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Thermodynamics of the strange baryon system from a coupled-channels analysis and missing states
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We study the thermodynamics of the strange baryon system by using an S-matrix formulation of statistical
mechanics. For this purpose, we employ an existing coupled-channel study involving K̄N , π�, and π�

interactions in the S = −1 sector. A novel method is proposed to extract an effective phase shift due to the
interaction, which can subsequently be used to compute various thermal observables via a relativistic virial
expansion. As an application of the calculation scheme, we compute the correlation of the net baryon number
with strangeness (χBS) for an interacting hadron gas. We show that the S-matrix approach, which entails a
consistent treatment of resonances and naturally incorporates the additional hyperon states which are not listed
by the Particle Data Group, leads to an improved description of the lattice data over the hadron resonance gas
model.
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I. INTRODUCTION

It was conjectured a long time ago that thermodynamics of
hadrons can be understood in terms of the hadron resonance
gas (HRG) model [1]. The essence of this model is that
interacting hadron gas can be replaced by an uncorrelated gas
of hadrons and hadronic resonances and, as a first approxima-
tion, resonances are treated as zero-width states. Lattice QCD
(LQCD) calculations confirm that indeed the thermodynamics
below the chiral transition temperature T < Tc � 155 MeV
[2–4] can be understood in terms of the HRG model. The
model appears to describe the pressure and the trace anomaly
calculated on the lattice [2,5–8]. Fluctuations χX

n and corre-
lation χXY

nm of conserved charges defined as the derivatives of
the pressure with respect to chemical potentials μX,Y ,

χX
n = T n ∂n(p(T ,μX )/T 4)

∂μn
X

∣∣∣∣
μX=0

, (1)

χXY
nm = T n+m ∂n+m(p(T ,μX,μY )/T 4)

∂μn
X∂μm

Y

∣∣∣∣
μX=0,μY =0

, (2)

are also reasonably well described by the HRG model
[6,9–11]. Here the conserved charges X, Y = B, Q, S, cor-
respond to baryon number, electric charge, and strangeness,
respectively. In recent years the HRG model was extended to
include the effects of excluded volume (see e.g., Refs. [12–
16]) as well as finite resonance width (see e.g., Refs. [17,18]).
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Around the time of the original Hagedorn proposal, a more
systematic approach to study thermodynamics of hadrons
was proposed by Dashen, Ma, and Bernstein—the S-matrix
formulation of statistical mechanics [19]. It is an extension of
the usual virial expansion to the relativistic case. When used
in conjunction with the empirical phase shifts from scattering
experiments, this approach offers a model-independent way to
consistently incorporate the effects of hadronic interactions,
including the appearance of broad resonances and purely
repulsive channels. The analysis of Venugopalan and Prakash
[20] along these lines showed that, for the pressure, there is
a large cancellation of different nonresonant repulsive and
attractive contributions and therefore the pressure to a fairly
good approximation can be understood solely in terms of
resonances alone, thus justifying the use of the HRG model
[20]. For a more recent analysis, see Ref. [21]. To what
extent this simplifications can be justified for the fluctuations
and correlations of conserved charges remains to be seen.
Recently, the S-matrix approach has been applied to analyze
the LQCD result on the baryon electric charge correlation
χ

BQ
11 [22]. The former observable is particularly sensitive to

the interaction between pions and nucleons. It was found that
the use of the effective density of states constructed from the
phase shifts of a partial wave analysis (PWA) leads to an
improved description of the LQCD result up to a temperature
T ≈ 160 MeV over that of the HRG model. The source of
the improvement in the quantitative description of the LQCD
result within the S-matrix approach is twofold. First, the in-
clusion of nonresonant, often purely repulsive, channels yields
an important contribution at low invariant masses. Second, a
consistent treatment of the interactions is pivotal in channels
with broad resonances. For such a resonance, the thermal
contribution can be significantly reduced relative to the HRG
prediction owing to the fact that a substantial part of the
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effective density of states is found at large masses, which are
suppressed by the Boltzmann factors.

The S-matrix approach was also considered to describe
the pressure of the nucleon gas [23]. Here the nonresonant
and dominantly repulsive nucleon-nucleon interactions are
important. Based on these considerations a HRG model with
repulsive mean field was constructed and the higher-order
baryon number fluctuations were calculated. It was found that
a repulsive mean field can describe the lattice results for the
higher-order baryon-number fluctuations [23]. Here we note
that the effect of repulsive baryon-baryon interactions was
also modeled by excluded volume [14,24]. This approach, too,
is able to describe higher-order baryon-number fluctuations.
So there appears to be a consensus that repulsive baryon-
baryon interactions are important. We will return to this issue
at the end of the paper.

