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PREFACE.

In the preface to the former edition I expressed

the difficulty which I found in trying to avoid two

opposite evils, neither of which I have altogether

escaped : the evil, namely, of making the book in-

conveniently large, or else of omitting some im-

portant subjects, or treating them imperfectly. This

second edition remains in substance the same as

the former. The most important alteration is in

Chap, ix., where, following the steps of a corre-

sponding chapter in the last edition of my Treatise

on Conic Sections, I have expanded and thrown into

a more systematic form the theorems which I had

given respecting Invariants and Covariants of a

system of two equations of the second degree. I

have also incorporated the results of a few Memoirs

published since my last edition; as, for instance,

Schwarz's Memoir On Developables, p. 280; Clebsch's

Papers On the Osculating Planes of Curves, p. 291

;

On the Normals to a Surface of the Second Degree,

p. 399 ; and On the General Theory of Surfaces, p. 444

;

Cayley's Memoirs On Scrolls, p. 372; and the paper
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in which De Jonquieres, following Chasles, has

studied the Properties of Systems of Surfaces, p. 507.

I have already expressed my obligations to the

friends who originally aided me in the prepara-

tion of this work, especially to Dr. Hart and the

Messrs. Roberts. I have now to add my thanks

to the correspondents who have had the kindness to

send me lists of the errors, whether of the press or

my own, which they noticed in the former edition.

In particular I have to name Mr. Todhunter and

Mr. Traill. The list sent by the latter did not

reach me until the sheets of about half this volume

had been printed off, and although many of his

errata had been already noticed by myself, yet

several had escaped correction. A list of these will

be found at the end of the Table of Contents.

Since the above was written, I have been tanta-

lized by receiving the Second Volume of Dr. Fiedler's

German translation of this work ; exactly when it is

too late to make any use of his notes and additions.

But it is perhaps better that I have not been tempted

into greater fulness of treatment, unless I had fol-

lowed Dr. Fiedler's example in dividing the Book

into Two Volumes.

Trinity College, Dublin,

September, 1865.
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ERRATA.

FAGS LINE

37, 7, 8, Interchange the words " former" and " latter."

61, 7, for cos a, cos a, read p cos a, p' cos a'.

"
23, for Art. 35, ?-eatf Art. 31.

78, 3 from bottom, for "positive,1" read "real."

131, 14, for " axis major," read "semi-axis major."
" 7 from bottom, for " tangent planes," read "planes parallel to the principal

planes."

142, 2, the quantity multiplying - should have the index — 1.

"
3, for " square," read " inverse square."

147, last line, for x, y, z, read a,
f3, y.

148, 20, for " last article," read " last example."

160, 16, for a', read (3.

189, 5, for " chord," read " point."

210, 13, after " polar surfaces," insert " of the origin."

289, last line but one,yb?* /a, read in,

293, 7 from bottom, for " surface," read " curve."

317, 27, for h and 0, read h and 0.

333, 22, 23, 24, for a', §', y'. read 2a', 2/3', 2y'.



ANALYTIC GEOMETRY OF THREE DIMENSIONS.

CHAPTER I.

THE POINT.

1. We have seen already tow the position of a point C
in a plane is determined, by referring it to two co-ordinate

axes OX, Y drawn in the plane. To determine the position

of any point P in space, we have only to add to our apparatus

a third axis OZ not in the plane (see figure next page).

Then if we knew the distance, measured parallel to the line OZ,
of the point P from the plane XOY, and also knew the x
and y co-ordinates of the point C, where PC parallel to OZ
meets the plane, it is obvious that the position of P would

be completely determined.

Thus, if we were given the three equations x = a,y = b, z = c,

the first two equations would determine the point C, and then

drawing through that point a parallel to OZ, and taking on it

a length PC=c, we should have the point P.

We have seen already how a change in the sign of a or

b affects the position of the point C. In like manner the sign

of c will determine on which side of the plane XOY the line

PC is to be measured. If we conceive the plane XOY to be

horizontal, it is customary to consider lines measured upwards

as positive, and lines measured downwards as negative. In this

case then the z of every point above that plane is counted as

positive, and of every point below it as negative. It is obvious

that every point on the plane has its z = 0.

8



2 THE POINT.

The angles between the axes may be any whatever
j

but

the axes are said to be rectangular when the lines OX, OY
are at right angles to each other, and the line OZ perpendicular

to the plane XOY.

space,

2. We have stated the method of representing a point in

in the manner which seemed most simple for readers

already acquainted with Plane Analytic Geometry. We pro-

ceed now to state the same more symmetrically. Our appa-

ratus evidently consists

of three co-ordinate axes

OX, OY, OZ meeting

in a point 0, which, as

in Plane Geometry, is

called the origin. The

three axes are called the

axes of x, y, Jg,
respec-

tively. These three axes

determine also three co-

ordinate planes, namely,

the planes XOY, YOZ,

ZOX, which we shall

call the planes xy, ye,

zx respectively. Now since it is plain that PA = GE= a,

PB = CD = b, we may say that the position of any point P
is known if we are given its three co-ordinates ; viz. PA drawn

parallel to the axis of * to meet the plane yz, PB parallel to

the axis of y to meet the plane zx, and PC drawn parallel to

the axis of z to meet the plane xy.

Again, since OD = a, OE=b, OF=c, the point given by

the equations x = a, y = b, z — c may be found by the follow-

ing symmetrical construction: measure on the axis of x, the

length OB = a, and through D draw the plane PBGD parallel

to the plane yz : measure on the axis of y, OE= b, and through

E draw the plane PA GE parallel to zx : measure on the axis

of z, 0F= c, and through F draw the plane PABF parallel

to xy : the intersection of the three planes so drawn is the

point P, whose construction is required.
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^

3. The points A, B, C, are called the projections of the
point P on the three co-ordinate planes ; and when the axes are
rectangular they are its orthogonal projections. In what fol-

lows we shall be almost exclusively concerned with orthogonal

projections, and therefore when we speak simply of projections,

are to be understood to mean orthogonal projections, unless the

contrary is stated. There are some properties of orthogonal

projections which we shall often have occasion to employ, and
which we therefore collect here, though we have given the proof

of some of them already. (See Conies, p. 319.)

The length of the orthogonal projection of a finite right line

on any plane is equal to the line multiplied by the cosine of the

angle* which it makes with the plane.

Let PC, PC be drawn perpendicular to the plane XO Y;
and CC is the orthogonal pro-

jection of the line PP on that p'

plane. Complete the rectangle

by drawing PQ parallel to CC',

and PQ will also be equal to

CC. But PQ = PP cosPPQ.

4. The projection on any

plane of any area in another

plane is equal to the original

area multiplied by the cosine of

the angle between the planes.

(See Conies, p. 319.)

* The angle a line makes with a plane is measured by the angle which the line

makes with its orthogonal projection on that plane.

The angle between two planes is measured by the angle between the perpendiculars

drawn in each plane to their line of intersection at any point of it. It may also be

measured by the angle between the perpendiculars let fall on the planes from any point.

The angle between two lines which do not intersect, is measured by the angle

between parallels to both drawn through any point.

When we speak of the angle between two lines, it is desirable to express without

ambiguity whether we mean the acute or the obtuse angle which they make with each

other. When therefore we speak of the angle between two lines (for instance

PP1

, CC in the figure), we shall understand that these lines are measured in the

direction from P to P' and from C to C", and that PQ parallel to CC is measured in

B2
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For if ordinates of both figures be drawn perpendicular to

the intersection of the two planes, then, by the last article,

every ordinate of the projection is equal to the corresponding

ordinate of the original figure multiplied by the cosine of the

angle between the planes. But it was proved
(
Conies, p. 350,)

that when two figures are such that the ordinates corresponding

to equal abscissas have to each other a constant ratio, then the

areas of the figures have to each other the same ratio.

5. The projection of a point on any line, is the point where

the line is met by a plane drawn through the point perpen-

dicular to the line. Thus, in figure, p. 2, if the axes be rect-

angular, D, E, Fare the projections of the point P on the three

axes.

The projection of a finite right line upon another right line

is equal to the first line multiplied by the cosine of the angle

between the lines.

Let PP be the given line, and DD' its projection on OX.

Through P draw PQ parallel to

OX to meet the plane P' CD' ; and

since it is perpendicular to this

plane, the angle PQP' is right, and

PQ =PP cosPPQ. But PQ and

DD' are equal, since they are the

intercepts made by two parallel

planes on two parallel right lines.

6. If there be any three points P, P', P", the projection of

PP" on any line will be equal to the sum of the projections on

that line of PP' and PP".

Let the projections of the three points be D, D\ D'\ then

if D' lie between D and D", DD" is evidently the sum of DD'

z
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and D'D". If D" lie between D and D', DD" is the difference

of DD' and D'D"; but since the direction from D' to D" is

the opposite of that from D to D', DD" is still the algebraic

sum of DD' and D'D". It may be otherwise seen tbat the

projection of P'P" is in the latter case to be taken with a

negative sign, from tbe consideration that in this case the

length of the projection is found by multiplying P'P" by the

cosine of an obtuse angle (see note, p. 3). In general, if there

be any number of points P, P', P", P'", &c, the projection

of PP'" on any line is equal to the sum of the projections of

PP', P'P", P"P", &c.

7. We • shall have constant occasion to make use of the

following particular case of the preceding.

If the co-ordinates of any point P be projected on any line,

the sum of the three projections is equal to the projection of the

radius vector on that line.

For consider the points 0, D, C, P (see figure, p. 2) and

the projection of OP must be equal to the sum of the pro-

jections of OD (=«), DC (=#), and CP{=z).

8. Having established those principles concerning projec-

tions which we shall constantly have occasion to employ, we

return now to the more immediate subject of this chapter.

TJie co-ordinates of the point dividing in the ratio in : n the

distance between two points x'y'z', x"y"z", are

mx" + nx' my" + ny' mz" + nz
x= , y =— ,

2= •

m + n m-\-n m + n

The proof is precisely the same as that given at Conies, p. 5,

for the corresponding theorem in Plane Analytic Geometry.

The lines PJ/, QJST in the figure there given, now represent

the ordinates drawn from the two points to any one of the.

co-ordinate planes.

If we consider the ratio m : n as indeterminate, we have

the co-ordinates of any point in the line joining the two given

points.
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9. Any side of a triangle is cut in the ratio m : n, and

the line joining this point to the opposite vertex is cut in the

ratio m + n : I, to find the co-ordinates of the point of section.

Ans.

_ Ix + mx" + nx" _ ly' + my" + ny"' _ lz' + rnz" + nz'"

l + m + n ' * I -{-m + n ' l+m + n

This is proved as in Plane Analytic Geometry (see Conies,

p. 6). If we consider I, in, n as indeterminate, we have the

co-ordinates of any point in the plane determined by the

three points.

Ex. The lines joining middle points of opposite edges of a tetrahedron meet in

a point. The x's of two such middle points are \ ix' + x"), ^ (x"
f + x""), and the x

of the middle point of the line joining them is \ ix' 4- x" + x'" + x""). The other

co-ordinates are found in like manner, and their symmetry shows that this is also

a point on the line joining the other middle points. Through this same point will

pass the line joining each vertex to the centre of gravity of the opposite triangle.

For the x of one of these centres of gravity is J (x' + x" + x'"), and if the line join-

ing this to the opposite vertex be cut in the ratio of 3 : 1, we get the same value

as before.

10. To find the distance betioeen two points P, P', whose

rectangular co-ordinates are x'y'z, x"y"z".

