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INTRODUCTION. 

THE present Supplement contains a system of general methods for the solution of 

Optical Problems, together with some general results, deduced from the fundamental 

formula and view of Optics, which have been proposed in my former memoirs. The 

copious analytical headings, prefixed to the several numbers, and collected in the 
Table of Contents, will sufficiently explain the plan of the present communication ; 
and it is only necessary to say a few words here, respecting some of the principal 
results. 

Of these the theory of external and internal conical refraction, deduced by my 
general methods from the principles of FRESNEL, Will probably be thought the least 

undeserving of attention. It is right, therefore, to state that this theory had been de 

duced, and was communicated to a general meeting of the Royal Irish Academy, not 
at the earlier, but at the later of the two dates prefixed to the present Supplement. 
After making this communication to the Academy, in October, 1832, I requested 
Professor LLOYD to examine the question experimentally, and to try whether he could 

perceive any such phenomena in biaxal crystals, as my theory of conical refraction had 
led me to expect. The experiments of Professor LLOYD, confirming my theoretical 

expectations, have been published by him in the numbers of the London and Edin 
VOL. XVII. a 
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burgh Philosophical Magazine, for the months of February and March, 1833 ; 
and they will be found with fuller details in the present Volume of the Irish Trans 
actions. 

I am informed that JAMES MAC CULLAGH, Esq. F.T. C.D. who published in the last 

preceding Volume of these Transactions a series of elegant Geometrical Illustrations 
of FRESNEL'S theory, has, since he heard of the experiments of Professor LLOYD, em 

ployed his own geometrical methods to confirm my results respecting the existence of 

those conoidal cusps and circles of contact on FRESNEL'S wave, from which I had been 

led to the expectation of conical refraction. And on my lately mentioning to him 

that I had connected these cusps and circles on FRESNEL'S wave, with circles and cusps 
of the same kind on a certain other surface discovered by M. CAUCHY, by a general 

theory of reciprocal surfaces, which I stated last year at a general meeting of the Royal 
Irish Academy, Mr. MAC CULLAGH said that he had arrived independently at similar 

results, and put into my hands a paper on the subject, which I have not yet been able 

to examine, but which will (I hope be soon presented to the Academy, and published 
in their Transactions. 

I ought also to mention, that on my writing in last November to Professor AIRY, 
and communicating to him my results respecting the cusps and circles on FRESNEL'S 

wave, and my expectation of conical refraction which had not then been verified, Pro 

fessor AIRY replied that he had long been aware of the existence of the conoidal cusps, 
which indeed it is surprising that FRESNEL did not perceive. Professor AIRY, how 

ever, had not perceived the existence of the circles of contact, nor had he drawn from 

either cusps or circles any theory of conical refraction. 

This latter theory was deduced, by my general methods, from the hypothesis of 

transversal vibrations in a luminous ether, which hypothesis seems to have been first 

proposed by Dr. YOUNG, but to have been independently framed and far more per 

fectly developed by FRESNEL ; and from FRESNEL'S other principle, of the existence of 

three rectangular axes of elasticity within a biaxal crystallised medium. The verifi 

cation, therefore, of this theory of conical refraction, by the experiments of Professor 

LLOYD, must be considered as affording a new and important probability in favour of 

FRESNEL'S views : that is, a new encouragement to reason from those views, in com 

bining and predicting appearances. 
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The length to which the present Supplement has already extended, obliges me to 

reserve, for a future communication, many other results deduced by my general 
methods from the principle of the characteristic function : and especially a general 
theory of the focal lengths and aberrations of optical ifistruments of revolution. 

WILLIAM R. HAMILTON. 

OBSERVi.TOR1, June, 1833. 
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THIRD SUPPLEMENT. 

Fundamental Formula of Mathematical Optics. Design of the present Supplement. 

1. WHEN light is considered as propagated, according to that known general law 
which is called the law of least action, or of swiftest propagation, along any curved 
or polygon ray, ordinary or extraordinary, describing each element of that ray 
ds v' (da..2  dy2  dz2 with a molecular velocity or undulatory slowness v, which is 

supposed to depend, in the most general case, on the nature of the medium, the posi 
tion and direction of the element, and the colour of the light, having only a finite 
number of values when these are given, and being therefore a function of the three 

rectangular co-ordinates, or marks of position, x, y, z, the three differential ratios or 
cosines of direction, 

dx t dy dz 
a=ds"j=cls' 7 =ds' 

and a chromatic index or measure of colour, x, the form of which functionx depends 
on and characterises the medium ; then if we denote as follows the variation of this 
ftinction, 

.3v .3v zy aty .3v az, ay , 
1)=.,Fz,;x.+-til-2y+8iL+ea+-4-3.2)3+-g-7+-g-cpX, 

and if, by the help of the relation aC  pe.  -y2  1, we determine 
27 Sy & 
.,71., --67z;, Fy 

so as to satisfy the condition 
Svn Ey Sv  a 
rc-t p -  7 --a7)--v, 

namely, by making v homogeneous of the first dimension with respect, to a, j3, 7 ; it 
has been shown, in my First Supplement, that the variation of the definite integral 
V=f vds, considered as a function, which I have called the Characteristic Function 

B 
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of the final and initial co-ordinates, that is, the variation of the action, or the time, 
expended by light of any one colour, in going from one variable point to another, is 

,8v 8v , 2v' A , 
z=Rfvds=)-,ex-  ow- ow +-oz--7'6' 

: vt oa 43 OP' 8-y 8 
the accented being the initial quantities. This general equation, (A), which I have 
called the Equation of the Characteristic Function, involves very various and exten 
sive consequences, and appears to me to include the whole of mathematical optics. I 

propose, in the present Supplement, to offer some additional remarks and methods, 
connected with the characteristic function V, and the fundamental formula (A ; and 
in particular to point out a new view of the auxiliary function TV, introduced in my 
former memoirs, and a new auxiliary function T, which may be employed with advan 

tage in many optical researches : I shall also give some other general transformations 
and applications of the fundamental formula, and shall speak of the connection of my 
view of optics with the undulatory theory of light. 

Fundamental Problem of Mathematical Optics, and Solution by the Fundamental 
Formula. Partial Differential Equations, respecting the Characteristic Function 
1 and common to all optical combinations. Deduction of the Medium Functions 
0, v, from this Characteristic Function V. Remarks on the new symbols cs, 

2. It may be considered as a fundamental problem in Mathematical Optics, to 
which all others are reducible, to determine, for any proposed combination of media, 
the law of dependence of the two extreme directions of a curved or polygon ray, 
ordinary or extraordinary, on the positions of the two extreme points which are 
visually connected by that ray, and on the colour of the light : that is, in our present 
notation, to determine the law of dependence of the extreme direction-cosines a j3 7 
a' p' y', on the extreme co-ordinates x y z x' y' z , and on the chromatic index x. 
This fundamental problem is resolved by our fundamental formula (A ; or by the 
six following equations into which (A resolves itself, and which express the law of 
dependence required : 

0y b V 8v 

av' v Zvi V7. (B 
;  

These equations appear to require, for their application to any proposed combination, 
not only the knowledge of the form of the Characteristic Function V, that is, 
the law of dependence of the action or time on the extreme positions and on the 
colour, but also the knowledge of the forms of the functions v, v', that is, the optical 
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properties of the final and initial media ; but these final and initial medium functions 
v, v', may themselves be deduced from the one characteristic function J7 by reasonings 
of the following kind. 

Whatever be the nature of the final medium, that is, whatever be the law of 

dependence of v on the position, direction, and colour, we have supposed, in deducing 
the general formula (A), that the expression of this dependence has been so prepared 
as to make the medium-function v homogeneous of the first dimension relatively to 
the direction-cosines a, j3, y ; the partial differential co-efficients 

Zz al1 8v 
, 7 

of this homogeneous function, are therefore themselves homogeneous, but of the 
dimension zero ; that is, they are functions of the two ratios 

a 13 I 
7 7 

involving also, in general, the co-ordinates x y z, and the chromatic index x : if then 
we conceive the two ratios 

a jr3 
7 7 

to be eliminated between the three first of the equations (B), and if, in like manner, 
we conceive 

a 13' -7, 7 7 
to be eliminated between the three last equations (B), we see that such eliminations 
would give two partial differential equations of the first order, between the character 
istic function V and the co-ordinates and colour, of the form 

 8V SY ay 
18x ' ay' x, z, X), 

, 8V 8V 8V ' 
ax, 

s"' 
az, , s' , y z' x  

which both conduct to the following general equation, of the second order and third 
degree, common to all optical combinations, 

82v ZIP' a2 T7 a2V ;2V 82V 82 V 82V 8217 
&vac' 8y8y' 8x 8y' 8y8z' 8z2x1 Tx8z' 8y8s7 Tay' 

 a2V Z2 17 82 17 ZCv 17 8947 82V ,32V 81V 
8,0y 8x 2z7 8z8y' bae 

 &az' avail 81.4" 
If now we put, for abridgment, 

2V 
av .3,y -.7 az 

 u 

81 7 , 8v , 817 , 
w .=1 

0 

(C 

(D 

(E 
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and if between the three first of these equations (.E we eliminate two of the three initial 
co-ordinates al z', it is easy to perceive, by  C or (D , that in every optical com 
bination the third co-ordinate will disappear ; and similarly that between the three 
last equations (E we can eliminate all the three final co-ordinates, by eliminating 
any two of them ; and that these eliminations will conduct to the relations  C under 
the form 

0 (a, , , z, x), 
 01 (a,' , , X' y', z', x), 

which can thus be obtained, by differentiation and elimination, from the characteristic 
function V alone : and which, as we are about to see, determine the forms of v, v', 
that is, the properties of the extreme media. Comparing the differentials of the rela 
tions (F), with the following, that is, with the conditions of homogeneity of v, v, pre 
pared by the definitions (E and by the relations (B , 

v v Sv v a   p   as Pr  7v, as 8P Sy 
, , ail n, sil , 8vi , , , , , v  a p 7 -7  a cr  p  7 v 5 a 43 87 

and with their differentials, that is with 

acr   7&  -g;ar  -8-; +-zolZ 
, 8v' , 8v' , 8v 

aTcr' +1377    
Ty; 

 Fz  
8--x ox, 

we find 

a 2S p 7 a",1  
acr v 8r v 

a 2n,'13' 7' sai 
717 =a7-7.1 =w' 

and also 
 sv_sa 

 1 
v' 8x 

 ' 

 1 8v LSZ 
v 8y 8.y v az az v 8x ax' 
_1 &"  2L2' 1 &), 2EY 

,3777 7 =Fx 

(K 

if we so prepare the expressions of the relations (F as to have 
Za 8a 8a cr  r v it; 

 1, 

a  a +a J. ti" 
, , , 

which can be done by putting those relations under the form 

0  (62  T2  v2)2 to -1  0, 
o  (a12  7.1 2  2)1 C -1 01; 

(F 

(G 

(H 

(I 

(L 
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0 in which w, 61, that is, (a2  72  v2 , and (12 -1-112  v'2 
 

2, are to be expressed  1 , 
72  v2 2, r (a  72  v2 

"--. 
, v (a2  72  1)2 

1.-1. i ,,,, as functions respectively of a   , ..., , y, 
; and of i cr, 0/2  rt2  1/2 

 ' 
r, (a'2  7'2  1?2 

"-. 
v' 03.'2  7/2  1/2 

'-'' 
-4, at , y, zi, x . X, 

After this preparation the partial differential coefficients 
8a ai 8e, 
Fc-, ' Or '' & 

are homogeneous of dimension zero relatively to cr , 7, v ; and in like manner 
8E2,' 8i2' i'z' 
80" ' 87-' ' ' 

are homogeneous of dimension zero relatively to a, r', v' ; if, therefore, between the 
three first equations (I), we eliminate any two of the three final quantities a, r, v, the 
third will disappear ; and similarly all the three initial quantities a' , r', v, can be elimi 
nated together, between the three last of the equations (I : and by these eliminations 
we shall be conducted to two relations of the form 

a p 0  t 7 
 ,   ,  x y, , z x , v  v, , 

I (a, I 
0  1);, 

a 
 -; , v v li f x' y' il, x , . 

which determine the forms of the final and initial medium-functions v, vi, so that these 
forms can be deduced from the form of the characteristic function V. We can there 
fore reduce to the study of this one function V, that general problem of mathematical 

optics which has been already mentioned. 
The partial differential coefficients of the characteristic function V, taken with 

respect to the co-ordinates x, y, z, are of continual occurrence in the optical methods 
of my present and former memoirs ; I have therefore thought it useful to denote 
them in this Supplement by separate symbols, a, r, v, and I shall show in a future 
number their meanings in the undulatory theory : namely, that they denote, in it, the 

components of normal slowness of propagation of a wave. 

Connection of the Characteristic Function V, with the Formation and Integration 
of the General Equations of a Curved Ray, Ordinary or Extraordinary. 

3. It may be considered as a particular case of the foregoing general problem, to 
determine general forms for the differential equations of a curved ray, ordinary or ex 

traordinary ; that is, to connect the general changes of direction with those of posi 
tion, in the passage of light through a variable medium. The following forms, 

 &, v __, , at, 8v , J 811 8t, , a - -as, a -  as, a  as, (0 43a 8x 6)3 Zy 81 az 

(N 

C 
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(which are of the second order, because a, j3, 7, a', j3', 1 t , are defined by the equations 
dx (4 dill dz 

a  -Ts ' l' 
 ds' 7  ds ' 

dx' , dy' , dz' 
a'  .  p  ___ , 

ds' 

the symbol d referring, throughout the present Supplement, to motion along a ray, 
while 8 refers to arbitrary hOnitesimal changes of position, direction, and colour, and 
ds' being the initial element of the ray, were deduced, in the First Supplement, by the 
Calculus of Variations, from the law of least action. The same forms  0), which are 

equivalent to but two distinct equations, may be deduced from the fundamental 
formula (A ), by the properties of the characteristic function V. For, if we differ 
entiate the first equation  C ), (which involves the coefficients of this function V, 
and was deduced from the formula (A), with reference to each of the three co-ordi 
nates, s, y, z, considered as three independent variables, and with reference to the 
index of colour x, we find, by the foregoing number, 

82 V 8217 a -c-r2.  f3T;6 
+ 

82V ra82V a 
x8y 

 1% 42 
Z2 V 82 V a 8xz  l'j z+ 
2V Z2V a 
ax8X P 8Yax 

 

8' V 8t, 
7Txrz=rx' 

82v 8v 
7 Tyrz=.6 ' 

2V 2v 
7 T .i ; ' 

Z2V v 
7 z.8X.-- ZX' 

(Q 

and the three first of these equations  Q), by the help of the general relations (B), 
which were themselves deduced from (A), and by the meanings (P of a, p, 7, may 
easily be transformed to  0). The differential equations  0 may also be regarded 
as the limits of the following, 

a  cr,  ___ i V\ ,  8V ,  /8V\  
 ' 7  7 

-Cy P 1 .1 
ki; )2 

f8V\ /8V\ (8V\ 
kax I k8y i k8y 

are obtained by differentiating V considered as a function of the seven variables 
a:, y, z, Ax, Ay, Az, x, if Ax=x-d, Ay =,y -yi , Az=z-z'; the variation of V, 
when so considered, being by (A), and by the definitions (B), 

 8 V \  8 V \ A V \ 8 V 
8 V (a  a' ar +er -7').y+(v-v')8z+--yze)aAx +-z--1.-v)8L1y +:3---E:).346,z  

rx 2x, (S 
in which 

(R 
in which 
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If we differentiate the first equation C relatively to x', y', z', we find, by the fore 

going number, 
82 V 0 82 V V 

0  a &as'  P Z'  7 az&e ' 
82 Vn 82 V 82 V 

0  a 
arsv, 

 p ay8y, 
 7 w 

82 v , ,p V 82 V 
13  a 

T.T.32  P 481 
 7W.67 9 

of which, in virtue of (D), any two include the third, and which may be put by (P 
under the form 

V V 8 V 
=d  0=d  o d-- (V Co ax" ' ' 

and these differential equations (V of the first order, in which the initial co-ordi 
nates and the colour are constant, belong to the ray, and may be regarded as integrals 
of  0). They have, themselves, for integrals, 

SV 8V 8V 
const.  const.  const. (W 

the constants being, by (B), the values of the initial quantities 
8v' &)' 
&t, 9 

Z1 
 

In like manner, by differentiating the last equation  C), we find the following 
equations, which are analogous to  Q and  U), 

82.v.  v ' 82 a Z2  3 
azqy' 

 7 &TY 
, 82v , 82 v 

a 
x,ay, 

 p  7 way 
 9 

, Z217 82 V , 82V 8v1 
a P  

 Z2V , 82V , 82V y' 
a 

Q2X 
 7 7J 

and 

, (217. ,Z2V Z2V 
0 a 87aTi P x8z' 9 

0  a' 
a, 

 
48Ty7111 

4 1 Cavz' (Y 
.3=7 

0  a azart 1J8z8my' azaz' 

The second members of the three first equations (X vanish when the initial medium 
is uniform, and those of the three first equations  Q when the final medium is so ; 
and in this latter case, of a final uniform medium, the final portion of the ray is 

(U 

(X 
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straight, and in its whole extent we have not only the equations (TV but also the 
following, 

Zv a v Zv 
v const. , 

--*-- 
const. , w-- 

-=. const. , (Z 

the constants being by (B those functions of the final direction-cosines and of the 
colour which we have denoted by 

031 &' 8V 
W, 1 Fp 

1 
43y' 

and which are here independent of the co-ordinates. In general, if we consider the 
final co-ordinates and the colour as constant, the relations (Z between the initial co 
ordinates are forms for the equations of a ray. And though we have hitherto consi 
dered rectangular co-ordinates only, yet we shall show in a future number that there 
are analogous results for oblique and even for polar co-ordinates. 

Transformations of the Fundamental Formula. New View of the Auxiliary 
Function W ; New Auxiliary Function T. Deductions of the Characteristic 
and Auxiliary Functions, V, W, T, each from each. General Theorem of 
Maxima and Minima, which includes all the details of such deductions. Remarks 
on the respective advantages of the Characteristic and Auxiliary Functions. 

4. The fundamental equation (A may be put under the form 
 SV 

V"-zz fax--a'ax'  78ty ---TV  viz--v az   ax, (A'  

employing the definitions (E), and introducing the variation of colour ; it admits 
also of the two following general transformations, 

and 

in wihich 

and 

a w xaa yar  Z&i  cr'Sd  DV  v' z' 
--Fx 8x, (B' 

, v 
a T  x80 ---x701 +A- gar'  iv&,-z'of  

T)-c-ox, (C 

TV  V za +yr  zv, (D' 

T W zit --tyy -iv'. (E 
In the two foregoing Supplements, the quantity TV was introduced, and was consi 
dered as a function of the final direction-cosines a, j3, 7, the final medium being 
regarded as unifdrm, and the luminous origin and colour as given ; we shall nOw take 
another and a more general view of this auxiliary function TV, and shall conside'r it 
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as depending, by (B'), for all optical combinations, on the seven quantities a T v x'y' z' x. 
In like manner, we shall consider the new auxiliary function T as depending, by the 
new transformation  C'), on the seven quantities a 7 U a 71 1; X. The forms of these 

auxiliary functions, W, T, are connected with each other, and with the characteristic 
function V, by relations of which the knowledge is important, in the theory of 

optical systems. Let us therefore consider how the form of each of the three func 
tions, V, TV, T, can be deduced. from the form of either of the other two. 

These deductions may all be effected by suitable applications of the three forms 

(A' (B' (C), of our fundamental equation (A), together with the definitions (D' 
CE), as we shall soon see more in detail, by means of the following remarks. 

When the form of the characteristic function V is known, and it is required to 
deduce the form of the auxiliary function J47, we are to eliminate the three final 
co-ordinates, x, y, z, between the equation (D' and the three first of the equations 
(E ; and similarly when it is required to deduce the form of T from that of V, 
we are to eliminate the six final and initial co-ordinates x y z x' y' z between the six 

equations (E), (which are all included in the formula (A'), and the following, 
T   V  xa  ,'X,''6 +yr -,y'r'  zv  iv : (F 

and if it be required to deduce the form of T from that of TV, we are to eliminate 
the three initial co-ordinates x' y' z', between the equation (R and the three follow 

ing general equations, 
, 2W , 8F ,  8TH'___ , t,  ...._. 6  Zs' ' 7 

 
8y 8z'. 

But when it is required to deduce reciprocally V from T or from IV, or W from T, 
we must distinguish between the cases of variable and of uniform media ; because we 
must then use the equations into which (B' and  C' resolve themselves, and this 
resolution, when the extreme media are not both variable, requires the consideration 
of the connexion that then exists between the quantities a r v a r' v' x : which circum 
stance also, of a connexion between these variable quantities, leaves a partial indeter 
minateness in the forms of T and TV as deduced from V, and in the form of T as 
deduced from W, for the case of uniform media. 

When the final medium is variable, then a, r, I), x, may in general vary indepen 
dently, and the equation (B' gives 

8w 2 TV 8 kV8 IC W 
=x, ---g =y, -87 =z, T- 

  
2---x 

; (11 

and, in this case, V can in general be deduced from TV by eliminating a, 7, v, between 
the equation (D'), and the three first equations (IF). But if the final medium be uni 
form, then a, r, /), X, are connected by the first of the relations (F), from which, in this 
case, the final co-ordinates disappear ; and instead of the four equations (H' we have 
the three following 

VOL. XVII. D 
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;i47 ;TV aw aw ;v 
-&7*-- ' --W y F 

 z F  T i, x x 
8a 

 
8a 

 
8a -- za ; 

&, .;; Fx 
by means of the two first of which, combined with the relation already mentioned, 
namely, 

which depends on, and characterises, the nature of the final uniform medium, we can 
eliminate a, r, v, from the equation (D), and so deduce V from W. 

In like manner, if both the extreme media be variable, then the seven quantities 
Cr T V 0 1f VI x may in general vary independently, and the equation  C' resolves itself 
into the seven following, 

;T ;T T ;fi 8V 8 T;T , ;T 
(L' 1,; 

 n' 17 =Y' Fi 
 

T. 
  ' r 

-- --iri' V 
 -Y '-7 

- e ' 
x x 6 

by the three first and three last of which we can eliminate a T v a if ti from (F'), and 
so deduce V from T. And in the same case, or even in the case when only the 
initial medium is variable, the three last of the equations (L' are true, and suffice to 
eliminate Cr', 7', v', from (E'), and so to deduce W from T. 

But if the final medium be uniform, the initial being still variable, then a, r, v, x, 
are connected by the relation (K'), while a If v' remain independent ; and instead of 
the four first equations (L' we have the three following, 

Z T 8T ;T UT W 
Za 

 X Zr 
 y au 

 z 
...... Zx 

4 
Zjc    Pir 80 zo, za ui 5 

Za Zr 8v i3x 
by the two first of which, combined with the relation (K'), and with the three 
last equations (L'), we can eliminate Cf, r, v, 01, 7' , v, from (F'), and so deduce V 
from T. 

If both the extreme media be uniform, we have then not only the relation (K' for 
the final medium, but also an analogous relation 

0  SY (ol, 71, U', x (N' 
for the initial ; and instead of the seven equations (L'), we have the two first of the 

equations (M'), and the two following, 
8T , ni , 8T 
0.,  X W  y --87  z 

8i/'  8i2' 
 

80,' 
801 87 i31 

together with this equation, 
T 8V Za , sa' 

, Fx 
 

C 
 

AOx 
A 

-' , 

0  C2 (Cr, 7, v, X), (IC' 

(0' 

gyp 
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in which A is the common value of the three first equated quantities in (111), and A' is 
the common value of the three equated quantities in  0'). And in this case, by 
means of the two equations  CO, and the two that remain of (M'), combined with 
the two relations (K' (N'), we can eliminate a, r, v, c , Sr',, from (F), and so deduce 
Vfrom T: while, in the same case, or even if the initial medium alone be uniform, we 
are to deduce Wfrom T, by eliminating 01, 7', v, between the equations (E' (N' 

When all the media of the combination are not only uniform, but bounded by 
plane surfaces, which happens in investigations respecting prisms, ordinary or extra 

ordinary, then of the seven quantities a, 7, V, 6, v', x, only three are independent ; 
two other relations existing besides (K' and (N'), which may be thus denoted, 

0 C2" (a, 7, v, 11, X), 
0--i (a, 7, V, , 71, 1, x)1 (Q 

because, in this case, the initial direction, and the colour, determine the final direc 
tion. In this case, we may still treat the variations of a, 7, v, ail X, as indepen 
dent, in 87; by introducing the variations of the four conditions (K' (N' (Q'), 
multiplied by factors A, X', X", X'", that is by putting 

, SV,, a T  X&Y  zau Ov dx 
+AM  X"80"  X"'80"' : (RO 

an equation which decomposes itself into the seven following, 
T  A,Za  A  Oa 8a 

Za"' 
8a 

y  x.8.7.Za +A a 7. 
n.`"L 2 011, 
Zr 

2ii7T 
z  U2, x Za" 

   8 81 K11)k 

+ 812' " SKr    8.1 801 
ST 2.0"' 

ZTy,  80," 
art ' 

7' z ,  wace  .3,a" ar A au, +X au, )." 
&pi 

aT 8V 812 .3a" ," 
-g3-c -g 5-c 

 x 
Sx 

between the six first of which, and the five equations marked (F (K' (N' (Q'), 
we can eliminate the ten quantities a, r, V, a , T , A', A", X"', and thus deduce the 
relation between V, x, y, z, x', z', x, from that between T, a, r, v, al, 1-1, x. 
is easy to extend this method to 'other cases, in which there exists a mutual depend 
ence, expressed by any number of equations, betwen the seven quantities a, 7, v, 
a 7, " X. 

And all the foregoing details respecting the mutual deductions of the functions 

(S' 
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V, TV, T, may be summed up in this one rule or theorem : that each of these three 
functions may be deduced from either of the other two, by using one of the three 
equations (D' (IF (F' and by making the sought function a maximum or minimum 
with respect to the variables that are to be eliminated. For example we may deduce 
T from V, by making the expression (F' a maximum or minimum with respect to 
the initial and final co-ordinates. 

An optical combination is more perfectly characterised by the original function V, 
than by either of the two connected and auxiliary functions J47, 7 because V 
enables us to determine the properties of the extreme media, which Wand T do not; 
but there is an advantage in using these latter functions when the extreme media are 
uniform and known, because the known relations which in this case exist, of the forms 

(K' and (N'), (together with the other relations  Q' which arise when the combi 
nation is prismatic, leave fewer independent variables in the auxiliary than in the 

original function. At the same time, as has been already remarked, and will be after 
wards more fully shown, the existence of relations between the variables produces a 

partial indeterminateness in the forms of the auxiliary functions, from which the 
characteristic function V is free, but which is rather advantageous than the contrary, 
because it permits us to introduce suppositions and transformations, that contribute 
to elegance or simplicity. 

General Transformations, by the Auxiliary Functions J47, T, of the Partial Dif 
ferential Equations in V. Other Partial _Differential Equations in V, for 
Extreme Unfform Media. Integration of these Equations, by the Functions J47, 

5. Another advantage of the auxiliary functions W, T, is that they serve to 
transform, and in the case of extreme uniform media to integrate, the partial differ 
ential equations (C), which the characteristic function V must satisfy. In fact, if the 
final medium be variable, the first of the two partial differential equations  C may 
be put by the foregoing number under the two following forms, 

ZW 8W 
0  S2 cr, r, v, 87' T xj 2 

8T UT UT 
0sS2 6, 7, V, 87; 'T.. Ev x 

and if the initial medium be variable, the second of the two partial differential equa 
tions (C may be put under these two forms, 

-Lv7 X), 
(U0 

(cr1, reLT 
ST 8T \ 
17 TT'x I; 1 

Cr 
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of which indeed the first is general. But if the final medium be uttiform, then 
TV remains an arbitrary funttion of the four variables tr, r, v, x, which are in this 
case connected with each other by the relation (KO ;. and the two equations (D 
(IC'), together with the two first of those marked (I), compose a system, which is a 
form for the integral of the partial differential equation 

S V ST7 0  (-Or az 0 

to which the first equation (C in this case reduces itself. In like manner, if both 
the extreme media be uniform, in which case the second equation (C reduces itself 
to the form 

SV 2V 217. 
0 == 9 ; ), (MP 

the system of the partial differential equations (V' (W' has for integral the system 
composed of the equations (F' (K' (N'  0'), and the two first equations (1W), in 
which T is considered an arbitrary function of a, 7, v, ar, 71, //, x It will be found 
that these integrals are extensively useful, in the study of optical combinations. 

The two partial differential equations, (V' (W'), of the first order, are them 
selves integrals of the two following, of the second order, 

Z2V 8q7 S2V VVSVgV 
Zie Syg &4 az-4 Sy8z Szax 

SWf2V\.?, ;2V. (2i7\2 8V ta2V (X' a2 'Syazi 8.y2 \8x8y, 
' 

and 
a2V 8217 82V 0 a2V 8217 Z2V 
avi2 PY/2 8212 

 
Waz' Same 

82V W7. Ng Z2V 82V \2 82/7 82v Ne 
ZX12 \-iYW I 

 
4'2 &Tel &/2 'Sx1,3?, 

which are obtained by elimination from  Q and (X), titer making 

Fy.8v=0,1j=0; 
Zit Zv' 

az, v, 
29e, 

1J, 8z, 

The system of the three first of these six equations (Z'), or the partial differential 
equation of the second order (X'), or its integral of the first order (V), expresses 
that the final medium is uniform ; and the uniformity of the initial medium its, in like 
manner, expressed by the three last equations (Z'), or by the partial differential equa, 
tion Y'), or by its integral of the first order (W'). The integral systems of equa 
tions, also, which we have already assigned, express properties peculiar to optical 
combinations that have one or both of the extreme media uniform. 

VOL. XVII. 
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The first equation  U' has for transformation the second equation  U'), when the 
initial medium is variable ; and it has for integral, when the initial medium is uni 
form, the system (E' (N' (0'), by which, in that case, W is deduced from the 
arbitrary function T : while, in the same case, of an initial uniform medium, the 
first equation  U' becomes of the form 

 /8 W W o \ lz 
67 5 Zr 9 X j, (A' 

and is an integral of the following equation of the second order, analogous to  Y'), 
W 82W 82W ew 82w 82w 

ae2 8Y2 
 

-gx12.y' &le 

 2W 2 ?W (82W 21F(f3'/W 
8X'2 8Y8,21 

 
8y" \ az'ae  

\aay'l 
When the final medium is variable, the function PV satisfies the following partial 

differential equation, analogous to the general equation (D), 
82W 2W 8'W ;2W Z2TV ew W 82W 

.37-s ' &V 2aa7 .g72x' &Sy' 
__8`2W 8'W ?W 8'W 2W 82v.7 8L,Fy erg 

(CO 8v8x 860z' -4 my 878z' 2,,ax' 81)82 

and when both the extreme media are variable, the function T satisfies the following 
analogous equation, 

Z2T ;277 82T T eT 81T 82T ZIT eT 
&78c 43787' av8u' ac,& 87.8v' Ma' 4 43a8vi OTC 

J2T 8'271 27' ;2T eT 82 71 82 T 8'71 027 
(13'  

&al-1 .34t  27.81 8c1.8a' My' Mcri -r)Z1.1 
 

General Deductions and Transformations of the Differential and Integral Equa 
tions of a Curved or Straight Ray, Ordinary or Extraordinary, by the Auxiliary 
Functions T'17 T. 

6. The auxiliary functions TV, T, give new equations for the initial and final por 
tions of a curved or polygon ray. Thus the function W gives generally the following 
equations, between the final quantities a, 7, v, analogous to the equations (W), 

W aw 8W 
rx-7 cons t., cons t.,  const., (E 

in which al y' z' are the co-ordinates of some fixed point on the initial portion, and 
the constants are, by  G'), the corresponding values of the initial quantities , , ii'. 
The equations (E2 have for differentials the following, 

(B2 
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TV?2W 8'117 
 u/r  ----7 Mx' 8raz' 

21,V W Z2 W d  
zicrsy, arsy, 

 
jay LW 

82/17 8217v 82W 0  
8a 2z' der 4. araz' +8-u8z, dv ; 

d still referring to motion along a ray : and if we combine these with the following, 
82, 82W 8v 82W 8v 82W  
8x 2crUe'  -az Z----78x 
8v 82W 8v 22W au a2w 

(G .1c 20-4' 274' az 
2v 22 W Sv 2W 8v Z2W" u= 80-8  8z 8vaz' 

which are obtained by differentiating the first equation (711 relatively to the initial 
co-ordinates x' y' z', and by attending to the relations (K), we see that for a curved 

ray the differentials da, dr, dv, are proportional to 
2v 2v 

' ; 

and from this proportionality, combined with the relation 

 2v 8/A adcr Pdr 7du  a Fx p k-v 
 --z)ds, (112 

which results from (H and (P), we can easily infer the equations  0 : these differ 
ential equations  0 for the final portion of a curved ray, which can be extended to 
the initial portion by merely accenting the symbols, may therefore be deduced from 
the consideration of the auxiliary function W. The equations (0 for a curved ray, 
may also be deduced from the function TV, by combining the differentials d of the 
three first equations (II'), with the partial differentials of the first equation  T'), 
taken with respect to a, 7, v. 