It is natural to expand the previous S-matrix studies in-
volving nucleons to include also the strange baryons. This
problem demands a coupled-channel treatment as inelastic
(K̄N, π�, π�) interaction sets in at rather low momen-
tum. Moreover, the available experimental data are insuffi-
cient to constrain individual scattering process and model
extrapolations for poorly (if at all) measured amplitudes are
hard to avoid. A channel-by-channel analysis to describing
the thermal system, as is done previously, would be rather
inefficient. In the hadron physics community, a multichan-
nel S matrix is usually constructed through a model of the
amplitude that attempts to incorporate unitarity, analyticity,
crossing symmetry, and any underlying symmetry of the given
reactions to describe the available data. The model S matrix
thus obtained can be used to study the thermal properties of
the hadronic medium. In this paper we study the pressure of
strange baryons in the S-matrix approach. For this purpose
we introduce a robust method to extract an effective phase
shift from a general coupled-channel PWA. This phase shift
encodes essential information about the scattering system and
can be used to compute various thermal observables via a
relativistic virial expansion. Using the phase shift extracted,
we compute the pressure of baryons with strangeness one and
the second-order correlation of the net baryon number with
strangeness (χBS

11 ) for an interacting hadron gas.
We show that the proper treatment of resonances in the

S-matrix approach leads to an improved description of the
lattice data over the HRG model. An important feature of
our analysis is that the PWA has more resonances than the
list of three and four star resonances in the Particle Data
Group (PDG) [25]. Thus, the S-matrix approach with the
state-of-the-art PWA confirms an earlier conjecture that the
description of the lattice data on χBS

11 requires additional
baryon resonances not listed in the PDG [26,27].

II. EFFECTIVE PHASE SHIFT
FOR COUPLED-CHANNEL SYSTEM

Before getting into the details of extracting an effective
phase shift from a full-fledged coupled-channel PWA for the
S = −1 baryons, we begin by introducing the method in a
simpler setting: an elementary two-channel resonance decay
model.

Consider the following fact of a unitary S-matrix S (in a
given partial wave),

SS† = 1,

⇒ detS × detS† = 1,

⇒ ln detS + ln detS† = 0. (3)

Using ln detS† = (ln detS)∗, we see that unitarity dictates
that the quantity (ln detS) be purely imaginary. This motivates
the definition of a generalized phase shift function [28,29] Q:

Q ≡ 1
2 Im(tr ln S)

= 1
2 Im(ln detS). (4)

The determinant operation makes this quantity invariant
under any unitary rotation U of the S matrix:

S → U †SU. (5)

In the single-channel case Q reduces to the standard ex-
pression of a scattering phase shift. The physical meaning of
this quantity in the general N -channel case can be clarified
by studying a simple example. Consider a single relativistic
Breit–Wigner (B-W) resonance of mass mres decaying via two
channels. The S matrix can be parametrized as [30–32]

S(s) = 1 + iT̂ (s), (6)

where, e.g., for the l = 0 partial wave,

T̂ (s) = −2
√

sγres

s − m2
R + i

√
sγres

t̂ ,

t̂ = 1

g2
aφa + g2

bφb

(
g2

aφa gagb

√
φaφb

gagb

√
φaφb g2

bφb

)
. (7)

In this parametrization,
√

s is the invariant mass, ga and
gb are coupling constants (with g2

a + g2
b = 1), and φa (s) and

φb(s) are the relevant Lorentz-invariant phase space [28]. For
the two-body case it takes the generic form

φ2(s) =
∫

d3p1d
3p2

(2π )6

1

4E1E2

× (2π )4δ(
√

s − E1 − E2)δ(3)( 	p1 + 	p2)

= q

4π
√

s
, (8)

where

q = 1

2

√
s

√
1 − (m1 + m2)2

s

√
1 − (m1 − m2)2

s
, (9)

and m1, m2 are the masses of the particles making up the
channel. The (energy-dependent) total width of the resonance
can be computed by

γres(s) = γ0
(
g2

aφa + g2
bφb

)
, (10)

with a width parameter γ0.
A direct calculation shows that the phase-shift function Q

defined in Eq. (4) is given by

Q(s) = δres(s) = tan−1 −√
sγres

s − m2
res

. (11)
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We see that Q correctly recovers the phase shift of a
relativistic B-W resonance [33]. This result is independent
of the basis being used. In fact one can rewrite the model S
matrix in Eqs. (6) and (7) as

S = U †SdU, (12)

with

Sd =
(

e2iδres (s) 0
0 1

)
,

U =
(

cos θ sin θ
− sin θ cos θ

)
. (13)

This means that the “observed” S matrix is related to a
diagonal eigenmatrix Sd (made up of eigenphases [34,35])
by a rotation matrix whose elements can be related to the
energy-dependent branching fractions:

BRa ≡ cos2 θ = g2
aφa

g2
aφa + g2

bφb

,

BRb ≡ sin2 θ = g2
bφb

g2
aφa + g2

bφb

. (14)

Note that Q is invariant under a change of basis and is
hence independent of these branching fractions.