Evidently (see figure, p. 3) PP'* = P'Q* + PQ\ But

P'Q = z'-z", a,ni PQ'= GC'2
is by Plane Analytic Geometry

= [x — x"Y + («/' — y")'\ Hence

PP*= (x'-x'T+{y'-y"y + (z'-s"Y.

Cor. The distance of any point x'y'z' from the origin is

given by the equation

OP' = x'
2 + y'

2 +z'\

11. The position of a point is sometimes expressed by its

radius vector and the angles it makes with three rectangular

axes. Let these angles be a, ,S, 7. Then since the co-ordinates

x, y, z are the projections of the radius vector on the three

axes, we have

x = p cosct, y = p cos£?, z = p cosy.

And, since x'
1 + y

2 + z
2 - p\ the three cosines (which are
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sometimes called the direction-cosines of the radius vector)

are connected by the relation

cos
2
a + cos

2
/3 + cos

2
7 = 1.*

The position of a point is also sometimes expressed by the

following polar co-ordinates—the radius vector, the angle 7 which

the radius vector makes with a fixed axis OZ, .and the angle

COD{=<f>) which 00 the projection of the radius vector on a

plane perpendicular to OZ (see figure, p. 4) makes with a fixed

line OX in that plane. Since then OC = p sin7, the formulae

for transforming from rectangular to these polar co-ordinates are

x = p sin7 cos0, y = p SU17 sin<£, z = p COS7.

12. Tlie square of the area of any plane figure is equal to

the sum of the squares of its projections on three rectangular

planes.

Let the area be A, and let a perpendicular to its plane

make angles a, /3, 7 with the three axes; then (Art. 4) the

projections of this area on the planes yz, zx, xy respectively,

are A cosa, A cos$, A C0S7. And the sum of the squares

of these three = A*, since cos
2
a + cos

2
/3 + cos

2
7 = 1.

13. To express the cosine of the angle 6 between two lines

OP, OP' in terms of the direction-cosines of these lines.

We have proved (Art. 10),

pp* =
(
x - xy+ty-yy+(z-zy.

* I have followed the usual practice in denoting the position of a line by these

angles, but in one point of view there would be an advantage in using instead the

complementary angles, namely, the angles which the line makes with the co-ordinate

planes. This appears from the corresponding formulae for oblique axes which I have

not thought it worth while to give in the text, as we shall not have occasion to use

them afterwards. Let a,
f$, y be the angles which a line makes with the planes

yz, zx, xy, and let A, B, be the angles which the axis of a- makes with the plane

of yz, of y with the plane of a; and of z with the plane of xy, then the formulas which

correspond to those in the text, are

x sin A = p sin a, ysmB = psmf3, z sin C = p siny.

These formula? are proved by the principle of Ait. 7. If we project on a line perpen-

dicular to the plane of yz, since the projections of y and of z on this line vanish, the

projection of x must be equal to that of the radius vector, and the angles made by x

and p with this line are the complements of A and a.
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But also PP* = p
2 4 p'

2 - 2pp cos 6.

And since p
2 = x2 +/ + s

2

,
p'

2 = x"' 4 y* 4 z'\

we have pp cos = xx 4 3/2/ + zs',

or cos #= cos a cos a' 4 cos /3 cos /3' 4 cos7 cos 7'.

Coe. The condition that two lines should be at right angles

to each other is

cos a cos a' 4 cos/3 cos/3' + cos7 cos 7' = 0.

] 4. The following formula is also sometimes useful

:

sin
2 = (cos/3 COS7' — C0S7 cos/3')

2 + (0037 cosa' — cosa COS7')
2

4 (cosa cos/3' — cos ,8 cosa')
2
.

This may be derived from the following elementary theorem

for the sum of the squares of three determinants [Lessons on

Higher Algebra, Art. 21), but which can also be verified at

once by actual expansion,

{bo' - cb'f 4 {ca! - ac'f 4 (aV - ba'f

= (a
2 4 b* 4 c") (a

2 + b'
2 4 c'

2

)
- {aa' 4W 4 cc')\

For when a, b, c ; a', b\ c are the direction-cosines of two

lines, the right-hand side becomes 1 — cos
2
#.

Ex. To find the perpendicular distance from a point x'y'z' to a line through the

origin whose direction-angles are a, /3, y. •

Let P be the point x'y'z', OQ the given line, PQ the perpendicular, then it is

plain that PQ = OP sinPOQ; and using the value just obtained for sin POQ, and
remembering that x' = OP cos a', &c, we have

PQ? = in' cosy - 2' cos/3) 2 + (z' cosa - x' cosy) 2 + (x' cos/3 - 7/ cosa) 2
.

15. To find the direction-cosines of a line perpendicular to

two given lines, and therefore perpendicular to their plane.

Let a'/3Y, a."ft"ry" be the direction-angles of the given lines,

and a/37 of the required line, then we have to find a/3y from

the three equations

cosa cosa' 4 cos/3 cos/3' 4 cos7 cos 7' = 0,

cosa cosa" 4 cos /3 cos/3"4cos7 cos7" = 0,

cos
2
a 4 cos

2
/3 4 cos

2
7 = 1.
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From the first two equations we can easily derive, by elimi-

nating in turn cosa, cos/3, cosy,

X cosa = cos/8' cosy" — cos/3" cosy',

X cos/3 = cosy' cosa" — cosy" cosa',

\ cosy =cosa' cos/8" —cosa" cos8',

where X is indeterminate ; and substituting in the third equa-

tion, we get (see Art. 14), if 8 be the angle between the two

given lines,

\*=sin'
2
0.

This result may be also obtained as follows : take any two

points P, Q, or x 'y'z ', x"y"z", one on each of the two given lines.

Now double the area of the projection on the plane of xy

of the triangle POQ, is (see Conies, p. 31) xy' '
— y'x", or

p'p" (cosa' cos/8" — cosa" cos8'). But double the area of the

triangle is p'p" sin#, and therefore the projection on the plane

of xy is p'p" sin 8 cosy. Hence, as before,

sin# cosy = cosa' cos 8" - cosa" cos 8',

and in like manner

sin# cosa =cos/8' cosy" — cos8" cosy'

;

sin0 cos8 = cosy' cosa" — cosy" cosa'.

TRANSFORMATION OF CO-ORDINATES.

16. To transform to parallel axes through a new origin,

whose co-ordinates referred to the old axes are x\ y', z'.

The formulas of transformation are (as in Plane Geometry)

x = X+x, y=Y+y\ s = Z+z.

For let a line drawn through the point P parallel to one

of the axes (for instance z) meet the old plane of xy in a point

O, and the new in a point C ;
then PC= PC' + C'C.

But PC is the old z, PC is the new z ; and since parallel

planes make equal intercepts on parallel right lines, C'C

must be equal to the line drawn through the new origin 0'

parallel to the axis of z, to meet the old plane of xy.
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17. To pass from a rectangular system of axes to another

system of axes having the same origin.

Let the angles made by the new axes of x, y, z with the

old axes be a, /3, y ; a', /3', 7' ; a", /3", 7" respectively. Then

if we project the new co-ordinates on one of the old axes, the

sum of the three projections will (Art. 7) be equal to the

projection of the radius vector, which is the corresponding old

co-ordinate. Thus we get the three equations

a; = Xcosa + I^cosa' + Z cosa."
]

y =X cos/3 + Y cos/3' + Z cos jS" \ (A).

z =X cosy + Y C0S7' 4 Z cosy" >

We have, of course, (Art. 11)

cos
2
a + cos

2
/3 + cos

2

y = 1, cos
2
a' + cos

2
/3' + cos

2
7' = 1,

cos
2
a" + cos

2
/3" + cos

2 7" = 1 (B).

If the new axes be also rectangular, we have also (Art. 13)

cosa 'cos a' + cos/3 cos/3' +cosy cosy' =0]
cosa' cosa" + cos/3' cos/3"+ cosy' cosy" = Or ... [G).

cosa" cosa + cos/3" cos/3 + cosy" cosy = ®

By the help of these relations we can verify that when
we pass from one system of rectangular axes to another, we
have, as is geometrically evident, x1 + y

2 + z* =X2 + Y2 + Z".

When the new axes are rectangular, since a, a', a" are

the angles made by the old axis of x with the new axes, &c.

we must have

cos
2
a + cos

2
a' + cos

2
a" = 1, cos

2
/3 + cos

2
/3' + cos

2
/3" = 1,

cos
2

y + cos'V + cos
2y"= 1 (D),

cosa cos/3+cosa' cos/3'-f cosa" cos/3" = 0")

cos/3 cosy + cos/8' cosy' + cos/3" cosy" = 0f ••(-^)j

cosy cosa +cosy' cosa' +cosy" cosa" =0J

and the new co-ordinates expressed in terms of the old are

X=xcosa +y cos/3 +scosy
)

F=secosa' +y cos/3' +zcosy'
f

{&)•

Z= x cosa" + y cos/3" + z cosy"-'
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It is not difficult to derive analytically equations D, E, F,

from equations A, B, 0, but we shall not spend time on what
is geometrically evident.

18. When we transform rectangular axes to a system not

rectangular, let \, /^ y be the angles between the new axes

of y and z, of z and x, of x and y respectively, then (Art. 13)

co3X = cosa' cosa" + cos/3' cos/3" + C0S7' C0S7",

cos/i = cosa" cosa + cos/3" cos/8 +cos7"cosy,

cosi'=cosa cos a' + cos /3 cosyS' +COS7 C0S7'.

Hence, squaring and adding equations (A) (Art. 17),

x* 4f + z* = X* + T' + Z2 + 2YZ cos A, + 2ZX cos/* 4 2XY cos v.

Thus we obtain the radius vector from the origin to any

point expressed in terms of the oblique co-ordinates of that point.

It is proved in like manner that the square of the distance

between two points, the axes being oblique, is

(x
1 - x"f 4 (y' -y"f 4 (z' - zj + 2 (y --y") {z

1 - z") cosX

4 2 («' - 2") (x' - x") cos/* 4 2 [x - x") {y - y") cos v.*

19. The degree of any equation between the co-ordinates is

not altered by transformation of co-ordinates.

This is proved, as at Conies, p. 9, from the consideration

that the expressions given (Arts. 16, 17) for x, y, z, only involve

the new co-ordinates in the first degree.

* As we shall never require in practice the formula? for transforming from one set

of oblique axes to another, we only give them in a note.

Let A, B, C have the same meaning as at note, p. 7. and let a, /8, y; a', /J*, y';

a", |8", y" be the angles made by the new axes with the old co-ordinate planes; then

by projecting on lines perpendicular to the old co-ordinate planes, as in the note

referred to, we find

x sinA = X sin a + T sin a' + Z sin a",

y sinB = Xsin/3 + l'sin|3' + Zsin/3",

z sinC =Xsiny + rsiny' + Zsiny".
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CHAPTER II.

INTERPRETATION OF EQUATIONS.

20. It appears from the construction of Art. 1 that if we

were given merely the two equations x = a, y = b, and if the

z were left indeterminate, the two given equations would de-

termine the point C, and we should know that the point P
lay somewhere on the line PC. These two equations then

are considered as representing that right line, it being the

locus of all points whose x = a, and whose y — b. We learn

then that any two equations of the form x = a, y = b represent

a right line parallel to the axis of z. In particular, the equa-

tions x = 0, y = represent the axis of z itself. Similarly for

the other axes.