The same auxiliary function TV gives for the final straight portion of a polygon 
ray, the two first equations (I'), which may be thus written, 

1 2W 1 
z (12  

these equations may also be put under the form 
20. ST 21 W 

 z  
TO 

8cr 8r Zu 8W 
xio- y z=-4 

, 

if in virtue of (K'), we consider a, T, v, as functions, each, of x, and of two other 

independent variables denoted by 0, (1), and consider W as a function of the six 

(r 

(K2 
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independent variables 0, 0, x, x', y', z'. We may choose a, r, for the independent 
variables 0, 4, considering v as, by (K'), a function of a, 7, x, such that by (H), 

8v a Su p su 1 &   
1; 

' rr 
  

7 
' 

rX 
 

7 8x' (L2 

and considering TV as a function of the six independent variables Cr, r, x, x', y, z' ; 
and then the equations (I' or (K2), for the final straight portion of a polygon ray, 
ordinary or extraordinary, will take these simpler forms, which we shall have frequent 
occasion to employ, 

a a w j3 8W x 
-7 

z  
T-r 

 ; y  -7 
z 

=-ir (M 

The other auxiliary function, T, gives the following equations between a, 7", v, for 
the final portion, straight or curved, when the initial medium is variable, 

BT BT 43T 
8;,- const., --w =const.,-27 

 const., 

in which a', 7', v', belong to some point on the initial portion, and in which the con 
stants are, by (L'), the negatives of the co-ordinates of that point ; it gives, in like 
manner, for the initial portion, when the final medium is variable, the following equa 
tions between a , rf , 11, 

ZT ST 8T 
a,;. =const., ---7; =const., --,,- 

 const., (02 

a, r, v, belonging to some point upon the final portion, and the constants being the 
co-ordinates of that point : and from these equations we might deduce the differential 

equations (0), by processes analogous to those already mentioned. When both the 
extreme media are uniform, and therefore both the extreme portions straight, we 
have, for these straight portions, the following equations, deduced from (211' (0' (I), 

; s(7 
1 
(a, 

..... a 77 )=.1(y .28,77 y ) ,I z .2, ,T -I  Ov -1 

'1,,(.2 -4:,)=141 -4) 
1 
,-(i -F n ; 

which may be thus transformed, 
8a 0 x ' 
----11  y 

,30. ar 2v 8T 0 
a-g-,-p-E-y4-i-z8-0-4-, 

,.., , ad , &I , ,311 ST u=x 57+y ,+z w  80. , 

, , &a', &-I , Sil S T v=z 
-wl--T 

 ty -47 
 z 

w, 
 

w 
, 

(N2 

1 

&. & ST 
10  zij-10 9. 
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if, as before, by virtue of (K'), we consider a, r, v, as functions, each, of x and of two 
other independent variables 0, 0, considering similarly a', 7', v', as functions, each, by 
(N'), of three independent variables 0', x ; and T as a function of the five inde 

pendent variables 0, 0, 0', cp', x. If we choose the independent variables 0, 0, so as to 
coincide with a, 7, and if in like manner we take 01, 7', for the independent variables 
0', 0', making, by (H), 

Sti a &)' (3' 2v1 1 8vl  1  d 9   
Sa1 7 81 7 8X 7 mX 

and considering T as a function of the five independent variables a, 7, CI, 7', 
have the following transformed equations for the extreme straight portions 
polygon ray, ordinary or extraordinary, 

(W 

X, we 
of a 

z _277 a 
7 To: 

  z 8T 0 
7 '17: ; 

(2 a' 8T , , 8T 0 ==d +- 0 y z + : 
7 801 7 

which are analogous to the equations (MO and, like them, will often be found useful. 
It may be remarked here, that from the differential equations  0 of a curved ray, 

ordinary or extraordinary, to which, in the present and former numbers, we have 
been conducted by so many processes, the following may be deduced, 

do. 8a dr Zi2  dv a-"t 
v=-dV +fix v =dV 

- 
+-8 v =-V d +8z ty 

CP  8v av 8v dW  dT  z -)ds=xda  ydr  zdv. 
ay az 

We may also remark, that when the final medium is uniform, and when therefore 
the quantities a, 7, v, x, are connected by a relation (K'), the quantity 

Ti7" (a2  T4  v2) 

may, in general, by means of this relation, be expressed as a function of 
a 7 1 
V V 

and that T (6  72  v2  2 may, in like manner, be expressed as a function of 
a T , ,  
v v 

 a, T, u, X; 

and that therefore W, T, may both be made homogeneous functions, of any assumed 
dimension n, relatively to a, 7, v, so as to satisfy the following conditions 

w w w 
r  n TV, 

T aT 8T (LP 
a  n T. 

VOL. XVII. 
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With this preparation, the two first equations (I'), and the two first equations (M'), 
which belong to the straight final portion of the ray, may be transformed by (L to 
the following, 

a/, , SW 
x ---i,--. aX  Ty  vZ)=-"r 

- 

2a, , 8W 
y --a--; Vas  Ty  vz)=-87--- 

&I . 8W z i,; urx +.7.ty  vz)=---;-- 

az 8T Uz 
Ca Sa Oa n T ' 

n  n 871 tnZa 
oT or or 
8E 8T 2ia  n7 ,- Ou  

(V 

If then we make n=1, that is if we make IV homogeneous of the first dimension 
relatively to o, 7, v, and if we attend to the relation (D'), we see that the equations 
of this straight final portion may be thus written, 

TV Sc 8 Tv 8& SW7_,_az 
x=w-1 v -87-7,y=T; r Tv, 

of which any two include the third, and which we shall often hereafter employ, on 
account of their symmetry. 

In like manner, when the initial medium is uniform, and therefore the initial por 
tion straight, the equations  0' of this straight portion may be put under the form, 

, 
Sa X  La'x'T'Y -- 

vZi , 8a   
y k. a x riyi  viz' 

8ce ciat  

8T   n , T , 

 8T  
-Tr; n or 

8T ,  n  
Ov &)" 

(X' 

by making T homogeneous of dimension n' relatively to a', r', v , so as to have 

,8T ,8T ,8T , 8T Cr  7 '57 v  n (Y 

If both the extreme media be uniform, and if we make n  0, n' 0, that is if we 
express TV as a function of 

and T as a function of 
a 7 7, 

1 t;" 

we find the following forms for the equations of the extreme straight portions of a 
a polygon ray, ordinary or extraordinary, less simple than (S2), but more sym 
metric, 

OP 
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Za, , alV 871 
as -----s-; viz +Ty  vz  

-s-; =Fa:, 
al , , 8117 ST 

y- wi: vrx -Hy +vz ) -c=87:, 
M, , 8 W ;77 z  --;,-j vr X +Ty -Fvz ) w-9.-,-,; 

, AY , 8T x  La.' a  ry  v'zi  .....--, Co.' &,- 
air , 8T 

.y  -87 (a X'  TY  vV  
wi , 

E/' , 8T z' --- (a. x  r g  1; i   
ETII  11 

The case of prismatic combinations may be treated as in the fourth number. 

General Remarks on the Connexions between the Partial Differential Coefficients of 
the Second Order of the Functions V, TV, T. General Method of investigating 
those Connexions. Deductions of the Coefficients of V from those of TV, 
when the Final Medium is uniform. 

7. It is easy to see, from the manner in which the equations of a ray involve the 
partial differential coefficients of the first order, of the functions V, TV, T, that the 
partial differential coefficients of the second order, of the same three functions, must 
present themselves in investigations respecting the geometrical relations between infi 
nitely near rays of a system ; and that therefore it must be useful to know the gene 
ral connexions between these coefficients of the second order. Connexions of this 
kind, between the coefficients of the second order of the characteristic function V, 
taken with respect to the final co-ordinates, and those of the auxiliary function TV, 
considered as belonging to a final system of straight rays of a given colour, which 
issued originally from a given luminous point, were investigated in the First Supple 
ment ; but these connexions will now be considered in a more general manner, and 
will be extended to the new auxiliary function T, which was not introduced before 
the new investigations will differ also from the former, by making TV depend on the 

quantities 0-, 7, v, rather than on a, /3, y. 
The general problem of investigating these connexions may be decomposed into 

many particular problems, according to the way in which we pair the functions, and 

according as we suppose the extreme media to be uniform or variable ; but all these 

particular problems may be resolved by attending to the following general principle, 
that the connexions between the partial differential coefficients of the three functions, 
whether of the second or of higher orders, are to be obtained by differentiating and 

(Z2 
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comparing the equations which connect the three functions themselves : that is, by dif 

ferentiating and comparing the three forms (A' (13' (C' of the fundamental equa 
tion (A), and the equations into which these forms (A' (B   C' resolve themselves. 

Thus, to deduce the twenty-eight partial differential coefficients of the second 
order, of the characteristic function V, taken with respect to the extreme co-ordinates 
and the colour, from the coefficients of the same order of the auxiliary function F17, 
or T, we are to differentiate the equations into which (B' or  C' resolves itself, 
together with the relations between the variables on which W or T depends, if any 
such relations exist ; and then by elimination to deduce the variations of the first 
order of the seven coefficients of the variation (A' as linear functions of the seven 
variations of the first order of the extreme co-ordinates and the colour : these seven 
linear functions will have forty-nine coefficients, of which, however, only twenty 
eight will be distinct, and these will be the coefficients sought. 

More particularly, if the final medium be variable, and if it be required to deduce 
the coefficients of the second order of V from those of IV, we first obtain expres 
sions for &r, ar, .3v, as linear functions of &r, 8y, zy, 8i, N, from the differen 
tials of the three first equations (H'), deduced from (B , expressions which will 

necessarily satisfy the first condition (H ; we then substitute these expressions for 
&), in the differentials of the three equations  G'), deduced from (B'), so as to 

get analogous expressions for 87', iv', which must satisfy the second condition 

(H ; and substituting the same expressions for r, fir, Su, in the differential of the 
last equation (H'), also deduced from (B'), we get an expression of the same kind for 

-Sx 
: after which, we have only to compare the expressions so obtained, with the 

following, that is, with the differentials of the equations into which the formula (A' 
resolves itself, 

8'y 82v 8'V 
' 

, 8217 , 8'17  w   +--tz' + 46v 8X2 arfix?/43Y Zx8z 8sSx' 8s 8x8z' 8x 8x Iv 

8217 8117 81T7 8217. 82V 82V 
fir  da;  dz Oaf   Oz' dv, 

ava, 87/Sz atyavi " 4;3z' 80x A' 

82v. 82V 82F 82.v 82-v 02T7 z2v 
8u  Sir 4  az  ar  az' + avaz 82/8z aZ2 &ar' Bz8Y az8zi az8x X' 

, 2 Tr 2 V o-2 v. 82-v , 82y , 82y. 82V 630.  --464  ax, v v' 8y8e 8z8s' ax ,2 ax' fix. 
4;2y 82y. z2-v 82y. 82v 

---8T'    ---2x    
Max8,7 80//' azSy' axTy' 4'2 By'Sx 

B2 v. v. 82 V 2 v , 2 , 82 v 
-811 

+p7-2-sy 
 8z +-wwrav 

82 
 8z  

8x 8x, 

v a 2v vy 82y 8217 82-v 82y 82y. 
     &/1 43zSV. 

8x8X 8zax ax'ax aliax 8z'ax 

(A3 

J 
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But if the final medium be uniform, then a, 7, v, X, are not independent, but related 

by (K' ; and the formula (B' resolves itself, not into the seven equations (G' and 

(H' but into the six equations (G' and (I'), the differentials of which are to be 
combined with the differential of the relation (K'), so as to give the expressions for 

, 
87', , a , which are to be compared with (A' as before. And in 

this case, of a final uniform medium, we may employ, instead of the two first equa 
tions (I'), any of the transformations of those equations in the foregoing number ; 
or we may employ the following transformations of (I'), 

81,8W &, V Fr' 
x +0 -g;.=-ra y+z-, z 

x 0 
in which, W is considered as a function of the six independent variables 0., I-, X, 

obtained by substituting for v its value as a function of a, 7, x ; the form of 
which function v depends on and characterises the properties of the final medium, 
and is deduced from the relation (K'). It may be useful here to go through the 

process last indicated, both to explain its nature more fully, and to have its results 

ready for future researches. 

Differentiating therefore the two first equations (B3), we obtain 

8W 82U182 Tir 0 z  
8(7 8ax  43a2 
w ts w 
8r 87-8x 7C  So-8r 

in which we have put for abridgment 
o ;2TV 2nV , ?T;V , Zi`zW o  ox ,  oz ox, 8a 2crax, Zaaz Za8x 

Z2TV , 2w , 82W , ;2 
87 

1717   
8T2y, ow  CX' 8x' 

8' referring only to the variations of the initial co-ordinates and of the colour 
if we put 

w  ?V ta2W 021 (82W \2 
UO3 aa k .37 Se Sar 8o-87 I ' 

the equations (C3 give, by elimination, 
" cr ="(C:21 z   av '; 

z 8 ' W a2v 
w a ; laixx 

-(:477-_-za)oy+;Li Sz  Z /2.1) 
8T8x 

 
(.32.31V2 z 882u,   sz 8W 

 z 81u 
87-Zx 

/821f," 82u\  8crar Zo-27-1 k vz 2cr Z 
arr8xuXii 
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(F 

.32v 82 TV 
z - 8a z 

86" 00'67 
Z2V (E2W -1 ocr Zar 

(C3 

(D3 

and 

(D 

(F3 
?V" 
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we can deduce already, without any farther differentiation, 

1 82W 812v - 8217 82T7 8v 84V 
(47-2 z -grz=:'"it; K "WSi 

1 /.2W 82V & Z2 V  8v 89V  
9,76 ; i;13' 

 
Sxay .g ; 

1 /8 W 82v 'N az V & S2 V &, ;2 V 
=is UT Tz7-=i,;-8;-8.-;+T; 

observing, in deducing the sixth of these equations (03), that by the 

(E), and by the dependence of v on er, z, x, we have 
definitions 

8 V 8V 81, v 
8-6 -%43.x.' (H3 

The equations (43 (F3 (H3 give also 

82 V 1 ZeW (82W ;t \ 1 PW (82W U 
 to" Zr8x' k8cr& Sa8. w" 8aSs' kare Zr2 

S2 V  1 W r82 W Z2v \ 1 8e W (S9. W 2v 
8x8Y k.80-8T 

 
8a&- 

 
to" &i-4' 8,2 Z Zr 

Z2V1 W 82W 82v \ 1 W f82 W 82v 
 W7 87132 kSaar 121 Saar 1 710" So-az' k87-2 W. 

21782W (82JV et '\ 1  82W (82W ?I 
y 

\ 
88x' 

 w" 8a8x1 k8a8r 8aar. 1 w" Zr8x" kat,' 'Per2 
8 V 1 82W (82W82u \ 1 82 W tge ly P ) 
48,V w" kScr8r z z &.Sr w" $r83 karf &is 
t2 1 

gT,Vi82Wz 821, 
w" 80.8z k8a8r 8aa 

217" ___8v ;2V 8v 8217 
-z fix' Zixar' Wx" 
82V Zu Z4 V 21 Z2 V 
82.4' 

 
8x8 OT 8y8y 

82 V ZU Z2 V ZIP Z2 V 
8z8z1 8cr Mz' ayaz' 

1 8*W teiv 82v `N 
W" kSag 

and 
Z-2 V 1 

(Z2 
W 82v vZ2 W  z 

av8x w" 437-SX arxik8crai 
.32/7 I (S2 W 2/J?2W 
8118X 

 
Wiik8a8x, ZaZx1'Sair 

82V Zy 2V 21 V 81) 
az8x 43o 8x8x a3T Sy43x 

z 
1 2 W 82v 

)(82W 
621, 

8aar it" iry8x 87,2 ar2 

z 
1 s2v?2v v 
f-v7k8r8x Sr8r/k.-87,-2 

(K3 

and hence by (A' 

8:es 
 

82V 
my 
8v 

(G3 

We have therefore found expressions (G3 (13 (K3), for eighteen out of the twenty 
eight partial differential coefficients of V of the second order ; and with respect to 
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2V 
nine of the remaining ten, namely all except -, we may obtain expressions for 

these by differentiating the three equations (G'), and comparing the differentials with 

(43 ; for thus we find, 

V 82147 82W 82V 82W 
8x" 8x'2 cr8x' 8x8x' 48x' ; 

?V PTV PW 8217 PW PV 
4"2 8y 2 8aW 8x8Y 8r8i ' 

V b`2W .32W 82V Z2W 
z" 80-8z' arZz' syae 
V S2 W 82W 82V Z2W S2 v. 

ail ZY 80-8x' 82c8Y 8y8.y' 
S2 V 82 Tv 82 w 2V 82 W 82V 
8y 8z' 4'8.z1 804' ixae 8713y1 48z' ' 
Z2V erg 82W aw 82W .32V 

4.43x1 48x' ; 

and 

82V 82W 2W 2V 2W 2V 
Sx'aX aaX 8cm3x' 48x &ail 48X 
82V ;2147 82W 8217. 021v 82v 
8Y8x 

 
-8Y8x 8'78 8x8X "..47.41 

a 2V 82W 82W 82V 82W 82V 
ZW 

 
8r8z' 8.Yax 

 

the equations (G' give also 
v auv 82W 82V 82W 

azw 
r 

8e8y &y81 8x8x' grW 42x ; 
82V 82W 82W S2V2T/V 2v 

8y1aY ao-Sz' 4rSz' 48.y' 
82V 82TIT 2W 82W 82W 2'V 

 
80-8x' arazi 87.8x1 8y8i ; 

but these three expressions (N3 agree with the corresponding expressions (L3), 
because, by (13), 

S2 Tv z2 y. 82w 82-v 82W S2V 82W 82-v 
Z4x' 8y8y' 

 
arSx' &Sy SySx' ; 

82W 82V 82W 82V 82W 82V 82W 
8x8z' 8r8y 8y8e 

 
Zaz' My'  araz' ; 

S2 W 82V 82W 82V 82W 82V 32 W a2v 
8CI8Zi 8X8Xf 878Z1 8y8x' =80.8x1 8r8x 48d 

82 V 
Finally, with respect to the twenty-eighth coefficient 2 , this may be obtained by 

differentiating the third equation (133), which gives 

(M3 

(N3 

(03 
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82 v ,32, 82 w  z 82v 82 jv \ 82 V i 82, 82 w \ z2 T7 
4- az  (P 

8X2 
 Z 

x2 
 

ax,2 
 \ 8ax: 8crX  ax8X mx 87-sx  SAX 

And if we would generalize the twenty-eight expressions  G.3 (P (10 (L3 (Ms 
(P J), so as to render them independent of the particular supposition, that W. has 
been made, by a previous elimination of v, a function involving only the six indepen 
dent variables a, r, x, x , ty1, z', we may do so by suitably generalising fifteen out of 
the twenty-one coefficients of F17., of the second order, which result from the 

foregoing suppositions ; that is by leaving unchanged the six that are formed by W 
V 

ferentiating only with respect to x', y', z', but changing-8-a-, , &c. to the following more 
rp W. 

general expressionsL8--j-- &c.; 
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82w. ay 82w au 81 8TV 82v 
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v T ox OU oTOX 
8'W 82W au 
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 82w 
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Tr' 
au 
8 ' 

rs,w. i 82T.  
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ar8X 8X8v 

r82 Ty 1 82W 82W 
1-8x87 -I 

 
8x8z' 8v 8z' 

obtained by differentiating the three corresponding expressions of the first order, 

1-81V-1  aw. 8Tv 8 rsw-,  8W aw Sv . r8TH' -1 ...... 8W 8TV 8u 
LT; -I 

 
O  -87; ic-r ; ST We  Tv 1.-1---87-1 ---87, 

4 ---87; 8;.c 
' 

which are to be substituted in (B3), in place of 
8w. SW 87i7 
6r ' 

 
--Z r ' 8 x 

 

8v 
rx 

(R3 
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Deduction of the Coefficients of TV from those of V. Homogeneous Trans 

formations. 

8. Reciprocally, if it be required to deduce the partial differential coefficients of 
W, of the second order, from those of V, in the case of a final variable medium, 
we have only to compare the expressions for 

., &V, Zy, 8Z, 8'cri, ari, 01. 1,  v  , 
ax 

as linear functions of &I,Z7,21),82 , 8g , 8i ,ax, deduced from the equations (A 3), with 
those that are obtained by differentiating the seven equations  G' (H'), into which 

(H resolves itself : that is with the developed expressions for the variations of 

21V .SIT7 .3W .3W SW SW SW 
zer ' ar 1 au ' 8il ' 8y ' 8k-s." ' 

x 
 

But if the final medium be uniform, then (B' no longer furnishes the seven equa 
tions  G' (H'), nor can &v, 8y, 8z, themselves, but only certain combinations of 
them, be deduced from (A3), and the auxiliary function IV is no longer completely 
determined in form, by the mere knowledge of the form of the characteristic function 
V, with which it is connected ; because, in this case, the Seven variables on which 
W depends, are not independent of each other, four of them being connected by 
the relation (If'), by means of which relation the dependence of W on the seven 
may be changed in an infinite variety of ways, while the dependence of V on its 
seven variables, and the properties of the optical combination, remain unaltered. 

Accordingly this indeterminateness of IV, as deduced from V, in the case of a final 
uniform medium, produces an indeterminateness, in the same case, in the partial 
differential coefficients of TV ; and whereas TV, considered as a function of seven 
variables, has thirty-five partial differential coefficients of the first and second orders, 
we have only twenty-seven relations between these' thirty-five coefficients, unless we 
make some particular supposition respecting the form of W; such as the supposition, 
already mentioned, that one of the related variables, for example v, has been removed 

by a previous elimination, which gives the eight conditions, 

8 W 82 TV 82W 2 8TV 8W  0   0 0 
2  0 ..... 0 

21Tir i, (--ttf7 n 82117 
&, ' Mu ' ar8v 

 ' 8v2 
 ' 

Mx 
' .3vax' '' 

 
8vall 

`'' 81,8z' j (83 

This last supposition removes the indeterminateness of Ir itself, and therefore of its 

partial differential coefficients ; of which, for the two first orders, eight vanish by 
VOL. xvir. H 
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(S3), and the remaining twenty-seven are determined, (when the variables and 
coefficients of V are known, by the six equations  G'), (B3), the three lefthand 

equations  G'), the six first (13), the two first (Ks), and the ten (V (M3 (P3), in 

resolving which equations it is useful to observe, that by (B 3 and  G3), 

1 ;2 17 & V 82V \ 2. W" 8X2 
 

8X8Yi (T3 

And the twenty-seven expressions thus found for the coefficients of W of the two 
first orders, on the supposition of a previous elimination of one of the seven related 
variables, may be generalised, by  Q3 and (1:13), into the twenty-seven relations 

already mentioned as existing between the thirty-five coefficients on any other suppo 
sition ; which supposition, if it be sufficient to determine the form of TV, will give 
the eight remaining conditions analogous to the conditions (53), that are necessary 
to determine the coefficients sought. 

If, for example, we determine W by supposing it made homogeneous of the first 
dimension with respect to a, 7, u, we shall have the eight following conditions, 

T2V aw 
"Ti7 FF; 

and 

S'W Zzi/V eJT7 
 a(r2  7 &tar   Zo-& 'j9 

82W Z2W 82W n 
  7 ZT2 v 8r8u 

.;2W W Z2 W 032W 
 7  ZU2 

82i/V 82/47 Zew SW 
OV (VD -gW.7  7 

87-Sx'  -gv-817 
Z2 TV /217 1;2 W O TV 
nia 

 Tars y Zvay' -8ey' 
;2W ;'W 2117 Cr &--; --7'17 -g11127 
82w Z2/47 82W 13W 
ZaZx 

 7 
87.) 

 V 
ax 

to be combined with the twenty-seven which are independent of the form of T1, and 
are deduced by the general method already mentioned. But this supposition of 
homogeneity appears to deserve a separate investigation, on account of the symmetry 
of the processes and results to which it leads. 

(U' 
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Let us therefore resume the equations 

21177,, 8a 81 17 7-, 8a 8W ,,, U 
x  '---(7.  r '';' ' Y  T7-;  v ..-r ' z 

 
;31 7  v ' 

which were deduced in the sixth number from the homogeneous form that we now 

assign to W, and which are to be combined with the following 

 8W 8V T., 80, v  
.x-- 

 
-83-c 

 v 
-t---,-c 

, (W3 

and with the general equations of the fourth number, 
8117 , 8W , 8W cr' -ax" T   1 : (GI OX 8,1 ' &'; 

(WO 

and let us eliminate 

8.v, 8y, Sz, &i, V, &,', 8 
Z, 

by (A 3), from the differentials of these seven equations, 
from the seven following, 

8W Za Oa 
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-----,x 
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This elimination gives 
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+8, 8L+82.17 f _8_1T;: +82-17  s _857: F-0/\ Mx 1 86 8a I Bygx ar 

 L17  8-8-17-TV 
8W 8 V 82V 3JV 8E2\ 8'V  _ATV X(' 8C&#18; =2 
-87 
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if we put for abridgment 
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using 8' as in the notation (D3 ; and if we observe that the partial 
tiou, of the fifth number, 

(8V 8T7 OV V ('  0  C&#18; 4 , , P 

differential equa 

gives 
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, ;n 82V 8a Z2 v 8082y u  TO W  87 la 4 -8: 8x82 ' 

n Ult ;2 F 8a 82V 8a Z2 V 
kl  ".i.;", 8x8y 

 IT 42 
 ; 8  8z ' 

 , 8i2 Z2V 43a S2V a 82V v --  --:-_  z   as 8:Caz Sr y/6.z ev ez2 
n 2a ?V 2a 82V 8n ;t2V - T; ax8x'  -t; aiige 

 8; 8  z8re 
 8a v v 8a Z2V 8e, ?V - -i; my' 

 8r 48yi 
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r,  8a 82V Za 82V 2n 82V   
S&aaxaz'  ar SySz' 

 81, Szazi ' 

Ba 8a 82V Za ;c2V , 8a 82v   
-i x Fa. xac g kAi 

I 87, a ,7a3c 
 

We have introduced, in the equations  Y3), the terms X(1)SC2,...X(7).30, that we may 
treat as independent the variations cr., ar, 8v, ax, which are connected by the condition 
SO =O. 

To determine the multipliers X('),...X(7), we are to observe that in deducing the 

foregoing equations, the relation C =0 between the four variables 0-, 7, v, x, has been 

supposed to have been so expressed, by the method mentioned in the second number, 
that the function 0 when increased by unity becomes homogeneous of the first dimen 
sion with respect to a., 7, V ; in such a manner that we have identically, for all values 
of the four variables a, 7, v, X, 

8n 8a a2 
aTa.  7".  v 1E 

  -1 l' (B4 

(A4 

and therefore, 
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(0 
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J 
82a S2 82a  8a 

a 
t3(1/3X 

-4 7 
ar8X 

 V 
'314X 

-- 
er,i 

I 

Hence, and from the conditions (V3), relative to the homogeneity of the func 
tion W, it is easy to infer that the multipliers have the following values ; 

x a (0) _. ,,(2) .....7 . x(3)., _v . X(4)=du X5  ri . X(6  vi . X  (i   a V, D4 , ,  , , ,  , 8x 
VOL. XVII. I 
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attending to (0' and (W3). If we substitute these values of the multipliers, in the 
seven equations  Y3), we may decompose each of those equations into seven others, 
by treating the seven variations 8u, &v', as independent ; and thus 
obtain forty-nine equations of the first degree, of which however only twenty-eight 
are distinct, for the determination of the twenty-eight partial differential coefficients 
of the second order, of H7 considered as a function of a, 7, V, , z, x, which 

relatively to a, r, v, is homogeneous of the first dimension : the corresponding coeffi 
cients of the first order being determined by the seven equations  G' (TV' (J 73). 

Instead of calculating in this manner the coefficients of J1 of the second order, 
by eliminating between the equations into which the system  Y3 may be decompokd, 
it is simpler to eliminate between the equations  Y3 themselves, and thus to obtain 
expressions for the variations 

2TV a TV 
8a 8x 

of the coefficients of the first order, from which expressions the coefficients of the 
second order will then immediately result. Eliminating, therefore, between the three 
first equations  Y3), in order to get expressions for the three variations 

W 8 TV 8W 
8ff 81 8u 

we find, after some symmetric reductions, 
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having the same meaning as before : also referring, as before, to the variations of 

alg z' x alone, and V." having the same meaning as in the First Supplement. In effect 

ing this elimination, we have attended to the forms of the functions W, C2, which give 
sw 
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 (G4 81, 

we have also employed the equations (A 4), which give, by (F4), 
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Having thus obtained expressions (E 4 for the three variations 
8 W8 8W 

a a 
W 

' Sr ' Sv ' 

it only remains to substitute these expressions in the four last equations  Y3), and so 
to deduce, without any new elimination, the four other variations 

8.7/, 8z' 8x ' 

after which, we shall have immediately the twenty-eight coefficients of Tom, of the 
second order. The six coefficients, for example, of this order, which are formed by 
differentiating W with respect to a, 7, v, are expressed by the six following equations, 
deduced from (E4), 
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which may be shown to agree with the less simple equations of the same kind in the 
First Supplement, and may be thus summed up, 

82V 82 V 
V2 V" (8"2/%7  V 8"20)=K-xi (78v -. ai-)2  frzy (v20 -crSv (a& r2a 
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(a8r r8a)2 rx-ky (TaU a7 (aa au , (K4 

the mark of variation 8" referring only to the variables a, r, v, as a' referred only to 
' , z' x , x. 
And the whole system of the twenty-eight expressions for the twenty-eight coeffi 

cients of W, of the second order, may be summed up in this one formula 
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in which the symbols 82, are are easily understood by what precedes, and in which the 
seven variations SG., ar, au, ix', ail , 8x, may be treated as independent of each 
other. 

The formula (K4 has an inverse, deduced from (X3), namely 
"2V ,82W2L:t isa \ 2   8z --- ay v2 y" &r2 2a.  Sr 81 
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in which Su' refers to x, y, z, and in which V" may be deduced from 
relation 
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and the more extensive formula (L4 has an inverse also, namely, 
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8' retaining its recent meaning, so that, as 0 does not contain y', z', we have, in the 
last formula, 

rn 2g2 2 
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=8Tax kX'  =8v8x qX. 

If we do not choose to suppose IV homogeneous of the first dimension with 

respect to a, 7, v, and if we put for abridgment 
VOL. XVII. 
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SW UV 
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and denote by ZPVi, 82M, the expressions already found on this particular supposi 
tion, for the variations of TV, of the two first orders, so that, for the first order, by 
(a (W2  W3) 

8V 
STS  x&i. +,0  zav  Glad  7.7yi  42  

8-x ax  VSC2, (R4 

and, for the second order, 2TI,"i the value of 82W assigned by the formula (V ; 
we may generalise these particular values 8Wi , ;2ff/i, by the following relations, 

a wi  8W- WO, 
82W =82 W WOO -282(11M 

I 8un 7,v,  k a - 
-"  7   2Wi  802 8a 431 V & ' 

in which 8W, 82W, are general expressions, independent of the condition of homo 

geneity w,  0, and of every other particular supposition respecting the form of W. 
It is, however, here understood that the final medium is uniform, and that in forming 
the variations of the function W, the quantities a, r, v, x, xi, y', z', on which it 
depends, are treated as if they were seven independent variables. 

And if we would deduce expressions, a 147-n , 8 2 wn , for the variations of W, of the 
two first orders, on the supposition that W is made, before differentiation, homogene 
ous of any dimension n, with respect to a, r, v, we may put 

w 8TV ZTV 
a c 7  7 -6' .  1 '  i 1 T --n W w n, 

and we shall have the following relations 

8W7  a w- w,, 80, 
V liVn  V W wn 820  2 w7, ZO 

 
Zw. 8wTh 8w   Cr 8a.  7F-1.  V -&  Wn  nwn )802, 

which include the relations (S4). The general analysis of these homogeneous trans 
formations is interesting, but we cannot dwell upon it here. 

Deductions of the Coefficients of 71 from those of W, and reciprocally. 

04 

(7 

(U4 

9. The general principles of investigation, respecting the connexions between the 

partial differential coefficients of the second order, of the characteristic and auxiliary 
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functions, having been sufficiently explained by the remarks made at the beginning of 
the seventh number, and by the details into which we have since entered ; we shall 
confine ourselves, in the remaining research of such connexions, for the new auxiliary 
function T, to the case of extreme uniform media. And having already treated of 
the mutual connexions between the coefficients of the two functions Vand W, it will 
be sufficient now to connect the coefficients of either of these two, for example, the 
coefficients of W, with those of T, of the first and second orders : since the connex 
ions between the coefficients of all three functions will thus be sufficiently known. 
We shall also suppose that W has been made, before differentiation, homogeneous of 
the first dimension with respect to cc, 7, v, that our results may be the more easily 
combined with the symmetric expressions already deduced from this supposition, 
expressions which can be generalised in the manner that has been explained : and 

similarly we shall suppose that T is made homogeneous of the first dimension with 

respect to a, 7, v, and also with respect to af, 71, v`. Let us then seek to express the 

partial differential coefficients of the two first orders, of T, by means of those of 
I/V, both functions being thus symmetrically prepared. 

In this inquiry, we have, as before, the conditions of homogeneity  U3 (V3), 
relative to the function W, and analogous conditions relative to T, namely, for the 
first order, 

and, for the second order, 
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together with the conditions relative to 0, Q', namely (B4), (C 4), and the follow 

ing, 
a2' , 8i2' , 8S2' ,  7 '   v  =Q  1  1, &111 ari Zo 
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we have also the general equations 
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by combining which with the foregoing conditions and with the partial differential 

equation (A2), we find the following, analogous to (A 4), 
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and if we combine the conditions of homogeneity of the two functions W, 77, with 
the fundamental relation (E' between these two functions, and with the properties 
of Q, Q', and attend to (q), we find the following expressions for the partial differ 
ential coefficients of T, of the first order, 

a' 

(X' 
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Differentiating the expressions (Z 4), and eliminating 84 8Y, az', by means of the 
differentials of the general equations  0'), we obtain, by  Y4), the following system, 
analogous to the system  Y3); 
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in which 8, refers only to the four variations &r, ar, &), N, and in which we may treat 
the seven variations, &r, _7, -V, -X, 801, as independent, if we assign to the 
fourteen multipliers Xi,...X'7, the following values ; 
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the values of X1...A7 may also be thus expressed, 
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and consider w', like W, as a function of a, r, v, x, x', , which, relatively to 
a., 7, V, is homogeneous of the first dimension. The four last equations (A 5 give, 
by addition, after multiplying them respectively, by &i, 07 8v, 8x, 
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Z, still referring only to the variations of a, r, v, x ; and the three first equations 
(A 5 give, by elimination, 
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vi having the same meaning as in the second number. In effecting the last elimina 
tion, we have attended to the relations  Y4), which give 
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And combining (Es (F5), we obtain the following formula for 81 ' , analogous to the 
formula (L4), which completes the solution of our present problem, because it is 

equivalent to twenty-eight expressions for the twenty-eight partial differential coeffi 
cients of T, of the second order, deduced from the coefficients of W ; 
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And if we denote by 8271,1 the value of the second differential 82 T assigned by the 
formula (K5), and determined on the supposition that T has been made, before dif 

ferentiation, homogeneous of the first dimension with respect to a, r, v, and also with 
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respect to a, , vi, and denote by 8 T1,1 the corresponding value of T, determined 

by the coefficients (Z4), we may generalise these values by means of the following 
relations, analogous to (84 ; 

az,1=aT-20.viT-aCY.v:T; 
82 T1 82 T 82av iT 820 

8\71 T 28CY. T 

 ac22.vi(vi 1 T  28Q.80'.   1 T : 
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v being here characteristics of operation, defined by the following symbolic 
equations, 
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 r 

More generally, if we denote by Tx,f,, the function deduced from T by the homo 

geneous preparation mentioned in the sixth number, which coincides with T when the 
variables a T v c r' v'  are connected by the relations  0,  0, and which is, for 

arbitrary valves of those variables, homogeneous of the dimension n with respect to 
r, V, and of the dimension n' with respect to Q', v', we have the following expres: 

sions, analogous to  U4), 
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defining the characteristics vn, v'n,, as follows, 

a 8 8 , 
v. 

, r ,  cr -t-;  vr'  -r  - -en'  ni Cr 
anri 811 

Reciprocally to deduce the coefficients of W, of the second order, from 
those of T, on the same suppositions of homogeneity, and with the same dimensions 
n 1, n =1, we are to eliminate &r', Svi, between the differentials of  GI and 
(Z 4), and we find the following system, 

VOL. XVII. 
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8, still referring only to the variations of a, 7, v, x, and the values of the multipliers 
being, 
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Hence may be deduced, by reasonings analogous to those already employed, the fol 

lowing formula for 82TV, which is equivalent to twenty-eight separate expressions for 
the partial differential coefficients of W; of the second order, considered as deduced 
from the coefficients of T, on the foregoing suppositions of homogeneity : 

0 
1182TV-S2T +(T W)82Q  WZ,20'  2a w (8,0' -8Q  Q8,W. 80 OW"' 

81)!2 82T 
802 8T 8v 

__82a 
' 
)D,2  2 (n 812 8v 8a 

w :2uni: )D  42a.7:a7., 

82o,' 
87.181 

81)80 JD' D 

22Er 
-)DD' e--' 87.1 ; (R" 

in which we have put for abridgment, 
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and in which WW "' can be deduced from T, by the relation 
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General Remarks and Cautions, with respect to the foregoing deductions. Case of 
a Single Uniform Medium. Connexions between the Coefficients of the Function 
v, 0, v, for any Single Medium. 