To obtain other channel-specific quantities, we compare the
model S matrix with the general two-channel parametrization

S =
(

ηe2iQa i
√

1 − η2ei(Qa+Qb )

i
√

1 − η2ei(Qa+Qb ) ηe2iQb

)
. (15)

The inelasticity parameter η and the channel phase shifts
Qi=a,b can be extracted from, e.g., the diagonal elements of
the S matrix via

Qi = 1
2 Im ln Sii,

η = eRe ln Sii . (16)

It also follows from Eq. (4) that Q = Qa + Qb.
In Fig. 1 we illustrate some of these quantities within the

single-resonance model. The model describes the decay of
the a0(980) resonance into πη (channel a) and KK̄ (channel
b). Model parameters are chosen to demonstrate key reso-
nance features rather than to reproduce experimental results.
In this numerical example we have chosen (mres, γ0, ga ) =
(0.984, 8, 0.75) (in appropriate units of GeV). This corre-
sponds to a resonance width of 120 MeV at

√
s = mres =

984 MeV.
Furthermore, we examine the effective and standard spec-

tral functions of the model, defined as [28]

B(s) = 2
d

d
√

s
Q(s),

A(s) = −2
√

s sin 2Q
s − m2

res

. (17)

The effective spectral functions within a channel can be
computed via

Bi (s) =
[

d

d
√

s
Im ln S

]
ii

= 1

2
Im

[
S−1 d

d
√

s
S −

(
d

d
√

s
S−1

)
S

]
ii

, (18)

where [. . .]ii denotes the ith diagonal matrix element of
a matrix. The standard spectral functions can be obtained
directly or via the branching fractions in Eq. (14),

Ai (s) = −2
√

s Re(Tii )/
(
s − m2

res

)
= η

−2
√

s sin 2Qi

s − m2
res

= BRiA(s). (19)

The equivalence between all the expressions in Eq. (19) are
numerically checked.1

We briefly summarize the key features of the effective
spectral function B(s) and its differences from the standard
spectral function A(s), see Fig. 2:

(i) One observes irregularities in the B(s) function at√
s = mπ + mη and

√
s = 2 mK . These are inte-

grable divergences associated with the appearance of
the S-wave two-body decay channel. It can be shown
that [33] these threshold effects give a finite contribu-
tion to the physical observables, with a strength that
depends on the scattering length of the channel.

(ii) The apparent “shift” of the strength towards lower in-
variant masses of B(s) compared with A(s) is a famil-
iar feature. This effect originates from the nonreso-
nant scattering effect, which is not properly accounted
for by A(s). The enhancement near threshold can give
a substantial contribution to the soft momentum of
the decay particles. This feature has been discussed
in detail in Ref. [36].

(iii) The parametrization for the resonance decay pre-
sented in Eqs. (6) and (7) is quite robust. It goes
beyond the usual assumption of a narrow resonance,
where one replaces the

√
s → mres in the phase

spaces φi and sometimes also in prefactor multiplying
γres in Eq. (7). To describe higher partial waves, one
needs to incorporate the right angular-momentum bar-
rier to the phase space φi . It is a basic approximation
to the integral involved in computing the imaginary
part of the self-energy of the resonance [28,30,33],

g2
aφa ↔

∫
dφa|�res→a|2. (20)

Note that the definition for energy dependent branch-
ing fractions in Eq. (14) remains unchanged.

In an actual PWA, the S matrix would include multiple
resonances and the effects from the nonresonant background.

1Note that B = 2 d
d
√

s
(Qa + Qb ) = Ba + Bb but Ba,b �= 2 d

d
√

s
Qa,b.
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FIG. 1. (a) Phase shifts [Eq. (16)] and (b) branching ratios [Eq. (14)] obtained from a model describing the decay of a single resonance
a0(980) into two channels, πη (channel a) and KK̄ (channel b). The inset in the right panel shows the energy dependence of the inelasticity
parameter η [Eq. (16)].

These models are constructed to describe a wide range of
experimental scattering data and their parameters fit to data.
The S matrix obtained is usually employed to assess the
existence of a resonance and to extract its parameters. Here
we have proposed an additional use of the S matrix—the
determination of an effective level density.

