
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1996-09

A proposed architecture for on-line JDISS training

Kopper, William P.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32256

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

A PROPOSED ARCHITECTURE FOR ON-LINE
JDISS TRAINING

by

William P. Kopper

September, 1996

Thesis Advisor: Suresh Sridhar

Approved for public release; distribution is unlimited.

19961220 112

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or

any other aspect of this collection of information, including suggestions for reducin~ this burden, to Washin~n Hea~rters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 2202-4302, and to the ffice of agement and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORTDA1E 3. REPORT TYPE AND DATES COVERED
September 1996 Master's Thesis

4. TITLE AND SUBTITLE A PROPOSED ARCHITECfURE FOR ON-LINE 5. FUNDING NUMBERS
JDISS TRAINING

6. AUTHOR(S) William P. Kopper

7. PERR>RMING ORGANlZATIONNAME(S) AND ADDRESS(ES) 8. PERR>RMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORlNG/MONITORlNG AGENCYNAME(S) AND ADDRESS(ES) 10. SPONSORlNG/MONITORlNG
AGENCY REPORT NUMBER

11. SUPPLEMENTARY N01ES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AV All..ABTI...ITY STATEMENT 12b. DlS'IRIBUTIONCODE
Approved for public release; distribution is unlimited.

13. ABSTRACT(maximum200words)
The Joint Deployable Intelligence Support System (JDISS) is the primary Department of Defense

system for the exchange of intelligence information. Unfortunately, the system lacks an adequate
computer learning application. The widespread implementation of universally connected client/server
networks, such as JDISS, will soon be enhanced by advanced World Wide Web (the Web) services.
The combination of the Web and object-oriented technology, known as distributed object technology,
may provide a solution to this problem. Use of the Common Object Request Brokerage Architecture
(CORBA) Object Request Broker (ORB) could allow users of the (JDISS) to create customized training
modules on-line the distributed object environment. Until JDISS adopts an ORB standard, an
intermediary on-line training system based on advanced HTML, Java applets, and JavaScript could
provide some of the functionality expected of an ORB based system. Regardless of the technology used
to develop on-line JDISS t;raining, certain system requirements must be met by any system to ensure its
success. These requirements are defmed from both the user and system administrator perspectives.

14. SUBJECT 1ERMS: CORBA, Intelligence Dissemination, Java, JavaScript, 15. NUMBER OF PAGES
JDISS, Training, World Wide Web

17. SECURITY CLASSIFICA- 18. SECURITY CLASSIFICA-
TION OF REPORT TION OF THIS PAGE
Unclassified Unclassified

NSN 7540-01-280-5500

1

19.

116
16. PRICE CODE

SECURITY CLASSIFICA- 20. LIMITATION OF
TION OF ABSTRACT
Unclassified

ABSTRACT
UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

ii

Approved for public release; distribution is unlimited.

A PROPOSED ARCHITECTURE FOR ON-LINE JDISS TRAINING

William P. Kopper

Lieutenant, United States Navy

B.A., Northwestern University, 1987

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

Author:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL

September 1996

' ~

I

- .,_., -
" II ~ • ~.--==

Tung Bui, Associate Advisor

iii

iv

ABSTRACT

The Joint Deployable Intelligence Support System (JDISS)

is the primary Department of Defense system for the exchange

of intelligence information. Unfortunately, the system lacks

an adequate computer learning application. The widespread

implementation of universally connected client/server

networks, such as JDISS, will soon be enhanced by advanced

World Wide Web (the Web) services. The combination of the Web

and object-oriented technology, known as distributed object

technology, may provide a solution to this problem. Use of

the Common Object Request Brokerage Architecture (CORBA)

Object Request Broker (ORB) could allow users of the (JDISS)

to create customized training modules on-line the distributed

object environment. Until JDISS adopts an ORB standard, an

intermediary on-line training system based on advanced HTML,

Java applets, and JavaScript could provide some of the

functionality expected of an ORB based system. Regardless of

the technology used to develop on-line JDISS training, certain

system requirements must be met by any system to ensure its

success. These requirements are defined from both the user

and system administrator perspectives.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION

A. JDISS CONCEPT

B. JDISS TRAINING
1. Training Availability
2. Service Tailoring
3. System Updates/Re-fresher Training

c. THESIS OBJECTIVES

D. THESIS ORGANIZATION

II. COMPUTER LEARNING

A. INSTRUCTION

B. TYPES OF COMPUTER INSTRUCTION
1. Distance Learning
2. Computer Based Training
3. Computer Conferencing

c. SUPP()RTING TECHNOLOGIES
1. Networking
2. TCP/IP
3. SGML
4. Multimedia

vii

1

2

2
3
4
4

4

5

7

8

11
12
13
14

15
15
15
16
17

III. SYSTEM REQUIREMENTS

A.

B.

JDISS COMPUTER LEARNING SYSTEM

STRUCTURE AND SYSTEM REQUIREMENTS
1. GENERIC SYSTEM REQUIREMENTS

a. Platform Independence
b. Delivery to a Distributed User Base
c. Multimedia
d. Rapid Updating Capabilities
e. Component Re-use

· f. Compatibility with Future
Architectures

2. TRAINING SPECIFIC REQUIREMENTS
a. Module Selection
b. Interactive Training Access
c. Grading Mechanism
d. Training Record Maintenance
e. Version Control and Module

Management

IV. JDISS TRAINING ARCHITECTURE AND SUPPORTING
TECHNOLOGY

v.

A. INTERNET DELIVERY

B. OBJECT-ORIENTED TECHNOLOGY

c. DISTRIBUTED OBJECT MIDDLEWARE AND COREA

D. A PROPOSED MIGRATION SYSTEM
1. Netscape Navigator
2. Java and JavaScript
3. Migration to COREA

PROOF OF CONCEPT: DESIGN AND IMPLEMENTATION
CONSIDERATIONS

A.

B.

DESIGN FACTORS

DESIGN OF THE WEB TRAINING APPLICATION
1. Frames
2 . JavaScript
3. Java Applets
4. Tutorial

viii

19

19

20
22
22
23
23
24
24

25
26
26
26
27
27

27

29

29

30

32

37
38
40
43

47

48

49
49
52
54
59

VI. LESSONS LEARNED

A. TOOLS
1. HTML Editors
2. Java Development Environments

B. DEVELOPMENT PROCESS

VII. CONCLUSIONS

A. LIMITATIONS

B. AREAS FOR FUTURE RESEARCH
1. Migration to Distributed Object

Architecture
2. Creation of Customized Training Modules

APPENDIX A. JDISS STANDARDS AND GOVERNING BODIES

APPENDIX B. JAVA SECURITY

APPENDIX C. APPLET CAPABILITIES

APPENDIX D. CSE SS TO DII-DOE MIGRATION

APPENDIX E. COMPUTER LEARNING CHECKLIST

APPENDIX F. SELECTED HTML, JAVA AND JAVASCRIPT CODE

1.
2.
3.
4.
5.

HTML for Frames
Drop Down Menu JavaScript
Java Code - Rotator.class
Pre-test JavaScript
Review test Javascript

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

ix

67

67
67
69

70

73

74

74

74
75

77

79

85

87

89

91

91
92
94
96
99

101

105

X

I. INTRODUCTION

The widespread implementation of universally connected

client/server computer networks has changed the way

information technology services are designed and delivered.

The concept of a static embedded service available on a single

machine is no longer common. The new model of computing

focuses on accessing and sharing distributed services from any

node on the network. The introduction of the Hyper Text

Transfer Protocol (HTTP) and companion Hyper Text Markup

Language (HTML) files has expanded information retrieval

beyond the local area network (LAN) to any node on the World

Wide Web (the Web) regardless of the type of hardware or

operating system.

Soon the combination of object-oriented technology and

networking/ through middleware schemes such as the Common

Object Request Brokerage Architecture (CORBA)/ will erase the

difference between clients and servers. According to Orfali/

Hackey/ and Edwards (1996) 1 objects/ distributed on millions

of machines/ will behave like lego blocks with the ability to

collaborate across the network in an infinite number of

customized applications. This thesis will examine how

training for the Joint Deployable Intelligence Support System

(JDISS) can be delivered on-line via the Web in a way that

takes advantage of today 1 S client/server environment while

1

providing the necessary hooks for easy migration to tomorrow's

distributed object architecture.

A. JDISS CONCEPT

JDISS provides hardware, software, and protocol standards

for computer tc computer exchange of sensitive intelligence

information across the Department of Defense {DoD) and Allied

communications networks. A typical JDISS node consists of a

Unix workstation hosting a variety of Commercial/Government

off-the-shelf (COTS/GOTS) software components. Connection of

the workstation to the appropriate military communications

network allows for intelligence dissemination .and interchange.

The node owner determines which classified network (SIPRNET,

DSNET-III, NATO, etc.) to access based on mission and security

requirements. .The JDISS Project Management Office (PMO)

determines which services the system requires in response to

sponsor and user feedback. It also consults with other PMO's

to ensure interoperability between JDISS nodes and other

systems connected to a given network. Due to its proven track

record, JDISS has become the premier intelligence

dissemination system with nearly 3500 nodes worldwide. (JDISS

PMO 1995) Appendix A describes the authorities that govern

JDISS configuration and evolution.

B. JDISS TRAINING

Unfortunately, JDISS training trails behind deployment.

At times a JDISS system arrives at a unit only several days

before or during a force deployment, without any required

2

training. Although most intelligence professionals are

familiar with JDISS, they may not immediately be proficient

with the system at all times. System upgrades further

compound the training problem by providing improved services

for which training may be necessary, but not available. Thus,

JDISS users may have little or no familiarity with the system

which will become their primary source of intelligence

information. At this time the only training available outside

the classroom is JDISS Embedded Support (JES), a multimedia

service provided as part of all JDISS software suites. (JDISS

1996)

Replacing JES with a Web mechanism to deliver computer

learning materials via the network will improve the following:

• Training availability

• Service tailoring

• System updates and re-fresher training

1. Training Availability

Embedded training within the system in the form of JES

2.0 is static, out of date, and presented in an unfriendly,

hard to update, format. Also, JDISS training is not readily

available to users, unless they are near a JDISS equipped

command. Web training could extend training availability

through delivery over the unclassified Web to any student with

a Web browser equipped PC. The same material could be etched

into unclassified CD ROM disks for use on standalone systems.

3

2. Service Tailoring

Classroom courses are divided into two functional areas,

administrator and operator. JDISS training courses can be

tailored for a specific group, but most often they are

presented from a standard syllabus without taking user needs

or experience into account. Web training would allow network

delivered computer learning. In turn, this training could be

structured to permit the student to determine which material

to study based on his knowledge of the topic or his score on a

quiz. Customized modules available on-line 24 hours a day let

the student to learn at his own pace.

3. System Updates/Re-fresher Training

Users often lack the skills to use new or upgraded

applications. A networked computer learning architecture

would be easy to upgrade. Web pages can be updated at one

location and accessed by multiple users. The very nature of

the Web permits for quick editing of Web pages with readily

available HT.ML editors such as Netscape Gold. (Netscape Gold

1996)

C. THESIS OBJECTIVES

This thesis provides a plan to expand JDISS training

services to include Web based learning application available

to all users. It will examine the concepts of Distance

Learning, Computer Based Training, and Computer Conferencing.

It will suggest how current and future JDISS configurations

can support continuing education. Proposals for the Web

4

learning mecha:::1ism follow a migratory system improvement

approach, ensuring the proposed JDISS training delivery plan

meshes with current client/server and future distributed

object architectures. Implementation will be network centric,

relying on the Internet or the classified IntelNet for

delivery and swift updates. Users will access information via

commonly available Web browsers. Finally, a JDISS training

delivery prototype will be described. The prototype delivers

platform independent training over the network in the form of

HTML documents enhanced with JavaScript and the object

oriented Java programming language.