10. We are theniable, by combining the formulae of the three preceding numbers, 
to deduce the partial differential coefficients of the two first orders, of any one of the 
three functions /7 TY, T, from those of either of the other two, when the extreme 
media are uniform and known : since we have expressed the coefficients of V by 
those of TV, and the coefficients of W by those of T, and reciprocally, for this case 
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of uniform media. And if the extreme media be not uniform, but variable, that is, 
if they be atmospheres, ordinary or extraordinary, we can still connect the partial 
differential coefficients of the three functions, by the general method mentioned at 
the beginning of the seventh number : which method extends to orders higher than 
the second, without much additional difficulty of elimination, but with results of 

greater complexity, and of less interesting application. 
This general method consists, as has been said, in differentiating and comparing the 

equations into which the general expressions (A.' (B' (C' for the variations of the 
three functions resolve themselves : and in making this preliminary resolution of the 

general expressions (A' (B' (C'), it is necessary to attend with care to the rela 
tions between the variables r, v, x, or between a, 7', v, a/, y', z', x, when 

any such relations exist. The investigations into which we have entered in the three 
last numbers, for the case of extreme uniform media, suppose that the variables are 
connected only by the relations Q  0, a  0, which arise from and express the optical 
properties of these media ; and other but analogous processes must be deduced from 
the general method, when any additional relations Q"  0; Q"'=0,... between the 
variables of the question, arise from the particular nature of a combination which we 
wish to study. In the very simple case, for instance, of a single uniform medium, 
we have the three relations 

1 I 1  cr, 7  7, 1.1  v, 

which are to be combined with the relation Q=0; and with this combination of rela 
tions, the general expression C' for the variation of T will no longer admit of being 
resolved in the same way as when more of the quantities on which T depends could 

vary independently of each other. 
In the case last mentioned, of a single uniform medium, the characteristic function 

V involves the co-ordinates x, y, z, x y', z', only by involving their differences x x' 

y -y', z -z', and is, with respect to these differences, homogeneous of the first 
dimension, being determined by an equation of the form 

(U5 

e =Y-11 
V v5 

which results from the equation (N for the medium function v, by first suppressing 
in that equation the co-ordinates on account of the supposed uniformity, and then 

making 
13 y .z-z' 

v V v V v V 

The relation  V5 may also be deduced from the relation SZ  0, by eliminating the 
ratios of a, r, v, between the three following equations, 
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z---z' 
V V 

   

We have also, in this case of a single uniform medium, 
 a (a; x'  T (y -y' +.1)(z -z'), 

and therefore, by (..D' (E' (U5), 

T  0 

177  crX1 vzi, 

the last of which results may be verified by observing that the general expression for 
the auxiliary function T may be put under the form 

817 8T7 , 8V , 8V , 8V T  x y z     z v (A' 

so that T vanishes when V is homogeneous of the first dimension with respect to the 
six extreme co-ordinates. The formulw of the last number, for the partial differen 
tial coefficients of T, all fail in this case of a single uniform medium, for the reason 

already assigned ; but we may consider all these coefficients of T as vanishing, like 
T itself : we may however give any other values to these coefficients which when 
combined with the relations betwen the variables will make the variations of T vanish. 
The coefficients of YV may be obtained by differentiating the expression (Z 5), which 
is of the homogeneous form that we have already found it convenient to adopt ; they 
are, for the first two orders, included in the two following formulae, 

al&t. +Or  o-82  72g  Vail, 
W 2aae  %az', 

and they vanish for orders higher than the second. And the coefficients of V, of the 
two first orders, may be deduced from those of W by the formulae of the eighth 
number, which are not vitiated by the existence of the relations  U5), because those 
relations do not affect the variables that enter into the composition of V and W. 
The variation of V, of the first order,. is 

wry (ax -ax  (i ---ty')+u(Sz-Sz') -8-,-ax; (C 

and that of the second order is given by the following equation, deduced from  04), 
(N4), (B6), 

vt82a 
82E (Zen )2  

;ea 82E (Z2a 
2 82E 82e, \ 
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in which the symbol 8' has the same meaning as before, so that as x' yi z' do not enter 
into the composition of the function 0, a' refers here to the variation of colour only. 
This equation (D6 may be put under the following simpler form, 

V  (82V V8'20  QS V81-2 

za, 2 2/1 
OS 8X' V' aas 

2/ 
8z azi  Vs' 

+:31-;', 

 sy-sy yen 

v Tr-K2 (az -az' -17 a' V 
, 801 V8' 8-9  av 821  VS  (E6 

if we attend to the equations already established, in the second number, 

a ZQ 13 2Q 7 _8C&#18; w8c&#18; 
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and to the relations which result from these, by differentiation and elimination. For 
thus we obtain 

a82a 8v Sv 82a .3v 
 =F-0.  ra ti-c, 

 
8p 80-81 8 -87 

j3 ?a 8v 2v 82a 
8.3.87 8a 81-2 8p My 

7 sa  Sv 820 Sv Z20, at 
a1; &s8u 87-81, Zp Z7 

 a1 
av  82a_L. 82a 2v 

8x 80-8x 
8 la Zr8x .113 8v ax 

in chick v is considered as a homogeneous function of the first dimension of c, p, y, 
involving also the colour x ; and in which, although the three variations a., sf3, 
are connected by the relation a2a  pao -1-4y8y 0, yet we may treat these variations 
as independent; because, if we introduced indeterminate multipliers of aka  
in (FG), to allow for the relation, we should find that these multipliers vanish, on 
account of the conditions of homogeneity of v. And if we put for abridgment 

w 82a ?a f?a 2 
81.2 ;2S f8ca 82a _cm y (GG ae Z.1-2 ZIP karat) 8v2 8(1.2 kaacrf 

the equations (16 give the following formula for Pv, that is, for the second variation 
of v, taken as if a f3 y x were four independent variables, 

(Pv  vt2C&#18; +2&40  
 881)12 (sp 4. (87 -v81 n 

 (87 -ve  
!)}2 

vt (8P -va n 12 
82a L-2   
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82a f 8E1 

8qa cx312 
+2 (8a-v8' ;1.772)}1,2 (3-v.S/-817./ (8)3  v817? ;pp ()MAT uT 

which justifies the passage from (DG to (E 6), and expresses the law of dependence 
of the partial differential coefficients of the second order of the function v on those 
of 0, for the case of a uniform medium. 

If the medium be not uniform, and if we would still express the law of this depend 
ence, we have only to change in the four equations (F6 to a new characteristic S 

(P 

v(0" 
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referring to the variations of x y z x, and to combine the four thus altered with the 
three following, 

8 (1 Zy Z2E 2v 
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in which is the same new characteristic, and which are deduced from the equations 
already established for variable media, 

I by8o, 1 Su 80 1 8v 8f1 
8x v 8,y=ry -v rz 

and we are conducted to a formula for 82v, which no otherwise differs from (He 
than by having a instead of a' throughout. 

And if, reciprocally, we would express the law of dependance of the coefficients of 
C2 of the second order, on those of v, we may do so by the following general formula, 
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in which refers still to the variations x, y, z, x, and in which v" has the same mean 

ing as in the First 'Supplement, namely 

, 82v 82v 
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N Z2V 821 

)2 
82V 891 Z2V 

)2  u- : (L6 8a2 432 0a8P 80' 872 81387 872 Za2 278a 

this quantity v" is also connected with the to" of  G6 (H6), by the relation 

ci.2 +1.2+,2 
V4 

The formula (KG is equivalent to twenty-eight separate expressions for the partial 
differential coefficients of 0, of the second order, which extend to variable as well as 

11 1 V (1  (1\16 
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to uniform media : the formula gives, for example, the six following general expres 
sions, which enable us to introduce the coefficients of the function v, of the second 
order, instead of those of Q, if it be thought desirable so to do, in many of the gene. 
ral equations of the present memoir, as the expressions contained in (HG would 
enable us to introduce Q instead of v, in many of those of the First Supplement ; 

zla . 1 
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To make more complete this theory of the coefficients of the function 0, which 
determines the nature of the final uniform or variable medium by the manner of its 

dependence on the seven variables a7Vxyz x, and is supposed to have been so pre 
pared that Q +1 is homogeneous of the first dimension relatively to a T v, let us 

investigate the connexion of these coefficients of Q with those of the simpler though 
less symmetric function v, considered as depending on the six other variables a 7 a: y 
z x by the relation 0  0. For this purpose we are to combine the differentials of 
that relation with the conditions of homogeneity (B4 (C 4), and with the following 
other conditions of the same kind, which are only useful in variable media, 
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In this manner we find, for the first order, 
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A being a multiplier introduced for the purpose of treating the variations of (TT vvvyzx 
as independent ; and to determine the value of this multiplier we have, by the condi 
tion of homogeneity (B4), 

 & & 
X v)--a j. 

 7 i;)=Q+1=1: 

the coefficients of 0 of the first order are therefore known, and we have for example, 
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in which, by (C4  OG  QG), the multipliers Xl...A7 have the following values, 
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A, like v, being here treated as a function of a, r, x, y, z, x: and if we put, as usual, 

2n ni 8a 2i2 On 2 8E 
820  80.8r,-.  Z78 877  8v8 8-u  axe 8--x  8,y8 -8y 

 8z8 -g-;  8,x8 8-x 
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and which is equivalent to twenty-eight expressions for the partial differential coeffi 
cients of Q of the second order : it gives, for example, 
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And since the forms of the connected functions 0, v, v, of which each expresses 
the optical properties of the final medium, may be deduced, by the method of the 
second number, from the form of the characteristic function V, it evident that their 

partial differential coefficients also, of all orders, are not only related to each other, 
but may be deduced from the coefficients of that one characteristic function. 

General Formula for Reflection or Refraction, ordinary or Extraordinary. Changes 
of V, W, T. The Difference z T7 is =0; L\ W A T a Homogeneous Func. 

. tion of the First Dimension of the Differences AO*, AT, Au, depending on the 

Shape and Position of the Reflecting or Refracting Surface. Theorem of Max 
ima and Minima, for the Elimination of the Incident Variables. Combinations 
of Reflectors or Refractors. Compound and Component Combinations. 

(Z6 

11. Let us now endeavour to improve our theory of the characteristic and related 
functions, by applying the methods of the present memoir to improve the determina 
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tion given in the First Supplement, of the sudden changes produced in these func 
tions and in their coefficients, by reflexion or refraction, ordinary or extraordinary. 

The general formula of such changes, which easily results from the nature of the 
characteristic function V, is 

0=AT7=17,-Vi; (A7 

172, being the two successive forms of the function V before and after the reflex 
ion or refraction ; and the final co-ordinates x, y, z, in these forms, being connected. 
by the equation 

o =u (x, y, z (BD 

of the reflecting or' refracting surface. The formula (A7 may be differentiated any 
number of times with reference to the final and initial co-ordinates and the colour, 
attending to the relation (B7 ; and such differentiation, combined with the properties 
of the final uniform or variable media, conducts to the general laws of reflexion and 
refraction, and to all the conditions necessary for determining the changes of the 
coefficients of rw., and therefore also of the connected coefficients of W and T, as 
well as to the laws of change of the functions V, J47, T, themselves. 

Thus, for the first order, we have the general formula 

F=X8u, (C7 
which, on account of the multiplier A, and the definitions (E), resolves itself into the 
seven following, 

r 2c 
ACt  X au AT  X Au X 82e ; 8x ' ' 8z 

 w; Ar' 
8V  Avi q0; A -=0: 
8X 

the symbol A referring, as in (A7), to the finite changes produced at the surface (B7), 
 2 -- 2  between the new and so that Aa, AT, Av, denote the differences c a1 , r2  1, v 

the old values of a, 7, v, that is of the partial differential coefficients of the first order, 
of the characteristic function V, taken with respect to the final co-ordinates. The 
three first of the equations (D7 contain the general laws of the sudden reflexion 
refraction of a straight or curved ray, ordinary or extraordinary ; because, when com 
bined with the equation of the form (F), 

0=02 (cr2 T2, V22 x,,y, z x), (E7 
which expresses the nature of the final medium, they suffice, in general, when that 
final medium is known, to determine, or at least to restrict to a finite variety, the 
new values a of the quantities a, r, v, on which the direction of the reflected  72   v 2,   
or refracted ray depends, if we know the old values al 71 vi, which depend Qn the 
direction of the incident ray and on the properties of the mediums contaiiiing it, and 
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&. Zu 2? if we know also x, x, y,z, and the ratios of 
-8s , -8y 

, -az , that is the colour, the point 
of incidence, and the normal to the reflecting or refracting surface at that point. A 
remarkable case of indeterminateness, however, or rather two such cases, will appear, 
when we come to treat, in a future number, of external and internal conical refraction. 

With respect to the new form T72 of the characteristic function V, it is to be deter 
mined by the two following conditions ; first, by the condition of satisfying, at the sur 
face (137), the equation in finite differences (AO, that is, by the condition of becoming 
equal to the value of the old form V , when the final co-ordinates x, y, z, are con 
nected by the relation u 0 ; and secondly by the condition of satisfying, when the 
final co-ordinates are considered as arbitrary, the partial differential equation of the 
form  C), 

, 8Y2 V2 8 172 0  a h 2  ax , 8.li 
, 8z , x, y, z, x , 

if the final medium be variable, or the simpler partial differential equation of the 
form (V'), if that final medium be uniform. And as it has been already shown that 
the partial differential equations relative to the characteristic function V, may be 
transformed, and in the case of uniform media integrated, by the help of the auxiliary 
functions TV, T, it is useful to consider here the changes of those auxiliary func 
tions, which are also otherwise interesting. 

It easily follows from the definitions of W, T, that the increments of these two 
functions, acquired in reflexion or refraction, are equal to each other, and may be 
thus expressed, 

ATV d T=x&T +7 Ar+zAv. (G7 
And because the differences Au., ,Ar, Ay, are, by the general equations of reflexion or 

8u 8it 8it refraction WI proportional to - , - ,  , we may consider these differences as 8x 8y -, 
equal to the projections, on the rectangular axes of the co-ordinates x, y, z, of a 

straight line  ,, (A0-2  Ar2  Av2), perpendicular to the reflecting or refracting sur 
face at the point of incidence, , and making with the axes of co-ordinates angles of 
which the cosines may be called nz, no nz ; in such a manner that we shall have 

Acr=n, , (0a2  AT.2  Au2 ; 
AT  nu ,j (dal  Ar2  Av2 ; 
Au  nz ov (062  Ar2  Au2 ; 

A W. A T=(xn.,-Ftyny-Eznz), (A52  Ar2  Av2). 

Now the quantity xnx+ynu+zn,, is equal, abstracting from sign, to the perpendicular 
let fall from the origin of co-ordinates on the plane which touches the reflecting or 

refracting surface at the point of incidence ; it is therefore constant if that surface be 
voL. XVII. P 

(P 

(HD 
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plane, and in general it may be considered as a function of the ratios of Acr, ar, Av, 
becaw,e ANIten those ratios are given we know the direction of the normal, and there 
fore, if the surface be curved and given, we know the point of incidence, or at least 
can in general restrict that point to a finite number of positions we have therefore 
in general 

A TT7 A T  f (Arr, Ar, AO, 
the function f being homogeneous of the first dimension, and depending for its form 
on the shape and position of the reflecting or refracting surface, from the equation 
(H of which surface it is to be deduced, by eliminating x y z A between the equa 
tions (B7 (G7 and the three first of those marked (D7). We have also 

(Aa. AT 432. 
AU \ AU av ; AV 

 
8y 

Sz z v y(p .7 
the form therefore of the homogeneous function f may easily be deduced from the equa 

az 8z tion of the surface (137), by so preparing that equation as to express z  w -  y 8 
as a function 0 of  -8z  -8z, which function 95 reduces itself to a constant when ax' 8y 
the surface is plane : and we have a simple expression for the variation of the homo 

geneous function f, namely 
y x866  A AT  z8L\v, (L7 

which, when the reflecting or refracting surface is curved, resolves itself into the fol 

lowing remarkable expressions for the co-ordinates of the point of incidence, 
W  8f  811 . z  7 

86,6' 'Y  86a ' -860, ' (M 

so that these co-ordinates, which, for a curved surface, we knew before to be functions 
of the ratios A6, Ar, Av, are now seen to be, for such a surface, the partial differential 
coefficients of the homogeneous function j: When the surface (B7 is plane, the 
differences &r, Ar, AV, are no longer independent, since their ratios are then given ; 
and although the expression (L7 for f still holds, it no longer resolves itself into the 
three equations (M7). 

Having thus studied some of the chief properties of the common increment jf, 
which the functions PTV, T, receive, in the act of reflexion or refraction, we are pre 
pared to investigate the new forms W 2, T2, of these functions W. T, considered as 

depending on the new quantities 62, 721 v2 instead of the old cri, 71, vi. For this pur 
pose we have first the equations 

W2  W. `i (0-2 al, T2-T1, v2 U1  3 
(1\77 

(Ki 

T2 T1 -f-f f072 , 72"'71, V2  VI ), 
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by which TT72, T2, at the reflecting or refracting surface, are expressed as explicit 
functions of al rj v1 fr2 72  the expression of W2 involving also x' y' z' x, and the  U 2 : 7 
expression of 712 involving of 12 I; x : and to eliminate from these expressions the 
incident quantities al ri v, we have, if the surface be curved, the following equations, 
in which the symbol 8,,, Ti, vi refers to the variations of those incident quantities, 

8 61 , rj, vi f -tali -Ari  Z&,1 
  0-15 Ti vi .W1-  

861  T1, 1)1  TI ; (Or 
and 861 71 111kIF-2=0; 8 61, Ti, I), fT2=o; 

we are therefore to disengage the incident quantities from the expressions for FT7 2  T2, 
by making each of those expressions a maximum or minimum with respect to those 

quantities, attending to the relation 01=0, between them ; the phrase maximum or 
minimum being employed with the usual latitude. For the case of a plane surface 
this method of elimination fails, the form off becoming indeterminate, on account 
of the constant ratios which then exist, by (K7 or (D7), between A A A _a, _r, _v ; but 
these very ratios, combined with the relation C2,  0, between the quantities 61 r, v 
enable us in this case to eliminate those quantities from W T2. And when we 
have thus determined the new forms J 2, 77,, of the functions TV, 7', for the points 
of the reflecting or refracting surface, we may extend these forms to the other points 
of the final medium, if that medium be uniform, because then the final rays are 

straight, and for any one such ray the quantities IT  2 72 V2 W2 T2 are constant ; but if 
the final medium be variable, then the final rays are curved, and the general forms of 
F2, T2, for arbitrary points of the medium, are to be determined by combinations 
of partial differential equations and equations in finite differences, analogous to the 
combinations of such equations for V2, and easily deduced from the principles already 
laid down. 

It is easy to extend the foregoing remarks to any combination of reflexions or re 
fractions, and to show, for example, that in the case of any combination of uniform 
media, producing any system of polygon rays, ordinary or extraordinary, the auxiliary 
function T is equal to the following expression, 

T =I If Oa, 1r, Au), (P7 
that is, to the sum of all the homogeneous functions f of the differences of the quan 
tities a, 7, v, obtained by considering the successive reflecting or refracting surfaces : 
from which expression the intermediate quantities of the form a, r, v, are to be elimi 
nated by making the expression a maximum or minimum with respect to those inter 
mediate quantities, attending to the relations between them which result from the 

properties of the media, and using, for plane surfaces, the other method of elimina 
tion, founded on the ratios of As, Al', Av. And when the function T is known, we 
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can deduce from it, by the methods of the fourth number, the other auxiliary func 
tion TV, and the characteristic function V. 

In general for all optical combinations, whether with uniform or with variable 
media, we have, by the definitions of the functions V, T/V, T, and by the results of 
former numbers, the following expressions, 

81 T  
fos(x-i2 y?.4 

z -1 ds  V =if: yds; 8zi 
v 

T V x' cl 41-1  Z 
+.13  

a  y -8u  z - ds : 8x 8y 8z 

ds being, as before, the element of fili -#7-.--,ffl - polygon ray ; and hence it follows 
that if we consider any total combination, of M +n-1 media, whether uniform or 
variable, as resulting from two partial combinations, of m and of n media respectively, 
combined so that the last medium of the one partial combination (m is the first of the 
other partial combination (n), and so that the final rays of the one partial combination, 
are the initial rays of the other, then the functions V, T, (but not in general W, for 
the total combination, are the sums of the corresponding functions for the partial com 
binations : it follows also from the general expressions for the variations of these func 
tions, that the intermediate variables, belonging to the last medium of the first partial 
combination, or to the first medium of the second, are to be eliminated from the sum, 
by the condition of making that sum a maximum or minimum with respect to them. 

Analogous remarks apply to compound comb: ons, composed of more than two 
component combinations. These properties of the functions V, T, for total or result 
ant combinations, will be found useful in the theory of double and triple object-glasses, 
and other compound optical instruments. 

Changes of the Coefficients of the Second Order, of V, PV, T, produced by 
.Reflexion or Refraction. 

12. With respect to the changes produced by reflexion or refraction in the coeffi 
cients of the second order, of the characteristic function V, and therefore also of the 
connected functions W, T, they may be deduced from the following formula, analo 
gous to  CD, 

20V-=4;2. Au  n'u  243Xt ; (R7 
tt, A, having the same meanings as in (.137 (CD ; and the multiplier A, which was 
introduced also in the First Supplement, and was there regarded as a function of the 
final co-ordinates x, y, z, being now considered as involving also the initial co-ordi 
nates iv', y', z', and the chromatic index x. The seven variations ax, Sy, az, ad, .3'y', 

(q 
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az" , ax, may be treated as independent in (R7), if we assign a proper value to a, as 
a linear function of these seven variations so that we may deduce from (RD the 
seven following equations, 

8 v Zu ZX gu 
AS    8u  8x ax av ' 

8 V 8at  Su 
AS  xa  

-4 
Su  

-y 
A 77 au ,  =A   fat  OA (S7 az. 8z az 

A A A, Sy A W 
LAO  OU  L16  -OU  ou  

8x' 8.?" 82.1 b3zi 

Lao 
7 ,   ou: 

8x 8,C 

of which each may again be decomposed into seven others. But of the forty-nine 
expressions thus obtained for the changes of the twenty-eight coefficients o V of the 
second order, only twenty-eight expressions are distinct ; and these involve seven 

multipliers as yet unknown, namely, the seven partial differential coefficients of a : 
however we can determine these seven multipliers, and the twenty-eight coefficients 
of V2 of the second order, by introducing the seven additional equations obtained by 
differentiating the partial differential equation (Fr), with respect to x y z x' y 

The differential of the equation (F7), is 

U/2 Za2 X522 V,  122 8/72  8V2 3k2 
 2 Sx 8,y +-i-z  ox ; (V 0 

=8a2 x 272 8,y 8z 8x 

and this, when combined with the three first equations (Si), conducts to the following 
formula, 

a22 8c12 22 Vi f22 8E22 8i22 25220 a + -+-av +-sy  -az  ocr2 ox OT2 8v2 8z 8z 8x 
8tt &22 8u 8i22 

8u -g;+ +- 81'2 av2 
a&#18;,2u22 

a   
8x &v2 8y az 
8u Za2 au 8?t\ 

-2--;+871 Yz- 

 

 

+a. 

which resolves itself into seven separate equations, sufficient to determine the seven 
multipliers 

aaxasx a a a 
ar' ' ' 

ax 
 

VOL. XVII. 
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Three of these seven equations into which  U7 resolves itself, give, by a proper 
combination, a value for the trinomial 

,C22 A S.22 A Si22 A 
Zcr2.T. 87r7 if 

 
luT Er ' 

which enables us to eliminate that trinomial from  U7 and so to deduce a value for 
A, which being combined with (R7 gives, 

.4 

(88E:2 
" 2 02 .1  A :2:2 

  U/2 8E4  ;e Vi ?ii 

 

 

(8T2 2  
2 
 88 eyi: 

1 4 . ;a 2:2 )1 
0 : E/2 

7 2 
: E 2u 

2 
2 \ :2 v 2 

a 
: 

 

NI :1/!: )\  ''' 
i3U2 --g62 SZaX 4 ' S.ZaX 

 rt:  
2 
 : z2 1271  x ; 

i 
12 )\  2 agi2 K22 

 
i.-_ ri  x 

.;eu \ 
2 2 Y 

i3, 22 Sot 43a2 S12 ZO2 X122 
a aT MY W 1 

1.  a62 &   
1)2 -,Z.-- 

8s2 2 Su E12 871 ZU2 Zit 
ocr2 ox or opy 0012 IDZ 

8a,  8V1 +AeLt +8n2  w 
+xaakz  Au f29 

au 2fr 8x1 8T2 \ 8y y 2 8Z aZ 
ZU2 L22 8E12 Zn2  8/6.    Sx ay 

/802 8n2 821 .3E22 Su 2 
X8214 r  x ,372 iV',2 (82 82v, CT 

a formula that is equivalent to twenty-eight separate expressions for the twenty-eight 
coefficients of V-2, of the second order. This formula supposes the rays to be reflected 
or refracted into a variable medium ; but it can be adapted to the simpler supposition 
of reflexion or refraction into an uniform medium, by merely making the quantities 
az, 802 8122 , vanish. Whether the last medium be variable or uniform, the x Sy 8Z 
formula  F7 gives, 

V  v7  

referring, as in former numbers of this Supplement, to the variations of zi, x, 
alone, that is, to the variations of the initial co-ordinates and of the colour ; and the 
final co-ordinates xy z being those of any point on the reflecting or refracting sur- 
face. Thus the ten differential coefficients, of the second order, of the characteristic 
function v; like the four of the first order, taken with respect to the initial co-ordi 
nates and the colour, undergo no sudden change by reflexion or refraction ; but the 
differential coefficients of both orders, which involve the final co-ordinates, take sud 
denly new values which we have shown how to determine : and from these new coeffi, 
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cients of TT, we can deduce those of IV and T, by the methods of the foregoing 
numbers. The coefficients thus found, of W and T remain unchanged through 
the whole extent of the last reflected or refracted portion of the ray, when this 
last portion is straight, the final medium being uniform ; but the coefficients of F-2, of 
the second order, change gradually in passing from one point to another, even of this 

straight portion, according to laws deducible from their connexion, already explained, 
with the constant coefficients of FF2 

The coefficients of W and T2 of the second and higher orders, may also be cal 
culated, whether the last medium be uniform or variable, by differentiating the expres 
sions (ND, and eliminating the variations of 61 r v1 by the help of the conditions 
already mentioned, of maximum or minimum. 

Another method of calculating the changes produced in the partial differential 
coefficients of V of the second order, by reflexion or refraction, ordinary or extraor 

dinary, into a medium uniform or variable, is to develope the second differential of 
the general formula (A 7), considering AV as a function of the seven variables x, y, z, 

x, and considering x, y, z, as themselves functions of two independent vari 
ables ; for example, considering z as a function of x, y, of which the form is deter 
mined by the equation of the reflecting or refracting surface. In this manner u we 
obtain, besides the formula  W7), which is equivalent to ten equations, the eleven 

following ; 

Zed V 0 82A V Zz .S2A (.3z 2 8A V Z2z 0 Zx8z 8x Zz2 x 4 8 x' ' 

?L V 82AV az Z2A V (az 
2 SA V i32z 0  2 

Sy8z -8T-y 
 43z' \  

8z r 2 ; 

432A V ZeA V Z2A. V 8z ;246, V 8z aZ 8A V Z2Z 0 
8X4 i')XaZ 422 13X  13.2'2 -a.7: ay 

 .3x Sy 

(X7 
?A V Z2A V 

0  
8.1/43x' 24x' 

0 82 AV 82A V 
44' .3z4` 

 ?A. V 82A V 
8.7/8z' azazI 

0  8`26. V 82A V 
'3AX 

 

82A V 84A V 8z 0  
8,TZx 8z8x1 
82A V 82p V 8z 
&Sy' Szay ; 

0Z'A V Z2LS, V 8z  
arazi 2z8z' 

 Z2,6, V 826, V Zz 0 
8xZx az8x Zx 

which may be put under the form 

A ?V 2,2V 8Z ;2-V (2Z\2 8V ;?.z   
0x9 ay& Sx \6J .3e 

&c.  
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and are deduced by differentiation from the analogous equations of the first order 

ID 
y 

 A  
8v 8v Sz 
43, ; 0  8 (8_1 

z  +8v (Z7 

And the eleven equations thus deduced, when combined with the ten given by  W7), 
and with the seven into which  T7 resolves itself, suffice, in general, to determine 
the twenty-eight coefficients of T72 of the second order. 

Changes produced by Trans sformation of Go-ordinates. Nearly all the foregoing 
Results may be extended to Oblique Co-ordinates. The Fundamental Formula 
may be presented so as to extend even to Polar or any other marks ofposition ; and 
new Auxiliary Functions may then be found, analogous to, and including, the 
Functions W, 7 together with New and General Dffferential and Integral 
_Equations for Curved and Polygon Rags, Ordinary or Extraordinary. 

13. In all the foregoing investigations, it has been supposed that the final and 
initial co-ordinates, x, y, z, x' y' , z' were referred to one common set of rectangular 
axes. But since it may be often convenient to change the mode of marking the final 
and initial positions, let us now express the old rectangular co-ordinates as linear 
functions of new and more general co-ordinates xsy z,, and x,',y,',z,, which may 
or may not be rectangular, and may or may not be referred to one common set of 
final or initial axes. For this purpose we may employ the following formulae, 

.v=x0+xv, x,+xy, z,, 

y=y0+.71., x,  ; 
z  zo +zir, x, zY, z 

  x y"  dz; ; 

a.;  y y: y; z; 
' z  ' z x  Z Z: ; 

in which each of the eighteen coefficients of the form xx, is the cosine of the angle 
between the directions of the two corresponding semiaxes, so that these coefficients are 
connected by the six following relations, on account of the rectangularity of the old 
co-ordinates, 

+Z,D, 
Q  1 ; 

Xu: yy, Zy,  1 ; 

(v.t1 +z,,,,g =1; 

x'x,'12  y' z =1 ; 
X y: ily:2  1 ; 
I 2 P 2 X z; +z'zi =1 

(B8 

(A' 

J 
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Let us also establish, according to the analogy of our former notation, the following 
definitions similar to (P), 

dx, dy,  dz, ' ds j3,  ds  I  cis a,   , , PY 

dr; dy ' dz' -1 ' ' 
dd ' '  ds' ' 7 ' cis' ' 

and the following, similar to (E), 

(0 

we shall then have 

av a  T 
as, 

1 av 
a,  ar," 

Tl  sv 
1),  2z, 

, v  v  
(D8 

a. a, +13, cry,  7,xz,, 

P  a, gr, f3,  

7 a, p, Zy, 7, ; 
a'  a,' p; .4 +7: 4,, 

IT +13; yy: +7: Yiz,'; 

7' =a,'Zx. -Fp; +7', z' ; 
and 

a ,=aXa., 'Ty vZcz.,; 
 CrXy, Tyy,  V zy, ; 
 crxz, ryz, 

a  ; 
 

T,  Cfy; fd ligy; +u z2 ; 

VI I=a'd.v;  7Igz; z:  
(P 

And if, by substituting in the former homogeneous medium-functions, v, v', the ex 

pressions (E 8 for a, 13, 7, a, j3', 7', we obtain v under a new form, as a homogeneous 
function of a,, j3,, -y ,, of the first dimension, and v' as a homogeneous function of the 
same dimension of a,', 7,', and then differentiate these new forms of v, v', with 
reference to their new variables, we find, by (E8), the following relations between the 
new and the old coefficients, 

Sv Si 
.yam,  

87 
Sr 43V SV   yY,  zY,; 

21 8v cSv 2v 
sy, ,313 

 ZZI ; 

8il8Vi 2vi 
x'a); gff x'; 

, 8v' Zd 
TR &-7 x y; aTy ily: ; 

Sv' , 8v  x z; yz; z' ; 
VOL. XVII. 
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from which relations, combined with (D8 (F8), and with the equations (B (E ), of 
the second number, we obtain the following generalisations of the equations (B), 

8v 8v SJ7 Ov SV Sv 
8x, 8a, (3p, 8z, 
8 V Se 8 V 8v' 8 V 8v'  

Sad Sy, 
 ; 

=TT; 
and therefore the following important generalisation of the fundamental formula (A), 

8v 8v' , Sv av' , Sv 8v' , v 8x  -7 lox  oty,  oz oz, , (P oa, ' 8a, 80, ' 8)3 ' 87, 87, 
which is thus shown to extend to oblique co-ordinates, and not even to require that 
the initial should coincide with the final axes. 

