually connect them in some manner. The connection of spacecraft on 

orbit is referred to as docking.  Efficient and safe docking is the ultimate close proximity 

operational goal.  The ability to dock spacecraft, in a safe, robust, and autonomous 

manner, is the cornerstone in being able to re-supply, service, upgrade, and reconfigure 

spacecraft while in orbit. 

 

1. Homogenous and Heterogeneous Spacecraft 

Any given group of spacecraft may have characteristics that make them similar or 

different. The likeness among vehicles is of significant consideration in the coordinated 
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control of a group of spacecraft.  Spacecraft are termed homogenous, if the spacecraft are 

identical, or heterogeneous, if the spacecraft are different.  The likeness evaluation of 

spacecrafts may be based on a large variety of parameters, varying from physical 

characteristics (e.g., mass, volume, and structure/configuration) to the spacecrafts 

capabilities (e.g., communication, data handling, power, payloads, and control systems).  

Limited types of launch vehicle capabilities and spacecraft bus designs give an upper 

bound to the mass and volume of orbital spacecraft.  For instance, the static launch 

envelope inside the launch vehicle fairing limits the volume of a spacecraft [27].  

Increased modularity of systems allows for a larger variation in payloads, sensors, and 

configurations.  This research will be based on homogenous spacecraft, including similar 

control system sensors and actuators.  However, dissimilar size and shape spacecraft may 

be considered as long as the dynamics of each spacecraft is properly modeled.  Exploring 

the varying perturbations dynamics of multiple heterogeneous spacecraft is beyond the 

scope of this work.  In this research, all commanded spacecraft are assumed to use the 

same basic control scheme and be equipped with sensors and actuators which offer the 

same level of precision. 

 

2. Orbiting Spacecraft Mission Phases 
The multiple spacecraft control algorithm used depends on the phase of spacecraft 

operations.  In order to distinguish between phases of spacecraft operations based on 

physical proximity, it is helpful to adapt some terminology from missile engineering.  In 

missile interception, four fundamental stages of flight have been defined [28].  These 

stages are commonly referred to as launch, midcourse, terminal, and endgame stages of 

flight.  They can be extended in spacecraft phase proximity operations, referred to as 

launch, midcourse, rendezvous, and docking.  Here are the four spacecraft proximity 

phases: 

1. Launch phase ends after the satellite separates from the launch vehicle upper 

stage (booster) and it is in operational orbit.  All large orbital maneuvers are 

performed during the launch phase. 
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2. Midcourse phase begins when the spacecraft has been stabilized into its 

operational orbit and it can perform station keeping [29].  Small orbital 

corrections may be performed during this midcourse phase. 

3. Rendezvous, or terminal, phase is the when the spacecraft converges to a 

common point in its operational orbit.  This rendezvous phase begins when 

the spacecraft receives its rendezvous command to translate toward a point in 

space.  This space may be occupied by another spacecraft or be an empty 

space which the spacecraft will move into and occupy.  If a group of 

spacecraft are commanded to rendezvous to empty spaces relative to each 

other they will form a spacecraft formation.  On the other hand, if a group of 

spacecraft are converging on the same location in space they are converging 

for docking. 

4. Docking, or endgame, phase begins when spacecraft on-board proximity 

sensor acquire the target location/vehicle.  Spacecraft docking is a very 

precise maneuver, since uncertainties in guidance and attitude need to be 

corrected quickly and effectively during this engagement scenario.  For this 

research, short duration, close proximity operations will be limited to 1.0 km 

of separation between spacecraft in nearly circular orbits.  These assumptions 

are consistent with the staging required to get cooperative spacecraft into the 

same spatial region. Long term fuel optimal formation keeping and larger 

orbital eccentricity variations are considered separate issues which are not 

addressed in this research. 

 

3. Multiple Spacecraft Groups 
Before addressing the control of multiple spacecraft, it is useful to define the 

differences between constellations, formations, and swarms/clusters.  Constellations are 

groups of spacecrafts in relative motion, or orbit(s), but their positions and attitudes are 

not dynamically coupled in any way [30].  This means that a change in position or 

velocity of one spacecraft does not impact the others.  For instance, the GPS constellation 

is made up of at least 24 satellites with four satellites in six different GEO planes.  Each 
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satellite is maintained in its orbit independently via ground commanding.  Maintaining 

the orbital position of the spacecraft, referred to as station keeping, is required due to 

several perturbation influences (e.g., Sun and Moon gravitational fields, variations in 

Earth's gravitational field, aerodynamic drag).  Constellations are usually maintained via 

centralized ground control. 

Formations are groups of spacecrafts which are dynamically coupled through a 

control law [30].  The motion of one spacecraft can give relative state information about 

at least one other spacecraft.  Formation flight control of multiple small spacecraft is the 

task of maintaining the spatial formation, via control of the motion of the individual 

spacecraft in order to maintain the overall formation shape.  The control law typically 

uses the position and velocity of one spacecraft to command another spacecraft [30].  The 

lead spacecraft moves along a commanded path and the following spacecraft(s) maintain 

a relative position, attitude, and velocity with respect to the leader.  This is a common 

concept in leader/follower tracking schemes [31], where the relative motion is like a flock 

of geese in flight.  Collisions are generally avoided through strict control of the following 

spacecraft's motion. For spacecraft formation control a virtual structure control approach 

is commonly used [11].  In spacecraft orbital terms, the lead spacecraft is referred to as 

the “Target” and the tracking spacecraft is called the “Chaser.”  The target motion may be 

represented by an imaginary spacecraft.  The idea of an imaginary target leads better 

understanding of a swarm/cluster. 

A swarm/cluster is a group of spacecrafts that move in concert with one another, 

but without strict control of relative positions, attitudes, or velocities.  In the idea of a bee 

swarm, an outside observer can see the relatively smooth motion of an entire swarm but 

can not determine the specific relationship between any two spacecrafts.  Think of the 

center of the swarm as an imaginary target and all of the spacecrafts as Chasers which 

only stay within a specific range.  A tight swarm would be represented by a small 

acceptable distance between the Target and Chasers.  However, the specific position, 

attitude, and velocity of each Chaser spacecraft are not centrally controlled.  Each 

spacecraft autonomously manages its own motion and is only influence by its range from 

the target and the need not to collide with other spacecrafts. 
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The desire is to offer a control algorithm which bridges the gap between single 

cost optimal fuel trajectory tracking of rigid formation and the emergent behavior of 

swarms.  Using APF based control, allows for incorporation of collision avoidance 

directly into the close proximity control algorithm.  The goal position of each spacecraft 

is explicit and the general spacecraft path will be in the predictable direction of the goal.  

The obstacle potential functions can be defined and used to determine navigation paths 

which are robust enough to allow for both convergence and collision avoidance.  For a 

detailed development of APF control refer to Chapter V. 
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III. SINGLE SPACECRAFT KINEMATICS AND DYNAMICS 
MODELING 

A. INTRODUCTION 

The first computational step of developing a control algorithm is to establish the 

system model. For this research, the fundamental system is a high fidelity six DOF 

spacecraft orbiting the Earth.  This chapter introduces the dynamics and kinematics 

model used through the rest of the dissertation.  The orbital perturbations included are 

fourth order harmonics in the Earth gravitational potential field, atmospheric drag on the 

spacecraft, third-body (Sun and Moon) forces, solar-radiation pressure, and mass 

variation due to thruster firings.  Refer to Chapter X. for detailed description of the 

spacecraft model validation technique.   

A spacecraft orbit is usually expressed relative to a right-hand inertial (X, Y, Z) 

coordinate system with its origin at the center of the Earth and the center of the Earth in 

the plane of the spacecraft’s orbit.  This reference frame is called Earth Centered Inertial 

(ECI), shown in Figure 3.1.  The X-axis points toward the vernal equinox, the Y-axis is 

°90  counterclockwise from the X-axis in the equatorial plane, and the Z-axis extends 

through the North Pole [32].  For scaling reference, it is worth noting that the radius of 

the Earth spheroid is approximately, eR 6,378.1=  km. 
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Figure 3.1 Earth with ECI Coordinate System. 

 

A spacecraft orbit is determined by the gravitational forces acting upon it.  The 

spacecraft orbital dynamics, which is described in Chapter III.B, can be simplified as the 

solution to a two body problem; refer to Chapter III.B.1.  The description of a spacecraft's 

orbit can be characterized by a finite number of parameters, which are discussed in 

Chapter III.B.2.  However, the relative orbital position and velocity of a spacecraft 

depends on the reference frame of interest.  For instance, in order to describe the 

spacecraft position with respect to the Earth, an inertial frame like that described above 

would be sufficient.  However, there is also a need to describe one spacecraft position 

and velocity relative to another.  Therefore, additional reference frames need to be 

defined; refer to Chapter III.C.  With objects in multi-dimensional space, there is not only 

a need to define a position and velocity in space, but also a need to define the objects 

orientation.  The attitude dynamic of the spacecraft is discussed in Chapter III.D.  There 

are other forces and perturbations which influence the spacecraft orbit; these are 

discussed in Chapter III.E.  Finally, the overall characteristics of the six DOF spacecraft 

model used in this research are outlined in Chapter III.F. 
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B. KEPLERIAN ORBITAL DYNAMICS 

 

1. Two Body Problem 
The fundamental description of a spacecraft orbit is determined by the 

gravitational force of the central body.  In this document the Earth is assumed to be the 

primary body of interest and any spacecraft are in orbit around it.  Simple two body 

orbital motion is described by Newton's Law of Universal Gravitation [33]. 

 2
e s

g
G m m rF

r r
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (3.1) 

where gF  is the force of Earth's gravity acting upon the spacecraft, G  is the Universal 

Gravitational Constant ( 11 3 2 16.673 10 m s kg− − −× ), em  is the mass of the Earth 

( 245.9733328 10 kg× ), sm  is the mass of the spacecraft, r  is the relative distance vector 

from the center of mass (COM) of the Earth to spacecraft, and r  is the Euclidean (2-

norm) distance of the spacecraft from the COM of the Earth.  A 3D position vector in 

Earth inertial reference frame, can be represented as 

 1 2 3
ˆ ˆ ˆr r X r Y r Z= + +  (3.2) 

The Euclidean (2-norm) of a 3D vector is 

 2 2 2
1 2 3( ) ( ) ( )r r r r r= + + =  (3.3) 

The assumptions with this simple two body problem are that the Earth and spacecraft can 

be modeled as point masses, the gravitational field is symmetric, and no other external 

forces are acting on the Earth or spacecraft.  Additional orbital forces and perturbations 

will be considered as the dynamic model is further developed in Chapter III.E. 

The left side of equation (3.1) can be expanded with Newton's Second Law [33], 

 F m a=  (3.4) 

where F  is the force resulting from the mass ( m ) and acceleration ( a ) of an object.  The 

relative acceleration of the spacecraft can be determined by subtracting the acceleration 
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of the Earth from the acceleration of the spacecraft, and substituting equation (3.1) and 

equation (3.4) results in 

 2

( )e sG m m ra
r r
+ ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
 (3.5) 

The relative acceleration is the second derivative of the relative position vector ( )r  and 

the term on the far right is the normalized position vector.  Next, make use of the 

gravitational parameter, defined as 

 9 3 2398600.4418 10eG m m sµ −= = ×  (3.6) 

The value of µ  is based on modeling of the Earth, such as the World Geodetic System 

(WGS-84) [32].   For most applications, the mass of the spacecraft is negligible compared 

to the mass of the earth, so the two body motion equation simplifies as follows 

 2 0rr
r r
µ ⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 (3.7) 

This is the core equation for determining spacecraft position.  Given the initial values of 

the relative position and velocity of the spacecraft, the orbit can be propagated using 

numerical analysis.  The integration of Equation (3.7) leads to the classical Keplerian 

orbits, whose shape can vary according to the spacecraft initial position and velocity. In 

particular closed (circle, ellipse) and open (parabola, hyperbola) orbits are the possible 

trajectories for the spacecraft. 

 

2. Orbital Elements 

Any spacecraft specific orbit position can be also represented by six classical, or 

Keplerian, orbital elements, which can substitute the Cartesian coordinates.  The six 

classical orbital elements are the following:  

1. Semi-major axis (a) determines the size of the orbital ellipse as 

 a
2

a pr r+
=  (3.8) 
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Orbits are typically referred to in categories that relate to general radial 

size of their orbit.  Low Earth orbits (LEO) are typically around an altitude 

of 1,000 km.  Middle Earth orbits (MEO) are typically around an altitude 

of 10,000 km.  Geosynchronous orbits (GEO) occupy an altitude of 36,000 

km, and remain in a relatively stationary position relative to the Earth, 

depending on inclination.  A special case of this type of orbit is the 

geostationary orbit, which remains in a stationary position over the Earth’s 

equator, due to an inclination of zero degrees. Using the semi-major axis, 

the period ( TP ), or duration, of the spacecraft’s orbit can be determined as 

 
3a2TP π
µ

=  (3.9) 

2. Eccentricity ( e ) determines the shape of the orbit, such that when 0e =  

the orbit is circular. As the eccentricity increases from 0 up to 1, the shape 

becomes less circular and more ellipse-like.  For e =1 the orbit is a 

parabola and for e>1 the orbit is a hyperbola. 

3. Inclination ( i ) is the tilt angle relative to the Earth’s equator. If 0i =  

then the orbit is in plane with the Earth’s equator. 

4. Longitude of ascending node (Ω ) (also referred to as the right ascension 

of the ascending node) is the relative swivel angle of the orbital ellipse.  

This angle is measured from the inertial X-axis to the line defining the 

point where the orbit crosses the equator moving from the south to the 

north. 

5. Argument of perigee ( w ) is the angle between the ascending node and the 

closest radial distance (lowest altitude) from the orbit to the Earth 

(perigee). 

6. True anomaly (υ ) is the angle from the perigee to the actual spacecraft 

location, thus it varies throughout the orbit.  This can be thought of as the 

phasing of the spacecraft in the orbital ellipse, or circle. 
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These six orbital parameters are useful for visualizing the spacecraft's orbit, as 

shown in 0. 

 
Figure 3.2 Classical Orbital Parameters. 

 

C. REFERENCE FRAMES AND TRANSFORMATIONS 
When discussing positions, velocities, and attitudes of orbiting spacecraft, one 

must have a suitable reference system defined. Although useful, the classical orbital 

elements are not the only way to compute orbital propagation.  In some instances, the 

spacecraft position ( r ) and velocity ( v ) in the ECI frame may be used for translational 

computations.  The use of the right-handed ECI frame is intuitively satisfying since it is 

centered upon the primary object of interest, the Earth.  However, the ECI coordinate is 

independent of the spacecraft and its orbit and does not meet all of our needs.  For 

instance, on-board spacecraft sensors are not centered in the ECI frame. 
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1. Earth and Body Centered Reference Frames 

There are several coordinate systems which are based on the plane of the 

spacecraft orbit.  These typically use the spacecraft orbit as the fundamental plane, and 

are denoted by the first two axes in a right-handed coordinate system.  As an example, 

one such system with uses characteristics of both the ECI and classical orbital elements is 

the perifocal coordinate system (P,Q,W), as shown in Figure 3.3.  In the perifocal 

coordinate system, the Earth is the origin, the P-axis points toward the orbital perigee, the 

Q-axis is °90  ahead in the orbital direction, and the W-axis is normal to the plane of 

orbit.  The P-axis and Q-axis are in the orbital plane and orientated based on the 

argument of perigee.  If the eccentricity changes and the perigee rotates, then the PQW 

coordinate system will also change.  The inclination tilts the PQW coordinate system by 

tilting the orbital plane.  Although, useful in some situations, the PQW coordinate system 

is not always well defined.  As for all systems based on classical orbital parameters, 

circular orbits in the equatorial plane require special rules.  This is due to argument of 

perigee and semi-major axis not being defined for a circular orbit, and the longitude of 

ascending node not being defined for an equatorial orbit.  Since the ECI and PQW 

coordinate systems centered at the same origin, the transformation from one system to the 

other is purely a matter of rotation. 

 
Figure 3.3 Perifocal and ECI Coordinate Systems. 
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There are numerous situations when a reference frame centered on the spacecraft 

or its relative motion is needed.  Each spacecraft, assumed to be a rigid-body, has a body 

fixed-fixed reference frame centered at the spacecraft's center of mass.  This spacecraft 

body frame (XB, YB, ZB) is typically aligned with the principle axis of inertia.  The 

spacecraft body frame is not inertial and is free to rotate as the spacecraft rotates along 

any of its three axes.  The rotation around the body axes are represented by three angles: 

roll (ϕ ), pitch (θ ), and yaw (ψ ) as shown in Figure 3.4.  This frame is useful when 

determining the spacecraft attitude and rotation rates, similar to the reference frame used 

for aircraft.   

 
Figure 3.4 Body-fixed Coordinate System. 

 

Of particular interest is the spacecraft coordinate system (R,S,W) which is used to 

determine relative motion between objects in orbit.  The spacecraft coordinate system is 

aligned with the R-axis along the radial direction from the Earth to the spacecraft, the S-

axis is along the direction of the spacecraft translational track, and the W-axis is cross-
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track (normal) to the orbital plane.  One possible orientation of the spacecraft, , as shown 

in Figure 3.5, is with the R-axis aligned opposite of body yaw, S-axis aligned with body 

roll, and W-axis aligned opposite the body pitch axis.  In Figure 3.5, the spacecraft 

coordinate system W-axis points directly up from the page and the body-fixed YB axis 

points directly down into the page.  As with the ECI and PQW coordinate systems, the 

body-fixed and RSW coordinate systems are centered at the same origin.  Therefore, 

transformation from body-fixed to RSW is purely a matter of rotation.  It is worth noting 

that the velocity vector is only aligned with the S-axis when the orbit is perfectly circular, 

and at the apogee and perigee of elliptical orbits.  The angular difference from the local 

horizontal (line perpendicular to the radial vector) and the velocity vector and is usually 

referred to as the flight path angle. 

 
Figure 3.5 Body-fixed and RSW Coordinate Systems. 

 

The RSW and body-fixed reference frames are not inertial.  The spacecraft 

coordinate system orbits along the orbital path in the ECI reference frame, as shown in 

Figure 3.6. 
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Figure 3.6 ECI and Spacecraft Body Coordinates. 

 

For spatial ranging and positioning information, each spacecraft will have on-

board sensors and receivers.  These sensors are likely to include Global Positioning 

System (GPS) receivers and directional range finders (e.g., sonar, laser, or infra-red) to 

determine distances away from the desired location and from other objects. Most payload 

sensors, with the exception of GPS receiver data, give information relative to their 

position on-board the spacecraft.  Figure 3.7 shows an elliptical, equatorial orbit with the 

spacecraft coordinate W-axis and ECI Z-axis both pointing directly out of the page.  In a 

2D or 3D space, r is the actual geometric distance between objects in the space, as 

computed in Equation (3.3).  In order to transform data from the RSW to the ECI 

coordinate system both a rotation and translation is required. 
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Figure 3.7 Euclidean Distance. 

 

2. Transformations 
Transforming between two different reference frames with the same origin 

requires a rotation.  For reference frames that do not have the same origin, the axis can be 

aligned by rotation and then translated with vector addition. For Cartesian 3D systems 

there are three degrees of freedom for angular displacement and one degree of freedom 

along each axis, resulting in nine element matrix with six relationships between them.  

The coordinate transformation matrix ( DCMC ), also referred to as a Direction Cosine 

Matrix (DCM) [34], is represented by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

DCM

c c c s s
C s s c c s s s s c c s c

c s c s s c s s s c c c

θ ψ θ ψ θ
ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ
ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 (3.10) 

where the angles of yaw (ψ ), pitch (θ ), and roll (ϕ ) correspond to the rotation described 

in the body-fixed reference frame, c(--) is the cosine function, and s(--) is the sine 

function.  The order of angular rotation is important, since different order of rotation will 

result in a different transformation matrix.  The DCMC , shown in equation (3.10), is for a 
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yaw, pitch, roll sequence.  There are 11 other possible sequences and resulting 

transformation matrixes.  The DCMC  matrix is useful for physical insight of the 

transformation, but it is not efficient for computation due to the trigonometric functions. 

The most used parameterization for spacecraft attitude transformations are 

quaternions.  The definition of quaternion is based on Euler's theorem which states that 

the general displacement of a rigid body with one fixed point is a rotation about a fixed 

axis.  This axis is called the eigenaxis or Euler axis ( axise ).  The angle of rotation is called 

the Euler angle or the principal Euler angle (α ).  The Euler axis is the eigenvector of the 

rotation matrix associated with the eigenvalue 1.  Thus, every rotation matrix has an 

eigenvalue that is equal to positive one [35].  This fact justifies the term eigenaxis for the 

Euler axis vector, denoted by 

 
1

2

3

axis

e
e e

e

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.11) 

It is useful to compute Euler angles from a given rotation matrix, since there is a 

need to be able to compute axise  and α .  The Euler parameter set, also known as a 

quaternion, is a four-parameter set with some computational efficiency and singularity 

advantages over the Euler angles set. Although useful, it may be difficult to visualize the 

physical meaning of the quaternion for most applications. The quaternion vector ( q )  is a 

3 x 1 [34], represented by 
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The quaternion ( q ) is a 4 x 1 algebraic vector [34], with a scalar component as 

the fourth component 
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The spacecraft coordinate frame is not inertial, therefore it is moving with respect 

to the ECI frame.  The kinematics of a non-inertial frame can be represented by the 

following equation for the velocity of the spacecraft with respect to the ECI coordinate 

system 

 ECI BNv r rω= + ×  (3.14) 

The acceleration of the spacecraft with respect to the ECI coordinate system, can be 

determined by differentiating equation (3.14), 

 2( ) ( ) ( )ECI BN BN BN BNa r r r rω ω ω ω= + × + × + × ×  (3.15) 

These results can be generalized with respect to any two reference frames, and will be 

used to derive the equations for the relative motion between two spacecraft, refer to 

Chapter IV. 

 

D. ATTITUDE DYNAMICS 
 

1. Spacecraft Rotational Dynamics 
Applying Newton's Second Law to rotational dynamics, the torque on a system is 

defined by 

 T H Jα= =  (3.16) 

The angular momentum is described by 

 H Jω=  (3.17) 

The Inertia matrix of a 3D system is a three by three matrix,  

 
xx xy xz

yx yy yz

zx zy zz

J J J
J J J J

J J J

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.18) 

where the diagonal terms are Moments of Inertia and the off-diagonal terms are Products 

of Inertia.  The inertia matrix is positive definite and symmetrical, with the Moments of 
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Inertia always positive or zero.  The primary axes of the body can be defined along the 

principal axis, which are defined by the minimum and maximum moments of inertia. 

The Euler Equation for rotation follows the form of equation (3.14), and describes 

the torque in each axis [29] as 

 H H Tω+ × =  (3.19) 

For the system with the origin of the body frame at the center of mass, the Euler 

Equations [29] can be described by 
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ω ω ω

ω ω ω

ω ω ω

+ − =
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+ − =

 (3.20) 

These three first-order differential equations are in components along the body 

axes of the angular velocity of the body frame with respect to the inertia frame.  They are 

non-linear and coupled, so they are usually solved by numerical integration.  The angular 

rate of the spacecraft body with respect to the initial frame is given by 

 BN BO ONω ω ω= +  (3.21) 

where BOω  is the angular velocity of the spacecraft body frame with respect to the orbital 

reference frame and ONω  is the angular velocity of the orbital reference frame with 

respect to the inertial reference frame.  For a circular orbit with small angles and angular 

rates, the angular velocity of the spacecraft with respect to inertial is 

 
( )
( )

( )

x x ON z
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x z ON x
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b

c

ω α ω α
ω α ω

ω α ω α

= −

= −

= +

 (3.22) 

 
2. Gravity Gradient 

Gravitational forces acting upon an orbiting spacecraft depend on the mass 

distribution of the body.  Since most spacecraft are not perfectly symmetrical, the 

gravitational forces on a spacecraft are not uniform and result in a disturbance torque 

around the spacecraft's center of mass.  The gravity gradient tends to align the 
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spacecraft’s minimum axis of inertia with the radial vector from the Earth.  For example, 

a pencil orbiting in space will tend to align with the point toward the Earth.  The 

Gravitational Gradient (GG) torque can be expressed along the principle axes of the body 

frame as 
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 (3.23) 

where 1c , 2c , and 3c  are the direction cosines of the radius vector with respect to the 

spacecraft's body frame.  The GG torque is perpendicular to the local vertical.  Therefore, 

the GG torque only has components in the roll and pitch axis. In fact, if one of the 

principle axes is aligned with the local vertical, then the GG torques is null.  The GG 

torque can be used as a simple control method in order to stabilize a spacecraft attitude. 

 

E. ORBITAL PERTURBATIONS 
Non uniform Earth mass distribution and non spherical Earth shape, atmospheric 

drag on the spacecraft, third-body (Sun and Moon) forces, and solar-radiation pressure 

act as disturbances on a spacecraft Keplerian orbit [32].  The significance of these forces 

often depends on spacecraft size, position and altitude.  In this research, interest is in 

relatively small spacecraft (less than 400 kg) at low orbital altitudes (less than 3,000 km).  

These conditions determine which perturbation forces have the largest influence on the 

spacecraft orbit.  For relative low latitudes, the Earth's oblateness and atmospheric drag 

are more dominant.  Also of importance is the time duration of interest.  Some of these 

force are of great significance over the course of a satellites lifetime, but negligible for 

the duration of a single orbit.  Simulations will include perturbations when practical 

based on the time duration and spacecraft characteristics and orbit. 
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1. Non-Symmetrical Earth 

The Earth is not symmetrical in its overall shape and mass distribution.  This 

results in the gravitational field also not being symmetric.  The Earth's oblateness, or 

equatorial bulge, can be described by the zonal harmonics coefficients in conventional 

Legendre polynomials, refer to [32] for detailed discussion.  The first three zonal 

coefficient terms in the Legendre polynomial are J2, J3, and J4, where 
-3J2 1.08262668355 10= ×  is the second-order zonal harmonic.  The third-order zonal 

harmonic is 
-6

J3 = 2.53265648533 10×  and the fourth-order zonal harmonic is 
-3J4 = 1.08262668355 10× .  J2 is the equatorial bulge term which has the most significant 

effect on spacecraft orbits.  J2 effects are often classified as short period oscillations, 

while J4 results in long period variations. 

In this work, the EGM-96 coefficients and WGS-84 reference shape are used for 

calculations, refer to [32] for further details.  Various, detailed Earth models are available 

through applications, such as STK [36].  Higher order polynomials will not be discussed 

in this research, although may be included in imported dynamic models. 

 

2. Atmospheric Drag 
The density of particles in the Earth's atmosphere is variable and changes due to 

solar interaction and magnetic field influences.  Particles in the altitude of the spacecraft's 

orbit act upon the body of the spacecraft and slow it down.  Atmospheric drag can impart 

both a translational disturbance force and rotational (attitude) disturbance torque.  The 

basic equation of aerodynamic drag [32] is 
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2
D s rel

drag rel
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c A va v
m v

ρ
⎛ ⎞⎛ ⎞

= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (3.24) 

where Dc  is the spacecraft drag coefficient, relv  is the spacecraft velocity vector with 

respect to the atmosphere, sA  is the spacecraft’s cross-sectional area normal to its velocity 

vector, sm  is the spacecraft’s mass, and ρ  is the atmospheric density.  The velocity 

vector relative to the Earth’s rotating atmosphere is 
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 ( )rel ev r rω= − ×  (3.25) 

where eω  is the angular rotation vector of the Earth. 

Comparable to the gravity models, numerous atmospheric models are available 

for reference.  In this work, an exponential atmospheric density model based on the U. S. 

Standard Atmosphere (1976) was used [32].  This model, adopted by the U. S. 

Committee on Extension to the Standard Atmosphere (COESA), should be sufficient for 

LEO orbits with orbital altitudes between 100 km and 1,000 km [32]. 

 

3. Third Body Effects (Sun and Moon) 

The gravitation attraction from other bodies, such as the Sun and Moon, also 

affects spacecraft orbital Keplerian motion.  The three body equation of motion for the 

relative acceleration of a spacecraft in the Earth's inertial frame [32] is 

 3 2 3 3 3 3

µ µ µ
⎛ ⎞ ⎛ ⎞⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
sm em sS eS

body m S
sm em sS eS

r r r rra
r r r r r r  (3.26) 

where  emr  is the relative distance from Earth to Moon, eSr  is the relative distance from 

Earth to Sun, smr  is the relative distance from spacecraft to Moon, sSr  is the relative 

distance from spacecraft to Sun, 6 3 24902.798882 10m m sµ −= ×  is the Gravitational 

Parameter of Moon, and 13 3 213271.2428 10S m sµ −= ×  is the Gravitational Parameter of 

Sun.  If the terms in equation (3.26), especially with respect to the Sun, are too small for 

numerical precision then the acceleration can be approximated using Taylor series 

expansion [32]. 

 

4. Solar-Radiation Pressure 

The radiation being emitted by the Sun exerts a force on the spacecraft, somewhat 

like the wind on a sail.  The magnitude and direction of the solar-radiation force is 

dependent on several factors, such as the position of the Sun relative to the spacecraft, the 

attitude and shape of the spacecraft, the intensity of the solar-radiation and the reflectivity 
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of the spacecraft [32].  Solar pressure can impart both a translational disturbance force 

and rotational (attitude) disturbance torque.  For this research, the spacecraft is treated as 

a “black body,” which absorbs all radiation. 

In general, the force of solar pressure per unit area on a spacecraft orbiting Earth 

is 26 /1051.4 mNS p
−×= .  A small spherical spacecraft at lower altitudes will be 

influence less by this solar-radiation force.  There may even be durations of the orbit 

where the spacecraft may be in eclipse and does not experience this effect. Although not 

expanded here, more precise equations for the force can be developed using the 

reflectivity of the spacecraft and the exposed area of the spacecraft. 

 

5. Thrust 
Thrusting, and any other control actuator output, from the spacecraft can be 

considered as a perturbation to the orbit.  The thrust is the result of a controller's 

command to the propulsion system, in order to attain a desired orbit or attitude.  The 

force of the thrust is 

 thrust sp
dmF I
dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.27) 

where thrustF  is the force of spacecraft motor, spI  is the specific impulse of the engine, 

and 
dt
dm  is the spacecraft motor mass flow rate.  The change in velocity, v∆ , of the 

spacecraft due to the thruster firing is 

  

 ln s
sp

s p

mv g I
m m

⎛ ⎞
∆ = ⎜ ⎟⎜ ⎟−⎝ ⎠

 (3.28) 

where m/s² 9.80665g = is the gravitational acceleration at the Earth's surface, and pm  is 

the mass of the burnt propellant.  The minimum and maximum v∆  are determined based 

on the duration of the thruster firing.  For a given thruster force, the v∆  can be 

approximated as 
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 thrust

s

F tv
m

∆
∆ =  (3.29) 

Thruster sizing for a spacecraft depends on mission and orbit.  Station keeping, 

drag compensation and three axis stabilization requirements all contribute to the total v∆ .  

In this work, each thruster is assumed to be hydrazine fueled with the compiled 

parameters listed in Table 3.1 [37].  The thruster(s) are assumed to be directional and 

mapped to deliver the commanded v∆  in the body frame of the spacecraft. 

 

Thruster Parameter Thruster Range Simulation Baseline 
Propellant Type Hydrazine Monopropellant Hydrazine 
Force 0.5 - 2 N 1 N 

Specific Impulse ( spI ) 50 - 200 sec 200 sec 
Steady State Impulse 50 - 200 sec 200 sec 
Min pulse duration 0.01 - 0.5 sec 0.05 sec 
Min ∆v 0.01 - 5 mm/s 0.0005 m/s 
Max total ∆v 10 - 800 m/s 60 m/s 
Mass  3-7% of Spacecraft Mass 3% of Spacecraft Mass 

Table 3.1 General Thruster Parameters. 
 

An on-off thrust profile is never ideal, due to variations in ignition, tail-off, mass 

flow rate, and specific impulse [32].  These variations can be managed by applying thrust 

modulation methods.  The pulse width (duration of fire) and pulse frequency (rate of fire) 

can be used to limit the hysteresis, or dead zone lag.  Using pulse width pulse frequency 

(PW-PF) modulation an approximately linear response can be achieved from on-off 

thruster. 

 

F. SPACECRAFT CONTROL SYSTEM 
The spacecraft control system, referred to as the Attitude and Orbital Control 

Subsystem (AOCS) [27], is based on the spacecraft’s kinematics and dynamics.  

Determining the actual position and velocity of the spacecraft in an orbit is the function 

of the Navigation, Guidance, and Control (NGC) subsystem [27]; whereas, determining 
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attitude is the function of the Attitude Determination Control Subsystem (ADCS) [27].  A 

typical control system block diagram is shown in Figure 3.8.  If the attitude of the 

spacecraft is not important then the spacecraft can be treated as a point, or sphere, mass.  

However, most payloads require a specific pointing direction for their sensors, so the 

attitude of the spacecraft must be maintained.  As the spacecraft location converges, the 

attitude of the spacecraft becomes more significant.  For instance, if two spacecraft are to 

dock then their docking mechanisms must be aligned.  The station keeping and attitude 

control (pointing) accuracy of spacecraft often vary significantly and are dependent on 

their sensors and actuators. Spacecraft attitude sensors include, earth, Sun, and star 

sensors, gyroscopes, magnetometers, and differential GPS receivers. Typical attitude 

actuators are divided into two categories: passive and active.  Passive actuators include 

gravity gradient stabilization, spin stabilization, and dampers.  Active actuators consist of 

thrusters, magnetic torquers, and momentum control devices (e.g., momentum wheels, 

reaction wheels, and control moment gyroscopes). 

 
Figure 3.8 Control System (adapted from [27]). 

 
 

1. Translational Control 
Translational control is the major theme of this dissertation, with translational 

control achieved by position and velocity state feedback.  The translational control is 
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discussed in detail in Chapters V, VI, and VII.  Chapter V is an overview of spacecraft 

translational control concepts.  Chapter VI introduces the specific APF control algorithm 

and Chapter VII discusses the LQR/APF control algorithm. 

Thruster firings, or any mass expelling system, can be used to propel a spacecraft 

and guide its center of mass position and velocity in space.  The primary kinds of 

thrusters used on spacecraft are cold gas, hot gas and electric.  They each have torque and 

specific impulse limitations, based on equation (3.28), as 

 sp
TI

m g
=  (3.30) 

The propulsion is primarily dependent on the mass flow rate.  The advantage of 

using thrusters is that they can be used to torque about any axis in any orbit.  However, 

thrusters generally have on-off limitations which may result in sensitivity to chattering, 

dead zones, and hysteresis issues.  These issues are of particular concern in the final 

stages of docking, due to the need for precise control.  These challenges can be overcome 

by modulating the thruster firing duration and frequency.  But these modulation schemes 

add to the overall complexity of the control law being used. 

Also, various sizes and numbers of thrusters can be positioned at desired locations 

on the spacecraft.  Smaller thrusters are used for fine adjustments and larger thrusters are 

used for larger maneuvers.  In spacecraft motion thrusters are typically used to impart a 

v∆  in the desired direction and then another v∆  in the opposite direction once the 

spacecraft is close to the desired spatial region.  This second thruster firing serves as a 

braking maneuver, such as a car approaching a stop sign.  For short duration firings, 

thruster firings can be treated as generating instantaneous velocity variation of the 

spacecraft, not changing its position. 

 

2. Attitude Control  

Attitude control was achieved via quaternion feedback commands to three axis 

aligned reaction wheels with magnetotorqers for momentum damping.  The non-linear 

quaternion feedback control law utilized is based upon on attitude error described by the 
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quaternion and the angular rate (body with respect to inertial).  The commanded torque 

due the quaternion error and angular rate is  

 CMD p E d BNT k q k ω= − −  (3.31) 

where pk  and dk  are the proportional and derivative feedback control gains, respectively.  

These gains were tuned in order to get a damped attitude response with an actuation 

limited maximum torque.  Of course, the maximum torque performance is dependent on 

the attitude control actuator.  Additionally, quaternion rotation logic is necessary to 

ensure minimum rotations are commanded.  Since the quaternion represents a vector in a 

4-D unit sphere with an axis and an angle, it is possible for two different quaternions to 

represent the same orientation. In particular if the opposite eigenaxis is considered the 

angle rotation is 360 degrees less, represented as 

 
cos( / 2) cos( / 2) 2

q q
q or q

α α π
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 (3.32) 

The quaternion with the positive fourth element represents the shortest rotation, and its 

complement is the longest.  Selection of quaternion with minimum angular rotation is 

generally desired for efficient attitude control. 