The simple example just presented motivates a robust way
to extract, for a coupled-channel system, an effective phase
shift function Q(s) = 1

2 Im(ln detS), which is the suitable
generalization of a single-channel phase shift. The phase shift
function Q thus defined is invariant under unitary rotations of
the basis states, while the S-matrix element, which describes
individual scattering process, depends on the choice of basis
used in the coupled-channel study.

According to the S-matrix formulation of the statistical
mechanics, the effective spectral function, B(s) = 2 d

d
√

s
Q(s),

plays the role of an effective level density due to the inter-
action, which enters the thermodynamical description of an
interacting system in the form of a virial expansion. In the

next section we apply this formulation to study the thermal
system of |S| = 1 strange baryons.

III. PRESSURE OF STRANGE BARYONS

In the S-matrix approach to statistical mechanics, the ther-
modynamic pressure can be written as a sum of two pieces:

P = P0 + �Pint., (21)

where P0 is the pressure of an uncorrelated gas of particles
that do not decay under the strong interaction (i.e., ground-
state particles), such as pions, kaons, and nucleons:

P0 =
∑
a∈gs

da

∫
d3k

(2π )3 T
[ ± ln

(
1 ± e−β(

√
p2+m2

a−μa )
)]

, (22)

where μa = BaμB + QaμQ + SaμS with (Ba, Qa, Sa ) be-
ing the baryon number, electric charge, and strangeness of
the particle species a and (μB, μQ, μS ) are the relevant

FIG. 2. (a) Total and channel-specific effective and (b)standard spectral functions defined in Eq. (17).
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chemical potentials. The choice of Fermi–Dirac or Bose–
Einstein statistics depends on the quantum numbers of the
species.

The interaction contribution �Pint. Due to two-body scat-
terings involves an integral over the invariant mass

√
s,

�Pint. = T

V
(ln Z)int.

≈
∑
ab

∑
f

T

∫ ∞

mab
th

d
√

s

∫
d3p

(2π )3

1

4iπ

tr[S−1∂S − (∂S−1)S]

× [ ± ln
(
1 ± e−β(

√
p2+s−μa−μb )

)]
. (23)

Here S is the S matrix of the scattering process ab → f
with threshold mab

th , and ∂ stands for the derivative with
respect to

√
s. The sum over f implies summation over all

allowed final states, while the sum over ab should encompass
all possible pairs of ground-state hadrons: ππ , πK , πN ,
KN , NN , etc. Here and in what follows the sums over
initial and final states include both particle and antiparticle
contributions.

In this paper we are interested in the pressure of strange
baryons. The dominant contribution to the strange baryon
pressure comes from |S| = 1 sector. The contribution of the
|S| = 2 and |S| = 3 sectors is significantly smaller. For exam-
ple, at T = 155 MeV, |S| = 2 and |S| = 3 baryons contribute
20% and 1.4%, respectively, to the total strange baryonic
pressure. For the calculation of the |S| = 1 strange baryonic
pressure the most important interactions are the kaon-nucleon
(KN ) interactions, antikaon-nucleon interactions (K̄N ), as
well as the interactions of nonstrange pseudoscalar mesons
with hyperons, i.e., the π�, π�, η�, and η� interactions.
The hyperon-nucleon interactions are suppressed due to the
large mass of the hyperon and the nucleon.

The K̄N scattering is known to have a lot of resonances.
As mentioned before, a coupled channel of these resonances
is needed [37,38]. Many of the resonances that are present
in K̄N scattering also couple to π�, π�, η�, and η�.
Furthermore, some of these resonances can also decay into
quasi-two-body final states such as K̄∗N , K̄�, π�∗(1385),
and π�∗(1520), i.e., final states that contain resonances
K̄∗, �, �∗(1385), and �∗(1520). Based on the principle of
effective elementarity [39], narrow resonances such as K̄∗,
�∗(1385), and �∗(1520) (with widths of 51, 38, and 16 MeV,
respectively), can be approximately treated as stable states
when calculating their contributions to the thermodynamics.
In addition, due to the long lifetime they can interact mul-
tiple times with other stable particles in the medium before
decaying. Such interactions may be treated as effectively
two body under the same principle. This is in line with the
framework of isobar decomposition and is compatible with the
current PWA.