D. THESIS ORGANIZATION

Chapter II will discuss the state of computer learning,

examining various characteristics of learning and technologies

that complement their implementation. Chapter III describes

what the ultimate JDISS computer learning system would look

like and outlines user and system requirements. Chapter IV

explains how the coming convergence of network and object

oriented technologies influences the recommended architecture

for JDISS Web training. Chapter V documents the

implementation of an on-line JDISS training proof of concept.

Lessons learned are provided in Chapter VI, while

recommendations for further research and conclusions will be

presented in Chapter VII.

5

6

II. COMPUTER LEARNING

Since its inception, Information Technology managers have

tried to implement the use of the Personal Computer (PC) into

their training plans, often with little to show for their

effort and expenditure. Allessi and Trollip (1985) assert

this failure has been the result of three shortcomings:

• Location of and access to the training laboratory

• Courseware selection

• Computer literacy of instructor and learner

However, according to Reinhardt (1995) the common

availability of three key technologies; Networked LANs,

Internet Protocols, and multimedia are making the idea of

widespread computer learning practical. Not only will such

education be available at any time during the day, it will be

available from any place the student is able to plug into the

network.

Additionally, the introduction of new schemes for

computer learning which emphasize self-paced, user driven

instruction will allow the user to be educated when he needs

the instruction and has a stake, task completion, in ensuring

that he learns properly. "Just-in-time" or "just-in-case"

training will allow organizations to link training to

productivity instead of providing education in advance of a

task. Several factors drive this approach to learning. The

first is the lack of resources applied toward training.

7

Second is the dispersion and turnover of employees. The third

is the rapid evolution of technology. Combined these factors

dictate that training must no longer be composed of static

lessons presented in a traditional class room setting.

(Reinhardt 1995)

Finally, computer learning allows the concept of one on

one instruction, through apprenticeship, to be re-introduced

back into training and education. Unlike the classroom where

one expert teaches many students, computer access allows one

student direct contact with hundreds of digital and live

instructors. Instructors can become more like coaches,

checking in on students progress and answering queries when

the student is stuck. The student is also allowed greater

flexibility to learn at his own pace, when he wishes to learn.

(Reinhardt 1995) An examination of current thought concerning

computer instruction, learning methodologies and supporting

technologies provides an idea of what an on-line JDISS

training system should be able to provide.

A. INSTRUCTION

Computer learning must support a variety of instructional

methods if it is to be truly successful. According to Lauzon

8

and Moore (1992) and Kowitz and Smith (1987) learning occurs

in three phases:

• Learning the basics

• Using basic skills to acquire technical abilities

• Seeking to master the leading edge of knowledge and

advance it

Within each form of instruction two dimensions can be

measured, density of the material to be learned and the amount

of human interaction necessary to impart that content. Kowitz

and Smith (1987) assert that throughout the course of learning

a subject, the student will choose ever increasing content

density while decreasing the amount of human interaction.

While learning the basics the student has very little

knowledge of the topic. Learning is controlled by the

instructor, a master of the subject. The instructor provides

the basic tools, schemas, and methodologies necessary to

master the skill or topic and evaluates the student's

progress. In the second phase of instruction, the learner,

who is skilled in the basics, begins to determine the

direction of study. Acting with the instructor, he acquires

more specialized skills and knowledge of the topic. The

teacher still evaluates the student, but evaluation process is

more a collaboration between the teacher and student. The

final phase of instruction is determined solely by the

student. By this time the learner is skilled in the

discipline and seeks to expand the field of knowledge through

9

his own analysis and interpretation of information. There is

no teacher at this level of instruction. Instead, the learner

relies on collaboration with other experts to expand his

understanding of the topic and add to it. (Kowitz and Smith

1987)

Allesi and Trollip (1985) further maintain that four

instructional methodologies exist which can be used to deliver

training via networked computer systems. They are:

• Tutorials

• Drills and simulations

• Games

• Tests

These four methods can be used as the framework for training

delivery for the first and second forms of instruction,

learning basics and using basics to expand knowledge, which

require an instructor to lead and monitor the student. These

instruction methodologies will be considered as ways to

present learning modules to students desiring on-line JDISS

training. (Kowitz and Smith 1987)

With accef~s to multiple levels of instruction delivered

in a variety of formats to the student whenever and wherever

he may be, a new kind of education, learner centered, becomes

possible. According to Jackson, Straford, Krajcik, and

Soloway (1996), such an approach allows each user to address

his individual needs via computer learning. Under this scheme

10

the learner ca.n design his own training model by combining

various objects.

The method begins by building on the student's experience

and prior knowledge of the topic. Through a series of

interactive queries, the students can define the objects they

wish to examine and provide the system with inputs which will

be used to determine the level of knowledge the student has.

Next new concepts are provided to the student based on the

results of the q:ueries. At last a series of "coupling

actions" reinforces the lesson learned during the session by

measuring the learners feedback and answers to questions.

(Jackson, Straford, Krajcik, and Soloway 1996)

Guzdial and Kolodner (1996) explain that these techniques

are similar to building a scaffold. The student starts by

defining his base and builds a scaffold up from it as he

learns more. Simply put, learning results from a process of

complex problem solving combined with reflection. By

measuring response to the problem, the proper case studies are

delivered to the student. Thus, the student is ensured that

he receives information on both the topic he is interested in

and information that will increase his knowledge of that

topic.

B. TYPES OF COMPUTER l:NSTRtJCTl:ON

Three concepts interact to provide training and education

to remote usen; via computers: Distance Learning (DL),

Computer Based Training (CBT), and Computer Conferencing (CC).

11

While each started as a separate discipline using differing

technology, the introduction of networks, multimedia, and

Internet access have allowed these three fields to evolve into

overlapping, interconnected ways of delivering instruction.

These technologies have made the boundaries between each type

of instruction nearly transparent. However, it is important

to recognize the differences between them at an abstract level

in order to design the proper training modules for Web

learners. The concepts used to design Web training systems of

the future will borrow from the tenets of all three ideas

while relying on multiple formats for delivery. The

educational schemes and delivery methods will depend on a

hybrid approach, drawing on whichever available module of

training or delivery medium best suits the need of the user.

1. Distance Learning

Initially. Distance Learning focused on delivering

traditional class room lectures to students at distributed

sights. As such, it originally utilized synchronous analog

audio and video beamed to specialized video-teleconferencing

(VTC) rooms, terminals, or telephones. Traditional distance

learning often suffered for an assortment of reasons. First

the instructor could not see or interact with his distant

students. Second, although learning could be extended to

remote locations, this often required special equipment and

supporting conference rooms that limited the number of people

who could participate. Special scheduling procedures limited

12

the availability of training and time slots available for

learning. Finally/ band width requirements often restricted

the quality of instruction (particularly video) received.

Due to th€ advent of networked computers and ever

increasing band width 1 Shackleton and Clark (1995) claim that

numerous benefits can now be derived from using distance

learning. Pupils can choose the environment and pace at which

they study 1 while the instructor can support many levels and

complexities of instruction. Through the use of audio

conferencing and VTC/ the organization can extend education

beyond the classroom to multiple remote locales or even the

desktop. The rapidly emerging availability of audio and VTC

over LANs and the Internet now let information technology

managers to extend remote computer learning to the desk top.

2. Computer Based Training

Computer Based Training is "an interactive learning

experience between a learner and a computer in which the

computer provides the majority stimulus/ the learner must

respond and the computer analyzes the response and provides

feedback to the learner." (Gery 1991 1 p 6) The computer

replaces the instructor and engages the user through

tutorials/ drills 1 and tests. With smart programming/ student

input may be measured to ensure the proper materials are

delivered to build upon instruction based on response/ leading

to guided learning by the user.

13

Tradition3lly this type of instruction has been embedded

as an educational or tutorial application, relying primarily

on the presentation of text and graphics by the application

and typed responses by the student. The introduction of

multimedia via CD ROM, LAN, or the Internet has beefed up the

ability of CBT to deliver a much more inter-active,

interesting, and compelling form of instruction. (Weiland

1995)

3 • Computer Conferencing

Computer Conferencing is the use of networked computers

to exchange information. Common Computer Conferencing methods

include e-mailr file transfer protocol, news, and mail groups.

Computer Conferencing provides two advantages for student and

teacher alike. First, the ability of networked users to

exchange inforrration over the Web has lead to the creation of

virtual communities which allow for asynchronous transaction

between teacher and student. The participants in a learning

venture do not have to be interacting with the network

simultaneously. Second, asynchronous access to learning

resources allows for the creation of a virtual classroom which

can be entered 24 hours a day from any node on the network.

Students can download lecture notes from a prior day and post

questions back to the instructor who can respond via e-mail,

chatter, or VTC. Finally, the introduction of multi-media

14

over the network allows for richly enhanced files such as

images or video to be delivered via computer conferencing.

(Lauzon and Moore 1992)

C. SUPPORTING TECHNOLOGIES

Four computing technologies: networking, Internet

access, Standardized General Markup Language (SGML), and

multimedia have allowed DL, CBT, and CC to become the

supporting concepts for the larger scheme of on-line, on

demand computer learning.

1 . Networking

Networking allows for the sharing of information between

computers connected to the network. Without networking,

computer learning would be limited to individual applications

loaded on to standalone computers. As a networked system,

JDISS clients will be able to access the services provided by

training servers located locally or around the world.

2. TCP/IP

Internet access and its supporting TCP/IP protocols allow

for the delive~y and retrieval of information across disparate

networks. Without Internet Protocols, delivery of educational

material between local area networks would be difficult, if

not impossible unless all networks adhered to the same

software and ho.rdware standards. Most import of the TCP/IP

protocols for delivering training materials is HTTP. HTTP

allows all clients and servers on the network to request and

send Web documents written in the HTML.

15

3. SGML

SGML is the super set of HTML. It allows an author to

create a file that contains data and instructions for the

presentation of that data. This is achieved by marking up the

text. Using SGML, an author will designate the structure of

the document, identifying paragraphs, titles, heading and key

words with markup tags collectively called a Document TYPe

Definition (DTD) . When finished he can designate the look of

the document without changing the text. Additionally searches

can be made on individual parts of the document. In an

object-oriented environment this will allow the creation of

customized documents (training packages) based on the

student's query.

For example, a smart system could sense a low bandwidth

connection and deliver the document in a format compatible

with that medium. Once delivered the student may wish to

apply a small font to the text and print it out as a handy

reference card. The information can be implemented in a

variety of formats without damaging its integrity. The down

side of SGML is that tagging a document is labor intensive,

like climbing a mountain. Just as the mountaineer must check

every step and expend lots of energy when climbing the slope,

every paragraph, heading, and item of interest in the DTD must

be marked with the proper tag for SGML to work. This could

become an arduous process if the document requires detailed

tagging. However, once tagged, producing the a customized

16

document is like walking down the slope. The document, like

the path of descent, is well known and tagged. The user

simply designates the style the document should have.

4. Multimedia

Multimedia will allow the concepts of DL, CBT, and CC to

be delivered to the desktop in an infinite number of

combinations. With multimedia, the user can access

information in text, graphic, audio, or video format or some

combination thereof. Multimedia products can be delivered to

a desktop by LAN or CD ROM if the computer has the proper

sound and video card hardware configuration. Still another way

is to provide lhese services to all users with network access

via the Web and TCP/IP protocols. (McMahan 1995)

According to Gallaghan (1994) multimedia allows the

computer to become an Electronic Performance Support System

(EPSS) . An EPSS system allows the intersecting technologies

of multimedia to deliver just-in-time training to a student.

Multimedia provides a computer with the ability to "model,

represent, structure, and implement (EPSS) support

electronically." (Gery 1991)

In such an environment, a student will not only be able

to access training through a computer, he will also be able to

designate the delivery media for the instruction. For

instance, the student could initially study a training module

by accessing a text and graphically enhanced HTML file. A

live or recorded VTC could be used to reinforce the module

17

objectives. r.:.nally I the student could use a VTC I e-mail I or

collaborative white board to contact a human instructor to ask

questions or pass test results.

18

III. SYSTEM REQUIREMENTS

A. JDISS COMPUTER LEARNING SYSTEM

The ultimate on-line training system would provide an

easily navigable environment for learning JDISS capabilities.