We may adapt nearly all the foregoing reasonings and results, of the present Sup 
plement, to this more general view. We have, for example, partial differential equa 
tions of the first order in V, analogous to the equations  C), and of the form 

0=0,  

0  cZ, 

8V 8V Sv 
4, 

' Yo x 

SV 8T7 8v 
-ar," 

which conduct to a partial differential equation of the second order, analogous to 

(D : and if we put the equations (K8 under the form 

0  (CF,, y z x), 
0 0: (cr", 7,, 16 ir,CY,I,z,F,X), 

and suppose them so prepared, by the method indicated in the second number, that 
the function Q, +1 shall be homogeneous of the first dimension with respect to o T,, u 
and that a,' +1 shall be homogeneous of the same dimension with respect to a,', T,', u,', 
we shall have 

a,  2a, j3, 20, 
&T, v 8r, Zv, 

a,' 8a,' 7,' 
27 2a: 

 
&)1" 

with many other relations, analogous to those of the second number. The differen 
tial equations of a curved ray, ordinary or extraordinary, in the third number, may 
be generalised as follows, 

d 2vSv d 8z, Sv d 8v b 
(M ds &t,=Sx,; ds 813, 8y, ds 

and their integrals may be extended to oblique co-ordinates, under the form, 

(1w 
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a Va V $V  const. ; 7,-,  const. ;  const. : (08 ex 

while, if the final portion of the ray be straight, we have also, for that final portion, 
V , 8V - COTISI.  const. ;  const. (P 

The formula (A7 of reflexion or refraction, ordinary or extraordinary, namely, 
AV-0, 

extends to oblique coordinates ; and if we introduce new auxiliary functions VVfT 
analogous to W, T, and defined by the new equations 

TV,  V x, +y, er, v 
(q 

analogous to the definitions (D' (E'), and attend to the meanings and properties of 
the symbols 6, 7, 11, Cr; 7,1 v,', we shall obtain the following expressions for the varia 
tions of V, Wo To 

, SV 
8V =0-,ar,-(7,7x,'  

, V  +y,87-, +7,7y;  z,k  u;az, 8x; (R8 
, V 

TI=x,acf,-..v,70.,' +yik -y:ST : ax; 

which resemble the expressions (A' (I3')(C'), and lead to analogous results. Thus, 
the partial differential coefficients of the new auxiliary functions W T,, may be 
deduced, by methods similar to those already employed, from the new coefficients of 
the characteristic function V, which may themselves be deduced from the old coeffi 
cients of that function, by the following general formula, 

T,  --r; z' 

(-1)2(II ay, oz, 

ty ztr, L 
a 

xy,  Yu, cy zu, LYI 

8y; 
f , r 

-FY`DiTr 
, , 

sy;  

V 

08 

a g 8 \ i" 
 

S , a , , \ k1 17 
(x .,, -6  ,y.., iy 

 zz, -z---z- se z,' --Ev;  yx,i-s7 
 zz;-0-2  ; 

  
,. , 

and the equations of a straight final ray may be put under the forms, 

1(sr W, 1 $W, \ tz TV, , \ 
a, p, (Yi \ 

) 
1 

 
ST, 1 ST, \ 1 T,  

a, &71 0, 77 
while those of a straight initial ray may be put under these other forms, 

(T8 
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L. (v, +27',.__I. f,,,,  877, )=.1. fz,,  87, ; (Us a; \ i 80-,'I [3; \e' 8r; i y" \ au,' 
these new equations (T8 (U8 being analogous to (12 and (P2). It is evident that 
the arbitrary constants introduced by these transformations of co-ordinates must often 
assist to simplify the solution of optical problems. In the comparison, for example, 
of a given polygon ray, ordinary or extraordinary, of any given system, with other 
near rays of the same system, it will often be found convenient to choose the final 

portion of the given polygon ray for the axis of z and the initial portion for the 
the axis of z,', a choice which will make a, /3, a; J3,' and many of the new partial dif 
ferential coefficients vanish, without producing, by this simplification, any real loss of 

generality. 
We may even carry these transformations farther, and introduce polar co-ordinates, 

or any other marks of initial and final position, and still obtain results having much 

analogy to the foregoing. For if we suppose that the final co-ordinates x, y, z are 
functions of any three quantities e, e, 0, and that in like manner the initial co-ordinates 
al, y', z' are functions of any other three quantities p', 0', p', so that 

Six 2.27 Sx x .3x 
ax  43 + 80  ; 80, dx 

' 
dp +-co 

dO 
+-80 

d  o, 8p 80 616 
2Y8Y ria .4 4, zg ,, 4 ,%.,, , Y Si, dy  re. dp+5 w .  , sy=o+-w60-1-p 
2z Zz 2z 

az -..2 
2 

'i ap -)-- a  . 80, dz 9 dp  -- dO  
Fo 4 

 ,  
i3e 80 0 

Zxt z, , Sx' 
=.882L-;,Se 

 -8gr-80' +-Z-780', 
dx' 

=Z: de'    -----7 4, ni 80 
8Y1 ' 4 

1 
d0' . 4' 4 

' 
2-t4. ap  Z-80'  Z-80', dy' =i-cr dp  w -, 

w Sy, e 
az' Sr , Zz'  -84-Se  a--4 801  

;rT),' So', dz' 
=w- 4'  iv. c161' 

8z1 
 

-ii), 4, -ae 80 

we may consider V as a function of p 0 j p' 0' 11' x, obtained by substituting for x y z 
x ey' z' their values ; and if we substitute also the values of cis, dy, dz, in the differ 
ential dV, or vds, which was before a homogeneous function of the first dimension of 
dx, dy, dz, such that by our fundamental formula 

F 

(V' 

j 
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we may consider this differential dV vds as becoming now a homogeneous function 
of de, dO, do, of the first dimension, such that 

S.vds UV $V Sy v  
Bdp 8x 8p t 

' 

8.vds 8dV 8V 2x ZV 8y V Zz 
(10 =,3d19 +Vy 5=To 

&yds2c1V 8V 8x 8V zy 8V ;z. 8V 
&to =84 4+-83 8-95+i; 4=4' 

the symbol d referring still to motion along a ray. In like manner we may consider 
the initial differential element of V, namely v'ds', as a homogeneous function of the 
first dimension of 4', A', dq', and then we shall find that the partial differential coeffi 
cients of the first order of this function, are equal respectively to 

8V V 8V 
8p" 

 
80' 80' 

; 

we may therefore generalise the fundamental formula (A as follows 

(X' 

awlsavds S.vds 
V v  80 895 

av'ds' S.vids' SV 
8dot Tx. 

T, correspond to the following more 

8.1)1(131 , 
zdp 

And the auxiliary functions W, 
tions, 

(V 

general func 

sy ay 
-v-Few: +05 , and 

UT ZIT  V  0  F  0 8V ,8V 
; 

of which the first may be regarded as a function of 

W 8V ,, 
-N7' -go-, -4 

I e, Xt 

and the second as a function of 
v V7 a Va V 8V 

8; 
, ' 

-8,, 80, 80, 
It is easy also to establish the following general differential equations of a curved ray, 
ordinary or extraordinary, sand the following general integrals analogous to and in 

cluding those already assigned for rectangular and oblique co-ordinates, 

Zd V 8dV OdV 8dV 8dV d 
xP 

d d cu 
8v 8v 

I Zo' 
 const. ;   const.   const. 

ap 
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General geometrical Relations of infinitely near Rays. Classification of twenty 
four independent Coefficients, which enter into the algebraical Expressions of these 

general Relations. Division of the general Discussion into four principal 
Problems. 

14. It is an important general problem of mathematical optics, included in that 
fundamental problem which was stated in the second number, to investigate the gene 
ral relations of infinitely near rays, or paths of light ; and especially to examine how 
the extreme directions change, for any infinitely small changes of the extreme points, 
and of the colour : that is, in the notation of this Supplement, to examine the gene 
ral dependence of the variations aa, 80, 8y, 84 8y', on az., ae, az', ax. 
This important case of our fundamental problem is easily resolved by the application 
of our general methods, and by the partial differential coefficients, of the two first 
orders, of the characteristic and related functions : it may also be resolved by the 

partial differentials of the three first orders, of the characteristic function V alone. 
For from these we can in general deduce six linear expressions for 2a 43, )'7, )3,, 
87', in terms of .3x, 8z, , , az', 8x, involving forty-two coefficients, of which 
however only twenty-four are independent, because they are connected by fourteen re 
lations included in the formulae a8a  787  0, af8a1   0, and by four 
more included in the conditions that the final direction does not change when the 
initial point takes any new position on the given luminous path, nor the initial direc 
tion when the final point is removed to any new point on that given path. 

Thus, if we employ the characteristic function V, and the final and initial medium 
functions v, v', we have, by (B), the following general relations : 

a vsv ay a  6   6 s 
TT 

0   0  
8x Za 8y 813 

' 87 
8 V avi ;y V  

a8x1 8a,' 
  

-8y, 
 o 

8i3 
; Tzi 

 C 10 S,. 

in which, by the last number, we are at liberty to assign different origins and different 
and oblique directions to the axes of the final and initial co-ordinates, if we assign 
new and corresponding values to the marks of final and initial direction, a, p, 7, 

IT, 7', so as to have still the equations (I)), 
dz _dx' (1.1/1  dzi  , p a , ---ds, ds 

 
ds 7 ds ds i 7i 

 a cls 

ds being still the final, and ds' the initial element of the curved or polygon path. We 

may suppose, for example, that both sets of co-ordinates are rectangular, but that the 

(origins of the final and initial coordinates are respectively the final and initial points 

(A9 
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of a given ordinary or extraordinary path, and that the positive semiaxes of ce, 
coincide with the final and initial directions, so as to give 

s=0, y=0, z=0, a=0, p =0, 7=1, S7=0; 
d =0, y =0, z' =0, a =0, /3'=0, 7' _1, z 0; 

and then the six equations (A9), of which only four are distinct, reduce themselves 
to the four following, 

2i, 8 
22,  V +32 V  V ?v \ &t 3  8ce 8a813 i 

 
8x8x,' vat  

My 
 ' utYl \ axax 07a8x 8x 

 Z2 V  Z2V \ av  (132 V ZC77 \ z  (2v  82v 
 z ;  k Zxc ZaZx i \2x8y 8a4 I Y ' kav 

a2v 82v 82V s;'V. 8a: V ;2/, \ 
ari8,y'  -8-8---. 

  
wx 8x act -1 p 8eLp3 8i32 8y8.x.' Y X 

 (22V  Z2v \ ar  
(LT. 

 
1321,8,y ..y  (t 7:8z 

az ; \8x8y 438.ri 
N' 82v, i 82 v 89V 

 
ZW" . 82vf 

  
aa'2 ua '  

8a'8iy 43 
 

&vf 13z 0, &x' t'l  axt&Th 8,28x jX 

" V 82v1 
 t,  

8v' 8'''' 
 (:2:,  :ax, as 

?v' 
 sx,   8w a,  

s3ty, ax l a 8z' 

za 8p, 8.;*,x 
-F 

.yay,  Ca; 
V Z2vi  82, , 8,2,y, ?8,2v. 82V 

 ax ii3.18X 
 

Scaf3, W2 
;2 V 21,1 1 f8IV 82v' 1  tat 82/11 \ az'  

(Say' 
 

13'ax' 
ux  

kSy'g 
+' 

8p12y1 I 4 -813'825 

they give therefore, by easy eliminations, expressions for .3a, 2p, 2a1, .3)3', of the form 

&t 8a Sa Sa &a, Sa , act  Tx   .3,1   az  ---x, ax  --7 ey"  ---- 6x, 4 oz .1j 
Zp8p 8f3 8p 43 , 2p , 
6 ar  

.i-, Sy  -vz .3z.  --; 2d  -, oig +v uX, 

8a.'8a1 &a ,,z, 
2p.' ,.t. . Za' , 8a' 2a'  

7; Ty 
arI  7 4'  -i-zr  a7 6  

4 6Y 8X 

+313"  
,T, ay'  

X, Sy"  1)7, az'  Z av  
,--i 

  x, J 

which involve twenty-four coefficients, and enable us to determine the general 
geometrical relations between the final and initial tangents to the near luminous paths. 

If the extreme media be ordinary, that is, if the functions v, v', be independent of 
the directions of the rays, we have 

 p, (a2  ,y2), v  (arc  p/2 7?21, (E9 

(C9 
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11,11.1 being functions of the colour x, of which IL involves also the final co-ordinates, 
and te the initial co-ordinates, when the extreme media are atmospheres : and then the 

equations  C9 reduce themselves at once to the following expressions of the form 

(D9), 
1 
(82Tl 

Z2 V 
8a  8y + 8X2 8xSy 

Vd32V a2V 
x sx 8x'  oli  8wc x a 

109.178x 
2T7" 

8,, 8z 
V 

sx, 2_,21 
7 

8n,  
82Y 

4x8,7 8,/ y Zy8x 8y8y 8,118x A 

V 02 V 82 V 
 (8-;-2 

 
2x' 

4'217 
8z'  :3T.61 

8x   6X te 8X ail y ar 
1  ;52-F 

av, 
8217 

 
82 V 

az. 
82 V 

82v:  k 43x 2y 4/2 3 
Sy: ay Sy Sx x 

In general we see that the twenty-four coefficients of the expressions (D9 can easily 
be deduced, by  C9), from the partial differentials of the two first orders of the cha 
racteristic function T7, and of the extreme medium-functions v, : we have for ex 

ample 
1 82v (8' V 'v 

-7 643 \ BOW 
1 ?v (82V Z2v 

&I8f3 \ 42 432y 
8f3 1 82v fi V N\ 1 82v (82 V C32v  

We k8x8y 8138x1 
 

8c181.3\8x2 Zaxi 

2r3 1 z2v (82r7 z2v \1 ;2v (82v 822, 
v" ao\Sy2 438.yi &,438x8,71-8a8y-1 

v" having the same meaning as in the tenth number. The same twenty-four coeffi 
cients of (I" may also be deduced (as we have said from the partial differentials of 
the two first orders of the other related and auxiliary functions : or even from the 

partial differentials of the three first orders of the characteristic function V alone. 
Let us therefore suppose that these twenty-four coefficients of the expressions (D9 
are known, and let us consider their geometrical meanings and uses : that is, their 
connexions with questions respecting the infinitely small variations of the extreme 
directions or tangents of a luminous path, arising from variations of the extreme 

points and of the colour. 
In discussing these connexions, it is evidently permitted, by the linear form of the 

differential expressions (D9), to consider separately and successively the influence of 
the seven variations &v, 8Y, 8x, of the extreme co-ordinates and the 
colour, or the influence of any groupes of these seven variations, on the four varia 
tions )(3', of the extreme small cosines of direction. Thus, if it be required 

9 

Za  1 82v (82 V ;27, 
*2 X2 OCiaX 

8a 1 N (82 V ;Qv 
4-v" 8132 \ 8xSy 

(G9 

J 
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to compare the extreme directions of a given path of ordinary or extraordinary light 
of the colour x, from a given initial point A to a given final point B, which path we 
shall denote as follows, 

(A, B)q, (HO 
with the extreme directions of an infinitely near path of infinitely near colour x  8x 
from an infinitely near initial point A' to an infinitely near final point B', which near 

path we shall in like manner denote thus 

(A', BI)x ax, (JO 
we may do so by comparing separately the extreme directions of the given path 
(A, B) with those of the three following other infinitely near paths ; 

1st. (A, B)  ax ; 2d. (A, B1 ; 3d. (A' ,B)h: (1(9 

which are obtained by changing, successively and separately, the colour x, the final 

point B, and the initial point A. We are therefore led, by this consideration, to 
examine separately and successively the meanings and uses of the three following 
groupes, out of the twenty-four coefficients of (D9): 

&L 43,3 .3d afT . 1st groupe , ' 8 ' 
x 8x 

' 
8X X 

a 8a 8 X13 ;i 3 Sp 2a' 
groupe 

&L' 80' p' . 2v1 (V ar ' 8,y' a z 
' z az. ' 4 

' ' 8x ' 8,y 
' az. ' 4 ' 

8a 8a 2p p a,,' 8cti 8a.' 813' 8j3' 2j3' 3d groupe -sz7 ' -t-ip -:77' ,Ti--' I7' 7' -Er 3 -817 ' -77-' 8-7 
 

But we may simplify and improve the plan of our investigation, by means of the fol 

lowing considerations. 
Of the three comparisons, of the given path (H9 with the three near paths (K9), 

the third is evidently of the same kind with the second, and need not be treated as 
distinct ; because, of the two extreme points of a luminous path, it is indifferent 
which we consider as initial and which as final. We may therefore omit the third 

comparison (./C'), and confine ourselves to the first and second, that is, we may omit 
the consideration of the third groupe (I]), in forming a theory of the general rela 
tions of infinitely near rays. For a similar reason we may omit the consideration of 
the two last coefficients of the first groupe (V), and so may reduce the study of the 
whole twenty-four to the study of half that number. 

On the other hand, the second comparison (K9 may conveniently be decomposed 
into two : for instead of the arbitrary infinitesimal line BB', connecting the given 
final point B with the near point B', we may conveniently consider the two projec 
tions of this line, on the final element or tangent of the given luminous path, and on 
the plane perpendicular to this element : that is, we may put 
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2 2 2 

BB'  BBd  BB,, (M9 

BBd being the projection on the element, and BB, the projection on the perpendi 
cular plane, and we may consider separately the two near points Bd Bo, upon this 
element and plane, and the two corresponding paths, 

(A, Bd)x, (A, BOY, (N9 
instead of considering the more general near point 13', and the near path (A, R)x. 
In this manner we are led to consider separately, as one subordinate class or set, sug 

8a 43 . . 
gested by the path Al(, Bd )x, the system of the two coefficients z , 

  distinguish ' 

ing these from the eight other coefficients of the second groupe which corres 

pond to the other near path (A, B,)x ; and these eight may again be conveniently 
divided into two distinct classes, according as we consider the changes of final or 
of initial direction. 

We are then led to arrange the twelve retained coefficients of the expressions (D9), 
in four new sets or classes, suggesting four separate problems 

8a 8)3 First set 
-8x -8x 

&t 813 p 

 

Third, 

2l. , Second, 

8a, 2a' 813' 2(3' Fourth, , , , 
(09 

In each of these four problems, the initial point is considered as given, and may be 

supposed to be a luminous origin, common to all the infinitely near paths of which we 

compare the extreme directions. In the first problem, the final point also is given, 
but the colour x is variable ; and we study the final chromatic dispersion of the dif 
ferent near paths of heterogeneous light, connecting the given final point with the 

given luminous origin : whereas, in the three remaining problems, the light is consi 
dered as homogeneous, but the luminous path varies by the variation of its final point. 
In the second problem, the new final point Bd is on the original path, or on that path 
prolonged ; and we examine whether and in what manner the final direction varies, 
on account of the final curvature of that original path. In the thirds problem, the 
new final point B, is on an infinitely small line 

BB,, (Pm 
which is drawn from the given final point of the original path, perpendicular to the 

given final element of that path, namely to the element 

ds=BBd ; (Q9 
and we inquire into the mutual arrangement and relations of the final system of right 
lines which coincide with and mark the final directions of the near luminous paths, 
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at the several near points B, where they meet the given final plane perpendicular to 
the given element ds. In the fourth problem, we consider the initial system of right 
lines, which mark, at the luminous origin, the initial directions of the same near paths 
of homogeneous light ; and we compare these initial directions with the positions of 
the points Ba. Let us now consider separately these four principal problems, respect 
ing the geometrical relations of infinitely near rays. 

Discussion of the Four Problems. Elements of Arrangement of near Luminous 
Paths. Axis and Constant of Chromatic Dispersion. Axis of Curvature of 
Ray. Guiding Paraboloid, and Constant of Deviation. Guiding Planes, and 

Conjugate Guiding Axes. 

15. The first of these four problems, namely that in which it is required to deter 
& 8 mine the final chromatic dispersion, by means of the two coefficients  , , is very 8X 

easily resolved : since we have the following equations for the magnitude and plane of 
this dispersion, 

Final angle of chromatic dispersion  ; 

Final plane of dispersion................. 

ea N2 in   
k-Q UX 

.3(3 
x 

 
.VX 

(R9 

We may geometrically construct the effect of this dispersion, by making the given 
final line of direction of the original luminous path revolve through the small angle 
ax, in which may be called the constant offinal chromatic dispersion, round the 

following line which may be called the axis of final.chromatic dispersion, 

 x  =v, z=0. (S' 8X 8X 

The second problem, which relates to the final curvature of the given luminous 

path, is resolved by the analogous equations, 

Final curvature of ray =?(F2:8a 
2 
 

Plane of curvature ..ngwa   y  x ; 

we have also the following equations for the axis of curvature, that is, for the axis of 
the circle of curvature, or of the final osculating circle to the given luminous path, 

813 1, z=0: (V y  x Tz 

2 

(7 
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and in all these equations of curvature we may, consistently with the notation of the 
Sa da df3 present Supplement, express the coefficients   by the symbols , because dz dz 

they relate to motion along a given luminous path. It is evident that these coeffi 
cients vanish, when the final portion of this path is straight. But when this final 
portion is curved, we may geometrically consti net the effect of the curvature on the 
final direction, by making the final element d revolve through an infinitely small 
angle round the final axis of curvature. 

The two remaining problems are more complicated, because each involves two 
independent variations 8x, 8y, namely the two rectangular co-ordinates of the near 
point B, on the final plane of xy, which point is considered as the final point of a 
near luminous path. The equations of the right line, which is the final portion or 
final tangent of this near path, are, 

x  8 8x  z (-F: av F 8y , 

0[3 I 8Y 8v 8y  z -g;  

and the equations of the right line which is the initial portion or the initial tangent 
of the same near path, are 

(r 

x'  z' 

z 

8x x8.Y 

CP' 8 
80' 
-87; 8Y  

Our third problem is to investigate the geometrical relations of the system of right 
lines (V9), which we shall call final ray-lines, with each other, and IN ith the co-ordi 
nates 8x, 8y ; and our fourth problem is to investigate the connexion of the same 
co-ordinates or variations with the right lines of the system  W9), which may be 
called initial ray-lines. 

The third problem may be considered as resolved, if we can assign any surface to 
which the final ray-lines (17 are normals, or with which they are determinately con 
nected by any other known geometrical relation. Let us therefore examine whether 
the ray-lines of the system (Vs are normals to any common surface, which passes , 

through the given final point of the original luminous path. If so, this surface may be 

considered, in our present order of approximation, as perpendicular to the final rays 
themselves. Now, in general, when rays of a given colour diverge from a given lumi 
nous point, and undergo any number of ordinary or extraordinary and gradual or 
sudden reflexions or refractions, they are, or are not, perpendicular in their final state 
to a common surface, according as the following differential equation 

78z =0 (X0 
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is or is not integrable ; and if there be any one surface perpendicular to all the final 

rays, there is also a series of such surfaces, represented by the integral of this equa 
tion. Hence, in the present question, the normal surface sought is such, if it exist 
at all, as to satisfy the conditions Sz  0, and 

 8ctax +2pay  0 ; (Y9 

that is, if it exist, it must touch the given final plane of xy, and must have contact of 
the second order with the following paraboloid, which may therefore in our prsent 
order of approximation be employed instead of it, 

D2 aa \ x _8)3 .y, =0. ey 

The normals to this paraboloid, near its summit, that is, near the final point of the 

given luminous path, or the origin of the final co-ordinates, have for their approx 
imate equations, 

a. az. -Fz(8-x2x  z0y, 

 z b. -F 8y 
 znav 22: 

if we put for abridgment 
8f3 Za \ n  ( - 

 (Blo ' 

they coincide therefore with the ray-lines (V' when the following condition is satis 
fied, 

8f3 
(09 

which is in fact the condition of integrability of the differential equation (X0), because 
we have made a p vanish by our choice of the axis of z. The condition  010 is 
satisfied, by (F9), when the final medium is ordinary ; and in fact the final rays vile 
ther straight or curved are then perpendicular to the series of surfaces represented by 
the equation 

v const. : (310 

which is, for ordinary rays, the integral of the equation (I'), and gives, as an 

approximate equation of the normal surface at the origin, the following, 
Z2 V Ee V 82 V  8V+1 82V, or 0 =la  X2 

+Zx8y xy -42 ; (E'' 8x2 

agreeing, by (.179), with the equation of the paraboloid (Z9). In general, the condi 
tion  CI" for the existence of a normal surface, may be put, by  G9), under the form 
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N (Z2V 8'1  a'-v (Z277 'v 
&1' \ax8 y iNx i 

 
843 z8:t3 

 
2a8x 

___8`2v 02 V ;2z, \ ;`-'y (82 V 82V 
-8j3' \ OS81 

 
Zaay 1 

 
843 \ 8Y2 

 
8py 

and it is not satisfied by extraordinary rays, except in particular cases. We may how 
ever always consider the paraboloid (Z9 as an auxiliary surface, with which the final 

ray-lines of the proposed system  V9 are connected by a remarkable and simple 
relation. For if we take the rectangular planes of curvature of this paraboloid for 
the co-ordinate planes of xz, yz, and denote the two curvatures corresponding by 
r, t, so as to have the following form for the equation of the paraboloid 

z =-1-r.v2 +2ty2, (G" 
we shall satisfy the condition 

&L 80  
rti +-g; 

 0, (Er 

and may employ the following expressions for the four coefficients of our problem, 
2a &t p 813 
-gx 

 -r, 
.k.T-i 

 n, .x 
  n, Ty 

-t : 

the ray-lines of our system  V' may therefore be thus represented 

x  bx  z (2.8x 1 ay),  
,' (K" 

J  8,/i ---o-, (ay --n8x),  

while the normals to the paraboloid are represented by these equations 

x=x-zrx , y =Sy  zty ; (L10 
from which it follows that the angle av between a ray-line (K" and the correspond 
ing normal (L'b may be thus expressed 

Sy nn, in which 81 ,,Ax2 +Sy2, 

81 being the same small line BB, as before ; and that the plane of this angle v, or 
in other words, the plane containing the ray-line and the normal, has for equa 
tion 

'ax +gy =l2 -z(rx2  tY2 : (N'c 
this plane therefore contains also the right line having for equations 

81`z  10 xa. +gy =0, (0) z  r8x2  t8N2 
' 

(F" 

(I" 

OM 

that is, the axis of the osculating circle of curvature of the normal or diametral section 
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of the paraboloid, of which the line 81 is an element ; and the normal may be brought 
to coincide with the ray-line by being made to revolve round the element through 
an angle Si, proportional to and equal to that element multiplied by the constant n : 
the direction of the rotation depending on the sign of the constant. On account of 
this simple law of deviation of the final ray-lines from the normals of the paraboloid, 
we shall call this paraboloid the guiding surface : and the constant n, we shall call 
the constant of deviation. And we may consider this theory, of the guiding parabo 
loid and the constant of deviation, as containing an adequate solution of our third ge 
neral problem, in the discussion of the geometrical relations of infinitely near rays 
since this theory shows adequately the general arrangement of the final system of ray 
lines (V9), and the geometrical meanings of the third set of coefficients  09), namely, 

2ct Za Zo 813 
&' Zy 

 

The geometrical construction suggested by this theory may be still farther simpli 
fied by observing that the infinitely near normals to the guiding surface, all pass 
through two rectangular lines, namely, the axes of the two principal circles of curva 
ture of the surface ; it is therefore sufficient to draw through any proposed point _13, 
two planes containing respectively these two given axes of curvature, and then to 
make the line of intersection of these two planes revolve round the proposed small 
line or Blia, through the same small angle n8 as before, in order to obtain the 

sought final ray-line for the proposed final point. 
Finally, to compare, as required in the fourth problem, the initial system of ray 

lines (W9 with the corresponding final points B, on the given final plane, we may 
denote these initial ray-lines by the equations 

.il =Y80' . cos. 0', g =z1801. sin. 0', 
if we put 

Sa  SO' . cos. 01, 813' SO'. sin. : 

and if in like manner we put 
Sx =Si. cos. gyp, Sy =.31. sin. I), (R10 

we shall have the following relations, between 0, 81, SO', and the fourth setof par 
tial differential coefficients  09), 

N. cos. 4  (Zic-- cos.  sin. )8/, 

SC sin. la'  cos. 13  -4 
sm. )ot. 

Sp' 

These relations give 

(Pm 

(W 

(S 'o 
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 tan. st, 
tan. 0'  (T'e 

a7 aLT 
tan, 

they enable us therefore to determine, for any given value of 15, that ic, for any pro 
posed direction of the small final line or BB, the corresponding valve of 0', that 
is, the direction of the initial plane of ray-lines, having for equation 

 =x1 tan. II. (310 

Thus the final line and initial plane 0' revolve together, but not in general with 

equal rapidity ; and arbitrary rectangular directions of the one do not in general give 
rectangular directions of the other, because the conditions 

tan. 

4 ud 
tan. 411 

0,1 
FI 

tan. 

Fs y 

tan. 02 , tan.  81. 
Via' 

tan. 4,2 ag: 6,v 

J 

7r  
4,2=01  , 02=01+2, 

(in which IT is the semicircumference to the radius unity, give the following formula 
for the angle (pi, 

0$/: 8 
3' 43' &L' 

av cotan. 2o,  3y 
f8p, \2 /801\2 f&L\I OEL\ 

  

which is not in general satisfied by arbitrary values of that angle. There are how 
ever in general two rectangular final directions determined by this formula, which 

correspond to two rectangular initial planes ; And if we take these rectangular direc 
tions and planes respectively for the directions of x, y, and for the planes of x' z', 

z`, we shall have 

(X' 

We may also in general satisfy, at the same time, by a proper choice of the semiaxes 
of co-ordinates, the following other conditions, 

43' 8a' 431 > 0, > (yo av 2,y 

By this choice of co-ordinates, the relations (S'f are simplified, and become 
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sot. cos. 0 =--x . n. COS. i; 

so'. sin. (p.'  ,37213' 
.a. sin. 4 

while the equations (W9 of the initial ray-lines reduce themselves to the following, 

by  =z  8Z; d =de 
-:yw' ay . (A" 

2ce 

If, then, these initial ray-lines form a circular cone having for equation 

an  y2  d220,2, (B" 

the corresponding locus of the final point B on the final plane of ay, will not in 

general be a circle, but an ellipse, having for its equation 

 88-xa 

1 2 
aX 2  

(r)2 
2  2z'2' 

of which, by  Y"), the axis of x coincides with the least and the axis of y with the 

greatest axis ; and reciprocally if the final locus be a circle having for equation 

42  ay2=a12, (D" 

the initial cone of ray-lines will have for equation 

x'2Cal )...2  
1 
CPT r2 az. y 

2  d2 d2 , 
Y 

so that its perpendicular sections are ellipses, having their greater axes in the plane of 
x' zi, and their lesser axes in the plane of y' z'. It is evident that a circle equal to 
the final circle (DI' may be obtained from the elliptic cone (E"), by cutting that 

elliptic cone by any one of the four following planes, 

 (Fa-.    Y Al- CP' Y2 
8c 

8x all -1; an 

and in like manner the four elliptic sections of the circular cone (B"), made by the 
same four planes, are all equal and similar to the final ellipse (C"). In general it is 

easy to prove by the equations of the initial ray-lines (A"), that whatever final locus 
we take for the point B represented by the equation 

8.Y =f (ax), (G" 

the corresponding initial cone 

yr 131 -I ix, ,2171 .__1 
Z-7 -----2y   f (-7z (Ix   (H" 
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will have four sections equal and similar to this final locus, namely, the sections by the 
four planes (F"). We may therefore consider these as four guiding planes for the 
initial ray, since each contains for any proposed final curve or locus (G" of the .final 
point B an equal and similar guiding curve or locus, which is a section of the 

sought initial cone, and by which therefore that cone may be determined. If, then, 
we. know these four guiding planes, or any one of, them, and the corresponding sys 
tem of final and initial rectangular directions, or conjugate guiding axes, of which 
two are determined by a guiding plane, we shall be able to construct the initial ray 
line or ray-cone corresponding to any final position or locus of the point B,. The 
fourth and last general problem of those proposed above, may therefore be considered 
as resolved, by this theory of the guiding planes and guiding axes. 

We see then that in order to compare completely the extreme directions of any 
two near luminous paths 

(A, B)x, (A', B'),, a, 

in which A is the initial and B the final point of a given path, and A', B', are any 
other initial and final points infinitely near to these, the following geometrical elements 
of arrangement,, or some data equivalent to them, are necessary and sufficient to be 
known. 

First. The qfinal axis, and the initial axis, of chromatic dispersion ; and the corres 

ponding final and initial constants with their proper signs, to indicate the direc 
tions, as well as the quantities of dispersion. 

Second. The final axis, and the initial axis, of curvature of the given path. 
Third. The final pair, and the initial pair, of axes of curvature of the guiding 

paraboloids, at the ends of this given path ; and the final and initial constants of 
deviation n, n'. 

Fourth. A guiding plane for the initial ray-lines, and a guiding plane for the final 
ray-lines ; together with the final system and the initial system of rectangular direc 
tions, or conjugate guiding axes, connected with these guiding planes. 

When these different elements of arrangement of the extreme ray-lines arc known, 
we can deduce from them the dependence of &amp;t, 8p, 2a 8P`, and more generally of 
act, 213, 87, 8a, 2)3,. 8y', on Sz, , az' , .3x; and reciprocally when this latter 
dependence has been deduced from the partial 'differential coefficients of the charac 
teristic or related functions, we can deduce from it the geometrical elements above 
mentioned. 
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Application of the Elements of Arrangement. Connexion of the two final Ver. 

gencies, and Planes of Vergency, and Guiding Lines, with the two principal 
Curvatures and Planes of Curvature of the Guiding Paraboloid, and with the 
Constant of Deviation. The Planes of Curvature are the Planes of Extreme 

Projection of the final Ray-Lines. 

16. To give now an example of the application of these geometrical elements of 

arrangement, let us employ them to determine the conditions of intersection of two 
near *final ray-lines, corresponding to a given colour and to a given luminous origin ; 
and let us suppose, for simplicity, that one of these two straight ray-lines being the 
final portion or final tangent of a given luminous path (A, B)x, the other corres 

ponds (as in the third of the foregoing problems to a final point 13, on the given 
final plane perpendicular to this given path at B. Then if the constant n of devia 
tion vanishes, so that the final ray-lines are normals to the guiding paraboloid, the 
condition of intersection requires evidently that the near point B, should be in one 
of the two principal diametral planes, that is, on one of the two rectangular tangents 
to the lines of curvature on this surface ; and the corresponding point of intersection 
must be one of the two centres of curvature. But when n does not vanish, the 
deviation of the ray-lines obliges us to alter this result. The intersection of the near 

ray-line with the given ray-line will not now take place for the directions of the lines 
of curvature ; but for those other directions, if any, for which the angular deviation 
n21 of the ray-line from the normal is equal and contrary to the angular deviation of 
the normal from the corresponding plane of normal section, that is, from the corres 

ponding diametral plane of the guiding paraboloid. This latter deviation, abstract 

ing from sign, is, by the general properties of normals, equal to the semidifference of 
curvatures multiplied by the element of the normal section d, and by the sign of 
twice the inclination of this element to either of the lines of curvature ; it cannot 
therefore destroy the deviation n2 of the ray-line from the normal, unless the semi 
difference of the two principal curvatures of the paraboloid is greater, or at least not 
less, abstracting from sign, than the constant of deviation n ; this then is a necessary 
condition for the possibility of the intersection sought. But when the semidifference 
of curvatures is greater (abstracting from sign than n, then there are two distinct 
directions Pi , P2, of the normal or. diametral plane of section, symmetrically placed 
with respect to the two principal planes of curvature, and such that if the element of 
section SI be contained in either of these two planes, Pi, 132; (but not if the element 
a be in any other normal plane,), the corresponding ray-line from the extremity of 
that element will be contained in the same normal plane P1 or P,, and will intersect 
the given ray-line as required ; and the point of intersection of these two near ray 
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lines will be the centre of curvature of the corresponding normal section. We may 
therefore call the curvatures of these two diametral sections the two vergencies of the 
final ray-lines ; and the two corresponding planes P1 P2 we may call the two planes 
of vergency. 

The same conclusions may be deduced algebraically from the equations (K10), which 

give the following conditions of intersection of a near ray-line with the given ray 
line or axis of z, 

0 (z -r 8x -ny ; 0  (z -1 ky ; (I" 

z being the sought ordinate of intersection, and therefore z -1 the vergency for thus 
we find by elimination the following quadratic to determine the ratio of 8x,.//b. that 
is the direction of al, 

(t -r)xaty =n +WI (K" 
which may be put under the form 

sin.  2n 
t 

the angle being, as in (B10), the inclination of 431 to the axis of x, that is, to one of 
the tangents of the lines of curvature, while r, t, are the two curvatures themselves, 
of the guiding paraboloid ; there are therefore two real directions of 81, or one, or 
none, corresponding to the intersection supposed, according as we have 

(1.--171 
2 
>, or  2 , or &lt; n2' (1\1" 

so that we are thus conducted anew to the same conditions of reality, and to the same 

symmetric directions of the two planes of vergency, which we obtained before by a 

reasoning of a more geometrical kind. The same conditions may also be obtained by 
considering the quadratic for the vergency itself, namely 

(z r (z t +71,2  0, (N" 
which results from the equations (I" and shows that the sum and product of the two 

vergencies may be thus expressed, by means of the curvatures r, t, and the constant 
of deviation n, 

-Ft; zrt z24=rt  n2. 