Taking into account that

1

4iπ
tr(S−1∂S − (∂S−1)S) = 1

π

dQ
d
√

s
= 1

2π
B(s), (24)

and in particular at μQ = 0, the pressure of |S| = 1 baryons
can be written as

P |S|=1(T ,μB,μS )

=
⎡
⎣ ∑

a=�,�,�∗
1535

dIJ p0(Ma, T ) cosh(β(μB − μS ))

⎤
⎦

+pres
int (T ) cosh(β(μB − μS ))

+pKN
int (T ) cosh(β(μB + μS )), (25)

pres
int (T ) = T

∫
d
√

s

∫
d3p

(2π )3

1

2π
B(s)e−β

√
p2+s

= 1

2π

∫
d
√

sp0(
√

s, T )B(s), (26)

p0(x, T ) = x2T 2

π2
K2(βx). (27)

Here dIJ = (2J + 1)(2I + 1) is the spin and isospin de-
generacy factor and K2(x) is the Bessel function of the second
kind. The thresholds of different scattering processes are
implicitly encoded in B(s). We used the Boltzmann approx-
imation in the above equation since βmab

th � 1. We also per-
formed the calculations without the Boltzmann approximation
and found that the difference is tiny.

The first term in Eq. (25) corresponds to the free gas
pressure. In addition to the ground-state hyperons � and �,
we also include the narrow resonance �∗(1385) in this term,
since it is not reconstructed in the current PWA. The �∗(1520)
state, on the other hand, is dynamically generated, with pa-
rameters close to those in the PDG [25]. It is included in the
I = 0 (D03) component of pres

int (see below). The last term
in Eq. (25) corresponds to KN interactions and is discussed
later. Here we only note that it has a different dependence on
the chemical potentials.

To evaluate the effective phase shift function Q(
√

s) for
the coupled-channel system, we use a coupled PWA [38]
by the Joint Physics Analysis Center (JPAC) Collaboration,
which computes the scattering amplitude (T matrix) for the
following partial waves: S01, P01, P03, D03, D05, F05, F07,
and G07 for isospin zero (I = 0) and S11, P11, P13, D13, D15,
F15, F17, and G17 for isospin one (I = 1) cases. Here the
second subscripts in the partial-wave labels stands for the
spin (2 × J ). The T matrix, and hence the S matrix derived,
describe the coupled-channel interaction of a system of 16
basis Fock states. It includes such major channels as K̄N , π�,
π�, η�, and η�. Furthermore, for I = 0, the quasi-two-body
states like K̄∗N , K̄�, π�∗(1385), i.e., final states that con-
tain resonances K̄∗, �, and �∗(1385) are also included. As
discussed above these quasi-two-body channels are important
for thermodynamics. Moreover, the JPAC analysis includes
dummy channels labeled as σ� and σ� to account for the
remaining inelasticities not taken into account by the channels
discussed above [38]. Here σ is a fictitious meson with the
mass of two pion masses. In principle, many of these channels
should be treated as genuine three-body final states. This, at
the moment, remains a challenging task. Nevertheless, three-
body unitarity studies are currently under development in the
PWA field, particularly related to LQCD calculations [40–43].
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FIG. 3. The generalized phase shift function Ql (s ) (in radians)
extracted from the coupled-channel PWA in Ref. [38]. Shown in the
figures are the major channels contributing to the observable χBS .

In terms of PWA one can write

Q =
∑

l

dIJQl , (28)

with index l labeling different partial waves, S01, S11, P03, etc.,
and Ql is obtained by numerically calculating the determinant
of the 16 × 16 S-matrix Sl , for each partial wave. The cor-
responding numerical results for the generalized phase shifts
are shown in Fig. 3. One can imagine a simple scenario where
the phase shift is dominated by the sum of step functions
as asserted by the HRG model. However, Fig. 3 shows that
this simple scenario is not realized in general. In Fig. 4 we
show the effective spectral functions for the five lowest partial
waves with I = 0 and I = 1. We also compare the effective
spectral functions with the sum of B-W parametrization of the
resonances in each channel. For partial waves dominated by
narrow resonances such as P03, D03, P13, and D13 the B-W
parametrization gives a fair description of the effective spec-
tral function although not accurate at the quantitative level.
The B-W parametrization also does a fair job for the G17

partial wave (not shown). However, for all other cases the

B-W parametrization does not describe the effective spectral
function. Furthermore, the simple K-matrix parametrization
advocated in Ref. [44] also does not provide a good descrip-
tion of the spectral densities. In particular, using this form did
not lead to an improved description of the spectral density
compared with the simple B-W parametrization. This is due
to the fact that nonresonant background was not considered in
the K-matrix parametrization of Ref. [44]. In fact, it is known
that a more sophisticated treatment of the K matrix, e.g.,
maintaining the exchange symmetry and unitarity, is required
to produce reliable results on phase shifts and scattering
amplitudes [45,46].