During the training session the system would generate a

customized course of instruction based on test results, known

user preferences, or other input. Additionally, the material

would be tailored for presentation in a format based on those

preferences .

The user interface must be simple; its proper use

inherent to anyone familiar with the operation of a PC. The

emphasis should be on learning JDISS, not learning how to use

the JDISS training system. Sitting down for on-line JDISS

system training should be like driving your car to a new

destination with a good map. Although you have never been to

the destination, the map will ensure you arrive safely and on

time because it is well detailed with clear directions. Since

you are driving a car you do not even have to worry about

learning how i~ works. You already know how to drive. Thus,

the best user interface would be the one every computer user

knows; point and click access with a mouse.

Finally, the methods or applications invoked by the

system should be transparent. The student should receive what

he needs to best master JDISS and not have to worry how the

19

system provides training. An emphasis on three factors will

ensure that such a JDISS training system is eventually

achieved. They are:

• An understanding of system requirements

• A well planned marriage of the requirements to

technology

• Designing the lessons in a way such that it is easy

to use and draws in the student

B • STRUCTURE AND SYSTEM REQUIREMENTS

Since JDISS supports diverse military, interdiction, and

humanitarian efforts, the user base is constantly changing.

Additionally, JDISS is a relatively new system, the role and

use of it within the organization is evolving on a parallel

track with operational deployment. Before developing the

system requirements, a model of the structure of military

intelligence organizations has been generated. This model,

first suggested by Conway (1968) serves as the framework upon

which system requirements are built.

According to Conway (1968) and Goldberg and Rubin (1995)

a system will tend to have a structure that parallels the

organization which develops and uses it. Each part of a

system can be broken down into smaller interconnected

subsystems. These subsystems communicate with one another

through interfaces. Again, these systems, subsystems, and

20

interfaces reflect the design and lines of communication

within the organization. (Conway 1968, Mowbray and Zahavi

1995)

For example, most intelligence professionals operate in a

dynamic environment, often in support of a Joint Task Force

(JTF) . The JTF Intelligence team pieces are plugged and

unplugged according to commander's intent and the availability

of forces to meet his requirements. As such the functions of

JTF Intelligence may be dispersed over a large area and

composed of members of all the services, national agencies,

and allied forces, yet they must always be able to exchange

information with one another.

Applying Conway's theory to the JTF suggests that each

component should have a corresponding systems and sub-systems

to help it perform its particular mission. Such a scheme

should reflect that JTFs, by their nature, are confederations

working together only until their mission is complete. The

supporting systems of each component should have interfaces

that facilitate easy linking and de-linking to other systems

within the confederation. The goal of providing customized

and up-to-date training to a rapidly changing group such as a

JTF intelligence staff can be achieved using the JDISS system

to deliver object-oriented components via the Web or its DoD

classified ver::;ion, the IntelNet.

21

1 . GENERIC SYSTEM REQUIREMENTS

A System Enhancement Process (SEP) was used to develop

the requirement-s for the JDISS training architecture. The

proposed architecture will add modifications to the current

JDISS system which will provide new functionality.

Additionally, the future CORBA based architecture of the JDISS

is considered to ensure this plan will be compatible with

expected improvements. Finally, the proposal is designed with

an eye on providing these enhancements to other components of

JDISS. (Goldberg and Rubin 1995)

Any Web based JDISS service must be supported by an

architecture which will allow the application to achieve the

following:

• Platform independence

• Delivery to a remote, distributed user base

• Multimedia

• Rapid updating capabilities

• Component re-use

• Compatibility with future system architectures

Such flexibility will allow JDISS training to be provided to a

diverse, rapidly changing user base while remaining compliant

with the constantly improving overall architecture of the

system.

a. Platform Independence

Today, most JDISS nodes employ Solaris or another

Unix operating system. However, plans to port the system to

22

Windows NT have been drawn up. Since training is an

unclassified component of the JDISS system, platform

independence will allow system users to access training beyond

the scope of the classified networks via unclassified mirror

servers. This would also allow the JDISS system to be

designated for operational support, while the intelligence

specialist could train in non-secured spaces or even at horne

on his PC.

b. Deli very to a Distributed User Base

JDISS already has a widely distributed on-line base

due the overwhelming popularity of the system and the ease of

plugging into intelligence communication networks. With

nearly 3500 users world wide, training must be available to

the most remote of foreign locations while taking available

bandwidth into :tccount. On-line delivery will allow for self

paced and tailored learning anywhere on the network, 24 hours

a day. If a ~errninal can not be made available for training,

the student will be able to train on a standalone machine with

a CD ROM drive. Web browser technology will meet all the

criteria of this requirement and provided services for a

variety of operating systems.

c. Multimedia

JDISS workstations are equipped for multimedia.

Multimedia should be added to training materials to draw in

the student, E.r::hancing his learning experience and keeping him

engaged. In many cases band width exists to support delivery

23

of multimedia files or formatted pages. When the network is

not available or robust enough to support multimedia training,

CD ROM technology can fill this shortcoming.

d. Rapid Updating Capabilities

Since the capabilities of JDISS change every few

months, the ability to rapidly update training modules by

modifying current components to deliver new instruction

without re-programming the delivery application is imperative.

To solve shortcomings in the current JDISS training

application, JES, the delivery architecture should be re

designed to make customized up-to-date training available over

the JDISS network to all users of the system. Updates should

be performed at designated education sites. By doing so, the

architecture may cease to simply be a delivery service.

Searches of a central location will begin to help the student

make a decision as to which training aid he needs to study.

e. Component Re-use

While instructional data for JDISS training may

change, the applications for enhancing their delivery will not

change as fast. By adopting object-oriented technology, only

those objects within the training system which have changed

will have to be updated. The complete training system will

not have to be re-compiled. Additionally the same data could

be presented in a variety of formats by applying the methods

of different objects to that data.

24

f. Compatibility with Future Architectures

Finally, the training system must easily migrate

with other JDISS services to a distributed object

architecture. In the future, smart middleware will make the

delivery route of customized training modules transparent and

platform independent to the remote user. In fact the concept

of remote user might even disappear. A distributed, object

based system would support all users connected to the network

regardless of location or hardware/software configuration.

Additionally, an object based training architecture provides a

parallel structure of objects which could be plugged and

unplugged in crd.er to support the training needs of such a

diverse group of users. Ensuring compliance with COREA would

allow for easy connection of diverse resources without

knowledge of where they are located or what they look like.

(Orfali, Hackey, and Edwards, 1996)

25

2 • TRAJ:NJ:NG SPECJ:FJ:C REQOJ:REMENTS

Any Web based JDISS training service must be supported by

an architecture which will allow the application to perform

the following functions:

• Module selection

• Interar.tive training access

• Grading mechanism

• Training record maintenance

• Version control

These functions are training oriented services, necessary

for the proper administration of a modular, object-oriented

training application.

a. Module Selection

Before beginning to train, the user must have a way

to designate goals and preferences. Comparing these

selections to the available modules will allow the user to

select and receive those instructional elements which best

suit his needs. This type of service, provided by query based

matching, could be achieved through use of data base front

ends and Decision Support System {DSS) techniques.

b. :Interactive Training Access

Despite the best efforts of educators, system

designers, and programmers, not all training will result from

completion of various lessons. Some interaction with human

experts may be necessary for clarification of the lesson.

Thus, the student must have a way to query a JDISS expert

26

while studying. VTC, e-mail, or telephony could provide

access to the expert. Whichever method is used, access must

be achieved within the training environment through the click

of a mouse on an icon.

c . Grading Mechanism

Student progress must be measured in order to

assess which training module, if any, should be studied.

Grading also allows accrediting authorities to determine if

qualifications can be granted to the student. Such grading

must have a secure mechanism that ensures answer and score

integrity. Additionally self-grading can allow the student to

determine if he has mastered a subject and is ready to apply

for formal recognition of his progress.

d . Training Record Maintenance

Once a student has completed course work, submitted

it for grading, and received the qualification to use part of

a system, this information must be recorded. Results can be

used to update professional records and ensure that the

student is not subjected to repetitive and unnecessary

training. The·date of training completion can be recorded and

marked in order to notify the student when refresher training

may be needed.

e. Version Control and Module Management

Since the system is to provide multiple ways for

the student to learn the same information, a scheme for

version controi and module management is necessary to ensure

27

the student receives the best lessons. Additionally, outdated

material should be archived for historical reference.

In conclusion, a system employing the above principles

will provide the backbone for customized, self-paced training

in a collaborative environment. Creating a JDISS training

delivery architecture through utilization of the latest

object-oriented technology would leverage already available

training materials by extending their access. Such a service

can be designed to meet today's standards while acknowledging

the future migration from the client/server environment to the

distributed object model of tomorrow. Such a scheme would

increase intelligence readiness through training and serve as

a model for extending distributed object technology throughout

DoDIIS and the DoD.

28

IV. JDISS TRAINING ARCHITECTURE AND
SUPPORTING TECHNOLOGY

The previously recommended system architecture and

supporting technology can be used as a means to implement the

requirements of an on-line JDISS training system. The

following technologies and methods are suggested following a

study of emerging trends within the field of information

technology and the known path of future JDISS evolution. A

combination of Web browser, object-oriented, and distributed

object technology will be necessary to build the perfect on-

line JDISS training system on the foundation of the current

JDISS infrastructure.

A • INTERNET DELIVERY

Flynn (1996) claims computing will undergo an Internet

revolution "where distributed secure, platform independent

software objects (will) provide users with gratification on

demand and developers with unprecedented flexibility and

power."

As a networked system, JDISS can participate in this

network centric revolution. Specifically training materials

can be delivered via the classified IntelLink or unclassified

Internet. On-line delivery will allow for quick updates and

24 hour access to training materials. Training could be

extended to anyone with a network connection and a Web

browser, be they in the office or horne, regardless of computer

29

type. The introduction of network enhancing middleware will

change the concept of application from that of a static

embedded program, replacing it with a dynamically created,

customized application designed for a specific purpose.

B. OBJECT-ORIENTED TECHNOLOGY

Object-oriented programming methodology provides a model

to design a system of loosely confederated components capable

of combining and breaking apart in an infinite number of

combinations, just like a set of lego blocks. Objects are

bits of code which contain behavior and provide their services

through methods. The object code describes a set of behaviors

and ways to implement those behaviors. The methods operate on

private data called instance data owned by the object.

Communications between objects are achieved by passing

messages between their public interfaces. A collection of

similar objects make up a class. A class describes the

behavior of similar objects. (Orfali, Harkey, and Edwards

1996)

30

Three characteristics allow objects to remain independent

and combine with other objects:

• Encapsulation - the ability to hide methods from

other objects and thus avoid being corrupted by them

• Inheritance - the ability to implement all of the

methods of a parent of super-class

• Polymorphism - the ability of a method to do

different things, depending on which class of object

implements it

These features allow objects developed in the same programming

environment to be re-used in a near infinite variety of

configurations.

Numerous experts (Goldberg and Rubin 1995, Budd 1991,

Booch 1991) suggest object-oriented technology is the best way

to design information systems and software. Object-oriented

technologies allow the designer to model the system at a level

of abstraction similar to that of the real world. Each

process, node, activity, data set, or other entity in the

physical realm can be designated as a specific object,

allowing designers, programmers, and end users to describe

object behavior based on its physical counterpart.

Goldberg and Rubin (1995) go on to assert that the state

of object technology is such that it allows for rapid creation

of easily maintainable systems. The abstract properties of

objects allow one-to-one mapping of descriptions of physical

entities to object code. Objects can cooperate with one

31

another in a variety of ways, just as their real world

counterparts. They can be combined into components to make an

application and the same objects may be re-used later in a

different configuration to create another application.

1991)

C • DISTRIBUTED OBJECT MIDDLEWARE AND CORBA

(Budd

Middleware is a type of software which attempts to bridge

the differences between computer languages and operating

systems in order to facilitate cross environment cooperation.

Distributed object middleware seeks to bridge these

differences over nodes connected to a network or the Web.