The equations (I" give also, by elimination of n, 
z--1 r cos. 02  t sin. ; 

we see, therefore, as before, that the two vergencies, when real, of the final ray-lines, 
are the curvatures of the two corresponding sections of the guiding paraboloid. In 

general the centre of curvature of any section of this surface, made by a normal plane 
drawn through the given final ray-line, is the common focus by projection of all the 

(L" 

(0" 

(P" 
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near ray-lines from the points of that section ; that is, the projections of these near 

ray-lines on this plane, all pass through this centre lof curvature. The two rectangu 
lar planes of curvature, or principal diametral planes, of tlw guiding paraboloid, 
may therefore be called the planes of extreme projection ; under which view they 
were considered in the First Supplement, for the case of an uniform medium, and 
were proposed as a pair of natural co-ordinate planes passing through any given 
straight ray. The two planes of vergency, for the case of straight final rays, were 
also considered in that First Supplement, in connexion with the two developable pencils 
or ray-surfaces which pass through a given straight ray, and of which the two tangent 
planes contain rays infinitely near, and therefore coincide with the two planes of 

vergency. 
When the planes of vergency are real and distinct, then, whether the final rays are 

straight or curved, there exist two guiding lines perpendicular to the given final ray 
line, which are both intersected by all the near final ray-lines from the points B, on 
the given final plane of xy, and which therefore suffice to determine the geometrical 
arrangement and relations of that system of final ray-lines. To prove the existence 
and determine the positions of these two guiding lines, let us examine what conditions 
are necessary and sufficient, in order that a right line having for equations 

y=x tan. z Z, (Q'1 

should be intersected by all the near final ray-lines of the system (KR,.  These con 
ditions ate 

=r +n cotan.  t---n tan. ; (W' 
they give 

and 

when therefore 

2n 
sin. 2:1 t-r 

(Z---r (Z-1-0 +n2=0: (T11 

(t -7)2 >4n2, (U" 

that is, when there are two real vergencies there are also two real guiding lines of the 
kind explained above ; and these two guiding lines are contained in the two planes of 

vergency, and cross the final ray-line in the two corresponding points in which it is 
crossed by other ray-lines of the same system : the intersection of each guiding line with 
the given final ray-line being the point of convergence or divergence of the near ray 
lines contained in that plane of vergency which contains the other guiding line. When 
the constant of deviation n vanishes, these guiding lines are necessarily real, and are 
the axes of the two principal circles of curvature of the guiding paraboloid. And when 
the final rays are straight, then, whether n vanishes or not, the two guiding lines (if 

VOL. XVII. 
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real are tangents to the two caustic surfaces ; that is, to the two surfaces which me 
touched by the ,final rays, and are the loci of the two points of vergency. If the 

guiding lines are imaginary then the points of vergency are so too, and the final rays 
are not all tangents to any common surface. We shall have occasion to resume here 
after the theory of the caustic and developable surfaces. 

If it happen that 
t  r  4 2n, (V" 

without t -r and n separately vanishing, then the two planes of vergency close up 
into one plane, bisecting one pair of the right angles formed by the two principal 
planes of curvature of the guiding paraboloid , the two vergencies reduce themselves 
to a single vergency, corresponding to this single plane, and equal to the semisum of 
the two curvatures of the same surface : and the two guiding lines reduce themselves 
to a single guiding line, passing through the corresponding point of convergence or 

divergence, and having still the property of being intersected by all the near final 

ray-lines, although this property is not now sufficient to determine this system of ray 
lines. 

But if the two members of  V" vanish separately, that is, if the difference of 
curvatures and the constant of deviation are separately equal to zero then the guiding 
paraboloid is a surface of revolution, having its summit at the given final point B, and 
all the near final ray-lines are normals to this paraboloid of revolution, and (with the 
same order of approximation to the osculating sphere at its summit, and they all pass 
through the centre of this sphere. Reciprocally, if there be any one point 0, 0, Z, 
through which all the final ray-lines pass, the equations (.1Co give 

n=0, t=2.=Z-i: (Wu 

and the more general equations (Vs), in which the rectangular axes of .v and y are 

arbitrary, give 
&I  43 
ax--6 

  Z-1 , 

that is, by  G'), or (C), 
ev , -1 ail ..__.3-11, 
az2  " ace taaz ' 

8tvz -1 ev _et ;2v 
my 

 
&lap 8a8y Spar' 

2Vor-, 8'v .....Z2V 
TTY 

 Lj 
437 

--. 
43i 

 

?1 , L  0  
4 ' SO  

.E. 
 0 , (X" 

5 

(Y" 

When the final rays are straight, and satisfy these last conditions  Y"), which then 
reduce themselves to the following, 
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Z,2V ;2 V 82V Z9-V 
8x Z-1  4  0  0, (Z11 8a2 saay Za '412 

the given final ray becomes one of those which we have called principal rays in for 
mer memoirs, and the point of convergence or divergence 0, 0, Z, is what we have 
called a principal focus. 

Second Application of the Elements. Arrangement of the Near Final Ray-lines 
from an Oblique Plane. Generalisation of the Theory of the Guiding Parabo 
loid and Constant of Deviation. General Theory of Dejlesures of Surfaces. 
Circles and Axes of Dviexure. Rectangular Planes and Axes of Extreme De 

&amp;flexure. Deflected Lines passing through these Axes, and having the Centres of 
Deftexure for their respective Foci by Projection. Conjugate Planes of De flexure, 
and Indicating Cylinder of Deflexion. 

17. The foregoing theorems respecting the mutual relations of the final ray-lines, 
suppose that the near final point .73, is on the given plane which is perpendicular to 
the given luminous path (A, B)x at its given final point B : but analogous theorems 
can be found for the more general case where the near final point B' is not in this 

given perpendicular plane, by combining the solutions of the second and third of the 
four problems lately discussed ; that is, by considering jointly the second and third 
sets of coefficients  0'), and therefore by employing the following equations for a 
final ray-line, 

X=SX+z (La SX 
-f-F; Sy  ?1; z, 

(813 2x +s 
.813 2 y .Y 4 & =.3y  z 
y z 

If, in these equations, we establish no relation between Sx, Sz, then the system of 
these final ray-lines (A 12 is what has been called (in my Theory of Systems of Rays 
a System of the Third Class, because the equations of a ray-line in this system in 
valve three arbitrary elements of position, namely, the co-ordinates 4., Zz, of the 
near point B' ; but to study more conveniently the properties of this total system of 
the third class, we may decompose it into partial systems of the second class, that is, 
systems with only two arbitrary elements of position, by assuming some relation, with 
an arbitrary parameter, between the three co-ordinates 2x, y, 8; or, in other words, 
by assuming some arbitrary and variable surface, as a locus for the near point H. 
For example we may assume, as this locus, an oblique plane passing through the given 
point B, and having for equation 

=Ax q.3y, , (JP 

(A" 
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in which one of the two parameters p, q, is arbitrary, and the other depends on it by 
some assumed law ; and then, for every such assumed plane locus (B"), we shall have 
to consider a partial system of the second class, deduced from and included in the 
total system of the third class (A 12 ; namely, a system in which the equations of a 
ray-line are follows, 

x=8.v+z(--Fv.8"  p r,z8a Sx  z 
(-La 

 T&amp;s,t 8.7j ; 

y =8y  z(  p  z 
(V q 8y. 

Let us therefore consider the geometrical arrangement and properties of this system 
of final ray-lines  C"), corresponding to the oblique plane locus (B' of the final 

point B'. 
The system  C 12), of ray-lines from the arbitrary oblique plane (B 12), includes, as 

a particular case, the system of ray-lines from the plane of no obliquity : that is, the 

system (V9), considered in a former number. And as the ray-lines of that particular 
system (V' were found to have a remarkable connexion with the guiding paraboloid 
(Z9), which touched the given perpendicular plane locus of the near final point 13,, 
and which satisfied the differential condition of the second order (179 : so, the ray 
lines of the more general system  C'2 may be shown to be connected in an analogous 
manner with the following more general paraboloid, which satisfies the same differen 
tial condition  Y9), and touches the more general oblique plane locus (H2 at the 
given final point B, 

z  pa;  qy  lrx2  say  ;t,2; (D12 
in which p, q, retain their recent meanings, and the coefficients r, s, t have the follow 

ing values, 

Ca  p Sa ; t CO 4 q80 ; 

ao 0 8m\ 
s 

-E-87.1-1-p Fz   

But in order to develope this more general connexion, between the ray-lines  C"), and 
the paraboloid (D"), it will be useful previously to establish some general theorems 

respecting the deflexures of curved surfaces, which include some of the known theo 
rems respecting their curvatures and planes of curvature. 

Let us then consider the paraboloid (D'2), or any other curved surface which has, 
at the origin of co-ordinates, a complete contact of the second order therewith, and 
which is therefore approximately represented by the same equation : that is, (on account 
of the arbitrary position of the origin, and arbitrary values of the coefficients p, q, r, s, t, 
any surface of continuous curvature, near any assumed point upon this surface. The 

tangent plane at this arbitrary point or origin, has for equation 

r' 
(E" 
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z =px qy (F12 

and the deflexion from this tangent plane, measured in the direction of the arbitrary 
axis of z, which we shall call the axis of deflexion, or in any direction infinitely near 
to this, is, for any point B' infinitely near to the point of contact B, 

Deflexion  82z  2 r8 x2  s&amp;ay  2 0:y2. (G12 

This deflexion depends therefore on the perpendicular distance 81 of the near point 
B' from the axis of deflexion, and on the direction of the plane containing this point 
and axis ; in such a manner that if we put, as in (R10), 

2x a. cos. 0, 8ty  8l. sin, 0, 

and give the name of deflexure (after the analogy of the known name curvature to 

the quotient 2 , that is, to the double deflexion divided by the square of the per 

pendicular distance from the axis of deflexion, we shall have the following law of 

dependence of this deflexure, which we shall denote by f, on the angle 0, 

Defiexure - r cos. 02  Qs cos. sin. t sin. 02. (H12 

There are, therefore, two rectangular planes of extreme deflexure, corresponding to 

angles 0 02, determined by the following formula, 
2s 

tan. 2(1 ; (112 

and if we take these for the co-ordinate planes of xz, yz, and denote the two extreme 

deflexures corresponding byfi, f21 we have 

r=f, .3=0, t=f2, 

and the general formula for the deflexure becomes 

f=fi cos. 02 +f2 sin. 02 (L12 

which is analogous to, and includes, the known formula for the curvature of a normal 
section. And as it is usual to consider a system of circles of curvature, for any given 
point of a curved surface, namely, the osculating circles of the normal sections of 
that surface, so we may now more generally consider a system of circles of deflexure : 
namely, in each plane of deflexure 0, a circle passing through the given point of the 
surface, and having its centre on the given axis of deflexion, and its curvature equal 
to the deflexure f; so that the radius of this circle, or the ordinate of its centre, 

1 which we may call the radius of deftexure,  and so that the equations of the circle is 
f 

of deflexure are, 
2z 

y =.'C tan. 0, x2 y2  Z2  . (mu 
VOL. XVII. 
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We may also give the name of axis of deflexure, to the axis of this circle, that is, to 
the right line having for equations 

y -x cotan. 0, z 1 : (Nu  

and we easily see that there are two principal circles of deflexure, analogous to the 
two principal circles of curvature, namely, the two circles having for equations 

2z 
First y 0, X2  z2   ; f1 

2z 
Second x=0, y2  z2   , f2 

and two principal rectangular axes of de, flexure, namely, 
I I 

First x  0, z   ; Second y  0, z   . 
J1 12 

These principal axes of deflexure are analogous to the principal axes of curvature, 
that is, to the axes of the two principal osculating circles of the normal sections, in 
the less general theory of normals. And as, in that theory, the near normals all pass 
through the two principal axes of curvature, so we may now consider a more general 
system of right lines, which we shall call the deflected lines, all near the arbitrary axis 
of deflexion, and all passing through the two corresponding principal axes of deflexure, 
and therefore having for equations, 

x =Sx  zf, fix, y =ay  zj; .3y, (Q12 
when the co-ordinates are chosen as before. These deflected lines are normals, 
in the present order of approximation, to the locus of the circles of deflexure (M12), 
that is, to the surface of the fourth degree 

2z (e  0, X2  iy2  v, ..n. (R12 fl X2. +f2 Y2 ' 

and they might be defined by this condition, or by the condition that they are nor 

mals, in the same order of approximation, to the following paraboloid, 

z  1 (fl x2 112 y2 , (512 

which osculates to the locus (R'2), and has the property that its ordinates measure 
the deflexions (G12 of the given surface. 

A deflected line of the system  Q'2  1 in the corresponding plane of deflexure 

?Ax=xy, (T12 
if that plane coincide with either of those two principal rectangular planes of deflex 

ure, which we have taken for co-ordinate planes ; but otherwise the deflected line 
makes with the plane of deflexure an infinitesimal angle 4, expressed as follows, 

(U'2  2 (f1-f2 l. sin. 2 0 : 

(0' 
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this angle, therefore, is equal to the semidifference of the extreme deflexures multi 

plied by the infinitesimal perpendicular distance from the axis of deflexion, and by the 
sine of twice the inclination j of this perpendicular (or of the plane of deflexure 

containing it to one of the two rectangular planes of extreme deflexure. In this 

general case, the deflected line  Q'2 does not intersect the given axis of deflexion, 
which we have made the axis of z ; but the deflected line  Q" always intersects its 
own axis of deflexure (N'2), in a point of which the co-ordinates may be thus ex 

pressed 
 8,k n. 

1 
x 

7. 
sin. 0, y  cos.0, z  , (1712 f 

' . 

the symbols f, 4, and 4, retaining their recent meanings. It is easy also to see that 
if a near deflected line be projected on the corresponding plane of deflexure, the pro 
jection will cross the axis of deflexion in the centre of the circle of deflexure ; and 
therefore that this centre of deflexure may be considered as afocus by projection, and 
that the planes of extreme dejlexure are planes of extreme projection. 

The foregoing results respecting the deflexures and deflected lines of a curved 
surface, near any given point upon that surface, and for any given axis of deflexion, 
may easily be expressed by general formulae extending to an arbitrary origin and arbi 

trary axes of co-ordinates. If, for simplicity, we still suppose the co-ordinates rectan 

gular, and still take the given point upon the surface for origin, and the given axis of 
deflexion for axis of z, but leave the rectangular co-ordinate planes of xz and yz 
arbitrary, so that the coefficient s in the equation of the surface shall not in general 
vanish, then the equations of a deflected line become 

x =8..v -z (ray  s8y), y =.7j -z (ax  ay ; (W'2 
since the equation of the paraboloid  '2), to which they are nearly normals, and of 
which the ordinates measure the deflexions (G'2 of the given surface, becomes 

z=l-re -Fsxy +W. (X12 

The deflexure for any plane 0 is expressed by the general formula (H12 ; and in like 
manner the general formulae (mu (N'2 determine still the circle and axis of deflex 
ure. The two principal planes of deflexure, (pi, 02, are still determined by the for 
mula (112), while the corresponding extreme deflexures, f , f2, are the roots of the 
following quadratic 

f 
2 
-f (r +0+11-52=0: (y12 

and the angular deviation 84 of a deflected line from the corresponding plane of 
deflexure, is thus expressed, 

4 =-1 (ji -f2). sin. (20 - 294).U (r 2 
1 
. sin, 20  s. cos. 20 81. (Z12 
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Before we proceed to apply these general remarks on the deflexures of surfaces to 
the optical question proposed in the present number, that is, to the study of the con 
nexion of the ray-lines  C 12 with the paraboloid (D"), we may remark that the 

theory which M. DUPIN has given, in his excellent Developpements de Geomarie, of 
the indicating curves and conjugate tangents of a surface, may be extended from cur 
vatures to deflexures. For if we consider the deflexion (282z =1,p12 in the given 
arbitrary direction of z as equal to any given infinitesimal quantity of the second 
order, that is, if we cut the given surface by a plane 

z -px =A82z =deflexion const. , (A'3 

Varallel and infinitely near to the given tangent plane (F"), we obtain in general a 

plane curve of section which may be considered as of the second degree, namely, the 
indicating curve considered by M. DUPIN, of which the axes by their directions and 
values indicate the shape of the given surface near the given point, by indicating its 
curvatures and planes of curvature. This indicating curve is on the following cylin 
der of the second degree, which has for its indefinite axis the axis of deflexion, and 
which we shall call the indicating cylinder of deflexion, 

rx2  2sxy  ty2 =82z const. (B'3 
and it is easy to see that the two principal planes of deflexure, 951, 02, are the princi 
pal diametral planes of this indicating cylinder, and that the two principal deflexures 

f2 positive or negative, are equal respectively to the given double deflexion 
82z divided by the squares of the real or imaginary principal semidiameters or 
semiaxes of the cylinder, perpendicular to its indefinite axis. In general, the 

positive or negative deflexure f, corresponding to any plane of deflexure i, is equal 
to the given double deflexion 82z divided by the square of the real or imaginary semi 
diameter of the cylinder, contained in this plane of deflexure, and perpendicular to 
the axis of deflexion, that is, to the indefinite axis of the cylinder. Hence it follows, 
that if we consider any two conjugate diametral planes 15, cp which we shall call con 

tiugate planes of deflexure, and which are connected by the relation 

0 =r  s (tan. p  tan. 0,  t, tan. (13 tan. 0 (C'3 

the sum of the two corresponding conjugate radii of defiexure, -1 +1 , is constant, and 
f 

equal to the sum of the two extreme or principal radii : that is, we have 
1 11 1 D" ( 7f,b=f1-4-A' 

a relation which might also have been deduced from the general expression for 
the deflexure, without its being necessary to employ the indicating cylinder. We may 
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remark that any two conjugate planes of deflexure, connected by the relation  C 13), 
intersect the tangent plane of the surface in two conjugate tangents of the kind 
considered by M. DUPIN. 

Let us now resume the system of ray-lines  C"), of which the equations may be 
put by (E 12 under the form 

as =as  z (rSa  say  viSy, , 
(E" 

y  y  z (sax  t8ey  znSai , 
if we make 

I 
, p as 8f3 aa 71  (._. 

   __....  2 sx ay -r a.7 az : (F" 

and let us compare these ray-lines with the deflected lines from the auxiliary parabo 
loid (D'2), which have for equations 

x =,32.  z (rSx  ay , y =.3y  z (sSx  thy). (w12 

We easily see, by this comparison, that the infinitesimal angle of deviation &, of a 

ray-line (E 13 from the corresponding deflected line (W"), is still determined by the 
same formula (M10 

2v =n2/, 

as in the simpler theory of the guiding paraboloid explained in the fifteenth number ; 
that is, this angular deviation v is still equal to the perpendicular distance 81 of the 
near final point from the given final ray-line, multiplied by a constant of deviation n. 
The plane of this angle 8v, that is, the plane containing the ray-line (E'3 and the 
deflected line  W712), has for equation 

x&e - 1 y8y =812  z (r8x2  2s&rj  ty2), (G" 

and therefore contains the right line having for equations 
&a 2y2 x8s  y2ty  0, z 2 ' (H13 n3x2+288x8y -1-t4 

that is, the axis of deflexure (N"). results which are analogous to those of the 
fifteenth number, expressed by the equations (N10 (go,:  And we may construct 
the final ray-line (E 13 by a process of rotation analogous to that already employed, 
namely, by making the deflected line (W"), which passes through the two rectan 

gular axes of deflexure of the auxiliary paraboloid (D'2), revolve round the perpen 
dicular Zl, through the infinitesimal angle 2v, proportional to that perpendicular. The 

theory, therefore, of the guiding paraboloid and constant of deviation, which was 

given in the fifteenth number, for the ray-lines from the near points B, on the final 

perpendicular Plane, extends with little modification to the ray-lines from the points 
B' on any final oblique plane locus passing through the given final pointe: namely, 

VOL. XVII. 2 A 
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by employing a more general auxiliary paraboloid, and by considering deflexures and 
deflected lines, instead of curvatures and normals. And we may transfer to this more 
general auxiliary paraboloid, and to its connected constant of deviation, the reason 
ings of the sixteenth number, respecting the system of final ray-lines ; for example, 
the reasonings respecting the foci by projection, and those respecting the condition of 
intersection of such ray-lines. And since for any given values of p, q, that is, for 
any given position of the oblique plane (B'2), we can construct the new auxiliary 
paraboloid (D12), and its new constant of deviation (F 13), by the coefficients 

8v.20 & 813 2 80 
8v ' az. ' 8y 

' 
4 

' 8z ' 8z , 

that is, by means of the former guiding paraboloid (Z 9 and the former constant of 
deviation (W), and by the magnitude and plane of curvature  T' of the final ray, 
we may be considered as having reduced the theory of the geometrical arrangement 
and relations of the system of final ray-lines  C 12), from an oblique plane (B") to 
the theory of the elements of arrangement, which was given in the fifteenth number. 

Construction of the New Auxiliary Paraboloid, (or of an Osculating Iltyperboloid,  
and of the New Constant of Deviation, for Ray-lines from an Oblique Plane, 
by the former Elements of Arrangement. 

18. To construct the new auxiliary paraboloid (LI" by the former elements of 

arrangement, we may observe that this new paraboloid not only touches the given 
oblique plane (B" at the given final point B of the original luminous path, but 
osculates in all directions at that given point to a certain hyperboloid, represented by 
the following equation, 

 2 2[3 z  px  qy  A r ox2  s oxy  to y2 -1z x--i.-.;-Ey..); (I" 

in which ro so to are the particular values 
2a 

2'0  --S    -8-; , o --,-2 -i 
  i; i 

y' 0  --9 
8y 

1 
Ca 

2P \ 4.  80 
(K13 

of the coefficients r s t, deduced from the general expressions (E" by making 

p=0, 9=0, (L" 
that is, by passing to the case of no obliquity ; so that the equation (Z9 of the guiding 

paraboloid may be put under the form 

z =170x2  soxy  A to,y2, (M13 

which includes the form  G"). Reciprocally, the sought paraboloid (D" is the only 

paraboloid which has its indefinite axis parallel to the given final ray-line, and oscu 
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lates in all directions at the given final point to the hyperboloid (P3 : it is therefore 
sufficient to construct this osculating hyperboloid, in order to deduce the sought para 
boloid (D"). We might even employ the hyperboloid as a new guiding surface for 
the ray-lines from the oblique plane, instead of employing the paraboloid, since thes 
two osculating surfaces have the same deflexures and deflected lines, near their given 
point of osculation. 

Now to construct the osculating hyperboloid (Ps), by the oblique plane (B'2 or 

(F12), and by the former elements of arrangement, that is, by the guiding paraboloid 
2a p 

(m"), and by the coefficients -az , -8z , which determine the magnitude and plane of 

curvature of the final ray, we may compare the sought hyperboloid (I 13 with the 

following new paraboloid 
z =px  qty +1 r ox2  s oxy  2t,,y2, (IV' 

which may be called the guiding paraboloid removed, since it is equal and similar to 
the guiding paraboloid (M13), and may be obtained by transporting that guiding para 
boloid without rotation to a new position such that it touches the given oblique plane 
at the given point. The intersection of the hyperboloid (Ps and paraboloid (N"), 
consists in general of an ellipse or hyperbola in the given plane 

z =0, (013 
perpendicular to the given final ray, and of a parabola in the plane 

8a ap  x  y   v, (pa 'Sz z 

which contains the given final ray-line or ray-tangent, and is perpendicular to the 
final plane of curvature of the ray. If then, we make this final plane of curvature 
the plane of xz, so that its equation shall be 

y=0, 
and so that, by  T9), 

213 =0' (Rn 

we shall have the following equations for the two curves of intersection ; first, for the 

ellipse or hyperbola, 
z =0, yx  qy  2r ox2  soxy  2-toy2 =0 , (s13 

and secondly, for the parabola, 
x=0, z=v+,12-tcy2: (73 

and these two curves may be considered as known, since they are the intersections of 
two known planes with the known guiding paraboloid removed to a known position. 
To examine now how far a surface of the second degree is restricted by the condition 

(QI3 
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of containing these two known curves, and what other conditions are necessary, in 
order to oblige this surface to be the hyperboloid sought, let us employ the following 
general form for the equation of a surface of the second degree, 

Ax2 +By'  Cz2 +.Dxy  Eyz +Fzx  Gx  _Hy  .1z  K=0, (U13 
and let us seek the relations which restrict the coefficients of this equation when the 
surface is obliged to contain the two known curves. The condition of containing the 

parabola  T 13), gives 
K=0, H -.4, _E=0, 0=0, B=-11to, (V' 

so that, by this condition aline, the general equation  U'' is reduced to the follow 

ing form, 

z =g  1 toy2  -i. (GhFz+Dy+Ax). (W" 

In order that this less general surface of the second degree, (TV's), should contain 
the ellipse or hyperbola (S"), it is necessary and sufficient that we should have the 
relations, 

G -Ip, D -Is., A --1-Iro: (X" 
the general equation, therefore, of all those surfaces of the second degree which con 
tain at once the two known curves (S" (7713), involves only one arbitrary coeffi 
cient, and may be put under the form 

z =px  qy  1r ox2  soxy +V. +Xxz. 

This general equation, with the arbitrary coefficient A, belongs to the guiding parabo 
loid removed, that is, to the surface (N"), when we suppose 

X=0; (Z13 
and the same general equation belongs by (R" to the sought hyperboloid (I"), when 

A  ......1 La (A14 2 8z  

To put this last condition under a geometrical form, let us, as we have already consi 
dered the intersections of the hyperboloid with the two rectangular co-ordinate planes 
of xy and yz, consider now its intersection with the third co-ordinate plane of xz, 
that is, with the plane of curvature  Q13 of the given final ray. This intersection is 
the following hyperbola, 

(B14 y =0, z=px -1 --1-r0x2 -1 -8a z 2 82, x   

and the corresponding intersection for the surface  Y13 is 

y =0, z =px+-1-rox2 +X ; (C'4 
the condition (A'4 is therefore equivalent to an expression of the coincidence of these 
two intersections ; and if we oblige the surface of the second degree  U" to contain 
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the three curves (S" (71'3)(B"), in the three rectangular co-ordinate planes, we 
shall thereby oblige it to become the sought hyperboloid (113). It is not necessary, 
however, though it is sufficient, to assign the hyperbola (B'4), as a third curve upon 
this hyperboloid. For, in general, if we know the intersections of a surface of the 
second degree with two known planes, there remains only one unknown quantity in 
the equation of that surface, and the intersection with a third known plane is more 
than sufficient to determine it. Thus, in the present question, if the intersection 

 C 14 be distinct from the following parabola 

y=0, z=px+-,12rox2, (D14 

that is, if the surface  Y13), containing the two known curves (S13 (7'3), be dis 
tinct from the known guiding paraboloid removed, which also contains the same two 

curves, the intersection (CH with the plane of curvature of the ray is in general a 

hyperbola, which touches the known parabola (D" at the known origin of co 
ordinates, and meets this parabola again in another known point on the axis of x, 
that is on the radius of curvature of the known final ray, namely, in the point 

2/9 x  , y=0, z=0, ro 
the hyperbola  CH has also one asymptote parallel to the known final ray-line or axis 
of z, namely, the asymptote having for equations 

1 
x -, y=0, (F14 

and it will be entirely determined, if, in addition to the foregoing properties, we know 
also a line parallel to its other asymptote, namely, to that which has for equations 

ri 1 2p , X =-- --,z(-- z - --y=0: (G14 r 24 A ' 

it will therefore be obliged to coincide with the hyperbola (B14), if only we oblige its 
second asymptote  G" to be parallel to the following known right line, 

z 2a 
(04 X  T -8.-; ' Y=t' 

in which the coefficient 
1 8acurvature of final ray I  (" 
r. 8z de flexure of guiding paraOoloid ' 

the plane of the deflexure r0 being the plane of curvature of the ray. We see, then, 
that this last condition, respecting the direction of the second asymptote  G14 of the 
hyperbolic section (Cu), is sufficient, when combined with the conditions of contain 
ing the two known curves (S" (T"), to determine completely the sought hyperbo 
loid (I"). Even the conditions of containing the two curves (S 13  T" are not 

perfectly distinct and independent ; nor would their coexistence be possible, in the 
VOL. XVII. 2 B 
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determination of a surface of the second degree, if the two points in which the para 
bola  T13 is intersected by the axis of y, that is, by the intersection-line of the planes 
of the two curves, namely, the origin and the point 

22 
(Ku x=0, y z=0, 

to 
were not also contained on the ellipse or hyperbola (S13). But we may confine our 
selves to the last chosen conditions, of having these two known curves as the inter 
sections of the hyperboloid with two known planes, and of having known directions 
for the asymptotes of its hyperbolic curve of intersection with a third known plane, 
as adequate and sufficiently simple conditions for the construction of the sought 
hyperboloid, and thereby of the auxiliary paraboloid (D12), to which that hyperboloid 
osculates. And with respect to the new constant of deviation n, connected with this 

auxiliary paraboloid, we may put its general value (F 13 under the form 

n=n +1p-8p -19' -2ct 0 2 az 2 8z  (L" 

no being the particular value 
813 

&L no  2 kax (m4 

for the plane of no obliquity, that is, the value (B'l connected with the guiding para 
boloid (Z9 in the theory of the elements of arrangement which was given in a former 
number : we may therefore construct the new constant n, as the ordinate z of a plane 

z =px  qy  no (NH 

which is parallel to the given oblique plane (B"), and contains the point 

x=0, y=0, z no, (014 
so that it intersects the axis of z at a distance from the origin  the old constant of 
deviation no. The other co-ordinates x, y, to which the ordinate z  n corresponds, 
are 

y=-1--g-; (P" 

so that the corresponding line ,s x2  y2 is equal to half the curvature of the ray, and 
is perpendicular to the radius of that curvature. 

The details of the present number have been given, in order to illustrate the sub 

ject, by combining it more closely with geometrical conceptions ; but the new auxiliary 
paraboloid, and the new constant of deviation, might have been considered as suffi 

ciently defined by their former algebraical expressions. 
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Condition of Intersection of Two Near Final Ray-lines. Conical Locus of the 
Near Final Points, in a variable medium, which sati.sfy this condition. Investi 

gations of MALUS. Illustration of the Condition of Intersection, by the Theory 
of the Auxiliary Paraboloid, for Ray-lines from an Oblique Plane. 

19. Returning now to the system of final ray-lines  C12 from an oblique plane 
(H'), let us consider the condition necessary in order that one of these near final 

ray-lines  C 12 may intersect the given final ray-line or axis of z. This condition 

may be at once obtained by making x and y vanish in the equations  C 12), and then 

eliminating z ; it may therefore be thus expressed, 

11 
 pn-; x   E-3 

as \ 
=8.y  p rzgx  T )8 y (Q14 

or more concisely thus, on account of the equation of the oblique plane (B12), 

x.(E3az. 8y -F Sz 

=,y.(ta -Ft8ty Sz 
that is, 

(SI4 
it is therefore necessary and sufficient, for the intersection sought, that the near final 
point B' should be on a certain conical locus of the second degree, determined by 
the equation (IV), between the co-ordinates ar, Sz. A conical locus of this kind, 
appears to have been first discovered by MALUS. That excellent mathematician and 
observer had occasion, in his Traite D' Optique, to make some remarks on the gene 
ral properties of a system of right-lines in space, represented by equations of the 
form 

x' y 

in which m, n, o, are any given functions of the co-ordinates s', z', of a point 
through which the line is supposed to pass, and by which it is supposed to be deter 
mined ; and he remarked that the condition of intersection of a line thus determined, 
with the corresponding near line from a point infinitely near, was expressed by an 
equation of the second degree between the differentials of the co-ordinates al, y', z', 
which might be considered as the equation of a conical locus of the second degree for 
the infinitely near point. The theory of systems of rays which was given by MALUS, 
differs much, in form and in extent, from that proposed in the present Supplement ; 

&c. 

(R14 
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especially because, in the former theory, the coefficients which mark the direction of a 
ray were left as independent and unconnected functions, whereas, in the latter, they 
are shown to be connected with each other, and to be deducible by uniform methods 
from one characteristic function. But the mere consideration of the existence of some 
functional laws, whether connected or arbitrary, of dependence of the coefficients m n o 
on the co-ordinates x' y'. z', or of a 3 7 on x y z, conducts easily, as we have seen, to a 
conical locus of the kind (R14). This result may however be illustrated by the theory 
which we have given of the geometrical relations of the near final ray-lines from an 
oblique plane with the deflected lines of a certain auxiliary paraboloid, and with a 
certain law and constant of deviation. 

For, according to the theory of these relations, the ray-line from a near final point 
B' on a given oblique plane drawn through the given point B, will or will not inter 
sect the given 'final ray-line from B, according as its deviation from its own 
deflected line does or does not compensate for the deviation 4 of that deflected line 
from the corresponding plane of deflexure, by these two deviations being equal in 

magnitude but opposite in direction ; the condition of intersection may therefore be 
thus expressed, 

that is, 
n (ae  42  (t  r Sy  s Rx2 -42): (v4 

and the condition of intersection thus obtained, by the consideration of two equal and 

opposite deviations, is, on account of the meanings (E'2 (F13  of n, r, 8, t, equivalent 
to  Q'4), and therefore to the equation (RH of the cone of the second degree. In 
this manner, then, as well as by the former less geometrical process, we might perceive 
that the two planes of vergency for the ray-lines from an oblique plane, (determined 
by  Um or  V"), and analogous to the two less general planes of vergency consi 
dered in the sixteenth number, intersect the oblique plane in the same two lines in 
which that plane intersects a certain cone of the second degree, through the centre of 
which cone it passes ; and that the planes of vergency are imaginary when the oblique 
plane does not intersect this cone. We may remark that the intersection of the 

oblique plane with the cone, or of a near final ray-line from the oblique plane with 
the given final ray-line, is impossible, when the constant of deviation corresponding 
to the oblique plane is greater (abstracting from its sign than the semidifference of 
the extreme deflexures of the auxiliary paraboloid : for then the compensation of the 
two deviations ,3,, 4, is impossible, the near ray-line always deviating more from the 

corresponding deflected line of the auxiliary paraboloid, than this deflected line from 

v--1-8.4)=0; (TN 
or, by the values of the deviations &!, 84, established in the seventeenth number, 

t-r . 
n  -i . sin. 20  S. cos. 20, (u14 
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the corresponding plane of deflexure. And when the compensation and therefore 
the intersection becomes possible, by the constant of deviation being less than the 
semidifference of the two extreme deflexures, then the two real planes of vergency of 
the near final ray-lines from the oblique plane are symmetrically situated with respect 
to the two rectangular planes of extreme deflexure : which latter planes may also, for 
a reason already alluded to, be called the planes of extreme projection of the final 

ray-lines. 

Other Geometrical Illustrations of the Condition of Intersection, and of the Elements 

Arrangement. Composition of Partial Deviations. Rotation round the Axis of 
Curvature of a Final Ray. 