With the extracted effective spectral functions B(s) it is
straightforward to calculate numerically the contribution of
the coupled-channel interactions to the partial pressure of
|S| = 1 baryons. The result is shown in Fig. 5. In Table I we
give the individual contributions to the |S| = 1 baryonic pres-
sure from different partial waves, and in Table II we provide
all the resonances pole masses and widths from the S = −1
sector PWA. We also performed calculations by using sim-
plified spectral functions that are the sum of δ functions with
peak positions corresponding to resonance location for each
partial wave. This corresponds to the HRG approximation. To
judge the validity of the HRG approximation in Table I we
compare the contribution for each partial wave the |S| = 1
baryonic pressure with the result of S-matrix calculations. For
partial waves, P03, D03, P13, D13, and F15 HRG can reproduce
the S-matrix result for the pressure with accuracy of better
than 10%. However, in other cases the contributions from the
S-matrix virial expansion are either significantly smaller or
significantly larger than the HRG result. Qualitatively the sit-
uation is similar to the study of baryon number electric-charge
correlations, where it was also found that the relativistic virial
expansion and the HRG model give quite different results
[22]. Very interestingly, however, after adding the contribution
from all partial waves, the two approaches give very similar
results, as shown in Fig. 5. This illustrates that spectra with
drastically different shape may produce similar temperature
dependence in a given thermal observable, i.e., a given thermal
quantity does not uniquely fix the spectrum. In particular, the
excellent agreement of the HRG model with various lattice
results should not be taken as a justification of the zero-width
approximation in treating resonances. Such an assumption,
in many cases, is not supported by empirical findings. In-
stead, the current approach suggests multiple mechanisms are
at work in the thermodynamic quantities: threshold effects,
repulsive channels, coupled-channel effects, and the effect
of averaging over many channels. A momentum-differential
observable such as the momentum spectrum [49,50] would
allow one to differentiate between different models of the
effective spectral functions.

We also investigated the question to what extent taking
into account the width of the resonances as constants via
a simple B-W parametrization, i.e., γres = γ0 in Eq. (10),
leads to an improved description of the |S| = 1 partial pres-
sure. Therefore, we calculated the pressure contributions of
partial waves using the B-W parametrization of the spectral
densities and show the corresponding results in the fourth
and eighth columns of Table I. We note that the use of
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FIG. 4. The effective spectral functions B(s )(GeV−1) for (a) I = 0 and (b) I = 1 and different partial waves. The dashed lines correspond
to B-W parametrization of the resonances.

the B-W amplitudes, with or without energy dependence in
the widths, is not the correct way to go beyond the HRG
because one has to include both the resonant and nonresonant
contributions in the spectral weight for consistently describing
the thermodynamics, as done within the S-matrix formulation
of statistical mechanics [36]. As one can see from Table I, in-
cluding the width of the resonances via B-W parametrization
often overestimates the corresponding contributions. The only
partial waves, where B-W form of the spectral density works
within 10% are G07 and F17, which are well described by one
isolated resonance.

Note that the HRG approximation discussed above and
labeled as HRG PWA is different from standard HRG model
which uses only well-established resonances, i.e., four and
three star resonances, from PDG [25] and labeled as HRG
PDG. This is due to the fact that the number of hyperon
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FIG. 5. The pressure (normalized to T 4) of |S| = 1 baryons
calculated in the S-matrix-based relativistic virial expansion and
using the HRG model with various particle content (PWA, QM,
PDG). Also shown in the figure are the lattice results for the |S| = 1
pressure [27].

resonances identified in JPAC PWA analysis is larger than the
list of three-star or four-star resonances listed by PDG [38].
The JPAC analysis identifies �∗ and �∗ resonances that do not
appear in PDG as well established, i.e., three-star or four-star
resonances. The analysis confirms some two- and one-star
resonances that appear in PDG. At the same time other two-
and one-star resonances are not confirmed by JPAC; instead,
a new hyperon resonances are identified [38]. Furthermore,
in Fig. 5 we show the HRG result, which in addition to the
PDG states also includes |S| = 1 baryons predicted in the
quark model (QM) [51] and therefore labeled as HRG QM.
Interestingly enough, HRG PWA and HRG QM results agree
reasonably well despite differences in the particle content.
Finally, the calculations are compared with the lattice result
for the |S| = 1 baryon pressure extracted from strangeness
fluctuations and baryon-strangeness correlations using the
HRG ansatz for the strange pressure [27]. These lattice results
are significantly higher than the HRG result with PDG states
and agree better with the calculations that include the missing
states.