According to Fcrzeniowski (1995), distributed object

middleware wili. allow programmers and users to combine objects

over a distributed network and create components by mixing and

matching objects regardless of their location and

implementation, Smart middleware agents or brokers will be

able to locate bits of code throughout the Web and bring them

together for cooperation. Kador (1996) predicts access to the

Web will become the preferred way of computing. (Kador 1996,

Korzeniewski 1995)

Numerous experts (Mowbray and Zahavi 1995, Orfali,

Hackey, and Edwards 1996, Tibbitts 1995, Chappell 1995)

predict the Common Object Request Brokerage Architecture

(CORBA) will become the standard for adding objects to the

client/server environment. CORBA is the standard for a

distributed object management architecture created by the

32

Object Management Group (OMG), a 600 member consortium of

technology providers and vendors. (Tibbitts 1995) While

other standards such as Microsoft ActiveX also seek to allow

objects to communicate over networks, the strong links between

SunSoft and the OMG, and the OMG's efforts to build bridges

between COREA and Active-X, suggest that JDISS will probably

incorporate a CORBA backbone in the future. (OMG 1996b,

Tibbits 1995, Korzeniewski 1995, Halfhill and Salamone 1996)

COBRA allows objects distributed over a network to

communicate and collaborate regardless of implementation

language or operating system. Orfali, Harkey and Edwards

(1996, p 16) refer to this environment as the "intergalactic

network" and predict that CORBA objects will be able to "run

on different platforms, coexist with legacy applications

through object wrappers, run on networks, and wanage

themselves and the resources they control." The Object

Request Broker (ORB) provides the "common platform" for client

objects to request services from server objects that reside on

other nodes of the network. (Halfhill and Salamone 1996, p

103) The ORB furnishes object facilities and services which

allow the tran~action between client and server objects to

appear transparent. Service objects collectively called

object services extend the capability of the ORB,

standardizing the way objects manage such properties as name,

33

version, life-cycle and security throughout a COREA compliant

network. (Halfhill and Salamone 1996, Orfali and Harkey 1995,

Mowbray and Zahavi 1995)

Common facility objects provide uniform rules of

engagement for objects to cooperate. These objects fall into

two categories: vertical common facilities and horizontal

common facilities. Horizontal facilities provide guidance for

user interface, systems management, information management,

and task management. The user interface facility governs the

on screen services such as editing and window creation.

Systems management objects provide interfaces for object

installation, configuration, operation and repair. The task

management ser1ices include work flow, scripting, agent, and

transaction rules.

The infornation management objects define storage and

data exchange. Unlike horizontal facilities which provide

common rules that all ORBs must adhere to, vertical facilities

provide the rules for specific industries or activities on a

local ORB. Vertical facility objects might enforce rules for

finance, marketing, or, in the case of JDISS, training rules.

(Halfhill and Salamone 1996, Orfali and Harkey 1995, Mowbray

and Zahavi 1995)

Finally, CORBA allows customized application objects to

interact with the ORB. These objects are the application

specific lego ·blocks from which customized services are built

over the network. Any application object can interact with

34

the service and facility objects and other application objects

as long as it has an Interface Definition Language (IDL)

interface. IDI. describes the interface on the object such

that it is free of any association with a particular OS or

programming language. Any ORB can understand the IDL

interface of an object. The IDL interface understands the

language of the object. Legacy applications may be wrapped in

an IDL interface to allow for their use in a CORBA

environment. The combination of IDL, CORBA facilities, and

CORBA services allows objects to cooperate seamlessly be they

on the same machine or half way around the world. Objects on

a client will be able to ask objects on the server to perform

a service for it, even if the client does not know where the

server object resides. (Orfali, Harkey, and Edwards 1996,

Soley 1995)

The CORBA 2.0 standard defines cooperation between ORB's.

An object adapter on each ORB implements CORBA objects on the

local ORB when its services are requested. The ORB knows

whether it can respond to a request for a service by checking

the Implementation Repository which documents the behavior of

local objects. (Orfali, Harkey, and Edwards 1996) ORBs

communicate over the Internet with the Internet Inter-ORB

Protocol (IIOP), a TCP/IP compliant protocol. (Rymer 1995)

CORBA 2.0 products should be widely implemented by 1997.

Figure 1 illustrates how CORBA components are connected.

35

Application
Objects

OBJEC1REQUESTBROKER

ORB Services

Object Implementation
Adapter Repository

Vertical Facilities

Horizontal Facilities

Conection to
other ORBs via
HOP

Figure 1. How CORBA Works.
After Orfali, Harkey, and Edwards 1996, p 54.

36

By extending the CORBA paradigm to Web training, it is

possible to envision a future when various education objects

and facilities.collaborate to produce a customized training

application for the user. The CORBA architecture also

provides a common architecture for systems that may have never

operated together. By using CORBA, new training modules can

be plugged and unplugged whenever they are

needed. They may be part of the network, invisible to the

user, until application methods are called upon or they may

come from new servers as they plug into a larger JTF type

environment.

D . A PROPOSED MIGRATION SYSTEM

In order to implement the system requirements outlined in

Chapter III with the technologies described above, a system

based on the following technologies is recommended:

• Netscape Navigator and Servers

• Java and JavaScript programming languages

Use of these technologies will ensure that any training

products created in the near future will be able to migrate to

a pure CORBA or distributed object environment.

In the migration system, training materials will be

delivered via a Web browser interface. The materials will be

written in HTML and enhanced with Java applets and JavaScript

scripts. While CORBA products are not yet readily available,

37

this architecture will support an easy migration to the

distributed object architecture when the JDISS PMO implements

it.

Utilizing the JDISS Multimedia Collaboration Manager

(MCM), the stuqent will be able to participate in VTC lectures

and conferences with live instructors. Enhanced Web pages

will compliment live instruction. In addition, the student

will be able to take on-line quizzes embedded in HTML pages to

measure his knowledge of the system. These quizzes will be

automatically graded and recommendations for further study,

including the Internet links to Web pages containing review

material, will be presented to the student as his customized

training application.

1. Netscape Navigator

According to Flynn (1996), three factors should guide

the choice of a Web browser:

• Language and development tools

• Server platform

• Ability to extend capabilities of Web clients

Today, the Net8cape Navigator, version 3.0, browser provides

the most robust technology to satisfy the user. Netscape has

led the way in browser technology and is often the first to

introduce new additions. Quick advances and an aggressive

pricing policy have allowed the Navigator browser to claim

between 75 and 85% of the browser market. (Flynn 1996, p 29)

38

The Netscape browser supports HTML, Java and JavaScript.

Often Netscape has implemented new extensions of HTML such as

frames and tables. Also, the browser has an optional HTML

editor. Finally, close cooperation with SunSoft has led to

the addition of the Java virtual machine in version 2.0 and

above. (SunSoft 1996)

JDISS does not currently employ any specific server

product for delivery of its services. Each JDISS machine has

all applications embedded. However, the introduction of Web

training would represent the first JDISS service to be

delivered from a server. As such, development of a server

architecture could enhance delivery and availability of

training services. One solution for enhanced dispatch of

service might be implementation of the Netscape proxy server.

The Netscape p~oxy server provides two important features

which would be beneficial to providing Web training to a

widely distributed client base with varying bandwidth

capabilities. The first is replication. Replication allows ·

the same HTML file, such as a new or updated training module,

to be loaded on multiple servers automatically whenever it is

updated. Once the new file is loaded on one server, it sends

instructions to other proxy servers telling them to download

the new file and remove the old one. This ensures remote

users can go to their local server and have the latest version

of a training Inodule, even if part of the greater JDISS

network failed.

39

Second, the proxy server provides caching. The server

detects which Web sites are being accessed most often by its

clients. It then stores a copy on the local server so the

clients do not have to go to the original site every time the

frequently used site is called. Figure 2 illustrates a

possible proxy server architecture for JDISS on-line training.

(Netscape 1996) The Netscape browser extends the clients

ability to interpret information through the use of plug-ins,

client based hElper applications or delivery of Java applets.

This architecture has been copied by the other popular browser

in the market, the Netscape Explorer. (Flynn 1996) Finally,

the Netscape browser will be incorporated in JDISS in late

summer 1996. It is also one of the applications included in

MCM.

2. Java and JavaScript

Java is ~n object-oriented programming language developed

by Sun Microsystems for use in programming embedded systems.

According to SunSoft (1996),

Java is a simple, robust, object-oriented,
platform-independent multi-threaded, dynamic
general-p•1rpose programming environment. It ' s
best for creating applets and applications for the
Internet, intranets and any other complex,
distributed network.

It is important to note that first and foremost, Java is an

object-oriented programming language, similar to C++. The

word processor I used to write this thesis could be written in

Java, loaded on my hard drive and executed as a standalone

40

Intelligence
Training centeJ
Production
Facility

A

JIC or JAC
Proxy

Firewall

B
JTF Proxy

D

Major
+--...J---1 Command

C Proxy E
'-------'

Ship
Proxy F

Figure 2. How Proxy Servers Ensure Information Integrity.

Training lessons are produced at the Intelligence Training
Facility (A) and stored at a JIC (B). Users in the field
(D, E, F) check with their JIC (B) to see if new material is
available and download it for local storage. A JIC
firewall ensures the field commands do not go out of theater
for their training information. If any links between the
commands are severed, local users can still receive
information from their proxy server.

41

program. Additional properties of the Java run-time

environment allow for the creation of "safe, dynamic, cross

platform, active networked applications," or applets.

(Naughton, 1996)

An applet can be thought of as Java ready piece of code

residing on a server and associated with a Web page. One

important difference between a Java applet and a traditional

client/server application is that Java is complied as platform

independent byte code, instead of machine native code. When a

viewer calls up an applet enhanced Web page, the server sends

Java byte code with it. If equipped with a Java ready browser

such as Netscape Navigator 2.0, Microsoft Explorer 2.0 or

Sun's HotJava, the client will dynamically interpret the byte

code.

The interJ,:reter and run-time system are collectively know

as the Java Vi:rc.ual Machine. (Flanagan, 1996) This scheme

allows Java to be a platform independent language. As long as

a computer has the Virtual Machine, it can run an applet from

any other machine, be it Unix, PC or MAC. Once the applet

finishes its task or the user changes to another URL, the Java

garbage collector removes the byte code from RAM. This new

scheme of delivering executable code via the Web has alarmed

some security nanagers. Appendices B and C address Java

security concerns and summarize applet capabilities.

Java applets can reside on local or remote servers.

Parameters may be sent to the applet from an HTML page that

42

tells it how tc behave. Java is so flexible that two HTML

pages can send differing parameters to the same applet and

receive the same service with modifications reflecting

customized instructions.

JavaScript provides a client side environment to run

small data check or applications in an HTML page. The

functions are provided by a script embedded in the HTML page.

A JavaScript enhanced browser such as Navigator or Explorer

2.0 is required to run a JavaScript. Common uses for

JavaScript include the checking of data parameters before the

information is forwarded to a server and the provision of

interactive enhancements such as radio buttons or text boxes.

In the future JavaScript will be the language for customizing

remote applets located on a server. (Goodman 1996)

3 • Migration to CORBA

CORBA defines the way objects/ clients and servers within

a distributed computing environment interact. The OMG sets

the standards for the object inter-operability framework. The

consortium includes DoD members. Additionally, the JDISS PMO

has identified CORBA as a future architecture that the system

must support. (OMG 1996a, Tibbitts 1995)

CORBA will be the distributed object architecture of

choice for several reasons. First, CORBA supports the Unix,

Windows, and MAC operating systems while ActiveX only works

with the Windov1s and Windows NT. Currently, all JDISS nodes

are Unix workstations. Second, the OMG has about a two year

43

head start on Microsoft. Most ORB producers have released the

second version of their product and are working on the third.

Finally, numerous companies such as SunSoft, Iona, and Hewlett

Packard have r~leased commercial ORB software. Only Microsoft

produces ActiveX at this time. This will probably be the case

until Microsoft determines whether its developers, or an

independent board, will set ActiveX standards. (Gage and

Mardesich 1996)

Additionally, Java applets will work in both a non-CORBA

client/server migration system and an ORB based system.