20. The condition of intersection of two near final ray-lines may also be illustrated, 
and might have obtained, by other geometrical considerations, on which we shall 
dwell a little, because they will help to illustrate and improve the theory of. the 
elements of arrangement. 

It waa remarked, in the fourteenth number, that the general comparison of a given 
luminous path (A, B)x with a near path (A', .13')p .5 might be decomposed into 
several particular comparisons, such as the comparisons with the less general near paths 
(A, B,)d, (A, B,)g, and others, on account of the linear form of the expressions (D9 
for the variations 8a, j3, &I, 813', of the extreme small cosines of direction, which form 

permits us to consider separately and successively the influence of the variations of 
the extreme co-ordinates and colour, or the influence of any groupes of these varia 
tions. Accordingly, by an Analysis founded on this remark, we decomposed the 

general discussion of the geometrical relations of infinitely near rays into four less 

general problems, which were treated of, in the fifteenth number. The applications, 
in the sixteenth number, to questions respecting the mutual intersections of the final 

ray-lines from the final perpendicular plane, may be considered as only illustrations 
and corollaries of the third of those four problems : but the questions since discussed, 
respecting the ray-lines from an oblique plane, require a combination of the solutions 
of the second and third of the four problems, and furnish therefore, an example of 
the Synthesis of those elements of arrangement of near rays, to which the former 

Analysis had conducted. This synthesis, however, has in the foregoing numbers been 
itself algebraically performed, (namely, by the algebraical addition of certain partial 
variations, although many of the results were enunciated geometrically, and corn 
bined with geometrical conceptions : but a geometrical idea and method, of the Syn 
thesis of the Elements of Arrangement, may be obtained by considering, in a general 
manner, the geometrical composition of partial deviations. 

VOL. xvii. 2 c 
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To understand more fully the occasion of such composition, let us remember that 
our theory of the Elements of Arrangement enables us to pass from the extreme 
directions of a given luminous path (A, B)x, to the four following sets of near 
extreme directions, by the solution of the four problems considered in the fifteenth 
number, 

First. The extreme directions of the near path (A, B)xu,x, which has the same 
extreme points .il,' B, but differs by chromatic dispersion. 

Second. The final direction of (A, Bci)s, that is, of the original path prolonged at 
the end, and the initial direction of (Ad, .73)x, that is, of the same path prolonged at 
the beginning ; these near extreme directions being in general affected by curvature. 

Third. The final direction of the path (A, Bo)j, and the initial direction of 

(4, .B)x; the small lines AA , BB being perpendicular to the given path at its 
extremities. 

Fourth. The initial direction of (A, BOr, and the final direction of (4, B)k. 
We saw also that the initial direction of (A,B,)x and the final direction of (Ad, 13) 

do not differ from the corresponding extreme directions of the original luminous 

path. 
If then we would apply this theory to determine the final direction of an arbitrary 

near path (A', B')r.1.,x, we have to consider and compound, algebraically or geome 
trically, the following partial deviations from the given final direction of the given 
path (A, B) : first, the chromatic deviation of the final direction of the near path 
(-A, B)x_f_, from that given final direction ; second, the deviation of curvature of the 
final direction of (A, .134) ; third, the final deviation of the path (A, Ba),, to be 
determined by the theory of the final guiding paraboloid ; and fourth, the deviation 
of the final direction of (4, B)x, to be found by the theory of the guiding planes 
and conjugate guiding axes. A similar composition of four partial deviations is 

required for the determination of the initial direction of the same arbitrary near path 
(AC B1+,x. 

Now to compound in a geometrical manner the four preceding partial deviations 
of the final ray-line, we may proceed as follows. We may construct each partial 
deviation, by drawing the deviated final ray-line corresponding, or a line parallel 
thereto, through the given final point B ; the line thus drawn will differ little in 
direction from the given final ray-line or axis of z, and if we take its length equal to 

unity, then its small projection on the given final plane of sy, to which it is nearly 
perpendicular, will measure the magnitude and will indicate the direction of the 

deviation : and if we compound all these projections according to the usual geometri 
cal rule of composition of forces, the result will be the projection of the equal line 

which represents in direction the resultant or total deviation. And similarly we 

may compound the four partial deviations of a near initial ray-line. 
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The geometrical synthesis of the partial deviations may also be performed in other 

ways. For example, we may consider each partial deviation as arising from a partial 
or component rotation, and we may compound these several rotations by the geo 
metrical methods proper for such composition. 

In particular, we may compound the final deviation of curvature with any of the 
other partial deviations, by making the deviated ray-line, obtained without considering 
the final curvature of the ray, revolve through an infinitely small angle round the 
axis of final curvature, that is, round the axis of the final osculating circle of the 

given final ray. By this rotation, the projection B, of a near final point B' on the 
final perpendicular plane, will be brought into the position B' ; and, by the same 

rotation, the near final ray-line, which had been obtained by abstracting from the final 

curvature, and by considering Ba as the final point, will be brought, at the same time, 
into the position of the sought ray-line, which corresponds to a final point at B'. 

Applying now these general principles to the particular question respecting the 
condition of intersection of two near final ray-lines, from two near final points B, B', 
(the colour x and the initial point A being considered as common and given, we see 
that if the projection .11, of B' be given, the small projecting perpendicular 13133 or 
Sz and therefore also the near point B' itself may in general be determined so as to 

satisfy the condition of intersection : for the final ray-line from B, may in general 
be brought to intersect the given final ray-line, by revolving through an infinitesimal 

angle round the axis of curvature of the given final ray. We see also that the angular 
quantity of rotation and therefore the length Sz BaB' depends on the position of 
the projection B that is, on the co-ordinates Sx, Sy ; and therefore that there must 
be some determined surface as the locus of the near final point B', when the final 

ray-line from that point is supposed to intersect the given final ray-line. 
To investigate the form of this locus, by the help of the foregoing geometrical 

conceptions, we may observe that the only point, on the near ray-line from B which 
is brought by the supposed rotation to meet the given final ray-line, is the point con 
tained in the final plane of curvature of the given final ray ; and that if we call this 

point where the ray-line from Ba intersects the given plane of curvature the point P, 
the angle of rotation required is the angle between the line BP and the given final 

ray-line ; because the same infinitesimal rotation which brings the near ray-line from 
B4, that is, the line B,P, into a new position in which it intersects the given final 
ray-line, brings also the line BP into the position of the given final ray-line itself. 
Translating now these geometrical results into algebraical language, and taking the 
given final plane of curvature for the plane of xz, so as to satisfy the condition (H3), 
we find the following co-ordinates of the point P of intersection of this plane of cur 
vature with the ray-line (V9 from Ba, 
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y ar 
t 2y 

; 
zx  y 

y x  0; z  

'Cr T.:43 ca; 8y 
so that the angle between the line BP which connects this point with the origin of 
co-ordinates, and the given final ray-line or axis of z, is 

/83 23 /2a 2ct o = .8x. +-: 2y 
az. -F 8y ; (p Sy 8y av 

and this being equal to the infinitesimal angle of rotation, that is, to the small line 8Z 
Sa or B,B' multiplied by or by the final curvature of the given ray taken with 

its proper sign, we have the following equation for the locus of the near point B', 
when the condition of intersection' is to be satisfied, 

tea 
Zz  

1 
(-213 Zx  ? 8 2 13 y x   

8.11 il 8y (y14 

which is, accordingly, the equation of the former conical locus (R14), only simplified 
by the condition (H3), arising from a choice of co-ordinates. Without making that 
choice, we might easily have deduced in a similar manner the equation (R14\,  under 
the form 

'PO /8a , ox + y ox  8z  

in which each member is an expression for the infinitesimal angle of rotation divided 

by the curvature of the ray. 
Another way of applying the foregoing geometrical principles to investigate the 

condition of intersection of two near final ray-lines, is to consider the infinitesimal 

angle by which the ray-line from Ba deviates from the plane containing the given final 

ray-line and the near point .13, This angular deviation is expressed by the numera 
tor of the fraction (Z 14), divided by 21, that is, divided by the small line BB,; and 
the denominator of the same fraction (Z 14), divided also by 2/, is equal to the final 
curvature of the ray multiplied by the sine of the inclination of the line to the 
radius of this final curvature : and hence it is easy to see, by geometrical considera 

tions, that the fraction in the second number of (Z" is equal to the infinitesimal angle 
of rotation required for destroying the last mentioned deviation, divided by the curva 
ture of the ray, and therefore equal to the ordinate Sz of the sought locus of the near 

point B', as expressed by the first member. We might therefore easily have obtained, 

by calculations founded on this other geometrical view, the same condition of inter 
section as before, and the same conical locus. 

(W 

(Z" 
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Relations between the Elements of Arrangement, depending only on the Extreme 
Points, Directions, and Colour, of a Given Luminous Path, and on the Extreme 
Media. In a Final Uniform Medium, Ordinary or Extraordinary, the two Planes 

of Vergency are Conjugate Planes of Dejlexure of any Surface of a certain class, 
determined by the Final Medium ; and also of a certain Analogous Surface, 
determined by the whole combination. Relations between the Visible Magnitudes 
and Distortions of any two small objects, viewed from each other through any 
Optical Combination. Interchangeable .Eye-axes and Object-axes of Distortion. 
Planes of No Distortion. 

21. It was shown in the fourteenth number, and the result has since been developed 
in detail, that the general geometrical relations between the extreme directions of 

infinitely near rays are determined by the co-efficients of the linear variations Sa, 8P, 87, 
8a', 813, v)1', of the six marks of extreme direction, considered as functions of the six 
extreme co-ordinates and of the colour ; and that, between the forty-two general 
coefficients of these six linear variations, there exist eighteen general relations, leaving 
only twenty-four coefficients arbitrary, if we suppose for simplicity that the final and 
initial co-ordinates are referred to rectangular axes. But besides these eighteen 
general relations which are common to all optical combinations, there arise certain 
other relations between the coefficients, when the extreme media are considered as 

given, and when the extreme points, directions, and colour, of any one luminous path, 
are also supposed to be known. For, if we then employ the general equations (A'), 
we may consider the extreme medium functions v, v', and their partial differentials, 
as known, and may deduce general expressions for the coefficients before mentioned 
of the linear variations of the extreme cosines of direction, in.V.olving only, as 
unknown quantities, twenty-seven partial differentials of the second order of the cha 
racteristic function V; namely, all of this order, which are not relative to the variation 
of colour only ; but these twenty-seven are connected by the fourteen general rela 
tions  Q (U (X  Y), deduced in the third number, of which however only thir 
teen are distinct, because the two systems  U (Y conduct both to one common 

equation (D ; there remain, therefore, as independent quantities, only fourteen of 
the partial differentials of V, in the general expressions of those twenty-four coeffi 
cients of the linear variations of the extreme direction-cosines, which had before 
been considered as independent, when the extreme medium-functions v, v' were sup 
posed unknown and arbitrary : and if we eliminate the fourteen independent differen 
tials of V between the expressio-ns of these twenty-four coefficients, we shall obtain 
ten general relations, between the elements of arrangement of infinitely near rays, 
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involving only the extreme points, directions, and colour, of the given luminous path, 
and the properties of the extreme media. 

The simplest manner of obtaining these ten general relations, is to eliminate the 
fourteen differentials of V which enter into the twenty-four expressions, deducible 
from  C9), from the twenty-four coefficients (D9). The ten relations thus obtained, 
may be arranged in three different groupes the first groupe containing the two 
following 

82v Sa ev 43, z,v 
z7Q 2a8z 

 

Z2 8a a'y ev 
&;(813 8z zi32 a-7 838z--*' 

and two others similar- to these, but with accented or initial symbols ; the second 

groupe containing the final relation 

SI; SeV z2v sa ?v s2v 
rya iy &Ty-7 aasp sx sT3ifv 4sx' 

and a similar initial relation ; and the third groupe comprising the four following, 

43 'v' 82/,' 
8-27+-WaW 

Z2If 
&a'67 farx x  

813 see sai 
  

TaITO 
Z.v' 

.Fy Ti 

(C15 

The two first relations of ;the first groupe, namely, the equations (A 15), are equi 
valent to the two first diffeiential equations  0 of a curved ray, and express that the 

magnitude and plane ()Ulna curvature of a luminous path, in a final variable medium, 
are determined, in general, by the properties of that medium, the colour of the light, 
the position of the final point, and the direction of the final tangent. And the two 
other relations of the same groupe express, in like manner, a dependence of the 
initial magnitude and plane of curvature of a luminous path, on the initial medium, 
colour, point, and tangent. 

The equation (B"), belonging to the second groupe, is a relation between the four 
Sa 8a 4 gr3 coefficients ,  , and therefore a relation between the guiding paraboloid $ir 

and constant of deviation for the final ray-lines, depending on the final medium, 
colour, point, and tangent. And similarly the other equation of the second groupe 
expresses an analogous relation for the initial medium. 

(A15 

(B15 
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In the extensive case of a final uniform medium, the equation (B15 reduces itself 
to the following, 

82v &r. ;y2? OP 8aZ2V 43 0  TC17 87 
-4 

ra VW ax  73-2 &v ' (D15 

and, in the same case, the general conical locus of the second degree (H4), connected 
with the condition of intersection of the final ray-lines, reduces itself to two real or 

imaginary planes of vergency, represented by the quadratic 

0 = ay'  CL 
 

-1--3 a xs3y ---P x2 , (E. 
a. a 
ay av 8ii ay 

and coinciding with the two planes of vergency considered in the sixteenth number : 

attending therefore to  C's), the relation (D'5 may be geometrically enunciated by 
saying, that in a final uniform medium, the two planes of vergency are conjugate 
planes of dqflexure of any surface of a certain class determined by the nature of 
the medium, namely, that class for which, at the origin of co-ordinates, 

;22. ;'y ;2z, ?V E.2 Z, 821 
FX 

 
Tc,' ' .3x,3,71" 14 

' 
W 

 A 
zp 

' 

and therefore nearly, for points near to this origin, 
A 1 2 8 2 v f -, , ;22 2 ;2/1 Z =px  qy .1  kx ---,----e  -x,Y 843 

 F .91 wi  
, 

the given final ray or axis of z being taken as the axis of deflexion, and the constants 

p, q, A, being arbitrary. This relation may be still farther simplified, by choosing the 

arbitrary constants as follows, 
1 2t, 1 Zt A  

1 
P ---; Ta' q   

v '  
v Z ' (II" 

Z being any constant ordinate ; for then, (by the theory of the characteristic function 
1 for a single uniform medium, which was given in the tenth number, the surface 
 G15 acquires a simple optical property, and becomes, in the final uniform medium, 
the approximate locus of the points x, y, z, for which 

Vi=sfvds Vp=const., (V5 
the integral V, =fvds being taken here, in the positive direction, along the variable 
line p, from the fixed point 0, 0, Z, to the variable point x, ,y, z, or from the latter to 
the former, according as Z is negative or positive. And though the equation (G25 
is only an approximate representation of the medium-surface (.1"), which was called 
in the First Supplement a spheroid of constant action, and which is in the undulatory 
theory a curved wave propagated from or to a point in the final medium, yet since 
the equation (G" gives a correct development of the ordinate z of this surface as far 
as terms of the second dimension inclusive, when the constants are determined by 

(F's 

(Gia 
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(II"), the conclusion respecting the deflexures applies rigorously to the surface (r"); 
and the two planes of vergency (E"), in a .final uniform medium, are conjugate 
planes of deflexure of the spheroid or wave (I"). We shall soon resume this result, 
and endeavour to illustrate and extend it. In the mean time we may remark that the 
same planes of vergency (B" are also conjugate planes of deflexure of a certain 

analogous surface, determined by the whole combination, and not merely by the final 
uniform medium, namely, the surface (D14), for which 

fvds (=-V) const., (K" 

the integral being here extended to the whole luminous path, and being therefore 

equal to the characteristic function V of the whole optical combination ; an additional 

property of the planes of vergency, which is proved by the following relation, analo 

gous to (D15), and deducible from  C9 or (G9), 

8' V8a 8' J7 
 
80 

L 
;2 /7 2p 0  _____     " aza 2y 8x8,y 4 as -42 as  

Finally, with respect to the four remaining equations, of the third groupe  C 15), it 
is evident that they express certain general relations depending on the extreme media, 
between the coefficients which determine the guiding planes and conjugate guiding 
axes, for the final and initial ray-lines. In the extensive case of extreme ordinary 
media, they reduce themselves to the four following, which may also be deduced 
from (F9), 

as ,L , SP 
W II Fl 

 I" Tv 
 o, 

Z ,&,' f-3 ,43' p. a-7  IL F- 0, it ry, 
 ii. 

-cy 
 0, 

Y 

Ft, it' being the indices of the media ; and they conduct to some simple conclusions, 
respecting the general relations between the visible magnitudes and distortions of a 
small plane object, placed alternately at each end of any given luminous path, and 
viewed from the other end, through any ordinary or extraordinary combination : at 
least so far as we suppose these distortions and magnitudes to be measured by the 

shape and size of the initial and final ray-cones. For then the conjugate guiding 
axes, initial and final, perpendicular to the given path at its extremities, and deter 
mined in the fifteenth number, may be called the eye-axes and object-axes of distor 
tion, for a small object placed in the final perpendicular plane, and viewed from the 
initial point ; and if we take these for the axes of initial and final co-ordinates, so 
as to have, by (X"  Y' 

Li n 213' n Z13' r, 2ce w --- ,...,   u, > ,  > 
Zy ' ax 4 Sz. Sy ' 
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we shall then have also, by (M"), (the extreme media being supposed ordinary, and 
their indices ft, positive, 

2ce Sa 8p   o -->o --> --; (N" CV 
' ' 8y' 

' az" 8y 

that is, in this case, the guiding axes for the initial ray-lines are also the guiding 
axes of the same kind for the final ray-lines measured backward ; which is already 
a remarkable relation, and may be enunciated by saying that the eye-axes and object 
axes of distortion are interchangeable, when the extreme media are ordinary : that 
is, for such extreme media, the eye-axes of distortion become object-axes, and the 

object-axes become eye-axes, when the object is removed from the final to the initial 

perpendicular plane, and is viewed from the final instead of the initial point. And 
while the equations of the fifteenth number, 

, X =Z 000 y' =z oy, (An Zx 'Zy 

represent the initial visual ray-line corresponding to a final visible point B' which has 
for co-ordinates 8x, Y, 2z, the following other equations, 

,u' 8ai , 813' x Z. oVXy z. , (0" ox au 8Y 
will represent by (M'5 the final visual ray-line corresponding to an initial visible 

point A' which has for co-ordinates 81, 2.?/, 2z ; the initial visual ray-cone corres 

ponding to any small object 

=f (ax (Gil 

in the final perpendicular plane is therefore represented by the equation 

1813' -1 -11 
e u7 

 
U' 

and the final visual ray-cone corresponding to any small object 

8ty' =f' (Zat (p5 
in the initial perpendicular plane is represented by the following analogous equation 

12 
CE)-1 (K -1 z p,' z ite 

if therefore these two small objects, (G11 (p15,,  at the ends of a given luminous 
path, be equal and similar and similarly placed with respect to the conjugate axes of 
distortion, that is, if the final and initial functionsff 

' be the same, and if we cut the 
two ray-cones (H" (Q" respectively by perpendicular planes having for equations 

z' =,(ZR, z ,u It, (R'5 
in which R is any constant length, while itz, fir are the same constant indices as before 

VOL. XVII. 2E 

(H" 

(Q" 



106 Professor HAMILTON'S Third Supplement 

of the extreme ordinary media, the two perpendicular sections thus obtained will be 
equal and similar to each other ; and if, besides, we put, by  y lo), 

 cos. G, (s15 -gy az. 

(G being by (Fuj the inclination of an initial guiding plane to the plane perpendicular 
to the giyen initial ray-line, and determine also the arbitrary quantity R as follows, 

i 
 
-1 -1 

 
-1 R   (T15 ax, 

the perpendicular sections of the initial and final ray-cones may then be represented 
as follows, 

y cos. G. f (x), z'. 
(F&I' 

and 

y  cos. G. f (x), z  (t 
 1 

the visible distortions therefore, depending on the inclination G, are the same for any 
two small equal objects, thus perpendicularly and similarly placed at the ends of any 
given luminous path, and viewed from each other along that path, through any 
optical combination. 

The distortion here considered will in general change, if the object at either end of 
the given luminous path be made to revolve in the perpendicular plane at that end, so 
as to change its position with respect to the axes of distortion. For example, if the 

object be a small right-angled triangle in the final perpendicular plane, having the 
summit of the right angle at the given final point B of the path, we know, by the 

theory given in the fifteenth number, that the right angle will appear right to an eye 
placed at the initial point A, when the rectangular directions of its sides o' 012, 
coincide with those of the final guiding axes, or object axes of distortion ; but that 
otherwise the right angle 412-0'1 will appear mute or obtuse, its apparent magnitude 
(P2 C51 being determined by the formula 

(K 
2 

(K 
2 

 tan. "'"  

8x 8y 
which may, by (5"), be reduced to the following, 

 tan,  02 01-I  2 sin. G. tan. G. sin. 2  (Vs 2 
The law of change of the distortion, corresponding to a rotation in the final perpen 
dicular plane, may also be deduced from the theory of the guiding planes, explained 
in the fifteenth number. 

. sin. (Ws 
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The distortion will also change, if the small plane object be removed into an oblique 
instead of a perpendicular plane. In this case we may still employ the equations 
(A"  015 for the initial and final ray-lines, and may still represent the initial and 
final ray-cones by the equations (H"  Q15 ; but we are now to consider the equa 
tions  G" (P15), for the final and initial objects, as representing the projections of 
those objects on the extreme perpendicular planes ; or rather the projecting cylinders, 
which contain the objects, and which determine their visible magnitudes and distor 
tions, by determining the connected ray-cones. For example, the equation (C" may 
be considered as representing a final elliptic cylinder, of which any section near the 
final point B of the given luminous path will correspond to an initial circular ray 
cone (B"), and will therefore appear a circle to an eye placed at the initial point A; 
while on the other hand we may regard the equation (D" as respecting a final 
circular cylinder, such that any section of this cylinder, near the final point B, will 

give an initial elliptic ray-cone (on,  and will appear an ellipse at A. And as 
the elliptic ray-cone (E" conducted, by its circular sections, to the guiding planes 
(F" for the initial ray-lines, so, for small plane final objects, the planes 

z  :E x tan. G, (Y15 

namely, by (S"), the planes of circular section of the elliptic cylinder (C"), are 

planes of no distortion ; in suck a manner that not only, by what has been said, the 
circular sections themselves in these two planes appear each circular, but every other 
small final object in either of the same two planes appears with its proper shape to an 

eye placed at the initial point A of the given luminous path ; the angular magnitude 
of the final object thus placed, being the same as if it were viewed perpendicularly by 
straight rays, without any refracting or reflecting surface or medium interposed, from 

a final distance  -1. In like manner, the planes 

z'  tan. 0, (Z'' 

which are the planes of circular section of an analogous initial elliptic cylinder, are 
initial planes of no distortion, of the same kind as the final planes  1" ; since any 
small initial object, placed in either of these two initial planes (Z"), and viewed from 
the final point B of the given luminous path, will appear with its proper shape, and 
with the same angular magnitude as if it were viewed directly from an initial distance 

I IL 
CP'  --; 
8.Y 

This theory of the planes of no distortion gives a simple determination of the 
visible shape and size of any small object placed in any manner near either end of a 
given luminous path ; since we have only to project the object on one of the two 
planes of no distortion at that end, by lines parallel to the corresponding extreme 
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direction of the path, and then to suppose this projection viewed directly from a final 
or initial distance determined, as above. We might, for example, deduce from this 

theory the property of the guiding planes, the circular and elliptic appearances (B" 
(E11 of the ellipse and circle  C" (DuN,  and the acute or obtuse appearance (X's 
of a right angle in the final perpendicular plane, when the directions of the sides of 
this angle are different from those of the object-axes of distortion. And the relations 
(M" for extreme ordinary media may be expressed by the following theorems 
first, that the angle (2 G between the final pair of planes of no distortion (Y"), 
is equal to that between the initial pair (Z" ; second, the visible angular mag 
nitudes of any small and equal linear objects in final and initial planes of no dis 
tortion, are proportional to the indices of the final and initial media, when the 

objects are viewed along a given luminous path, from the initial and final points ; and 
third, the two intersection-lines of the two pairs of planes of no distortion coincide 
each with the visible direction of the other, when viewed along the path. 

Calculation of the _Elements of Arrangement, for Arbitrary axes of Co-ordinates. 

22. In the foregoing formulae for the elements of arrangement of near rays, we 
have chosen for simplicity the final and initial points of a given luminous path, as the 
respective origins of two sets of rectangular co-ordinates, final and initial, and we 
have made the final and initial ray-lines, or tangents to the given path, the axes of 
z and z' ; a choice of co-ordinates which had the convenience of reducing to zero 
eighteen of the forty-two general coefficients in the expressions of s3a, 8y, ga', W; Syr, 
as linear functions of , ,y, z, d , ky' , az' , 8x. The twenty-four remaining coeffi 
cients (D9 may however be easily deduced, by the methods already established, and 
by the partial differential coefficients of the characteristic and related funtions, from 
other systeins of final and initial co-ordinates, for example, from any other rectangular 
sets of final and initial axes. 

In effecting this deduction, it will be useful to distinguish by lower accents the par 
ticular co-ordinates and cosines of direction, which enter into the expressions (D9), 
and are referred to particular axes of the kind already described ; and then we may 
connect these particular co-ordinates and cosines with the more general analogous 
quantities x y z co' y' z' a j3 7 a' j3' 7 , by the formulae of transformation given in the 
thirteenth number, which may easily be shown to extend to the case of two distinct 

rectangular sets of given or unaccented co-ordinates. In this manner the axes of 

z, and z,, considered in the thirteenth number, become the final and initial ray-lines, 
and we have, by (.A'), 
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&x -= &V,  xy, y,  a k, 

zy =, x, $x, +y,, z2,+p8z 

1 

1 

(A 
z  zx, fix,  zy, ay, +7 a z,, " 

Zx =x,,,, Zx,' +rdy; 8y;  a' k', 

i3Y1 =Ytx,' ax: --+ y' '3.Y:  P' az:, 

8z'=i4,,, Zx,  iy; zy,' +i 8z,', 

because 

xz, =a, ,yz, =p, zx, =7, 
(IV x' z;  a', ,V , , ;  P' , iz ;  sy' ; 

we have also 

a,  0, p,  0, y, --1, Sy,  0, 1 16 
a: =o, [3: =0, 7:  1, 87; =0, .S 

and therefore, by (Es), 
&  X,r, act,  X y , 43, , ; &tt  dx , &L:  a y; 0; ; 

0  Y 2' , 8 a , +Y y, j3, ; 8j3' =.V-'; 8a: +2/'y,' 0; c, (D'6 

1,=z,t, &t,-i zy, 43,; ay' =z`x; aa; +2,,, .313: ; 

and substituting these values (A'n (D'6 for the twelve variations a., y, 8; &e,y',a7;', 
43a, 8p, 87, &L', 813', Z7', in the general linear relations (A' between these twelve varia 
tions and the variation of colour 8x, or in any other linear relations of the same kind, 
deduced from the characteristic and related functions, and referred to arbitrary rec 

tangular co-ordinates, we shall easily discover the particular dependence, of the form 

(IY), of fia,, 8[3,, on ar oy 8z, a v ; , 8.y, , 8x, and of ia,', 43,', on 8x, y ax,/, 2y,, 
&,', 8x 

We seem, by this transformation, to introduce twelve arbitrary cosines or coeffi 
cients, namely, 

xx,, gz.,, zx,, Xyi, Yy, , Zy i, odx;, ty14, ix,, aj y ,', gy,, Zi y; ; 

but these twelve coefficients are connected by ten relations, arising from the rectangu 
larity of each of the four sets of co-ordinates, and from the given directions of the 
semiaxes of z, and z' ; so that there remain only two arbitrary quantities, correspond 
ing to the arbitrary planes of x, z,, x, z:, of which planes we often, lately, disposed 
at pleasure, so as to make them coincide with certain given planes of curvature, or 
otherwise to simplify the recent geometrical discussions. Thus, although we may 
assign to the semiaxes of x, any position in the given final plane perpendicular to the 
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luminous path, and therefore may assign to its cosines of direction, any 
values consistent with the first eqUation (Be), namely, 

xis,,2 +yr +z,,,2 
and with the following 

a Xa., py,, .y Z  0, (E'6 

yet when the axis of x, has been so assumed, the perpendicular axis of y, in the final 

perpendicular plane is determined, and we have 

xy,  (3 ), 

yy,  q-: (7 x, -a ), (F'6 

zy,, -4- (agr, -P v.,), 
the upper or lower signs being here obliged to accompany each other and similarly 
for the initial axes of x, and y,'. 

The characteristic and related functions give immediately, by their partial differen 
tials of the first order, the dependence of the quantities which we have denoted by 
6, 7, V, 01, v', rather than that of a, /3, y, a', j3', y', on the extreme coordinates and 
the colour ; and therefore the same functions give immediately, by their partial 
differentials of the second order, the variations &r, ST, Zy, art, au', rather than 

Za, 813,87, 8cti, in terms of 4, 8y, az, 8x', .8g, 8z', 8x. But we can easily 
deduce the variations of a j3 7 a fir ay from those of a T O'f and of x y z x' x, 
by differentiating the relations 

 St, Sv 8v 0" 
Ta , 

,  .  , ' 
h 

8v1 8v1 Svi '  .1)1  a  
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7  
4T1 si 

, 

which have often been employed already in the present Supplement ; for thus we 
obtain 
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8 referring, as in former numbers, to the variations of x, y, z, x, and ai to those of 

y, z', x : and hence we have, by some symmetric eliminations, 

S1V 2V  SeN S2?1 I 2Y N a2v ?_12 
w-1,171 f)6.--s,,ral 
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u " 2a 8P k 2a1 
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vw7 +813'2 A  43' 
v" having the meaning (L6), and vin the analogous meaning 

kI az?" f ;2t,' a2vf aze a21,' \ 2 al?" ?2 82 2 
\ V =7: 
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8P" 87'2 813'4' 
 

87'2 Zal2 %Tat   

We might also deduce the variations of a j3 y a' j3' 7' from those of a 7 V Of 7' V' x y z 
x' z' x, by differentiating the equations (I of the second number, and by employ 
ing the functions 0, 0', instead of v, v'. 

The general Linear Expressions for the Arrangement of Near Rays, fail at a 
Point of T7ergency. Determination of these Points, and of their Loci, the 
Caustic Surfaces, in a Straight or Curved System, by the Methods of the present 
Supplement. 

23. We have hitherto supposed that the infinitesimal or limiting expressions of the 
variations of the extreme cosines of direction of a luminous path, are linear functions 
of the variations of the extreme co-ordinates and colour. But although this supposi 
tion is in general true, it admits of an important and extensive exception ; for the 
linear form becomes inapplicable when the given luminous path (A, B)e, with which 
other near paths are to be compared, is intersected in its initial and final points A, B, 
by another path infinitely near, and having the same colour x since then the extreme 
directions may undergo cei tarn infinitesimal variations, while the extreme positions 
A, B, and the colour x, remain unaltered. It is therefore an important general 
problem of mathematical optics, to determine, for any proposed optical combination, 
the relations between the extreme co-ordinates and the colour of a luminous path 

Via  
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which is intersected in its extreme points by another infinitely near path of the same 
colour. This general problem, of which the solution includes the general theory of 
the caustic surfaces touched by the straight or curved rays of any proposed optical 
system, may easily be resolved by the methods of the present Supplement. 

In applying these methods to the present question, we are to differentiate the 

general equations which connect the extreme directions with the extreme positions 
and colour, by the partial differential coefficients of the first order of the character 
istic and related functions, and then to suppress the variations of  y z x' ty' z' x. 
And of the partial differential coefficients of the second order, introduced by such 
differentiation, it is easy to see by (A9 that those of the characteristic function V, 
or at least some of them, are infinite in the present research : it is therefore 

advantageous here to employ one of the auxiliary functions IV, T, combined if 

necessary with the functions v, v', or 0, C&#18;', which express by their form the properties 
of the extreme media. 

Thus, when the final medium is uniform, and therefore the final rays straight, we 

may conveniently employ the following equations, which involve the coefficients of 
the functions W, C2, and were established in the sixth number, 

a W au an a w 
x  v , y  V zr z  +17 . (W2 

Differentiating these equations with respect to a 7 v as the only variables, and sup 
pressing the variation of the first order of V, as well as those of x y z x' z x, we 
obtain 
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and hence, by a symmetric elimination, and by the forms of W, 0, 

0  (;--7 17-;2 )6-ewc,  vli.22 )_c-j- TTE1 
2 

- 

(82 W a2s -\ (82 W (82 TV 
 

zga 2 

T v JOU ave Va.& MITI 
zw .32E fsg w \ f85,47 T2. 

eaT2 &)2 -4 V aC7 kSaCr  V aa0" (L16 

which is a form of the condition required, for the final and initial intersections of two 
near luminouspaths, of any common colour, the final medium being uniform. The 
condition (L'6 is quadratic with respect to V, and determines, for any final system of 

(K16 
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straight rays, corresponding to any given luminous or initial point A, and to any 
given colour x, two real or imaginary points of vergency B1, 132, on any one straight 
final ray, that is, two points in which this ray is intersected by infinitely near rays of 
the same final system and the joint equation in x y z, (involving also x' x as 

parameters, of the two caustic surfaces which are touched by all the final rays and 
are the loci of the points of vergency, may be obtained by eliminating a 7 v between 
the equations (W2 and the quadratic (L' : which quadratic, by the homogeneity 
of the functions W and 2  1, may be put under the following simpler form, 

&T aa2 r2 ar \arra, &rar 
WTy aq&#18; W Ty ;242 \ (82W 7.7 .32,0 

2 
n Ovr6 

and admits of several other transformations. When V has either of the two values 
determined by this quadratic, that is, when the final point B of the luminous path has 

any position B1 or B, on either of the two caustic surfaces, then the equations 
deduced from (W2 by differentiating with respect to x y z as well as a z v, namely, 

w 
8x  

Za aar -F 78ty VaV   ZCIF 
8&#17;&#18; 

8y (crx  a-  V2 , 

a w  ((fax  72y +vaz  a  va au 8v 

conduct to a linear relation between .3x, y, az, which may be put under several forms, 
for example under the following, 

A lax (crax vaz) 
  (car  78y  vaZ) 

 (Car  T2y VaZ (0") 

in which we may assign to A X' X" any of the following systems of values, 

w .32a 
First X  8a2 Za2 

Z2 w 82o, 
Second X 

-Zaar  VZa87 
82 W 820 Third   V ZA., 

W Z2a  
&T -13r  

82 W 82S X' =+Tl 872 
W ;2n X1   V - Z7-01, 

W  
Saau 
W  

oTOU 
W 

= 

All (P16 

and it is easy to see that the linear relation thus deduced, between 8x, 8y, 0z, is the 
differential equation, or equation of the tangent plane, of the caustic surface at the 

point of vergency x y z. The same linear equation represents also the plane of 
VOL. XVII. 2 G 
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vergency, or the tangent plane to the developable pencil of straight rays, correspond 
ing to the other or conjugate point of vergency on the given final ray. 