Again, if we were given the single equation x = a, we
could determine nothing but the point D. Proceeding, as at

the end of Art. 2, we should learn that the point P lay some

where in the plane PBCD, but its position in that plane would

be indeterminate. This plane then being the locus of all points

whose x = a is represented analytically by that equation. We
learn then that any equation of the form x = a represents a

plane parallel to the plane yz. In particular, the equation

x = denotes the plane yz itself. Similarly, for the other

two co-ordinate planes.

21. In general, any single equation between the co-ordinates

represents a surface of some hind ; any two simultaneous equations

between them represent a line of some kind, either straight or

curved; and any three equations denote one or more points.

I. If we are given a single equation, we may take for x
and y any arbitrary values; and then the given equation

solved for z will determine one or more corresponding values

of z. In other words, if we take arbitrarily any point G in

the plane of xy, we can always find on the line PC one or
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more points whose co-ordinates will satisfy the given equation.

The assemblage then of points so found on the lines PC will

form a surface which will be the geometrical representation

of the given equation (see Conies, p. 13).

II. When we are given two equations, we can, by elimi-

nating z and y alternately between them, thrown them into

the form y =<f> (a;), z = ifr (x). If then we take for x any ar-

bitrary value, the given equations will determine corresponding

values for y and z. In other words, we can no longer take

the point C anywhere on the plane of xy, but this point is

limited to a certain locus represented by the equation y = <f)(x).

Taking the point C anywhere on this locus, we determine

as before on the line PC a number of points P, the assemblage

of which is the locus represented by the two equations. And
since the points C which are the projections of these latter

points, lie on a certain line, straight or curved, it is plain that

the points P must also lie on a line of some kind, though of

course they do not necessarily lie all in any one plane.

Otherwise thus: when two equations are given, we have

seen in the first part of this article that the locus of points

whose co-ordinates satisfy either equation separately, is a surface.

Consequently, the locus of points whose co-ordinates satisfy

both equations is the assemblage of points common to the

two surfaces which are represented by the two equations con-

sidered separately : that is to say, the locus is the line of in-

tersection of these surfaces.

III. When three equations are given, it is plain that they

are sufficient to determine absolutely the values of the three

unknown quantities x, y, s, and therefore that the given

equations represent one or more points. Since each equation

taken separately represents a surface, it follows hence that

any three surfaces have one or more common points of inter-

section, real or imaginary.

22. Surfaces, like plane curves, are classed according to

the degrees of the equations which represent them. Since

every point in the plane of xy has its z = 0, if in any equation
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we make z = 0, we get the relation between the x and y
co-ordinates of the points in which the plane xy meets the

surface represented by the equation: that is to say, we get

the equation of the plane curve of section, and it is obvious

that the equation of this curve will be in general of the same

degree as the equation of the surface. It is evident, in fact,

that the degree of the equation of the section cannot be greater

than that of the surface, but it appears at first as if it might

be less. For instance, the equation

zx2 + ay2 + Vx = c
3

is of the third degree ; but when we make z = 0, we get an

equation of the second degree. But since the original equation

would have been unmeaning if it were not homogeneous, every

term must be of the third dimension in some linear unit (see

Conies, p. 67), and therefore when we make z = 0, the re-

maining terms must still be regarded as of three dimensions.

They will form an equation of the second degree multiplied

by a constant, and denote (see Conies, p. 66) a conic and

a line at infinity. If then we take into account lines at infinity,

we may say that the section of a surface of the n
h
degree

by the plane of xy will be always of the n
th

degree ; and

since any plane may be made the plane of xy, and since

transformation of co-ordinates does not alter the degree of an

equation, we learn that every plane section of a surface of the

n* degree is a curve of the n degree.

In like manner it is proved that every right line meets a

surface of the n
th

degree in n points. The right line may be

made the axis of z, and the points where it meets the surface

are found by making x = 0, y = in the equation of the surface,

when in general we get an equation of the m
th

degree to de-

termine a. If the degree of the equation happened to be less

than n, it would only indicate that some of the n points where

the line meets the surface are at infinity {Conies, p. 128).

23. Curves in space are classified according to the number

of points in which they are met by any plane. Two equations

of the mth
and w

th
degrees respectively represent a curve of the

mn h
degree. For the surfaces represented by the equations
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are cut by any plane in curves of the rn* and na degrees

respectively, and these curves intersect in ran points.

Three, equations of the m , n , and p
th

degrees respectively
,

denote mnp points.

This follows from the theory of elimination, since if we
eliminate y and z between the equations, we obtain an equation

of the mnpm degree to determine x (see Lessons on Higher

Algebra, p. 26). This proves also that three surfaces of the

m , n\p
tl

degrees respectively, intersect in mnp points.

24. If an equation only contain two of the variables

<j) (x, y) = 0, the learner might at first suppose that it represents

a curve in the plane of xy, and so that it forms an exception

to the rule that it requires two equations to represent a curve.

But it must be remembered that the equation
<f>

[x, y) = will

be satisfied not only for any point of this curve in the plane

of xy, but also for any other point having the same x and y
though a different z : that is to say, for any point of the

surface generated by a right line moving along this curve,

but remaining parallel to the axis of z.* The curve in the

plane of xy can only be represented by two equations, namely,

z = 0, cj>(x,y)=0.

If an equation contain only one of the variables x, we

know by the theory of equations, that it may be resolved

into n factors of the form x — a = 0, and therefore (Art. 20)

that it represents n planes parallel to one of the co-ordinate

planes.

* A surface generated by a right line moving parallel to itself is called a cylindrical

surface.
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CHAPTER III.

THE PLANE.

25. In the discussion of equations we commence of course

with equations of the first degree, and the first step is to

prove that every equation of the first degree represents a plane,

and conversely, that the equation of a plane is always of the

first degree. We commence with the latter proposition, which

may be established in two or three different ways.

In the first place we have seen (Art. 20) that the plane

of xy is represented by an equation of the first degree, viz.

z = 0; and transformation to any other axes cannot alter the

degree of this equation (Art. 19).

We might arrive at the same result by forming the equation

of the plane determined by three given points, which we can

do by eliminating I, m, n from the three equations given

Art. 9, when we should arrive at an equation of the first

degree. The following method however of expressing the

equation of a plane leads to one of the forms most useful in

practice.

26. To find the equation of a plane, the perpendicular on

which from the origin =p, and makes angles a, /3, <y with the*

axes.

The length of the projection on the perpendicular of the

radius vector to any point of the plane is of course =p, and

(Art. 7) this is equal to the sum of the projections on that

line of the three co-ordinates. Hence we obtain for the equa-

tion of the plane

x cosa + ;$/
cos/3 + z cos<y=p.*

* In what follows we suppose the axes rectangular, but this equation is true

whatever be the axes.
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27. Now, conversely, any equation of the first degree

Ax + By 4 Gz + D = 0,

can be reduced to the form just given, by dividing it by a

factor B. We are to have .4 = .R cos a, I? = _R cos /3, G=R cos 7,

whence, by Art. 11, R is determined to be = *J{A* 4 B'
2 4 G'

2

).

Hence any equation Ax 4 By + Gz 4 D = may be identified

with the equation of a plane, the perpendicular on which from

the origin = ,
a—^— ~g\ 1 an(i makes angles with the

axes whose cosines are A, B, C, respectively divided by the

same square root. We are to give to the square root the

sign which will make the perpendicular positive, and then the

signs of the cosines will determine whether the angles which

the perpendicular makes with the positive directions of the

axes are acute or obtuse.

28. To find the angle between two planes

Ax + By+Cz + D = 0, A'x 4 B'y + C'z 4 D' = 0.

The angle between the planes is the same as the angle

between the perpendiculars on them from the origin. By the

last article we have the angles these perpendiculars make with

the axes, and thence, Arts. 13, 14, we have

a AA' + BB'+CC
C0S() ~

<J{(A
2 +B1

4 G2

)
[A"' + B'> 4 C'*)}

'

l(f
{AB'-A'BY+(BC'-B'CT+(GA'- C'A)*

(A2 + B* + C*) {A"
2 4 £" 4 C"2

)

Hence the condition that the planes should cut at right angles

hAA' + BB' + CG' = 0.

They will be parallel if we have the conditions

AB' = A'B, BC' = B'G, CA'=G'A;

in other words, if the coefficients A, B, G be proportional to

A', B\ C", in which case it is manifest from the last article that

the direction of the perpendicular on both will be the same.

29. To express the equation of a plane in terms of the in-

tercepts a, 6, c, which it makes on the axes.

c

sin
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The intercept made on the axis of x by the plane

Ax + By + Gz +D =

is found by making y and z both = 0, when we have Aa+D=0.
And similarly, Bb -f D = 0, Cc + D = 0. Substituting in the

general equation the values just found for A, B, G, it becomes

x y z _

a b c

If in the general equation any term be wanting, for instance,

if .4 = 0, the point where the plane meets the axis of x is at

infinity, or the plane is parallel to the axis of x. If we have

both A = 0, Z?= 0, then the axes of x and y meet at infinity the

given plane which is therefore parallel to the plane of xy (see

also Art. 20). If we have A = 0, B = 0, C=0, all three axes

meet the plane at infinity, and we see, as at Gonics, p. 66,

that an equation O.x+O.y + 0.z +D = must be taken to re-

present a plane at infinity.

30. To find the equation of the plane determined by three

points.

Let the equation be Ax + By + Cz+D = 0; and since this

is to be satisfied by the co-ordinates of each of the given points,

A, B, G, D must satisfy the equations

Ax' + By' +Cz' + D = 0, Ax" + By" + Gz" +D = 0,

Ax'" + By'" + Cz'" + D = 0.

Eliminating A
:
B, G, D between the four equations, the

result is the determinant

x,

i

x

y-> z
,
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If we consider x, y, z as the co-ordinates of any fourth

point, we have the condition that four points should lie in

one plane.

31. The coefficients of a;, y, z in the preceding equation

are evidently double the areas of the projections on the co-

ordinate planes of the triangle formed by the three points.

If now we take the equation (Art. 26)

x cosa + y cos/S + s cosy=j3,

and multiply it by twice A, (A being the area of the triangle

formed by the three points) the equation will become identical

with that of the last article, since A cos a, A cos/3, A cos 7,

are the projections of the triangle on the co-ordinate planes

(Art. 4). The absolute term then must be the same in both

cases. Hence the quantity

x' (y"z'" - y'"z") + x" (y"V - yV") + x" &*" ~ f*')

represents double the area of the triangle formed by the three

points multiplied by the perpendicular on its plane from the

origin : or, in other words, six times the volume of the triangular

pyramid, lohose base is that triangle, and whose vertex is the

origin.*

* If in the preceding values we substitute for x', y', z'
;
p' cos a', p' cos/3', p' cosy',

<Sra, we find that six times the volume of this pyramid = p'p"p'" multiplied by the

determinant
cos a', cos/3', cosy'

cos a", cos/3", cosy"

cos a'", cos/3"', cosy'"

Now let us suppose the three radii vectores cut by a sphere whose radius is unity,

having the origin for its centre, and meeting it in a spherical triangle RR'R". Then

if a denote the side RR', and p the perpendicular on it from R", six times the volume

of the pyramid will be p'p"p'" sin a sin/) ; for p'p" sin a is double the area of one face

of tlje pyramid, and p'" ship is the perpendicular on it from the opposite vertex. It

follows then that the determinant above written is equal to double the function

J{sins sin (s - a) sin (s - b) sin (s - c)}

of the sides of the above-mentioned spherical triangle. The same thing may be

proved by forming the square of the same determinant according to the ordinary

rule; when if we write

cos a" cos a"' + C0S|8" cos/3'" + cosy" cosy"' = cosff, &c.