Several features of Java will ensure any applet based

applications can migrate to the CORBA architecture. First,

both technologies employ an object oriented view of

application design. Second, Sun as a member of the OMG has

already implemented a Java IDL. The Java IDL allows Web

browsers to run applets. The Java IDL system employs an ORB

capable of inter-acting with other ORBs. Sun will also

develop an IIOP module which will allow for direct connection

of the Java ORB to CORBA 2.0 products. (SunSoft 1996,

Linthicum 1996)

The synergy between Sun, OMG, and Netscape ensures that

their products and standards will complement each other.

(Gage and Mardesich 1996) Since most of the hardware and

software base of the JDISS system resides on SUN platforms

running the Sun OS or (soon) Solaris, an on-line training

system relying on Java enhanced HTML pages read by the

44

Netscape browser will easily migrate to a CORBA backbone. The

system will not have to be scrapped during the migration to

CORBA. Appendix D describes current JDISS migration to the

Defense Info~tion Infrastructure Common Operating

Environment (DII COE) .

45

46

V. PROOF OF CONCEPT: DESIGN AND IMPLEMENTATION
CONSIDERATIONS

The on-line proof of concept illustrates how Web based

training using Java and JavaScript can be implemented today to

produce a system which will easily migrate from client/server

to CORBA. COBRA 2.0 compliant products were not used, since

the JDISS PMO has not settled on which ORB (if any) it will

use. Additionally, there was no funding available to procure

this software. All the tools used to produce this

demonstration were free.

The goal of the demonstration was twofold. First, to

show Java applets, JavaScripts, and advanced HTML techniques

in use. Second, to illustrate a computer learning tutorial in

a Web environment. The on-line demonstration proves that

training can be provided for JDISS in a client/server

environment enhanced with the latest in Web and object

oriented technologies. As such, portions of this training

system will be able to migrate with the JDISS system as the

distributed object environment replaces client/server.

Finally, this proof of concept will demonstrate the power of

Java, JavaScript and specialized HTML commands and their

applicability toward JDISS on-line training in the current

client/serve environment.

As mentio:.ied earlier, the JDISS PMO has developed an

application called the Multimedia Collaboration Manager (MCM) .

47

MCM will be the main JDISS tool this thesis considers for

delivery of computer instruction because it allows for the

simultaneous use of multimedia information in the form of

text, graphics, imagery, audio, and video.

These media can be shared in the context of VTC, white

board, HTML pages (through the use of Netscape) or chat

session individually or simultaneously. With MCM, JDISS

course material may be delivered in a variety of formats.

Text and graphics can be delivered via HTML. The video

capabilities can be used to extend classroom training beyond

the lecture hall. Additionally this application can be used

for individual apprentice sessions between teacher and

student. The white board can be used in a similar way with

teacher and student collaborating on mock graphics of a

training module to illustrate which button to use or question

to examine. In conclusion, MCM will allow the student to

access training using the media which best suits his needs.

This will provide him with a customized training application.

A. DES:IGN FACTORS

Before editing and programming the various HTML

documents, scripts, and byte code, the system was planned

based on the precepts of Alessi and Trollip (1985) and Jeiven

(1994) to ensure coherent structure and flow of the system

from frame to frame. Both provide models and rules for

planning an on-line computer learning tutorial.

48

Alessi and Trollip (1985) provide a simple model which

governs the flow of information in a tutorial (Figure 3). In

the Web demo, each box in the model can be presented at a

different Web site. Proper flow is maintained through hyper

links and browser features such as the forward and back

commands or an index in an HTML frame. For example, a Web

based review test provides a method to judge response in the

on-line Web demonstration. Jeiven provides a comprehensive

checklist (Appendix E) for computer learning tutorials.

B . DESIGN OF THE WEB TRAINING APPLICATION

The actual Web demonstration has been placed on-line for

view at the fcJ.lowing URL: http://vislab-www.nps.navy.mil/

wpkopper/demo/welcome.html. Netscape Navigator version 2.0 or

higher and a rr~ltimedia equipped computer are recommended to

observe all capabilities built into the demonstration.

Warning messages identifying system shortcomings will appear

if your hardware or software can not utilize the advanced

features embedded into the demonstration.

1. Frames

All modules within the training demonstration have a

common look with several standard features. The JDISS on-line

training demonstration starts with an introduction page

divided into three frames, a title, an index, and welcoming

text (see Figure 4). Frames allow the designer to create a

common look tb.roughout a series of Web pages by anchoring

certain items, such as a table of contents, to the browser

49

Intro
Section

Closing

Present
---)~ .__I_nf_o __ ___,•---)~

~ Judge
Response ~

Question &
Response

\V
Feedback or
Remediation

Figure 3. General Structure and Flow of a Tutorial.
After (Allesi and Trollip 1991).

50

INDEX

Home P?!o~

Getting
Started

Java Demo

JavaScrip.!
Demo

Tutorial

yoq start cltecking. o~ut ~* detnonl.tm.tion~
:pte• -tate· • feW: minuteS and •~am hoW:.·
to.'•get around ••. Th¢·.··oettifig -Starte-d··
;Section Will show··yoiJ ali_;you· need t0
.know.:_·.

. . ~ .

T~s ·page.':d~nstft~s what~- a(:tual· ·,·;
JDiss··on:..lin:e training page.could look
.like. rhe tick~r· below, is a JaraScript_:. •·
appli_cation.: _It can. he easily updaJe~ by
sin,iply.typ~g·a new.mesl.ge. :Setfthe
JavaScriet Demo Section to l•am JllOfe. ·
·abo~tJavaS:cDpt .. · :. ·• · .. · · · . .

{ome to the JDISS Training Demo......... Welcome t•
. . ·. :· ' : ' . . ~ '

Figure 4. The Welcome Screen.

A Java applet, Blinky, causes the title to flash in different
colors, presenting the illumination of animation. Another
applet, IntroSound, plays the welcoming message "Welcome to
JDISS" while music plays in the background. A JavaScript
causes a ticker message, "Welcome to the JDISS Training
Demo, '' to scroll across the box at the bottom of the screen.

51

window while the user surfs through other pages. In this

case, the title and index frames remain constant to provide a

uniform locaticn and reference point for navigating through

other portions of the demonstration. Appendix F, Section 1,

lists the HTML code for the opening frames of the

demonstration. Of particular interest are the nested frames

within frames which allowed the title frame to extend across

the top of the browser window with the index and welcome

frames below.

2 • JavaScript

The JavaScript demonstration (Figure 5) shows how the

scripting lan~uage can be used to create a drop down menu with

HTML links to other pages. Javascript also serves as the

language for preview and review tests within the tutorial.

Finally the "Welcome to JDISS ... "ticker in the welcome page

relies on JavaScript for its functionality.

Since it is placed in the head of the page, the

JavaScript inter-active drop down menu code (Appendix F,

Section 2) loads before the HTML text for the page. Thus when

the user presses the "access information" button, the request

is processed Oii the client computer for quick return of the

applicable URL. Had this function been provided with a Java

applet, it would not become available until the applet had

been downloaded. This script can be re-used in other HTML

documents by changing the names of the buttons and URL

52

Home P~~

Getting
Started

Java Demo

JavaScripJ
Demo

Tutorial

fit user bandwidth and browser configuration.

• If access is via a LAN) the student canproceed
directly to the enhanced tutorial

• If bandwidth is low) the student can choose pages
without graphics or Java applet enhancements) or
order a CD-ROM with these items on it.

• If need be the student can download the proper
browser software before beginning the tutorial
session. ~

• Finally if access is from a ship) the student can ensure
he is at the best server to meet his needs.

(Access Information J

Click here to see the source

Figure 5. JavaScript Demonstration.

The JavaScript allows the user to choose a configuration and
access HTML pages explaining services available for a given
hardware and software configuration. All computing is done
by the client.

53

options. Two other scripts, pre-test and review test will be

discussed in the tutorial section.

3 • Java Applets

The demoustration illustrates the flexibility and

potential of Java applets. Java applets appear throughout the

demonstration, most often in the Java Demonstration section.

Starting with the welcome screen, the flashing "JDISS Training

Page" in the top frame is a Java applet, Blink.y, which takes

parameters from the HTML code for that page to designate the

message to flash and the background color to display. Another

applet connected to this page, IntroSound, shows how an audio

welcome can be .added to a Web page. When the user opens this

·page, he hears an audio "Welcome to JDISS" greeting as well as

background music. In both cases, the code for the applets was

adapted from p~blished Java demonstrations, modified, and re

compiled to fit the needs of the page. (Lemay and Perkins

1996)

In the Ja.va demonstration section, three capabilities of

Java applets are illustrated. First, the applet Rotator

(Figure 6) is shown with some parameters which make it stick

out from its Web page. This applet takes an image and

displays sections of it for a given period of time. Quick

rotation of the sections gives the illusion of animation.

Appendix F, Section 3, contains the code for Rotator. (NIH

1996) In the first demonstration of Rotator, the size of the

display box ha~ been purposely made larger then the image

54

Figure 6. Java Applets Demonstration.

Java Applets, such as Rotator, can be used in many ways.
Here, the illusion of a moving line is provided in the
gray box.

55

L--------------------------------------~---------

which is being rotated. In addition, the background color for

this applet has been changed to an off-white in order to show

the area of the Web page controlled by parameter commands in

the HTML code. The parameters are set in the HTML page as

shown below:

<APPLET = "Rotator.class" width=500 height=10>

//This command calls the applet Rotator and sets up a
500 x 10 pixel display box.

<PARAM name=image value="Line.gif">
<PARAM na..'1le=bgcolor value= 11 FFFFCC 11 >
<PARAM name=rate value = 11 30 11 >

//These parameters designate the image to be rotated,
"Line.gif, 11 the back ground color for the 500 x 10 pixel
box, in this case an off-white, and the rotation rate of
the image in frames per second.

</APPLET>

Moving to the next Java applet page (Figure 7), the same

compiled applet,code is called, yet the effect is much

different. This is due soley to changes in the parameters

embedded in the HTML code. Using a single image,

"animate.gif," it looks as though multiple images are being

displayed from the same window. Actually the Rotator applet G

takes four areas of 113 by 90 pixels from a single image and

56

INDEX

HomeP~

Getting
Started

Java Demo

JavaScrip.1
Demo

Tutorial

JDISS Training -Java Applet
Re-UseDemo

Last Updated on 17 August 1996

This page takes the Ro1ator.class applet from the P.rior Java demo p~~
and applies different p8I8llleters to it, providing a completely diffferent
look. Through the use of new HTML commands embedded in this
document, I have been able to chellge the speed size and . This is

Figure 7. Another use for Rotator.

This time the applet rotates different portions of an image to
create a slide show.

57

displays them . n sequence. The parameters are set in the HTML

page as shown below:

<APPLET CODE="Rotator.class" width=113 height=90>

//This coromand calls the same applet code, but
designates a square display window.

<PARAM name=image value="animate.gif">
<PARAM nall.e=rate value="2">

I /These parameters call a diffe:r:ent image, "animate.giC"
and display it at a rate of two frames per second. No
background color designated, red will be displayed if
the applet is not running.

</APPLET>

In addition to using the same applet in two different ways,

the Java demonstration shows how a remote applet, "Bubbles,"

can be called from a remote server and embedded in a Web page.

The applet actually resides on a remote server, yet it can be

embedded in a local page using the following HTML code:

<APPLET CODEBASE = "http://java.sun.com/java.sun.com/
applets/applets/Bubbles/" code = "Bubbles.class"
width=500 height=500>

//This command calls a remote applet based on the URL
where it is displayed and the name of the applet. A
display box of 500 x 500 pixels is designated locally.

</APPLET>

The "applet codebase" command allows applets to be compiled

once, placed on a server, and called multiple times for re-use

if proper file access is granted to remote users.

58

4. Tutorial

The tutorial section is actually a demonstration within a

demonstration. Starting with the introduction page (Figure 8),

three main areas may be accessed, pre-test, review test, and

tutorial text. By taking the tutorial, the user can learn an

actual JDISS Basic Operator Course (JBOC) lesson. After

reviewing the directions and objectives, the student can take

a JavaScript pre-test to measure knowledge of the material.