When the final medium is variable, the three first equations (H'), namely, 

a TV 8 TV 8W " ' " -aT; ' 

are to be differentiated with respect to a, T, v ; and thus we obtain 

Z2  82 W Z2 W  &T 8.-2  F-o-ar ar  868t, au  o, 

?TV 82W 82i47 al 
63T +. ST2 ar  &au Zu=0, 

;2 H7 ?W ;2W 
&r  a7 8-73-ucr -g-,-.8; 4 8u2 8u=0, 

and consequently, by elimination, 

2TT7 Z'W "1-V Tv 
(4321C )2 

432 W TV 
)2 

82 
2W)2 `,Z 

862 872 81 BaBr 8r 8v Baa 
-- 

802 Mu 8r2 8aa 8t)' 81 r 

this equation, therefore, (which may be put under other forms, takes the place, when 
the final medium is variable, of the quadratic (L'6 for a final uniform medium ; and 
if we eliminate from it a 7 u by (H'), it will give, for any proposed initial point and 
colour, the equation of the single or multiple caustic surface, touched by the curved 

rays of the corresponding final system. 
The auxiliary function T may also be employed for the case of curved rays, but it 

is chiefly useful when both the extreme media are uniform. In that case the extreme 

portions of a luminous path are straight, and we may employ for these extreme 

straight portions the equations (S2 under the form 

2S8S , 2S  xi (S1' 8a tea ar" 

in which we have put, for abridgment, 

5=77-zu (T16 

and in which we consider v as a function of 0., T, x; v' as a function of afr, 7', x ; T as 
a function of a, T, a, 7', x; and S as a function of z, z', a, T, rf, x. Differen 

tiating these equations (816 with respect to a, T, a', 7', we find that if the extreme 

straight portions, ordinary or extraordinary, of two infinitely near paths of light of 
the same colour, intersect in an initial point x' y' z', and in a final point x y z, the 
final and initial variations &)-, ar, 8a1, sr', and the final and initial ordinates of inter 
section z, z', must satisfy the four following conditions, 

(Q16 
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;2A3 Z2S , 82S  ST  Saar 8o8d 8a8r' 
82s ;2,S Z2S 

v=- o F Or  &r8a8r 8r8a 
Z2S Z2,3 a.2,s 82s  8c;   in Zcr  

Z2S Z2Sc, 828 Z2S 
o  or   Zr8r1 8a'gri ari2 

which give, by eliminating between the two first, 

 2S 852S 82S S  , (212S 82S a 2S ;2S 82S 
8a8cr' STET' 

 
Saar' Mal Iva  Scrar Ear' 

 
Sce arar' 

ul 431'2 

8T', 

OT'; 

IQs 82.5 825 
aaari-acr&. 137,30 

8r 

 Ze2S. S2 S _825 Se S  ra2S 20.9 .3249 
 (4325 

9".u9 ??'S 
krScraof 8r8r1 Star.' 8r8af as3-2 Zrad 8a8al 8a8r 8r8al &"(2 MCI 

and therefore, by substituting these values of &ri 81'', in the two last, 

8r 

825 Z2.8 
ci 

Z2S 
aa8r, 
828 Z28 
872 80-8011 
828 825 
8cra7 Zr8crli 

ZCS 82S S2S 82S 
Za2  8a' OT 8.72 8r8o 

Z2S B2S Z'S 
 &rad arr&J. GTCr 

82s zzs #8zs 2,2s 
arad c riart 8a8r. araol 

82s /.8,ss 
Srai k.Casa ar&I 
82S 

(Z2S 
;2S ;2S Z2S 
SnCr' So-2r &rad 

Z2S (82S 82S 82S 82S 
O AST r8r' Saar ar.& 

0  8a f 
Z2S 82S 8203 
&12 .30-8r 8a8ri 

43 al 2  art 80-8r' &r& 
82S 82S 82S 82S 

0-. 
;2s (8,s ;Qs z2,s 0 sff'sir qffar &rari Sa2 Zrari 

 
;2S (82S Z2S 82S g2S 

Za`271 8/2 8o-81 8o-8r STET 
82S 

C2S 
828 2Ss ;2,S 

ar'2 aCT87. ar8of Zr2 Ma 
828  82s Z2S 82S 2's 

+:3;Ti13;1 Mal (MPG 

so that by a new elimination we obtain, between the final and initial ordinates z, z, 
the following equation, which, by the form of S, is quadratic with respect to each 
ordinate separately, and involves the product of their squares : 

0 (82"2's(82s Cd82S )2 :+9 A9" 881)2 8a2 8r2 
 

8o-8r 8a12 81"2 8/ 
vs c es 8203 2 82s 82s 82,s, 825 , 82,9 \ 2 

-4  $312 .3o2 &Sr' &r8r 8aar' arar 8r2 crari 
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82s 82s 
8rar' 8aarI 87-8(3-` 

828 82,3 

al, 0 2,.9 82,3 \ 2 Z.2,3 82S 89S ?,S1 8es \ 2 "2 
(ae 'ar8,-/ -; &T&. aascii &-ad T2kaasd  j. 

When the point of intersection of the infinitely near initial rays removes to an infinite 
distance, this equation reduces itself to the following, 

0  
82"s  (82s 

2 
Za2 872 &Tar 

(X16 

821 1Z27' 821) (897' 431 \ 
2 

Fa; 2r2 z ar Zaar Zo-87. (Y" 

and when in like manner the two infinitely near final rays become parallel it gives the 

following quadratic to determine the two corresponding positions of the point of initial 
intersection, 

828 82S 
 
82s \ 

2 
0  8ol2 8car'i 

 (LT , 82v'   z, )T 
\ 2c/2  z 2a12  8/2 212 a6'87 z' 321-1 )2. &ari (Z'6 

The caustic surfaces of straight systems, ordinary or extraordinary, were determined 
in the First Supplement : but it seemed useful to resume the subject in a more general 
manner here, and to treat it by the new methods of the present memoir. 

Connexion of the Conditions of Initial and Final Intersection of two Near Paths 

of Light, Polygon or Curved, with the Maxima or Minima of the Time or Action 
Function T7 V., Efvds. Separating Planes, Transition Planes, and Transi 
tion Points, suggested by these Maxima and Minima. The Separating Planes 
divide the Near Points of less from those of greater Action, and they contain the 
Directions of Osculation or Intersection of the Surfaces for which V and V, are 
constant ; the Transition Planes touch the Caustic Pencils, and the Transition 
Points are on the Caustic Curves. Extreme Osculating Waves, or Action 

Surfaces : Law of Osculation. Analogous Theorems for Sudden Rejlexion or 

Refraction. 

24. The conditions of initial and final" intersection of two near luminous paths, 
have a remarkable connexion with the maxima and minima of the integral in the law 
of least action, that is, with those of the characteristic function V, or rather with 
those of the sum of two such integrals or functions, which may be investigated in 
the following manner. 



On Systems of Rays. 117 

Let A, B, C, be three successive points, at finite intervals, on one common lumi 
nous path. Let the rectangular coordinates of these three points he x', yi, z for A; 
a:, y, z for B ; 'and x,, y,, z, for C. Let V (A, B denote the integral fvds taken 
from the first point A to the second point B; let V(B,C denote the same integral, 
taken from the second point B to the third point C; and similarly, let 17(A, C be 
the integral from A to GY, which is evidently equal to the sum of the two former, 

V (21, C) V (A, B  V (B, C), (A'7) 

so that, if we put for abridgment 

V (A, B) V, V (B, C)=V (B'7 

we shall have, by the continuity of the integral, 

V (A, C) V +T7,. (C'7 

If we do not suppose that the intermediate point B is a point of sudden reflexion or 

refraction, the final direction of the part (A, B will coincide with the initial direc 
tion of the part (B, C), and the final direction-cosines a p y of the one part will be 

equal to the initial direction-cosines of the other ; considering V therefore, as usual, 
as a function of xy z 2 ty' i x, and V, as a function of x,y,z,x y z x, we have, by 
our fundamental formula (A), 

8V 8v8 V, $V av Z V, 8 V 8v V 
 ._,,  ...    ,  _.....  ..... 

ar &L 2x ' 2,7 ;i3 8y az 87 Sz ' 

that is, we have 

8T7 +ST7 ,=0, (E" 

for any infinitesimal variations of the co-ordinates x y z and therefore, to the accuracy 
of the first order, 

17 (A, B' +1 7 (B', C) V (A, B  V (B, C  V (A, C), (F" 

B' being any new intermediate point infinitely near to B, and the path...(B', C being 
not in general a continuation of the path (A, .73). If therefore we regard the 
extreme points A, C, as fixed, but consider the intermediate point B as variable and 
as not necessarily situated on the path (A, C ), the function 7 17 or 2fvds, 
composed of the two partial and now not necessarily continuous integrals (Bn), will 

acquire what may be called a stationary value, when the paths (A, .73 (B, C become 
continuous, that is, when the intermediate point Is takes any position on the path 
(A, C from one given extreme point to the other : since the the change of this 
function will be infinitely small of the second order, for any infinitely small alteration 
BE', of the first order, in the positio'n of the point B. The stationary value thus 
determined, namely, V(A,C), might be called, by that customary latitude of expres 

VOL. XVII. 2 ri 
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sion which leads to the received phrase of least action, a maximum or minimum of 
the function V  but in order that this value should really be greater than all 
the neighbouring values, or less than all, a new condition is necessary. To find this 
new condition, we may observe that the relations 

8'V 8'V 82V 2v I 82V, 8e ,32 V, a a 13 7 1 
 7 x z 

82V 82V 82V 8v  82V 82V 8217,, 
8xay 8y2 8y8z. 8y k ax8y i 8y2 

 7 Zyazi 

170 82 ?V 8v I 82 V: 0 82V, 82V, a 8x8z. 8yaz 
 7 8z2 

 
8z a 8xaz  7 az2 

which result from the third number, give 

N7. +82P, x /82V `.2V,N az.\2 (82V 4.Z2V,2,, 8z)3 8x ox 7 J .y2 
8e V 82V,  (-g---+-x--i az  8y-13 8z ; (11" avay 

the condition of existence of a maximum or minimum, properly so called, of the 
function V  V,, is therefore, 

> 0, if Q (8syl 82;)- 
When When we have on the contrary 

< 0, (K" 
the variation of the second order 8' V 82V, admits of changing sign, in passing from 
one set of values of &r, 8z to another, that is, in passing from one near point B' 
to another ; and since, to the accuracy of the second order, 

V (A, B'  V (B', C (A, (82 V  82V,), (127 

we shall have the one or the other of the two following opposite inequalities 

T7 B'  V (B', C > or < 7T (A, C), (m17) 

according as the near point B' is in one or the other pair of opposite diedrate angles 
formed by tuj 0 separating planes F' P" determined by the following equation 

82F+82v;=0, (N'7 

which is, by (H ), quadratic with respect to the ratio 

ay -13 az 
7 

43x -a a 
7 

(G11 
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These two separating planes PI P" contain each the ray-line or element of the 

path (A, B, C at B ; and they divide the near points of less from those of greater 
action, or those of shorter from those of longer time, when the continuous integral 
V  V , I 7 (A, C is not greater than all, or less than all, the adjacent values 

of the sum M fvds. The directions of these planes depend on the positions of the 

points A, B, C ; so that if we consider A and B as fixed, but suppose C to move 

along the prolongation (B, C of the pat (A, B), the separating planes P', F', 
will in general revolve about the ray-line at B. They will even become imaginary, 
when by this motion of C the quantity Q becomes > instead of < 0, so as to satisfy 
the condition of existence of a maximum or minimum of the function V  V,, and 
in this transition from the real to the imaginary state the two separating planes .P' P" 
will close up into one real transition-plane P, determined by either of the two follow 
ing equations, 

0  (-8-782 
V 

+C;72--F 
" 
 (8 x  

`17 
8 z    8-8s ; 

 
--.;Iii (k l i  

- .3 z 
g V Z2 V, . 0 

&I v ; N  ial V ;'17 \  p 0  (  
2 V 

1 .3.r -51 sz    
2 

' - 
sz) zxoll 8x8y 7 ay Zy2 7 

-while the corresponding position of the point C, which we may call by analogy a 
transition-point, will satisfy the condition 

Q =0, that is,         . i 
 

82 V 8' V, 
  

8' V 82 
K C 

T7 8' v, 
)2 (p17 /.-c2 8x2 8y2 8y2 az.By 8s4 

We are now prepared to perceive a remarkable connexion between the transition 
planes and transition-points to which we have been thus conducted by the considera 
tion of the maxima and the minima of the function V TT,, and the condition of 
final and initial intersection of two near luminous paths. For these conditions of 
intersection may be obtained by supposing that not only the point B, having for co 
ordinates x ,y z, is on a given path (A, C), so as to satisfy the equations (D17), but 
that also an infinitely near point B', having for co-ordinates x +av, y +.1j, z  8z, is 
on another path of the same colour connecting the same extreme points A and C, so 
as to give the differential equations 

817 B V 8 V 8V 8V 8 V 
a ___   a ___, 8 

, 
...-:  8  __1 ......  a ,  (Q17 &c &v , g-j-, 8y ' az az 

  : 

and since these last equations may be reduced, by the relations  G 17), to the forms 

 017), we see that when the conditions of initial and final intersection of a given path 
(A, B, C with a near path (A,H , C are satisfied, and when we consider the initial 

point A as fixed, the near intermediate point B' must be in a transition-plane P of the 
form  017), and the final point of intersection C must be a transition-point'of the form 

(P"). Continuing therefore to regard the initial point A as the fixed origin of a system 

, 
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of luminous paths, polygon or curved, of any common colour, which undergo any num 
ber of refractions or reflexions, ordinary or extraordinary, and gradual or sudden, it 
is easy to see that we may consider these paths as touching a certain set of caustic 
curves, in the final state of the system, and therefore as grouped into certain sets of 

consecutively intersecting paths, and as having for their loci certain, corresponding 
sets of ray-surfaces, which may be called caustic pencils : and that these caustic 

pencils are touched by the transition, planes (01'), while the transition-points 
(13'7 are on the caustic curves, and therefore on their loci the caustic surfaces. 
The transition-points are also evidently the points of consecutive intersection, or of 

vergency, of the luminous paths from A, in the final state of the system. And it is 
manifest, from the foregoing remarks, that these final points of intersection are also 

transition-points in the following other sense, that when the point CY, in moving along 
the prolongation of the path (A, B), arrives at any one of these positions of inter 
section, the condition of existence of maximum or minimum of the function V  

begins or ceases to be satisfied. 
The separating planes P' P", have, when real, another remarkable property, 

namely, that of containing the directions of mutual osculation, at the point B, of the 
two action-surfaces or waves determined by the equations 

 const., V,  const. ; (R" 

for these equations may be put approximately under the following forms, (when we 
choose the point B for origin and the final direction of the path (.4, B for the 

positive semiaxis of z, so as to have a  0, p=0, 7=10 

z =px  qy  r x2  s  , 

z, -dr q,y +-34r,x2  s,xy +1t,ty', 

in which the coefficients have the following relations, 

k=p, q, 
82V 82 V 

r r  axe aza 

(S" 

 S (r 1 RV z2v 
&ay 

1 82V ;2 V \ t  --7; 8y; ay2 I 

and therefore the planes 

0=(r,-r)x2 (s, s  (t t y2, (Ur' 

whichpass through the given ray-line at the point 13, and contain the directions of 

osculation of the second order of the two touching surfaces (R'7 or (S 17), are the 
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separating planes (N17). We might also characterise these separating planes, or 

planes of osculation, as containing the directions of mutual intersection of the same 
two touching surfaces for which V and 77 are constant ; or as the planes in which 
the deflexures of these two surfaces are equal, the ray-line at B being made the axis 
of deflexion. 

The comparison of the same two waves or action-surfaces (R17 gives a new pro 
perty of the planes and points of transition ; for the equations which determine a 

plane and point of this kind may be put under the form 

(r-r,)x+(s-s)y=0, (s-s)x +(t-t3y 0, or, 41, =gyp, Sq, 8q: (V'7 

they express, therefore, that when C is a transition point, the two surfaces (H7 touch 
one another not only at the point B, but in the whole extent of an infinitely small 
arc contained in the transition-plane. 

The point C may be called the focus of the second wave or action-surface 
since all the corresponding paths of light (B', C are supposed to meet in it ; and in 
like manner the point A may be called the focus of the first surface V of the same 

kind, since all the paths (A, B' are supposed to diverge from A. The focus A and 
the point of osculation B remaining fixed, we may change the focus C, and thereby 
the directions of osculation ; but there are, in general, certain extreme or limiting 
positions for the osculating focus C, corresponding to extreme osculating waves or 

action-surfaces V and it is easy to show that these extreme osculating foci coincide 
with the transition-points or points of vergency : and that the transition-planes or 

tangent-planes of the caustic pencils contain the directions of such extreme or limiting 
osculation. 

These theorems of intersection and osculation include several less general theorems 
of the same kind, assigned in former memoirs. It is easy also to see that they extend 
to the case when the order of the points A B C on a luminous path is different, so 
that B is not intermediate between A and C, and so that the paths (A, B (A, B'), 
which go from A to the points B and B', coincide at those points with the paths 
C, B (C, B'), and not with the opposite paths (B, C (B', C), that is, tend from 

the point C, not to it; observing only that we must then employ the difference instead 
of the sum of the two integrals fvds, or of the two functions V and V,. 

When the point C is on a given straight ray in a given uniform medium, we can 
easily prove, by the theory of the partial differential coefficients of the second order 
of the characteristic and related functions which was explained in former numbers, 
that the equation (P" becomes quadratic with respect to z, or V and assigns, in 
general, two or real imaginary positions C1, C2 for the transition-point, or point of 
vergency ; and that the equations  OD assign two corresponding real or imaginary 
transition-planes Pz P1 or tangent planes of caustic pencils. And when, besides, 

VOL. XVII. 2 
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tlle points B, Cf, are both in one common ustiform medium, so that the pathb 
(B, C) (B), C) are straight, then each of the GtlStiC pencils, or ray-surfaces, 
czoluposed of such straight paths consecutively intersecting each other and touching 
one caustic curve, becomes a develoy?able pencil> and its tangent plasle becomes a 
plane of vergency, of the kind considered in the sisteenth mlmber. The reIations 
also between the two planes of vergency in a final uniform medium, which were 
poillted out in the twerlty-first number, may easilr be deduced from the present more 
general view and from the recent theorems of osculation; for thus we ate led to con- 
sider a series of waves or action-surfaces VZ, similar and similarly placed, and deter- 
mined in shape but nc)t in size or focus by the uniform medium, and then to seek the 
extrelue or limiting- surfaces of this set which os( ulate to the givei- surface V at the 
giAren point B; and since it- call be shown that i?l general rarnong any series of svJr- 
faces, sifinilar and sinzilarly placed, but having arbitrary qnagnitudes, and asc7C6-lating 
to a given surface at a gtren oznt, there are tu o extretne osculattng sgqgfaces, real 
01 inlaginaryX alld tllat the tangents which rnark {he two: corresyondzng direct2'0nsl g 

osc7slation are conyugate tangents (of tlle kind dlscovere-d by M. DUPIN) on each stsr- 
face of t/ze osculating series, and alsoi on the give7z sqxrfaces -it fo]lows as befote that 
tlle corljugate planes of vergency in a finaI uniform mediunz are colljugate plianeg of 
deflexuse of each nzediunl surfce 7Z;, and also of the surfa;ee V determined by the 
wllole coulbintion>- When thd final-medium} i8 (vrdiiwary as well as uniform thien thie 
osculating surfaces V, are spheres, and the directions of extreme aosculation are the 

lectangulnar directions of the lines of curvatire on the sutface V, whtch ls niow; pSer- 

pendicular to the rays, in this caseX theriefores and maoreq generally when a gisgeii fifial 
ray in a final uniform medium corresponds to an umbilzcal poznt or point of sp4tirisc 
curvature on tlle mezlium strfa8ei F;, the pl9swes (-if-verg-ency cut tllat surface-} and tlle 
surface V to which it oscalates, in} two rettangul.@4 directiofis, bSecanse twso conJugato 
tangents at an umbilical poixwt are alwa-ys^ perpenzlicular - tof ea-cll other: and, in like 
manner, the i-planest of vergen'cy bei!*gl coBjugateE planesF of deflexure will (by the 
seventeenth number) be- nthemselVeN rieetanblE, if thel fin$al rayl whethet ordinary or 
extraordinary be such tllat taitili>S- it fOls- thet axisl of deflaioW of tlie medium-surface 
V the irndicatiXg- cylider o f defltexio-n is;ci+cUlare 

The foregoing princtple^ ¢1v-eX alwd the lab tof osculat6otl of ths variableE medium- 
strzface F bett7eet its ettteffl'ebposit-ion§ Win- ai SnaT zmieform medium, namely, tllat the 
d;stances of the rarsabS oseeftatst fiB¢u-s-ftogn {hettgo pOtfigS"of vergenoy, arev pro- 
port2vo7XAI to the squareaso of tlie s-es of the zflscltndtdns of t71e variable plane of os- 
/utson to- the twp planes oftw3erge@; tK;61fiP1ied respectively by certai2t constXt 
factors A iformula expressingt this law was deduced -ixs tliei First SuppTement; but 
the cconstant and su geiiral an^qual factor-s (i-n the formuli t and*- li,) ifor tlle s-quares 
of the sinies-of tfie inclilsatibn-s, wBre inadVertently-omitttediwn-the enuntci-i^o. Our 
rresent metlods would enable Ms to investigate witllout difficulty tlle law for the more 
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complicated case, when the osculating focus C being still in a uniform medium the 
point of osculation B is in another uniform medium, or even in an atmosphere ordi 

nary or extraordinary. 
We might extend the reasonings of the present number to the case of sudden 

reflexion or refraction, ordinary or extraordinary, and obtain analogous results, which 
would include, in like manner, the results of former memoirs. In this case we should 
find a certain analogous condition for the existence of a maximum or minimum of the 
function Efvds ; and when this condition is not satisfied, we should have to consider 
two pairs of separating planes, which cross the tangent plane of the reflecting or 

refracting surface in one common pair of separating lines : the two pairs of planes 
passing together from the real to the imaginary state, and in this passage closing up 
into two transition-planes, which touch the caustic pencil before and after the sudden 
reflexion or refraction, and intersect in one common transition-line, on the tangent 
plane of the reflector or refractor, connected with a transition-point upon the caustic 
curve of the pencil, and with certain extreme osculating waves or action-surfaces and 

focal reflectors or refractors, of a kind easily discovered from the analogy of the 

foregoing results. 

Formula for the Principal Foci and Principal Rays of c Straight or Curved System, 
Ordinary or Extraordinary. General method of investigating the Arrangement 
and Aberrations of the Rays, near a Principal Focus, or other point of vergency. 

Q5. Among the various points of consecutive intersection of the rays of an optical 
system, there are in general certain eminent points of vergency, in which certain 

particular luminous paths are intersected each by all the infinitely near paths of the 

system. These eminent points and paths have been pointed out in my former 
memoirs, and have been called principal foci, and principal rays. They may be 
determined for straight final systems, by the characteristic function V, and by any 
-three of the six following equations, 

0, 

(W" 

.r, y, z. being the co-ordinates of any point on a principal ray, and x y +pR, 
z  7R being the co-ordinates of the principal focus ; they may &so be deduced from 
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the auxiliary function TV, when made 

respect to a, r, v, by the equations 

8tWv. 2ft ri 
Sae  r Sat kJ, 

PW ir 82,0 ri 
&.,  iv 8.74 
a2 WS. E. 

 80 y & j, 

homogeneous of the first dimension with 

0, 

(X" 

of which only three are distinct, and in which T7 corresponds to the focus : or from 
the function T, when expressed as depending on cr, 79 Ci, II x, by the following, 

I Sts \  1 r 82s  2S. \ 2 Z2S 828 8%3 2S  82S \ 
21 ladzi acr2 k Mal 

 2 8cr8r Ma' Ma  ZT2 k80-80-' J 

 I 82S \ -1 (82S als 82S 
86zi 1-87 ma OT Or 

?S  ;2k3 82S 828 2,Sf  2,3 82S Ps 
8o-8r k cam Mr  8a81 Ma' 4 8.e ars&I 8a8rj 

(82S \ __.1 1828 (82S 
812 1 I &i2 MT' 

_82s 82s (Z2s N2  
8a2 Se \8 a8r 

2 828 828 82,3  2  Mr &car' 87-81  
82s i a2s, \ 2  
8r2 &Far  3 

(Y" 

in which as before, 5 T-zu +ill. 
When the final medium is variable, we may employ the following equations, 

Z2137 a2IV 
ci.'a Sr' 

arty /8E1\2  

;  kg 

82 TV 'W P W B' W 
&)e &Tar Mt Musa 
Oa\ 2 

 8a 8n 8a 80  Za at 
qt.;  g -r g; it; .;: 

an S't 8f 8E M W\ -1 
k",-; :3; +K -Cy -1--Sv E. 

I 82W 1 ?W 1 ?W 1 ?W PW 1 PW 
or, ',7-.,. F..., =0, OTC =-7-; 

 
Su' =4;ij Mr -137y My -Ty; 8vaa. 

(a ?ix  p t 
 7;z 

-1 

of which only three are distinct, but which are sufficient to determine the principal 
foci and principal rays of a curved system, ordinary or extraordinary by the aux- 

iliary function W, considered as depending on a, 7, v, x', y', z', x, in conformity to 
the new view of that function, proposed in the present Supplement. The new func- 
tion T might also be employed for the same purpose, but with somewhat less facility. 

It was remarked, in a former number, that at a point of vergency the general 
linear expressions for the relations of near rays fail ; but the more complex expres 
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sions by which these linear forms must be replaced at a principal focus or other point of 

vergency, and generally when it is proposed to determine the aberrational corrections 
of the first approximate or limiting relations, can always be obtained without difficulty 
by developing to the required order of accuracy the general and rigorous equations 
which we have given for a luminous path. An example of such deduction will occur, 
when we come to consider the theory of instruments of revolution, which on account 
of its extent and importance must be reserved for a future occasion. 

Combination of the foregoing View of Optics with the Undulatory Theory of Light. 
8T1 av 

The quantities a, 7, 14 or - , that is, the Partial Differential Coeji ifix 8z 
cients of the First Order of the Characteristic Function V, taken with respect to 
the Final Co-ordinates, are, in the Undulatory Theory of Light, the Components' 
of Normal Slowness of Propagation of a Wave. The Fundamental Formula 

(A may easily be explained and proved by the principles of the same theory. 

26. It remains, for the execution of the design announced at the beginning of this 

Supplement, to illustrate the mathematical view of optics proposed in this and in for 
mer memoirs, by connecting it more closely with the undulatory theory of light. 

For this purpose we shall begin by examining the undulatory meanings of the 

symbols a, 7, v, of which, in the present Supplement, we have made so frequent a use, 
and which we have defined by the equations (E), 

ov 8V a  ' 7  V  9 

V being the undulatory time of propagation of light of some given colour, from 
some origin to a point z, y, z, through any combination of media. It is 
evident that these quantities a, 7, v are proportional to the direction-cosines of the 
normal to the wave for which the time V is constant, and which has for its differen 
tial equation 

0  T7 AT  78y  ; (A" 

and if, as in the second number, we denote (cr2 +47.2  v2 by (0, these direction-cosines 
themselves will be aw, TW, VO ; and (0 will be the normal velocity, because the infinite 
simal time 8V, during which the wave propagates itsejf in the direction of its own 
normal through the infinitesimal line Sl, from the point x, y, z, to the point x atoN, 
y ro).81, z v6).81, is 

VOL. XVII. 

7 b7 V aznal 1.67(0.81 V.110.40b  1 
(B" 
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we may therefore call the quantities a, T, v, the components of normal slowness., 
because they are equal to the reciprocal of the normal velocity, that is, to the normal 
slowness, multiplied respectively by the direction-cosines of the normal, that is, by the 
cosines of the angles which it makes with the rectangular axes of co-ordinates. 

Such then may be said to be the optical meaning of our quantities a, T, v, in the 

theory of the propagation of light by waves. And we might easily deduce from this 

meaning, and from the first principles of the undulatory theory, the general expres 
sion (A for the variation of the characteristic function V, which has been proposed 
in the present and former memoirs, as fundamental in mathematical optics. For it is 
an immediate consequence of the dynamical ideas of the undulatory theory of light, 
that for a plane wave of a given direction and colour, in a given uniform medium, the 
normal velocity of propagation is determined, or at least restricted to a finite variety 
of values ; so that this normal velocity may be considered as a function of its cosines 
of direction, involving also the colour, and depending for its form on the nature of 
the uniform medium, and on the positions of the axes of co-ordinates, to which the 

angles of direction are referred : and if the medium be variable instead of uniform, 
and the wave curved instead of plane, we must suppose that the normal velocity (0 is 
still a function of its direction-cosines (3' (C12  72 4. 1/2)-i, 7 (0,2  T2  v2 $, V (a2 4 T2  v2)-11, 
and of the colour x, involving also, in this more general case, the co-ordinates x, y, z. 
In this manner we are conducted, by the principles of the undulatory theory, to a 
relation between a, r, v, x, y, z, x, of the kind already often employed in the present 
Supplement, namely, 

0=0 =(Q2 +r  v2)a(t -1, 

C&#18;  1 being a homogeneous function of a, r, v, of the first dimension, which satisfies 
therefore the condition 

cr --cr  
7 
-Cr -I 

v -- 
 0.  1, 

and which involves also in general the co-ordinates x, y, z, and the colour x, and 

depends for its form on the optical properties of the medium in which the point a. y z 

is placed. To connect now, for any given point and colour, the velocity and direction 

of the ray with the direction of the normal of the wave, we may suppose, at first, that 

the medium is uniform, and that the wave isp lane. The two positions of this plane 
wave, at the time V and at the time T7 L TT, may be denoted by the equations 

First (ix +.ry  vz i 7  Tr, 

Second aAX +TAy  vAz  A V, 

in which a, 7, v, TV, are constants ; and by the principles of the same undulatory 

theory, if the point x  Ax, y +11y, z  Az, on the second plane wave, corresponding 

(NI 

(C" 
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to the time V d V., be upon the ray that passes through the point x y z of the first 

plane wave, it will be also on all the other infinitely near plane waves which corres 

pond to the same time V A V, these other waves having passed through the point 
x y z at the time V, and having made infinitely small angles with the first plane 
wave ; we are therefore to find the co-ordinaets x +.6.x, y  Ay, z  Az, of the second 

point upon the ray, by seeking the intersection of the second wave (C'8 with all those 
other waves which are obtained from it by assigning to Cr, 7, V, any infinitely small 
variations consistent with the relation 

80 , 80 ,  
20 , 0  U&#18;  --- ocr   or  ov  0a' (3r & 7 

and thus we find 
a Ax .... ZS p dy a 7 AZ ;a 
i)- AV-T; ' V -AV-071: ' i)---.Z77&-; 

as in the second number of this Supplement, and therefore 

2  as  Pr  7t), 
0  abs.  Pr  72u, 
aV  Al  T813  u87, 

and finally 

1 (D" 

au 
Ye; 

ZV ...... 8v 
(EN 

if we denote by v the reciprocal of the undulatory velocity with which the light is 

propagated along the ray, and by a, j3, y, the cosines of the angles which the ray makes 
with the axes of co-ordinates. We see, therefore, by the foregoing reasoning, which 
it is easy to extend to the case of curved waves and of variable media, that the com 

ponents a, 7, V, of normal slowness of a wave, or the partial differential coefficients of 
the first order of the tine function V, are equal to the partial differential coefficients 

8v 2v b 
of the first order' -8a' -Zp, -ay, of 

the undulatory slowness v of propagation along 
the ray, when this latter slowness is expressed as a homogeneous function of the 
first dimension of the direction-cosines a j3 y of the ray : which is the general theorem 
of mathematical optics, expressed by our fundamental formula (A). 

That general theorem does not appear to have been perceived by other writers ; 
nor do they seem to have distinctly thought of the components of normal slowness, 
nor of the function of which these components are partial differential coefficients, that 
is, the time T7 of propagation of light from one variable point to another, through 
any combination of uniform or variable media, considered as depending on the final 
and initial co-ordinates and on the colour : much less do those who have hitherto 
written upon light, appear to have thought of this tune function V as a CHARACTER 
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ISTIC FUNCTION, to the study of which may be reduced all the problems of /mathema 
tical optics. But the problem of connecting by general equatkins the direction and 
velocity of a ray with the direction and with the law of normal velocity of a wave, 
has been elegantly-resolved by M. CAUCHY, in the 50th Livraison of the Exercices 
de Ziathamatiques : and the formula which have been there deduced by considering 
the normal velocity as a homogeneous function of the first dimension of its three 
cosines of direction, may easily be shown to agree with the equations (D'8). 

Theory of FRESNEL. New Formula, founded on that theory, for the Velocities 
and Polarisations of a Plane Wave, or Wave-Element. New method of deducing 
the Equation of FRESNEL'S Curved Wave propagated from a Point in a Uniform 
Medium with Three Unequal Elasticities. Lines of Single Ray-Velocity, and 

of Single Normal-Velocity, discovered by FRESNEL. 

27. Let us now consider more particularly the undulatory theory of FRESNEL. 
In that theory, the small displacements of the vibrating etherial points are confined 

to the surface of the wave, the ether being supposed to be sensibly incompressible, 
and so to resist and prevent any sensible normal vibration : and the tangential forces, 
which regulate the tangential or transversal vibrations, result in general from the 

elasticity of the ether, combined with this normal resistance. It is also supposed that 
the etherial medium has in general three principal unequal elasticities, corresponding 
to displacements in the directions of three rectangular axes of elasticity ; in such a 
manner that if we take these for the axes of co-ordinates, any small component dis 

placements Zx, y, 8z parallel to these three axes will produce elastic forces -day, 
 bqy, ,  az parallel to the same axes, and equal to the displacements taken with 

contrary signs and multiplied by certain constant positive factors a2, b2, c2 : and any 
small resultant displacement, Zl, in any other direction, having ax, 2y, & for its com 

ponents or projections, will produce a corresponding elastic force  Eel, of which 
the components are -dar, -b2y, -c28z, and which has not in general the same 
direction as the displacement 81, nor a direction exactly opposite to that. Light, 
polarised in any plane P, is supposed to correspond to vibrations perpendicular to 
that plane, and propagated without change of direction ; and in order that a vibration 
should thus preserve its direction unchanged, while the plane wave or wave-element 
to which it belongs is propagated through the uniform medium with a normal velocity 
0,, it is necessary and sufficient that the elastic force  Ed, when combined with a 
normal resistance arising from the incompressibility of the ether, should produce a 

tangential force -6)28/, in the direction opposite to the displacement 8/, and equal to 
this displacement taken with a contrary sign, and multiplied by the square of the nor 
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mal velocity of propagation, so that its components are -(028x, -(028y,  (028z : that 
is, we must have the equations 

1 1 1 (w2  a2 8x   6.02  b2 2  8y   6.02  c 8; a T \ V '. 

in which a, T, v, are, as before, the components of normal slowness, so that the equa 
tion of the wave-element containing the transversal vibration is 

0.8x -F7iy  :Jaz  O. (A'8 
These equations (A" (F18 suffice in general to determine, on FRESNEL'S princi 
ples, the velocities of propagation and the planes of polarisation for any given wave 
element in any known crystallised medium. 