TABLE I. The contributions to |S| = 1 baryonic pressure from
different the partial waves in the S-matrix approach and in HRG
approximation in units of 10−3T 4 at T = 150 MeV. In the columns
labeled “B-W,” the partial pressure contributions obtained from the
B-W parametrization of the spectral density are shown.

I = 0 I = 1

S matrix HRG B-W S matrix HRG B-W

S01 0.916 1.139 1.224 S11 1.018 0.282 0.532
P01 0.539 0.607 0.676 P11 1.681 1.275 1.465
P03 0.426 0.403 0.472 P13 1.868 1.857 2.406
D03 1.091 1.127 1.416 D13 0.964 0.995 1.052
D05 0.363 0.221 0.456 D15 1.478 1.219 1.793
F05 0.261 0.308 0.489 F15 0.514 0.503 1.119
F07 0.160 0.085 0.222 F17 0.556 0.238 0.603
G07 0.173 0.057 0.177 G17 0.169 0.095 0.310
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TABLE II. Pole masses and widths of the S = −1 resonances obtained in the amplitude analysis of Ref. [38]. �(1405) is an effective state
that accounts for the two-pole structure found in the S01 partial wave below the K̄N threshold [47,48]. The status of the resonances is provided
by the PDG [25] according to how well established a resonance is, with four stars being the highest qualification and one the lowest. An overall
status ∗ ∗ ∗∗ or ∗ ∗ ∗ is awarded only to those resonances which are derived from analyses of differential cross sections and polarization
observables, and are confirmed by independent analyses. All other resonances are assigned either a ∗∗ or ∗ status.

PW Name Status Mass (MeV) Width (MeV) PW Name Status Mass (MeV) Width (MeV)

S01 �(1405) **** 1436 279 S11 �(1750) *** 1813 227
S01 1573 300 �(2000) * 1991 173
S01 �(1670) **** 1636 211
S01 �(1800) *** 1983 282
S01 �(2000) * 2043 350
P01 �(1600) *** 1568 132 P11 �(1560) ** 1567 88
P01 �(1710) * 1685 59 �(1660) *** 1708 122
P01 1835 180
P01 �(1810) *** 1837 59
P03 1690 46 P13 1574 99
P03 �(1890) **** 1846 70 �(2080) ** 1980 429
D03 �(1520) **** 1519 18 D13 �(1670) **** 1666 26
D03 �(1690) **** 1687 66
D03 �(2050) * 2051 269
D03 �(2325) * 2133 1110
D05 �(1830) **** 1817 85 D15 �(1775) **** 1744 166
D05 2199 570 1952 88
F05 �(1820) **** 1817 85 F15 �(1915) **** 1894 59
F05 �(2110) *** 1931 189 �(2070) * 2098 474
F07 �(2020) * 2012 210 F17 �(2030) **** 2024 190
G07 �(2100) **** 2080 217 G17 �(2100) * 2177 156

So far, we did not discuss the contribution of KN in-
teractions to the strange baryonic pressure, which is given
by the third term in Eq. (25). These interactions do not
have known resonances and have been analyzed by using the
PWA in Refs. [52–54]. The SAID interface gives the phase
shift of elastic KN scattering [55]. The inelastic channels
are included explicitly through the inelasticity parameter. To
estimate the contribution of KN we write

P KN
int (T ) =

∑
l

dIJ

∫
d
√

sp0(
√

s, T )
1

π

dδl

d
√

s
. (29)

Here it was assumed that S = ∑
l exp(2iδl ), with δl being

the elastic KN scattering phase shifts. We use the results of
Ref. [54] for δl and consider partial waves up to G09 and G19.
The numerical results for different partial-wave contributions
to pKN

int are shown in Fig. 6 separately for the I = 0 and I = 1
channels. It is obvious that the largest contribution to pKN

int
comes from I = 1 partial waves. The absolute value of the
contribution from KN interactions is always smaller than the
total resonance contribution in each partial wave. The typical
strength of the KN contribution relative to resonant (K̄N ,
etc.) contribution varies between 5% and 25%. Furthermore,
we observe large cancellations between the contributions from
different partial waves; cf. Fig. 6. Thus, the total contribution
from KN interactions turns out to be very small and can be
neglected.