When finished, the test can be graded. If any questions are

missed, their numbers are reported at the bottom of the

browser window and the student can access the correct answer

and further information about the topic in the far right frame

as shown in Figure 9. The pre-test serves as a way to

determine which material should be studied during Alessi and

Trollip's (1985) "present info" step.

Following the pre-test and review, the student moves to

the lessons. These lessons come directly from the JBOC

manual. They have been enhanced in HTML and indexed in a

separate frame for easy navigation (see Figure 10). The

lessons are tbe present info section in the Alessi and Trollip

(1985) model.

After completing the lessons, the student can take a

review test to see how well he has learned the topic. The

review test relies on another JavaScript, however this script

grades each question as it is answered and records the final

59

Figure 8. Tutorial.

The beginning of the tutorial provides a new index for easy
navigation

60

Figure 9. Pre-test.

The Pre-test provides a grading mechanism (page bottom) and
hYPer-links to review material when a question is missed.
The student can find which questions he got wrong by clicking
on the "Grade Test" button. The numbers of wrong questions
appear in the bottom bar. Hyper-links in the "Correct
Answers" section cause review material to be displayed in the
right hand frame.

61

Figure 10. Lessons.

After taking the Pre-test, lessons hyper-linked to the index
may be reviewed.

62

score of the test (see Figures 11 and 12) which could then be

forwarded to a central grading authority for review.

Appendix F, Sections 4 and 5, illustrates the JavaScripts

for these tests. Both were found on the Internet and modified

for the on-line tutorial demonstration.

63

Figure 11. Review Test.

The Review Test keeps a running tally of correct answers.
Each question appears on a different screen Once an answer
has been entered, the student can not change it.

64

Figure 12. Review Test Grade Screen.

following selection of answers, tne Review Test is gradeq ~d
a tamper proof score is provided.

65

66

VI. LESSONS LEARNED

A. TOOLS

A variety of applications were used to develop the

demonstration. Some worked well, while others were sent back

to the manufaccurers. All products with the exception of the

text editor were version 1 or beta products. In general these

tools produced useable HTML documents, JavaScripts or Java

applets. However, they are often hard to use and in many

cases simply did not produce what was expected.

The tools· break into two categories: HTML editors, which

were used to produce Web pages with embedded Java parameters

and JavaScripts, and Java applet development environments,

used to write code and compile Java applets.

1 . HTML Editors

The ultimdte HTML application would provide true WYSIWYG

editing for HTML text and visual GUI tools for embedding Java

and JavaScripts. Unfortunately current tools fall somewhat

short of this expectation. The on-line demonstration employed

three editors to create Web pages, Netscape Gold, Corel Word

Perfect and Apple Simple Text. Often all three were required

to create a Java or JavaScript enhanced Web page.

The Web editor enhanced Netscape Navigator Gold is the

easiest of the editors to use. Due to the constantly evolving

nature of the Netscape browser, three beta version of the

67

Navigator Gold, 3.0b2, 3.0b5 and 3.0b6, were used in the

development of the Web demonstration pages. Each new

iteration surpassed its prior release. Netscape Gold allows

any HTML page to be opened in the editor, be it on the local

machine or the Web. In editing mode the user can easily

manipulate text size, type face, and color through the use of

options located on a palate. Tables and URL links can also be

created. One draw back was the lack of a color palette. When

changing the color of the text, the page author is given a

color wheel and asked to choose percentages of green, blue,

and red which make up the selected color. A palette of 36 or

64 colors would have been much easier to use. The lack of a

comprehensive visual environment for incorporating advanced

HTML commands ensured that Gold was used only to manipulate

text and background for the pages. It is unfortunate that

Netscape, often the creator of new HTML commands does not

incorporate them into their development application.

Word Perfect fared worse then Gold. It is good for

converting a dqcurnent written in the application into HTML,

but poor for creating an HTML document from scratch. This is

probably due tc the age of the product. It was developed in

1995. The HTML portion of the application relies on the

Navigator browser to illustrate what the finished file looks

like on the Web. Often the results were surprisingly

68

different from what was expected. The application had

problems converting centering commands and font sizes into

HTML.

Regardless of the HTML editor used, the final page was

often completed in a basic text editor, Simple Text. This

application was used to incorporate complex commands such as

those for frames, applets, and JavaScripts by manually typing

in appropriate HTML tags. These files were saved and opened

with the Navigc.tor browser to ensure they met expectations.

In conclusion, a comprehensive knowledge of HTML code and tags

is necessary to publish all but the most elementary of Web

pages.

2 • Java Development Environments

Two applications were used to develop Java applets,

SunSoft's Java Development Kit (JDK) 1.02 and Symantec's Cafe.

Both are first attempts at a Java development tool.

The JDK can be downloaded for free form SunSoft. It

includes a compiler, class library and run time for standalone

applications and an applet viewer. The development

environment is non-existent. Applets and applications are

developed in a text editor, based on the developers knowledge

of Java. This can be gained from the extensive Java

documentation and sample code included in the JDK. The

compiler works well enough, but flashes·constantly changing

percentages of progress, even though no code is being

compiled. The applet viewer works well, but is unnecessary if

69

one has a Java enhanced Web browser to view the applet. The

application runner is a must if you want to develop standalone

applications in Java.

Cafe provides a visual development environment for

creating Java applets. Unfortunately, Cafe falls short of all

promises. In fact a recent review called this commercial

product "a pre-release version." (Crabb 1996) The version

used to develop the on-line demonstration was so full of bugs

that it was returned to Syrnantec.

In conclusion, a product which allows for rapid Java

applet development akin to Borland's Delphi is still one or

two versions down the road. The Web proof of concept would

not have been possible without the use of multiple books

explaining HTML, JavaScript and Java.

B . DEVELOPMENT PROCESS

The first step in designing a Web training site is to map

it out to ensure that links referenced in the site will have a

corresponding HTML page, graphic, or applet. Another

important aspect of developing an on-line site is keeping

track of the which files will be called by a given URL. Many

pages will call on the same Java applets or show up in the

same frame environment. Mapping out the storage hierarchy for

the site makes file management much easier.

When using frames, Java, and JavaScript, it is important

to remember that not all Web surfers will have a browser which

can understand these features. Knowledge and use of the

70

warning commands which allow the user to understand why he can

not access the information with his browser will avoid future

complaints that the site does not work.

Finally, the use of the browser during the development

process is a must. Frequent views of the file with the

browser show the author what the user will actually see.

Mistakes and errors can be caught before the page is loaded on

the server for use by the greater Web community.

71

72

VII. CONCLUSIONS

This thesi.s explored how JDISS training material could be

placed on the web in a manner such that these modules would

remain compatible with future distributed object technology.

It suggests thc~t HTML 1 Java 1 and JavaScript will be the

primary development languages of the Web. Additionally/ it

proved that these tools can be used to develop an interactive

Web training site incorporating JDISS tutorials currently

available in published tests or static HTML pages. With the

rapid advancement and coming merger of Web and distributed

object technology/ numerous areas of research will have to be

explored to keep a Web training site up-to-date.

Computer 1earning applications have traditionally been

standalone applications. The emergence of the Web and the

coming of distributed object technology will radically change

this model. Customized training applications created with

Java and JavaScript objects on an HTML framework will allow

for the creation of a customized application/ built

dynamically/ for the user. The architecture for this new

environment will be the next generation of the Web with CORBA

compliant ORBs exchanging information via the Internet Inter

Orb Protocol ~IIOP)/ the probable replacement for HTTP. While

the ORB and its object services are not yet readily available

for implementation/ it is clear that an understanding of Java 1

73

JavaScript, an0 HTML will help developers to easily migrate to

the next archltecture.

A. LIMITATIONS

Although the demonstration tutorial utilized advanced

HTML, Java and JavaScript on the Web, the interface is still

relatively static. The user can determine and utilize only

that material necessary for him to achieve the course

objective, but he still cannot develop a customized training

module on the fly.

Additionally, this thesis, while predicting the advent of

the Object Request Broker, did not prove the viability of

using an ORB. Commercial COREA 2.0 compliant ORB's are

available from several commercial vendors, but object families

tailored for training are not yet available.

Finally, the use of SGML was precluded due to the lack of

tools to support detailed tagging and searches on the Web.

These function5 require an SGML enhanced browser application.

B • AREAS FOR FUTURE RESEARCH

As the Web evolves from a static arena of fixed sites to

the tool for developing a tailored site with distributed

objects, numerous new areas will have to be explored. Most of

these areas focus on new or future enhancements which will be

provided by COREA.

1. Migr~tion to Distributed Object Architecture

Applets written in Java can be placed in an IDL wrapper

for use in a distributed object environment, yet so can

74

applications w1itten in other languages. Additional research

into migration to the COREA standard would provide an idea as

to which types of applications could be broken into IDL

wrapped objects for use in a distributed environment.

2 • Creation of Customized Training Modules

Once obje.-·ts are capable of combining over a network, a

method to manage them must be adopted in order to insure the

right object or iteration of that object is provided when

called. Further research into the implementation repository

standards will identify how to ensure the right object is

called during dynamic invocation. Another type of information

to be managed is text. A study of SGML tags to see whether

they will allow formatted documents to be parcelled up and re

combined into customized training documents is recormnended.

Java interfaces to data bases may be part of the solution

to managing the customized training module or network

application. ~n examination of Java front ends, data base

applications and their capabilities could provide the tools

which would allow for creation of customized documents and

applications, based on a user's query. These items will

probably take the form of a custom Web page.

Finally, the method for querying the Web to create the

tailored service should be examined. Decision Support System

(DSS) methodologies could be the basis for the users

describing what he wants to do. A DSS query to a data base or

75

implementation repository may be the way to ensure the user

gets the proper customized document or application.

76

APPENDIX A. JDISS STANDARDS AND GOVERNING
BODIES

A myriad ,~f boards and regulations dictate JDISS

configuration and standards. New proposals for JDISS services

must adhere to these criteria or risk the possibility of

rejection. An understanding of these multiple boards, their

relationships, and the standards they decree will ensures that

the proposed Jl:'ISS Training Architecture will operate within

the proscribed DoD environment.

Although JDISS is a joint program, DoDIIS has delegated

day to day management of the program to the Office of Naval

Intetligence (ONI). ONI manages JDISS configuration through

the JDISS PMO, ~ division the Systems Directorate (ONI-7).

This by no means allows the Navy to dictate JDISS standards

for the other ~.ervices. JDISS service requirements are

developed by tYe JDISS Configuration Control Board (CCB) a

body subservierrc to the DoDIIS Management Board (DMB) which

acts as the DorriS CCB. As such the JDISS CCB must ensure all

recommended hardware and software configurations comply with

DoDIIS archite·:-tures and standards. Furthermore all suggested

JDISS hardware and software configurations must be compatible

with other DoDIIS systems. The JDISS CCB draws its membership

from the JDISS PMO, unified commands, Defense Intelligence

Agency (DIA), national agencies, and the service support

staffs. Two additional boards, the JDISS Engineering Review

77

Board (ERB) and JDISS Integration and Test Laboratory (ITL)

advise the JDISS CCB on technical and financial matters.

(JDISS CCB 1994)

A group of joint and service training councils holds

responsibility for JDISS training standards. At the DoD level

the General Intelligence Council (GITC) provides policy for

all intelligence related training. Current GITC guidance

emphasizes JDISS training as a common skill for all

intelligence professionals. Furthermore the GITC identifies

computer learning and multimedia as areas for delivery of

future training. (GITC 1994)

The JDISS PMO has designated the Joint Intelligence

Training Activity Pacific (JITAP) as the Core Curriculum

Manager for courseware development. JITAP operates under the

cognizance of both GITC and JDISS PMO to ensure all JDISS

training materials comply with various General Intelligence

training System (GITS) standards.