Thus, eliminating the components of displacement &r, 8y, 8z, between the equations 
(A18 (F18), we find the following law of the normal velocity w, considered as depend 
ing on the normal direction, that is, on the ratios of cy, r, v, 

72 a2 .1,2 
w 2 __ a2  (02  62  (02 -c2 =a 

To deduce hence the direction and velocity of a ray, for any given normal direction 
and normal velocity, compatible with the foregoing law, that is, for any given values 
of the components of normal slowness a, r, v, compatible with the relation  018), we 
are to make, by (M), 

612 (11,-F1)2 
a' +7.2 -1-V , (II" 

and we then find, by (I), or by (D'8), the following expressions for the components 
of the velocity of the ray, 

a ZO a(02 X2 -ce  =__.  acr a+1 w2-a' 

p at 70 X2  62    
 8r S1+1 02-62 ' 

7 8C2, vw2 X2-c2 
V 
 

SU a+1 w2-c2 ' 

if we put foi abridgment 

X2 
f a2a \ 

2 62r \ 
2 

ko--at 1  \ (02-W 
 ac,  2   , br \ 

2 
\ CO2--a2  \ (02-..b2 
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 I ,, 2 (t.---C 

 

 

 
Cu 2 

CO2-0 
(K" 

1 
And to deduce the law of the velocity  of the ray, considered as depending on its own v 
direction, that is, on the cosines a p -y of its inclinations to the semiaxes a b c of elas 

ticity, we are to eliminate (according to the general method of the second number 
VOL. XVII. 2 L 

(F" 
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the ratios of 0. r v between the three expressions (118), and so to deduce the relation 
a 13 7 between the three components of velocity , ,   now the equations (I" give v v v 

evidently, by (K 18), 
aece 112pc 07'2  0 (L" X2-a2 X2-6'  12-C2 P 

they give also, when we attend to  GIB), 

CI2  
 (11)2 

 (1)2=X2 
: CM18) V V V 

X therefore is the velocity of the ray, or the radius vector of the curved unit-wave, 
propagated in all directions from the origin of co-ordinates during the unit of time ; 
and the equation of the wave in rectangular co-ordinates x y z, parallel to the axes of 

elasticity, is 
a2x2 b2 y2 c2z2 

-1- , -7  0, re +.712-Fz2-a2 x2 +e  z2 ---v a: +y2  22-C2 

or, when freed from fractions, 

(X2 +y2  z2 (a2z2  b2y2  c'2' `2) a2b2c2 

 a2 (b2  c2 x2  b2 (c2  a2 y2  c2 (a2  b2)z2. 

This method of determining the equation of FRESNELN Wave, will perhaps be thought 
simpler than that which was employed by the illustrious discoverer, and than others 
which have since been proposed. 

Reciprocally to determine by our general methods the normal direction and velo 

city, or the components of normal slowness a, 7, v, for any proposed direction and 

velocity of a ray compatible with this form of the wave, that is, for any values of 
a p 7 A compatible with the relation (L'8 , we are to substitute for the ray-velocity A 
in that relation its value 

8v a 1-a2V2 Cr     - 
8a v . A2 a2' 
2v 0 1-620 
TP-17 

 A2-62 ' 

av  7 1-C2V2 1  
27 

-  X2 C2' 

if we put for abridgment 

 a 
 
2 i 0 N2   

'Y )2 
2 A2 --a2  A2-62  A'c2 v  

 as \ 2  bp \ 2 Cy \ 
2 

\ A2 a2  X2-6  X2 C2 

. CQ's 

(N" 

 0 18 

(11118), and we find, by (E 18), 

7  

J 
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It is easy to see that the value of v thus determined is the normal slowness, or reci 
procal of w, because the expressions (P" give, by (L'8), 

(R18 

and since the same expressions give also evidently, by  Q18), 
e 7 

 
2 V 

0, 
2 

 (S18 1 -CeVe 1-62112 1 ---C2V2 
 

we easily deduce the law  G'8 of dependence of the normal velocity on the normal 
direction, from the form of FRESNEL'S wave, as we had deduced the latter from the 
former. 

The equations (L'8 (M18 which gave us the equation of the wave in rectangular 
co-ordinates, give also the following polar equation for the reciprocal of its radius 
vector, that is, for the slowness v of the ray, 

0 v4 -v2 fa2(b2  c-2  (32(c.....2  a_2  72(a-2  b-2) 
 (a2  p2  72 (a2b-2 c-2  /32 c-2 cra +72 a-2 b-2), (T18 

and therefore the following double expression for the square of this slowness, 

v2  )2 (c-2  a-2 (a  p2 ',72 
ip8) 3__. (c-2 ..... a-2 [A,A,  a a2  (32  72 __. A 2 '1 a  p2  7 _As, 21,  

if we put for abridgment 

v/6-2_ 
a-2 

v/c-2 
6-2 A'  a 

c-2.__ a-2 4 7 6-2 a_2 ,  

Ai,  a /6-2 
CC-2 

./C-2 
6".2 : 

c-2 a!2 7 cp...2._.... a-2 

supposing therefore a2 > 62 > c2, the polar equation of the wave may be put under 
the form 

Q--2 =1(c-2  r2  2 (c_2  a`2 cos.  (pi  (pp" ), (W18 

p being the radius-vector or velocity, and (pp (pp" being the angles which this radius 

p makes with two constant radii ', p", determined by`the, following cosines of ,their' 
inclinations to the semiaxes of x y z, or of a b c, 

6-2 ..._. 
a-21/26-2 

1 ...... 11 ..... P a g a  *tyt c-2....a-2 c.-2...,..a.-.2 , ei 5  f r 6  0, fi c  p",  

The expression (w-18%,  for the reciprocal of the square of the velocity of a ray, has 
been assigned by FRESNEL, who has also remarked that it gives always two unequal 
velocities unless the direction p of the ray coincide with some one of the four direc 
tions  p',   3", which are opposite two by two, and situated in the plane a c of the 

a2  72 -+ v2  v2 ; 

(V" 

. (X" 
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extreme axes of elasticity. FRESNEL has shown in like manner that any given nor 
mal direction corresponds to two unequal normal velocities, except four particular 
directions, which we may call -:_f_-01, o-.,:, and which are determined by the following 
cosines of direction, 

It ..... a2-62 
1/62 

ce, a a  -- CO a  ,.... II ...._. 0 I 11 ......  (y18  .' a-2 --Ce 1 WI6  6 6 ' 6)c 6 c ce-c2 

and in fact it is easy to establish the following expression for the double value of the 

square of the normal velocity, analogous to the expression (W18), 

w2  i (a2  c2 +1 (a2 c2 2 Coss  (&)(10 v. (ww" ), (Z18 

which cannot reduce itself to a single value, unless the sine of (ww' or of (ww" 
vanishes. FRESNEL has given the name of optic axes sometimes to the one and some 
times to the other of the two sets of directions (X"  Y.'8 ; but to prevent the con 
fusion which might arise from this double use of a term, we shall, for the present, call 
the set  p', u-. Q', by the longer but more expressive name of the directions or lines 

of single ray-velocity : and similarly we shall call the set m_61,  w", the directions or 
lines of single normal velocity. 

New Properties of FRESNEL'S Wave. This Wave has Four Conoidal Cusps, at the 
Ends of the Lines of Single Ray-Velocity : it has also Four Circles of Con 

tact, of which each is contained on a Touching Plane of Single Normal-Velocity. 
The Lines of Single Ray-Velocity may therefore be called Cusp-Rays ; and the 
Lines of Single Normal-Velocity may be called Normals of Circular Contact. 

28. The reasonings of the foregoing number suppose that the axes of co-ordinates 
coincide with the axes of elasticity ; but it is easy to extend the results thus obtained, 
to any other axes of co-ordinates, by the formulae of transformation which were given 
in the thirteenth number. We shall content ourselves at present with considering two 
remarkable transformations of this kind, suggested by the two foregoing sets of lines 
of single velocity, which conduct to some new properties of FRESNEL'S wave, and to 
some new consequences of his theory. 

The polar equation (W18 of the wave may be put under the form 

1  (c-2 a' (32 +1 (c-.2 a--2 ir'r"  es e2  712 ps e_r"2, (A'9 

if we put for abridgment 
r  A' p cep'.  zpc, r"  A" p se" r-1 zp" , (B'9 

so that r', r", are the projections of the radius-vector e on the directions p', c", of 
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single ray-velocity ; and if we take new rectangular co-ordinates tr,y,z such that 
the plane of x, z, is still the plan a c of the extreme axes of elasticity, but that the 

positive semi-axis of z, coincides with the line g', we may employ the following for 
mulae of transformation 

X  X,0:  Z,f1 y =y1, z  -x,pia  Z,p1 
which give 

ta2=a-,2d-y,2 z;, r'  z r" =x, sin. (a a"  z , cos. (a' c"  , 

and change the equation (A" of the wave to the form 

I  b-2 z,2 +1 z ,x ,(c2  a2 sin. (ei +1 (c--2  a2 (x,2 +.7.42 
-  (c-2  a-2 Ni x,2 +y,2 ,, (z, sin. (p' p"  x, cos. ( a"  )2 +y,2. 

This equation enables us easily to examine the shape of the wave near the end of the 
radius p', that is, near the point having for its new co-ordinates 

x,=0, y,=0, z, =b ; (F19 
for it takes, near that point, the following approximate form, 

z ,. b  12 b2 ,,. c-2  b-2 v' b-2  a-2 (a.,t_. ,. x,2  yi2), (G'9 
which shows that at the point (F 19 the wave has a conoidal cusp, and is touched not 
by one determined tangent plane but by a tangent cone of the second degree, repre 
sented rigorously by the equation  G"). FRESNEL does not appear to have been 
aware of the existence of this tangent cone to his wave ; he seems to have thought 
that at the end of a radius pi of single ray-velocity, the wave was touched only by two 
right lines, contained in the plane of a c, namely, by the tangents to a certain circle 
and ellipse, the intersections of the wave with that plane : but it is evident from the 
foregoing transformation that every other section of the wave, made by a plane con 
taining the radius-vector i , is touched, at the end of that radius, by two tangent lines, 
contained on the cone  G"). It is evident also that there are four such conoidal 
cusps, at the ends of the four lines of single ray-velocity,  p',  p 

" . They are deter., 
mined by the following co-ordinates, when referred to the axes of elasticity, 

X  -1 C, 8  
ce -be , y  0, z  :i .... a 8  

bg -c2 
(1-1" a2.--e ce-c2 5 

and they are the four intersections of FRESNEL'S circle and ellipse, in the ?lane of a c, 
which have for their equations in that plane 

x2  z2 ...... b2, a2x2 c2z2 ... a2c2. 

Again, if we employ the following new formulae of transformation, 
X  X fo; ,  zga y =ya, z  xua,  zbdc, (K'9 
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so as to pass to a new system of rectangular co-ordinates such that the plane of x z 
coincides with the plane of a c, and the positive semiaxis of with the line to' of sin 

gle normal velocity, we find a new transformed equation of the wave, which may be 
thus written, 

xh2  xczzb" Nia2 b2 N b2 0)2 Q (1  b-2), (I P 

if we put for abridgment 

Q  (a2 c2 p2 (d c2 r' r" cc (1  z b--2 

and hence it is easy to prove that the plane 

zrr (N19 
which is perpendicular to the line w' at its extremity, touches the wave in the whole 
extent of a circle ; the equation of this circle of contact being, in its own plane, 

x ob" .s a2 -be N bg  0. (0" 

It is evident that there are four such circles of plane contact at the ends of the four 
lines  d, w", of single normal-velocity. They are all equal to each other, and the 
common magnitude of their diameters is b2 N. b2-c2. The same conclu 
sions may be drawn from FRESNETIS equation of the wave in co-ordinates x y z 
referred to the axes of elasticity the equations of the four planes of circular con 
tact being, in these co-ordinates, 

z b2-e a2 b2 sb -c2. 

FRESNEL however does not appear himself to have suspected the existence of these 
circles of contact, nor do they seem to have been since perceived by any other person. 
We shall find that the circles and cusps, pointed out in the present number, conduct 
to some remarkable theoretical conclusions respecting the laws of refraction in biaxal 
crystals. 

New Consequences of FRESNEL'S Principles. It follows from those Principles, that 
Crystals of sufficient Biaxal Energy ought to exhibit two kinds of Conical 
Refraction, an External and an Internal : a Cusp-Ray giving an External 
Cone of Rays, and a Normal of Circular Contact being connected with an 
Internal Cone. 

29. The general formulae for reflexion or refraction, ordinary or extraordinary, 
which we have deduced from the nature of the characteristic function V, become 
simply 

(pm 
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Acr  0, Ar =o, (Q19 
when we take for the plane of x y the tangent plane to the reflecting or refracting 
surface ; they show therefore that the components of normal slowness parallel to this 

tangent plane are not changed, which is a new and general form for the laws of 
reflexion and refraction. It is easy to combine this general theorem with FRESNELIS 
law of velocity, and so to deduce new consequences from that law with respect to 
biaxal crystals. 

For this deduction, our theorem may be expressed as follows, 
 8v at 

0  A 0,--  b   
8ct 2 

8)3 
 c t 

87 
' (R19 

in which v is the undulatory slowness of a ray considered as a homogeneous function 
of the first dimension of the cosines a f3 y of its inclinations to any three rectangular 
semiaxes a b c, while i refers to the changes produced by reflexion or'refraction, the 
unaltered trinomial to which it is prefixed being the component of normal slowness in 
the direction of any line t on the tangent plane of the reflecting or refracting surface, 
and a, b, c, being the cosines of the inclinations of this line to the semiaxes a b c : and 
in order to combine this theorem with the principles of FRESNEL, we have only to 

suppose that the rectangular semiaxes a b c in each medium are the semiaxes of elas 

ticity of that medium, and that the form of the function v is determined as in the 

twenty-seventh number. 
Thus, to calculate the refraction of light on entering from a vacuum into a biaxal 

crystal a b c bounded by a plane face F, we may denote by ao po -' the cosines of 
the inclinations of the external or incident ray to two rectangular lines s, t upon the 
face F, and to the inward normal, and we shall have the two equations following, 

.31 8t, ail 
ao as 

-7,+bs-q3 
 cs 

---..)--,(=aa, 
-F rbs  yes), 

w o 2v sv 8v 
13.  a,K-t b, 

-0 
+c 

8-7 ( 
aa,  rb,  vc,), 

which contain the required connexions between a0 p. 70 and a p y, that is, between 
the external and internal directions. In this manner we find in general two incident 

rays for one refracted, and two refracted for one incident ; because a given system of 
values of a p 7, that is, a given direction of the internal ray, corresponds in general 
to two systems of values of the internal components of normal slowness a 7 u, and 
therefore to two systems of valuet of ao P. that that is, to two external directions ; 
while, reciprocally, a given system of two linear relations between a, r, v, deduced by 
(S" from a given external direction, corresponds in general to two directions of the 
internal ray. But there are two remarkable exceptions, connected with the two sets 
of lines of single velocity, and with the conoidal cusps and circles of contact on FRES.. 
NEL'S wave. 
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For we have seen that at a conoidal cusp the tangent plane to the wave is indeter 
minate ; it is evident therefore that a cusp-ray must correspond to an infinite variety 
of systems of components of normal slowness a, T, t), within the biaxal crystal, and 
therefore also to an infinite variety of systems of direction-cosines ao po yo of the 
external ray ; so that this one internal cusp-ray must correspond to an external cone 
of rays, according to a new theoretical law of light, which may be called EXTERNAL 
CONICAL REFRACTION. 

And again, at a circle of contact, the wave has one common tangent plane for all 
the points of that circle, and therefore the infinite variety of internal rays which cor 
respond to these different points have all one common wave-normal, which may be 
called a normal of circular contact, and all these internal rays have one common 
system of components of normal slowness a T within the crystal, and consequently 
correspond to one common external ray so that this one external ray is connected 
with, an internal cone of rays, according to another new theoretical law of light, 
which may be called INTERNAL CONICAL REFRACTION. 

To develope, somewhat more fully, these two new consequences from FRESNEL'S prin 
ciples, let us begin by considering external conical refraction : and let us seek the 
equation of the external cone of rays, corresponding to the internal cusp-ray p'. The 
approximate equation (G19 of the wave, near the end of this cusp-ray, in the trans 
formed co-ordinates x, z,, gives the following approximate expression for the undu 
latory slowness v of a near ray, considered as a homogeneous function of the first 
dimension of the cosines a, p, 7, of its inclinations to the positive semiaxes of these 
co-ordinates x, y, z 

in which 

V=b-1 7,+(a,y'Q/2 +13;)1 

r , c-2 -b-2  a-2 ; 

it gives therefore by our general method, the following components of normal slow 
ness parallel to the same semiaxes of x, y, z,, 

a:0,c r ' 
Nict24-02 

9 

, 
8v r1i3,  7   
CP, C1,Q  [3,2 
Z" 

(V19 

the expressions for cr, r, becoming indefinitely more accurate as a, j3, diminish, that is, 
as the near internal ray approaches to the cusp-ray A and the expression for A being 
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rigorous : the relations between the components of normal slowness a T v of the cusp 

ray p' are therefore 

(cry ,c  T  2 r ,(crp' c-vei a), ap`a+vp',=b--4, (W'9 

and the equation (in ao po of the external cone of rays corresponding to the one 
internal cusp-ray (1 is to be found by eliminating these three internal components crTV 
between the two relations (W" and the two equations of refraction (2's). 

For example, if the internal cusp-ray p' coincide with the inward normal to the 

refracting face F of the crystal, we may take, for the semiaxes s, t upon that face, the 

projection of a, and the semiaxis b of elasticity ; and then the equations of refraction 

(Si" becoming 

ao 1"o =7, (X" 

we have, by (117 10), the following polar equation of the external cone of rays, 

ac,2 +p,  c2r ao; 

or, in rectangular co-ordinates, an equation of the fourth degree, 

(x: +y3 4 r,2x0(x: +y:  z02). (Z" 

This cone is nearly circular in all the known biaxal crystals, because the coefficient r, 
is small, by  U"), when the biaxal energy is weak, that is, when the semiaxes of elas 

ticity a b c are nearly equal to each other : and rigorously the external cone (Z.' 
meets the concentric sphere of radius unity in a curve contained on a circular cylin 
der of radius =r  one side of this cylinder coinciding with a ray of the cone. 

With respect to the internal conical refraction, the equation of the internal cone 

of rays corresponding to the internal wave-nornzal w', or normal of circular contact, 
is always, by (N 19  0 1l , 

xp2-Fyn2 rxxjzk=0, if rq=-1-b-2, b--2,/a2-b2 .1 c2 (A" 

when referred to the rectangular co-ordinates x y z by the transformation (K 'a ; 
and in the simpler rectangular co-ordinates x y z which are parallel to the axes of 

elasticity the equation of this cone is 

(sac  zula)2 +y2  r1, (sac za,i (X&)'a zdc  0, (B20 
in which we may change the co-ordinates er y z to the direction-cosines a /3 Y of an 
internal ray of the cone : while the one external ray corresponding is determined by 
the following direction-cosines 

a 0=b-1  po  ; (c20 
or by the ordinary law of proportional sines, since the internal wave-normal of circular 
contact (I, which is one ray of the internal cone, is connected with the external 

VOL. XVII, 2N 

gm 



138 Professor HAMILTON'S Third Supplement 

ray by this ordinary law, if we take as the refracting index of the crystal the 
reciprocal Ir-' of the mean semiaxis of elasticity. It is evident hence that if the inter 
nal cone emerge at a new plane face, it will emerge a cylinder, whether the two faces 
be parallel or inclined, that is, whether the crystal be a plate or a prism. 

Theory of Conical Polarisation. Lines Of Vibration. These Lines, on FRES 
NEL'S Wave, are the Intersections of Two Series of Concentric and Co-axal 
Ellipsoids. 

30. A given direction of a wave-normal in a biaxal crystal corresponds in general 
to two directions of vibration, and therefore to two planes of polarisation, determined 
by the equations (I 18), namely one for each of the two values oh (022 of the square 
of the normal velocity deduced by (G" from the given system of ratios of a, T, v ; 
and these two directions of vibration, or the two planes of polarisation, that is, the 
two normal planes of the wave perpendicular to these vibrations, are perpendicular to 
each other, since we can easily deduce from  G" the following relation between 

2 2 w2, 
v2 

(6),' -(22)((-02 a'  b2 (0)22  b2 (6)12 -e !(U Q,_,,,G2=ID: (D" 

which general rectangularity of the two vibrations on any one plane wave has been 
otherwise established by FRESNEL, and is an important result of his theory. But 
besides this general double polarisation connected with the general double refraction 
in biaxal crystals, we may consider two other kinds which may be called conical polar 
isation, connected with the two kinds of conical refraction, which were pointed out in 
the foregoing number. 

To examine the law of the conical polarisation connected with the internal conical 
refraction, and therefore with the planes of circular contact, we may employ the 
co-ordinates x 'y 19), defined by (K ), and thus transform the general equations of 

polarisation (A 18 (F 18 into the following equally general, 

6-rc &pH 0/a a'..71 
coic  (we a2  1/1 (0 b2 6/.xi-F (o', az,2 2  C ), j a cra v 

a Iar rwSyd-f-v)za=0; 
(E' 

which give, for the projection of a vibration on the plane x y of single normal 

velocity, the rigorous formula 

 (cot  (a2 ce 
(02  62 411 

62 

Til 
(r() (7-- 62 N 62 c2 0. (6)2  62 a2 c2 
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and for any plane wave slightly inclined to this plane of x y the following approx 
imate relation between the components of normal slowness, 

v n b--'  r  (0 fo PI a:  7w2), (G2x 

retaining the meaning (A 20 of 7.11; and if we attend to the general connexions, 
established in this Supplement, between the direction-cosines of a ray and the compo 
nents of normal slowness of a wave, we easily deduce from  G20),  by differentiation, 
the following other relations, 

a V &I :17-rn Tir -   --If   r (1 +cr,  13...4   .._2,  (H" 71, 8cr Niav2  T.y2 
' 

7,, k, '%. ae2 7d2 
and finally for the vibrations of a near wave 

aY  DE, ...,.i3, (120 x,, cr,,-4- N/crs2 72 a,. 

This formula contains the theory of the conical polarisation connected with internal 
conical refraction. It shows that the vibrations at the circle of contact on FRESNEL'S 
wave, are in the chords of that circle drawn from the extremity of the normal w' of 
single velocity ; and therefore that the corresponding planes of polarisation all pass 
through another parallel normal at the opposite point of the circle. The plane of 

polarisation, therefore, in passing from one position to another, revolves only hay as 

rapidly as the revolving radius, so that the angle between any two planes of polarisa 
tion is only half the angle between the two corresponding radii of this circle on 
FRESNEL'S wave. And if we suppose that the direction of the external incident ray 
coincides with the wave-normal 01, and therefore also with the normal to the refracting 
face of the crystal, then the small internal components of normal slowness, a z7 a, 
parallel to this refracting face, are equal (by our general theorem of refraction to the 
small external direction-cosines ao pc, of the inclinations of a near incident ray to the 
semiaxes of x and y ; from which it follows, by (120), that the plane of external 
incidence containing this near incident ray revolves twice as rapidly as the corres 

ponding plane of refraction. 
For the other kind of conical polarisation, connected with the external conical 

refraction, and therefore with the conoidal cusps on FRESNEL'S wave, we find by a 
similar process, 

pY1  71  13, 
fix, a, a,-.j: 'I a,2 +13,e' 

and 

az, -2 b r ,ax  (142t 

1", having the meaning  U1'). The formula (K" shows that the normal plane to the 
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wave, containing any vibration near the cusp, contains either the cusp-ray itself, or a 
line parallel to this ray ; so that the direction of any near vibration coincides with or 
is parallel to the projection of the cusp-ray on the corresponding tangent plane of the 
wave, or of the cone which touches it at the cusp : and the formula (L2u shows that 
all these near vibrations are parallel to one common plane, which is easily seen to be 

perpendicular to the plane of a c, and to contain the tangent at the cusp to the 

elliptic section (I's of the wave, made by this latter plane ; so that all the planes of 
polarisation near the cusp, contain, or are parallel to, the normal of this elliptic 
section. And the direction of any near vibration on the wave, or on its tangent cone, 
may be obtained by cutting the corresponding tangent plane of this wave or cone by 
a plane perpendicular to this elliptic normal. 

If the cusp-ray be incident perpendicularly on a refracting face of the crystal, then 
the internal components o, 7', are equal to the direction-cosines cto po of the corres 

0 
ponding ray of the emerging external cone ; and therefore, by (K2 ), the plane of 
refraction of this external ray contains the internal vibration, and therefore also, by 
FRESNEL'S principles, the external vibration corresponding : so that, in the external 
conical polarisation, produced by the perpendicular internal incidence of a cusp-ray, 
the plane of polarisation of an external ray is perpendicular to its plane of refrac 
tion ; and therefore revolves about haY as rapidly as the plane containing this 
emergent ray and passing through the approximate axis of the nearly circular 

emergent cone, when the biaxal energy is small. We see also, by (K20), that the 

plane containing the cusp-ray and containing or parallel to a near internal ray, 
revolves with double the rapidity of the plane containing the cusp-ray and parallel to 
the near wave-normal ; and therefore, in the case of perpendicular incidence of the 
cusp-ray, the plane of incidence of a near internal ray revolves with double the 

rapidity of the plane of external refraction, which, as we have seen, contains here the 
external vibrations. 

In general, the equations of polarisation (F"), which we have deduced from FRES 
NEL'S principles, conduct, by (I" (L'8), to the following simple formula 

coax  b2py  cyz =0, (M20 

&v,;,?),z being still the components of displacement parallel to the semiaxis a, b, c, 
and a, p, y being still the cosines of the inclinations of the ray to the same semiaxes of 

elasticity : and this formula  when combined with the equation of transversal 
vibrations, 

'v o, or, 68x 47.2y  +az 0, (A's 

determines easily the direction of vibration for any given direction and velocity of a 

ray, that is, for any point of FRESNEL'S curved wave propagated from a luminous origin 
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within a biaxal crystal. And we easily see that on any wave in a biaxal crystal, whe 
11 ther propagated from within or from without, the differential equation (2" deter 

mines a series of lines of vibration, having the property that at any point of such a 
line the vibration is in the direction of the line itself. To find these lines on FRES 
NEL'S wave  018), we may change a 3 7 to x y z in the differential equation (11120), and 
Nse then find, by integration, 

a2 x2 b' y2  c2 z2  E4, (N20 

0 being an arbitrary constant ; and since this integral, when combined with the equa 
tion  0" of the wave itself, gives 

(a4  E4 x2 4. (b4  E4 ty2  (c4  E4 z2  (a2  62  c(2 e4 ..... a2 62 c2, (02' 

we see that the lines of vibration on FRESNEL'S wave, propagated from a point in a 
biaxal crystal, are the intersections of two series (N20  020 Of concentric and co-asal 

ellipsoids. 
By this general integration, extending to the whole wave, or by integrating the 

approximate equations for vibrations near the conoidal cusps and circles of contact, 
obtained from (K20 (P by changing the direction-cosines of a ray to the propor 
tional co-ordinates of the wave, we find that near a cusp the lines of vibration coincide 

nearly with small parabolic arcs on the tangent cone of the wave, in planes perpendi 
cular to the elliptic normal already mentioned ; and that in crossing a circle of contact 
the course of each line of vibration is directed towards that point of the circle which is 
the end of the corresponding wave-normal of single velocity, that is, towards the foot 
of the perpendicular let fall from the centre of the wave on the plane of circular 
contact. 

In any Uniform Medium, the Curved Wave propagated from a point is connected 
with a certain other surface, which may be called the surface of components, by 
relations discovered by M. CAUCHY, and by some new relations connected with a 
General Theorem of Reciprocity. This new Theorem of Reciprocity gives a new 
construction for the Wave, in any Undulatory Theory of Light : and it connects 
the Cusps and Circles of Contact on FRESNEL'S Wave, with Circles and Cusps of 
the same kind on the Surface of Components. 

51. The theory of the wave propagated from a point in any uniform medium, may 
be much illustrated by comparing this wave with a certain other surface which appears 
to have been first discovered by M. CAUCHY, who has pointed out some of its proper 
ties in the Livraison already referred to. In that Livraison, M. CAUCHY has treated 
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of the propagation of plane waves in a system of mutually attracting or repelling par 
ticles ; and has been conducted to a relation between the normal velocity of propaga 
tion, which he calls s, and the cosines of its inclinations to the positive smilaxes of 
x, y, z, which cosines he denotes by c, b, c. The relation thus found being expressed 
by equating to zero a certain homogc_leous function (of the sixth dimension of s, a, 6, c, 
it has suggested to M. CAUCHY the consideration of s as a homogeneous function of 
the first dimension of the cosines a, b, c, whereas we have preferred to treat the normal 
velocity (denoted in this Supplement by to as a homogeneous function of its cosines 
of direction of the dimension zero ; a difference in method which makes no real differ 
ence in the results, because the relation existing between the cosines (namely, that 
the sum of their squares is unity, permits us to transform in an infinite variety of 

ways any equation into which they enter. M. CAUCHY deduces from his view of the 
relation between the normal velocity and cosines of normal direction, the following 
equations between the time t and the co-ordinates x y z of a ray from the origin of 
co-ordinates, 

a: ds y cis z ds ..._.   . ...,_  ......... , t da, t db 7 t de 

which were alluded to in the twenty-sixth number of the present Supplement, as sub 

stantially equivalent to our equations (D'8). He deduces also an equation of the 
form 

F  -a , 12 , 5-  0, , s s s > 

a b c 
which he constructs by a surface haviner  , -,  , for its co-ordinates. Our methods s 
suggest immediately the same surface, as the construction of the same equation under 
the form 

0 (cr, ir, v  0, 

which has been so frequently employed In this Supplement ; and from the optical 
meanings that we have pointed out for the co-ordinates a, 7, u, of this surface Q =0, 
we shall call it the surface of components of normal slowness, or simply the suiface 
of components. M. CAUCHY shows that this surface is connected with the curved 
wave propagated from the origin of co-ordinates in the unit of time, (which we have 
called the unit-wave and may denote by the equation 

V:,--1, 

by two remarkable relations, which can easily be deduced from our formuhe, and 

may be thus enunciated : first, the sum of the products of their corresponding co 

ordinates, or, in other words, the product of any two corresponding radii multiplied 
by the cosine of the included angle, is unity ; and secondly, the wave is the enveloppe' 
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of the planes which cut perpendicularly the radii of the surface of components at 
distances from the centre equal to the reciprocals of those radii. 

To these two relations, discovered by M. CAUCHY, we may add. a third, not less 

remarkable, which he does not seem to have perceived : namely, that the surface of 
components is the enveloppe of the planes which cut perpendicularly the radii of the 
wave at distances from its centre equal to the reciprocals of those radii, that is, equal 
to the slownesses of the rays. For it is a general theorem of reciprocity between sur 

faces, which can easily be deduced from the evident coexistence of the three equations 

+Ay'  zz'  I, 
x&B +gy'  0, 
fax F y'Zy 0, 

that f one surface B be deduced from another A by drawing radii vectores to the 
latter from an arbitrary origin 0, and altering the lengths of these radii to their 

reciprocals without charging their directions, and seeking the enveloppe B of the 

planes perpendicular at the extremities to these altered radii of A, then reciprocally, 
the suifitce A may be deduced from B by a repetition of 11w same construction, 
employing the same origin 0, and the same arbitrary unit of length. For example, 
if the surface A be formed by the revolution of an ellipse about its greater axis, and 
if we place the arbitrary origin 0 at one focus of this ellipsoid A, and take the arbi 

trary unit equal to the semiaxis minor, the enveloped surface B will be a sphere, 
having its diameter equal to the axis major of the ellipsoid, and its centre on that axis 

major, the interval between the centres of the two surfaces being bisected by the origin 
0 ; and if from this excentric origin we draw radii to the sphere B, and change these 

unequal radii to their reciprocals, and draw perpendicular planes at the extremities of 
these new radii, the enveloppe of the planes so drawn will be the ellipsoid A. Another 

particular case of this general theory of reciprocal surfaces, namely, the case of two 
concentric and co-axal ellipsoids, referred to their centre as origin, and having the 
semiaxes of one equal to the reciprocals of those of the other, has been perceived by 
Mr. MAC CULLAGH, and elegantly proved by him, in the Second Part of the Sixteenth 
Volume of the Transactions of the Royal Irish Academy. 

This general theorem of reciprocity, when applied to the unit-wave and surface of 
components, gives a new construction for the unit-wave in any uniform medium, and 
for any law of velocity namely, that the wave is the locus of the points obtained by 
letting fall perpendiculars from, the centre on the tangent planes of the surface of 
components, and then altering the lengths of these perpendiculars to their reciprocals, 
without altering their directions. 

It follows also from this general theory of reciprocal surfaces, that a conoidal cusp 
on any surface A corresponds in general to a curve of plane contact on the reciprocal 

(P" 
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surface B, and reciprocally ; and, accordingly the cusps and circles on FRESNEL'S wave 
are connected with circles and cusps on the corresponding surface of components, which 
latter surface is indeed deducible from the former by merely changing the smilaxes of 

elasticity a be to their reciprocals. And it was in fact by this general theorem that I 
w as led to discover the four circles of contact on FRESNEL'S wave, by concluding that 
this wave must touch four planes in curves instead of points of contact, as soon as I 
had perceived the existence of four conoidal cusps on the surface of components, by 
obtaining (in some investigations respecting the aberrations of biaxal lenses the 
formula  G"), which is the approximate equation of such a cusp. I easily found also 
that there were only four such cusps on each of the two reciprocal surfaces, and there 
fore concluded that there were only four curves of plane contact on each. I may 
mention that though I have taken care to attribute t M. CAUCHY the discovery of 
the surface of components, yet before I met the Exereices de Mathgmatiques, I vas 
familiar, in my own investigations, with the existence and with the foregoing properties 
of this surface : it is indeed immediately suggested by the first principles of my view 
of optics, since it constructs the fundamental partial differential equation 

n f8f7 aV V \  0  
Us ' 4 

' Zz  
 

which my characteristic function V must satisfy in a final uniform medium. 
The surface of components possesses many other interesting properties, for exam 

ple the following, that in a final uniform medium any two conjugate planes of ver 

gency (E1' are perpendicular to two conjugate tangents on it : which is analogous 
to the less simple relations considered in the twenty-first number. But the length to 
which this Supplement has extended, confines me here to remarking, that the general 
equations of reflexion or refraction, 

A a - 0, AT  0, (Q19 

may be thus enunciated ; the corresponding points (a, 7, v, and a  ACr, 7  AT, v  AO 
upon the smface or surfaces of components (0  C2, 0  Si  A 00 before and 

after any reflexion oe refraction ordinary or extraordinary, are situated on one 
common perpendicular to the plane which touches the reflecting or refracting 
suit face at the point of reflexion or refraction ; a new geometrical relation, which 

gives a new and general construction to determine a reflected or refracted ray, simpler 
in many cases than the construction proposed by HUYGHLNS. 