Momentum Exchange Devices (MED), such as, momentum wheels, reaction 

wheels, and control moment gyros, are commonly used for providing control torque. The 

general attitude dynamics for a spacecraft with a MED is  

 BN BN BN MEDJ J T Tω ω ω+ × = +  (3.33) 

which follows from Equation (3.17) and Equation (3.19).  The spacecraft torque due to 

the MED ( MEDT ) is described by 

 ( ) ( ) ( ) ( )( )MED BN BNT Z h Z h Z h Jω ω= − × + + +  (3.34) 

where h  is the angular momentum of the MED and Z represents the axis about which the 

MED spins.  The mass of the spinning wheel acts as inertia to the spacecraft system and 

provides disturbance rejection in the perpendicular axis. 
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Each of the three primary types of MED work in a slightly different manner.  The 

simple momentum-wheel is a fixed-axis wheel spinning at a large angular rate.  This is 

the most simple of the MED, due to the constant mass, fixed axis, and reasonably 

constant spin rate.  For instance, a torque due to momentum wheel rotating about the 

spacecraft’s pitch axis is  

 
0 0
1 1

0 0
mw BN mw mwT h hω

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥= − × − − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 (3.35) 

where the last two terms on the right side of Equation (3.34) are now zero.  This can be 

simplified for a single momentum wheel, by substituting equation (3.22) into equation 

(3.35), as 

 
( ) ( )

( ) ( )

mw z mw mw x

mw mw

mw x mw mw z

h h
T h

h h

α ω α

α ω α

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3.36) 

The reaction wheel is more commonly used. The reaction wheel is a fixed wheel 

that varies its spin to deliver desired torque.  Three reaction wheels are typically aligned 

along the principle axes along with three magnetotorquers.  The orientation of the 

reaction wheel, Z , is a constant, so 0Z =  and the Z h∗  term in (3.34) can be dropped.  

For a typical spacecraft configuration, with three reaction wheel along each axis and 

rotating in the same direction: 

 
1 0 0
0 1 0
0 0 1

RWZ =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.37) 

with the spin direction defined to be with respect to each axis.  Mass of the spacecraft is 

still considered relatively constant, so 0J = and the BNJ ω∗  term can be dropped.  The 

angular rate of the reaction wheel is variable and therefore 0h ≠  (different than 

momentum wheel). Therefore, the general control law for the reaction wheel can be 

reduced to 
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 ( )RW BN RW RW RW RWT Z h Z hω= − × +  (3.38) 

which can be slightly expanded as follows 

 
1

2

3

1 0 1 00 0
0 1 0 0 1 0
0 0 1 0 0 1

RW RW RWT h h
ω
ω
ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − × −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3.39) 

It is useful to note that that the rate-of-change of the wheel momentum is as follows 

 1 ( * )
RWRW CMD BN RW RWTh Z Z hω−= − − ×  (3.40) 

Equation (3.40) is used to describe the dynamics of the reaction wheel.  The commanded 

torque is designed to saturate at the maximum torque available to the reaction wheel 

along each axis. 

The magnetotorquers may be used to de-saturate the reaction wheels, as 

necessary.  The reaction wheel momentum is multiplied by a gain, mtk , in order to 

determine the torque required, REQT , by the magnetotorquers control law, 

 REQ mt wT k h= −  (3.41) 

This REQT  is used to determine the magnetic dipole momentum, M , of each 

magnetotorquer, as 

 
( )

B REQ

B B

B T
M

B B
×

=
•

 (3.42) 

where BB  is the magnetic field in the body frame.  The maximum dipole moment of each 

torquerod, M , is limited.  Also, the pitch axis is not torquable at 11.7 degree orbital 

inclination since the spacecraft is at the magnetic equator.  At the magnetic equator the 

pitch axis is aligned with the magnetic field and can not create torque along that axis.  

With the limited dipole moment and the magnetic filed with respect to the body frame, 

the de-saturation torque generated by the magnetotorquers is given as 

 DAMP BT M B= ×  (3.43) 



41 

This torque tends to align the dipole with the magnetic field. 

Each spacecraft model will be assumed to be equipped with an attitude control 

system.  The spacecraft attitude control actuator and damper reactions will be based on 

reasonable attitude control systems for small spacecraft.  Standard spacecraft attitude and 

rate sensors will also be assumed, with typical statistical sensor noises.  Development of 

specific sensors and actuators is beyond the scope of this research.  

It is worth noting that although thrusters are the most common actuators to control 

spacecraft translational motion they can also be used for external spacecraft torque.  The 

thrusters are usually positioned at equal and opposite radial distances from the center of 

mass in order to create torque.  Various sizes and number of thrusters can be used, but 

they usually range from four to twelve per spacecraft [29].  Thrusters can also be used to 

supplement momentum exchange devices, by desaturating spin rates and changing 

momentum by providing external spacecraft torque. 

 

G. HIGH FIDELITY SIX DOF SPACECRAFT MODEL 

The characteristics of each of the multiple spacecraft in the group are assumed to 

be the same unless explicitly stated in the simulation results.  The spacecraft altitudes are 

limited to LEO orbits in the range of 300-2,000 km.  The distance between the Target and 

Chaser spacecraft initial positions is limited to less than 1.0 km in RSW coordinates.  The 

basic characteristics of the spacecraft considered in this research are listed in Table 3.2.  

These characteristics were selected to represent realistic and current operational 

capabilities of a small spacecraft.  Rules for spacecraft and subsystem sizing were 

determined based on design rules of thumb [37].  For instance, the spacecraft volume was 

selected to be approximately 1/100  of the spacecraft mass [37].  The center of mass of 

the spacecraft is assumed to be located at the geometric center.  Position, attitude, and 

ranging sensors are assumed to provide near ideal information.  Translational motion is 

conducted via six cold gas pulsed thrusters with a maximum thrust of 1.0 N .  The attitude 

actuators are three reaction wheels along each spacecraft axis, along with 

magnetotorquers to dump the reaction wheel momentum.  Disturbance perturbations are 

adjusted as necessary for model and simulations development.  The attitude actuator 
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specifications are loosely based on the Honeywell Model HR 0610 Reaction Wheel [38].  

The translations thrust actuators were generalized from cold gas thruster performance and 

operating characteristics; refer to [37]. 

 

Length and Width 1.0 m 
Height 1.0 m 
Mass 100 kg 

Moment of Inertia about X 16.67 - 50 kg m2 
Moment of Inertia about Y 16.67 - 50 kg m2 

Spacecraft 
Physical 

Characteristics 

Moment of Inertia about Z 16.67 - 50 kg m2 
Number of Thrusters 1-6 

Mass of Propellant (% Mass) 3-6% 
Max Thrust (each thrusters) 1.0 N 

Number of Reaction Wheels (RW) 3 
RW Max Torque (each axis) 0.055  N m 

RW Max Angular Momentum  4-12  N m s 
Initial Angular Rate of RW 0 RPM 

Inertia about RW spinning axis 0.14258 Kg m2 
Number of Magnetotorquers 3 

Spacecraft 
Actuators 

Max dipole moment (each torquerod) 100 A m2 
Table 3.2 Main Characteristics of Chaser Spacecraft Simulators. 

 

Initially these spacecraft characteristics were used to model spacecraft using The 

MathWorks Incorporated products MATLAB and Simulink [39].  The spacecraft 

characteristics may be further expanded and refined as hardware-in-the loop structures 

are developed at the NPS Spacecraft Servicing and Robotics Laboratory.  Mass and 

dimensions greatly affect both the perturbations on the spacecraft and the commanded 

actuation by the control algorithm.  Variations in the moment of inertia for three basic 

spacecraft shapes, spherical, cylindrical, and cubic, are considered.  Mass changes due to 

thruster firings are modeled with appropriate moment of inertia changes.  In the absence 

of actual sensor readings and actuators responses, equivalently accurate input and outputs 

are provided into the simulations.  For instance, attitude determination sensor reading, 

such as star trackers, can be simulated based on orbital propagation calculations.  On the 

other hand, actual GPS reading in the laboratory may be used to determine spacecraft 

positioning on the Autonomous Docking and Spacecraft Servicing testbed. 
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IV. SPACECRAFT ORBITAL RELATIVE MOTION 

A. EQUATIONS OF RELATIVE MOTION 
As two spacecraft obit around the Earth their relative positions change based on 

the characteristics of their orbits.  Two different orbits are shown in Figure 4.1.  This 

view shows a circular and an elliptical equatorial orbit from the perspective of high above 

the North Pole.  The difference in inertial position and velocity between spacecraft orbits, 

appears as dynamic relative motion between orbital spacecraft. 

  

 
Figure 4.1 Two Spacecraft Orbits in 2D. 

 

In order to establish the equations of motion between spacecraft consider one of 

the spacecraft as the primary and all of others as secondary.  The primary spacecraft will 

be denoted as the Target (t).  The secondary spacecraft will each be denoted as Chasers 

(c) with numerical designations to distinguish them apart.  The Target and Chase 
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spacecraft reference is used during the rendezvous maneuver, when the Target spacecraft 

maintains its orbit and the Chase spacecraft maneuvers to the Target's position.   

The relative motion can be developed from the position vectors of the two 

spacecraft.  From Figure 4.2, it is apparent that vector addition gives 

 c tr r r= +  (4.1) 

where tr  and cr  are the position vectors of the Target and Chase spacecraft in the ECI 

coordinates and r is the relative position of the Chase with respect to the Target. 

 
Figure 4.2 Relative Distance. 

 

Using equation (3.14), with the Target spacecraft as the origin of the rotating 

reference frame, the relative translational acceleration of the Chase spacecraft is given by 

 2( ) ( ) ( )c t BN BN BN BNr r r r rω ω ω ω= + × + × + × ×  (4.2) 

In order to solve for the relative motion, the position vectors can be expressed in the 

Target spacecraft coordinates.  The relative position vector is 

 ˆˆ ˆr xR yS zW= + +  (4.3) 
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with the (x, y, z) adopted as standard Cartesian coordinate notation.  The position of the 

Target spacecraft is displaced from the ECI coordinate along its radial axis 

 ˆ
t tr r R= −  (4.4) 

Substituting equations (4.3) and (4.4) into equation (4.1), the position vector of the Chase 

spacecraft becomes 

 ˆˆ ˆ( )c tr x r R yS zW= − + +  (4.5) 

Considering the force of gravity acting on the spacecraft from the two-body problem 

from equation (3.7), the acceleration of the Target spacecraft is denoted as 

 2
ˆt

t t
t t

rr g R
r r
µ ⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

 (4.6) 

The acceleration of the Chase spacecraft is denoted as 

 c c thrustr g a= − +  (4.7) 

where thrusta  is the acceleration due to control actions and cg  is the acceleration of the 

Chase spacecraft due to the force of gravity.  Acceleration on the Chase spacecraft due to 

gravity can be resolved into the Target spacecraft coordinates [40], 

 ( ) ˆˆ ˆt
c c c c thrust

c c c

x r y zg g R g S g W a
r r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
= − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.8) 

where cg  is the vector norm, as denoted in equation (3.3).  Next, these resolved 

components can be substituted into equation (4.2) with the assumption that the angular 

velocity of the of the Target spacecraft coordinate system is  

 ˆ
BN Wω ω=  (4.9) 

This angular velocity represents that the orbital rotation only occurs around the 

spacecraft's coordinate axis perpendicular to the fundamental orbital plane.  By 

performing the cross products and simplifying, the acceleration equations of the Chase 

spacecraft along each of the Target spacecraft's axis components are 
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 (4.10) 

This set of equations represents the nonlinear equations of relative motion [40].  

Using the same orbits as shown in Figure 4.1, the relative motion of the Chase spacecraft 

elliptical orbit with respect to the Target spacecraft circular orbit is shown in Figure 4.3.  

The y-axis is the radial axis from the Earth and the x-axis is transverse position of the 

Chase spacecraft.  The plot is orientated for a counterclockwise orbital rotation with the 

velocity vector pointing to the left.  Notice that the motion of the Chase spacecraft drifts 

away from the initial (0, 0) position.  Additional translational acceleration forces can be 

incorporated into the equations in the same manner as the gravitational and control 

forces; refer to Chapter III.E. 

 
Figure 4.3 Nonlinear Relative Motion. 
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Several algorithms have been developed to implement these equations.  They vary 

in accuracy based on the gravitational and reference orbit assumptions.  The most 

common is based on a spherical Earth and a circular reference orbit [41].  Although for 

long term formation flight, geometric methods which consider reference orbit eccentricity 

and differential gravitational perturbations may be more accurate [42].  However, as the 

relative motion methods increases in accuracy they also increase in complexity.  Detailed 

analysis of the orbital eccentricity and perturbation effects can be evaluated in order to 

determine which relative motion theory should be applied to a relative motion of two 

spacecraft [43].  Although for this research pertaining to short duration proximity 

operations the Clohessy-Wiltshire equations are sufficient. 

 

B. THE CLOHESSY-WILTSHIRE EQUATIONS OF MOTION 

The nonlinear equations for relative motion, shown in Equation (4.10), may be 

simplified and linearized in order to provide closed form analytical solutions.  The 

Clohessy-Wiltshire equations are the well known linearized relative motion equations for 

near circular orbits.  First, assume that the relative distance between the two spacecraft 

( r ) is much smaller than the orbital radius of the Target spacecraft ( tr ) 

 tr r>>  (4.11) 

This research assumes that the relative distance is within a few kilometers and that the 

orbital altitude is at least a few hundred kilometers.  This leads to the following, 

linearized estimations [32][40]: 
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Substituting the equation (4.12) estimates into equation (4.10) yields the following 
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Next, assume that the Target spacecraft is in a near circular orbit.  This 

assumption yields a simple estimate of the orbital angular velocity, in radians per second, 

as 

 3r
µω =  (4.14) 

Based on this estimate the angular velocity is constant, therefore the angular acceleration 

is zero ( 0=ω ).  These assumptions yield the simple linearized equations known as the 

on Clohessy-Wiltshire equations 
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where the acceleration due to control actions  is zero for freely orbiting spacecraft. 
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These equations can be written in general state space form, x Ax Bu= +  and 

y Cx= , with the following six states 
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 (4.17) 

The nonlinear coupling weakens as the range between spacecraft decreases and 

remains much smaller than the Target’s orbital radius [41].  These state space equations 

can be evaluated for controllability, observability, and stability.  The linear system is 

completely controllable, since the controllability matrix, cQ , is full rank.  

 . . . 1n
cQ B AB AB −⎡ ⎤= ⎣ ⎦  (4.18) 

and completely observable, since the observability matrix, oR , is also full rank. 
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The unforced relative dynamic system is unstable, since the six eigenvalues of the 

A  matrix consists of two repeated roots at zero and two repeated imaginary complex 

pairs.  For the zero relative velocity initial condition, the stability of the system can be 

conceptually thought of as a two axis of stability along the eigenvectors of the zeros and 

planes described by the complex eigenvalues related vectors.  Relatively close initial 
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Chase spacecraft positions along the S-axis, will stay within a bound and may be 

considered equilibrium points.  Also, there is an axis slightly off of the S-axis with 

velocity changes along the same axis which may be considered an axis of equilibrium.  

However, the Chase spacecraft must meet the condition of being relatively close, within a 

few kilometers, and near the same circular orbit as the target spacecraft.  The other 

possible equilibrium locations may be considered dynamically unstable due to their strict 

dependence on both position and velocity relationships.  These purely imaginary 

eigenvalues explain the oscillatory behavior of spacecraft relative dynamics.  The system 

stability is further addressed in Chapter VII.D. 

Using the same orbits as shown above, the linear relative motion of the Chase 

spacecraft’s elliptical orbit with respect to the Target spacecraft’s circular orbit is shown 

in Figure 4.4. Once again, the y-axis is the radial axis from the Earth and the x-axis is the 

transverse position of the Chase spacecraft, with the velocity vector to the left.  Notice 

that the motion of the Chase spacecraft is now periodic and does not drift due to 

eccentricity of the Chase orbit. 
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Figure 4.4 Linear Relative Motion. 

 

Next, Figure 4.5 shows both the linear and nonlinear motions on the same plot.  

The Clohessy-Wiltshire equations track the true relative motion for short time periods.  

The absolute relative differences between the nonlinear and linear equations for the orbits 

are shown in Figure 4.6.  In this instance, the Clohessy-Wiltshire equations vary less than 

70 meters from true for the first 30 minutes of the orbital propagation.  As a practical rule 

of thumb, any step duration longer than a quarter of an orbital period should be avoided 

due to the 90°  rotation of the RSW coordinate system.  The set of ordinary differential 

equations, in equation (4.15), have been used extensively in rendezvous and docking 

algorithms.  They have been useful in analyzing trends for initial positions and velocities 

[32].  The relative motion equations of the spacecraft can be further simplified into a state 

transition matrix form; refer to Chapter IV.C. 
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Figure 4.5 Comparison of Relative Motion. 

 
Figure 4.6 Absolute Difference in Relative Position. 
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C. STATE TRANSITION MATRIX FOR RELATIVE MOTION 

The unforced ordinary differential equations, in equation (4.15), can be solved 

using Laplace operators.  The solutions of these Clohessy-Wiltshire equations are known 

as Hill's equations.  The position solutions, based on constant initial values, [32] are 
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where the 0x , 0y , and 0z  are the initial position values and 0x , 0y , and 0z  are the initial 

velocity values for the Chase spacecraft with respect to the Target spacecraft's RSW 

coordinate system.  The velocity solutions [32] are 
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The R and S coordinates are still closely coupled, and the W term is a simple harmonic 

oscillator. 

The position and velocity equations can be placed into general state-space form 

 0( )X t X= Φ  (4.22) 

where )(tX  is the current state vector, Φ  is the state transition matrix, and 0X  is the 

initial valued state vector.  The state vector is composed of the position and velocity of 

the Chase spacecraft, defined as 

 [ , , , , , ] [ , ]T TX x y z x y z r r= =  (4.23) 

The state transition matrix relating to this state vector is 
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 (4.24) 
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where A, B, C, and D [40] are given as 
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This state transition matrix can be used to efficiently calculate the initial and final 

velocity of the Chase spacecraft required to achieve a desired position.  Any required 

magnitude change in the Chase spacecraft's velocity corresponds to thruster firings, 

denoted as v∆ .  All necessary v∆ 's can be summed and used as a measure of the cost of 

the spacecraft's maneuver.  The minimum total v∆  maneuver can be determined as a 

baseline for evaluating controller command performance.  This will be discussed in more 

detail in Chapter IV.D. 

 

D. OPTIMAL TWO IMPULSE RENDEZVOUS 

The co-planar two thrust maneuver, based on the Hohmann transfer concept, is 

the classic way to plan the rendezvous of two spacecraft.  The Hohmann maneuver is 

mathematically accepted as the most fuel efficient transfer between two circular, and 

elliptical, planar orbits [44].  The maneuver, first suggested by Walter Hohmann in 1925, 
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involves two tangential thruster firings for start and stop of the transfer [45].  The two 

thruster firings are each approximated as impulse changes in velocity.  This maneuver 

minimizes the v∆  required, but takes a longer time to complete the maneuver.  The 

maneuver time is one half of the transfer orbit's period.  There are cases where Hohmann 

transfers can be used in series, called bi-elliptic transfers, in order to achieve less v∆  

[32].  The two impulse rendezvous maneuver can be used for fuel efficiency comparison, 

and the bi-elliptical maneuver will not be explored in this research.  This orbital transfer 

maneuver is a classic example of a known fuel efficient result, which can be used to 

validate the high-fidelity six DOF spacecraft model. 

The two impulse maneuver is not physically possible or practical for spacecraft 

close proximity operation.  The impulse velocity change is physically impossible for a 

spacecraft with non zero mass and momentum.  The force required to gain the desired 

impulsive is not usually possible with the thrusters onboard spacecraft.  Additionally, the 

second impulse occurs at the goal position and does not leave much safety margin. 

Position uncertainties and rapid convergence at the rendezvous of two spacecraft make 

the second impulse undesirable.  Despite these limitations, the two impulse maneuver 

serves as a baseline for minimum fuel efficiency and maximum duration of a spacecraft 

maneuver between two points.  Therefore, the two-impulse maneuver is useful, as the 

baseline, for comparing the performance of spacecraft maneuver control algorithms. 

The Hohmann maneuver thruster firings are predetermined to take place at a time 

corresponding to apogee of the initial and transfer orbit.  Small change in the time of the 

thruster firing can result in drastic variation in the v∆  for a general point-to-point 

transfer.  For evaluating the general point-to-point orbital transfer, rewrite the state-

transition matrix for a final position ( fr ) and velocity ( fr ) at some final time ( ft ) 
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where 0 0 0 0[ , , ]r x y z=  and 0 0 0 0[ , , ]r x y z=  are the initial relative position and velocity.  

The starting relative velocity of the Target and Chase spacecraft is selected to be zero, 
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such that the Chase and Target velocities are equal.  To calculate the initial velocity to 

intercept the Target position, equation (4.26) can be rearranged 

 1
0 0( ) (( ) ( ) )T T T

fr B r A r−= −  (4.27) 

where the inverse of B  is 
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For a given initial and desired final position, the final velocity can be calculated 

by substituting equation (4.27) into equation (4.26) to yield 

 1
0 0( ) ( ) [ (( ) ( ) )]T T T T

f fr C r D B r A r−= + −  (4.29) 

For the situation where the Chase spacecraft is starting and finishing at rest 

relative to the Target spacecraft, the total v∆  is determined by the initial and final 

velocities.  The initial change in velocity is 

 0 0v r∆ =  (4.30) 

and the final change in velocity is 

 f fv r∆ = −  (4.31) 

The final velocity, from equation (4.29), is the actual velocity of the spacecraft at the 

final position.  The final change in velocity needs to be counter act this velocity in order 

to stop the relative motion at the goal.  The total change in velocity of the maneuver is 

simply the sum of all of the two impulse changes in velocity 

 0 fv v v∆ = ∆ + ∆  (4.32) 

However, the value of v∆  depends on the time selected to perform the impulse 

thruster firings.  Therefore care must be taken in establishing the optimized v∆ , based on  
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a functional minimization algorithm which contains time dependent minima.  This is 

better illustrated in the following two examples, which can serve as a basis for 

comparison. 

In the first case, the Chase spacecraft is directly ahead of the goal position.  The 

Chase spacecraft is initially at [0, 70, 0] meters in the Target’s RSW coordinate system 

and maneuvers to the Target’s position of [0, 0, 0] meters.  For a data set sampled every 

second for approximately 20,000 seconds, using the state transition equations, determined 

in Chapter IV.D., yields maneuver duration of 

 16,278dt s=  (4.33) 

and a total optimized v∆  of 

 32.8636 10 /v m s−∆ = ×  (4.34) 

These results are comparable to those in [40].  The orbital maneuver could have been 

done more efficiently over a longer duration. 

In the second case, the Chase spacecraft is offset from a goal position.  The Chase 

spacecraft is initially at [50, -100, -50], maneuvers to the Target’s position of [0, 0, 0].  

For a data set sampled every second for approximately 20,000 seconds, the optimal time 

of transfer was determined to be 

 3,972sdt =  (4.35) 

which yields a total optimized v∆  of 

 0.19675 /v m s∆ =  (4.36) 

These results are on the same order of magnitude as those in obtained by [40].  

The optimal trajectory path will vary if the final time is allowed to vary.  Therefore, the 

optimal trajectory described here is a function of both the time and v∆  of the maneuver.  

Using different time constraints will result in different paths to the final position.  This 

idea can be applied to the situation where an obstacle is in the optimal path and a 

secondary path needs to be selected in order to avoid collision.  This will result in an 

efficient, but not v∆  optimal, trajectory. 
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Minimizing the v∆  based on the Clohessy-Wiltshire equations, will result in 

optimal trajectory for point-to-point transfer maneuver.  However, this maneuver is not 

flexible and is compromised if any course correction is necessary [40].  Small changes in 

desired waypoints or timing of the impulse thrust can result in large trajectory variations 

and offsets from the desired position.  However, these optimal solutions for minimum v∆  

maneuvers can serve as useful baselines against which an artificial potential field based 

control algorithm can be evaluated. 
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V. CLOSE PROXIMITY SPACECRAFT CONTROL 

A. CONTROL ALGORITHM DISCUSSION 
There are several different control strategies and schemes that may yield 

satisfactory results for a given scenario.  They all have advantages and disadvantages.  

These strategies range from strict single constraint optimal control to flexible adaptive 

control.  The optimal fuel controllers are useful for large spacecraft maneuvers which 

require minimum use of fuel.  While, the flexible adaptive controllers are applicable for 

spacecraft in deep space that are likely to experience large communications lags, sensor 

failures, and unknown situations.  By evaluating the disadvantages of each, it can be 

determined that neither would be ideal for close proximity spacecraft operations.  

Optimal path planners have the disadvantage of being too slow and computational 

intensive for real-time application in the presence of obstacles [19].  While, adaptive 

schemes tend to exhibit more arbitrary motion and require hierarchical structures to 

maintain fuel efficiency.  Although, previous consideration of artificial potential fields 

for on-orbit assembly [40], motivates the development and application of a potential 

function based controller for multiple spacecraft in close proximity operations. 

Optimal control is typically based on minimizing a single cost function, which 

may consist of many diverse parameters.  Various parameters, including distance, time, 

energy and path/sensor mapping can be optimized for path planning.  However, only one 

of these parameters can truly be optimal for any particular cost function.  All others 

parameters are treated as constraints.  As multiple parameters are included in a cost 

function the range of possible solutions exhibit the same weighting trade-offs as 

experienced in classical control with multiple gain tuning.  In order to perform path 

planning, knowledge of the spacecrafts’ working environment is required so that 

coordinate interaction can be determined.  With precise knowledge of the working 

environment and each spacecraft’s location, one may be able to specifically command 

and control all spacecrafts' interaction optimally with a centralized control scheme.  

However, one must allow for the exhaustive constraint evaluation, algorithm computation 

time, and universal spacecraft communication requirements which globally optimal 

algorithms require.  As the DOF of the spacecrafts’ spatial working environment and the 
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number of spacecrafts increase, the computation time increases dramatically.  For 

multiple spacecraft organization, in either 2D or 3D space, there are an infinite number of 

theoretical initial conditions and desired final configurations.  This requires calculation of 

the best course of action for each and every spacecraft at a specific point in time and then 

instantaneously commanded them into a precise course of action.  In addition, the 

simultaneous communication requirement between the centralized controller and each 

spacecraft is intensive. 

Due to the variable positions and attitudes that a group of satellites may be 

arranged in, a more flexible adaptive control algorithm may be desired.  Decentralized, 

adaptive and evolving control algorithms allow for variations in the environment and 

spacecrafts, but are seldom efficient.  As the environment changes, the robust controller 

can be designed to function even though the exact scenario was not anticipated.  Some of 

these adaptive controllers focus use genetic algorithms to allow each spacecraft to 

function with limited to no global knowledge or communication.  These schemes are 

harder to predict and may not even arrive at a solution to a reasonable spatial command.  

As the control system shifts in pursuit of better fitness in multiple spacecraft response, 

there is a delay in commanding.  The spacecrafts’ movements often appear clumsy and 

slow.  Although with proper development, autonomous and distributed functioning can 

replace strict control and centralization [46].  Simple spacecraft (insect like) self 

organizing theories may be interesting in order to show complex collective behavior.  

However, allowing for emergent behavior of spacecraft is not a risk that most space 

agencies, or companies, are willing to take with their multi-million dollar spacecraft.  

Therefore, it is desirable to have each spacecraft efficiently control their own action 

within the execution of an overarching general command. 

There have been a numerous spacecraft formation control schemes which are 

based on dual level algorithms.  The first level determines the overall position and 

orientation of the formation and the second level commands the individual spacecraft to 

achieve and maintain their desired position.  The selection of the position and orientation 

of the formation may be determined based on the mission or on the initial position of the 

spacecraft.  Both leader-follower and virtual structure formation approaches have 

advantages for rigid formation control [10].  However, neither is effective for multiple 
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spacecraft close proximity operations.  Use of a potential function algorithm can 

incorporate the favorable insensitivity to leader perturbation and limited communication 

requirement of leader-follower algorithms with the favorable coordinated behavior of 

virtual structures.  The primary attraction point of the potential field acts both as a leader 

and the geometric center of the virtual structure.  The attraction point does not have the 

single point of failure issues of a true leader and does not rely on the rigid relative 

positioning of a virtual structure. 

Previous spacecraft work usually limited collision avoidance to predictive states 

which must be include into maneuver planning.  These are based on numerically complex 

and computationally intensive uncertainty ellipsoids.  The results were collision 

proximity and collision probability indicators that needed to be looped back into mission 

planning decision schemes [47].  This processing may be acceptable for ground stations 

with access to space situational awareness data, but not typically practical for on-board 

control algorithms.  The direct inclusion of uncertainty information, such as disturbance 

or sensor covariance, into obstacle’s region of influence eliminates the need for 

uncertainty ellipsoid generation and propagation.  Even if these ellipsoids can be 

generated, they are highly dependent on sensor and communication reliability. 

The goal of this research is to develop an efficient control algorithm for use 

during proximity operations for distributed autonomous multiple spacecrafts.  The 

distributed nature of the spacecrafts will require that global knowledge is not available to 

each spacecraft [11].  A centralized controller is assumed not to exist, such that each 

spacecraft must perform their portion of the operation with local information and limited 

communications.  Each spacecraft must also perform efficient fuel consumption 

maneuvers, while avoiding collisions, and satisfying their commanded goal position and 

orientation.  The primary control algorithm is based on APF development from sensory 

inputs.  An overview of APF control and related topics follows. 
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B. ARTIFICIAL POTENTIAL FIELD (APF) OVERVIEW 

Artificial potential field functions have been used extensively in robot navigation 

and control [2][3][4][5][6][7][9][48].  The idea of the use of potential functions for robot 

tasking was pioneered by Khatib [2].  Khatib applied the problem to robot navigation for 

obstacle avoidance with perfect information.  The topological challenge of the use of the 

potential functions in feedback control laws in order to drive robots was explored by 

Koditschek [3].  The idea that a conservative system will settle toward the local minima 

of their potential energy, is extended to establish an artificial potential minima 

corresponding to an spacecraft’s goal position.  The goal position acts as an attraction 

point for the spacecraft.  Additionally, forbidden positions, such as obstacles, can be 

assigned sufficiently large potentials values such that the spacecraft is repelled from these 

regions.  The spacecraft moves along the negative gradient of the topographic potential 

field to approach the minimum artificial potential value in its environment.  Obstacle 

avoidance with perfect a priori information was further refined by Rimon and Koditschek 

[7].  Newman and Hogan [6] extended the application of potential functions for time 

varying goal and obstacles.  They showed that APF are effective in simple obstacle 

environments and safer than most path planning algorithms in highly dynamic 

environments. 

For static environments the artificial potential field and global minimums can be 

determined off-line.  However when the environment is unknown and the presence of 

obstacles are determined by on-board sensors, the local potential field is only known at 

that instant.  The real-time motion planning of the spacecrafts can lead to local 

minimums.  Overcoming the presence of undesired local minimums can be difficult due 

to the complex shape of potential obstacles. Although, there are various ways to 

overcome the local minimum problem, including defining artificial potential fields that 

only have a minimum at the goal position and developing methods for escaping from 

local minimum [4].  Due to the limited number of obstacles in the spacecraft environment 

and the dynamics of motion, local minimums do not tend to occur.  However, as multiple 

spacecraft converge to a goal position they pack into a spherical goal region which may 

cause each spacecraft to chatter about a local minimum.  Also chattering can occur during 

passage between two obstacles.  The  repulsion field of the obstacles may influence the 
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APF based controller to bounce back and forth between the obstacles as it passes between 

them.  Precise and smooth motion around obstacles may require an spacecraft to look-up 

pre-computed information about obstacles in a respective region and adjust the potential 

field accordingly [48].  Adjustment of repulsive fields around obstacles and time 

dependent smoothing of potential field was used, along with sliding mode control, by 

Guldner and Utkin [48] in order to navigate robots about fixed obstacles.  Refinement of 

the obstacle repulsive field may be incorporated into the control algorithm by using 

minimum communication to periodically update the position of cooperative spacecraft.   

As the spacecraft rendezvous and approach docking, multi-spacecraft control may 

necessitate task assignment among the spacecrafts.  Order of docking and servicing may 

matter either due to heterogeneous functions of each spacecraft or efficiency of relative 

motion.  The distribution of tasks and computation may require the development of a 

communication protocol.  Sliding mode swarm control, with artificial potentials was 

further developed by Gazi [5][9].  Yang et al. [1] proposed a fuel optimal spacecraft 

formation reconfiguration using multi-spacecraft task assignment.  They established a 

communication protocol which allowed for optimal distributed control algorithm to select 

the most fuel efficient task for each spacecraft based on the cost to the entire group.  A 

similar communication algorithm seems promising for terminal convergence of 

spacecraft using a potential field based control algorithm.  This docking stage with 

multiple spacecraft can also be considered the terminal phase of on-orbit assembly [49].  

This final stage may require that the local attractive potentials be re-assigned or 

proportionally weighted for each spacecraft.  Since assembly sequences can and usually 

are predetermined before launch, it may be possible to design the docking behavior into 

the control algorithm.  In addition, predictive and smoothing filters may be applied to the 

potential field as finite control resources allow. 

Artificial potential field guidance was considered for orbital vehicles by C. R. 

McInnes in 1993 [50].  It has been expanded to consider distributed control [51], 

autonomous rendezvous with fixed obstacle avoidance [52], autonomous control of on-

orbit assembly [40], and fuel efficiency constraints for cluster formation [53].  Recent 

application of potential functions in controlling swarms of micro-utility spacecraft also 

shows promise [54][55].  This research explores the use potential function based on 
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velocity error, as opposed to position errors, for controlling a small spacecraft.  In 

general, the artificial potential shows promise in stable rendezvous, collision avoidance, 

while maintaining reasonable fuel efficiency.  Autonomous and distributed development 

of local potential field algorithm depends on local sensor information.  With very little 

communication requirements, cooperative spacecraft obstacles and unknown obstacles 

can be delineated.   

Knowledge about cooperative spacecraft can be used to refine obstacle avoidance 

potential fields.  This may be especially useful for terminal stages of the docking.  In 

addition, the space environments itself is relatively obstacle free and most potential 

obstacles can be characterized by size.  The knowledge that unknown obstacles larger 

than a few meters in diameter are highly unlikely, is useful when estimating an obstacles 

region with only surface detection sensors.  In addition, obstacles crossing the orbital 

path will usually be at high enough velocity that collision avoidance maneuvers are not 

necessary or possible for a small satellite with local sensor information.  These sorts of 

cosmic collision avoidance require guidance control from higher level system with access 

to additional information. 

The determination of the local potential filed is dependent on the local sensor 

information and limited communication of cooperative spacecraft current states. 

However, the APF control algorithm can be refined to be made more efficient.  The 

initial definition of the APF control algorithm is usually forced to choose between 

absolute collision avoidance, stable convergence, or optimal fuel efficiency.  Exploration 

and refinement of a time varying control algorithm, based on analytic potential functions, 

should be able to ensure collision-free, Lyapunov stable, and near-optimal fuel efficiency.  

True fuel optimization would require global knowledge, intensive computations, and 

centralized coordination between all group spacecraft.  Local knowledge and limited 

communication/coordination with function constraints will not give the fuel minimized 

solution.  However, simple iterative optimal schemes may be computationally practical 

while improving efficiency. 

The control of the spacecraft is based on recursively stepping through an APF.  

The potential field is time varying as the sensor readings are updating.  This potential 
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field is evaluated by the control algorithm in order to determine an instantaneous step size 

and direction for the control actuators.  The step size is translated into thruster firing 

duration. The orientation of the thrusters must allow for motion along the opposite of the 

potential field’s gradient.  Steepest Descent algorithms restrict the search direction 

orthogonal to the contour lines.  Refer to Appendix A for a full discussion of optimal 

search algorithms.  In some instances convergence performance may be improved if the 

search direction is adjusted to be conjugate.  This usually means more steps are required 

for convergence.  In fact, convergence is not guaranteed.  However, having a known 

location of the goal position will allow us to force convergence by using this position 

information to limit the influence of any possible local minimums.  A fuel efficient time-

varying potential field control algorithm can be developed for autonomous, distributed 

spacecraft close-proximity operations, to include rendezvous and docking maneuvers. 

 

C. PATH PLANNING CONTROL SCHEME 
Typical path planning algorithms presume a priori knowledge of the spacecraft’s 

geometry and environment.  The algorithm establishes an optimal trajectory based on 

some cost function.  Then the controller tracks the spacecraft along the trajectory al 

closely as possible.  An example of a current satellite trajectory optimization model is 

presented in [45].  These types of optimal controllers are designed to minimize fuel for 

during large spacecraft maneuver or long term formation maintenance.  Designing these 

fuel efficient maneuvers for a single vehicle is time consuming, involving iterative check 

to ensure minimization of fuel consumption.  This translates into heavy processing 

requirements that seem to be beyond the current on-orbit capability.  These optimized 

controllers seldom account for multiple spacecraft and the spatial interactions between 

spacecraft.  They typically are only concerned with moderately static formation 

maintenance, such as in [56].  If they do address collision avoidance, by defining a 

relatively larger safe distance constraint in their performance evaluation, the results are 

usually over constrained and one can question weather these methods are the most 

effective in time or energy.  For an example of a trajectory planning algorithm related to 

collision avoidance during docking; refer to Breger and How’s research [57].  The 

existence of numerous constraints often results in trajectory planning that is not obvious 



66 

and computationally intensive.  Additionally, in a dynamic environment with 

maneuvering obstacles or limited environmental knowledge the optimal control must be 

iteratively computed and updated.  For autonomous distributed control there is a much 

simpler solution. 