C2
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We can at once express A itself in terms of the co-ordinates

of the three points by Art. 12, and must have ±A2 equal to

the sum of the squares of the coefficients of x, y, and z, in

the equation of the last article.

32. To find the length of the perpendicular from a given point

x'y'z' on a given plane, x cosa. + y cos/3 + z cos7 =p.

If we draw through x'y'z a plane parallel to the given

plane, and let fall on the two planes a common perpendicular

from the origin, then the intercept on this line will be equal

to the length of the perpendicular required, since parallel planes

make equal intercepts on parallel lines. But the length of

the perpendicular on the plane through x'y'z is, by definition,

(Art. 5) the projection on that perpendicular of the radius

vector to x'y'z', and therefore (Art. 26) is equal to

x cosoc + ?/' cos/3 + »' cos 7.

The length required is therefore

x' cosa +y cos/3 + 2' cosy—p.

N.B. This supposes the perpendicular on the plane through

x'y'z' to be greater than p, or, in other words, that x'y'z' and

the origin are on opposite sides of the plane. If they were

on the same side, the length of the perpendicular would be

p — {x cosa-fy' cos/3 + 2' COS7). If the equation of the plane

had been given in the form Ax + JBy+Cz + D = 0, it is re-

we get
1, cose, cos&

cose, 1, cos a

cos b, cos a, 1

which expanded is 1 + 2 cos a cosi cose — cos2 a — cos2 J — cos2 c, which is known to

have the value in question.

It is useful to remark that when the three lines are at right angles to each other

the determinant
cos a', cos /3', cosy'

cosa", cos/3", cosy"

cos a'", cos/3'", cosy'"

has unity for its value. In fact we see, as ahove, that its square is

1, 0,0

0, 1,

0, 0, 1 .
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duced, as in Art. 27, to the form here considered, and the length

of the perpendicular is found to be

Ax' + By' + Gz'+D
*/{A2 + B*+C*)

'

It is plain that all points for which Ax' + By' + Cz +D
has the same sign as D, will be on the same side of the plane

as the origin ; and vice versa when the sign is different.

33. To find the co-ordinates of the intersection of three planes.

This is only to solve three equations of the first degree

for three unknown quantities (see Lessons on Higher Algebra,

Art. 24). The value of the co-ordinates will become infinite

if the determinant (AB'C") vanishes, or

A (B' G" - B" C) + A' {B"C- BC") + A" (BC -B'C) = 0.

This then is the condition that the three planes should be

parallel to the same line. For in such a case the line of in-

tersection of any two would be also parallel to this line, and

could not meet the third plane at any finite distance.

34. To find the condition that four planes should meet in a

point.

This is evidently obtained, by eliminating x, y, z between

the equations of the four planes, and is therefore the determinant

(AB'C'D'"). or

A, B, C, D
A', B\ C, D'

A", B", C", B"

A'", B'", C"\ D'" = 0.

35. To find the volume of the tetrahedron whose vertices are

any four given points.

If we multiply the area of the triangle formed by three

points, by the perpendicular on their plane from the fourth,

we obtain three times the volume. The length of the per-

pendicular on the plane whose equation is given, (Art. 30) is

found by substituting in that equation the co-ordinates of the

fourth point, and dividing by the square root of the sum of

the squares of the coefficients of x, y, z. But (Art. 31) that
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square root is double the area of the triangle formed by the

three points. Hence six times the volume of the tetrahedron

in question is equal to the determinant

x, y, z', 1

x", y", z", 1

x"\ y", z", 1

as"", y'"\ z""i l

36. It is evident, as in Plane Geometry, (see Conies, Art. 40)

that if 8, 8', 8" represent any three surfaces, then aS+bS'

where a and b are any constants, represents a surface passing

through the line of intersection of 8 and 8'
;

and that

aS+bS' + cS" represents a surface passing through the points

of intersection of S, 8', and 8". Thus then if L, M, N denote

any three planes, aL + bM denotes a plane passing through

the line of intersection of the first two, and aL + bM+cN
denotes a plane passing through the point common to all three.

As a particular case of the preceding aL -\-b denotes a plane

parallel to L, and aL -+ bM+ c denotes a plane parallel to the

intersection of L and M (see Art. 29).

So again, four planes L, M, N, P will pass through the

same point if their equations are connected by an identical

relation

aL + bM+cN+dP=0,
for then any co-ordinates which satisfy the first three must

satisfy the fourth. Conversely, given any four planes inter-

secting in a common point, it is easy to obtain such an identical

relation. For multiply the first equation by the determinant

{A'B"C"), the second by -(A"B'"C), the third by [A'"BO'),

and the fourth by — (AB' C"), and add : then (Lessons on Higher

Algebra, Art. 7) the coefficients of x, y, z vanish identically;

* The volume of the tetrahedron formed by foivr planes, whose equations are given,

can he found by forming the co-ordinates of its angular points, and then substituting

in the formula given above. The result is, (see Lessons on Higher Algebra, Art. 25)

that six times the volume is equal to
B?

(AB'C") (A'B"C") {A,rB'"C) (A'"BC)

where R is the determinant (AB'C'D'") Art. 34, and the factors in the denominator

express the conditions (Art. 33) that any three of the planes should be parallel to

the same line.



THE PLANE. 23

and the remaining term is the determinant which vanishes

(Art. 34), because the planes meet in a point. Their equations

are therefore connected by the identical relation

L {A'B"C") - M{A"£'"C) + N(A'"BC')-P(AB'C") = 0.

37. Given any four planes L, M, N, P not meeting in a

point, it is easy to see (as at Conies, Art. 60) that the equation

of any other plane can be thrown into the form

aL + bM+cN+dP=0.
And in general the equation of any surface of the n

tb
degree

can be expressed by a homogeneous equation of the n
a
degree

between L, M, N, P (see Conies, Art. 289). For the number

of terms in the complete equation of the n* order between three

variables is the same as the number of terms in the homogeneous

equation of the n
th

order between four variables.

Accordingly, in what follows, we shall use these quadri-

planar co-ordinates, whenever by so doing our equations can

be materially simplified.

Ex. 1. To find the equation of the plane passing through x'y'z', and through the

intersection of the planes

Ax + By + C: + D, A'x + B'y + C'z + ff (see Conies, Ex. 3, p. 34).

Ant. {A'x'+B'y'+C'z'+JD'){Ax+By+Cz+D) = (Ax'+By'+Cz'+D)(A'x+B'y+C'z+jD').

Ex. 2. Find the equation of the plane passing through the points ABC, figure, p. 2.

The equations of the line BC are evidently - = 1, t + -z = 1. Hence obviously the

equation of the required plane is - + % + - = 2, since this passes through each of the

three lines joining the three given points.

Ex. 3. Find the equation of the plane PEF in the same figure.

The equations of the line EF arex = 0, r+-=l; and forming as above the equa-

y z x
tion of the plane joining this line to the point abc, we get r + - — - = 1.

38. Iffour planes which intersect in a right line be met by

any plane, the anharmonic ratio of the pencil so formed will be

constant. For we could by transformation of co-ordinates make

the transverse plane the plane of xy, and we should then obtain

the equations of the intersections of the four planes with this

plane by making z — in the equations. The resulting equations

will be of the form aL + M, bL + 21, cL + M, dL + M, whose

anharmonic ratio (see Conies, Art. 59) depends solely on the
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constants a, b, c, d; and does not alter when by transformation

of co-ordinates L and M come to represent different lines.

THE EIGHT LINE.

39. The equations of any two planes taken together will

represent their line of intersection, which will include all the

points whose co-ordinates satisfy both the equations. By elimi-

nating x and y alternately between the equations we reduce

them to a form commonly used, viz.

x = mz + a, y = nz + h.

The first represents the projection of the line on the plane of

xz and the second that on the plane of yz. The reader will ob-

serve that ike equations of a right line include four independent

constants.

"We might form independently the equations of the line

joining two points ; for taking the values given (Art. 8) of the

co-ordinates of any point on that line, solving for the ratio

in : n from each of the three equations there given, and equa-

ting results, we get

x — x _ y — y' z — z

x — x" y — y" z' — z"

for the required equations of the line. It thus appears that

the equations of the projections of the line are the same as the

equations of the lines joining the projections of two points on

the line, as is otherwise evident.

40. Two right lines in space will in general not intersect.

If the first line be represented by any two equations L = 0,

M= 0, and the second by any other two N= 0, P= 0, then if

the two lines meet in a point, each of these four planes must
pass through that point, and the condition that the lines should

intersect is the same as that already given (Art. 34).

Two intersecting lines determine a plane whose equation

can easily be found. For we have seen (Art. 36) that when
the four planes intersect, their equations satisfy an identical

relation

«L + bM-\-cN+dP=0.
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The equations therefore aL + bM=Q, and cN+dP=0 must

be identical and must represent the same plane. But the form

of the first equation shows that this plane passes through the

line L, M, and that of the second equation shows that it passes

through the line JV, P.

Ex. When the given lines are represented by equations of the form

x = mz + a, y — nz + b; x — m'z + a', y — n'z + b',

the condition that they should intersect is easily found. For solving for z from the

first and third equations, and equating it to the value found by solving from the

second and fourth, we get
a — a' b — b'

Again, if this condition is satisfied, the four equations are connected by the identical

relation
N

(n — n') {{% — mz — a) — (x — m'z — a1

)} = (in. — m') {{y — nz — b) — (y — n'z — b
1

]),

and therefore (n — n1

) (x — mz — a) = (m — m') (y — nz — b)

is the equation of the plane containing both lines.

41. To find the equations of a line passing through the point

x'y'z', and making angles a, /3, 7 with the axes.

The projections on the axes, of the distance of x'y'z from

any variable point xyz on the line, are respectively x — x\

y —y\ z— z \ and since these are each equal to that distance

multiplied by the cosine of the angle between the line and the

axis in question, we have

x — x y — y' _ z — z
_

cosa cos/3 COS7 '

a form of writing the equations of the line which, although it

includes two superfluous constants, yet on account of its sym-

metry between .r, y, s is often used in preference to the form

in Art. 39.

Keciprocally, if we desire to find the angles made with the

axes by any line, we have only to throw its equation into the

form
x ~ x _ y~~y _ tZsL when the direction-cosines of theABO

line will be respectively A, B, C, each divided by the square

root of the sum of the squares of these three quantities.

Ex. 1. To find the direction-cosines of x = mz + a, y = nz + b. Writing the equa-

x — a y — b z ,, ,. ,_,

tions in the form = = r , the dn-ection-cosines are
m » 1

m n 1

J(l + m» + n5) ' J(l + i»s + »') ' J(l + m- + »2)

'
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x y I m n
Ex. 2. To find the direction-cosines of -j = —

, z = 0. Ans. ,,„ „ , .,„ „, , 0.

Ex. 3. To find the direction-cosines of

Ax + By + Cz + D, A'x + B'y + C'z + D'.

Eliminating y and z alternately we reduce them to the preceding form, and the

. . . BC'-B'C CA'-C'A AB'-A'B „ . ,,

direction-cosines are ^ > n > p ; where A? is the sum of

the squares of the three numerators.