78

APPENDIX B. JAVA SECURITY

The state of the Web technology continues to rapidly

advance. In two years the Web has evolved from a collection

of static pages written in Hyper Text Markup Language (HTML)

to a myriad of .nultimedia enhanced, swiftly changing Web

sites. The latest Web advancement has been the introduction

of sites supported by executable programs or applets, written

in SunSoft's Java language, which travel with the page to

provide interactive or multimedia enhancements.

Since the Web allows a client to view a nearly unlimited

amount of home pages, delivery of unknown executable code from

random sites has raised numerous security concerns. The

client has no -v;ay of knowing what applets, if any, will be

delivered when he chooses a Universal Resource Locator (URL)

to receive a Web page. This immediately raises concerns that

malicious code or a programmed threat, e.g., a trojan horse,

could enter the client machine and corrupt or compromise the

users files and data. (Russel and Gangemi, 1991) While any

good security manager must be concerned with the threats

associated with Java applets, the introduction of Java

enhanced Web pages on secure government networks does not

increase the likelihood of a malicious attack provided the

network itself remains secure.

Java changes the security model. The security manager

can no longer limit his scope to executables on LAN clients

79

and servers. With Java, executable code can arrive form

anywhere on the Web. A user surfing the Web could

surreptitiously download a malicious applet capable of

damaging the system and/or data. Security procedures must

guard against attacks from anywhere users connect. According

to Bank (1996). there are four major types of attacks which

the system must protect against:

• Integrity Attacks - such as deletion/modification of

files or killing processes or threads.

• Availability Attacks - filling all memory or the file

system, creating thousands of windows or otherwise

keeping the machine from being used.

• Disclosure Attacks - mailing information about your

machine such as password or sensitive files to

another network or adversary.

• Annoyance attacks - such as causing the machine to

emit strange sounds or display obscene picture on the

screen.

Programs ~hat cause the above types of damage may appear

to be legitimate applets, yet upon arrival they initiate an

attack against the machine and its resources. Knowing of

these concerns, the Java developers designed numerous security

checks into the language and virtual machine.

Java has a variety of features which make it difficult to

introduce a nasty applet from a server to a client. The

80

language provides protection at three layers within the Java

environment:

• The Java language itself

• The standard set of Java libraries

• The Java Web browser

Within the language, Java specifies entry control for

variables and methods, disallows pointers, and provides

garbage collection. These features allow the programmer to

control access to objects and memory, for example a file

object, to ensure the class can not be changed by the applet.

In the case of a file, the applet would only be able to read

it. The lack of pointers ensures that an applet can not have

an instruction that points to an outside bit of harmful code.

Garbage collection clears memory that is no longer being used.

Thus, a covert instruction can not remain in RAM. (Banks

1996)

The first security check comes when the programmer

compiles the applet into byte code. The compiler will raise

exceptions to security violations. Next, during

interpretation on the client side, the sub-classes found in

the applet are checked against the local Virtual Machine class

libraries to ensure they inherit methods from the super

classes on the client. When an applet brings a new sub-class

which is not port of the class library on the client machine,

that sub-class is isolated and checked by the ClassLoader,

another part of the run-time, for Java compliance. Methods

81

that create n;~\'r or altered super-classes are prohibited.

As the virtual machine interprets the byte code it checks

for adherence to the security rules. In addition to checks by

the ClassLoader, a Java SecurityManager object checks the

methods of other objects during run-time to ensure they do not

violate the Java access rules. (Banks 1996, Sunsoft 1996)

The lack of comprehensive documentation for the

SecurityManager may be the biggest stumbling block in Java

security certification.

Finally the Java browser provide additional protection

features. The browser can be configured for any of four

protection realms:

• unrest~cicted - enables from anywhere applets to do

anything.

• firewall - enables applets within the firewall to do

anything.

• source - enables applets to do anything only within

their origin [Internet] host.

• local - disenables all file and network access.

The compiler tags an applet with its origin. The run-time

environment checks the tags of each applet for its origin and

can dynamically restrict execution of any code from a

prohibited realm. A future Java feature will be the addition

of a digital tag attached to the applet when it is compiled

into byte code. This tag, based on public key encryption,

will identify who originated the code and guarantee its

82

integrity. (enphasis added) Appendix D, exhibits applet

access capabilities based on browser environment. (Lemay et,al

1996, Sunsoft 1996)

Although . .:Java is still in the documentation and

certification process, placing applets on secure networks

should be safe as long as a few security rules are followed.

First, applets should only be loaded into designated

directories on specific servers. Access to these directories

should be protected using standard Unix directory access

permissions. Since an applet must have the suffix ".class" at

the end of its name, non-designated directories can be

searched and for surreptitious applets. Additionally, all

browsers should be set to the applets the firewall realm.

Of course the browser is only as secure as its source.

It is imperative that browsers come verified companies or

contractors. Downloading browsers from the Web and placing

them upon classified networks should be forbidden. By loading

only certified.Java browsers, the security manger ensures that

applets created by a custom compiler, built for the specific

purpose of creating malicious Java code, will be rejected.

Verified browsers will only recognize byte code built with the

SUN compiler. Spoofing browsers could be designed to

recognize applets from a non-authorized compiler, causing them

to execute and cause havoc.

With these procedures in place, Java applets become just

as safe as any other executable code on the network. Given

83

Java's built in security, they are probably safer. The

introduction o:f a "trojan" applet would mean either

intentional placement on the network by a cleared system user

or compromise of the network's firewall. Either violation

would not be caused by Java flaws, but by shortcomings in

network securiry. Once the language is completely documented,

restriction on the locations of applets may be lifted and they

can be placed anywhere on the network.

84

APPENDIX C. APPLET CAPABILITIES

Key:

NN: Netscap~ Navigator 2.x, loading applets over the Net
NL: Netscape Navigator 2.x, loading applets from the Local

file system
AN: Appletviewer, JDK l.x, loading applets over the Net
AL: Appletviewer, JDK l.x, loading applets from the Local

file system
JS: Java Standalone applications

Stricter ------------------------> Less strict

NN NL AN AL JS

read file in /home/me, no no no yes yes

write file in /tmp, no no no yes yes

get file 1.nfo, no no no yes yes

delete file, no no no no yes
using File.delete(}

delete file, no no no yes yes
using exe-~ /usr/bin/rrn

read the user.name no yes no yes yes
property

connect to port no yes no yes yes
on client

connect to port no yes no yes yes
on 3rd host

load library no yes no yes yes

exit no no no yes yes

create a popup no yes no yes yes
window without
a warning

85

86

APPENDIX D. CSE SS TO DII-DOE MIGRATION

In addition to guidance provided by the various

intelligence configuration boards, broader trends within DoD

effect the development of JDISS architecture. The biggest

trend is the DoDIIS wide migration from Client Service

Environment System Services (CSE-SS) to the Defense

Intelligence Infrastructure Common Operating Environment

(DII-COE). This migration will govern the evolution of JDISS

from its current configuration of tightly integrated hardware

and software suite to a series of portable segments.

According to Essex (1996), "the DII COE is not a system; it

is a foundation for building an open system."

The DII COE consists of three components: the Common

Desktop Environment (CDE), System Administration Services,

and client/server segments. Of most importance to the design

of future JDISS services is the migration of the current

JDISS services to a set of DII-COE segments. Since JDISS

will soon incorporate the Netscape Web browser as a

replacement for Mosaic, the proposed training architecture

must follow the prescriptions of the browser segment.

DII will allow segments from various DoD systems to

collaborate in a common operating environment. It will be

the glue that binds disparate systems and encompasses

commercial architectures, such as the Common Object Request

Brokerage Architecture (CORBA) and Distributed Computing

87

Environment (DCE), into an integrated set of cooperating

modules. The benefits of this scheme will allow for a

standard common look and feel throughout platform independent

environment. (Mitre 1996, Essex 1996)

88

•

•

•

•

•

•

•

•

•

•

•

•

•

APPENDIX E. COMPUTER LEARNING CHECKLIST

COURSE TITLE SCREEN

WELCOMING SCREEN

COURSE MENU

DIRECTION2 HOW TO USE THE CBT SYSTEM

COURSE OBJECTIVES

COURSE PREREQUISITES

DURATION C1F THE COURSE

REFERENCES TO SUPPORTING MATERIALS SUCH AS BOOKS

AN "ESCAPE" OPTION TO HELP THE USER EXIT FROM A SCREEN

COMPLETION STATUS OF EACH TOPIC

BACKWARD PAGING TO GIVE MORE CONTROL OVER THE LEARNING

PROCESS

INTRODUCTORY SCREEN CONTAINING THE TOPIC NAME AND BRIEF

DESCRIPTION OF CONTENT

LIST OF OBJECTIVES

(Jeiven 1994)

89

90

APPENDIX F. SELECTED HTML, JAVA AND JAVASCRIPT
CODE

1. HTML for Frames

<HTML>
<HEAD>
<TITLE>JDISS On-Line Training</TITLE>
</HEAD>

<BODY>

<FRAMESET ROWS="75,*">
<FRAME NORESIZE NAME="top" scrolling = "no"
src="jdisstop.html">

<FRAMESET COLS="l00,*">
<FRAME NAME="left" scrolling = "no"
src="index.html">
<FRAME NAME="right" scrolling = "yes"
src="hi.html">

</FRAMESET>

<NO FRAMES>

Sorry, th·Ls document can be viewed only with Navigator
2.0 or Explorer 2.0 or later versions. You can see the
first document in this set by <a href =
"intro.ht.ml">clicking here. Thank you.

</NOFRAMES>

</BODY>
</HTML>

91

2. Drop Down Menu Javascript

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Hide the script from old browsers

!* Michael P. Scholtis (mpscho@planetx.bloomu.edu)
All rights reserved. February 17, 1996
You may use this JavaScript example as you see fit, as
long as the information within this comment above is
included in your script.

*I

function surfto(form) {

var rnyindex=form.dest.selectedindex

window.open(form.dest.options[rnyindex] .value, "main",
"toolbar=no,scrollbars=yes");
}

II --End Hiding Here-->
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="myform">

<SELECT NAME="dest" SIZE=1>

<OPTION SELECTED VALUE="">---------- Choose Your
Configuration -----------

<P>

<OPTION VALUE="http://vislab-www.nps.navy.mil /-wpkopper/
demo/javascript/url.html#lan">LAN access with Netscape 2.0

<OPTION VALUE="http://vislab-www.nps.navy.mil/-wpkopper/
demo/javascript/url.html#dial">Dial in Access with Netscape
2.0

92

<OPTION VALUE="http://vislab-www.nps.navy.mil/-wpkopper/
demo/javascript/url.html#browser">Download Netscape

<OPTION VALUE=="http://vislab-www.nps.navy.mil/-wpkopper/
demo/javascript/url.html#sea">From
the Sea

</SELECT>
</P>

<P>
<INPUT TYPE="BUTTON" VALUE="Access Information"
onClick="surfto(this.form)">
</FORM>
</P>

</BODY>
</HTML>

93

3. Java Code - Rotator .class

/* Rotator - an applet that animates a sequence of frames
stored as a horizontal strip in a single image.
http://rsb.info.nih.gov/nih-image/Java/Rotator/

Parameters:
image Nmne of image file, no default
rate Rate in frames per second, default = "6"
bgcolor Background color, default = "ffffff" (white)

This example ar::.i.mates 10 55x68 frames stored in a single
550x68 gif file.