Instead of focusing on the computational intensive optimal solution for every 

possible multiple spacecraft scenario, a feasible, fuel efficient, and safe solution for 

robust, autonomous, and distributed close proximity operations is desired.  In order to 

satisfy these requirements, a suitable potential function based closed loop feedback 

control approach was researched.  This control strategy allows for complex multiple 

spacecraft behaviors to arise from simple single vehicle action.  It is generally true that as 

spacecrafts move from their initial position into the new commanded position, or 

configuration, they must avoid collision with each other and potential obstacles. This is 

especially true in orbital operations, where obstacles may include portion of the launch 

vehicle and unresponsive spacecraft.  This collision avoidance in path planning has 

usually been neglected for spacecraft, due to the large working space and relative 

distance in which spacecraft usually operate.  However, for proximity operations of 

spacecraft constellations, formations, and swarms/clusters the control of the spacecraft 

must also consider the relative motion of each spacecraft.  As selected spacecrafts 

converge or disperse in a controlled manner, each must maintain a collision free path.  If 

the relative motions are too fast then control forces and torques may reach saturation and 

risk overshoot and collision [49].  If the relative motions are too slow the orbital 

perturbations in close proximity will cause excessive control to maintain safe positioning.  

The selection of velocity dampening terms in the potential field is dependent on the 

spacecraft’s dynamic environment the actuators responses [3].  The total effect of the 

spacecraft motion can be spring-like as the spacecraft is pulled toward goals and pushed 

away from obstacles. 

Proper selection of attraction and repulsion potential values for the multiple 

spacecraft environment offers promising navigation results.  The selection of attraction 

potentials approaches the fuel and time optimal solutions.  The resulting maneuvers tend 

to differ from a true minimum fuel maneuver moderately due to the short time constraints 

and consideration of multiple parameters.  The selection of repulsion potentials around 
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obstacles and group spacecraft serves as collision avoidance.  Sequential calculations of 

the repulsion potential for converging spacecraft can be considered a near-miss penalty 

function [53].  The superposition of the goal and obstacle potentials function results in a 

local artificial potential field for the spacecraft.  By descending the lowest path toward 

the minimum values, the spacecraft approaches the goal similar to a stream flowing down 

a hillside. 

The close proximity operation may be considered complete once the total velocity 

of the spacecrafts falls below a certain threshold within a desired spatial region.  The 

potential function is not static, due to its dependence on the relative position of 

spacecrafts and obstacles.  Also, sensor uncertainties, dynamic perturbations, and non-

ideal actuators affect the rate of change of the potential function.  Therefore, as the 

spacecrafts converge on the final close-proximity goal position they may be subject to 

chattering phenomena [5].  Resolving chattering usually requires rigorous analysis of the 

control commands and model uncertainties. 
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VI. APF CONTROL ALGORITHM APPROACH 

The control of multiple spacecraft during close proximity operations by 

implementing a recursive APF based algorithm was explored.  A robust and unique APF 

with collision avoidance control algorithm was developed for close proximity spacecraft 

missions.  The APF relates position based potentials to modify the Chase spacecraft 

desired velocity.  The collision avoidance used the obstacle positions to dampen the 

Chase spacecraft velocity components in the direction of obstacles.  The use of Chase 

spacecraft positioning and velocity relationships in the APF gains allows for 

straightforward adjustment for spacecraft constraints.  Additionally, relative positioning 

logic limits the effect of obstacles for precision missions, such as docking.  Successful 

simulations for multiple spacecraft during simultaneous maneuvering for convergence, 

rally, rendezvous, docking operations were conducted.  Refer to Chapter VIII for 

simulation analysis details.  

The artificial potential field of each spacecraft is determined by the arithmetic 

superposition of the goal and all obstacle potential functions in its working area [6].  The 

APF is an intuitive geometric method of determining the behavior of groups of robots 

[58].  The overall potential field will serve as the performance surface for the control 

algorithm, of the form 

 g oV V V= +  (6.1) 

where gV  is the attractive potential of the goal point and oV  is the repulsive potential of 

obstacles [59].  Selection of the potential functions is critical in ensuring smooth potential 

fields that are stable and provide the desired performance.  It may be useful to think of 

APF control algorithms as being geometrically based, with ranges to the goal and from 

obstacles being the primary influences on performance.  One strategy to selecting 

potential functions is to base them on the desirable characteristics of Lyapunov functions; 

refer to Chapter VI.A.  Selection of a potential function with the minimum at the goal 

position can be used to attract spacecraft; refer to Chapter VI.B.  In addition, potential 

functions with relatively large maximums can be used to push away spacecraft; refer to 

Chapter VI.C.  Generally, the most elementary functions that can characterize an obstacle 
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will yield the best results.  In 3D space, spherical or ellipsoid shape obstacle fields are 

effective in minimizing local minima.  However, the obstacle must have a repulsive field 

in order to ensure collision avoidance.  The challenge is to define a region of influence 

around obstacles.  If the obstacle region of influence is too large, it will severely limit 

motion and causes excessive avoidance.  On the other hand, if the obstacle region of 

influence is too small then collision with the boundary is possible. 

 

A. LYAPUNOV STABILITY FOR POTENTIAL FUNCTIONS 

The stability of a dynamic system is of interest when engineering a control 

algorithm.  The description of potential function stability with respect to a dynamic 

system is generally heuristic.  One conceptual method of generating a stable control 

algorithm is to apply the concept of Lyapunov stability.  The definitive papers of Kalman 

and Bertram [60][61] applied the Lyapunov method to a wide variety of control 

problems.  The basic concept is that for any isolated system, if the rate of change of the 

energy is negative except for a single minimum equilibrium point, then the energy of the 

system will continue to decrease until the system arrives at the equilibrium point.  This 

idea can be expanded into a mathematical definition. 

A dynamical system, with states ( x ) is asymptotically stable about some 

equilibrium point ( ex ) if there exists a Lyapunov function , ( )V x , with the following 

properties: 

1)  Lyapunov function is positive definite, except at equilibrium point. 

 ( ) 0 eV x except at x x> ≠  (6.2) 

2)  Rate of change of Lyapunov function is negative definite, except at 

equilibrium point: 

 ( ) 0 eV x except at x x< ≠  (6.3) 

3)  Lyapunov function is zero at equilibrium point: 

 ( ) 0eV x =  (6.4) 

4)  Rate of change of Lyapunov function is zero at equilibrium point: 
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 ( ) 0eV x =  (6.5) 

The asymptotic stable equilibrium point can be considered global asymptotically 

stable if it is the only equilibrium point in the domain and the Lyapunov function is 

radially unbounded.  A more formal, rigorous, and complete mathematical discussion of 

stability can be found in [62]. 

The Lyapunov function can be extended into a term referred to as a potential 

function.  The potential function can be thought of as a topographical representation of 

the state vector of a dynamical system with respect to a desired goal.  The system can be 

driven toward equilibrium based on the rate of change of the potential function.  A 

sample potential function, shown in Figure 6.1, converges in the direction of the negative 

rate of change.  Figure 6.1 shows a 3D plot of quadratic function with the equilibrium 

located at the origin of the R-S plane.  This quadratic function meets all of the above 

properties of a Lyapunov function.  This type of equilibrium point is often referred to as a 

stable node, or minimum. 

 
Figure 6.1 Simple Quadratic Function. 



72 

The same quadratic function is shown on a contour plot, Figure 6.2, with lines of 

equal potential appearing as concentric ellipses.  Vectors of positive slope point toward 

the outside of the contour ellipses and away from the minimum at the origin, while the 

vectors of negative slope point toward the inside of the contour ellipses and in the general 

direction of the minimum point.  The steepest slope is characterized by the gradient 

vector, which is perpendicular to each contour ellipse.  The negative gradient is the path 

of the Steepest Descent toward the minimum.  Refer to Appendix A for discussion of 

Steepest Descent search method. 

 
Figure 6.2 Simple Contour Plot. 

 

Since the potential function based on the state vector is a Lyapunov function, it 

maintains the same characteristics listed in equations (6.2) - (6.5).  For instance, any path 

following the negative rate of change will arrive at the equilibrium point. 
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B. GOAL POTENTIAL FUNCTION 

The goal potential is the minimum potential in the spacecraft working area.  This 

equilibrium point serves as the global attraction point for the Chase spacecraft.  A simple 

quadratic goal potential function based on the relative position of the Chase spacecraft to 

the goal position is 

 ( ) ( )
2

g T
g c g c gV r r r r

λ
= − −  (6.6) 

where cr  is the relative position vector of the Chase spacecraft, gr is the relative position 

vector of the goal, and gλ  is a non-negative scaling parameter.  The quadratic nature of 

this potential function V  ensures that it is positive semi-definite, such that it is positive 

for all values of  c gr r≠  and zero only at c gr r= .  This potential function takes advantage 

of the useful characteristics of both performance functions and Lyapunov functions. 

Next, ensure that this goal potential function rate of change is negative semi-

definite.  Differentiating the goal potential function, equation (6.6), yields the following 

 ( )T
g g c gV r r vλ= −  (6.7) 

where v  is the velocity vector of the Chase spacecraft.  The control algorithm ensures 

that the rate of change of the potential function is negative for any c gr r≠  and zero when 

the Chase spacecraft arrives at the goal position, c gr r= .  This requires that Chase 

spacecraft velocity is maintained along vectors toward the negative slope of the potential 

function.  The desired velocity of the Chase spacecraft may be determined as 

 g g
Vv k
V

∇
= −

∇
 (6.8) 

where gk  is a positive parameter or a magnitude shaping function [40] and V∇ is the 

gradient of the potential function.  The normalized gradient function points the Chase 

spacecraft in the Steepest Descent direction, so that V is always negative semi-definite.  

The selection of gk  determines the convergence of the control algorithm by relating the 
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potential function to a convergence velocity.  Large values of gk  cause the algorithm to 

converge quickly toward the area of the goal position, but oscillate around the actual goal 

position.  Small values of gk  ensure slow steady convergence toward the goal position in 

a damped manner.  This is the more desirable of the possible behaviors for spacecraft 

rendezvous; however convergence to the goal may take more iterations and longer 

amounts of time.  The maneuver is controlled along the Chase spacecraft’s relative 

velocity vector coinciding with the Steepest Descent approach. 

The shaping function, gk , can be directly related to the actuator, such as on-off jet 

thruster performance.  The shaping function can be tuned for different spacecraft by 

taking into consideration the minimum thrust pulse duration.  The thruster mapping 

algorithm for transforming the control algorithm commands into the thrust components is 

not considered as part of the APF development.  This mapping is dependent on the 

thruster configuration and performance on the specific spacecraft. 

 

C. OBSTACLE POTENTIAL FUNCTION 
An obstacle potential aids the spacecraft to avoid collisions.  The obstacle 

potential is a useful tool for avoiding special regions.  For instance, free orbiting objects 

and regularly maneuvering spacecraft may be avoided.  However, collision avoidance is 

not intended for active evasion of high-speed celestial objects.  The location of an 

obstacle may be from a priori information, such as known space debris in a particular 

orbit.  Otherwise, obstacle location information may come from onboard proximity 

sensors.  If the obstacle is known to be another spacecraft then its size and center of mass 

can be estimated in order to refine the obstacles potential function.  The center of mass 

and geometric center of an obstacle can usually be assumed to be the same. Otherwise, a 

Chase spacecraft’s local range sensor may be the only information on which to base the 

obstacle potential function.  In this case, the obstacle potential function region of 

influence must be larger or equal to the actual physical region occupied by the obstacle.  

It is assumed that the slight loss of fuel efficiency due to over estimating the size of an 

obstacle is worth the effective execution of collision free navigation. 
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The goal potential and attractive potential can be formulated separately, but must 

have properly scaled parameters in order to allow for the desired system motion [58].  An 

obstruction potential function, based on [52] and [40], is 

 

( - ) ( - )Tr r r rc o c o

o oV e σλ
−

=  (6.9) 

where or  is position vector of the obstacle, oλ  is a scaling parameter for the size of the 

potential function, and σ  is the standard deviation of the region of influence.  This 

potential function is a Gaussian with oλ  and σ  selected to ensure that the obstacles 

region of influence ( oD ) is equal to or larger then the actual dimensions of the object to 

be avoided.  Numerous candidates could be selected for the obstacle avoidance function, 

such as spherical power-law and super quadratic functions.  However, these functions are 

more complex to define and generate then the Gaussian function and do not guarantee 

better performance [40].  This complexity would require more a priori of the obstacles, 

which is not assumed in this research. 

Previous obstruction potential functions have been scaled in order to be equal or 

greater than the goal potential at the initial position [52].  This selection is 

mathematically useful so that the obstacle potential is large enough to ensure that the 

Chase vehicle avoids the obstacle region.  However, a potential function based only on 

relative positions may result in circular local minimums around obstacles.  Also in the 

presence of multiple obstacles, the global minimum may be shifted due to the 

superposition of obstacle potentials [52].  If the APF function is purely position based 

then velocity variations may cause unacceptable overshooting position oscillations in the 

region of obstacles and the goal location. Relating the potential function with Chase 

vehicle’s desired velocity may eliminate such performance limitations.  The proper 

consideration of velocity in the application of APF methods is essential for application on 

practical systems with limited actuation.  The velocity relationship can be included of as 

a velocity error potential function, as in [54] and [55], or as coupled relative state APF, as 

in [63][64].  The coupled relative state APF is developed in this research as a position 

based APF which drives the desired velocity.  The magnitude and slopes of the potentials 
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are driven by the relative position between the Chase spacecraft and the goal and 

obstacles.  A novel selection of the APF relationships and parameters for the multiple 

spacecraft was determined. 

 

D. APF FOR MULTIPLE SPACECRAFT PROXIMITY OPERATIONS 
The APF can be refined for application to the multiple spacecraft close proximity 

operation.  The goal and obstacle APF functions for relative spacecraft dynamics was 

selected for precision of relative position, steady convergence, and control efficiency.  

The simplified APF control block diagram is shown in Figure 6.3. 

 

 
Figure 6.3 APF Control Block Diagram. 

 

The goal, or attractive, potential remains the same as quadratic equation (6.6), 

with the positive scaling parameter 1/ 1/ ( )g cg c gr r rλ = = − , such that 

 1
2g cgV r=  (6.10) 

This goal potential function results in a linear scaling of the range.  Range maintains a 

positive semi-definite relationship based on the vector normalization. 
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Application of APF to the spacecraft environment requires very careful 

considerations of acceptable relative velocity.  Stable relative orbital dynamics and 

limited spacecraft translational actuation seriously limits acceptable velocity magnitudes 

and variations.  Due to these spacecraft relative dynamics and control relationship, the 

goal APF is used to determine the spacecraft desired velocity in an exponential manner.  

This acts as a damping of the rendezvous dynamics necessary for position precision in the 

presence of actuator limitations.  This goal potential is used to scale the desired relative 

velocity of the Chase spacecraft, as in equation (6.8).  The desired velocity magnitude 

shaping function gk  is a positive semi-definite shaping function.  The shaping function, 

gk , was determined to be 

 
( )( )max

max

1 g ginit
g

b Vrk v e
r

−⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (6.11) 

where the ratio of the initial range, initr , and maximum range, maxr , linearly scales the 

maximum relative velocity, maxv .  The variable, gb , is used to shape the exponential 

decay.  The value allows for slower decay, and can be scalable to the initial conditions of 

the Chase spacecraft, such as 

 max1
g

g init

rb
d r

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (6.12) 

where gd  is a positive scaling constant.  In this research 17gd =  was selected for 

favorable velocity decay characteristics.  The initial position determines the initial desire 

velocity magnitude which is exponential shaped as the Chase spacecraft approaches the 

goal position.  The resulting Chase spacecraft’s desired velocity, based on the attraction 

toward the goal position, is 

 
( )( )max

max

1 g g cginit
g g

cg

b V rrVv k v e
V r r

−⎛ ⎞∇
= − = − −⎜ ⎟∇ ⎝ ⎠

 (6.13) 



78 

This desired velocity shaping function decreases the Chase spacecraft desired 

velocity as it approaches the goal.  Based on an assumption of zero starting relative 

velocity, the initial velocity transient is often large and causes the control actuator to 

saturate.  In order to avoid this saturation an exponential ramping function, Rk , can be 

added to Equation (6.13), such as 

 
( )( )max

max

1 g g cginit
g R

cg

b V rrv k v e
r r

−⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (6.14) 

where this velocity ramping term can be represented as 

 ( )1 tR
R

init

dk e
r

−= −  (6.15) 

For this research the velocity ramping constant, Rd , was selected to be 10Rd = .  This 

allowed for more comparable performance with the control algorithm developed in 

Chapter VII.  This ramping term only influences the initial velocity transient by allowing 

a more gradual increase related to the start-up of the control algorithm and the initial 

range from the goal.  For instance, maneuver of approximately 100 meters result in a 

ramp up to the maximum velocity is about 60 seconds. 

The actual relative velocity is subtracted from the desire velocity to determine the 

v∆  required by the control effort.  This desired change in velocity is used to determine 

the Chase spacecraft’s desired control actuation, in terms of acceleration 

 
( )g

g

v v
a

t
−

=
∆

 (6.16) 

The goal potential allows for convergence to the goal position, however an 

obstacle potential is required to avoid collision with other spacecraft and sensed objects.  

The obstacle avoidance function is best thought of as a damping of the geometric forces 

toward an obstacle, such as relative velocity and acceleration.  Due to the manifold of 

relative dynamics, actual pushing away from an object can lead to instability.  The 

obstacle potential selected to be a Gaussian function of the form 
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2 2

2 22 2
co or D

o oV e eσ σλ
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (6.17) 

where , cor  is the distance from the Chase spacecraft to the center of the obstacle, oD  is 

the region of influence from the center of the obstacle, σ  is the standard deviation of the 

bell-shaped curve, and oλ  is a positive function which serves as a repulsive potential 

magnitude shaping function.  The repulsion potential curve is a smooth function that 

increases from the boundary of the region of influence to the surface of the obstacle.  A 

smooth transition is ensured by subtracting the value of the Gaussian function at the edge 

of the region of influence.  The employment of a Gaussian function allows for direct 

implementation of uncertainty in an obstacle state. The shaping parameter oλ  is used to 

ensure that the value of the repulsive potential at the obstacle surface is equal to the initial 

attraction potential.  The obstacle shaping parameter used in this research is 

 

2 2

2 2

1

2 2

2

o oL D

init
o

r e eσ σλ

−
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠
⎝ ⎠

 (6.18) 

where oL  is the exterior surface radius of the obstacle, such as another spacecraft.  The 

region of influence of the obstacle, oD , and the standard deviation, σ , are functions of 

the size of the obstacle, oL .  This selection of oλ  ensures that the value of oV  equals the 

initial value of gV  at the surface of the obstacle.  The region of influence, oD , is 

determined from the size of the obstacle, the velocity of the Chase spacecraft, v , and the 

maximum acceleration, maxa , allowed by the control actuation.  The minimum stopping 

distance, stopD  required by a spacecraft is determined as 

 

2

max4stopD
v
a

=  (6.19) 

This functional link allows the speed and responsiveness of the Chase spacecraft in the 

rendezvous region to determine the buffer distance which is required for obstacles. 
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 ( )oo o stopD d L D+=  (6.20) 

where the constant multiple factor, od  allows for a smooth breaking region for avoiding 

impact with obstacles.  For this research, 3od =  was selected for favorable avoidance 

characteristics.  The standard deviation σ  is selected so that the obstacle surface is 

within one standard deviation as the spacecraft velocity approaches zero, such that 

 3
oDσ =  (6.21) 

This relationship allows a reasonable safety region around obstacles and a smooth 

Gaussian repulsive potential function.  The velocity change due to applying maximum 

thruster acceleration is shown in Figure 6.4.  From an initial velocity and a maximum 

acceleration the minimum stopping distance is determined by equation (6.19) and the 

resulting velocity during the braking is shown as a solid line.  The actual braking can not 

be steeper than this maximum condition.  Using the obstacle shaping parameter, equation  

(6.18), and the standard deviation, equation (6.21), a smooth Gaussian velocity change 

can be commanded, as shown as a dashed line.  Notice that both functions are equal to 

zero at the obstacle’s outer surface.  For practical application the Gaussian must not be 

steeper than the maximum braking condition at any point.  Also, the area of the 

maximum stopping function must be less to the area under the Gaussian curve.  This is 

achieved in the algorithm by using the three standard deviations with an additive term. 
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Figure 6.4 Spacecraft Velocity in Obstacle Region. 

 

However, application of this position based obstacle repulsion potential requires that it is 

related to the attractive potential.  This obstacle potential is used to modify the desired 

relative velocity of the Chase spacecraft, as in equation (6.8).  The desired velocity 

shaping function ok  is a positive semi-definite shaping function used push the Chase 

spacecraft away from the obstacle.  The shaping function, ok , was determined to be  

 

2

g o
o

init

k V
k

r
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6.22) 

This unique shaping function allows for ok  being equal to gk  at the surface of the 

obstacle.  The resulting Chase spacecraft’s desired velocity due to the obstacle, based on 

the repulsion away from the obstacles position, is  
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2

g oco co
o o

initco co

k Vr rv k
rr r

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6.23) 

The obstacle shaping function dampens the Chase spacecraft approach in the 

direction of the obstacle as spacecraft advances toward the goal position.  Proper 

selection of damping based on components of the relative velocity vector results in a 

smooth flow around spherical obstacles.  Additionally, this insight and use of damping 

shaping functions should eliminate of any possible narrow passageway oscillations, such 

as discussed by Masoud [65].  The attraction velocity vector of the goal is toward the 

goal position and the repulsive velocity vector of obstacles away from each obstacle.  The 

effect of each obstacle within the spacecraft’s spatial region is summed in order to 

achieve the total repulsive force on the Chase spacecraft.  The total control force is 

determined by vector addition of the potential derived velocity minus the current actual 

velocity vector of the Chase spacecraft, as 

 
0

n

g o
obs

total

v v v
a

t
=

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠=
∆

∑
 (6.24) 

where the number of obstacles is not limited, but can result in Chase spacecraft not being 

able to arrive at the goal location.  Obstacles may be other spacecraft or stationary 

exclusion zones.  The other spacecraft are generally moving relative to the Target and 

Chase spacecraft.  In this research, other spacecraft are typically additional Chase 

spacecraft converging toward a goal within the same region.  Stationary obstacles are in a 

fixed position relative to the goal location.  These may be extensions of Target spacecraft 

or exclusion zones due to physical objects, such as solar panels, or nonphysical items, 

such as thrust plume or radiation beam regions [52]. 

Selection of the magnitude of the repulsion shaping function must be related to 

the attraction shaping function in order to achieve desired critically damped performance.  

Proper selection of a repulsion shaping function based on the attraction shaping function 

allows for safety in selecting goal positions and efficiency when avoiding obstacles.  For 

instance if the region of influence of the obstacle is too small and the slope of the 
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repulsive potential shaping function is too steep then a thrust limited actuator may not be 

able to avoid collision with the obstacle.  On the other hand, if the obstacle region is too 

large then the Chase spacecraft may be less efficient in both control effort and maneuver 

duration as it avoids obstacles. 

An obstacle’s repulsive region of influence causes a potential minimum or saddle 

point to occur in the area between the obstacle outer region of influence and the surface 

of the obstacle.  The location of this local minimum depends on the obstacles location 

with respect to the goal position.  This local minimum can cause difficulty if the overall 

potential function is the only driving function for determining control effort.  However, 

the attractive and repulsive desired velocity shaping functions, gk  and ok  respectively, 

allow for velocity damping around regions of concern.  This ensured that the Chase 

spacecraft slows as it approaches the goal position and avoids obstacles.  These shaping 

functions are also selected so that the desired velocity determined from the repulsive 

potential balances with the attractive potential at the surface of the obstacle.  This allows 

for the goal position to be placed in the center of a spacecraft and the control algorithm to 

converge to the surface of the Target spacecraft.  This is a vital capability for docking 

algorithms.  The control algorithm is precise within a millimeter of the goal position or 

the Targets spacecraft’s outer surface, assuming ideal sensor measurements. 

As multiple spacecraft and obstacles occupy the Chase spacecraft’s region, some 

simple control logic must be applied.  First, Chase spacecraft are only influence by 

obstacles when they are within the obstacles region of influence, oD .  Second, only 

obstacles which are equal distance or closer to the goal position than the Chase spacecraft 

are allowed to influence the Chase spacecraft.  For instance, the spacecraft is looking 

toward the goal like an automobile on the road.  The next spacecraft converging into the 

goal region will then avoid contact with Chase spacecraft.  In most cases, other spacecraft 

are simply treated the same as obstacles.  However, additional logic is needed if multiple 

spacecraft are converging within the same goal position.  The third control logic 

condition uses a safety function, sk , to modify the desired repulsive velocity between 

maneuvering spacecraft as they approach the goal.  This safety influence between 

multiple converging spacecraft ensures collision avoidance while achieving the closest 
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possible convergence to the goal.  This safety function is a trade-off between collision 

avoidance and docking.  The safety function, sk , between converging spacecraft 

multiplies the current ov  and results in the following modification to (6.23) as 

 co
o s o

co

rv k k
r

=  (6.25) 

where sk  is usually greater than or equal to one.  If 1sk = , there is an ideal balance 

between ov  and gv  at the surface of the goal location boundary.  This may allow contact 

between Chase spacecraft converging at the goal location, which obviously can be 

undesirable.  A value of 1.01sk =  is large enough to ensure that multiple spacecraft 

converging upon the exact same goal position do not collide.  However, the multiple 

spacecraft rendezvous to the exact same goal position results in a staggered convergence.  

The first Chase spacecraft to arrive converges to the goal position. The next Chase 

spacecraft converges to within millimeters of the first Chase spacecraft.  The third Chase 

spacecraft has the additive repulsion of the first two spacecraft and converges to a radial 

position further away.  Any additional spacecraft will converge to a safe point slightly 

further away.  This staggered cluster may be a desirable result for spacecraft 

rendezvousing to an unknown formation, where additional command maneuvering may 

need to occur. 

For multiple spacecraft docking maneuvers, the staggered cluster effect of the 

additive repulsion may not be desired.  In this case, the goal location is an actual Target 

spacecraft.  To allow the later arriving spacecraft to converge toward docking, while 

avoiding collision, the safety function, sk , is adapted to be a decaying exponential of the 

attractive potential based on the goal position, such as 

 21
o

g
L

V

sk e
⎛ ⎞− −⎜ ⎟
⎝ ⎠= −  (6.26) 

This results in the repulsion due to other spacecraft decaying toward zero as the Chase 

spacecraft reaches the outer bound of the Target spacecraft.  In this case, the multiple 

spacecraft converge relatively tightly around the Target spacecraft.  Limitations in the 
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Target spacecraft’s outer boundary surface area and local minimums due to saddle points 

may cause some delays for spacecraft which arrive late.  This is usually only an issue for 

a second wave of spacecraft which arrive as the first few converging spacecraft are 

settling into position.  It is envisioned that each spacecraft is commanded to a specific 

docking port, therefore this clustered convergence is not an operational issue.  Also, more 

spacecraft will not typically be commanded to converge toward docking on a spacecraft 

which can not support additional spacecraft. 

Some simple logic is used to ensure that obstacle influence and goal convergence 

is reasonable.  For instance, any obstacle outside the relative range of the goal position is 

not allowed to influence the Chase spacecraft.  This ensures that late arriving spacecraft 

do not cause docking spacecraft to bump into the Target spacecraft.  The Chase 

spacecraft’s collision avoidance motion is dependent on three primary logical conditions, 

as follows: 

 
1. Chase spacecraft must be within region of influence of an obstacle, such that 

co or D≤ . 

2. Chase spacecraft range to its goal must be greater than the obstacle’s range to its 
goal, such that ( )cg sg or r L≥ − .  This allows the Chase spacecraft to be influenced 
only by obstacles closer to their goal, so that a closer Chase spacecraft is not 
disrupted from its goal due to a farther converging spacecraft.  The inclusion of 
the oL  term acts as a safety margin ensuring that the Chase spacecraft does not 
clip the side of obstacles as it resumes it free-space motion. 

3. Chase spacecraft range to its goal must be greater than the distance to the 
obstacle, such that ( )/ 2cg co or r L≥ − .  Obstacles on the far side of a goal location 
are not allowed to influence the convergence toward the goal.  The inclusion of 
the oL  term acts as a safety margin ensuring that other docked spacecraft are 
avoided while having a limited influence. 

 

These logical conditions limit the collision avoidance in obstacle dense 

environments.  The most sensitive of these environments occurs when multiple spacecraft 

are simultaneously converging toward a common Target spacecraft.  If the desire is for 

multiple spacecraft to simultaneously dock, then the obstacle influence of other Chase 

spacecraft is decayed near the goal location, as shown in Equation (6.26).  The third 
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logical condition allows for the Target spacecraft repulsive influence to decay along the 

docking port’s axis.  This decay results in cardioids shapes similar to that discussed by 

Lopez and McInnes [52], without the need for additional transformations.  The Target 

spacecraft’s region of influence is due to the spherical, Gaussian based, region of 

influence with a roughly conic shaped wedge cut from around the docking port.  

Although, a full 3D representation is not necessary since an obstacle’s region of influence 

is primarily range dependent. 

This multiple spacecraft APF control algorithm appears to be directly applicable 

to any spacecraft in a full range of close proximity maneuvers.  The parameters for the 

potentials and shaping functions are not system specific, so intensive tuning is not 

required.  The performance appears to be robust in the full range of close proximity 

operations.  Maneuver ranges of over one kilometer, docking precision within 

millimeters, and relatively high allowable speeds establish improvements in timeliness 

and robustness.  Direct comparisons with previous APF control algorithms for spacecraft 

is limited, since few which have been fully developed and simulated.  For initial 

consideration refer to previous research conducted by McQuade [40] or the system 

specific algorithm recently developed by Neubauer [54][55]. 
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VII. LQR/APF CONTROL ALGORITHM APPROACH 

The LQR approach can be recursively applied to the multiple spacecraft close 

proximity control.  The inclusion of dynamics in the LQR computations allows for 

optimality considerations.    Also, there is a desire to combine the APF repulsive collision 

avoidance capability with the refined LQR for spacecraft rendezvous.  The developed 

LQR with APF-based collision avoidance allows for efficiency based on the 

environmental dynamics combined with gain weighting and logic to allow for primary 

mission achievement.  The simplified LQR/APF control block diagram is shown in 

Figure 7.1.   

 

 
Figure 7.1 LQR/APF Control Block Diagram. 

 

A. GENERAL LQR 

The LQR uses the state space dynamics of the system to determine the optimal 

control effort based on solving Riccati equation for a selected cost function with full state 

feedback.  A quadratic cost function can take into account control effort for a linear 

system is referred to a LQR.  The quadratic cost function is of the general form 
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 ( )
0

1
2

T T T
LQRJ x Q x u R u u N x dt

Τ

= + +∫  (7.1) 

The gain matrixes for the states, Q , and control effort, R , are of primary interest.  The 

coupling gain matrix, N , is typically zero.  These gains are used to solve the Riccati 

equation. 

 ( ) ( )1 0T T TS A A S Q S B N R B S N−+ + − + + =  (7.2) 

where S  is the solution of the algebraic Riccati equation.  The state feedback to 

minimize the quadratic cost function can be determined from this solution.  The optimal 

state feedback gain, LQRK , for a particular cost function is determined by 

 ( )1 T T
LQRK R B S N−= +  (7.3) 

This optimal feedback gain is then used to determine the optimal control effort, such as 

 * 1 ( )T T
LQRu R B S N x K x−= − + =−  (7.4) 

The computation for a limited state LQR can be relatively efficient, as compared to more 

complicated optimal routines.  Increasing the magnitude of the state weighting matrix, 

Q , will result in a faster convergence to goal.  Increasing the magnitude of the control 

effort weighting matrix, R , will result in more efficiency.  The trade-off is between the 

time of convergence and the control efficiency.  The LQRK  gain is mostly a constant gain, 

which decreases as the states converge to the final value. 

The determination of the gain matrices is usually based on the normalizing the 

quadratics along the diagonal.  First attempts typically use the maximum allowable 

values of the states and control effort as the initial values, such as 
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with Qα  adjusted based on the state performance.  Similarly, the R  weighting matrix is 

selected based on the maximum allowable control effort, such as 
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 (7.6) 

with Rβ  adjusted based on the control effort demanded.  The selection of these gain 

variables require insight into the desired response of the system with modifications based 

on simulation results. 

 

B. LQR/APF FOR MULTIPLE SPACECRAFT PROXIMITY OPERATIONS 
The LQR control response for the multiple spacecraft maneuver requires 

consideration of system response and control efficiency.  System response includes the 

concepts of maneuver duration and precision upon reaching the goal.  For the multiple 

spacecraft rendezvous problem, a critically damped relative position response with 

limited control effort is desired.  As with all spacecraft maneuvers, control efficiency 

during multiple spacecraft close proximity operations must be considered.  However, the 

convergence maneuver is assumed to be operationally significant and must be performed 

in finite time duration.  For this research, close proximity maneuver durations of one 

quarter of an orbital period, approximately 30 minutes, are desired.  This duration is 

based on the spacecraft starting from an initial relative position of within one kilometer.  

The close proximity maneuver is considered successful once the spacecraft converges 

within a spherical region from its desired goal position.  This precision may be much 

greater than the typical one meter used to evaluate most rendezvous maneuvers.  The 

intent is to be able to use the developed control algorithm for docking maneuvers. 

The balancing factor between spacecraft relative position and control effort 

efficiency is the relative convergence rate.  However, the relative spacecraft dynamics 

causes rendezvous challenges if the relative convergence rate is too slow or rapid.  If the 
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rate of convergence is slow the goal position is spirally orbited as the minimal control 

actuation is used.  The slow converges can dramatically increase the maneuver duration 

as the spacecraft approaches close to the goal position.  The long duration within close 

proximity of multiple spacecraft can unnecessarily increase the danger of collision due to 

perturbations.  On the other hand, if the rate of convergence is too rapid the limited 

actuation will result in a collision danger due to relative position overshoot.  Even if 

collision is avoided initially, the spacecraft continues to orbit through the goal position 

due to overshooting oscillation effects, often referred to as a rubberband effect.  This 

limits both the close proximity maneuver precision and efficiency, with the resulting 

motion of the Chase spacecraft oscillating about the goal position. 

Taking the above issues into consideration, the attractive potential of the APF 

algorithm is replaced with an iterative LQR for multiple spacecraft in proximity 

operations.  Collision avoidance was incorporated based on the APF-type shaping 

function.  The LQR becomes the driving control toward the goal and the APF based 

collision avoidance is successfully applied.  The resulting LQR with APF-based collision 

avoidance incorporates linearized dynamics for free-space optimal convergence and 

utilizes avoidance based on obstacle geometric relationships.  The developed multiple 

spacecraft LQR/APF control algorithm is control effort efficient and effectively avoids 

collisions while successfully conducting a wide range of close proximity operations. 

 

1. LQR Attractive Component 

The iterative LQR gain matrices for multiple spacecraft were selected after 

evaluating the APF control responses.  The gains were determined for six states, position 

and velocity along each axis, along with control effort along each axis. The resulting 

gains matrixes, based on equations (7.5) and (7.6), are as follows, 
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The relative position error along each axis is equally weighted, so that 

 max max max cgx y z r= = =  (7.9) 

The selection of maximum distance as the current distance to the goal, r , allows position 

to become more important as the spacecraft approaches the goal.  The relative velocity 

error along each axis is also equally weighted, such that 

 max max max max
max

initrx y z v
r

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
 (7.10) 
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This desired velocity is determined by scaling the maximum relative velocity, maxv  by the 

ratio of the initial range, initr , and maximum range, maxr .  For this research, the maximum 

relative velocity was conservatively selected as 

 max 1.0 /v m s=  (7.11) 

This selection of velocity limits the transients due to the initially neutral relative velocity 

and also limits the convergence rate for safe operations.  However, this maxv  is 

approximately ten times greater than the relative velocities allowed by previous APF 

proximity control [40][54]. 

With the denominators of the diagonal gains selected for desired maximum 

position and velocity.  The numerator position error and velocity errors along each axis 

are equally weighted.  Therefore, the Qα  gains are all equal and scaled as the Chase’s 

distance to the goal position converges 

 
1 2 3 4 5 6Q Q Q Q Q Q cgrα α α α α α= = = = = =  (7.12) 

 

The actuator control effort is the acceleration imparted due to the translational 

thrusters.  For this research, the thrust along each axis is limited to a maximum 

acceleration of 

 2
max 0.01 /thrust

s

Fa m s
m

= =  (7.13) 

based on a thrust force of 1.0 Newton and a spacecraft mass of 100 kg.  This maximum 

acceleration is the maximum control effort along each axis. 

 max max max maxx y zu u u a= = =  (7.14) 

The scaling of the control effort is also scaled as the spacecraft relative position 

changes.  Therefore, the numerators of the control effort matrix diagonal gains are 

 
1 2 3R R R cgrβ β β= = =  (7.15) 
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A minimum scaling factor for the numerator can be selected such, as the range to 

goal approaches zero, that numerical problems and chattering is avoided.  For instance as 

the cgr  approaches zero the value of cgr  may be limited to some nominal minimum value, 

such as 0.05cgr m≥ . 

The control effort resulting from the LQR algorithm, refer to Equation (7.4), can 

be thought of in terms of a desired acceleration, such as 

 LQR LQRa K x=−  (7.16) 

where x  is a generalized representation of the Chase spacecraft’s position and velocity 

states. 