Ex. 4. To find the equation of the plane through the two intersecting lines

x — x' _y — y' _z — z' x — x' _y — y' __z — z'

cosa
—

cos/?
—

cosy ' cosa'
—

cos/3'
~ cosy'

'

The required plane passes through x'y'z' and its perpendicular is perpendicular to two

lines whose direction-cosines are given ; therefore, (Art. 15) the required equation is

{x — x') (cos/3 cosy' — cosy cos/3') + {y — y') (cosy cos a' — cosy' cosa)

+ (z — z') (cosa cos/3' — cosa' cos/3) = 0.

Ex. 5. To find the equation of the plane passing through the two parallel lines

x — x' y — y
1

z — z' x — x1
' _ y — y" z — z''

cosa ~ cos/3
—

cosy ' cosa
—

cos/3
—

cosy

The required plane contains the line joining the given points, whose direction-

cosines are proportional to x' — x", y' — y", z' — z
1
' ; the direction-cosines of the

perpendicular to the plane are therefore proportional to

{y' — y") cosy - (z' — z") cos ft (z' — z") cosa — (x' — x") cosy,

(x' — x") cos/3 — (!/' — y") cosa.

These may therefore be taken as the coefficients of x, y, z, in the required equation,

while the absolute term determined by substituting x'y'z' for xyz in the equation ia

(yV — y"z') cosa + (z'x" — z'V) cos/3 + (x'y" — x"y') cosy.

42. To find the equations of the perpendicular from x'y'z

on the plane Ax + By + Cz + D. The direction-cosines of the

perpendicular on the plane (Art. 27) are proportional to A, B, C;
hence the equations required are

x — x'_y — y' z — z'

~A~
= ~^~ ==

~C'-

43. To find the direction-cosines of the bisector of the angle

between two given lines.

As we are only concerned with directions it is of course

sufficient to consider lines through the origin. If we take

points x'y'z', x'y'z' one on each line, equidistant from the

origin, then the middle point of the line joining these points

is evidently a point on the bisector, whose equation therefore isxyz
x + x" ~ y' + y" ~ z' + z" '
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and whose direction-cosines are therefore proportional to

x'-\rx", y'+y", z' + z";

but since a?', y\ z', x", y", z" are evidently proportional to the

direction-cosines of the given lines, the direction-cosines of the

bisector are

cosa' + cosa", cos/3' + cos/8", cos7' + cos7",

each divided by the square root of the sum of the squares of

these three quantities.

The bisector of the supplemental angle between the lines

is got by substituting for the point x"y"z" a point equi-distant

from the origin measured in the opposite direction, whose

co-ordinates are — x", —y", —z"; and therefore the direction-

cosines of this bisector are respectively proportional to

cosa' — cosa", cos/3' — cos/3", C0S7' — COS7".

N.B. The equation of the plane bisecting the angle between

two given planes is found precisely as at Conies, p. 30, and is

(x cosa +y cos/3 + zcosy — p) =±{x cosa' + y cos/3' + z COS7' —j>).

44. To find the angle made with each other by two lines

x — a y — b s ~ c
.

x — a_y — b z — e

I m no m n

Evidently (Arts. 13, 41),

. IF + mm' + nn'
cos a =

COR. The lines are at right angles to each other if

W + mm' + nn = 0.

Ex. To find the angle between the lines = = tton = -tt^t ; ttsv = y, s= 0. Am. 30°.

45. To find the angle between the plane Ax + By -f- Cz + D,

and the line
x—a_y—b _ z—c

I m. n

The angle between the line and the plane is the complement

of the angle between the line and the perpendicular on the

plane, and we have therefore

Al + Bin + On
sin0 =

-/(P + m' + M*) J(A* +& + (?)
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Coe. When Al + Bm + Gn = 0, the line is parallel to the

plane, for it is then perpendicular to a perpendicular on the

plane.

46. To find the conditions that a line x — mz + a, y = nz + b

should be altogether in a plane Ax + By+ Cz + D. Substitute

for x and y in the equation of the plane, and solve for z, when

we have
Aa + Bb + D

~ Am + Bn+ C
and if both numerator and denominator vanish, the value of z

is indeterminate and the line is altogether in the plane. We
have just seen that the vanishing of the denominator expresses

the condition that the line should be parallel to the plane ; while

the vanishing of the numerator expresses that one of the points

of the line is in the plane, viz. the point ab where the line meets

the plane of xy.

In like manner in order to find the conditions that a right

line should lie altogether in any surface, we should substitute

for x and y in the equation of the surface, and then equate to

zero the coefficient of every power of z in the resulting equation.

It is plain that the number of conditions thus resulting is one

more than the degree of the surface.*

47. To find the equation of the plane drawn through a given

line perpendicular to a given plane.

Let the line be given by the equations

Ax + By+Cz + D = 0, A'x + B'y + C'z + D '= 0,

and let the plane be

A"x + B"y+ C"z + D" = Q.

Then any plane through the line will be of the form

X (Ax + By + Gz + D) + /* [A'x + B'y + C'z + D') = 0,

* Since the equations of a right line contain four constants, a right line can be

determined which shall satisfy any four conditions. Hence any surface of the second

degree must contain an infinity of right lines, since we have only three conditions to

satisfy and have four constants at our disposal. Every surface of the third degree

must contain a finite number of right lines since the number of conditions to be

satisfied is equal to the number of disposable constants. A surface of higher degree

will not necessarily contain any right line lying altogether in the surface.
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and in order that it should be perpendicular to the plane we
must have

(\A + iJ,A')A"+(\B + fiB')B" + (XC+iJ,C')C" = 0.

This equation determines X : fi
)
and the equation of the required

plane is

{A'A" + B'B" + C 0") {Ax + By + Cz + D)

= (AA" + BB" + CC") (A'x + B'y + C'z + D').

When the equations of the given plane and line are given

in the form

_ x — x v — y' z — z'
x cosa + y cos/3 + z COS7 = » : , = -—£7 = T :J 1 sr 1 coga COS/3 COS7 '

we can otherwise easily determine the equation of the required

plane. For it is to contain the given line whose direction-angles

are a', /3', 7' ; and it is also to contain a perpendicular to the

given plane whose direction-angles are a, /3, 7. Hence (Art. 15)

the direction-cosines of a perpendicular to the required plane are

proportional to

cosy3'cos7—cosyScos7', cos7'cosa—C0S7 cosa',cosa' cos/3—cosa cos/3',

and since the required plane is also to pass through xy'z\ its

equation is

(x— x')(cos/8 C0S7'— cos/3' cos7) + (y— ?/')(cos7 cosa'— C0S7' cosa)

+ [z — z) (cosa cos/6' — cosa' cos/8) = 0.

48. Given two lines to find the equation of a plane drawn

through either parallel to the other.

First, let the given lines be the intersections of the planes

L, M; N, P whose equations are given in the most general

form. Then proceeding exactly as in Art. 36, we obtain the

identical relation

L{A'B"C'")-M(A"B'"C)+N(A"
I

BC')-P{AB'C")=(A'B"C'"B),

the right-hand side of the equation being the determinant, whose

vanishing expresses that the four planes meet in a point. It is

evident then that the equations

L (A'B"C") - M(A"B'"C) = 0, N(A'"BC) - P{AB'G") =

represent parallel planes since they only differ by a constant
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quantity ; but these planes pass each through one of the given

lines.

Secondly, let the lines be given by equations of the form

x — x y — y z — z' x — x" y — y" _ z — z"

cosa cos/3 cosy ' cosa' cos/3' cosy'

Then since a perpendicular to the sought plane is perpendicular

to the direction of each of the given lines, its direction-cosines

(Art. 15) are the same as those given in the last example, and

the equations of the sought parallel planes are

(x — x) (cos/3 cosy'— cos/3' cosy) + (y—y')(cosy cosa'— co3y' cosa)

+ {z — z') (cosa cos/3' — cosa' cos/3) = 0,

[x— £e")(cos/3 cosy'— cos/3' cosy) + {y—y") (cosy cosa'— cosy' cosa)

+ (z — z") (cosa cos/3' - cosa' cos/S) = 0.

The perpendicular distance between two parallel planes is equal

to the difference between the perpendiculars let fall on them

from the origin, and is therefore equal to the difference between

their absolute terms, divided by the square root of the sum of

the squares of the common coefficients of x, y, z. Thus the per-

pendicular distance between the planes last found is

(x'—x") (cos/3 cosy'— cos/3' cos<y)+(y'—y')(cosy cosa'— cosy' cosa)

-1- («' - z") (cosa cos/3' - cosa' cos/3) divided by sin#,

where 6 (see Art. 14) is the angle between the directions of the

given lines. It is evident that the perpendicular distance here

found is shorter than any other line which can be drawn from

any point of the one plane to any point of the other.

49. To find the equations and the magnitude of the shortest

distance between two non-intersecting lines.

The shortest distance between two lines is a line per-

pendicular to both, which can be found as follows: Draw
through each of the lines, by Art. 47, a plane perpendicular

to either of the parallel planes determined by Art. 48 ; then the

intersection of the two planes so drawn will be perpendicular

to the parallel planes, and therefore to the given lines which
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lie in these planes. From the construction it is evident that

the line so determined meets both the given lines. Its mag-

nitude is plainly that determined in the last article. Calculating

by Art. 47 the equation of a plane passing through a line whose

direction-angles are a, /3, 7, and perpendicular to a plane whose

direction-cosines are proportional to

cos/3' cosy—cos/3 cosy', cosy' cosa—cosy cosa', cosa' cos/3—cosa cos/3',

we find that the line sought is the intersection of the two planes

[x — x') (cosa— cos# cosa) + [y — y') (cos^S' — cos 6 cos/3)

+ (z — z) (cos 7' — cos# cos 7) = 0,

(x — x") (cosa — cos cosa') + (y — y") (cos/3 — cos0 cos/S')

+ [z — z") (COS7- cos# C0S7') =0.

The direction-cosines of the shortest distance must plainly be

proportional to

cos/3' C0S7—cos/3 cosy', cosy' cosa-cosy cosa', cosa' cos/3—cosa cos/S'.

NOTE ON THE PBOPERTIES OF TETEAHEDEA.

50. We add as an appendix to the preceding chapters some

properties of tetrahedra which, though not obtained by the

method of co-ordinates, are worth being set down.

To find the relation between the six lines joining any four

points in a plane.

Let a, b, c be the sides of the triangle formed by any three

of them ABC, and let d, e, f be the lines joining the fourth

point D to these three. Let the angles subtended at D by

a, b, c be a, /3, y; then we have cosa = cos(/3 + y), whence

cos
2
a + cos

2
/3 + cos*y — 2 cosa cos/3 cosy = !•

This relation will be true whatever be the position of D,

either within or without the triangle ABC. But

f +f-a* _ f + d*-b* d* + e*-c>
cosa = i/ '

cos/S^—p—
,
cosy=-^^.
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Substituting these values and reducing, we find for the required

relation

a"p - e
2

)
(rf» -f) + V [e

2

-f) (e
2 - d2

) + c
2

{f - d 2

) [f - e
2

)

+ a2d 2
(d

z -b2 - c
2

) + b
2
e
2
{b

2 -a2 - c
2

) + c
2f (c

2- a2- b
2

) + a'bV = 0.

51

.

To express the volume of a tetrahedron in terms of its

six edges.