*I

<applet code="Rotator.class" width=55 height=68>
<param name=image value="Duke.gif">
<param name=rate value="4">
</applet>

import java.awt.* ;

public class Rotator extends java.applet.Applet implements
Runnable {

int frameWidth;
int delay= 167; II milliseconds (6 frames/sec)
int frame = 0;
int bgcolor = Oxffffff; //white
boolean suspended = false;
Thread runThread;
Image imgi

public void init() {

}

String p = get Parameter ("width") ;
frameWidth = Integer.parseint(p);
p = get Parameter ("rate") ;
if (p != null)

delay = 1000 I Integer.parseint(p);
if (delay < 10)

delay = 10;
p = get Parameter ("bgcolor") ;
if (p != null)

bgcolor = Integer.parseint(p, 16);
setBackground(new Color(bgcolor));
img = getimage(getCodeBase(), getParameter("image"));

94

public void start{) {

}

if {runThread == null) {

}

runThread =new Thread {this);
runThread.start{);

public void :r:un{) {

}

while {runThread != null) {
repaint{);

}

try {runThread.sleep{delay) ;}
catch {InterruptedException e) { }

public void update{Graphics g) {
paint {g);

}

public void paint{Graphics g) {

}

g. drawi:ma.ge { img, -frame * frameWidth, 0, null) ;
if {++frame -- img.getWidth{this) I frameWidth)

frame = 0;

public boolean mouseDown{Event evt, int x, int y) {
if {suspended)

run'l,r.read. resume {) ;
else

runThread.suspend{);
suspended = !suspended;
return t1:·ue;

}

public void stop{) {

}

if {runThread != null) {
runThread.stop{);
runThread = null;

}

}//Rotator

{NIH 1996)

95

4. Pre-test JavaScript

<HTML>
<HEAD>
<TITLE>Tutorial, Pre-test</TITLE>

<SCRIPT>

<!-- hide this script tag's contents from old browsers

answerO="B"

answerl="A"

answer2="A"

function scoretest(form)

{

incorrect=""

if(form.Ql.value!=null&& form.Ql.value!=answerO) {

incorrect=incorrect+"l "

}

if(form.Q2.value!=null&& form.Q2.value!=answerl) {

incorrect=incorrect+"2 "

}

if(form.Q3.value!=null&& form.Q3.value!=answer2) {
a=a+l
incorrect=incorrect+"3 "
}
if (a==O)

96

~--~

{window.status="Congratulations, you are a JDISS pro!
You didn't miss any of the questions answered";}

else

{window.status ="Time to study!
question(s) # "+incorrect+",";

}

}

<!-- done hiding from old browsers -->

</SCRIPT>
</HEAD>

You missed

<BODY TEXT="#000000" BGCOLOR="#FFFOFO" LINK="#FF0000"
VLINK="#800080" ALINK="#OOOOFF" BACKGROUND="bac.gif">

<H2>Pre-Test</H2>

<P>
<IA>
Question #1: JDISS stands for:
</P>

<P>
<INPUT TYPE = "radio" NAME = "Ql" VALUE = "A" onclick
=Ql.value="A">
A.) Joint Deployable Intelligence Support Service

<INPUT TYPE = "radio" NAME = "Ql" VALUE = "B" onclick = Ql.
value = "B">
B.) Joint Deployable Intelligence Support System

<INPUT TYPE = "radio" NAME = "Ql" VALUE = "C" onclick
Ql.value = "C">
C.) Joint Defense Information Sending Systern
</P>

97

<P>
<HR>Question #2: "Smart push" compliments
"pull" architecture:</P>

<P><INPUT TYPE = "radio" NAME = "Q2" VALUE = "A" onclick =
Q2.value = "A">
A). True

<INPUT TYPE == "radio" NAME = "Q2" VALUE = "B" onclick =
Q2.value="B">
B) . False

</P>
<P>

<HR>Question #3: JDISS has been deployed in the following
exercises <I>except</I>:</P>

<P><INPUT TYPE = "radio" NAME = "Q3" VALUE =
Q3.value = "A"> A). Desert Storm

<INPUT TYPE = "radio" NAME = "Q3" VALUE =
Q3.value = "B">B). Provide Promise

<INPUT TYPE = "radio" NAME = "Q3" VALUE =
Q3.value = "C"• C). Restore Hope.

<IP>

<P>
<HR>
<INPUT TYPE = "button" NAME = "submit" VALUE
onclick = scoretest(this.form)>
<INPUT TYPE = "reset" NAME
VALUE="Reset"></FORM></P>

<H3>Correct Answers</H3>

<P>

"A" onclick =

"B" onclick =

"C" onclick =

= "Grade Test"

= "reset"

 #1 , <A HREF =
"ans .html#a2" 'I'arget = "right"> #2 ,
 #3
</P>

</BODY>
</HTML>

98

5. Review test JavaScript

!-- contents of index.html file -->

<H'IML>
<HEAD>
<TITLE>Intro tc JDISS - Review test</TITLE>
</HEAD>

<SCRIPT LANGUAGE="JavaScript">
<!-- hide from old netscape browsers -->

I I variables defined here may be accessed by any of the
frames defined

II below via the parent.variable_name command. NOTE: if the
NetScape window ·

II is resized, the variables will be reset to their initial
values.

II i.e., : these variables are available to the child frames.

II variables

var totalnum=3 // total #of questions

var correctans=O II the question # (from 0 to N-1) of the
correct

II answer to each question. Set in Listing2 (scratcha.html)

var count=O II counter variable. Initialized to zero

var arraycount=1 II index into the questans array. Intialized
to 1

II since that is where the first array string begins.

var totalright=O

II total #of questions answered right (0 initially)

var correcttext="blank"

II the text of the correct answer

<!-- done hiding from old netscape browsers -->
</SCRIPT>

99

<!--must define two frames ... although the second frame is
not used, a minimum of two frames is needed before netscape
will initiate a frame setup -->

<FRAMESET ROWS="*,O"> <!-- give the 2nd frame 0 pixels, and
assign the rest of the space to frame 1 via the "*" -->

<FRAME SRC="listing2.html">
<FRAME SCROLLING="no" NORESIZE>

</FRAMESET>

</HTML>

100

LIST OF REFERENCES

Allesi, Stephen M. And Trollip, Stanley R., Computer-Based
Instruction, Prentice Hall, Inc., 1985.

Alsjuler, Liora, ABCD ... SGML, International Thompson Computer
Press, 1995, 2-22.

Bank, Joseph, "Java Security, "
http://swissnet.ai.edu/-jbank/Javapaper/Javapaper.html, 1996.

Booch, Grady, Object Oriented Design, Benjamin/Cummings
Publishing Company, Inc., 1991.

Budd, Timothy, Object Oriented Programming, Addison-Wesley
Publishing Co. Inc., 1991.

Conway, Melvin. E., "How Do Cormnittees Invent?," Datamation,
April 1968, 28-31.

Chappell, David, "CORBA 2.0: Will it Reach Far Enough?,"
Network Collaboration, March/April 1995, 16-18.

Crabb, Don, "Java Prograrmning," MacUser, October 1996, 55-57.

Essex, W., JDISS Migration to the DII, JDISS PMO, Suitland,
MD, 1996.

Flanagan, David, JAVA in a Nutshell, O'Reilly & Associates
Inc . , 19 9 6 , 6- 1 0 .

Flynn, Jim, "Battle for the Internet Infrastructure,"
Datamation, May 1, 1996, 28-35.

Gage, Deborah and Mardesich, Jodi, "ActiveX Standards Process
Mired in Politics, Confusion," Computer Reseller News,
September 9, 1996, 3, 215.

Gallagan, P. A. "Think Performance: A conversation with
Gloria Gery," 'Training and Development, 1994, Vol. 48, No.
3, 47-51.

Gery, Gloria J., Making CBT Happen: Prescriptions for
Successful Implementation of Computer Based Training in Your
Organization, Ziff Cormnunications Company, 1991, 6.

GITC, Joint General Intelligence Training $Ystem
Subarchitecture, Vol 1., DIA 1994, 3-7 to 3-16.

101

Golberg, Adele and Rubin, Kenneth S., Succeeding with
Objects, Addison-Wesley Publishing, 1995.

Goodman, Danny, JavaScript Handbook, IDG Books, 1996.

Guzdial and Kolodner, Communications of the ACM, April 1996,
Vol 39, No. 4., 43-47.

Halfhill, Tom R., and Salamone, Salvatore, "Components
Everywhere," Byte, January 1996, 97-104.

Jackson, Shari L., Stratford, Steven J., Krajcik, Joseph, and
Soloway, Elliot, A Learner Centered Tool, Communications of
the ACM, April 1996 Vol 39, No. 4, 48-49.

Jeiven, Helene, "A Cormnon-Sense Checklist for CBT," Training
and Development, July 1994, 47-49.

JDISS CCB, JDISS Configuration Management Plan, JDISS PMO,
Suitland, MD, 1994, 1-13 .

JDISS PMO, Concept of Operations for the Joint Deployable
Intelligence Support $ystem, JDISS PMO, Suitland, MD, 1995,
1-4.

JDISS PMO, Training Management Plan, JDISS PMO, Suitland, MD,
1996, 1-8.

Kador, John, "The Ultimate Middeleware," Datamation, April
1996, 79-83.

Korzeniewski, Paul, "A Bridge Not Far?," Open $ystems
Software Magazine, June 1995, 103-109.

Kowitz, G. T. and Smith, J.C., "Three Forms of Instruction,"
Journal of Educational Technology $ystems, 1987, 15(4), 419-
429.

Lauzon, A. And Moore, G.A.B., "A Fourth Generation Distance
Education System: Integrating Computer Assisted Learning and
Computer Conferencing," Distance Education for Corporate and
Milita~ Training, Pennsylvania State University, 1992.

Lemay, Laura, and Perkins, Charles, et.al., Teach Yourself
JAVA, Hayden Books, 1996, 491-503.

Linthicum, DavidS., "Integration, Not Perspiration," Byte,
January 1996, 83-96.

Mowbray, Thomas J., and Zahavi, Ron, The Essential COREA,
John Wiley and Sons Inc., 1995.

102

McMahan, Paul D., Technology Considerations for the
Development of Multimedia Training at the Office of Naval
Intelligence, ONI, December 1995, 1-8.

MITRE Corporation, A DODIIS Migration Strategy, MITRE
Corporation, McLean, VA 1996.

Naughton, Patrick, The Java Handbook, Osborne Mcgraw-Hill,
1996, 133-137.

Netscape, http://www.netscape.com, 1996.

Netscape Gold,
http://comprod/products/navigator/gold/datasheet.html, 1996.

NIH, http://rsb.info.nih.gov/nih-image/Java/Rotator, 1996.

Object Management Group (OMG), http://www.omg.org, 1996a.

Object Management Group (OMG),
http://www.omg.org.pr96.comcorb.htm, 1996b.

Orfali, R., Harkey, D., and Edwards, J. The Essential
Distributed Objects Survival Guide, John Wiley and Sons Inc.,
1996.

Reinhardt, Andy, "New Ways to Learn," Byte, March 1995, 50-
71.

Russell, Deborah and Gangemi, G.T., Sr., Computer Security
Basics, O'Reilly & Associates, 1991, 79-88.

Rymer, John R ... "Objects can be in your future," Network
World, January 16, 1995, 28.

Shackleton, John and Clark, John, "In Company Distance
Learning, " Management Services, March 19 9 5, 2 4-2 5 .

Soley, Richard, "Entering the Orbit of Object Request
Brokers," Network World, April 10, 1995, 43.

SunSoft, http://java.sun.com, 1996.

Tibbitts, F,red; "CORBA: A common Touch for Distributed
Application's," Data Communications, March 21, 1995, 71-75.

Weiland, Ross, "Staying in Touch," Performance, June 1995,
40-44.

103

104

1.

2.

3.

4.

5.

6.

7.

8.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library.
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Professor Suresh Sridhar (Code SM/SR)
Naval Postgraduate School
Monterey, CA 93943-5002

Professor Tung Bui (Code SM/BD)
Naval Postgraduate School
Monterey, CA 93943-5002

CAPT Tom Dove, USN
JDISS Program Management Office
Office of Naval Intelligence
Code: ONI-7JD
4251 Suitland Road
Washingt~n, DC 20395-5720

LT John Capps, USN
Fleet Intelligence Training Center Pacific
33740 Puerto Rico St.
San Diego, CA 92133-1847

CAPT William A. Kopper, USNR (ret)
7050 Cloister Road
Toledo, OH 43617

LT Bill Kopper, USN
JDISS PMO
Office of Naval Intelligence
Code: ONI-7JD
4251 Suitland Road
washington, DC 20395-5720

105

No. of copies

2

2

2

2

4

1

1

2