 

2. APF-Based Collision Avoidance Component 
The LQR drives the control effort based on the relative spacecraft systems 

linearized state dynamics.  The LQR algorithm control effort varies the Chase 

spacecraft’s position and velocity states in a more complicated manner then the previous 

geometric based APF.  This more complicated relationship requires a modification to 

both velocity and acceleration in the region of influence of obstacles.  The component of 

the Chase’s velocity in the direction of the obstacle is determined as 

 
( )co co

co
co co

offsetr v rv
r r

v• + ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (7.17) 

where offsetv  is the velocity offset correction due to the fact that relative stationary 

obstacles actually maintain a velocity in the orbital plane.  This correction is critical for 

potential sub centimeter precision maneuver, such as docking.  Similarly, the component 

of the acceleration in the direction of the obstacle is determined as 

 
co LQR co

co
co co

r a ra
r r
• ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (7.18) 
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Using the vector components of the velocity and acceleration in the direction of obstacles 

helps limit superposition issues.  The resulting iterative spacecraft control algorithm is 

driven by optimal LQR cost convergence, with associated dynamics, and smooth 

collision avoidance responses. 

The APF obstacle potential parameters, represented in (6.22), can be combined to 

generate a Gaussian function which is unity at the obstacle boundary.  This function 

becomes the LQR velocity shaping function due to obstacle position. 
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 (7.19) 

This gain, vk , is multiplied by the negative relative velocity to ensure the Chase 

spacecraft slows to zero at the boundary of the obstacle. 

Next, the attractive acceleration due to the LQR recursive function is shaped.  

There is no change to it when the Chase spacecraft is outside obstacle regions of 

influence.  However, if the Chase is within the region of influence then acceleration 

toward the obstacle must be decreased.  The LQR acceleration shaping parameter is 

selected as 

 
( )a co o

a
d r L

k e− −
=  (7.20) 

where the positive constant, ad , is used to establish the parameters rate of decay.  In this 

research 1ad =  was selected in order for the decay directly related to relative position.  

The ak  parameter is multiplied by the negative component of LQR acceleration to ensure 

that the LQR derived control effort does not drive into an obstacle.  Finally, the safety 

shaping parameter, from Equation (6.26), is modified to replace the potential function 

with the Chase spacecraft’s range from the goal. 

 
( )

1 a cg
s

d r
k e

−
= −  (7.21) 
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The safety function allows the obstacle repulsion to decay faster as the Chase 

spacecraft approaches the goal position.  This function enables precision maneuvers, such 

as docking, in regions where the relative ranges between spacecraft are small.  If the 

obstacle is the Target spacecraft then the safety function ensures that the Chase only 

approaches in the vicinity of the docking port. 

The overall control effort for the multiple spacecraft LQR with collision 

avoidance is 

 ( )( )/
0

n

LQR v co s a co
obs

a a k v t k k a
=

− += ∆∑  (7.22) 

The control algorithm only decreases velocity and acceleration toward obstacles.  

It does not actually push away from obstacles.  This is useful in maintaining the relative 

stability in a bounded system.  Fortunately the relative dynamics result in forces which 

help the control algorithm escape local minima in densely packed obstacle regions.  The 

consequence is similar to that achieved by APF wall-following methods [4].  The 

efficiency gained by the LQR derived control effort is more significant when 

implemented in a limited number of obstacles environment. 

 

C. SENSOR NOISE AND MODEL UNCERTAINTY 
In actual applications, the potential field and related gradient are estimates 

dependent on noisy sensor measurements and spacecraft modeling uncertainties.  A 

realistic system model typically has imperfect initial estimates and dynamic disturbances. 

Measurements of the system states are limited and imperfect.  These issues can be 

considered in the simulation by applying variance as a measure of the uncertainty.  The 

current state of the spacecraft and the latest sensor measurements can be filtered in order 

to determine the best estimate of the spacecraft.  For instance, the Kalman filter 

determines this estimate in a minimum mean square error manner [66].  The Kalman 

filter can be implemented as predictor-corrector algorithm.  The filter predicts the next 

position of the spacecraft and the value of the next sensor measurement.  Next, the next 

sensor measurement is used to determine the residual error between the predicted and 
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actual position.  This residual is multiplied by a weighting gain and used to correct the 

predicted state to determine the current estimate. 

The number, type, and location of sensors are dependent on the degree of 

maneuver precision required and knowledge of actuation responses.  For simple docking 

mechanisms such as that used on Orbital Express operations architecture, the connection 

of spacecraft to a hardened docking attachment ring does not require complex 

manipulator coordination.  The entire spacecraft is positioned and oriented for docking.  

The need for additional sensors is limited to the end-point of the simple docking 

mechanism.  The actuator control is usually limited to translational thruster and attitude 

reaction wheels (or possibly jets).  Thruster actuation variations, such as those mentioned 

in Chapter III.E.5., can be due to thermal changes and fuel supply levels. 

The use of manipulator arms may be necessary for some docking and assembly 

scenarios. This is especially important for complex on-orbit assembly of structures, such 

as solar arrays and power stations.  As the assembled structure increases in size the 

flexibility, thermal, and other disturbances acting on the body assembly requires more 

detailed analysis.  If the docking and assembly is conducted with free flying manipulator 

space robots, then the modal structural characteristics of the structures must be accounted 

for with high precision and minimum sensors.  Research at MIT [67] shows promising 

progress for extension of the Base Sensor Control (BSC) method for estimation of 

actuation forces and torques on space robot manipulators with limited sensing.  Both the 

force and torque on a seven DOF bi-arm manipulator can be effectively measured with 

only one six-axis force/torque sensor [67].  The savings in sensor hardware complexity is 

highly desirable.   

Even docking/assembly missions with manipulator arms must get within range for 

manipulator arms to operate.  These close proximity operations must be conducted within 

the safe operating ranges established for small spacecraft.  The sensors must be precise 

enough to measure state characteristics at least to the level of precision required for the 

spacecraft operation.  In addition, the actuators must also be able to operate in a manner 

which allows for the desired operational precision.  This may also restrict which actuators 

can be used at certain distances and orientations.  For instance, in close proximity to 
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another spacecraft thruster firings should be restricted to avoid plum impingement on the 

sensors and solar panels [68].  These restrictions are dynamic, since they are dependent 

on the relative position and orientation of the spacecraft.  As with any parametric used as 

a constraint or optimization cost function, trade-offs in performance must be properly 

weighted.  For instance, selection of different collision avoidance, fuel efficiency, plume 

impingement and time duration considerations will vary the trajectory followed by the 

spacecraft.  Each of these metrics may have different levels of sensitivity to model 

uncertainties and sensor noise.  These considerations in trajectory and path planning raise 

a large level of concern with the any multiple parameter cost function’s claims on 

optimality.  To avoid this level of ambiguity, the close proximity LQR/APF control 

algorithm uses only relative spatial considerations to determine the direction and rates of 

spacecraft motion. 

Estimations of motion between any object, target or obstacles can be improved by 

associating sensor measurements with the actual object position.  Adopting the general 

convention that the target states information is assumed to be known, these relative 

motions can be determined by simple vector arithmetic.  The difference between this 

expected and measured sensor data is considered the innovation [69].  The covariance of 

the innovation can be directly utilized in determining the collision avoidance thresholds 

for obstacles.  These uncertainties are immediately applicable to the Gaussian based 

collision avoidance functions and the LQG algorithm which can incorporate process and 

measurement noise as Gaussian white noises with covariance.  The use of Gaussian based 

collision avoidance lends itself to direct inclusion of any measurement noise in to the 

obstacle relative range and velocity.  Therefore, the overall control algorithm structure 

allows for convenient inclusion of known, or estimated, sensor uncertainties. 

 

D. STABILITY AND ROBUSTNESS 

Stability and robustness of collision avoidance control algorithms are not 

guaranteed.  The stability is highly dependent on the reference frame and specific 

conditions applied.  Generally speaking, once in orbit all passive objects are stable within 

the gravitational region of the primary body.  Only by adding energy can the satellite 

escape the primary body.  However, once the discussion is limited to the relative range 
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between two orbiting bodies the issue of stability becomes more complicated.  The 

boundary region can typically be drawn such that Chase spacecraft stays within it.  

However, the open loop relative dynamics of spacecraft are inherently unstable, with 

non-zero initial conditions and external forces causing spacecraft to drift over time [70].  

The A  matrix of the linearized dynamics, shown in equation (4.16), yields six 

eigenvalues consisting of two repeated roots at zero and two repeated imaginary complex 

pairs.  Therefore, the system is bounded-input, bounded-output (BIBO) unstable in the 

orbital plane and BIBO stable along the out-of-plane axis [71].  It is well known that 

close loop control can be used to achieve stable and convergent spacecraft relative 

motion.  The stability of distributed spacecraft with individual feedback in a common 

reference field was rigorously addressed by Kang, Sparks, and Banda [72].  Although, 

their discussion was primarily based on formation maintenance it directly applies to 

convergence to any desired relative orbital position.  The multiple spacecraft control 

algorithm balances the convergence to a desired goal position with the safety of collision 

avoidance.  The convergence of the algorithm in a free environment can be explained by 

using common heuristic techniques and shown via simulation.  However, in the presence 

of obstacles there may not be a unique solution.  If the working space is not over 

constrained, multiple solutions will exist for the spacecraft path in the presence of 

multiple obstacles.  There is also freedom in the closeness of the solution, based on 

acceptable goal achievement tolerance.  Any attempt at a rigid stability proof may need to 

show convergence within a desired velocity and position ball, such as suggested by 

Neubauer and Swartwout’s research [55].  It is generally possible to select a closed map 

over which the algorithm is stable and robust.  For these closure operations, preliminary 

initial conditions and simulation parameters must be carefully selected. 

Even if a global minimum exists, the spatial dynamics must allow freedom of 

motion for obstacle avoidance.  Obstacles may be arranged, or maneuvered, to block the 

path of the spacecraft, beyond the capability of the control logic or the available control 

effort.  It the absences of obstacles the multiple spacecraft control algorithm converges to 

the optimal trajectory.  This convergence within a bounded area around an equilibrium 

state can be shown for each individual spacecraft, but can not be directly applied to the 

case of multiple spacecraft with uncertainty in relative states.  Despite this lack of a 
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rigorous stability proof, the control algorithm can be shown to be rather robust in the 

presence of perturbations.  The general stability of spacecraft formations in the presence 

of disturbances was shown by Acikmese et al [73].  The stability definition is motivated 

by BIBO definitions and the propagation of disturbances through the interconnected 

system.  Sensor and actuator uncertainties can always be increased to a level that 

handicaps the control algorithm.  Therefore, in the presence of high levels of noise and 

uncertainty, additional control logic needs to be implemented to ensure safety.  The 

stability of control in the presence of multiple dynamic obstacles has yet to be proved.  In 

this research global convergence was achieved by representing obstacles with spherical 

regions of influence.  This minimizes the local minimization and chattering problems, 

since nonlinear dynamics act as persistent perturbations which will require control effort.  

Any local minimums encountered tend to be momentary and unstable.  Also, only 

allowing obstacle influences to damp relative motion in the direction of the obstacle helps 

ensure stability.  Motion along the path of the obstacle is restricted only to avoid 

collision, but movement along the convergent direction is unimpeded.  This damping 

allows convergence as long as there is a free path to maneuver around an obstacle toward 

the goal.  Any obstacle avoidance which allows divergent motion within the relative 

space must take into consideration the compounding effects of orbital rotations and 

escape velocities. 

Spacecraft translation actuation is often discretely implemented in the continuous 

dynamics of relative motion.  It is worth mentioning that there is promising work in the 

area of hybrid control that lays the framework for evaluation of such systems [70][74].  

The hybrid control is well suited to the spacecraft translational problem with flow set 

(flow map) relating to free-floating continuous time and jump sets (jump maps) relating 

to control actuation at discrete time.  The discussion involves weakly invariant sets and 

proper selection of Lyapunov functions. 

Both the stability and robustness of the close proximity control algorithm is 

demonstrated implicitly by Monte Carlo simulation results; refer to Chapter IX.  There 

are three conditions which are considered control algorithm failures.  These failures are 

based on the collision avoidance requirement, desire for short duration close proximity 

maneuvers, and the limited spacecraft propellant.  First, any spacecraft collisions are 
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considered failures.  Second, any maneuver durations lasting longer than 90 minutes is 

considered a failure.  Finally, any spacecraft which uses all of its propellant is considered 

a failure.  None of these failures were detected during the Monte Carlo simulations.  The 

close proximity control algorithm is considered stable due to the unfailing convergence to 

accomplish the desired maneuver.  Neither local minimums nor environmental 

disturbances appeared to prevent Chase spacecraft from achieving desired maneuver 

positions.  Also, the close proximity control algorithm appears to be robust to a wide 

envelope of initial conditions and configurations. 



101 

VIII. CLOSE PROXIMITY OPERATIONS EVALUATION 

Control algorithm performance evaluation of a wide range of close proximity 

operations was conducted.  For each maneuver, the multiple spacecraft are initially 

assumed to be within a spatial sphere with a one kilometer radius and negligible relative 

velocity to a Target spacecraft in a thrust free circular trajectory.  For most close 

proximity maneuvers results cubic shaped spacecraft were simulated.  The cubic shape 

proved to be the most challenging of the three basic shapes, spherical, cylindrical, and 

cubic spacecraft shapes for collision avoidance.  More complicated shapes may require 

more conservative safety margins for the simultaneous maneuvering of multiple 

spacecraft.  The communication of the goal, or target, position is the minimum 

information required.  Desired mission ranges for inspection, regions of control for 

rendezvous, and spatial tolerances for docking may be dependent on both sensor and 

actuator performance.  In particular collision avoidance is a balance between situational 

awareness, which is dependent upon sensor accuracy, and spacecraft’s reaction, which is 

based upon actuator capabilities. 

The primary parameters used to evaluate control algorithm performance are based 

on the maneuver duration time and required control effort.  The duration of time required 

to successfully accomplish the desired close proximity maneuver is dt , in seconds.  The 

general desire is that close proximity maneuvers can be conducted in approximately 30 

minutes.  The control effort is related to the velocity change, v∆  in meters per second, 

required to complete the maneuver.  Control effort should be efficient while maintaining 

desired performance.  These two basic figures of merit, dt  and v∆ , must be accompanied 

by engineering analysis, since they are typically inversely related to each other.  This is a 

conceptual simplification since these metrics are a result of the minimization of a cost or 

potential function with numerous constraints.  Evaluation must take into account that any 

control effort which is severely, or continually, saturated may be a safety hazard in the 

vicinity of multiple spacecraft.  Additional control effort may not be available to perform 

collision avoidance.  Any control effort response that saturates the available control effort 

is denoted with an asterisk.  Also, the overall convergence toward a goal should be 
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sufficiently damped in order to avoid oscillation in the goal region.  Any oscillation in 

close vicinity to other spacecraft will result in pulsing responses of all other local 

spacecraft. 

Comprehensive performance evaluation of the LQR/APF and APF control 

algorithms was conducted for a wide range of close proximity operations, including 

convergence, rally, rendezvous, and docking maneuvers.  All simulated maneuvers 

included orbital perturbations due to variations in the Earth's shape and mass, 

atmospheric drag on the spacecraft, third-body (Sun and Moon) forces, and solar-

radiation pressure.  Similarly, the gravity gradient, atmospheric drag, and solar pressure 

torques were included as perturbations in the attitude control loop.  The close proximity 

operations evaluated all began with Chase spacecraft within 1.0 km of the goal position 

or Target spacecraft.  The convergence maneuver is simply moving to a goal position in 

free-space.  The rally maneuver is gathering of multiple spacecraft to a common goal 

region in free space.  Rendezvous maneuvers require the convergence of multiple 

spacecraft to a Target spacecraft.  Docking maneuvers require precise convergence to the 

outer boundary of a Target spacecraft while avoiding collision.  The parameter results 

listed for each maneuvers are representative of the general control algorithm 

performance.  It should be understood that improvement to a particular parameter for a 

selected maneuver may be possible.  The following results were generated using the same 

basic logic and gains for all maneuvers.   

 

A. CONVERGENCE MANEUVERS 
Close proximity operations begins when spacecraft independent course 

corrections and phasing has placed the spacecraft within a kilometer of each other.  The 

convergence maneuver is intended to be a baseline maneuver, without collision 

avoidance, used for determining control algorithm performance.  In this maneuver, the 

Chase spacecraft maneuvers from its initial location to within 1.0 - 2.0 mm of goal 

position.  Both the recursive LQR/APF and APF control algorithms were successful in 

converging to within 1.0 mm of a goal position.  The convergence maneuver was used to 

tune algorithms gains for similar performance based on maneuver duration and control  
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effort efficiency.  This terminal range is much less than typically required for general 

close proximity control and serves to establish legitimacy for application of the control 

algorithm. 

The control algorithm performance results for six independent near and six 

independent far initial spacecraft positions are listed in Table 8.1 and Table 8.2, 

respectively.  Each one of the near maneuvers starts approximately 100 meters way from 

a goal; whereas the far maneuvers start approximately 1,000 meters from a goal.  

Comparison with the two impulse maneuvers previously discussed, yields further insight 

into control algorithm performance.  The first Chase spacecraft, listed in Table 8.1, 

arrives approximately 15 times faster with over 60 times more control effort than the two-

impulse maneuver, which is discussed in Chapter IV.D.  This is an extreme case of time 

and control effort trade-offs due to spacecraft phase dynamics.  The second spacecraft, 

listed in Table 8.1, arrives approximately 3.7 times faster with only 1.5 times more 

control effort then the two-impulse maneuver, which is discussed in Chapter IV.D.  The 

two-impulse maneuver is used for illustration purposes only, since execution of the two-

impulse maneuver with precision necessary for close proximity operations is unfeasible.  

Realistic control response for multiple spacecraft close proximity maneuvers do not allow 

for implementation of two-impulse maneuvers.  Comparison illustrates parameter trade-

offs which must consider while developing multiple spacecraft control algorithms. 

 
Near Convergence Maneuver LQR/APF APF 

∆v = 0.1877 m/s ∆v = 0.1905 m/s Near Convergence 
Initial RSW [0, 70, 0] m td = 1041 s td = 1264 s 

∆v = 0.3105 m/s ∆v = 0.3123 m/s Near Convergence 
Initial RSW [50, -100, -50] m td = 1068 s td = 1298 s 

∆v = 0.4900 m/s ∆v = 0.5121 m/s Near Convergence 
Initial RSW  [100, 100, 100] m td = 1068 s td = 1317 s 

∆v = 0.3077 m/s ∆v = 0.3215 m/s Near Convergence 
Initial RSW [100, 0, 0] m td = 1056 s td = 1284 s 

∆v = 0.3889 m/s ∆v = 0.3912 m/s Near Convergence 
Initial RSW [-50, 100, -100] m td = 1082 s td = 1295 s 

∆v = 0.2486 m/s ∆v = 0.2548 m/s Near Convergence 
Initial RSW [0, 0, 100] m td = 1062 s td = 1279 s 

Table 8.1 Six Spacecraft Near Convergence Maneuver. 
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For near convergence maneuvers the LQR/APF control algorithm is more control 

efficient and reaches the goal location faster then the APF control algorithm.  This is as 

expected since the LQR/APF is not being affected by collision avoidance and is well 

within the linear performance region of the Clohessy-Wiltshire equations, refer to 

Equation (4.15).  The APF has included a velocity ramping function to limit control 

saturation due to initial transients, refer to Equation (6.15).  This allows for better 

comparison of performance in relative position, relative velocity, and control effort.  The 

relative position, velocity and control effort performance of the APF control algorithm 

for the second Chase spacecraft, listed in Table 8.1, are shown in Figure 8.1 through 

Figure 8.3, respectively.  The relative position, velocity and control effort performance of 

the LQR/APF control algorithm for the same Chase spacecraft are shown in Figure 8.4 

through Figure 8.6, respectively. 

 
Figure 8.1 Chase Spacecraft Relative Position Using APF for Near Convergence. 



105 

 
Figure 8.2 Chase Spacecraft Relative Velocity Using APF for Near Convergence. 

 
Figure 8.3 Chase Spacecraft Control Effort Using APF for Near Convergence. 
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Figure 8.4 Chase Spacecraft Relative Position Using LQR/APF for Near Convergence. 

 
Figure 8.5 Chase Spacecraft Relative Velocity Using LQR/APF for Near Convergence. 
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Figure 8.6 Chase Spacecraft Control Effort Using LQR/APF for Near Convergence. 

 

As shown, the LQR/APF and APF can both exhibit the desired close proximity 

performances.  The control effort of the APF algorithm is primarily driven by the desired 

velocity.  This is particularly apparent in the control effort response corresponding to 

velocity shaping function influence, as shown in Figure 8.3.  By comparison, the 

LQR/APF control effort is balanced by the velocity and position states, as shown in 

Figure 8.6.  The LQR/APF control algorithm generally results in an initial control action 

to begin convergence and a terminal control effort to stop at the desired goal. 

Additionally, far convergence maneuver results are listed in Table 8.2.  The 

relative position, velocity and control effort performance of the APF control algorithm 

for the second Chase spacecraft, listed in Table 8.2, are shown in Figure 8.7 through 

Figure 8.9, respectively.  The relative position, velocity and control effort performance of 

the LQR/APF control algorithm for the same Chase spacecraft are shown in Figure 8.10 

through Figure 8.12, respectively.  The velocity shaping and control effort responses are 

more pronounced for these far maneuvers figures.  Notice that higher velocity is achieved 
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during the execution of the far convergence maneuver.  The APF control response 

reaches actuator saturation for the fourth Chase spacecraft, as denoted by the asterisk.  

This is generally an undesirable condition, but may not be completely avoidable in a 

dynamic environment without underutilizing the actuators. 

 

Far Convergence Maneuver LQR/APF APF 
∆v = 2.5514 m/s ∆v = 2.2800 m/s Far Convergence 

Initial RSW [0, 1000, 0] m td = 1368 s td = 1446 s 
∆v = 2.5454 m/s ∆v = 2.1884 m/s Far Convergence 

Initial RSW [412,-812,-412] m td = 1371 s td = 1453 s 
∆v = 2.7375 m/s ∆v = 2.9295 m/s Far Convergence 

Initial RSW [575,575,575] m td = 1369 s td = 1459 s 
∆v = 3.2204 m/s ∆v = 3.4209 m/s * Far Convergence 

Initial RSW [1000,0,0] m td = 1367 s td = 1449 s 
∆v = 2.0063 m/s ∆v = 2.0201 m/s Far Convergence 

Initial RSW [0,0,1000] m td = 1389 s td = 1445 s 
∆v = 2.9865 m/s ∆v = 3.231 m/s Far Convergence 

Initial RSW [707,707,0] m td = 1361 s td = 1454 s 
Table 8.2 Six Spacecraft Far Convergence Maneuver. 
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Figure 8.7 Chase Spacecraft Relative Position Using APF for Far Convergence. 

 
Figure 8.8 Chase Spacecraft Relative Velocity Using APF for Far Convergence. 
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Figure 8.9 Chase Spacecraft Control Effort Using APF for Far Convergence. 

 
Figure 8.10 Chase Spacecraft Relative Position Using LQR/APF for Far Convergence. 
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Figure 8.11 Chase Spacecraft Relative Velocity Using LQR/APF for Far Convergence. 

 
Figure 8.12 Chase Spacecraft Control Effort Using LQR/APF for Far Convergence. 
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As expected, for both controllers the closer maneuvers took less time to complete.  

The LQR/APF results are generally more control efficient at similar, or faster, maneuver 

durations.  For the closer rendezvous the multiple spacecraft LQR/APF was better in all 

metrics.  This is primarily due to the LQR consideration of dynamics for the convergence 

control.  In particular, the LQR algorithm results in a smooth initial increase in velocity 

while the APF requests a step increase in velocity.  It was observed that the duration of 

some more distant maneuvers may be a few seconds shorter using the APF, if the APF 

initial velocity errors are not ramped.  However, this is not considered significant, due to 

the average 30 minute maneuver duration.  The 1.0 millimeter accuracy is used to show 

the capabilities of the algorithms, although sensor accuracy is not expected to be able to 

support this level of precision.  Preliminary comparison to other APF applications, such 

as that presented in [52], [40] and [55], indicate that the algorithms accomplish higher 

precision within much shorter maneuver duration.  Improved efficiency is generally 

accomplished, with direct comparisons strongly dependent on the density of the obstacle 

environment and initial conditions.  Most previous algorithms delineate each phase of 

sequential maneuvering spacecraft with independent logic determining varying results, as 

in [54].  This makes the comparison of sequentially and simultaneous multiple spacecraft 

maneuvers in a dynamic environment difficult and unwarranted.  However, this 

simultaneous and effective maneuvering of several spacecraft may be essential for a 

number of spacecraft missions. 

 

B. RALLY MANEUVERS 
The LQR/APF and APF control algorithms can be used to rally, or cluster, a 

group of spacecraft to a common point.  Collision avoidance is used to avoid obstacles 

and other spacecraft while converging to within a desired range of a rally point.  The 

results for three cubic Chase spacecraft simultaneously rallying proximity maneuver with 

collision avoidance are listed in Table 8.3.  For these collision avoidance maneuvers, the 

goal position is a near rally point in free space.  This requires the Chase spacecraft to 

converge to within 0.5 meters of the goal point while avoiding impact with other 

converging spacecraft.  In addition, stationary obstacles are placed at positions along the 

path of each of the Chase spacecraft, for the sake of testing the algorithms.  These 
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obstacles have an actual diameter of 2.0 meters and are positioned so that the Chase 

spacecraft encounter them at approximately 500-600 seconds into the maneuver.  This 

point was selected to ensure that the obstacle was encounter while the Chase spacecraft 

was at relatively high velocity.  The three Chase spacecraft motion during the rally 

maneuver is illustrated in Figure 8.13.  Notice that the maneuver duration may lengthen 

for the later congregating spacecraft, such as the case for the third Chase spacecraft listed 

in Table 8.3.  This is due to other Chase spacecraft arriving and loitering in the rally 

region.  The spacecraft which arrive first may limit the approach of the following 

spacecraft.  This spatial constraint must be considered before determining the acceptable 

rally region in which the Chase spacecraft are being commanded. 

 

Near Rally Maneuver LQR/APF APF 
∆v = 0.3078 m/s ∆v = 0.2901 m/s Near Rally with Obstacle 

Initial RSW [0, 70, 0] m td = 1102 s td = 1052 s 
∆v = 0.5029 m/s ∆v = 0.4683 m/s Near Rally with Obstacle 

Initial RSW [50, -100, -50] m td = 1094 s td = 1049 s 
∆v = 0.8306 m/s ∆v = 0.8188 m/s * Near Rally with Obstacle 

Initial RSW  [100, 100, 100] m td = 1492 s td = 1204 s 
Table 8.3 Three Spacecraft Near Rally Maneuver with Collision Avoidance. 

 



114 

 
Figure 8.13 Three Spacecraft Relative Motion During Rally Maneuver. 

 

The performance evaluation is once again extended to relatively far initial 

positions.  The results for three cubic Chase spacecraft simultaneously rallying far 

maneuver with collision avoidance are listed in Table 8.4. 

 

Far Rally Maneuver LQR/APF APF 
∆v = 4.1887 m/s ∆v = 3.7436 m/s * Far Rally with Obstacle 

Initial RSW [0, 1000, 0] m td = 1615 s td = 1243 s 
∆v = 4.0973 m/s * ∆v = 3.9324 m/s * Far Rally with Obstacle 

Initial RSW [412, -812, -412] m td = 1503 s td = 1242 s 
∆v = 4.2541 m/s ∆v = 4.8076 m/s * Far Rally with Obstacle 

Initial RSW [575, 575, 575] m td = 1487 s td = 1258 s 
Table 8.4 Three Spacecraft Far Rally Maneuver with Collision Avoidance. 

 

In order to further challenge the control algorithms the simultaneous rally maneuvers 

were conducted with six Chase spacecraft.  The near rally maneuver with collision 

avoidance results are listed in Table 8.5 and the far rally maneuver with collision 

avoidance results are listed in Table 8.6.  In these six spacecraft maneuvers the rally 
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sphere is extended to 2.0 meters.  Such each spacecraft must simultaneously converge to 

within 2.0 meters of the goal position while avoiding each other.  The convergence 

sphere increases as the number of spacecraft increases, due to practical packing 

considerations.  In realistic operational scenarios, safely margins would be maintained 

between spacecraft to allow for autonomous activity. 

 

Near Rally Maneuver LQR/APF APF 
∆v = 0.3034 m/s ∆v = 0.2745 m/s Near with Obstacle 

Initial RSW [0, 70, 0] m td = 1068 s td = 1012 s 
∆v = 0.5363 m/s ∆v = 0.4400 m/s Near with Obstacle 

Initial RSW [50, -100, -50] m td = 1075 s td = 1017 s 
∆v = 0.7945 m/s ∆v = 0.7426 m/s Near with Obstacle 

Initial RSW  [100, 100, 100] m td = 1108 s td = 1042 s 
∆v = 0.4487 m/s ∆v = 0.5370 m/s Near with Obstacle 

Initial RSW [100, 0, 0] m td = 1050 s td = 1073 s 
∆v = 0.7016 m/s ∆v = 0.5875 m/s Near with Obstacle 

Initial RSW [-50, 100, -100] m td = 1159 s td = 1027 s 
∆v = 0.4646 m/s ∆v = 0.4634 m/s Near with Obstacle 

Initial RSW [0, 0, 100] m td = 1252 s td = 1162 s 
Table 8.5 Six Spacecraft Near Rally Maneuver with Collision Avoidance. 

 

Far Rally Maneuver LQR/APF APF 
∆v = 4.1598 m/s ∆v = 3.7031 m/s * Far with Obstacle 

Initial RSW [0, 1000, 0] m td = 1506 s td = 1226 s 
∆v = 4.0729 m/s ∆v = 3.8766 m/s * Far with Obstacle 

Initial RSW [412, -812, -412] m td = 1507 s td = 1219 s 
∆v = 4.3607 m/s ∆v = 4.7925 m/s * Far with Obstacle 

Initial RSW  [575, 575, 575] m td = 1496 s td = 1237 s 
∆v = 4.8436 m/s ∆v = 4.8994 m/s * Far with Obstacle 

Initial RSW [1000, 0, 0] m td = 1489 s td = 1239 s 
∆v = 3.346 m/s ∆v = 3.6122 m/s * Far with Obstacle 

Initial RSW [0, 0, 1000] m td = 1552 s td = 1227 s 
∆v = 2.7601 m/s ∆v = 3.111 m/s Far with Obstacle 

Initial RSW [707, 707, 0] m td = 1319 s td = 1168 s 
Table 8.6 Six Spacecraft Far Rally Maneuver with Collision Avoidance. 

 

The first Chase spacecraft to arrive in the goal region use less control effort.  They 

do not need to avoid collisions with other spacecraft, whereas latter arriving spacecraft 
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may need to maneuver between to complete their rally maneuver.  As the number of 

spacecraft increase direct comparison between spacecraft maneuvers become 

challenging.  Each spacecraft maneuver is dependent upon every other spacecraft and 

obstacle within region of influence.  Generally, the algorithms are comparable with 

maneuver durations being accomplished within a couple minutes of each other.  

Efficiency of the algorithms is dependent on the number and location of obstacles 

encountered and the desired relative velocities.  For instance, the APF/LQR algorithm 

appears to be generally more efficient in a low density obstacle close proximity 

environment.  However, the geometric based velocity management of the APF may 

converge faster in high density obstacle environments.  This faster convergence comes at 

the risk of saturating the actuators. 

The LQR/APF and APF both continue to perform satisfactory in high density 

obstacle environments.  However, the APF continues to saturate control effort.  In some 

instances the saturation actually helps the APF control algorithms control efficiency, such 

as the first and second Chase spacecraft in Table 8.6.  The efficiency appears to be better 

then the LQR/APF control algorithm, but this is only due to heavy actuator saturation 

which is generally undesired.  The relative position, velocity and control effort 

performance of the APF control algorithm for the second Chase spacecraft, listed in 

Table 8.6, are shown in Figure 8.14 through Figure 8.16, respectively.  The relative 

position, velocity and control effort performance of the LQR/APF control algorithm for 

the same Chase spacecraft are shown in Figure 8.17 through Figure 8.19, respectively. 
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Figure 8.14 Chase Spacecraft Relative Position Using APF for Far Rally. 

 
Figure 8.15 Chase Spacecraft Relative Velocity Using APF for Far Rally. 
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Figure 8.16 Chase Spacecraft Control Effort Using APF for Far Rally. 

 
Figure 8.17 Chase Spacecraft Relative Position Using LQR/APF for Far Rally. 
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Figure 8.18 Chase Spacecraft Relative Velocity Using LQR/APF for Far Rally. 

 
Figure 8.19 Chase Spacecraft Control Effort Using LQR/APF for Far Rally. 
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These results validate the LQR/APF control algorithm for the multiple spacecraft 

close proximity maneuvers.  The saturation seen in the Chase spacecraft’s control effort 

due to the APF, refer to Figure 8.16, is not exhibited by the LQR/APF, refer to Figure 

8.19  The LQR/APF smoothly handles collision avoidance while successfully rallying 

multiple spacecraft to a desired location. 

 

C. RENDEZVOUS MANEUVERS 
Additionally, the LQR/APF and APF control algorithms with collision avoidance 

are used to avoid obstacles and other spacecraft while converging to within a specified 

range of a Target spacecraft’s outer boundary.  For the three Chase spacecraft 

simultaneous rendezvous maneuvers the Chase spacecraft approach to within 5.0 

centimeters of the Target spacecrafts outer surface.  The results for the three spacecraft 

simultaneously conducting a near rendezvous maneuver with collision avoidance are 

listed in Table 8.7.  Similarly, the results for three spacecraft simultaneously conducting a 

far rendezvous maneuver with collision avoidance are listed in Table 8.8. For these 

collision avoidance maneuvers, the goal position is the center of the Target spacecraft.  

This requires that the Target spacecraft’s repulsion to allow the Chase spacecraft to 

converge while avoiding impact.  Stationary obstacles are placed at positions along the 

unobstructed path of the Chase spacecraft.  These obstacles are encountered at 

approximately 500-600 seconds into the maneuver, in order to ensure that the Chase 

spacecraft was at relatively high velocity.  These obstacles have an actual diameter of 2.0 

meters.  Generally, avoiding larger obstacles requires more control effort and time.  The 

performance accuracy shows that convergence and rendezvous can be achieved while 

ensuring collision avoidance, as illustrated in Figure 8.20.  Although, densely packed 

obstacle regions tend to result in a superposition of repulsion forces which keep later 

converging spacecraft at further distances away from the mutual goal location. 

 

 

 

 



121 

Near Rendezvous Maneuver LQR/APF APF 
∆v = 0.3886 m/s ∆v = 0.3339 m/s Near with Obstacle 

Initial RSW [0, 70, 0] m td = 1342 s td = 1103 s 
∆v = 0.6149 m/s ∆v = 0.5198 m/s Near with Obstacle 

Initial RSW [50, -100, -50] m td = 1314 s td = 1092 s 
∆v = 0.8301 m/s ∆v = 0.8245 m/s Near with Obstacle 

Initial RSW  [100, 100, 100] m td = 1540 s td = 1117 s 
Table 8.7 Three Spacecraft Near Rendezvous Maneuver with Collision Avoidance. 

 

Far Rendezvous Maneuver LQR/APF APF 
∆v = 4.1934 m/s ∆v = 3.7902 m/s * Far with Obstacle 

Initial RSW [0, 1000, 0] m td = 1982 s td = 1276 s 
∆v = 4.1455 m/s ∆v = 3.9995 m/s * Far with Obstacle 

Initial RSW [412, -812, -412] m td = 1720 s td = 1276 s 
∆v = 4.4081 m/s ∆v = 4.8637 m/s * Far with Obstacle 

Initial RSW [575, 575, 575] m td = 1729 s td = 1287 s 
Table 8.8 Three Spacecraft Far Rendezvous Maneuver with Collision Avoidance. 

 

 
Figure 8.20 Three Spacecraft Collision Avoidance During Rendezvous Maneuver. 
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In order to further challenge the control algorithms the simultaneous rendezvous 

maneuvers were conducted with six Chase spacecraft.  For the six Chase spacecraft 

simultaneous rendezvous maneuvers the Chase spacecraft approach to within 1.0 meter of 

the Target spacecrafts outer surface.  The near rendezvous maneuver with collision 

avoidance results are listed in Table 8.9 and the far rendezvous maneuver with collision 

avoidance results are listed in Table 8.10. 

 

Near Rendezvous Maneuver LQR/APF APF 
∆v = 0.3138 m/s ∆v = 0.2763 m/s Near with Obstacle 

Initial RSW [0, 70, 0] m td = 1066 s td = 1011 s 
∆v = 0.5294 m/s ∆v = 0.4424 m/s Near with Obstacle 

Initial RSW [50, -100, -50] m td = 1073 s td = 1017 s 
∆v = 0.8097 m/s ∆v = 0.7362 m/s Near with Obstacle 

Initial RSW  [100, 100, 100] m td = 1116 s td = 1041 s 
∆v = 0.4611 m/s ∆v = 0.5287 m/s Near with Obstacle 

Initial RSW [100, 0, 0] m td = 1049 s td = 1069 s 
∆v = 0.6939 m/s ∆v = 0.5854 m/s Near with Obstacle 

Initial RSW [-50, 100, -100] m td = 1148 s td = 1026 s 
∆v = 0.4605 m/s ∆v = 0.4551 m/s Near with Obstacle 

Initial RSW [0, 0, 100] m td = 1249 s td = 1159 s 
Table 8.9 Six Spacecraft Near Rendezvous Maneuver with Collision Avoidance. 