IV. BARYON-STRANGENESS CORRELATIONS

In the previous section we compared the pressure of
|S| = 1 baryons obtained in the S-matrix approach with the
LQCD estimate [27]. The LQCD estimate of the |S| = 1
baryonic pressure was obtained from the baryon strangeness
correlations and strangeness fluctuations and the HRG ansatz
for the pressure, and thus is model dependent. For a more
direct comparison with LQCD we consider the second-order
baryon strangeness correlation, χBS

11 . This quantity, however,
receives significant contribution from |S| = 2 and |S| = 3
baryons. Unlike for the |S| = 1 sector, no PWA is available
here. Furthermore, the number of well-established (four- or
three-star) baryons is much smaller. There are only five well-
established |S| = 2 baryons and only one well-established
|S| = 3 baryon [�(1672)] [25]. On the other hand, all these
states are either stable under strong interactions or quite
narrow, � � 30 MeV. Therefore, all the well-established
|S| = 2 and |S| = 3 baryons can be treated as “elementary”
states to a good approximation, i.e., their contribution can be
calculated by using the ideal-gas expression [39]. In Fig. 7
we show χBS

11 obtained in LQCD [10,11] together with the
ideal-gas result that contains all the elementary states (�,
�, �∗(1385) and the well-established |S| = 2, 3 baryons).
The elementary states account for about 60% of χBS

11 . The
remainder has to come from the interactions. If we add the
interactions from the |S| = 1 sector based on PWA, we see a
substantial improvement in the description of the LQCD result
by the S-matrix approach, over the standard HRG result that
contains only the well-established states. This demonstrates
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FIG. 6. The contribution from different partial waves to pKN
int for (a) I = 0 and (b) I = 1.

the importance of the consistent treatment of resonances and
the need to incorporate additional hyperon states.

However the agreement remains incomplete, and we see
that further interaction strength in the strange baryon system
is needed to reproduce the LQCD results. This may come
from an improved analysis of the |S| = 1 hyperon system,
e.g., more realistic interaction vertices and the systematic
inclusion of the multihadron scatterings. For this one needs
more precise experimental information on the hyperons.

The enhancement may also come from an improved treat-
ment of the |S| = 2 and |S| = 3 sectors. Based on the quark
model calculations [51,56,57] and LQCD [58], we expect that
many more |S| = 2 and |S| = 3 resonances should exist than
in the list of well-established states in PDG. This also suggests
that interactions in the |S| = 2 and |S| = 3 is mostly resonant.
To investigate the possible impact of these states we included

FIG. 7. The second-order baryon strangeness correlations, χBS
11

in LQCD [10,11] compared with the ideal-gas result with all elemen-
tary states (dashed line), with the result that includes all elementary
states and interactions in |S| = 1 sector obtained in the S-matrix
approach (solid line), as well as the result that in addition contains the
contribution from missing |S| = 2 and |S| = 3 states (dashed-dotted
line). Also shown is the standard HRG result (dotted line).

the missing |S| = 2 and |S| = 3 baryon resonances to χBS
11 by

using the HRG approximation. As one can see from Fig. 7 that
including these states further improves the agreement with
LQCD results. Of course, a more definitive assessment can
be made when the PWA in the |S| = 2 and |S| = 3 sectors
becomes available.

Previously [59] it was shown that the HRG model, sup-
plemented with additional hyperon states (one- and two-star
resonances), can also yield a reasonable description of the
lattice results, despite essential differences in the distribution
of strength in the effective spectral function (as a function
of center-of-mass energy) between the two approaches. This
underlines the fact that spectral functions with drastically
different shapes may produce similar temperature dependence
in a given thermal observable. Nevertheless, the S-matrix
analysis presented in this work is expected to yield a more
reliable description since it is consistent with many known
facts of the hadrons, e.g., resonance widths and inelasticities.

It would be interesting to study higher-order baryon
strangeness correlations, e.g., χBS

22 and χBS
13 . However, as

was pointed out in Ref. [23] these will be sensitive to the
repulsive baryon-baryon interactions, which are not very well
known in the case of strange baryons. The repulsive baryon-
baryon interactions need to be studied and taken into account
before applying the virial expansion to higher-order baryon
strangeness correlation. These interactions may also explain
why HRG with additional QM states seems to be disfavored
by the lattice results on the ratio χS

4 /χS
2 [27].

V. CONCLUSIONS

In this paper the partial pressure of strange baryons and
baryon-strangeness correlations have been discussed within
the S-matrix approach, based on the state-of-the-art coupled-
channel analysis by JPAC. It was found that the proper
treatment of resonances, and the natural incorporation of
additional hyperon states which are not listed in the Particle
Data Group in the S-matrix approach, lead to an improved
description of the lattice data over the standard hadron res-
onance gas model. Thus, the analysis presented supports the
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earlier claim that the incorporation of extra hyperon states is
required to explain the lattice results of the BS correlations.
Our analysis only considered meson-baryon interactions. As
we already pointed out, however, baryon-baryon interactions
may be important for the analysis of higher-order baryon-
strangeness correlations [14,23,24].
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