Let the sides of the triangle formed by any face ABC be

a, 6, c ; the perpendicular on that face from the remaining

vertex be p, and the distances of the foot of that perpendicular

from A, B, G be d', e, f. Then a, b, c, d\ e,f are connected

by the relation given in the last article. But if d, e, f be the

remaining edges d2 = d'
2 +p2

, e
2 = e'

2
+p'\ f2

=f'
2 +p2

; whence

d2 — e'
2 = d'

2 — e'
2

, &c. and putting in these values, we get

- F=p2
(2a

2
b
2 + 2b

2
c
2 + 2cV - a

4 - 5
4 - c

4

),

where F is the quantity on the left-hand side of the equation

in the last article. Now the quantity multiplying p
2
is 16 times

the square of the area of the triangle ABC, and since p mul-

tiplied by this area is three times the volume of the pyramid,

wehavei^=-144F2
.

52. To find the relation between the six arcs joining four

points on the surface of a sphere.

We proceed precisely as in Art. 50, only substituting for

the formulas there used the corresponding formulas for spherical

triangles, and if a, /3, y, 8, e, <£ represent the cosines of the six

arcs in question, we get

«
2
+/3

2+7
2+S2+e2+ </>

2-a2
S
2-

/
SV- 7

2^+2a
/
88£+ 2/37£<£+27aS4>

- 2a/3y - 2ae0 - 2/3S<£ - 278s = 1.

This relation may be otherwise proved as follows: Let the

direction-cosines of the radii to the four points be

cosa, cos/3, cos 7,

cosa', cos/S', cosy',

cosa", cos/3", cosy",

cosa'", cos/3"', cosy'".
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Now from this matrix we can form (by the method of Lessons

on Higher Algebra, Art. 20) a determinant which shall vanish

identically, and which (substituting cos
a
a + cos''

!

/
8 + cos''

!

7 = l,

cosa cosa '+ cos/3 cos/3' + cos 7 COS7' = cos a5, &c.) is

1, cosaS, cosac, cosa^

cos 5a, 1, cos 5c, cosbd

cosca, coscS, 1, cosc^

cosc?a, cos db, cosdc, 1

which expanded has the value written above.

= 0,

53. To find the radius of the sphere circumscribing a tetra-

hedron.

Since any side a of the tetrahedron is the chord of the arc
2

whose cosine is a, we have a = 1 — —3 , with similar expressions

for /S, 7, &c. ; and making these substitutions, the formula of

the last example becomes

F_ 2a2d*bV + WeVf + 2CyW - a'd*- 5V - c'f _
4r
6+

16r8 ~
'

whence if

we have

ad+be + cf=28i

S{S-ad){S-be)(S-cf)
36V

The reader may exercise himself in proving that the shortest

distance between two opposite sides of the tetrahedron is equal

to six times the volume divided by the product of those sides

multiplied by the sine of their angle of inclination to each other,

which may be expressed in terms of the sides by the help of the

relation 2ad cos d = b
2 + e

2 -ci

-f
2
.
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CHAPTER IV.

•PROPERTIES COMMON TO ALL SURFACES OF THE
SECOND DEGREE.

54. We shall write the general equation of the second

degree

ax2 + by
2 + cz

2 + 2lyz + 2mzx + 2nxy + 2px + 2qy + 2rz + d=0.

This equation contains ten terms, and since its signification is

not altered if by division we make one of the coefficients unity,

it appears that nine conditions are sufficient to determine a

surface of the second degree, or as we shall call it for short-

ness, a quadric^ surface. Thus if we are given nine points on

the surface, by substituting successively the co-ordinates of each

in the general equation, we obtain nine equations which are

I c
sufficient to determine the nine unknown quantities -

, - , &c.
a 1 a 1

And in like manner the number of conditions necessary to de-

termine a surface of the n* degree is one less than the number

of terms in the general equation.

The equation of a quadric may also (see Art. 37) be ex-

pressed as a homogeneous function of the equations of four

given planes x, y, 2, a>,

ax2+by2+cs2+ d<o
2+2lyz + 2mzx+2nxy-\- 2pxa> +2qym+2rzm=0.

For the nine independent constants in the equation last written

may be so determined that the surface shall pass through nine

given points, and therefore may coincide with any given quadric.

In like manner (see Conies, p. 67) any ordinary x, y, z equa-

tions may be made homogeneous by the introduction of the

* The reader will compare the corresponding discussion of the equation of the second

degree (Conies, Chap, x.) and observe the identity of the methods now pursued and
of many of the results obtained.

t In the Treatise on Solid Geometry by Messrs. Frost and Wolstenholme, surfaces

of the second degree are called conicoids.
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linear unit (which we shall call w) ; and we shall frequently

employ equations written in this form for the sake of greater

symmetry in the results. We shall however for simplicity

commence with x, y, z co-ordinates.

55. The co-ordinates are transformed to any parallel axes

drawn through a point x'y'z', by writing x + x, y + y', z + z

for x, y, z respectively (Art. 16). The result of this substitu-

tion will be that the coefficients of the highest powers of the

variables (a, 5, c, £, m, n) will remain unaltered, that the new

absolute term will be U' (where U' is the result of substituting

x', y\ z' for x, y, z in the given equation), that the new coeffi-

7 TJI

cient of x will be 2 [ax' + ny -f mz ~\-p) or -7-7- , and in like

manner that the new coefficients of y and z will be —r-7

dU' . . .

dy

and -J7 . We shall find it convenient to use the abbreviations

dU dU dUu» u" u'
{m -te>7&>&-

56. We can transform the general equation to polar co-

ordinates by writing x = Xp, y = /j,p, z = vp (where, if the axes

be rectangular, X, /j, v are equal to cos a, cos/3, cos7 respec-

tively, and if they are oblique (see note, p. 7) X, /a, v are still

quantities depending only on the angles the line makes with

the axes) when the equation becomes

p
3
(aX* + b[i* + cv* + 2lfj.v + 2mvX + 2rik(i)

+ 2p (j>\ +qfi + rv) + d= 0.

This being a quadratic gives two values for the length of the

radius vector corresponding to any given direction; in ac-

cordance with what was proved (Art. 22), viz. that every right

line meets a quadric in two points.

57. Let us consider first the case where the origin is on the

surface (and therefore d=0), in which case one of the roots of

the above quadratic is p = ; and let us seek the condition that

the radius vector should touch the surface at the origin. In

this case obviously the second root of the quadratic will also

vanish, and the required condition is therefore pX + qp + rv = 0.

D2
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If we multiply by p and replace \p, pp, vp by x, y, 2, this

becomes
j>x + qy + rz = 0,

and evidently expresses that the radius vector lies in a certain

fixed plane. And since \, p, v are subject to no restriction

but that already written, every radius vector through the origin

drawn in tbis plane touches the surface.

Hence we learn that at a given point on a quadric an in-

finity of tangent lines can be drawn, that these lie all in one

plane which is called the tangent plane at that point ; and that

if the equation of the surface be written in the form m
2
+ w, = 0,

then u
x
= is the equation of the tangent plane at the origin.

58. We can find by transformation of co-ordinates the equa-

tion of the tangent plane at any point x'y'z on the surface.

For when we transform to this point as origin, the absolute term

vanishes, and the equation of the tangent plane is (Art. 55)

xu;+yu;+ e u;=o,

or, transforming back to the old axes,

{x-x^U' + ^-^U' + iz-^U^O.
This may be written in a more symmetrical form by the intro-

duction of the linear unit oj, when, since £7 is now a homogeneous

function, and since x'y'z is to satisfy the equation of the surface,

we have
x'U;+y'U; + z'U; + o>'i; = 2U' = 0.

Adding this to the equation last found, we have the equation

of the tangent plane in the form

xVJ + yUJ + zUJ + uU^-O;

or, writing at full length,

x (ax + ny + mz +p)+y (nx' + by 4 lz' + q)

+ z (mx' + ly + cz' + r) +px' + qy' + rz' + d= 0.

This equation, it will be observed, is symmetrical between xyz

and x'y'z') and may likewise be written

x'U^y'Q + z'U^to'U^O.
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59. To find the point of contact of a tangent line or plane

drawn through a given point x'y'z' not on the surface.

The equation last found expresses a relation between xyzco,

the co-ordinates of any point on the tangent plane, and x'y'z w
its point of contact ; and since now we wish to indicate that the

former co-ordinates are given and the latter sought, we have

only to remove the accents from the former and accentuate the

latter co-ordinates, when we find that the point of contact must

lie in the plane

which is called the polar plane of the given point. Since the

point of contact need satisfy no other condition, the tangent

plane at any of the points where the polar plane meets the

surface, will pass through the given point ; and the line joining

that point of contact to the given point will be a tangent line

to the surface. If all the points of intersection of the polar

plane and the surface be joined to the given point, we shall

have all the lines which can be drawn through that point to

touch the surface, and the assemblage of these lines forms what

is called the tangent cone through the given point.

N.B. In general a surface generated by right lines which

all pass through the same point is called a cone, and the point

through which the lines pass is called its vertex. A cylinder

(see p. 15) is the limiting case of a cone when the vertex is

infinitely distant.

60. The polar plane may be also defined as the locus of

harmonic means of radii passing through the pole. In fact let

us examine the locus of points of harmonic section of radii

passing through the origin ; then if p', p" be the roots of the

quadratic of Art. 56, and p the radius vector of the locus, we

are to have
2 11 2 (kp + fiq + vr)
- = — + — — "5

>

P P P d

or, returning to x, y, z co-ordinates,

px + ay + rz + d = ;

but this is the polar plane of the origin, as may be seen by making

a;', y\ z all =0 in the equation written in full (Art. 58).
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From this definition of the polar plane, it is evident that if

a section of a surface be made by a plane passing through any

point, the polar of that point with regard to the section will

be the intersection of the plane of section with the polar plane

of the given point. For the locus of harmonic means of all

radii passing through the point, must include the locus of har-

monic means of the radii which lie in the plane of section.

61. If the polar plane of any point A pass through B, then

the polar plane of B will pass through A.

For since the equation of the polar plane is symmetrical

with respect to xyz, oe'y'z', we get the same result whether we

substitute the co-ordinates of the second point in the equation

of the polar plane of the first, or vice versa.

The intersection of the polar planes of A and of B will be

a line which we shall call the polar line, with respect to the

surface, of the line AB. It is easy to see that the polar line

of the line AB is the locus of the poles of all planes which

can be drawn through the line AB.

62. If in the original equation we had not only d= 0, but

also jy, q, r each = 0, then the equation of the tangent plane

at the origin, found (Art. 58), becomes illusory since every term

vanishes ; and no single plane can be called the tangent plane

at the origin. In fact the coefficient of p (Art. 56) vanishes

whatever be the direction of p, and therefore every line drawn
through the origin meets the surface in two consecutive points,

and the origin is said to be a double point on the surface.

In the present case, the equation denotes a cone whose
vertex is the origin, as in fact does every homogeneous equation

in x, y, z. For if such an equation be satisfied by any co-

ordinates x\ y\ z', it will also be satisfied by the co-ordinates

Jos', hy\ Jcz (where k is any constant), that is to say, by the

co-ordinates of every point on the line joining x'y'z
1

to the

origin. This line then lies wholly in the surface, which must
therefore consist of a series of right lines drawn through the

origin.

The equation of the tangent plane at any point of the
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cone now under consideration may be written in either of the

forms

xu;+ y u; + zu; = % x'u^ y'u2 +z'u3 =o.

The former form (wanting an absolute term) shews that the

tangent plane at every point on the cone passes through the

origin; the latter form shews that the tangent plane at any

point x'y'z touches the surface at every point of the line joining

x'y'z' to the vertex ; for the equation will represent the same

plane if we substitute Tex, lcy\ kz' for x', y', z'.