 

Far Rendezvous Maneuver LQR/APF APF 
∆v = 4.1568 m/s ∆v = 3.7170 m/s * Far with Obstacle 

Initial RSW [0, 1000, 0] m td = 1504 s td = 1235 s 
∆v = 4.0249 m/s ∆v = 3.9096 m/s * Far with Obstacle 

Initial RSW [412, -812, -412] m td = 1499 s td = 1225 s 
∆v = 4.3766 m/s ∆v = 4.8191 m/s * Far with Obstacle 

Initial RSW  [575, 575, 575] m td = 1523 s td = 1255 s 
∆v = 4.8820 m/s * ∆v = 4.9273 m/s * Far with Obstacle 

Initial RSW [1000, 0, 0] m td = 1531 s td = 1251 s 
∆v = 3.3261 m/s ∆v = 3.6335 m/s * Far with Obstacle 

Initial RSW [0, 0, 1000] m td = 1547 s td = 1232 s 
∆v = 2.8049 m/s ∆v = 3.1474 m/s Far with Obstacle 

Initial RSW [707 ,707, 0] m td = 1317 s td = 1174 s 
Table 8.10 Six Spacecraft Far Rendezvous Maneuver with Collision Avoidance. 

 



123 

The efficiency of the maneuvers is not as clear in this maneuver due to non-

optimal collision avoidance affecting both algorithms.  The collision avoidance cause a 

decrease in acceleration and velocity as the Chase spacecraft approaches an obstacle.  

The LQR/APF algorithm tends to respond in a smooth manner while avoiding collisions.  

The APF algorithm tends to saturate the thrusters in the vicinity of obstacles.  The rigid 

desired velocity following characteristic the APF algorithm may allow quick and efficient 

convergence during some maneuvers.  However, there is a greater danger of collision as 

thrusters saturate and may not be able to respond to additional maneuver demands.  The 

collision avoidance required at the Target spacecraft further decreases the efficiency of 

the LQR/APF control algorithm by making it stop short of its optimized goal. 

As expected, it generally takes longer for spacecraft to cover longer distance.  

Collision avoidance may further delay rendezvous due to the need to maneuver around 

obstacles.  Notice that the duration of the simultaneous maneuvers increases for the latter 

arriving spacecraft due to repulsion of the other rendezvous spacecraft.  The collision 

avoidance algorithm logic ensures that converging spacecraft are not perturbed by latter 

converging spacecraft.  This ensures safety in the convergence, but may cause the 

rendezvous of later spacecraft to be delayed due to the congestion at the shared goal 

position.  For instance, the Chase spacecraft avoiding obstacles can be delayed due to the 

obstacle avoidance maneuver in free space and experience additional convergence delay 

due to latter arrival at the rendezvous.  This last delay usually affects the third, or more, 

spacecraft approaching the rendezvous point.  This delay can be resolved by dedicating 

different rendezvous points for each spacecraft.  This concept is explicitly be addressed 

by assigning different goal locations for each spacecraft, such as in docking maneuvers. 

 

D. DOCKING MANEUVERS 

The final stage and ultimate goal of rendezvous may be the docking of multiple 

spacecraft.  The two spacecraft docking maneuver is the basis for on orbit servicing and 

assembly.  As multiple spacecraft are required to perform docking maneuvers, several 

potential complications arise.  The docking mechanisms and the docking order need to be 

addressed.  The forces and torque tolerance of the docking mechanism and the overall 

spacecraft need to be considered.  Also, the docking mechanisms must be arranged on 
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each spacecraft to allow for clear fields of view for sensors and clear approach zones.  

For spacecraft the docking order may be predetermined.  This is typically the case for 

heterogeneous spacecraft that must be assembled in a specific order or manner.  For 

homogenous spacecraft, the order of docking may not be as important, but there may be 

limitations due to docking mechanism number and position.  Each docking mechanism 

may be function as a female, male, or both.  Also, the spacecraft structure may also limit 

the docking mechanism placement on the spacecraft.  For instance, a possible cubic 

spacecraft may dock on any of its six sides; refer to Figure 8.21.   The dotted lines 

represent male to female docking orientations.  A spacecraft with only one male and 

female connection is very limited in versatility of assembly scenarios. 

 
Figure 8.21 Cubic Spacecraft Docking Positions. 

 

The developed LQR/APF and APF control algorithms were evaluated for the 

docking maneuver.  As with the other maneuvers, the docking maneuver time and fuel 

efficiency are the primary metrics used for evaluating the performance of a control 

algorithm.  Each of Chase spacecraft was assigned a desired goal location on the outer 

surface of the Target spacecraft.  Both LQR/APF and APF control algorithms with 

collision avoidance are used to avoid obstacles and other spacecraft while converging to 
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within 2.0 millimeter of the docking position on the Target spacecraft’s outer boundary.  

The results of the three spacecraft near docking proximity maneuver with collision 

avoidance are listed in Table 8.11.  The same initial positions and stationary obstacles 

were selected for direct comparison.  The results of the three spacecraft far docking 

proximity maneuver with collision avoidance are listed in Table 8.12.   

 

Near Docking Maneuver LQR/APF APF 
∆v = 0.3355 m/s ∆v = 0.2959 m/s Near with Obstacle 

Initial RSW [0, 70, 0] m td = 1135 s td = 1282 s 
∆v = 0.5694 m/s ∆v = 0.5397 m/s Near with Obstacle 

Initial RSW [50, -100, -50] m td = 1118 s td = 1296 s 
∆v = 0.9915 m/s ∆v = 0.9823 m/s * Near with Obstacle 

Initial RSW  [100, 100, 100] m td = 1355 s td = 1386 s 
Table 8.11 Three Spacecraft Near Docking Maneuver with Collision Avoidance. 

 

Far Docking Maneuver LQR/APF APF 
∆v = 4.1575 m/s ∆v = 3.7561 m/s * Far with Obstacle 

Initial RSW [0, 1000, 0] m td = 1522 s td = 1477 s 
∆v = 4.4056 m/s ∆v = 4.0500 m/s * Far with Obstacle 

Initial RSW [412, -812, -412] m td = 2119 s td = 1479 s 
∆v = 4.6149 m/s ∆v = 5.003 m/s * Far with Obstacle 

Initial RSW [575, 575, 575] m td = 1878 s td = 1531 s 
Table 8.12 Three Spacecraft Far Docking Maneuver with Collision Avoidance. 

 

For sub-centimeter docking precision, the exact relative velocity of the docking 

port must be taken into consideration.  Objects appearing to be stationary in relative 

position actually have a velocity which directly relates to the orbital rotation of the RSW 

frame.  This velocity offset can limit precession if not determined for all objects 

appearing relatively stationary in the RSW frame.  This velocity offset, offsetv , is 

determined by simply multiplying the docking port’s offset position from the Target 

center by the orbital rotation rate.   
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 (8.1) 
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This resulting velocity is that which is required for an object to appear stationary 

with respect to the center of the RSW frame.  Without this correction for LEO orbits, the 

resulting convergence error is approximately 3.0-4.0 cm for every meter of offset.  This 

offset velocity correction is only necessary for relatively fixed objects and does not 

impact freely orbiting objects. 

Ultimately the docking mechanism must be sized for the spacecraft.  

Consideration must be made for forces and torques due to manner of docking, such as 

grappling, magnetic, or male/female.  The final position and velocity error control 

algorithm must be within the tolerance of the docking mechanism.  For instance, if the 

final position is expected to be within 2 cm then the docking mechanism may need to 

have an adaptor with a radius of 2 cm plus the size of the docking lever; refer to Figure 

8.22.  The velocity error of the final position will result in forces and torques imparted 

between spacecraft as they make contact.  This docking impact may result in transient 

translational and rotations which need to be controlled.  For instance, even if a mother 

spacecraft can support the docking of multiple spacecraft, the docking order may need to 

be staggered in order to allow the assembled space structure to stabilize after each 

docking.  This is less significant for small spacecraft docking to relatively more massive 

spacecraft. 

 
Figure 8.22 Spacecraft Docking Region. 
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The control algorithms are applied to the more complicated maneuver involving 

six Chase spacecraft simultaneously docking to a single Target spacecraft.  For the six 

Chase spacecraft docking maneuvers, the ports are centered on each side of a cubic 

Target spacecraft at RSW locations of [1, 0, 0], [0, -1, 0], [0, 1, 0], [-1, 0, 0], [0, 1, 0], and 

[0, -1, 0], respectively.  The docking locations were randomly assigned and not related to 

the initial positions of the Chase spacecraft.  This allows for robustness evaluation of the 

control algorithm, since it requires that each Chase spacecraft maneuver in close 

proximity.  Both LQR/APF and APF control algorithms with collision avoidance are used 

to avoid obstacles and other spacecraft while converging to within 2.0 millimeter of their 

assigned docking position on the Target spacecraft’s outer boundary.  The results for six 

Chase spacecraft conducting simultaneously near docking maneuvers, with collision 

avoidance, are listed in Table 8.13. The results for six Chase spacecraft simultaneously 

conducting far docking maneuvers, with collision avoidance, are listed in Table 8.14. 

 

Near Docking Maneuver LQR/APF APF 
∆v = 0.3355 m/s ∆v = 0.2959 m/s Near with Obstacle 

Initial RSW [0, 70, 0] m td = 1135 s td = 1282 s 
∆v = 0.5694 m/s ∆v = 0.5648 m/s * Near with Obstacle 

Initial RSW [50, -100, -50] m td = 1118 s td = 1304 s 
∆v = 0.9915 m/s ∆v = 1.1742 m/s * Near with Obstacle 

Initial RSW  [100, 100, 100] m td = 1355 s td = 1516 s 
∆v = 0.6902 m/s ∆v = 0.7264 m/s * Near with Obstacle  

Initial RSW [100, 0, 0] m td = 1307 s td = 1444 s 
∆v = 0.9969 m/s ∆v = 0.7238 m/s * Near with Obstacle  

Initial RSW [-50, 100, -100] m td = 1521 s td = 1397 s 
∆v = 0.7399 m/s ∆v = 0.6944 m/s * Near with Obstacle  

Initial RSW [0, 0, 100] m td = 1794 s td = 1923 s 
Table 8.13 Six Spacecraft Near Docking Maneuver with Collision Avoidance. 
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Far Docking Maneuver LQR/APF APF 
∆v = 4.1792 m/s ∆v = 3.7513 m/s * Far with Obstacle 

Initial RSW [0, 1000, 0] m td = 1530 s td = 1478 s 
∆v = 4.5243 m/s ∆v = 4.1084 m/s * Far with Obstacle 

Initial RSW [412, -812, -412] m td = 1870 s td = 1488 s 
∆v = 4.7083 m/s ∆v = 5.2832 m/s * Far with Obstacle 

Initial RSW  [575,575, 575] m td = 1719 s td = 1549 s 
∆v =4.9268 m/s * ∆v = 5.2024 m/s * Far with Obstacle  

Initial RSW [1000, 0, 0] m td = 1520 s td = 1602 s 
∆v = 3.6151 m/s ∆v = 3.8136 m/s * Far with Obstacle  

Initial RSW [0, 0, 1000] m td = 1678 s td = 1496 s 
∆v = 3.0789 m/s ∆v = 5.1804 m/s * Far with Obstacle  

Initial RSW [707, 707, 0] m td = 1463 s td = 1509 s 
Table 8.14 Six Spacecraft Far Docking Maneuver with Collision Avoidance. 

 

The relative position, velocity and control effort performance of the APF control 

algorithm for the second Chase spacecraft, listed in Table 8.14, are shown in Figure 8.23 

through Figure 8.25, respectively.  The relative position, velocity and control effort 

performance of the LQR/APF control algorithm for the same Chase spacecraft are shown 

in Figure 8.26 through Figure 8.28, respectively.  These responses are similar to those 

seen for previous maneuvers, which illustrate the general similarity in multiple spacecraft 

close proximity maneuvers.  Although, additional control response is often needed in the 

later stages of precision docking maneuvers, refer to the control effort response in Figure 

8.28.   
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Figure 8.23 Chase Spacecraft Relative Position Using APF for Far Rally. 

 
Figure 8.24 Chase Spacecraft Relative Velocity Using APF for Docking. 
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Figure 8.25 Chase Spacecraft Control Effort Using APF for Far Docking. 

 
Figure 8.26 Chase Spacecraft Relative Position Using LQR/APF for Far Docking. 
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Figure 8.27 Chase Spacecraft Relative Velocity Using LQR/APF for Far Docking. 

 
Figure 8.28 Chase Spacecraft Control Effort Using LQR/APF for Far Docking. 
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The most interesting part of multiple spacecraft docking is best shown with 

animated graphic.  This allows evaluation of control logic and convergence performance 

with respect to how each spacecraft maneuvers with relationship to both time and space.  

Without animation, a basic assessment of the LQR/APF and APF controller’s relative 

position performance can be illustrated with a path comparison.  The relative path of the 

second Chase spacecraft, from Table 8.13 and Table 8.14, is shown in Figure 8.29.  The 

commanded path for each of the control algorithms is obviously different, with variations 

having cascading effects for collision avoidance with other spacecraft.  The stationary 

obstacle collision avoidance and docking regions are highlighted in Figure 8.30 and 

Figure 8.31, respectively.  The stationary obstacle avoidance response is straight forward; 

however the docking regions path requires further explanation.  The Chase spacecraft 

arrives at the Target spacecraft in a different order based on LQR/APF or APF control.  

Using the APF, this Chase spacecraft arrives as the second spacecraft in the docking 

region, so modest collision avoidance in the docking region is required.  For the 

LQR/APF this particular Chase spacecraft arrives last and must fully employ collision 

avoidance.  Variations in commanded path, arriving sequence, and relative position of the 

other Chase spacecraft make one to one performance comparison challenging.  The 

control behavior of each Chase spacecraft may appear to be intelligent behavior, but is 

actually the result of the control algorithm’s basic computation and logic.  These control 

algorithms can be expanded to handle additional logical situations of particular 

maneuvers. 
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Figure 8.29 LQR/APF and APF Path Comparison. 

 
Figure 8.30 LQR/APF and APF Collision Avoidance Path Comparison. 
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Figure 8.31 LQR/APF and APF Docking Region Path Comparison. 

 

Selecting which spacecraft should dock at which docking mechanism may be a 

function of a higher order control algorithm.  For instance a docking assignment 

algorithm may select the closest relative spacecraft to each docking mechanism that is 

available.  Multiple spacecraft docking assignment depends on the mission and 

characteristic of each spacecraft.  One example of a candidate task assignment algorithm 

was developed in [1] and could be adapted for the docking task.  This algorithm is based 

on dynamics programming and allows for the spacecraft order to be based on fuel 

efficiency of the maneuver.  This algorithm can be readily adapted to potential function 

relative positioning without a centralized computation and a simple communication 

protocol.  However, once a hierarchical tasking algorithm is applied additional 

communication and computation may be required. 
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E. MANEUVER EVALUATION CONCLUSIONS 

Based on the wide range of close proximity maneuvers evaluated, the LQR/APF 

control algorithm is an excellent candidate for multiple spacecraft close proximity 

operations.  The convergence rate and control effort efficiency is comparable to that of a 

highly tuned APF control algorithms.  The incorporation of the linearized dynamics in the 

LQR/APF control algorithm allows it to overcome limitations of APF control algorithms 

for actual implementation.  The iterative calculations allow for practical computation for 

real time applications.  The LQR/APF simulations demonstrate successful completion of 

multiple spacecraft conducting simultaneous, rally, rendezvous, and docking maneuvers.  

Inclusion of high fidelity spacecraft perturbation forces during the simulations proves that 

the LQR/APF algorithm is also effective in disturbance rejection. 

The control effort expended during the close proximity maneuver can be related 

to the quantity of propellant used.  Spacecraft have an estimated margin of 3-6% for 

propellant mass, refer to Table 3.2.  Based on 100 kg spacecraft, the initial propellant 

mass would be at least 3.0 kg.  The far simultaneous docking maneuvers are potential the 

most control effort intensive maneuvers.  The control effort for the six Chase spacecraft 

docking maneuvers, refer to Table 8.14, are represented in propellant mass in Figure 

8.32.  From this perspective, a Chase spacecraft could perform about ten far docking 

maneuvers.  This is an extremely conservative estimate based on far initial positions, 

short maneuver duration, modest volume of propellant, and a dense obstacle 

environment.  The average Chase should be able to perform several close proximity 

maneuvers.  Therefore, the LQR/APF algorithm appears to be a promising new 

development for the field of multiple spacecraft close proximity maneuver control.  

Monte-Carlo method analysis allows for reasonable statistical estimates of the mean and 

standard deviation of maneuver dt  and v∆ .  Refer to Chapter IX for multiple spacecraft 

control algorithm Monte Carlos simulation results. 
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Figure 8.32 Propellant Usage in Relation to Mass. 
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IX. MONTE-CARLO ANALYSIS OF CLOSE PROXIMITY 
MULTIPLE SPACECRAFT MANEUVERS 

Numerous simulations of multiple spacecraft close proximity maneuvers were 

conducted in order to generate a sample distribution of maneuver parameters.  Using 

Monte-Carlo methods, estimates of the mean and standard deviation of maneuver 

duration, dt , and delta-v, v∆ , were determined.  Two hundred convergence, rally, 

rendezvous, and docking maneuver simulations were conducted for both the APF and 

LQR/APF control algorithms.  Each simulation involved six Chase spacecraft performing 

simultaneous maneuvers.  The Law of large numbers permits the approximation of 

sample statistics via Monte-Carlo methods.  As expected, the large sample size generally 

approaches a Gaussian distribution.  The normalized data distribution allows for 

estimates of the maneuver parameter means and standard deviations.  The statistical data 

is presented in both per spacecraft and per maneuver format.  The per spacecraft statistics 

use each Chase spacecraft of each maneuver for a total sample size of 1,200 spacecraft.  

The per maneuver statistics use the maximum parameters of each maneuver for a total 

sample size of 200.  The average close proximity maneuver duration is valuable to 

spacecraft operators.  Similarly, the average v∆  is valuable to both spacecraft designers 

and mission planners.  

None of the three control algorithm failures conditions, as discussed in Chapter 

VII.D, were experienced by either the refined APF or the developed LQR/APF control 

algorithm.  First, no spacecraft collisions were detected.  Second, all spacecraft 

maneuvers were successfully performed within 90 minutes.  Finally, no spacecraft was 

required to use all of its propellant during maneuvering.  Therefore, both control 

algorithms proved to be effective in performing close proximity operations.  A statistical 

analysis of both the APF and LQR/APF during the convergence and docking maneuvers 

follows.  
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A. INITIAL CONDITIONS AND SPACECRAFT PARAMETERS 

For each simulation, the Chase spacecraft initial positions were uniformly 

randomly distributed while all other simulation parameters were maintained.  Each of the 

six Chase spacecraft was initially positioned within a 1.0 km sphere with respect to a 

Target spacecraft position.  However, the Chase spacecraft initial position was assumed 

to be at least 10 m from the Target.  This stand off range, representing the center-to-

center distance between the Target and Chase spacecraft, was used so that spacecraft size 

variation of a few meters could be readily simulated.  The Target spacecraft was assumed 

to be in a circular LEO of 500 km altitude.  The initial relative velocity was assumed to 

be negligible.  This neutral velocity state in the relative frame, suggests an elliptical 

orbital phase for the Chase spacecraft.  For the sake of control evaluation, this neutral 

situation is reasonable and serves to avoid bias due to favorable velocity conditions.  The 

relatively high velocity management of both the APF and LQR/APF allows for some 

initial velocity.  The initial velocity was used as an experimental control variable, while 

the initial position is treated as a uniformly randomly distributed independent variable. 

The initial range of each Chase spacecraft is within a 10 - 1,000 m sphere of the 

Target Spacecraft.  The initial positions of all Chase spacecraft, with respect to the Target 

spacecraft, are shown in Figure 9.1.  This includes all 1,200 Chase spacecraft of the 200 

simulations.  The initial position of the first Chase spacecraft of each simulation is shown 

in Figure 9.2.  This subset of 200 spacecraft initial positions shows that the Chase 

spacecraft are randomly distributed for each simulation.  The Chase spacecraft Monte-

Carlo simulation initial range statistics are listed in Table 9.1.  First, the initial range 

mean and standard deviation is listed for all 1,200 Chase spacecraft in the 200 

simulations.  The Chase spacecraft are uniformly randomly distributed, as shown in 

Figure 9.3.  Next, the mean and standard deviation is listed for the maximum initial 

Chase spacecraft range of each of the 200 simulations.  The maximum Chase spacecraft’s 

initial range distribution for each maneuver, as shown in Figure 9.4.   This maximum 

initial range metric drives the overall dt  and v∆  for each multiple spacecraft maneuver.  

Both the LQR/APF and APF control algorithm are analyzed over the same random range 

distribution.  This allows for direct comparison of performance for each maneuver. 
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Figure 9.1 Initial Position of All Chase Spacecraft. 

 
Figure 9.2 Initial Position of First Chase Spacecraft. 

 

Initial Range Statistics Mean Standard Deviation 
Initial Range (1200 samples) 501.8 m 282.1 m 
Max Initial Range (200 samples) 840.0 m 122.0 m 

Table 9.1 Chase Spacecraft Range Distribution Statistics. 
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Figure 9.3 Initial Chase Spacecraft Range Distribution. 

 
Figure 9.4 Maximum Maneuver Initial Range Distribution. 
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The Chase spacecraft parameters were held constant for all simulations.  All 

spacecraft are homogeneous cubes of 1.0 m. Each spacecraft has an initial mass of 100 

kg; however the mass of each varies as it uses propellant.  The general Monte-Carlo 

simulation method parameters are listed in Table 9.2.  Each high fidelity spacecraft 

model is subject to all of the perturbing forces and torques discussed in Chapter III. 

 

Monte Carlo Analysis Simulation Parameters 
Number of Simulations 200 
Spacecraft Shape Cubic 
Spacecraft Size 1.0 m 
Initial Spacecraft Mass 100 kg 
Initial Propellant Mass 3 kg 
Target Spacecraft Orbit Circular orbit at 500 km altitude 
Number of Chase Spacecraft per Maneuver 6 
Chase Spacecraft Initial Position 10 – 1,000 m from Target 
Chase Spacecraft Initial Velocity Negligible relative velocity 
Spacecraft Perturbation Forces High Fidelity Model 

Table 9.2 Monte Carlo Simulation Parameters. 

 

B. MONTE-CARLO ANALYSIS OF CONVERGENCE MANEUVERS 
The simple convergence maneuver, once again, serves as the baseline for 

evaluating control algorithm performance.  The individual spacecraft distribution 

statistics for dt  and v∆  are listed in Table 9.3.  Overall, the LQR/APF performs simple 

convergence maneuvers better, on a per spacecraft basis.  The maneuvers are 

accomplished in less time using less control effort.  This is as expected due to the 

iterative optimization of the LQR algorithm.  The LQR/APF’s and APF’s convergence dt  

spacecraft distributions are shown in Figure 9.5 and Figure 9.6.  The LQR/APF’s and 

APF’s convergence v∆  spacecraft distributions are shown in Figure 9.7 and Figure 9.8. 
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Convergence Spacecraft Statistics 
(1,200 Samples) 

LQR/APF APF 

Mean 1212.9 s 1364.0 s td 

Standard Deviation 102.6 s 56.5 s 
Mean 1.252 m/s 1.276 m/s  * ∆v 
Standard Deviation 0.708 m/s 0.732 m/s 

Table 9.3 Convergence Spacecraft Statistics. 

 

 
Figure 9.5 LQR/APF Spacecraft Convergence Maneuver Duration Distribution. 
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Figure 9.6 APF Spacecraft Convergence Maneuver Duration Distribution. 

 
Figure 9.7 LQR/APF Spacecraft Convergence Delta-V Distribution. 
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Figure 9.8 APF Spacecraft Convergence Delta-V Distribution. 

 

The statistical analysis is extended to a per maneuver basis. The maximum dt  and 

v∆  are selected for each six Chase spacecraft of a convergence maneuver.  Additionally, 

the v∆  of all six maneuvering Chase spacecraft are summed to obtain the total v∆  for 

each maneuver.  The mean and standard deviation of these metrics are listed in Table 9.4.  

The LQR/APF control algorithm performs simple convergence maneuvers well.  The 

maneuver durations are shorter on average.  Both the maximum and total maneuver v∆  

have a smaller average and tighter standard deviation.  The tighter standard deviation is 

helpful for spacecraft designers and mission planners.  The LQR/APF’s and APF’s 

convergence maneuver maximum dt  distributions are shown in Figure 9.9 and Figure 

9.10.  The maximum duration for each convergence maneuver is similar to the maximum 

initial range distribution.  The LQR/APF’s and APF’s convergence maneuver maximum 

v∆  distributions are shown in Figure 9.11 and Figure 9.12. The LQR/APF’s and APF’s 

total convergence maneuver v∆  distributions are shown in Figure 9.13 and Figure 9.14. 
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Convergence Maneuver Statistics 
(200 Samples) 

LQR/APF APF 

Mean 1330.7 s 1423.4 s Max td 

Standard Deviation 38.7 s 17.5 s 
Mean 2.147 m/s 2.219 m/s Max ∆v 
Standard Deviation 0.404 m/s 0.459 m/s 
Mean 7.515 m/s 7.656 m/s Total ∆v 

Standard Deviation 1.899 m/s 1.951 m/s 

Table 9.4 Convergence Maneuver Statistics. 
 

 
Figure 9.9 LQR/APF Convergence Maneuver Maximum Duration Distribution. 
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Figure 9.10 APF Convergence Maneuver Maximum Duration Distribution. 

 
Figure 9.11 LQR/APF Convergence Maneuver Maximum Delta-V Distribution. 
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Figure 9.12 APF Convergence Maneuver Maximum Delta-V Distribution. 

 
Figure 9.13 LQR/APF Convergence Maneuver Total Delta-V Distribution. 
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Figure 9.14 APF Convergence Maneuver Total Delta-V Distribution. 

 

During convergence maneuvers, the APF control algorithm significantly saturated 

the control actuation in approximately 3-6% of all convergence maneuvers.  These would 

represent situations where no further control effort is available for collision avoidance.  

This saturation allows the APF control effort to appear comparatively efficient, but is not 

a desired state for high density obstacle environments. 

 

C. MONTE-CARLO ANALYSIS OF RALLY MANEUVERS 
For the Monte-Carlo six spacecraft rally maneuvers the rally sphere is 3.5 meters.  

Each cubic spacecraft must simultaneously converge to within 3.5 meters of the goal 

position while avoiding each other.  This spherical range represents the maximum cross-

section of two cubic spacecraft.  The individual spacecraft distribution statistics for dt  

and v∆  are listed in Table 9.5.  Overall, the LQR/APF performs six spacecraft rally 

maneuvers better, on a per spacecraft basis.  The maneuvers are accomplished in slightly 

more time using less control effort.  This is as expected due to the strict velocity control 
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of the APF control algorithm. The LQR/APF’s and APF’s rally dt  spacecraft 

distributions are shown in Figure 9.15 and Figure 9.16.  The LQR/APF has a couple 

duration outliers due to Chase spacecraft loitering in front of later arriving Chase 

spacecraft.  The LQR/APF’s and APF’s rally v∆  spacecraft distributions are shown in 

Figure 9.17 and Figure 9.18. 

 

Rally Spacecraft Statistics 
(1,200 Samples) 

LQR/APF APF 

Mean 1170.5 s 1065.2 s td 

Standard Deviation 179.1 s 90.2 s 
Mean 1.151 m/s 1.167 m/s ∆v 
Standard Deviation 0.706 m/s 0.720 m/s 

Table 9.5 Rally Spacecraft Statistics. 

 

 
Figure 9.15 LQR/APF Spacecraft Rally Maneuver Duration Distribution. 
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Figure 9.16 APF Spacecraft Rally Maneuver Duration Distribution. 

 
Figure 9.17 LQR/APF Spacecraft Rally Delta-V Distribution. 
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Figure 9.18 APF Spacecraft Rally Delta-V Distribution. 

 

The statistical analysis is extended to a per rally maneuver basis, with the mean 

and standard deviation of dt  and v∆  metrics listed in Table 9.6.  The LQR/APF control 

algorithm performs rally maneuvers well.  The average maneuver duration is slightly 

longer, but both the maximum and total maneuver v∆  has smaller average and tighter 

standard deviation.  The APF control algorithm significantly saturated the control 

actuation in approximately 5-10% of all rally maneuvers.  The LQR/APF’s and APF’s 

rally maneuver maximum dt  distributions are shown in Figure 9.19 and Figure 9.20.  The 

maximum duration for each rally maneuver is similar to the maximum initial range 

distribution.  The LQR/APF’s and APF’s rally maneuver maximum v∆  distributions are 

shown in Figure 9.21 and Figure 9.22. The LQR/APF’s and APF’s total rally 

maneuver v∆  distributions are shown in Figure 9.23 and Figure 9.24. 
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Rally Maneuver Statistics 
(200 Samples) 

LQR/APF APF 

Mean 1341.9 s 1143.4 s Max td 

Standard Deviation 184.1 s 21.2 s 
Mean 2.055 m/s 2.109 m/s Max ∆v 
Standard Deviation 0.389 m/s 0.454 m/s 
Mean 6.907 m/s 7.003 m/s Total ∆v 

Standard Deviation 1.808 m/s 1.881 m/s 

Table 9.6 Rally Maneuver Statistics. 

 
Figure 9.19 LQR/APF Rally Maneuver Maximum Duration Distribution. 
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Figure 9.20 APF Rally Maneuver Maximum Duration Distribution. 

 
Figure 9.21 LQR/APF Rally Maneuver Maximum Delta-V Distribution. 
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Figure 9.22 APF Rally Maneuver Maximum Delta-V Distribution. 

 
Figure 9.23 LQR/APF Rally Maneuver Total Delta-V Distribution. 
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Figure 9.24 APF Rally Maneuver Total Delta-V Distribution. 

 

D. MONTE-CARLO ANALYSIS OF RENDEZVOUS MANEUVERS 
The six spacecraft rendezvous maneuver sphere is similar to that of the rally 

maneuver.  Each spacecraft must simultaneously converge to within 3 meters of the 

surface of the Target spacecraft while avoiding each other.  This allows rendezvous 

within twice the maximum cross-section of the cubic spacecraft.  Any closer rendezvous 

requires thorough operational consideration of practical maneuver space and end goal 

points.  The individual spacecraft distribution statistics for dt  and v∆  are listed in Table 

9.7.  Similar to the rally maneuver, the LQR/APF performs six spacecraft rendezvous 

maneuvers in slightly more time using less control effort.  The LQR/APF’s and APF’s 

rendezvous dt  spacecraft distributions are shown in Figure 9.25 and Figure 9.26.  As seen 

in the rally maneuver, the LQR/APF has a couple duration outliers.  The LQR/APF’s and 

APF’s rendezvous v∆  spacecraft distributions are shown in Figure 9.27 and Figure 9.28. 
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Rendezvous Spacecraft Statistics 
(1,200 Samples) 

LQR/APF APF 

Mean 1171.9 s 1065.0 s td 

Standard Deviation 181.3 s 90.1 s 
Mean 1.150 m/s 1.166 m/s ∆v 
Standard Deviation 0.704 m/s 0.719 m/s 

Table 9.7 Rendezvous Spacecraft Statistics. 

 

 
Figure 9.25 LQR/APF Spacecraft Rendezvous Maneuver Duration Distribution. 
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Figure 9.26 APF Spacecraft Rendezvous Maneuver Duration Distribution. 

 
Figure 9.27 LQR/APF Spacecraft Rendezvous Delta-V Distribution. 
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Figure 9.28 APF Spacecraft Rendezvous Delta-V Distribution. 

 

The statistical analysis is extended to a per rendezvous maneuver basis, with the 

means and standard deviations of dt  and v∆  listed in Table 9.8.  The LQR/APF control 

algorithm performance is similar to that of the rally maneuver, with slightly longer 

duration and smaller average v∆  and tighter v∆  standard deviation.  Again, the APF 

control algorithm significantly saturated the control actuation in approximately 5-10% of 

all rendezvous maneuvers.  The LQR/APF’s and APF’s rendezvous maneuver maximum 

dt  distributions are shown in Figure 9.29 and Figure 9.30.  The maximum duration for 

each rendezvous maneuver is similar to the maximum initial range distribution.  The 

LQR/APF’s and APF’s rendezvous maneuver maximum v∆  distributions are shown in 

Figure 9.31 and Figure 9.32. The LQR/APF’s and APF’s total rendezvous maneuver v∆  

distributions are shown in Figure 9.33 and Figure 9.34. 
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Rendezvous Maneuver Statistics 
(200 Samples) 

LQR/APF APF 

Mean 1347.8 s 1143.2 s Max td 

Standard Deviation 188.0 s 21.3 s 
Mean 2.054 m/s 2.107 m/s Max ∆v 
Standard Deviation 0.386 m/s 0.454 m/s 
Mean 6.902 m/s 6.994 m/s Total ∆v 

Standard Deviation 1.793 m/s 1.878 m/s 

Table 9.8 Rendezvous Maneuver Statistics. 

 
Figure 9.29 LQR/APF Rendezvous Maneuver Maximum Duration Distribution. 
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Figure 9.30 APF Rendezvous Maneuver Maximum Duration Distribution. 

 
Figure 9.31 LQR/APF Rendezvous Maneuver Maximum Delta-V Distribution. 
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Figure 9.32 APF Rendezvous Maneuver Maximum Delta-V Distribution. 

 
Figure 9.33 LQR/APF Rendezvous Maneuver Total Delta-V Distribution. 
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Figure 9.34 APF Rendezvous Maneuver Total Delta-V Distribution. 

 

E. MONTE-CARLO ANALYSIS OF DOCKING MANEUVERS 
The six spacecraft simultaneous docking maneuver requires that all six spacecraft 

avoid each other while converging to within 2.0 millimeter of their assigned docking 

position on the Target spacecraft’s outer boundary.  The docking port positions, on the 

center of each cubic face of the Target spacecraft, are randomly assigned.  The individual 

spacecraft distribution statistics for dt  and v∆  are listed in Table 9.9.  The LQR/APF still 

performs well, however the collision avoidance maneuvering close to the Target favors 

the APF controller.  The maneuvers are accomplished in slightly more time and more 

control effort.  This is as expected due to the intrinsic collision avoidance capability of 

the APF control algorithm.  Although, the APF control efficiency is only achieved by 

saturating the available control actuation.  The LQR/APF’s and APF’s docking dt  

spacecraft distributions are shown in Figure 9.35 and Figure 9.36.  The LQR/APF’s and 

APF’s docking v∆  spacecraft distributions are shown in Figure 9.37 and Figure 9.38. 
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Docking Spacecraft Statistics 
(1,200 Samples) 

LQR/APF APF 

Mean 1460.9 s 1438.0 s td 

Standard Deviation 202.6 s 122.0 s 
Mean 1.423 m/s 1.382 m/s ∆v 
Standard Deviation 0.735 m/s 0.764 m/s 

Table 9.9 Docking Spacecraft Statistics. 

 

 
Figure 9.35 LQR/APF Spacecraft Docking Maneuver Duration Distribution. 
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Figure 9.36 APF Spacecraft Docking Maneuver Duration Distribution. 

 
Figure 9.37 LQR/APF Spacecraft Docking Delta-V Distribution. 
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Figure 9.38 APF Spacecraft Docking Delta-V Distribution. 

 

The statistical analysis is extended to a per docking maneuver basis, with the 

means and standard deviations of dt  and v∆  listed in Table 9.10  The LQR/APF control 

algorithm performance continues to maintain a tighter v∆  standard deviation.  This 

confirms the LQR/APF control algorithm’s more predictable performance.  While on the 

other hand, the APF control algorithm significantly saturated the control actuation in 

approximately 10-20% of all docking maneuvers.  This increase in actuator saturation is 

undesirable and increases the risk of collision in high density obstacle regions.  The 

LQR/APF’s and APF’s docking maneuver maximum dt  distributions are shown in Figure 

9.39 and Figure 9.40.  The LQR/APF’s and APF’s docking maneuver maximum v∆  

distributions are shown in Figure 9.41 and Figure 9.42.  The LQR/APF’s maximum v∆  

is lower on average with a tighter distribution.  The LQR/APF’s and APF’s total docking 

maneuver v∆  distributions are shown in Figure 9.43 and Figure 9.44. 
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Docking Maneuver Statistics 
(200 Samples) 

LQR/APF APF 

Mean 1672.0 s 1602.2 s Max td 

Standard Deviation 194.5 s 162.9 s 
Mean 2.348 m/s 2.362 m/s Max ∆v 
Standard Deviation 0.394 m/s 0.456 m/s 
Mean 8.537 m/s 8.291 m/s Total ∆v 

Standard Deviation 1.918 m/s 1.989 m/s 

Table 9.10 Docking Maneuver Statistics. 

 
Figure 9.39 LQR/APF Docking Maneuver Maximum Duration Distribution. 
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Figure 9.40 APF Docking Maneuver Maximum Duration Distribution. 

 
Figure 9.41 LQR/APF Docking Maneuver Maximum Delta-V Distribution. 
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Figure 9.42 APF Docking Maneuver Maximum Delta-V Distribution. 

 
Figure 9.43 LQR/APF Docking Maneuver Total Delta-V Distribution. 
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Figure 9.44 APF Docking Maneuver Total Delta-V Distribution. 

 

F. MONTE-CARLO ANALYSIS CONCLUSIONS 

The Monte-Carlo method analysis of close proximity maneuvers confirms that the 

LQR/APF control algorithm is a practical candidate for multiple spacecraft close 

proximity operations.  Estimates of the mean and standard deviation of maneuver dt  and 

v∆  show that average proximity maneuver control effort, v∆ , efficiency is generally 

better than that of a highly tuned APF control algorithm.  The LQR/APF showed a 0.5-

1.0% efficiency improvement on a per spacecraft maneuver basis.  The standard 

deviation of the LQR/APF control effort is consistently narrower then that of the APF.  

The LQR/APF showed a 10-20% narrower standard deviation. This narrow v∆  standard 

deviation is valuable to both spacecraft designers and mission planners.  It allows 

effective propellant sizing for close proximity operations.  It also gives operational 

planners a useful tool for developing and forecasting maneuvers.  The average mission 

duration, dt , of all close proximity operations were maintained below the desired 30 

minutes.  The wider dt  standard deviation of the LQR/APF control algorithm is due to 
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velocity variations allowed by the algorithm.  This standard deviation of approximately 

three minutes is acceptable for spacecraft operations which have traditionally been 

measured is terms of hours or days.  Both the LQR/APF’s and APF’s v∆  efficiency 

improves if the convergence rate of the Chase spacecraft is slowed.  Therefore, the 

relative velocity can be used as a design trade-off between maneuver duration and 

efficiency.  

Based on this Monte-Carlo analysis, the LQR/APF control algorithm appears 

suitable for application to emerging multiple spacecraft operations.  Both the control 

efficiency and maneuver duration are reasonable for current spacecraft designs.  Based on 

this analysis, the average Chase spacecraft could perform 20 - 40 close proximity 

maneuvers.  This is more maneuvering than typically discussed in even the most 

aggressive spacecraft servicing operations.  Therefore, the LQR/APF algorithm appears 

to be practical for multiple spacecraft close proximity maneuver control.  Variation in 

spacecraft physical characteristics and orbital assumptions may cause some fluctuations 

in the total number of close proximity maneuvers which can be performed.  However, it 

the LQR/APF control algorithm performs reliably for a wide range of maneuvers. 
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X. PERFORMANCE VALIDATION AND VISUALIZATION 

A refined and validated multiple spacecraft six DOF simulation was configured 

for the purpose of control algorithm development during close proximity operations.  The 

simulator incorporates a six DOF MATLAB and Simulink numerical model with 3D 

STK visualization.  Both the model validation and 3D visualization are crucial to 

successful engineering evaluation during control algorithm development.  A MATLAB-

STK simulation interface was developed in order to validate the spacecraft models and 

provide detailed animation of simulations [75]. 

An effective test scenario is one which dependably simulates the environment in 

which the control algorithm is expected to operate.  The application of the control 

algorithm for use on multiple spacecraft in close proximity operations drives the 

requirements that it be tested with computer-generated orbital dynamics and kinematics.  

Spacecraft model validation gives confidence that results are consistent and reliable.  

This research produced a method of spacecraft model validation by comparison with STK 

spacecraft analysis software developed by AGI [36].  STK is used as an orbital 

propagator for both simulation and emulation of the desired spacecraft models. 

Accurate rendering of 3D spacecraft during compound close proximity maneuvers 

permit additional confidence in derived results.  In addition to spacecraft model 

validation, STK can be used for detailed animation of spacecraft simulations.  2D 

animations based on complex numerical translational and attitude data often fail to 

convey true physical relationships.  Even with multiple animated views these 2D 

representations may lead to conceptual misunderstandings.  By utilizing 3D simulations 

more accurate engineering analysis can be conducted, allowing for undesirable 

performance to be discovered and corrected.  This visualization is especially important 

for missions which require simultaneous control of multiple spacecraft maneuvering in 

close proximity.  STK visualization can enhance spacecraft engineering analysis of 

relative translational motion and attitude while allowing for variations in spacecraft 

parameters and constraints.  An overview of the MATLAB-STK simulation interface 

used for model validation and visualization is presented.  
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A. MATLAB-STK SIMULATION INTERFACE 

Due to its ubiquitousness in engineering applications, a MATLAB based interface 

was desired.  The common understanding of MATLAB code among both electrical and 

mechanical engineering researchers allows for a common starting point for multiple 

spacecraft simulation.  In order to develop high fidelity spacecraft models, MATLAB and 

Simulink code is extremely useful and relevant.  The high level language allows for ease 

in defining multiple parameters and numerical computation.  The STK core modules 

allow for analytical and numerical orbital propagation of multiple spacecraft.  Additional 

educational modules allow STK to be used in conjunction with MATLAB [39].  For this 

development MATLAB version 7.3.0267 (R2006b) and STK version 7.0.1 were utilized 

[39] [36].  Instructions for the installation and configuration of STK and MATLAB can 

be found at the AGI website [36].  By transferring information between MATLAB and 

STK, MATLAB constructed simulation dynamics and kinematics can be verified and 

visualized. 

The MATLAB-STK interface takes advantage of STK’s standard connection 

protocol for initializing STK from MATLAB.  STK developers have enabled their code 

to be executed by MATLAB via an application program interface (API) called 

AgConnect [36].  The connection allows for properly formatted commands to be sent via 

a Transmission Control Protocol and Internet Protocol (TCP/IP) port.  By exploiting this 

feature, formatted data, such as ephemeris and attitude date can be passed between 

applications.  For instance, the interface allows all spacecraft physical characteristics and 

simulation parameters to be defined in MATLAB and related to STK.  Also, STK data 

can be passed to MATLAB for analysis The MATLAB-STK simulation interface 

exploits the strength of each software application.  The general functions and information 

flow between MATLAB and STK are shown in Fig. 1.  This is a broad overview of the 

primary functions and how both applications are employed. 
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Figure 10.1 MATLAB-STK Simulation Interface Overview. 

 

1. Overview of MATLAB/Simulink Spacecraft Modeling 

Generalized spacecraft characteristics are modeled using MATLAB and Simulink 

[39].  The MATLAB and Simulink software components were modular structured 

allowing for variation in the number of spacecraft, orbital perturbations, spacecraft and 

obstacles parameters, and desired maneuvers.  A high level Simulink spacecraft model is 

shown in Figure 10.2.  The primary blocks are labeled with their functional calculations.  

The labeled blocks may have several sub layers with corresponding MATLAB code.  The 

wiring has been simplified for visual flow, and some variables are shared between the 

kinematics and dynamics blocks.  All multiple spacecraft simulation parameters are 

assigned, or defined, in MATLAB and implemented by a single Simulink model.  

Spacecraft states are concatenated into vectors and passed through the Simulink model.  

This vector of multiple spacecraft states passing through a single Simulink model is more 

computationally efficient and flexible then having multiple Simulink models to run 

simultaneously.  The modeled space environment perturbations included variations in the  
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Earth's shape and mass, atmospheric drag on the spacecraft, third-body (Sun and Moon) 

forces, and solar-radiation pressure, and mass variation due to thruster firings; refer to 

Chapter III.E. 

 

 
Figure 10.2 High Level Simulink Model for Multiple Spacecraft Simulation. 

 

Several parameters must be defined, or assigned, before multiple spacecraft 

simulations can be executed.  These parameters can include the number of simulations, 

initial time, selection of perturbations, number of spacecraft and obstacles, selection of 

control algorithms, and duration of simulation. For each simulation, a reference start time 

must be selected.  This time can either be the current clock time, or a default reference 

time, which will be used for perturbation calculations, such as solar drag and third body 

effects.  In this research, the Universal Time (UT1) in the format of [year, month, day, 

hour, minute, second] was used.  With respect to this time, it is typical to select a duration 



175 

and time step for the simulation.  A subset of simulation conditions are summarized in 

Table 10.1.  The defining of spacecraft proximity operation to be within one kilometer is 

consistent with other researchers [76].  Although, this research considers rendezvous a 

subset of the close proximity maneuvers within the one kilometer range.  It is worth 

mentioning that this meaning may vary from the phased rendezvous and proximity 

operations mission sequences outlined in the STK/Astrogator module [36]. 

 

Target Minimum Altitude 300 km Target Spacecraft 
Target Maximum Altitude 2,000 km 

Chase Spacecraft Number of Chase Spacecraft 1 - 14 
R-axis 10 – 1,000 m 
S-axis 10 - 1,000 m 

Chase Spacecraft 
Initial Position 

W-axis 10 - 1000 m 
R-axis 0 m/s 
S-axis 0 m/s 

Chase Spacecraft 
Initial Velocity 

W-axis 0 m/s 
Table 10.1 Close Proximity Spacecraft Maneuver Simulation Parameters. 

 

In addition to simulation parameters, there are adjustable parameters for each 

spacecraft, such as initial position, attitude, size, shape, mass, and control actuators.  

Refer to Chapter III.G. for discussion of these parameters.  The initial position of 

spacecraft could be specifically assigned, as in Chapter VIII, or randomly determined, as 

in Chapter IX.  Selection of the desired maneuver prompts the fine-tuning of the control 

algorithm logic, such as decreasing the region of influence due to other Chase spacecraft 

during the terminal stage of docking.  Visualization of the system responses required 3D 

evaluations of multiple spacecraft operating in close proximity.  Although, 3D 

visualization is possible using MATLAB it is limited and leads to some programming 

challenges.  For instance, changing views during animations may be beyond the ability of 

most users.  For a majority of applications simple 3D point mass dynamic representation 

with 2D plots of associated metrics might be acceptable, such as used in [58].  However, 

close proximity maneuvers of high fidelity 3D spacecraft require more realistic  
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simulation for detailed performance evaluation of collision avoidance and docking.  The 

visualization of spacecraft orbits and maneuvers is a specific field which is greatly 

simplified by the use of STK. 

 
2. Overview of Satellite Tool Kit (STK) 
The STK is a useful spacecraft environment simulator and propagator with a 

sophisticated graphical user interfaces (GUI) for spacecraft particular applications.  

However, since STK is not as commonly used in the engineering fields as MATLAB, 

development of a simulation interface between the two proved be useful.  In order to 

visualize and evaluate the controller’s performance, the MATLAB generated data was 

passed to STK.  The spacecraft modeling and visualization capabilities of STK and its 

related modules and plug-ins are extensive.  The visual analysis of the multiple spacecraft 

is invaluable during the evaluation of complex maneuvers.  Both attitude and 

translational dynamics can be viewed from a wide variety of coordinate systems.  Sensor 

field-of-view can be added to spacecraft models to provide an additional level of fidelity 

to the simulations.  The STK/Connect module provides the means for STK to 

communicate with applications, such as MATLAB, through the use of a TCP/IP socket.  

This allows data to be transferred between MATLAB and STK.  The sending and 

receiving of information to and from STK is intended to accurately model sensor 

performance between multiple spacecraft.  Additional development may use the 

STK/Communications module to emulate communication propagation delay, frequency 

and bandwidth limitation, and bit error rates between all spacecraft [77].  This 

communication evaluation could be used to verify that higher order controller commands 

are properly implemented. 

Typical STK users select scenario parameters via the GUI interface.  This allows 

primary objects, such as spacecraft, to be loaded with desired constraints.  Additionally 

sensors can be defined and attached to the satellites.  The GUI has numerous drop-down 

menus with many layers for defining basic characteristic, 2D graphic animation, 3D 

graphic animation, and related constraints.  A sample STK scenario GUI interface is 

shown in Figure 10.3.  The numerous button toolbars are listed along the top of the GUI.  

The primary objects and attachments are listed along the left column.  The 3D graphics 
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animation is shown in the scenario screen, with the general STK user page and 2D 

graphic animation tabbed along the bottom of the screen. 

 

 
Figure 10.3 Sample STK Scenario GUI. 

 

For those interested, several additional STK supported modules may be useful for 

spacecraft proximity operations research.  These modules supplement the core STK 

visualization environment and assist in the evaluation of mission sequences.  In 

particular, the Astrogator module can be used to support detailed maneuver analysis and 

operations [76].  The standard API links directly to the STK simulation environment.  

The Astrogator module is particularly useful for detailed mission analysis bring more 

fidelity to the entire mission control phasing and sequences.  Further integration and 

discussion concerning the Astrogator module is beyond the scope of this research, refer to 

[76] and [36]. 
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Similarly, the Advanced Close Approach Tool (ACAT) may be useful in collision 

avoidance maneuver planning.  This STK module allows for additional situational 

awareness of any spacecraft or object in a referenced database.  The ACAT module 

enables proximity indications and visual cues for variable close approach calculations.  

The use of uncertainty ellipsoids is more of a collision prediction tool for spacecraft path 

planning; refer to [47].  The analysis may be useful when evaluating potential sensor 

failure and communication link limitations.  These modules may be more useful as space 

mission analysis and situational awareness applications. 

 

3. MATLAB-STK Interface 
The MATLAB-STK interface allows overall simulation parameters and spacecraft 

physical characteristics to be defined in MATLAB and related to STK via mexConnect 

commands, or formatted native STK commands. This interface technique takes advantage 

of STK’s standard connection protocol for initializing STK from MATLAB.  Once 

initialized, native STK commands can be called from MATLAB.  The specific 

requirements of each particular STK command will determine which path and parameters 

are necessary.  In addition to commands, formatted ephemeris and attitude files can be 

passed from MATLAB to STK.  Likewise, data can be pulled from STK by using the 

stkReport command.  Pulling ephemeris from STK and passing it to the MATLAB 

engine allows for comparison of independently generated STK and MATLAB spacecraft 

propagation.  Evaluating the results of this comparison allows for validation of a 

developed MATLAB model based on the STK’s High Precision Orbital Propagator 

(HPOP).  The satellite of interest must be initialized and assigned with HPOP, before the 

propagation parameters and perturbations can be tailored via HPOP commands.   By 

systematically enabling and comparing perturbation effects, each component of the 

spacecraft model can be validated.  Once the numerical model has been validated, 

complex multiple spacecraft maneuvering can be animated for further assessment.  

However, precision close proximity maneuvers require refinement of the typical STK 

animation and views. For instance, the spacecraft’s physical characteristics, such as size, 

shape and mass, may need to be modified.  These parameters can be assigned as 

MATLAB variables and executed in STK by placing them as parameters in STK native 
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commands.  The STK graphical model is primarily modified by using an assortment of 

STK Visual Option (VO) commands.  The MATLAB-STK simulation interface code is 

written in MATLAB (.m file format) with some MATLAB/Simulink files nested within 

it.  These sub-files serve as modular components of the MATLAB-STK interface, which 

allow for easy simulation variation and modification between users. 

 

a. Instructions to Establish MATLAB-STK Interface Configuration 
For the standard MATLAB-STK connection, both MATLAB and STK 

applications should be loaded and launched.  Once launched, STK can be initialized from 

MATLAB by using the command stkInit or agiInit.  Information on the path 

setting established can be found by using agiGetConfig.  The next step in the 

connection processes is to open a socket, by using stkOpen.  This configures the path 

and assigns a socket variable and a MATLAB variable, called STKError, for reference.  

Via the established MATLAB/STK connection, STK can be commanded by using either 

a select number of mexConnect commands or native STK commands.  The command 

paths for these two methods are slightly different.  The mexConnect commands are a 

limited subset of core MATLAB/STK interface commands which can be found by 

exploring MATLAB Help.  These mexConnect commands are all prefixed with stk, 

such as the stkInit commands mentioned above.  Since the mexConnect commands 

are limited, there is a general command which allows native STK commands to be 

executed from MATLAB.  The general execution of STK commands via MATLAB can 

be conducted by using stkExec(ConID, ‘Command Path Parameter’).  A 

full listing of native STK commands which can be implemented in this fashion are listed 

in the STK Help menu under the path <Automate/Extend/Integrate>, <Command 

Listings>, <Alphabetical Listing>.  The first step is usually to open a new STK scenario 

and ensure that any previously scenarios are closed.  This ensures that a clean STK 

workspace is being established.  The initial MATLAB-STK interface code is as follows: 
 
stkInit         
%initializes the STK/MATLAB Interface 
remMachine = stkDefaultHost; 
delete(get(0,'children'));  %clear open MATLAB charts 
conID=stkOpen(remMachine);  %Open the Connect to STK 
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%%Check to see if a scenario is open 
scen_open=stkValidScen; 
if scen_open == 1 
   rtn = questdlg('Close the current STK Scenario?'); 
   if ~strcmp(rtn,'Yes') 
      stkClose(conID) 
      return 
   else 
      stkUnloadν ('/*') 
   end 
end 
scen_nam=['Multi_Spacecraft',num2str(CONST.simnum)]; 
stkNewObj('/','Scenario',scen_nam); 

 

The conID variable serves as a numeric representation of the established connection.  

This conID variable will be used often in stkExec commands.  The STK scenario 

name was determined by a MATLAB variable, such as CONST.simnum, which can 

selected by the user to represent the number of simulations or scenarios desired.  The 

sceneries name was then used to establish the new STK scenario.  The stkNewObj 

command path is establishing the new scenario at the highest level path level.  All 

subsequent STK objects, such as spacecraft, will be assigned under this current scenario. 

 

b. STK Scenario Time Synchronization 
The selected simulation initial date and time must be properly formatted 

and passed to STK.  The date and time can be represented in several formats.  One such 

format is [year, month, day, hour, minute, second], with a specific example to [2007, 07, 

21, 12, 30, 0].  However, for STK applications the date and time must be rearranged and 

passed in the format of [21 Jul 2007 12:30:00.0].  If the MATLAB datestr command 

is used to determine the date and time, then a method of re-formatting and passing the 

date and time to STK is as follows: 
 
para_now=datestr(now); 
para_now(3)=' '; 
para_now(7)=' '; 
PARA.TIME=clock;     %sets formatted time for MATLAB 
stkSetTimePeriod(para_now,para_now,'GREGUTC'); 
stkSetEpoch(para_now,'GREGUTC'); 
stkSyncEpoch; 
newpara=strcat('SetValues_','"',para_now, '"',' 0.2 0.1'); 
newpara(10)=' '; 
rtn=stkConnect(conID,'Animate',['Scenario/',scen_nam], newpara); 
rtn=stkConnect(conID,'Animate',['Scenario/',scen_nam],'Reset'); 
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In the newpara variable, the second to last number is animation time step, in seconds, 

and the last number is the highest speed or refresh rate, in seconds.  The scale of these 

rates will influence the simulation by changing the animation of the scenario.  These 

values can also be assigned as variables.  When variables are passed into the body of an 

STK formatted command, brackets must be employed.  This is apparent in the 

stkConnect command, where the variable scen_nam is used.  Code listed in this 

research is only intended to be representative of the capability of the MATLAB-STK 

simulation interface, since there may be numerous methods of producing similar results. 
 

c. Simple Satellite Object 

Multiple spacecraft simulations require several spacecraft to be created.  

These spacecraft will need to be assigned physical and mass characteristics, attitude, and 

initial position and velocity.  Along with the time determined above, these will serve as 

the basic parameters for initializing orbital propagation.  The following sample code 

shows a spacecraft, called Target, being created: 
 
stkNewObj('*/','Satellite','Target'); 
stkExec(conID,'VO */Satellite/Target Model Filename"s/c model"'); 
stkExec(conID, ['SetMass */Satellite/Target Value',… 
num2str(Mass)]) 
stkExec(conID, ['SetMass */Satellite/Target Matrix',…  
num2str(Inertia)]); 
stkExec(conID, ['SetAttitude */Satellite/Target Profile InertFix 
Quat', num2str(Quaternion0),' "CentralBody/Earth J2000"']); 
stkSetPropCart('*/Satellite/Target','HPOP','J2000',tstart,… 
tstopdummy,stepsize,orbitepoch,STATE.ri(1:3)',STATE.vi(1:3)'); 
 

The VO command is used to call a general spacecraft graphical model which is available 

to STK.  The spacecraft graphical model can be selected from a default list, usually 

located at C:\Program Files\AGI\STK 7\STKData\VO\Models\Space, or 

a custom user generated spacecraft graphical model.  The development of simple 

spacecraft graphical models will be discussed in more details in Chapter X.C.  In this 

sample code several variables are passed from MATLAB to STK.  First, the mass 

characteristics are described by the scalar Mass and the vector Inertia.  Inertia is 

the inertia matrix of the spacecraft in vector form.  Next, the initial quaternion attitude of 

the Target spacecraft, called Quaternion0, is assigned.  For this research, an inertial 

fixed attitude about the Earth is assigned using quaternion in the inertial fixed coordinate 
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system (J2000).  The propagation requires an initial start and stop time, called tstart 

and tstopdummy respectively.  The stop time is temporarily assigned at this point to 

allow for assignment of the HPOP integrator.  Next, the orbitepoch variable is 

assigned.  This variable is usually equal to zero.  Finally, the initial position vector, called 

STATE.ri, and velocity vector, called STATE.vi, are passed into STK.  These 

parameters define the initial Target spacecraft states, but additional HPOP settings will 

allow for selection of integration and perturbations features.  These will enable for our 

systematic spacecraft numerical model validation. 

 

B. SPACECRAFT MODEL VERIFICATION 

The high fidelity six DOF spacecraft model and dynamics was verified by 

comparison of developed MATLAB and Simulink orbital modeling with custom STK 

propagators.  The STK High Precision Orbital Propagator (HPOP) was used to ensure 

spacecraft propagation conditions matched all model variations.  Due to its commonality 

in both Simulink and STK, fourth order Runga-Kutta numerical integration method was 

used.  Details on numerical integration applied to orbital propagation are provided in 

[32].  The position and velocity states of non-maneuvering spacecraft were compared for 

different propagation variations.  The modeled space environment perturbations, 

including variations in the Earth's shape and mass (J2-J4 coefficients), atmospheric drag 

on the spacecraft, third-body (Sun and Moon) forces, and solar-radiation pressure, were 

sequentially compared.  In addition, the simple two-body dynamics serves as a baseline 

case and all of these perturbations were included into a total perturbation case.  The 

comparisons of the MATLAB/Simulink and STK propagations show that spacecraft 

model validation via a MATLAB-STK simulation interface is achievable. 

 

1. MATLAB-STK Model Validation Interface 
The multiple spacecraft model was modularly configured to allow each of the 

perturbation models to be sequentially evaluated and validated.  The modular 

perturbations are triggered by an enabling constant.  For each module a variable, called 

CONST.PERT.choice, enabled the proper Simulink blocks and assigned the 
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corresponding HPOP settings for STK.  The MATLAB and Simulink numerical 

modeling of the perturbations was conducted as discussed in Chapter III and [32].  The 

desired precision of the numerical representations can vary as preferred by the user. 

 

a. HPOP Integrator Setting 
The HPOP command allows for assignment of both the numerical 

integration method, such as fourth order Runge-Kutta, and the Earth Gravitational model, 

such as EGM96 [36][32].  The HPOP command is of the general form, 

stkExec(ConID, ‘HPOP Path Parameter’).  Once the HPOP is assign to a 

spacecraft the perturbation forces can be further defined.  The desired perturbations can 

be related to the enabling condition on the Simulink model, so that the various 

perturbations can be independently evaluated.   The HPOP settings can be initialized for 

each spacecraft with the following code: 
 
stkExec(conID,'HPOP */Satellite/Target Integrator IntegMethod RK4 
ReportOnFixedStep On'); 
if CONST.PERT.choice==1;  %Earth Oblateness 

stkExec(conID,'HPOP */Satellite/Target Force Gravity "C:/Program 
Files/AGI/STK 7/STKData/CentralBodies/Earth/EGM96.grv" 4 0'); 
stkExec(conID,'HPOP */Satellite/Target Drag Off'); 
stkExec(conID,'HPOP */Satellite/Target Force SolarRad Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Moon 
Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Sun 
Off'); 

elseif CONST.PERT.choice==2;  %Aero Drag 
stkExec(conID,'HPOP */Satellite/Target Force Gravity "C:/Program 
Files/AGI/STK 7/STKData/CentralBodies/Earth/EGM96.grv" 0 0'); 
stkExec(conID,['HPOP */Satellite/Target Drag On ',Cd,' 0.01 "1976 
Standard"']); 
stkExec(conID,'HPOP */Satellite/Target Force SolarRad Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Moon 
Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Sun 
Off'); 

elseif CONST.PERT.choice==3;  %Solar Drag 
stkExec(conID,'HPOP */Satellite/Target Integrator IntegMethod RK4 
ReportOnFixedStep On'); 
stkExec(conID,'HPOP */Satellite/Target Force Gravity "C:/Program 
Files/AGI/STK 7/STKData/CentralBodies/Earth/EGM96.grv" 0 0'); 
stkExec(conID,'HPOP */Satellite/Target Drag Off'); 
stkExec(conID,['HPOP */Satellite/Target Force SolarRad On ',Cd,' 

0.01']); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Moon 

Off'); 
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stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Sun 
Off'); 
elseif CONST.PERT.choice==4;  %3-Body 

stkExec(conID,'HPOP */Satellite/Target Integrator IntegMethod RK4 
ReportOnFixedStep On'); 
stkExec(conID,'HPOP */Satellite/Target Force Gravity "C:/Program 
Files/AGI/STK 7/STKData/CentralBodies/Earth/EGM96.grv" 0 0'); 
stkExec(conID,'HPOP */Satellite/Target Drag Off'); 
stkExec(conID,'HPOP */Satellite/Target Force SolarRad Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Moon 
On FromCB'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Sun 
On FromCB'); 

elseif CONST.PERT.choice==5;  %Total 
stkExec(conID,'HPOP */Satellite/Target Integrator IntegMethod RK4 
ReportOnFixedStep On'); 
stkExec(conID,'HPOP */Satellite/Target Force Gravity "C:/Program 
Files/AGI/STK 7/STKData/CentralBodies/Earth/EGM96.grv" 4 0'); 
stkExec(conID,['HPOP */Satellite/Target Drag On ',Cd,' 0.01 "1976 
Standard"']); 
stkExec(conID,['HPOP */Satellite/Target Force SolarRad On ',Cd,' 
0.01']); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Moon 
On FromCB'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Sun 
On FromCB'); 

else     %Two Body with no perturbations 
stkExec(conID,'HPOP */Satellite/Target Integrator IntegMethod RK4 
ReportOnFixedStep On'); 
stkExec(conID,'HPOP */Satellite/Target Force Gravity "C:/Program 
Files/AGI/STK 7/STKData/CentralBodies/Earth/EGM96.grv" 0 0'); 
stkExec(conID,'HPOP */Satellite/Target Drag Off'); 
stkExec(conID,'HPOP */Satellite/Target Force SolarRad Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Moon 

Off'); 
stkExec(conID,'HPOP */Satellite/Target Force ThirdBodyGravity Sun 

Off'); 
end 
 

Selection of the perturbation parameter, CONST.PERT.choice, activates the desired 

perturbation code.  The selection may include all or none of the considered perturbations.  

For instance, the selection of CONST.PERT.choice=6 results in the simple two-body 

propagation of the spacecraft orbit.  Additionally, the two numbers in the Gravity 

settings command, at the beginning of each conditional setting, define the degree and 

order of the zonal coefficient terms, respectively [36].  The coefficients can be 

synchronized with any particular user defined model by modifying the .grv file selected.   
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As previously discussed, variable can be passed into the STK command.  For instance, 

the coefficient of drag, represented by Cd, was incorporated into the Drag and 

SolarRad command settings. 

Once the HPOP settings are completed the actual propagation can be 

computed.  The initial stop time, tstopdummy, is replaced with the final desired 

propagation time, tstop.  The spacecraft propagation command is as follows: 
 
stkSetPropCart('*/Satellite/Target','HPOP','J2000',tstart,tstop,… 
stepsize,orbitepoch,STATE.ri(1:3)',STATE.vi(1:3)'); 
 

where the propagation parameters, stepsize, orbitepoch, STATE.ri, and 

STATE.vi are the same as in the initial propagation command; refer to Chapter X.A.3.c. 

 

b. Output STK Data to MATLAB Workspace 
The data from STK propagation can be passed to the MATLAB 

Workspace.  This will allow any desired post processing and evaluation of the data.  

Proper variable assignment of the data allows for state variable comparison.  STK 

spacecraft state data can be passed in several formats.   For this research the ECI position 

and velocity were desired.  Sample code for passing spacecraft ephemeris is as follows: 

 
[stkData,stkName]=stkReport('*/Satellite/Target','J2000 ECI 
Position Velocity'); 
STATE.STK.time=stkFindData(stkData{1},'Time'); 
STATE.STK.r(:,1)=stkFindData(stkData{1},'x'); 
STATE.STK.r(:,2)=stkFindData(stkData{1},'y'); 
STATE.STK.r(:,3)=stkFindData(stkData{1},'z'); 
STATE.STK.v(:,1)=stkFindData(stkData{1},'vx'); 
STATE.STK.v(:,2)=stkFindData(stkData{1},'vy'); 
STATE.STK.v(:,3)=stkFindData(stkData{1},'vz'); 
STATE.STK.ECI=[STATE.STK.r, STATE.STK.v]; 

 

with the variables, prefixed with STATE.STK, arbitrary assigned.  The STK ephemeris 

data is in column format with each row representing a numerical integration step.  

Although not the focus of this research, the user can also pass spacecraft attitude data 

back to the MATLAB Workspace.  For completeness, format of the attitude code is as 

follows: 
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[stkData,stkNames]=stkReport('*/Satellite/Target','Attitude 
Quaternions'); 
STATE.STK.Qbn(:,iqi+1)=stkFindData(stkData{1},'q1'); 
STATE.STK.Qbn(:,iqi+2)=stkFindData(stkData{1},'q2'); 
STATE.STK.Qbn(:,iqi+3)=stkFindData(stkData{1},'q3'); 
STATE.STK.Qbn(:,iqi+4)=stkFindData(stkData{1},'q4'); 
 

In this STK quaternions format, the first three elements are the vector components and 

the fourth element of the quaternion is the scalar (rotational) term. 

 

2. Spacecraft Model Validation Results 
Once the independently generated STK spacecraft data is passed into MATLAB, 

the propagated data can be compared against that of the MATLAB/Simulink model.  

Sample average differences between equivalent MATLAB and STK propagation 

methods are reported in Table 10.2.  The results of this particular comparison appear to 

validate the MATLAB/Simulink numerical model.  These averages were estimated over 

several LEO orbital propagations of 10 spacecraft at various initial conditions.  Each orbit 

was propagated for 30 minutes and one minute durations with fixed one second step size.  

The step size introduces floating point errors in the calculation, such that relatively large 

integration step sizes will result in less precision.  Also, as the propagation time duration 

increases the error between the propagations slowly and steadily increases.  For instance, 

if the iteration step size is shortened to 0.5 seconds, the total perturbation position and 

velocity error for a 30 minute duration improves to 1.251 m  and -31.895 10  m/s× , 

respectively.  The 30 minute time period was chosen in our simulations as the sample 

duration for a close proximity maneuver.  The one minute duration represents an 

estimated time for slow communication or sensor update rates.  Errors are a result of 

slight differences in the numerical integration techniques used for orbit propagations and 

numeric precision of constants/coefficients used during the calculation of perturbation 

forces.  Overall, the relatively small average error in position and velocity validates the 

MATLAB model.  Either the STK HPOP settings or the MATLAB/Simulink model can 

be refined and adjusted in order to achieve equivalent results.  Our goal was not to 

achieve identical results, but to validate our spacecraft model by showing similar 

performance.  The performance comparison thresholds may vary depending on the user’s 

specific application.  Also, some of the computational discrepancies between generated 
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data have periodic characteristics which result in variations of average errors due to the 

time period, or duration, selected.  For instance, the average differences between two sets 

of ephemeris over one half of an orbital period may be less then those generated over one 

quarter of an orbital period. 

 

Perturbation Model Average 
Difference 

30 minutes 1 minute 

Position -108.237 10  m×  -103.391 10  m×  Simple Two Body 
Velocity -136.890 10  m/s× -136.082 10  m/s×
Position -14.650 10  m×  -31.102 10  m×  J2 Perturbation 

 Velocity -46.908 10  m/s×  -55.346 10  m/s×  
Position -18.286 10  m×  -31.452 10  m×  J4 Perturbation 

 Velocity -31.256 10  m/s×  -57.183 10  m/s×  
Position -61.725 10  m×  -81.301 10  m×  Aero Drag 

 Velocity -92.904 10  m/s×  -106.291 10  m/s×  
Position -32.075 10  m×  -86.656 10  m×  Solar Drag 

 Velocity -64.267 10  m/s×  -93.277 10  m/s×  
Position -25.721 10  m×  -56.330 10  m×  Third Body Effects 

 Velocity -41.065 10  m/s×  - 63.777 10  m/s×  
Position 1.360  m  -33.739 10  m×  Total Perturbation 

 Velocity -32.047 10  m/s×  -43.357 10  m/s×  
Table 10.2 Average Difference of MATLAB and STK Propagation. 

 

Due to the numerical precision and numerous environmental model subtle 

differences, comparison between different propagations techniques can be challenging.  

The numerical integration and step size precision, mentioned above, is a common source 

of discrepancy.  However, orbital propagation algorithms can also vary greatly due to 

small precision and significant digit variations on constants used in near space orbital 

environment.  For instance, the most common value for the Gravitational Parameter of 

Earth is 9 3 2398600.4418 10 m sµ −= ×  [32], however some common applications are based 

on models which use a default value of 9 3 2398600.4415 10 m sµ −= ×  [36].  This appears 

at first glance to be a small change in the last digit, however due to the magnitude of the 

value it can cause large variations in the gravitational effects on the spacecraft model.  
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The orbital discrepancy can be as large as several kilometers, over an orbital duration.  

These challenges are only compounded as the numerous perturbation effects are included 

into the spacecraft dynamics model.  Large relative scale differences in computational 

constants can result in loss of desired numerical precision.  The spacecraft models used in 

this research is scaled for precision on the order of meters. 

Nevertheless, the relatively short duration for the considered maneuver limits the 

divergence due to perturbations.  Minor propagation differences can cause difficulty for 

optimization based algorithms that depend on long duration path propagation and 

tracking.  However, close proximity feedback based spacecraft control does not usually 

see these large perturbation changes.  The difference between propagators for the 

duration of a sensor measurement cycle, typically less then one minute, are much smaller 

then those above.  The short duration of the close proximity maneuvers and the 

disturbance rejection of feedback control make these systems rather tolerant of orbital 

perturbations [63][64].  Onboard sensors are capable of providing relative position and 

velocity data at rates much less then one minute.  Therefore, the values in right column of 

Table 10.2 are well within an acceptable range for the close proximity maneuvers.  

Position error for short durations is approximately two millimeters.  This propagation 

position error may be a good metric for determining the size requirements of on-orbit 

docking mechanisms.  However, if onboard sensors and communication fail the 

propagation model used by each spacecraft should be standardized so that position 

estimation can be maintained during such blackout periods 

In the future, the multiple spacecraft model can be compared against other high 

fidelity six DOF spacecraft models.  For nano-satellite comparison, the Autonomous 

Rendezvous and Rapid Turnout Experiment Maneuverable Inspection Satellite 

(ARTIMIS) testbed at the University of Texas at Austin may be a likely candidate [78]. 

However, determining the cause of variations in model performance is very labor 

intensive.  Simulation comparison is especially difficult if different numerical integration 

methods, synchronization, and software or coding are implemented.  Ultimately, some 

variation in simulation performance is expected as perturbations are modeled based on 

empirical estimates of data.  Precise model refinement would require feedback of  
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operational or test data for actual spacecraft, or components, in the same size and mission 

range.  This consideration is not necessary or practical at the algorithm developmental 

level. 

 

3. Spacecraft Model Propagation Challenges 
Due to the numerical precision and numerous environmental model subtle 

differences, comparison between different propagations techniques can be challenging.  

The numerical integration and step size precision, mentioned above, is a common source 

of discrepancy.  However, orbital propagation algorithms can also vary greatly due to 

small precision and significant digit variations on constants used in near space orbital 

environment.  For instance, the most common value for the Gravitational Parameter of 

Earth is  9 3 2398600.4418 10 m sµ −= ×  [32], however some common applications are 

based on models which use a default value of 9 3 2398600.4415 10 m sµ −= ×  [36].  This 

appears at first glance to be a small change in the last digit, however due to the magnitude 

of the value it can cause large variations in the gravitational effects on the spacecraft 

model.  The orbital discrepancy can be as large as several kilometers, over an orbital 

duration.  These challenges are only compounded as the numerous perturbation effects 

are included into the spacecraft dynamics model.  Large relative scale differences in 

computational constants can result in loss of desired numerical precision.  The spacecraft 

models used in this research is scaled for precision on the order of meters, not the 

standard orbital scale of kilometers. 

The advantage of close proximity research is in the relatively short duration of the 

spacecraft maneuvers.  This relatively short duration, usually on the order of a quarter of 

an orbit, limits the divergence due to perturbations.  Minor propagation differences can 

cause difficulty for optimization based algorithms that depend on long duration path 

propagation and tracking.  However, feedback based control does not see these large 

perturbation changes.  The difference between propagators for the duration of a sensor 

measurement cycle, typically less than one minute, are much smaller then those above.  

The short duration of the close proximity maneuvers and the feedback of relative position 

information make the APF controller rather tolerant to perturbation forces.  Onboard 
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sensors are expected to provide relative position and velocity data at rates much less than 

one minute.  Therefore, the values in right column of Table 10.2 are well within an 

acceptable range for the close proximity maneuvers.  Position error for short durations is 

approximately two millimeters.  This propagation position error may be a good metric for 

determining the size requirements of on-orbit docking mechanisms.  However, if onboard 

sensors and communication fail the propagation model used by each spacecraft should be 

standardized so that position estimation can be maintained during such blackout periods. 