When the point x'y'z' is not on the surface, the equation we

have been last discussing represents the polar of that point, and

it appears in like manner that the polar plane of every point

passes through the vertex of the cone, and also that all points

which lie on the same line passing through the vertex of a cone

have the same polar plane.

To find the polar plane of any point with regard to a cone

we need only take any section through that point, and take

the polar line of the point with regard to that section ; then

the plane joining this polar line to the vertex will be the polar

plane required. For it was proved (Art. 60) that the polar

plane must contain the polar line, and it is now proved that the

polar plane must contain the vertex.

63. We can easily find the condition that the general equa-

tion of the second degree should represent a cone. For if it

does it will be possible by transformation of co-ordinates to

make the new j), q, r, d vanish. The co-ordinates of the new

vertex must therefore (Art. 55) satisfy the conditions

u; =o, u;=o, c; = o, w=o,

which last combined with the others is equivalent to Z7'
4
=0.

And if we eliminate x', y', z from the four equations

ax' + ny + mz' + p = 0,

nx + by' + lz' + q = 0,

mx + ly' + cz + r = 0,

px + qy + rz + d = 0,
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we obtain the required condition in the form of the determinant

a,
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65. If however we had p = 0, q = 0, r = 0, then every line

drawn through the origin would be bisected and the origin

would be called the centre of the surface. Every quadric has
in general one and but one centre. For if we seek by trans-

formation of co-ordinates to make the new p, q,r = 0, we obtain

three equations, viz.

Z7/ = 0, or ax' + ny' + mz' +p = 0,

Z7
2
' = 0, or nx' + by' + h' + q=0,

Z7
3
' = 0, or mx' + ly' + cz' + r = 0,

which are sufficient to determine the three unknowns x', y\ z'.

P Q Tt
The resulting values are x' = -^ ,

y' = -^ , z' = -=-
, where P, Q,

B, D have the same meaning as in the last article.

If however Z>=0 the co-ordinates of the centre become infinite

and the surface has no finite centre. If we write the original

equation w
2

+- w, + w = 0, it is evident that D is the discriminant

of w
a
*

66. To find the locus of the middle points of chords parallel

to a given line — = — = -.J X ft v

If we transform the equation to any point on the locus as

origin, the new jp, q, r must fulfil the condition (Art. 64)

p\ + q/i + rv = 0, and therefore (Art. 55) the equation of the

locus is

This denotes a plane through the intersection of the planes

U^ U
3, Us,

that is to say, through the centre of the surface.

* It is possible that the numerators of these fractions might vanish at the same

time with the denominator, in which case the co-ordinates of the centre would become

indeterminate, and the surface would have an infinity of centres. Thus if the three

planes U{, Ui, U£ all pass through the same line, any point on this line will be a
centre. The conditions that this should be the case may be written

",
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It is called the diametral plane conjugate to the given direction

of the chords.

lix'y'z' be any point on the radius vector drawn through

the origin parallel to the given direction, the equation of the

diametral plane may be written

x'lTl+y'U^z'U^0.

If now we take the equation of the polar plane of kx, ky\ kz\

kx' U
x
+ ky U

2
+ kz' #

s
+ Z7

4
= 0,

divide it by k, and then make k infinite, we see that the

diametral plane is the polar of the point at infinity on a line

drawn in the given direction, as we might also have inferred

from geometrical considerations (see Conies, p. 281). In like

manner, the centre is the pole of the plane at infinity, for if

the origin be the centre its polar plane (Art. 60) is d = 0,

which (Art. 29) represents a plane situated at an infinite

distance.

In the case where the given surface is a cone, it is evident

that the plane which bisects chords parallel to any line drawn

through the vertex is the same as the polar plane of any

point in that line. In fact it was proved that all points on

the line have the same polar plane, therefore the polar of the

point at infinity on that line is the same as the polar plane

of any other point in it.

67. The plane which bisects chords parallel to the axis

of x is found, by making /j, = 0, v = in the equation of Art. 66,

to be
U^ = 0, or ax + ny + mz +p = 0,*

and this will be parallel to the axis of y, if n = 0. But this

is also the condition that the plane conjugate to the axis of y
should be parallel to the axis of x. Hence if the plane con-

jugate to a given direction be parallel to a second given line,

the plane conjugate to the latter will be parallel to the former.

* It follows that the plane x = will bisect chords parallel to the axis of x, if

n = 0, m = 0, p = ; or, in other words, if the original equation do not contain any

odd power of x. But it is otherwise evident that this must be the case in order that

for any assigned values of y and z we may obtain equal and opposite values of x.
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When w = the axes of x and y are evidently parallel to

a pair of conjugate diameters of the section by the plane of xy
;

and it is otherwise evident that the plane conjugate to each

of two conjugate diameters of a section passes through the other.

For the locus of middle points of all chords of the surface

parallel to a given line must include the locus of the middle

points of all such chords which are contained in a given plane.

Three diametral planes are said to be conjugate when each

is conjugate to the intersection of the other two, and three

diameters are said to be conjugate when each is conjugate to

the plane of the other two. Thus we should obtain a system

of three conjugate diameters by taking two conjugate diameters

of any central section together with the diameter conjugate

to the plane of that section. If we had in the equation 1 = 0,

m = 0, n = 0, it appears from the commencement of this article

that the co-ordinate planes are parallel to three conjugate

diametral planes.

When the surface is a cone it is evident from what was

said (Arts 62, 66) that a system of three conjugate diameters

meets any plane section in points such that each is the pole

with respect to the section of the line joining the other two.

68. A diametral plane is said to be principal if it be per-

pendicular to the chords to which it is conjugate.

The axes being rectangular, and \, fj,,
v the direction-

cosines of a chord, we have seen (Art. 66) that the corresponding

diametral plane is

X(ax + ny + mz+p) + fi (nx + by + te+ q)+ v (mx+ly+cz+ r)=0,

and this will be perpendicular to the chord, if (Art. 42) the

coefficients of x, y, z be respectively proportional to X, fi, v.

This gives us the three equations

Xa + fin + vm = JcX, Xn + fib + vl = kfi, Xm + fil + vc = Jcv.

From these equations which are linear in X, /i, v, we can

eliminate \, fi, v, when we obtain the determinant

a — k, n, m
«, b — Jc, I

m, I, c — h =0,
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which expanded gives a cubic for the determination of k, viz.

¥ -¥ {a + b + c) + h {ab + be 1 ca - f - »i
2 - ri')

- (abc + 2lmn - a? - bn? - cri') = 0.

And the three values hence found for Jc being successively

substituted in the preceding equations enable us to determine

the corresponding values of X, fi, v. Hence a quadric has

in general three principal diametral planes, the three diameters

perpendicular to which are called the axes of the surface. We
shall discuss this equation more fully in the next chapter.

Ex. To find the principal planes of

7a;2 + 6/ + 5z2 — ixy - iyz = 6.

The cubic for h is

B - 1W + 99£ - 162 = 0,

whose roots are 3, 6, 9. Now our three equations are

7\-2fi = k\, - 2\ + 6p. - 2v = V, - 2/t + 5k = hv.

If in these we substitute k = 3, we find 2X = /j. = v. Multiplying by p, and sub-

stituting x for \p, &c, we get for the equations of one of the axes 2x = y — z. And

the plane drawn through the origin, (which is the centre) perpendicular to this line,

is x + 2y + 1z = 0. In like manner the other two principal planes are 2x — 2y + z = 0,

2x + y - 2z = 0.*

69. The sections of a quadric by parallel planes are similar

to each other.

Since any plane may be taken for the plane of xy, it is

sufficient to consider the section made by it, which is found

by putting s = in the equation of the surface. But the section

by any parallel plane is found by transforming the equation

to parallel axes through any new origin, and then making z = 0.

If we retain the planes yz and zx, and transfer the plane

xy parallel to itself, the section by this plane is got at once

by writing z = c in the equation of the surface, since it is evident

that it is the same thing whether we write z + c for z
:
and

then make z = 0, or whether we write at once z = c.

* It is prayed (Lessons on Higher Algebra, p. 112) that if U denote the terms of

highest degree in the equation, and S denote

(be - V) x2 + (ca-m2
)
y> + [ab - re

2
) z2 + 2 (e/- al) yz + 2 (fd- bm) zx + 2(de- ere) xy,

then the equation of the three principal planes, the centre being origin, is denoted

by the determinant

= 0.

X,
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And since the coefficients of x'\ xy, and y* are unaltered by
this transformation, the curves are similar.

It is easy to prove algebraically, that the locus, of centres

of parallel sections is the diameter conjugate to their plane,

as is geometrically evident.

70. If p', p" be the roots of the quadratic of Art. 56,

their product p'p" is = d divided by the coefficient of p
2
. But

if we transform to parallel axes, and consider a radius vector

drawn parallel to the first direction, the coefficient of p
2
remains

unchanged, and the product is proportional to the new d.

Hence if through two given points A, B, any parallel chords be

drawn meeting the surface in points B, R' ; S, S', then the

products BA.AB', SB.JBS' are to each other in a constant

ratio, namely, U' : U" where U', U" are the results of sub-

stituting the co-ordinates of A and of B in the given equation.

71. We shall conclude this chapter by shewing how the

theorems already deduced from the discussion of lines passing

through the origin might have been derived by a more general

process, such as that employed [Conies, Art. 91). For sym-

metry we use homogeneous equations with four variables.

To find the. points where a given quadric is met by the line

joining two given points xy'z<o\ x"y"z"a>".

Let us take as our unknown quantity the ratio ? : m, in which

the joining line is cut at the point where it meets the quadric,

then (Art. 8) the co-ordinates of that point are proportional to

mx + lx'\ my' + ly", mz + Zz", W + Ico"

;

and if we substitute these values in the equation of the surface,

we get for the determination of I : to, a quadratic

m*W + lmP+FU" = 0.

The coefficients of P and ma
are easily seen to be the results

of substituting in the equation of the surface the co-ordinates

of each of the points, while the coefficient of Im may be seen

(by Taylor's theorem, or otherwise) to be capable of being

written in either of the forms

«tu;' + y'u;' + z>u;>+<o'u;\

or x"U^ + y"U' + z"U^+a,"U:.
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Having found from this quadratic the values of I : m, sub-

1J1CC ~\~ Ice

stituting each of thern in the values — ,
&c, we find the

co-ordinates of the points where the quadric is met by the

given line.

72. If x'y'z'o)' be on the surface, then U' = 0, and one of

the roots of the last quadratic is 1 = 0, which corresponds to

the point x'y'z'o)', as evidently ought to be the case. In order

that the second root should also be 1 = 0, we must have P= 0.

If then the line joining x'y'z'o) to x'y'z'o)' touch the surface

at the former point, the co-ordinates of the latter must satisfy

the equation

xu;+yu; + zu; + <ou; = o,

and since x"y"z"a)" may be any point on any tangent line

through x'y'z'o)', it follows that every such tangent lies in the

plane whose equation has been just written.

73. If x'y'z'o)' be not on the surface, and yet the relation

P = be satisfied, the quadratic of Art. 71 takes the form

m." XT + I
2 U" = 0, which gives values of I : m, equal with opposite

signs. Hence the line joining the given points is cut by the

surface externally and internally in the same ratio ; that is to

say, is cut harmonically. It follows then that the locus of

points of harmonic section of radii drawn through x'y'z'o)' is

the polar plane

xu;+ y u;+zu; + <ou;=o.