 

C. SPACECRAFT MODEL ANIMATION 
Accurate 3D simulation and visualization of multiple spacecraft close proximity 

maneuvers support engineering analysis; communicating the complexity and risk in these 

operations [76].  Multiple spacecraft maneuvers were initiated via MATLAB and 

animated via STK.  The MATLAB initiates an STK TCP/IP connection to send 

commands over a specified port. The STK scenario is developed by executing STK 

commands.  Spacecraft dimensional models for STK visualization must be pre-written in 

STK Modeler.  Once the Model is loaded and the scenario is established data can be 

passed between STK and MATLAB.  The coding for versatile spacecraft model selection 

and visualization can be extensive and complex.  For this research visualization was 

limited to basic cubic, spherical, and cylindrical spacecraft models.  More detailed 

models are available for use and reference in the STK model library. 

Typically all control algorithm development is performed in MATLAB with STK 

used for performance visualize and verification.  Comparison of control algorithm 

metrics is can be numerically evaluated in MATLAB.  However, even with extensive 

metrics and spacecraft state information plots, standardized visualization of the 3D 

spacecraft environment is desired.  In order to animate the maneuver, the MATLAB 

generated spacecraft ephemeris can be formatted and passed to STK to be viewed in 2D 

or 3D.  The final STK scenario is very useful for visualizing the multiple spacecraft 

maneuver and assist in understanding and troubleshooting any issues that may arise.  A 

snapshot of a sample 3D animation of multiple spacecraft is shown in Figure 10.4.  Three 

cubic spacecraft are converging toward a common Target spacecraft, with a spherical 

obstacle in the background on the right.  Both the view point and proximity are easily 
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adjusted with a standard computer mouse click and drag interface.  The animation time 

steps can also be easily adjusted via toolbar buttons.  These features allow the user to 

continually evaluate multiple spacecraft simultaneously performing proximity 

maneuvers.  For instance as spacecraft are maneuvering through free-space the time step 

can be kept relatively high, but can be slowed down as spacecraft converge.  Also, the 

viewpoint may be changed as one spacecraft passes close to an obstacle or eclipses 

another spacecraft.  This is extremely useful for evaluating simultaneous docking 

maneuvers of multiple spacecraft.  Finally, the user can zoom in on the any desired 

spacecraft to visually check that maneuver constraints, such as spatial safety margins, are 

properly maintained. 

 

 
Figure 10.4 Sample 3D STK View of Animation Frame. 

 

1. STK Spacecraft Model 
For standard STK model assignment, a STK .mdl file must be available.  This file 

is assigned to the desired STK satellite object using the following command: 
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stkExec(conID,['VO */Satellite/Target Model Filename 
"C:\Userfiles\STK\Scenario\mdl_cube',num2str(isi),'.mdl"']); 
 

where isi is a numerical variable which was used to distinguish multiple uses of the 

same basic model file.  This is useful for the modeling of multiple spacecraft with the 

same basic model properties.  A sample spacecraft model filename may be 

mdl_cube1.mdl.  This would assign the STK satellite object named, Target, with the 

model spacecraft model described by mdl_cube1.mdl.  The VO command can be used 

to call a general spacecraft model, which is available in STK.  The spacecraft model can 

be selected from a default list, located at C:\Program Files\AGI\STK 

7\STKData\VO\Models\Space, or a custom user generated spacecraft graphical 

model.  These models can be manipulated an explored by opening the STK Modeler 

application and loading the desired spacecraft model.  Some spacecraft advanced 

visualization setting can be modified from the basic model, by executing selected VO 

commands. These modifications may include scaling, labeling, and sensor descriptions. 

 

a. STK Graphical Model Development 
Three simple and distinctive spacecraft models were developed in this 

research.  They are based on a simple spherical, cylindrical, or cubic spacecraft designs.  

Once again the fprintf command serves as our primary formatting tool.  In this 

example the cubic shape serves as the primary body component with supplemental 

docking ports and thrusters components.  The sample cubic spacecraft model code is 

presented for discussion and reference as follows: 
 
filename=['C:\Userfiles\STK\Scenario\mdl_cube',num2str(isi),'.mdl']; 
mdl_cube=fopen(filename,'wt'); 
fprintf(mdl_cube,'Component face\n'); 
fprintf(mdl_cube,'\t Polygon\n'); 
fprintf(mdl_cube,'\t\t Specularity\t 0.2\n'); 
fprintf(mdl_cube,'\t\t Shininess\t 25.6\n'); 
fprintf(mdl_cube,'\t\t Translucency\t 0.025\n'); 
fprintf(mdl_cube,'\t\t FaceColor burlywood\n'); 
fprintf(mdl_cube,'\t\t BackfaceCullable\t No\n'); 
fprintf(mdl_cube,'\t\t Translucency 0.025\n'); 
fprintf(mdl_cube,'\t\t NumVerts\t 4\n'); 
fprintf(mdl_cube,'\t\t Data\n'); 
fprintf(mdl_cube,['\t\t -',num2str(L/2),'\t ',num2str(L/2),'\t -
',num2str(L/2),'\n']); 
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fprintf(mdl_cube,['\t\t ',num2str(L/2),'\t ',num2str(L/2),'\t -
',num2str(L/2),'\n']); 
fprintf(mdl_cube,['\t\t ',num2str(L/2),'\t ',num2str(L/2),'\t 
',num2str(L/2),'\n']); 
fprintf(mdl_cube,['\t\t -',num2str(L/2),'\t ',num2str(L/2),'\t 
',num2str(L/2),'\n']); 
fprintf(mdl_cube,'\t EndPolygon\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 
fprintf(mdl_cube,'Component left\n'); 
fprintf(mdl_cube,'\t Rotate 0 0 90\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t Component face\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 
fprintf(mdl_cube,'Component top\n'); 
fprintf(mdl_cube,'\t Rotate -90 0 0\n'); 
fprintf(mdl_cube,['\t Translate 0 0 ',num2str(L),'\n']); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t Component face\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 
fprintf(mdl_cube,'Component back\n'); 
fprintf(mdl_cube,['\t Translate 0 -',num2str(L),' 0\n']); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t Component face\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 
fprintf(mdl_cube,'Component right\n'); 
fprintf(mdl_cube,'\t Rotate 0 0 90\n'); 
fprintf(mdl_cube,['\t Translate ',num2str(L),' 0 0\n']); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t Component face\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 
fprintf(mdl_cube,'Component bottom\n'); 
fprintf(mdl_cube,'\t Rotate -90 0 0\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t Component face\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 

This section of code generates a primary box shape by defining and rotating a simple 

face.  The variable, L, represents user defined dimensional parameters which can be 

implemented in the model.  In this code the face component was defined first.  Next, this 

component was translated and rotated as necessary to determine all size sides of the 

cubic.   
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Additional components can be defined, such as a simple cone.  The code 

for a conic docking component is as follows: 
 
fprintf(mdl_cube,'Component dockingpoint\n'); 
fprintf(mdl_cube,'\t Cylinder\n'); 
fprintf(mdl_cube,'\t\t Translucency\t 0.25\n'); 
fprintf(mdl_cube,'\t\t BackfaceCullable\t Yes\n'); 
fprintf(mdl_cube,'\t\t NumSides\t 32\n'); 
fprintf(mdl_cube,['\t\t Face1Position\t ',num2str(L/10),' 0 0\n']); 
fprintf(mdl_cube,['\t\t Face1Radius\t ',num2str(L/20),'\n']); 
fprintf(mdl_cube,'\t\t Face1Normal\t 1 0 0\n'); 
fprintf(mdl_cube,['\t\t Face2Position\t -',num2str(L/10),' 0 0\n']); 
fprintf(mdl_cube,['\t\t Face2Radius\t ',num2str(L/100),'\n']); 
fprintf(mdl_cube,'\t\t Face2Normal\t -1 0 0\n'); 
fprintf(mdl_cube,'\t EndCylinder\n'); 
fprintf(mdl_cube,'EndComponent\n\n'); 
 

More detailed components can be generated by combining components.  

For instance, a conic thruster can be combined with a flame, as follows: 
 
fprintf(mdl_cube,'Component Thrust_Cone\n'); 
fprintf(mdl_cube,'\t Cylinder\n'); 
fprintf(mdl_cube,'\t\t Translucency 0.05\n'); 
fprintf(mdl_cube,'\t\t BackfaceCullable\t No\n'); 
fprintf(mdl_cube,'\t\tFaceColor\t gray16\n'); 
fprintf(mdl_cube,'\t\t NumSides\t 32\n'); 
fprintf(mdl_cube,['\t\t Face1Position\t -',num2str(L/10),' 0 0\n']); 
fprintf(mdl_cube,['\t\t Face1Radius\t ',num2str(L/40),'\n']); 
fprintf(mdl_cube,'\t\t Face1Normal\t -1 0 0\n'); 
fprintf(mdl_cube,['\t\t Face2Position\t ',num2str(L/10),' 0 0\n']); 
fprintf(mdl_cube,['\t\t Face2Radius\t ',num2str(L/200),'\n']); 
fprintf(mdl_cube,'\t\t Face2Normal\t 1 0 0\n'); 
fprintf(mdl_cube,'\t EndCylinder\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 
fprintf(mdl_cube,'Component Thrust_Flame\n'); 
fprintf(mdl_cube,'PolygonMesh\n'); 
fprintf(mdl_cube,'\t FaceColor\t black\n'); 
fprintf(mdl_cube,'\t FaceEmissionColor\t gray100\n'); 
fprintf(mdl_cube,'\t NoDiffuseLighting\n'); 
fprintf(mdl_cube,'\t SmoothShading\t No\n'); 
fprintf(mdl_cube,'\t Translucency\t 0\n'); 
fprintf(mdl_cube,'\t Specularity\t 0\n'); 
fprintf(mdl_cube,'\t Shininess 51\n'); 
fprintf(mdl_cube,'\t Texture\n'); 
fprintf(mdl_cube,'\t\t RGB flametex-white\n'); 
fprintf(mdl_cube,'\t\t Alpha flamealpha3\n'); 
fprintf(mdl_cube,'\t\t Parm AA\n'); 
fprintf(mdl_cube,'\t EndTexture\n'); 
fprintf(mdl_cube,'\t NumVerts 12\n'); 
fprintf(mdl_cube,'\t DataTx\n'); 
fprintf(mdl_cube,'\t\t 0\t 0.001\t -1.518\t 0\t 0\n'); 
fprintf(mdl_cube,'\t\t 0\t 0.001\t 1.287\t 0\t 1\n'); 
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fprintf(mdl_cube,'\t\t -10.55\t -0.001\t 1.287\t 1\t 1\n'); 
fprintf(mdl_cube,'\t\t -10.55\t -0.001\t -1.518\t 1\t 0\n'); 
fprintf(mdl_cube,'\t\t 0\t 1.21\t 0.586\t 0\t 0\n'); 
fprintf(mdl_cube,'\t\t 0\t -1.21\t -0.817\t 0\t 1\n'); 
fprintf(mdl_cube,'\t\t -10.55\t -1.21\t -0.817\t 1\t 1\n'); 
fprintf(mdl_cube,'\t\t -10.55\t 1.21\t 0.586\t 1\t 0\n'); 
fprintf(mdl_cube,'\t\t 0\t -1.21\t 0.586\t 0\t 0\n'); 
fprintf(mdl_cube,'\t\t 0\t 1.21\t -0.817\t 0\t 1\n'); 
fprintf(mdl_cube,'\t\t -10.55\t 1.21\t -0.817\t 1\t 1\n'); 
fprintf(mdl_cube,'\t\t -10.55\t -1.21\t 0.586\t 1\t 0\n'); 
fprintf(mdl_cube,'\t NumPolys 3\n'); 
fprintf(mdl_cube,'\t Polys\n'); 
fprintf(mdl_cube,'4 3 2 1 0\n'); 
fprintf(mdl_cube,'4 7 6 5 4\n'); 
fprintf(mdl_cube,'4 11 10 9 8\n'); 
fprintf(mdl_cube,'\t EndPolygonMesh\n'); 
fprintf(mdl_cube,'EndComponent\n'); 
 

The Thrust_Flame component uses textures, such as flametex-white and 

flamealpha3, to render a more complex image.  For detailed discussion of textures refer 

to AGI [36]. 

Once the basic components are defined, they can be reproduced within a loop.  

In this example six thruster cones, based on Thrust_Cone, will be placed on the center of 

each face of the cubic spacecraft.  Their respective rotations and positions can be determined 

from a user defined matrix, such as thrustr(thrusti,:) and 

thrustl(thrusti,:). 

 
for thrusti=1:6  %thruster body positions (-z,-x,x,z,-y,y) 

fprintf(mdl_cube,['\t Component 
Thrust_Cone',num2str(thrusti),'\n']); 

fprintf(mdl_cube,['\t\t Rotate\t ',thrustr(thrusti,:),'\n']); 
fprintf(mdl_cube,['\t\t Translate\t ',thrustl(thrusti,:),'\n']); 
fprintf(mdl_cube,'\t\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component Thrust_Cone\n'); 
fprintf(mdl_cube,'\t\t EndRefer\n'); 
fprintf(mdl_cube,'\t EndComponent\n'); 
 
fprintf(mdl_cube,['\t Component Thrust_Flame', 
num2str(thrusti),'\n']); 
fprintf(mdl_cube,['\t\t Rotate\t ',thrustr(thrusti,:),'\n']); 
fprintf(mdl_cube,['\t\t Translate\t ',thrustl(thrusti,:),'\n']); 
fprintf(mdl_cube,'\t\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component Thrust_Flame\n'); 
fprintf(mdl_cube,'\t\t EndRefer\n'); 
fprintf(mdl_cube,['\t\t Articulation\t Thrust_Flame', 
num2str(thrusti),'\n']); 
fprintf(mdl_cube,'\t\t uniformScale\t Size\t 0\t 0\t 1\n'); 
fprintf(mdl_cube,'\t\t EndArticulation\n'); 
fprintf(mdl_cube,'\t EndComponent\n'); 

end 
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The STK Articulation command is further discussed in Chapter X.C.2.b. 

Now that the primary spacecraft components, including the cubic faces, 

docking ports, and thrusters, are defined, they can be assembled.  Each of the six cubic 

components will make the basic spacecraft shape.  Next, a thruster with flames 

articulation will be centered on each face of the cubic spacecraft.  Finally, the desired 

number of docking ports will be added based on the total number of spacecraft.  For 

instance, the Target spacecraft, numerically represented by isi=1 will have six docking 

ports.  While, all other Chase spacecraft will have single color coordinated docking port 

assigned from user defined matrices, such as dockc(isi-1,:), 

dockr(dockpi,:), and dockl(dockpi,:), for color, rotation, and position, 

respectively.  Each component is referred onto the graphical spacecraft model as follows: 

 

fprintf(mdl_cube,'Component spacecraft\n'); 
fprintf(mdl_cube,'Root\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component face\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component left\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component top\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component back\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component right\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component bottom\n'); 
fprintf(mdl_cube,'\t EndRefer\n'); 
 
for thrusti=1:6 %% thruster positions (-z,-x,x,z,-y,y) 

fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,['\t\t Component Thrust_Cone',num2str(thrusti), 
'\n']); 
fprintf(mdl_cube,'\t EndRefer\n'); 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,['\t\t Component Thrust_Flame',num2str(thrusti), 
'\n']); 
fprintf(mdl_cube,'\t EndRefer\n'); 

end 
 
if isi==1 

for dockpi=1:6 
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fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component dockingpoint\n'); 
fprintf(mdl_cube,['\t\t FaceColor\t ',dockc(dockpi,:),'\n']); 
fprintf(mdl_cube,['\t\t Rotate\t ',dockr(dockpi,:),'\n']); 
fprintf(mdl_cube,['\t\t Translate\t ',dockl(dockpi,:),'\n']); 
fprintf(mdl_cube,'\t EndRefer\n'); 
end 

elseif isi<=7 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component dockingpoint\n'); 
fprintf(mdl_cube,['\t\t FaceColor\t ',dockc(isi-1,:),'\n']); 
fprintf(mdl_cube,['\t\t Rotate\t ',dockr(3,:),'\n']); 
fprintf(mdl_cube,['\t\t Translate\t ',dockl(3,:),'\n']); 
fprintf(mdl_cube,'\t EndRefer\n'); 

else 
fprintf(mdl_cube,'\t Refer\n'); 
fprintf(mdl_cube,'\t\t Component dockingpoint\n'); 
fprintf(mdl_cube,['\t\t FaceColor\t ',dockc(1,:),'\n']); 
fprintf(mdl_cube,['\t\t Rotate\t ',dockr(3,:),'\n']); 
fprintf(mdl_cube,['\t\t Translate\t ',dockl(3,:),'\n']); 
fprintf(mdl_cube,'\t EndRefer\n'); 

end 
fprintf(mdl_cube,'EndComponent\n\n'); 
fclose(mdl_cube); 
 

The entire graphical modeling section of code can be called as one 

MATLAB file, such as model_cubic_dock_thrust.m.  This allows this graphical 

modeling to be isolated from the other MATLAB-STK simulation interface code. 

 

b. STK 3D Visualization Options 
Several graphics and VO parameters can be tailored for clear visualization 

of multiple spacecraft maneuvers.  The primary scaling of the model view is 

accomplished by selecting the following VO command: 
 
stkExec(conID, 'VO */Satellite/Target ScaleModel Ratio'); 
 

where Ratio is the number of times larger that the spacecraft model appears during 

animation.  For instance, spacecraft being observed from a lunar perspective may nee to 

appear hundreds of times larger in order to appear form this perspective.  In close 

proximity operations, Ratio=1 was selected in order that spacecraft appear strictly as 

they are modeled.  The label and graphic features of the spacecraft can be modified as 

follows: 
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stkExec(conID,'VO */Satellite/Target LabelOffsetInPixels Off'); 
stkExec(conID,['VO */Satellite/Target LabelXYZ 0.0 ',num2str(L),' 
0.0']); 
stkExec(conID,'Graphics */Satellite/Target Basic Color cyan LineWidth 
4.2'); 
 

The orbital path is typically shown for spacecraft propagation.  However, for multiple 

spacecraft these projections can result in visual confusion.  These orbital pass projections 

can be modified as follows: 
 

stkExec(conID,'VO */Satellite/Target Pass OrbitLead None'); 
stkExec(conID,'VO */Satellite/Target Pass OrbitTrail None'); 

 

In addition to labeling the spacecraft, inclusion of a body axis may be useful for attitude 

reference.  A 3D spacecraft body reference frame can be added to a model as follows: 
 

stkExec(conID, 'VO */Satellite/Target SetVectorGeometry Data 
FixVectorAxesScaleToModel On Scale 0.01'); 
stkExec(conID,'VO */Satellite/Target SetVectorGeometry Modify 
"Satellite/Target Body Axes" Show On ShowLabel On Color Gold 
ArrowType 3D'); 

 

Besides straightforward labeling and graphics modifications, additional 

sensors may be desired.  These sensors may represent actual ranging and communication 

devices, or useful visual projections for engineering analysis.  Each sensor must be 

uniquely named, so that STK dos not confuse identically named sensors in the same 

scenario.  In this research a conical ranging and docking sensor was added to each Chase 

spacecraft.  The ranging sensor represents the local sensor view from the Chase 

spacecraft to the Target spacecraft, or position.  The simple conic range sensor is 

assigned as follows: 
 

stkExec(conID,['Location */Satellite/',Chase,'/Sensor/Range',Chase,' 
Fixed Cartesian ',num2str(L/2+0.001),' 0 0']); 
stkExec(conID,['Define */Satellite/',Chase,'/Sensor/Range',Chase,' 
SimpleCone 0.25']); 
stkExec(conID,['Point */Satellite/',Chase,'/Sensor/Range',Chase,' 
Targeted Tracking Satellite/Target Hold']); 
stkExec(conID,['VO */Satellite/',Chase,'/Sensor/Range',Chase,' 
Projection SpaceProjection ',num2str(rsw_norm(1,isi+1)-L)]); 
stkExec(conID,['Graphics */Satellite/',Chase,'/Sensor/Range',Chase,' 
SetColor cyan']); 
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First, the sensor is positioned and defined on a spacecraft with an exclusive name.  In this 

example, Chase is an alpha-numeric label unique to each Chase spacecraft.  Next, the 

pointing direction of the sensor is determined.   The range sensor continually points 

toward the Target spacecraft and adjusts its projection based on the relative distance from 

the Target, represented by rsw_norm.  This modification of the projection may not be 

necessary for most sensor applications.  Finally, the color of the sensor projection can be 

modified as desired.  Similarly, a docking sensor may be added to the spacecraft 

graphical model as follows: 
 

stkExec(conID,['Location */Satellite/',Chase,'/Sensor/Dock',Chase,' 
Fixed Cartesian ',num2str(L/2+0.001),' 0 0']); 
stkExec(conID,['Define */Satellite/',Chase,'/Sensor/Dock',Chase,' 
SimpleCone 45.0']); 
stkExec(conID,['Point */Satellite/',Chase,'/Sensor/Dock',Chase,' 
Fixed YPR 321 0 90 0']); 
stkExec(conID,['VO */Satellite/',Chase,'/Sensor/Dock',Chase,' 
Projection SpaceProjection ',num2str(L/2)]); 
stkExec(conID,['Graphics */Satellite/',Chase,'/Sensor/Dock',Chase,' 
SetColor ',dockc(isi-1,:)]); 

 

The docking sensor is located at the same position, but has a much wider cone of 45 

degrees.  The docking sensor points in a fixed direction from the spacecraft body axis, 

with a limited projection of half of the spacecraft’s length.  Next, the sensor projection 

color is selected from a matrix, called dockc.  These simple sensors are useful in 

visually representing ranges and FOV as spacecraft are animated through their dynamics 

and kinematics.  A sample cubic spacecraft with labels and sensor projections is shown in 

Figure 10.5.  The three body axis are shown in yellow with labels.  The green projection 

on the right side of the spacecraft is the docking sensor projection and the small cyan line 

extending to the bottom left is the range sensor.  The white protrusions on ht top and right 

are thruster firings.  
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Figure 10.5 Sample Cubic Spacecraft Graphical Model. 

 

One additional sensor projection was useful in visualizing spacecraft 

exclusion regions during close proximity operations.  A boundary sensor projection was 

placed around regions that spacecraft were intended to avoid.  These areas were referred 

to as obstacles and labeled with Obstcl.  Spherical projections encompassing these 

regions can be generated using conical sensor defined with 360 degrees FOV, such as 

follows: 
 

stkExec(conID,['Define */Satellite/',Obstcl,'/Sensor/Bound',Obstcl,' 
Conical 0 180 0 360']); 
stkExec(conID,['SetConstraint 
*/Satellite/',Obstcl,'/Sensor/Bound',Obstcl,' Range Max 
',num2str(OBS.DoL)]); 
stkExec(conID,['Location 
*/Satellite/',Obstcl,'/Sensor/Bound',Obstcl,' Fixed Cartesian 0 0 
0']); 
stkExec(conID,['VO */Satellite/',Obstcl,'/Sensor/Bound',Obstcl,'  
Projection SpaceProjection ',num2str(OBS.DoL)]); 
stkExec(conID,['Graphics 
*/Satellite/',Obstcl,'/Sensor/Bound',Obstcl,' SetColor red']); 
stkExec(conID,['VO */Satellite/',Obstcl,'/Sensor/Bound',Obstcl,' 
Translucency 95']); 
stkExec(conID,['VO */Satellite/',Obstcl,'/Sensor/Bound',Obstcl,' 
TranslucentLines On']); 
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The spherical sensor projections were made translucent in order not to 

obscure the view of maneuvering spacecraft.  A sample spherical boundary sensor 

projection about a spherical object is shown in Figure 10.6.  The sensor projection is in 

translucent red with the Chase spacecraft in the upper right.  These sensors allowed for 

robust engineering evaluation of collision avoidance function of spacecraft control 

algorithms.  From these basic examples, the user can develop a vast array of 

representative sensors.  Sensor projections ranges and colors can be varied based on 

logical condition.  For instance, ranging sensors may be programmed to modify their 

color as the distance to a target varies.  This may allow for quick visual analysis of 

multiple spacecraft maneuver performance.  However, users may also want to terminate 

some projections during presentations, since multiple overlapping sensors may be 

visually confusing to some audiences.  Ultimately, the animation graphic and level of 

detail can be tailored from the core MATLAB-STK simulation interface code described 

in this research. 

 

 
 

Figure 10.6 Sample Spherical Boundary Sensor. 
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2. Formatting MATLAB Data for STK Files 

The visualization and animation of the MATLAB/Simulink data with the desired 

spacecraft model is a useful tool for engineering analysis and evaluation.  In particular, it 

was vital in the development of a multiple spacecraft control algorithm during 

simultaneous close proximity operations [63][64].  The 3D representation for spacecraft 

during collision avoidance maneuvers enabled effective troubleshooting.  For instance, 

the undesired clipping of the corners of Chase spacecraft while converging to the Target 

spacecraft during docking maneuvers was easily shown in STK animation.  Due to this 

evaluation, the control algorithm collision avoidance logic was modified and its 

performance robustness was improved.  Additionally, visualization of the simultaneous 

multiple spacecraft maneuvers in STK allows for logical point of view changes and 

animation rate changes.  These capabilities allow for clear presentation of spacecraft 

dynamics and control results to those interested multiple spacecraft operations.  In fact, 

STK scenarios can be easily edited and transferred into video format for presentations.  

Modifications of camera key frames (camera position and angle) and animation rates 

allow versatile video composition.  The video file’s format, encoding, bit rate, and size 

can all be selected in STK 7.1, or later versions [36].  The basic STK scenario can be 

modified and animated to meet the individual user’s requirements.  Ultimately, the same 

STK scenario used for engineering evaluation can serve as a demonstration of 

engineering capabilities to a wider audience. 

 

a. Ephemeris and Attitude Data 
The animation of the spacecraft can be based on the data generated by 

STK or the MATLAB/Simulink model.  STK generated data is already in the proper 

format.  However, MATLAB/Simulink data must be proper formatted in order to be used 

by STK.  STK allows for several specific data file formats, such as STK ephemeris and 

attitude files.  These files can be properly written by executing short MATLAB scripts 

utilizing fprintf commands.  A sample STK ephemeris file can be created in 

MATLAB as follows: 
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filename='C:\Userfiles\STK\Scenario\ephemeris_t.e'; 
ephemeris=fopen(filename,'w'); 
fprintf(ephemeris,'stk.v.4.3\n\n'); 
fprintf(ephemeris,'BEGIN Ephemeris\n\n'); 
fprintf(ephemeris,'NumberOfEphemerisPoints\t 
%6.0f\n',length(STATE.time)); 
fprintf(ephemeris,'ScenarioEpoch\t %s\n',num2str(para_now)); 
fprintf(ephemeris,'InterpolationMethod\t Lagrange\n'); 
fprintf(ephemeris,'InterpolationOrder\t 5\n'); 
fprintf(ephemeris,'CentralBody\t Earth\n'); 
fprintf(ephemeris,'CoordinateSystem\t J2000\n'); 
fprintf(ephemeris,'EphemerisTimePosVel\n\n'); 
data=[STATE.time(:,1),r(:,ici+1:ici+3),v(:,ici+1:ici+3)]'; 
fprintf(ephemeris,'%16.14e\t %16.14e\t %16.14e\t %16.14e\t %16.14e\t 
%16.14e\t %16.14e\n',data); 
fprintf(ephemeris,'\n END Ephemeris\n'); 
fclose(ephemeris); 

 

The STK ephemeris file name and path, in the first line, are arbitrary, as long as it has the 

proper .e suffix.  Although, it is useful to save all related STK scenario files in the same 

folder.  The first few fprintf lines are used to establish the desired reference frame and 

interpolation for the data.  The variables STATE.time and para_now are used to 

synchronize the data points with the time constraints, as discussed in Chapter I. C. 2.  The 

data is formatted into seven columns, represented by time, position vector, and velocity 

vector.  Each row represents an iteration, or stepsize, of the data.  Similarly, a STK 

quaternion attitude file can be created as follows: 
 

filename2='C:\Userfiles\STK\Scenario\attitude_t.a'; 
attitude=fopen(filename2,'w'); 
fprintf(attitude,'stk.v.5.0\n\n'); 
fprintf(attitude,'BEGIN Attitude\n\n'); 
fprintf(attitude,'NumberOfAttitudePoints\t 
%6.0f\n',length(STATE.time)); 
fprintf(attitude,'ScenarioEpoch\t %s\n',num2str(para_now)); 
fprintf(attitude,'BlockingFactor\t 20\n'); 
fprintf(attitude,'InterpolationOrder\t 5\n'); 
fprintf(attitude,'CentralBody\t Earth\n'); 
fprintf(attitude,'CoordinateAxes\t J2000\n'); 
fprintf(attitude,'AttitudeTimeQuaternions\n\n'); 
data=[STATE.time(:,1),Qbn(:,iqi+1:iqi+4)]'; 
fprintf(attitude,'%16.14e\t %16.14e\t %16.14e\t %16.14e\t 
%16.14e\n',data); 
fprintf(attitude,'\n END Attitude\n'); 
fclose(attitude); 
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The STK attitude file name and path are arbitrary, as long as it has the proper .a suffix.  

This sample STK attitude file is formatted into five columns with time, the three element 

quaternion vector, and the quaternion scalar (rotational) term. 

b. STK Model Articulation Files 
The articulation of a STK spacecraft graphic model component is executed 

by padding formatted data to the STK scenario.  The articulation file must have the 

.sama suffix, be named the same as the spacecraft object, such as Target, and saved 

in the same folder as the STK graphical model, such as the mdl_cube1.mdl.  A 

sample articulation file for each Thrust_Flame component is as follows: 
 

filename3=['C: \Userfiles\STK\Scenario\Target.sama']; 
articulate=fopen(filename3,'wt'); 
fprintf(articulate,'STARTTIME\t 0\n\n'); 
fprintf(articulate,'DURATION\t %6.0f\n',stoptime); 
fprintf(articulate,'DEADBANDDURATION\t 0.0\n'); 
fprintf(articulate,'ACCELDURATION\t 0.0\n'); 
fprintf(articulate,'DECELDURATION\t 0.0\n'); 
fprintf(articulate,'DUTYCYCLEDELTA\t 0.0\n'); 
fprintf(articulate,'PERIOD\t 0.0\n'); 
fprintf(articulate,'ARTICULATION\t Thrust_Flame#\n'); 
fprintf(articulate,'TRANSFORMATION\t Size\n'); 
fprintf(articulate,'STARTVALUE\t 0\n'); 
fprintf(articulate,'ENDVALUE\t 1\n'); 
fclose(articulate); 
 

where Thrust_Flame# is the name of the component being articulated and Size is 

the magnitude of the articulation desired.  This strict formatting is limiting due to the start 

and end values of each articulation iteration.  A more useful presentation, defines the 

articulation in a spreadsheet which loops through the time increments, ti, and assigns 

the desired articulation magnitude for each thruster, tii, on the spacecraft.  Sample 

articulation code is as follows: 
 
for ti=1:length(time) 

for tii=1:6 
filename3=['C: \Userfiles\STK\Scenario\Target.sama']; 
articulate=fopen(filename3,'wt'); 
fprintf(articulate,'SPREADSHEET\n\n'); 
fprintf(articulate,['ARTICULATION,',num2str((ti-1)*stepsize),',', 
num2str(stepsize),',0,0,0,0,0,Thrust_Flame',num2str(tii),',Size,', 
num2str(tmag(ti,tii)),',',num2str(tmag(ti+1,tii)),'\n']); 
end 

end 
fclose(articulate); 
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The spreadsheet data may be based on desired thruster firing magnitude at each time step 

of the simulation.  This data may be generated from the MATLAB/Simulink spacecraft 

model’s control algorithm response.  The desired control response can be mapped to the 

appropriate thruster.  This mapped response can be assigned into the articulation file to 

animate each spacecraft’s thrusters firing during the multiple spacecraft maneuver. 

It may be useful to include a reload command at the end of the articulation 

file assignment to ensure that all components have the current data.  This reload 

command is of the form: 
 
stkExec(conID,'VO */Satellite/Target ReloadArticFile'); 
 

The articulation of multiple components can be useful in generating complex spacecraft 

models.  Articulating components may include such components as thrusters, solar 

panels, and momentum exchange devices.  Although visually stimulating, it may be more 

practical to only articulate the necessary components for each engineering application.  

The articulation sections may be commented out when not necessary.  Once performance 

is complete, the articulation may be reinstated for presentations. 

 

D. MATLAB-STK CONCLUSION 
A MATLAB-STK simulation interface was developed for spacecraft model 

validation and visualization.  Both MATLAB/Simulink and STK have the capability to 

perform high precision orbital propagation.  Utilizing this capability, the spacecraft 

model validation is conducted by comparing various spacecraft state date, such as 

position and velocity.  Each modular perturbation component can be independently 

enabled for evaluation.  The desired level of model similarity and accuracy can be 

achieved by matching all parameters that are being considered by the designer.  Once the 

model is validated, the spacecraft can be animated by passing spacecraft state data to 

STK.  The spacecraft characteristics and parameters, defined in MATLAB/Simulink, can 

be formatted and passed into STK.  Utilizing STK via MATLAB is a versatile and 

effective method of animating six DOF spacecraft models.  The resulting STK animation 

of spacecraft propagations is useful for engineering evaluation and result presentations.  

This interface was utilized during the development of a multiple spacecraft control 
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algorithm for close proximity operations.  Model validation gave confidence in the 

performance results and visualization allowed for straightforward evaluation.  The 

animation allowed for immediate identification of undesirable performance such that 

modifications and improvements could be made to the control algorithm.  This 

MATLAB-STK simulation interface proved to be a useful tool for the development and 

evaluation of spacecraft models and control systems. 
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XI. VHIL EVALUATION 

The challenging characteristics of microgravity orbital space make it difficult to 

simulate in the laboratory environment.  So, a series of test methods exist for incremental 

evaluation of the control algorithm.  First, the control algorithm processing can be 

implemented on distributed independent hardware.  This VHIL testbed represents a set of 

simulated spacecraft which conduct the control algorithm based on their local state 

information. Next, a terrestrial based spacecraft robot testbed can be utilized.  These 3D 

spacecraft robots can actual physically actuate and perform limited two-axis translational 

and one axis rotational maneuvers.  Finally, the control algorithm can be loaded onto 

actual free flying spacecraft in the orbital environment.  

 

A. VIRTUAL HARDWARE-IN-THE LOOP (VHIL) TESTBED 

Hardware testing for spacecraft related components and systems are restricted due 

to high costs and environmental limitations.  In order to perform incremental testing of 

the developed control algorithm, a VHIL testbed was developed at NPS.  This test bed 

consists of a distributed set of independent processors linked in a virtual environment.  

The block diagram for the VHIL testbed is shown in Figure 11.1. 
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Figure 11.1 VHIL Block Diagram. 

 

Each processor represents a stand alone Chase spacecraft which independently 

propagates its maneuver ephemeris based on a validated spacecraft model.  Any external 

data concerning the position and velocity of other spacecraft is passed via UDP.  This 

data simulates possible sensor derived information.  A desktop computer may serve as the 

Target spacecraft.  This desktop may also provide processing of the STK visualization for 

the multiple spacecraft maneuvers.  The same software used in the original development 

was used in the distributed control algorithm, primarily MATLAB version 7.3.0267 

(R2006b) and STK version 7.0.1 [36][39].  All MATLAB spacecraft dynamics and 

control functions were converted into embedded MATLAB functions for efficient C code 

programming language.  The virtual spacecraft were represented by small mobile 

computers: refer to Table 11.1 for details.  The multiple spacecraft VHIL testbed is 

shown in Figure 11.2.  This image shows four distributed processors wirelessly 

connected, with a shared monitor, keyboard and mouse. 
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Name LG-P625F 
Processor Intel Pentium M 1.7 GHz 
Hard drive 100 GB 7200 RPM 
Memory 1 GB DDR400 

Characteristics 

DC Power 12 V 
Width 0.155 m 
Depth 0.255 m 
Height 0.055 m Size 

Mass < 3.0 kg 
Thermal Control Technology Fan less 
Built-in Wireless 802.11B/G 
Slot Loading Disc Drive CDRW with DVD Features 

Interfaces USB 2.0, Firewire 
Microsoft Windows XP (80 GB) Operating Systems Linux Gentoo (20 GB) 

Table 11.1 Virtual Spacecraft Computers. 

 

 
Figure 11.2 Multiple Spacecraft Testbed. 

 

The VHIL distribution of the control algorithm ensures that limited state 

information and reasonable data rates are being utilized.  Initial assessments of processor, 

sensor, and timing limitations can be conducted.  Each processor independently simulates 

the spacecraft environment.  Each virtual spacecraft processing rate can be roughly 

synchronized by using Simulink Simulation Pace blocks to standardize the ratio of 
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simulation seconds to internal clock seconds.  This serves as a versatile soft-real time 

technique for implementing the VHIL via Simulink [36]. 

The control algorithm executes based on the autonomous spacecraft’s simulated 

sensor information.  This data can be passed directly between Chase processors or routed 

via the Target processor.  Drop out of one or more Chase spacecraft processors do not 

negatively affect the VHIL simulation of other spacecraft.  UDP communication default 

simply holds the last value successfully received [36].  Initial VHIL testing focused on 

control algorithm development and not sensor or communication link limitations.  

Obviously, obstacle and other Chase spacecraft states must be know at some level in 

order permit collision avoidance.  The distributed state data for each Chase spacecraft is 

only centralized at the conclusion of simulations for the purpose of evaluation and 

visualization.  The VHIL testing paves the way for additional testing on terrestrial and 

orbiting testbeds. 

 

B. AMPHIS TESTBED 

In order to fully develop the concepts for close proximity operations of multiple 

spacecraft through hardware-in-the-loop testing, it is necessary to have sufficient space 

for maneuvering of the testbed vehicles. A Proximity Operations Simulator Facility was 

been previously developed [79][80] and will be used for any new systems. This facility 

consists of a 4.9 m by 4.3 m wide Epoxy Floor Surface, approximately 21 square meters, 

used as base for the floatation of spacecraft simulators. The use of air pads on the 

simulators reduces the friction to negligible level. Due to an average residual slope angle 

of -3~2.6 10 deg⋅  for the floating surface, the average value of the residual gravity 

acceleration affecting the dynamics of floating vehicles is -3 -2~1.4 10  m*s⋅ . This value of 

acceleration, measured by analyzing the free motion of the Chaser spacecraft simulation, 

is two orders of magnitude lower than the nominal amplitude of the acceleration 

fluctuation obtained during the reduced gravity phases of parabolic flights [81]. 

Given the dimensional constraints of the flat epoxy floor, in order to 

simultaneously operate at least three robotic spacecraft a significantly lighter and smaller 

vehicle is required, as compared to the previous AUDUSS spacecraft robot simulator [79] 
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[80].  Additionally, the NPS SRL research and testing of multiple sensor packages 

requires multiple spacecraft robots.  The new generation of robotic spacecraft at the SRL 

is referred to as AMPHIS, as shown in Figure 11.3. 

 
Figure 11.3 AMPHIS Robotic Spacecraft Simulator at NPS [82]. 

 

Recent enhancements in the AMPHIS robotic spacecraft simulator enabled a 

significant reduction in size and mass while providing for easy reconfiguration [82][83]; 

refer to Table 11.2.  The details on the AMPHIS robot are presented completeness.  The 

AMPHIS is continually evolving as research is conducted at NPS. 
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Length and Width 0.30 m 
Height 0.69 m 
Mass 37 kg Size 

Moment of Inertia vehZ  0.75 kg m2 
Propellant Air 
Equiv Storage Cap @ 21 MPa (3000 PSI) 0.002 m3 
Operating Pressure 0.827 MPa Propulsion 

Thrust per Thruster 0.28 N 
MSGCMG Max Torque 0.668 Nm Attitude 

Control MSGCMG Max Angular Momentum 0.098 Nms 
Battery Type Lithium-Ion 
Storage Cap @ 28 V 12 Ah Electrical & 

Electronic Computers 2 PC-104, Pentium III 
Fiber Optic Gyro Bias ±20º/hr 
LIDAR SICK 360 º 
iGPS Sensor Accuracy <.050 mm Sensors 

Accelerometers Bias ±8.5x10-3 g 
Propellant Air 
Equiv Storage Cap @ 21 MPA (3000 PSI) .002 m3 
Operating Pressure 0.35 MPa Floatation 

Linear Air Bearings Diameter 32 mm 
Table 11.2 Key Parameters on the AMPHIS Testbed [82][83]. 

 

It is worth mentioning that other Hardware-in-the-Loop testbeds are being 

developed world wide.  All terrestrial spacecraft testbed has limitations due to the need to 

imitate the orbital environment.  The concurrent development of terrestrial testbeds may 

allow for comparison of algorithm performance results.  Besides the NPS SRL, another 

promising satellite formation flying testbed is located at the University of Southampton, 

in the United Kingdom [84].  This facility enables control algorithms to be tested on 5 

DOF mechanical mock-up satellite frames, referred to as ground-based satellite frame 

testing (GSFT) [84].  The control algorithm testing relies on simulated sensor, actuator, 

and physical dynamics.  The combination of these virtual components and the GSFT 

overlaps for systematic spacecraft environmental simulations.  The accuracy of the 

testbed currently aims at centimeter accuracy, but may be improved for higher precision 

[84]. 
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C. SPHERES TESTBED 

On-orbit testing is a tremendous opportunity for development a multiple 

spacecraft control algorithm.  On board the ISS, testing of the multiple spacecraft close 

proximity control algorithm is now possible with the MIT Space Systems Laboratory’s 

SPHERES [25] [26].  The SPHERES are intended to be used as a test bed for formation 

flight and reconfiguration, as well as autonomous rendezvous and docking technologies 

[26].  The first SPHERES satellite reached the ISS in May 2006 and has begun testing 

scenarios.  There are currently three SPHERES available for ISS investigation sessions. 

Before on-orbit testing can be conducted, software modification and 

synchronization would have to be conducted.  This would include ground testing with 

MIT Space Systems Laboratory’s team.  Funding and co-operative support for this work 

has been discussed.  DARPA, NASA, MIT, NPS and DoD participants have all shown 

interest.  Scheduling and timeline concerns have limited the inclusion of this testing in 

this current body of research. 
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XII. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 
The developed LQR/APF multiple spacecraft proximity control algorithm offers 

desirable performance and establishes a baseline for fuel efficiency while maintaining 

collision free operations.  Evaluation of the LQR/APF control algorithm proved it to be 

effective in a broad range of multiple spacecraft close proximity maneuvers, including 

rendezvous and docking maneuvers.  In the presence of obstacles and other maneuvering 

spacecraft the LQR/APF exhibited a smooth and effective control response which 

avoided actuator saturation.  Therefore, the LQR/APF control algorithm shows efficient 

control response with reliable collision avoidance 

Furthermore, Monte-Carlo method analysis of close proximity maneuvers 

confirms that the LQR/APF control algorithm is a practical candidate for multiple 

spacecraft close proximity operations.  Estimates of the mean and standard deviation of 

maneuver dt  and v∆  show that average proximity maneuver LQR/APF control v∆  

efficiency is better than that of a highly tuned APF control algorithm.  The LQR/APF 

showed a distinct control efficiency improvement on a per spacecraft maneuver basis.  

The standard deviation of the LQR/APF control effort is consistently narrower then that 

of the APF controller.  This narrow v∆  standard deviation is valuable to both spacecraft 

designers and mission planners.  It allows effective propellant sizing for close proximity 

operations.  It also gives operational planners a useful tool for developing and forecasting 

maneuvers. 

In conjunction with the controller research, a MATLAB-STK simulation interface 

was developed for multiple spacecraft model validation and dynamic environment 

visualization.  This MATLAB-STK simulation interface was extensively utilized during 

the LQR/APF control algorithm refinement development.  Model validation gave 

confidence in performance results and visualization allowed for straightforward 

evaluation.  The STK animation allowed for immediate identification of undesirable 

performance such that modifications and improvements could be made to the control 

algorithm.  This MATLAB-STK simulation interface is a useful tool for the development 
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and evaluation of spacecraft models and control systems. The STK animation allows for 

clear presentation of developed control algorithm performance to the spacecraft field. 

Finally, the LQR/APF control algorithm was implemented and evaluated in a 

VHIL configuration.  The VHIL utilizes independent processors which simulate 

spacecraft and interact as multiple spacecraft.  VHIL control algorithm test results were 

consistent with the LQR/APF performance during the evaluation and analysis presented 

in this research.  Successful VHIL experimentation paves the way for future hardware 

implementation on both terrestrial based and orbital spacecraft robot testbeds. 

 

B.  FUTURE WORK 

Further investigation could establish the control algorithm robustness by 

conducting additional Monte-Carlo simulations including a higher number of spacecraft, 

heterogeneous spacecraft, noisy sensor, and more restrictive actuator limitations and 

failures.  These studies could address the potential scope of application for this control 

algorithm.  Elliptical orbital considerations could be included into the dynamics [43] [42] 

[44].  Specific on-orbit applications need to take into account the actual spacecraft sensor 

and actuators in order to determine if the control algorithm’s performance meets mission 

requirements. 

Refinement of the APF control algorithm could be carried out based on a more 

sophisticated Newton method or conjugate gradient search algorithms.  The Steepest 

Descent algorithm initially adopted is based on the system measurement and control rates 

being nearly the same.  However, the control effort may need to be two or three times 

faster then the measurement cycle.  In this case, the quadratic characteristics of the 

potential functions should allow the faster control rate to achieve more efficient iterative 

minimization.  In particular the conjugate gradient Fletcher Reeves iteration scheme 

efficiency is due to varying the step magnitude and direction variation while convergence 

is achieved in two iterations. Refer to Appendix A for alternate search algorithm 

discussion. 

Refinement of the LQR control algorithm to include direct incorporation of 

collision avoidance terms into the state and control effort gain matrices could be 
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investigated.  If the cost function can be minimized based on collision avoidance, then it 

should be possible to include additional parameters into the LQR gains which are related 

to collision avoidance.  The desire would be to add collision avoidance gains without 

adding additional states.  The selection of these gains needs to maintain a geometric 

relationship to collision avoidance, while preserving the desired system response.  

Preliminary success was achieved by incorporating obstacle relative velocity components 

into the LQR state gain matrix.  In general, collision avoidance was achieved; however 

the tuning of these parameters proved to be very sensitive as the states approached the 

goal.  Therefore, docking precision seen by the hybrid algorithm could not be achieved 

while maintaining collision avoidance.  More rigorous study of the gain parameters need 

to be conducted before confidence can be given to this incorporated LQR collision 

avoidance method.  Refer to Appendix B for preliminary LQR with collision avoidance 

approach and results. 

Specific actuator limitations in both the translational and attitude control could be 

further investigated.  Evaluating controller algorithm performance with limited numbers 

or capabilities in actuation may offer interesting practical maneuver limitations.  For 

instance two maneuverable thrusters may be able to perform all desired maneuvers.  

However, specific types of thrusters may be constrained due to pluming regions around 

sensitive payloads.  Additionally, the coupling of translational and attitude control via 

thruster actuation is an interesting development. 

In this research, initial goal locations and docking ports were commanded, 

however future work may allows for an outer control loop to determine when and where 

each spacecraft is tasked.  Higher level control can be implemented based on neural 

networking or dynamic programming multi-vehicle task assignment algorithms [85][86] 

[1].  However, these algorithms may require additional communication between 

spacecraft for efficient tasking decisions, or voting, to be accomplished.  This 

communication requirement may lead to more research into wireless sensor networking 

of multiple spacecraft.  In such a networking, micro chips with control with modem 

capabilities, such as Maxstream’s small Xbee chips [87], can be used for communication 

and can also support ranging data.  The wireless signal has signal strength data, referred 

to as Received Signal Strength Indicator (RSSI) that can be combined with ranging 



218 

sensors, such as GPS.  The signal strength is determined from the decibel magnitude of 

the last packet.  With directional antenna, the decibel reading can be directly transferred 

into ranging data.  This additional information can improve range precision and 

supplement when other sensor data.  An example of wireless mesh networking on 

autonomous vehicles using the Xbee chip is discussed in detail by Bledsoe in [88].  This 

application can be related to the communication of multiples spacecraft robots on a 

terrestrial testbed during proximity operations. 

The multiple spacecraft control algorithm developed in this research showed 

robust disturbance rejection based on deterministic measurements.  However, 

comprehensive performance evaluation including process and sensor noise characteristics 

for specific spacecraft configurations may be desired.  Any known sensor statistics can be 

used to re-characterize the stochastic process.  This uncertainty can be included into the 

control algorithm by modifying the LQR as a LQG regulator, which can incorporate 

process and measurement noise as Gaussian white noises with covariance.  Also the use 

of Gaussian based collision avoidance lends itself to direct inclusion of any measurement 

noise in to the obstacle relative range and velocity.  The algorithm structure allows for 

convenient inclusion of known or estimated sensor uncertainties.  These uncertainties 

may be particularly suitable to the estimation with Kalman Filtering techniques suggested 

by Cristi et al [89].  Large control iteration time steps, of one second, were maintained to 

allow for fusing or filtering of sensor measurements.  Even with noisy state 

measurements the probable shortening of control step iterations will allow for acceptable 

algorithm performance. Although, detailed control algorithm performance evaluation 

based on varying levels of filtered, or individual, sensor noise would offer confidence in 

practical and valid safety margins. 

Full evaluation of docking mechanisms and their related performance 

requirements could be undertaken.  Various potential docking mechanisms could be 

incorporated in evaluation of the control algorithm [80][81].  For instance, spatial and 

attitude tolerances may allow for less rigorous terminal control.  Also passive docking 

mechanism may actually require Chase spacecraft to engage the Target spacecraft with 

some terminal force.  These latch mechanism are envisioned for on-orbit assembly, and 

not for autonomous spacecraft with sensitive payloads [81].  However, even simple 



219 

adhesive docking ports would require some terminal contact force.  The trade-off 

between a firm dock and the jarring of the spacecraft could be researched. 

Most importantly, the close proximity control algorithm can be integrated onto 

spacecraft robots with different vehicle and sensor properties.  Ground testing could 

include integration onto the NPS AMPHIS in the Spacecraft Servicing and Robotics 

Laboratory.  The laboratory hosts the Autonomous Docking and Spacecraft Servicing 

testbed, which may allow for future testing of on-the-ground dynamics with close 

proximity operations.  The AMPHIS is built upon previous research on the original 

AUDUSS and the AUDUSS II [79] [80].  Additionally, ground testing may also be 

conducted at MIT’s Space System Laboratory as preparation for on-orbit flight testing of 

the control algorithm on the SPHERES onboard the ISS [25] [26].  The SPHERES 

testbed enables maturation and validation of the control algorithm in the micro gravity 

environment of the ISS as a risk reduction before integration on future spacecraft.  This 

will require incorporation of the SPHERES system details into the control algorithm with 

baseline simulations and ground testing. 
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APPENDIX A: OPTIMAL SEARCH ALGORITHMS 

As discussed during the APF development, previous APF control algorithms have 

used the immediate Steepest Descent approach to navigation.  This is a reasonable 

assumption as to the best course for the Chase spacecraft to proceed.  However, the 

implementation of iterative searches in spacecraft dynamics yields only a momentary 

current steep gradient.  This direction of approach may not be the most efficient path.  

There are alternate ways for selecting both the search direction and length of the step 

size.  In particular, Newton’s method and Conjugate Gradient optimal search algorithms 

appear promising for selection of the search direction and step size varies for Spacecraft 

APF based control algorithms  However, in order to utilize these search methods the 

spacecraft’s sensor update rates may need to be considered in the controls systems 

iterative convergence algorithm.  While the Steepest Descent method has proved 

extremely effective in this research, it may not be the best for all multiple vehicle control 

algorithms.  Consideration and comparison of other search techniques, such as Newton’s 

method and Conjugate Gradient, should be made before a final determination can be 

made.  

 

A. STEEPEST DESCENT 
Whether a potential or cost function is used as the guiding parameter for the 

control algorithm, some discussion of optimal search is warranted.  Broadly speaking, 

search procedures for optimization problems may be divided into three main categories: 

calculus-based, enumerative, and heuristic.  Calculus-based procedures use either 

analytical or numeric models of the solution space as the basis for the search.  

Enumerative or “brute force” procedures search systematically and do not incorporate 

any sophisticated methods to reduce the problem space or refine proposed solutions.  

Heuristic procedures attempt to improve on the search efficiency of enumerative methods 

without direct incorporation of models of the solution space, which are often unavailable. 

Performance surfaces are functions which are designed such that the quantitative 

value is smallest when the desired performance is obtained.  The global minimum point is 
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considered the equilibrium or optimal point [85].  The path which the system searches for 

and approaches this minimum point is dependent on the optimization algorithm used.  

The iterative selection of the search direction and step size varies for each type of 

optimization algorithms.  While a wide breadth of search algorithms exists, those most 

applicable to this work are the Steepest Descent, Newton’s method, and conjugate 

gradient.  Given its efficiency in implementation, the Steepest Descent method was 

employed in this research. 

For a performance function, ( )V x , the general iterative search algorithm is of the 

form 

 1( ) ( )k k kV x V x x+ = + ∆  (A.1) 

where kx  is the current state, 1kx +  is the next state, and kx∆  is the change in states from 

one iteration to the next.  The change in states is described as 

 1k k k k kx x x pλ+∆ = − =  (A.2) 

where the vector kp  is the search direction and the scalar kλ  is the step size.  Equation 

(A.2) can be rearranged to for iteration to give the next state as 

 1k k k kx x pλ+ = +  (A.3) 

In order for search algorithm to converge, the next value of the performance function 

must be less than the current for each iteration, such as 

 1 1( ) ( )k k k kV x V x for x x+ +< ≠  (A.4) 

with the search direction vector, kp , being less than zero and the step size being small, 

but greater than zero [85]. 

There are various ways for selecting both the search direction and the step size. 

The Steepest Descent method searches in the direction of the largest negative rate of 

change for the performance function.  The step size for each iteration can be either fixed 

or variable.  The performance function is assumed to be an analytic function, such that its 

derivatives exist.  This is logical since our performance functions are based on position 
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states, so the first derivative is velocity, and the second derivative is acceleration.  Any 

performance function could be represented by a Taylor Series expansion, such as 

 
2

2
2

* *

1( ) ( *) ( ) ( *) ( ) ( *) ...
2x x x x

d dV x V x V x x x V x x x
dx dx= =

⎛ ⎞= + − + − +⎜ ⎟
⎝ ⎠

 (A.5) 

where the state x  is a scalar and the function is expanded about some nominal point, *x .  

For the neighborhood of the nominal point, the higher order terms can be dropped for a 

quadratic estimate of the function about that point.  Since the states are most likely a 

vector, such as a position vector, the Taylor series can be expanded into a vector notation 

with 1 2( ) ( , ,... )nV x V x x x= , as 
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1 2* *
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2
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2 2
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2 2

x x x x
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x x

V x x x V x x x
x x

V x x x V x x x
x x

= =

==

= =
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∂ ∂
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∂ ∂⎛ ⎞ ⎛ ⎞− + + − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (A.6) 

Since this format is cumbersome, it is more convenient to write in matrix form 

 *

* * * 2 *

*

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ...
2

T T

x x x x
V x V x V x x x x x V x x x

= =

⎛ ⎞= +∇ − + − ∇ − +⎜ ⎟
⎝ ⎠

 (A.7) 

where V∇ is the gradient of the potential function, and is defined as 

 
1 2

( ) ( ), ( ),..., ( )
T

n

V x V x V x V x
x x x

⎡ ⎤∂ ∂ ∂
∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

 (A.8) 

and 2V∇  is the Hessian, and is defined as 
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 (A.9) 

The Hessian is the Jacobian of the gradient, where the Jacobian of a function, ( )f x , is 

defined as a matrix of its first partial derivatives 
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 (A.10) 

The gradient and the Hessian can give valuable information about the performance 

surface, which may also be referred to as the potential field.  The gradient is the direction 

of maximum slope from the current position.  On the performance surface, any direction 

which is orthogonal to the gradient will have zero slope [85]. 

The baseline quadratic performance function is of the form 

 1( ) ( )
2

T TV x x x d x c= Α + +  (A.11) 

where x  are the states of the function, A  is a scaling matrix which relates to the shape of 

the contour ellipses, d is a scaling factor which determines where equilibrium point is 

located, and c  is a scaling constant which changes the value of the performance function 

at the equilibrium point.  The gradient and Hessian of a generic quadratic function are 

 ( )V x x d∇ = Α +  (A.12) 

 2 ( )V x∇ = Α  (A.13) 
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The equilibrium point is generally selected to be at the origin ( 0d = ) with a minimum 

value equal to zero ( 0c = ), so the quadratic function simplifies as 

 1( ) ( )
2

TV x x x= Α  (A.14) 

In this case, the gradient and Hessian of the simple quadratic become 

 ( )V x x∇ = Α  (A.15) 

 2 ( )V x∇ = Α  (A.16) 

Notice that both the gradient and the Hessian depend on the performance surface contour 

shaping matrix, A . 

 1k k kx x xλ+ = − Α  (A.17) 

Using this information about the gradient and substituting into the general performance 

search algorithm in Equation (A.3), yields the Steepest Descent algorithm. 

 1k k k kx x gλ+ = −  (A.18) 

where the search vector, kp , is in the direction of the negative gradient, kg− , which 

relates as 

 ( )
k

k kx x
p V x g

=
= −∇ = −  (A.19) 

The Steepest Descent algorithm for the simple quadratic becomes 

 1k k kx x xλ+ = − Α  (A.20) 

The Steepest Descent algorithm applied to a simple quadratic gives insight into 

the optimization schemes characteristics.  For a simple quadratic performance surface, 

with A  being an identity matrix and the state values being the relative distance from the 

equilibrium point, the performance surface is shown in Figure A.1.  In this simple case 

the minimum is located at the origin and the contour lines of equal potential are perfect 

circles.  An iterative search along the steepest gradient can be shown to converge, but the 

convergence path will vary dependent on the step size parameter. 
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Figure A.1 Sample Performance Surface. 

 

Determination of the step size parameter, kλ ,can be constant or variable.  

Constant step size parameters are general based on a desired convergence response.  

Evaluating the largest eigenvalues of the Hessian can ensure convergence and even 

provide an underdamped response.  For example, consider a system described by the 

quadratic function with 

 
2 0
0 50
⎡ ⎤

Α = ⎢ ⎥
⎣ ⎦

 (A.21) 

and its minimum at the origin.  This function is steeper along the y-axis then the x-axis 

and has eigenvalues of (2, 50).  The maximum eigenvalue, maxeig , of the quadratic 

function can be used to determine the bounds on the step size parameter.  For 

convergence, the step size must meet the following condition, 

 
max

20
eig

λ
⎛ ⎞

< < ⎜ ⎟
⎝ ⎠

 (A.22) 
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For an overdamped response, the step size must meet the following condition, 

 
max

10
eig

λ
⎛ ⎞

< < ⎜ ⎟
⎝ ⎠

 (A.23) 

The convergence characteristics of four different step sizes, using the function 

described in Equation (A.21), are shown with the 3D performance surface in Figure A.2 

and as contours in Figure A.3.  For the step size meeting the conditions of Equation 

(A.23), 0.01λ = , the Steepest Descent method converges with an overdamped behavior.  

For the step size meeting the condition of Equation (A.23), 0.03λ = , the Steepest 

Descent method converges with some overshoot behavior.  For the case where the step 

size is equal to the upper range condition of Equation (A.23), 0.04λ = , the method does 

not converge and continues to oscillate.  If the step size is increase beyond this condition, 

0.041λ = , the method diverges.  Notice that the search directions are always opposite the 

gradient and thus perpendicular to the contour lines. 

 
 

Figure A.2 Steepest Descent Performance for Fixed Step Sizes in 3D. 
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Figure A.3 Steepest Descent Contour for Fixed Step Sizes. 

 

Variable step sizes may be based on minimization-on-a-line or momentum 

learning methods [85].  Minimization-on-a-line allows variation of the step size at each 

iteration, k .  The analytical minimization for a quadratic function is satisfied by setting 

its derivative equal to zero and solving for the step size [85]. 

 
T

k k
k T T

k k

g p
p p

λ
⎛ ⎞

= −⎜ ⎟Α⎝ ⎠
 (A.24) 

The Hessian for simple quadratic functions is symmetric, so the transpose may be 

dropped in these cases.  The convergence characteristics of the variable step size, using 

the function described in Equation (A.24), are shown with the 3D performance surface in 

Figure A.4 and as contours in Figure A.5.  The convergence generally takes less 

iterations, but dramatically oscillates due to the changing of the search direction at each 

iteration.  Each step is orthogonal to the previous step and parallel to every other step.  

This pattern is due to the primary axis of the contour shape and the tangential intercept of 
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the contour lines.  This direction change may not be reasonable with systems which have 

large momentum and can not change direction rapidly. 

 

 
Figure A.4 Steepest Descent Performance for Variable Step Sizes in 3D. 
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Figure A.5 Steepest Descent Contour for Variable Step Sizes. 

 

Momentum learning smoothes out the iterations and may speed convergence for 

consistent trajectories [85].  This is done by considering both the current and previous 

iteration information and weighting them to reduce oscillations.  The momentum learning 

coefficient, lµ , acting as a low-pass filter on the search direction oscillation, weighs the 

new search direction with respect to the previous search..  The Steepest Descent with 

fixed step size and momentum learning yields the following algorithm 

 [ ]1 1(1 ) ( )k k k k kx x l g l gλ µ µ+ −= − − −  (A.25) 

For 0lµ = , the function has no memory of previous searches and is the original Steepest 

Descent algorithm.  For 1lµ = , the search direction is not updated from iteration to 

iteration.  Momentum learning is not generally useful for variable step size 

implementation.  The step size is determined from search directions which are damped by 

the momentum and as a result overshoot usually occurs.  This may increase the number 

of iterations necessary for convergence.  For those interested, a discussion of both 

Newton’s Method and Conjugate Gradient search algorithms follows. 
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B. NEWTON’S METHOD 

The Newton’s Method is based on local second order approximation, as an 

extension of the Steepest Descent first order approximation.  The Newton’s Method 

algorithm is 

 1
1k k k kx x g−
+ = − Α ⋅  (A.26) 

For simple quadratic functions, Newton’s method converges in one step.  This is 

dependent on the Hessian being positive definite.  The Newton’s method usually 

converges faster than the Steepest Descent method.  However, the second order 

approximation is computationally expensive, due to the need to calculate a Hessian and 

its inverse. 

A first order variation, referred to as the Gauss-Newton Method, only requires the 

calculation of the Jacobian matrix, J  , and its inverse.  The Gauss-Newton algorithm is 

 1
1 ( ) ( )k k k kx x J x v x−
+ = − ⋅  (A.27) 

where ( )kv x  comes from rewriting Equation (A.11) as ( ) ( ) * ( )TV x v x v x= .  This method 
neglects second order terms and can result in the Hessian not being invertible. 

Another variation, called the Levenberg-Marquardt Scheme, converges faster at 

the cost of additional memory.  This is allows for a single parameter adjustment, kµ , to 

vary the search performance from a Gauss-Newton scheme to the Steepest Descent with a 

small step size.  The Levenberg-Marquardt algorithm is 

 
1

1 ( ) ( ) * ( ) ( )T T
k k k k k kx x J x J x k I J x v xµ

−

+ ⎡ ⎤= − ⋅ + ⋅ ⋅⎣ ⎦  (A.28) 

where kµ  is determined so that the inverse matrix exists.  As 0kµ →  the algorithm 

approaches the Gauss-Newton algorithm and as kµ →∞  the algorithm approaches the 

Steepest Descent with a small learning rate.  This method converges fast, but has a 

drawback of requiring more memory. 

 

C. CONJUGATE GRADIENT 
Since using a second order approximation may be too expensive, a first order 

approach called conjugate gradient may be effective.  This approach steps along the 
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conjugate directions of the function, with the initial step being in the direction of negative 

gradient.  The step size can be adjusted to minimize the function along the selected search 

direction.   For larger problems the conjugate gradient method is more efficient, since it 

does not require computation of the eigenvalues of the Hessian or its inverse.  It usually 

converges in a number of interactions which is equal to the number of states.  For 

instance a simple three state, [x, y, z], quadratic function would converge in three steps.  

However, as the function varies from quadratic then the iteration scheme will require 

more steps to converge.  A primary conjugate gradient algorithm of interest is called the 

Fletcher Reeves iteration scheme.  This iteration scheme iterates as follows 

 1k k k kx x pλ+ = + ⋅  (A.29) 

 1 1k kg x d+ += Α⋅ +  (A.30) 

 1 1 1k k k kp g pβ+ + += − + ⋅  (A.31) 
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g gB
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 (A.32) 

The step size, kλ , varies as minimization along a line, refer to Equation (A.24).  

The gradient, kg , is calculated as previously discussed.  However, now the search 

direction, kp , varies from the Steepest Descent after the first iteration.  The scalar 

variation of search direction, kB , can take may forms, but all are based on Gram-Schmidt 

orthogonalization concepts [85].  Notice that the initial search direction is along the 

Steepest Descent, 0 0p g= − , such that 0 0B = . 

The convergence characteristics of the conjugate gradient Fletcher Reeves 

iteration scheme, using the function described in Equations (A.29) - (A.32), are shown 

with the 3D performance surface in Figure A.6 and as contours in Figure A.7.  The search 

direction of the two iteration steps is slightly greater than 90 degrees.  This illustrates the 

variation of the search direction which allows the conjugate gradient approach to 

converge quicker then the Steepest Descent method, even though they are using the same 

variable step size. 
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Figure A.6 Conjugate Gradient with Fletcher Reeves Scheme. 

 

 
Figure A.7 Conjugate Gradient Contour with Fletcher Reeves Scheme. 
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D. DISCUSSION 

The Steepest Descent search method is the simplest and most straight forward of 

the discussed methods.  The Newton’s Method and Conjugate Gradient approaches 

require additional computation.  In the dynamics environment the additional computation 

may not yield any improvement in the control algorithm performance.  However, if the 

control algorithm cycle is at least twice as fast as the measurement cycle then 

implementation of the Conjugate Gradient search algorithm should be considered.  

Practical limitations in actuator performance may show that the desired changes in search 

directions are impractical.  For instance, drastic directional changes are impossible for 

physical system with momentum and limited actuation, such as spacecraft.  Although, the 

same might be observed in a Steepest Descent algorithm which does not decrease in step 

size as it approaches equilibrium point. 

Modification may also be made in the state weighting to influence the initial and 

final search directions.  This could be useful for constrained docking approaches where 

convergence along a relative axis is necessary.  The weighting of the states should have 

direct correlation with the  cost and performance functions discussed previously.  By 

modifying the contour shape of the quadratic surface the search algorithm can be 

prejudiced to approach from the desired direction.  These types of modification usually 

negatively influence efficiency due to the forcing of required, but artificial, maneuver.  

This has a direct comparison with the collision avoidance capability. 

It is not envisioned that modifications to the search algorithm will dramatically 

improve the APF convergence performance.  Although, some improvement may be 

possible in control efficiency or maneuver duration.  It was initially thought that 

replacing the state scaling function, in Equation (A.30), with the Clohessy-Wiltshire’s A  

matrix from Equation (4.16) may allow for the linearized spacecraft dynamics to be 

incorporated into the APF.  This relationship appears to have merit when used for the 

spatial states, but requires further analysis.  In the APF development velocity 

considerations were the primary driving states for both successful convergence and 

collision avoidance.  Determination of desirable velocity parameters may become much 

less intuitive for various close proximity maneuvers.  So, simple reliance on the 

geometrically based APF may be limited regardless of the search method applied. 
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APPENDIX B: LQR WITH COLLISION AVOIDANCE GAINS 

During the course of developing the LQR/APF with collision avoidance control 

algorithm, consideration was given to the direct incorporation of collision avoidance 

parameters into the LQR gain matrixes.  It was believed to be a logic step to consider the 

inclusion of collision avoidance weighting into the gain matrixes of the LQR’s cost 

function; refer to Equation (7.1).  Modification to the gain matrixes for the states, Q ,and 

control effort, R , continued to be of primary interest.  There was some initial success in 

selecting additive functions that resulted in successful collisions avoidance, however 

rigorous evaluation is still necessary.  For instance, it is unclear what effect additive gain 

terms modification may have on stability, convergence, and efficiency.   

The approach was to add positive semi-definite parameters into the state gain 

matrix without increase the number of states.  Although adding relative position and 

velocity states for each obstacle could conceptually work, including these full or partial 

states for each potential obstacle causes the computational requirements to increase 

dramatically.  To avoid this consequence, the inclusion of obstacle information might be 

accomplished by increasing the cost of core spacecraft’s states in the established relative 

structure.  This should influence the control effort to avoid obstacle regions. 

Numerous attempts to include additive terms in the gain matrixes were made.  

Additive positive, semi-definite terms were only considered, since the gains matrixes 

must maintain the proper form.  It was determined that relative position information 

could not be incorporated with only additive terms, due to the complications of weighting 

position terms of obstacles in the presence of the goal.  However, the inclusion of 

additive velocity terms, vC  , showed potential.  The additive velocity term is based on the 

Gaussian shaping function, kv  from Equation (7.19), and the magnitude of the Chase 

spacecraft’s velocity component in the direction of the obstacle, cov  based on Equation 

(7.17).  If the Chase spacecraft velocity is positive in the relative direction of the obstacle 

then the additive velocity gain terms was determined to be  



236 

 
( )2

m v co
v

coe

C k rC
rv d

=
+

 (B.1) 

where the small positive constant, ed , is included to prevent numerical difficulty due to 

division by zero.  The additive velocity gain magnitude shaping function, mC  was 

selected to increase influence in response to velocity toward obstacles while decreasing in 

influence in the vicinity of the goal.  This decrease in influence is a scaled version of the 

safety function, sk , determined in Equation (7.21).  The resulting magnitude shaping 

function is 
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The additive terms for the velocity gain components are included along the diagonal of 

the LQR state weighting matrix and modify Equation (7.7) as follows 
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where Qk  was determined from Equations (7.10) and (7.12) to be 
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No modification was made to the control effort weighting matrix, R , since control effort 

should not be limited in the presence of obstacles.  The incorporation of terms that would 

decrease weighting was not considered due to the challenges of maintaining the proper 

cost relationship between various states. 

The LQR additive collision avoidance gains were generally successful in avoiding 

obstacles and converging toward the goal position.  Preliminary results show that the 

LQR with collision avoidance gains control algorithm could avoid obstacles and other 

spacecraft while converging to within 4.0 meters of the Target spacecraft’s outer 

boundary.  The results for the six close proximity maneuvers with collision avoidance are 

listed in Table B.1.  For these collision avoidance maneuvers, the goal position is the 

center of the Target spacecraft.  This requires that the Target spacecraft’s repulsion to 

allow the Chase spacecraft to converge while avoiding impact.  Stationary obstacles are 

placed at positions along the unobstructed path of the Chase spacecraft.  These obstacles 

have an actual diameter of 2.0 meters.  Generally, avoiding larger obstacles requires more 

control effort and time.  The performance accuracy shows that general convergence and 

rendezvous can be achieved while enabling collision avoidance.  The relative position, 

velocity and control effort plots of the first Chase spacecraft are shown in Figure B.1 

through Figure B.3.  Although densely packed obstacle regions tend to have an additive 

repulsion force, which keep later converging spacecraft at further distances away from 

the mutual goal location.  For instance, the three Chase spacecraft in the near rendezvous  

maneuvered to within 1.0, 2.0, and 4.0 meters of the Target spacecraft, based on their 

order of arrival. 

 

Rendezvous Maneuver LQR with CA Gains 
∆v = 0.6760 m/s Near with Obstacle 

Initial RSW [0, 70, 0] m td = 1210 s 
∆v = 0.5196 m/s Near with Obstacle 

Initial RSW [50, -100, -50] m td = 1073 s 
∆v = 0.6845 m/s Near with Obstacle 

Initial RSW  [100, 100, 100] m td = 1069 s 
Table B.1 Rendezvous Maneuver with Collision Avoidance Results. 
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Figure B.1 Chase Spacecraft Relative Position. 

 
Figure B.2 Chase Spacecraft Relative Velocity. 
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Figure B.3 Chase Spacecraft Control Effort. 

 

There were several difficulties and deficiencies this initial approach. First, Chase 

spacecraft approaching along the relative coordinate frame’s W-axis did not properly 

avoid obstacles directly along their path.  In these cases the Chase spacecraft slowed in 

the region of the obstacle, but continued to push toward converges.  If the obstacle gain 

was increased, Chase would avoid collision by stopping and no longer converging.  This 

problem may preventable by perturbing the Chase off of this perfectly balanced 

approach.  This could be done by adding a shifting factor if an obstacle is detected 

directly along this W-axis path.  Also, adjusting the weighting the W-axis motion could 

influence the Chase spacecraft to move along the orbital plane. 

Next, the focus on velocity terms may lead to some chattering when a Chase 

spacecraft skirts along an obstacle’s region of influence.  In this situation the relative 

velocity toward the obstacle fluctuates on the exterior of the avoidance arch.  These 

fluctuations in close proximity would result in large cost variation.  This causes a 

chattering phenomenon, as shown in Figure B.3.  This issue may require additional gain 
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terms or control logic to be included.  The velocity gains as initially set to increase near 

obstacles, but may need more complex functional relationships as they evade in the 

region of influence. 

Finally, docking in the presence of obstacle was not successful.  Problems 

developed when state cost decrease during goal convergence could not be properly tuned 

with collision avoidance in this terminal region.  If too large, the collision avoidance 

terms prevented convergence; if too small, the obstacles were not properly avoided.  The 

superposition of numerous obstacles in a region also, resulted in challenges for this 

conceptual approach.  These problems were previously overcome by applying decaying 

obstacle influence along the geometric region of approach.  The application the APF 

based techniques did not work for this approach.  The cost variations would change the 

feedback response in a fashion that would restrict the usefulness of the logic.  For 

instance, if a the obstacle’s gain parameters increase the cost function to much, such that 

the Chase spacecraft is not longer approaching, then damping of that function only slows 

divergence.  This leads to local minimums around some obstacles.  The obstacle 

avoidance parameters may be shaped to avoid these cost circumstances away from the 

goal position, but there is less possible cost variation in the region of the Target 

spacecraft. 

The high degree accuracy needed for more precision rendezvous and docking 

maneuvers was not achieved, so direct comparison with Chapter VI results could not be 

made.  Attempts to balance the gains of position and velocity in the vicinity of the Target 

spacecraft tended to result in chattering.  Additional research may still prove successful in 

the incorporation of additive collision avoidance terms in the LQR’s state gain matrix.  

Any success will need to take complex weighing and state relationships into 

consideration.  These relationships may prove more complicated then practically 

realizable.  The benefits of such an algorithm are not yet apparent. 
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