14c. In general if the line joining the two points touch

the surface, the quadratic of Art. 71 must have equal roots,

and the co-ordinates of the two points must be connected by
the relation iU'U" = P2

. If the point x'y'z'o)' be fixed, this

relation ought to be fulfilled if the other point lie on any of

the tangent lines which can be drawn through it. Hence the

cone generated by all these tangent lines will have for its

equation AUU' = P2

, where

p=xu;+yu;+zu; + <ou;.

Ex. To find the equation of the tangent cone from the point x'y'z' to the surface

5V-V--1 Ans(^ +^ + -~l\(X~ + t + t iW^'.^V*' iY
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75. To find the condition that the plane ax + j3y + yz + So>

should touch the surface given by the general equation.

If x, y, 2, m be the co-ordinates of the point of contact,

and k an indeterminate multiplier, we have (Art. 58)

Jca=ax + ny + rnz+pa, kft = nx + by + Iz + qa>,

ky=mx+ ly + cz +j-u, k8 =px + qy + rz+ dm,

from which equations, together with ax + fty + yz + Sw = 0, we
have to eliminate x, y, s, w. Solving for x, y, «, m from these

equations, we find

Ax = Jc {Aa + N/3 + My + PS),

Ay = k(Na+B/3 + Ly + Q8),

Az=k[Ma + Ll3-)- Cy+B8),

Am= k (Pa + QP + By + DB)*
where A, B, C, &c. have the same meaning as in Art. 63.

Substituting these values in ax + fiy + yz + dco = 0, we get

Aa' -+ B& + Of + JD8"

+ 2LPy + 2Mya + 2iVa/3 + 2Pa8 + 2 Q@$ + 2ByS = 0,

which is the required relation.

This condition may also be written

a,
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degree, and is also a quadratic function of the determinants

(a/3' -/3a'), (a7
'-

7a'), &c. Writing these (a/3'), (a7'), &c. the

result is found to be

S [ah - ri>) (yS'f + 22 [mn - a!) (/3S')
(7S')

+ 2Sw{(aS')(7/S')-(a7')(/3S')},

where the sum includes all terms of like form obtained by
symmetrical interchange of letters. This condition may also

be written

a, «, m, p, a, a'

n,
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CHAPTER V.

CLASSIFICATION OF QTJADRICS.

77. Our object in this chapter is the reduction of the

general equation of the second degree to the simplest form

of which it is susceptible, and the classification of the different

surfaces which it is capable of representing.

Let us commence by supposing the quantity which we called

D (Art. 63) not to be = 0. By transforming the equation to

parallel axes through the centre, the coefficients j>, q)
r are

made to vanish, and the equation becomes

ax* + by* + cz'* + 2lyz + 2mzx + 2nxy + d' — 0,

where d' is the result of substituting the co-ordinates of the

centre in the equation of the surface. Remembering that

2w = x' u;

+

y
' u; + z' u; + »• u;,

and that the co-ordinates of the centre make £/",', C^', UJ vanish,

it is easy to calculate that

,, _pP+gQ + rB + dD _ A

where A, P, Q, B have the same meaning as in Art. 63.

78. Having by transformation to parallel axes made the

coefficients of x, y, z to vanish, we can next make the co-

efficients of yz, zx, and xy vanish by changing the direction

of the axes, retaining the new origin ; and so reduce the

equation to the form \

a'x*+by + c'z
2 + d' = 0.

It is easy to shew from Art. 17 that we have constants

enough at our disposal to effect this reduction, but the method

we shall follow is the same as that adopted, Conies, p. 147,

namely, to prove that there are certain functions of the co-

efficients which remain unaltered when we transform from one

E
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rectangular system to another, and by the help of these re-

lations to obtain the actual values of the new a, b, c.

Let us suppose that by using the most general transfor-

mation which is of the form

x = \x 4 fiy 4 vz, y = \'x 4 p'y 4 v'z, z = \"x 4 p'y 4 v"i,

that ax2 + by
2 + cz

2 + 2lyz + 2mzx 4 2nxy

becomes a'x' 4 b'y' + c'z' 4 2l'yz 4 2m zx 4 2n'xy,

which we write for shortness U= U. And if both systems

of co-ordinates be rectangular, we must have

x*+/+z2 =xyf+z*,
which we write for shortness 8=8. Then if k be any constant,

we must have U+ kS = U+ kS. And if the first side be re-

solvable into factors, so must also the second. The discrimi-

nants of Z74 kS and of U+ kS must therefore vanish for the

same values of k. But the first discriminant is

k3 - ¥ (a 4 b 4 c) 4 k (ab + be 4 ca — F -m2 - ra
2

)

— (abc 4 2lmn — aF — bm2 - en
2
).

Equating then the coefficients of the different powers of k

to the corresponding coefficients in the second, we learn that

if the equation be transformed from one set of rectangular

axes to another, we must have

a + b + c = a' + b' + c,

bc + ca + ab-F- m2 -n2 = b'c' 4 ca 4 a'V - F - m'2 - n'
2

,

abc 4 2lmn -aF- bm' - en
2 = a'b'c' 4 2l'm'n - a'F - b'm'

2 - en'
2.*

79. The above three equations at once enable us to trans-

form the equation so that the new £, m, n shall vanish, since

they determine the coefficients of the cubic equation whose

roots are the new o, 5, c. This cubic is then

\a'
3 -(a + b + c)a'

2 +(bc + ca + ab-F-m2 -n2
)a'

- (abc 4 2lmn — aF - bm2 — en
2
) = 0,

* There is no difficulty in forming the corresponding equations for oblique co-

ordinates. We should then substitute for S (see Art. 18),

x2 + y
2 + z2 + 2;yz cos A. + 2zx cos/n + 2xy cosv,

and proceeding exactly as in the text, we should form a cubic in h, the coefficients of

which would bear to each other ratios unaltered by transformation.

t This is the same cubic as that found, Art. 68, as the reader will easily see ought

to be the case.
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which may also be written

(a' - a) (a' - b) (a' - c) - f(a'-a)-wa
(a'-5)- n\a'-c) - 22mn=»0.

We give here Cauchy's proof that the roots of this equation

are all real. The proof of a more general theorem, in which
this is included, will be found in Lessons on Higher Algebra,

Lesson XV.
Let the cubic be written in the form

{a' - a) {(a' - b) (a - c) - F} - m2
(a -b)- ri

2
(a -c)- 2lmn = 0.

Let a, /3 be the values of a' which make (a'—b)(a'-c)-P=0,

and it is easy to see that the greater of these roots a is greater

than either b or c, and that the less root /S is less than either.*

Then if we substitute in the given cubic a = a, it reduces to

-{(a-b) m* + 2lmn + (a - c) «*},

and since the quantity within the brackets is a perfect square

in virtue of the relation (a - b) (a - c) = F, the result of sub-

stitution is essentially negative. But if we substitute a' = /3,

the result is ^ _ p\ m« _ 2 jmn + (<,-£) n%

which is also a perfect square, and positive. Since then, if

we substitute a = oo
, a = a, a' = /3, a = — ao , the results are

alternately positive and negative, the equation has three real

roots lying within the limits just assigned. The three roots are

the coefficients of a?
a

, y
2

, z
1
in the transformed equation, but

it is of course arbitrary which shall be the coefficient of a;
2

or of y, since we may call whichever axis we please the

axis of x.

80. Quadrics are classified according to the signs of the

roots of the preceding cubic.

I. First, let all the roots be positive, and the equation can

be transformed to j^ + jy + c
'

a» + $ = 0> -(-

* We may see this either by actually solving the equation, or by substituting suc-

cessively o' = oo , a' = b, a' = c, a' = — oo , when Tve get results +, — —, +, shewing

that one root is greater than i, and the other less than c.

f I suppose in what follows that d' != -g, Art.
77J

is negative. If it were positive

we should only have to change all the signs in the equation. If it were = the

surface would represent a cone (Art. 63).

E2
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The surface makes real intercepts on each of the three axes,

and if the intercepts be a, b, c, it is easy to see that the equation

of the surface may be written in the form

a? y
s

z'
,

a2 + V +
c
2

As it is arbitrary which axis we take for the axis of x, we

suppose the axes so taken that a the intercept on the axis

of x may be the longest, and c the intercept on the axis of z

may be the shortest.

The equation transformed to polar co-ordinates is

1 cos" a cos
2
/3 cos

2
7

which (remembering that cos
2
a + cos

2
/3 + cos

2
7 = 1) may be

written in either of the forms

COS'/tf + - - -
2

C08^7
]
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81. II. Secondly, let one root of the cubic be negative.

We may then write the equation in the form

xl f z'— + - =1
a b c '

where a is supposed greater than b, and where the axis of z

evidently does not meet the surface in real points. Using
the polar equation

1 _ cos
2
a cos

2
/3 cos

2

7

it is evident that the radius vector meets the surface or not

according as the right-hand side of the equation is positive

or negative ; and that putting it = 0, (which corresponds to

p = oo
) we obtain a system of radii which separate the diameters

which meet the surface from those that do not. We obtain

thus the equation of the asymptotic cone

x2
y* z'

h =0
2 ~ 7,2 2 — v •

a o c

Sections of the surface parallel to the plane of xy are ellipses

;

those parallel to either of the other two principal planes are

hyperbolas. The equation of the elliptic section by the plane

x* y
2 H

z = k being —
A + jtz = 1 + —2 , we see that we get a real section

whatever be the value of k, and therefore that the surface

is continuous. It is called the Hyperboloid of one sheet.

If a = b, it is a surface of revolution.

82. III. Thirdly, let two of the roots be negative, and

the equation may be written

a2 V c
2

The sections parallel to two principal planes are hyperbolas,

while that parallel to the plane of yz is an ellipse

f z* k*
,

7 2 ~ 2 2
b c a

It is evident that this will not be real as long as h is within

the limits + a, but that any plane x = 1c will meet the surface

in a real section provided that k is outside these limits. No
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portion of the surface will then lie between the planes x = ±a,

but the surface will consist of two separate portions outside

these boundary planes. This surface is called the Hyperboloid

of two sheets. It is of revolution if b = c.

By considering the surfaces of revolution, the reader can

easily form an idea of the distinction between the two kinds

of hyperboloids. Thus if a common hyperbola revolve round

its transverse axis the surface generated will evidently consist

of two separate portions ; but if it revolve round the conjugate

axis it will consist but of one portion, and will be a case of

the hyperboloid of one sheet.

IV. If the three roots of the cubic be negative, the surface

xl f z
2

a
2 + ¥ +

6
l

can evidently be satisfied by no real values of the co-ordinates.

V. When the absolute term vanishes, we have the cone as

a limiting case of the above. Forms I. and IV. then become

x2
y* z*

which can be satisfied by no real values of the co-ordinates,

while forms II. and III. give the equation of the cone in

the form x*
tf 2

*

The forms already enumerated exhaust all the varieties of

central surfaces.

Ex. 1. lx2 + 6f + 5z2 - 4yz - ixy = 6.

The discriminating cubic is a"' — 18a'2 + 99a' — 162 = 0,

and the transformed equation x2 + 2y2 + 3z2 = 2, an ellipsoid.

Ex. 2. 11a:2 + Kfy2 + 6z2 - 12^ - iyz + izx = 12.

Discriminating cubic a'3 - 27a'2 + 180a' — 324 = 0.

Transformed equation x2 + 2y* + 6z2 = 4, an ellipsoid.

Ex. 3. lx2 - 13y2 + Gz2 + 2ixy + Vlyz - ttzx - ± 84.

Discriminating cubic a'3 — 343a' - 2058 = 0.

Transformed equation x2 + 2y2 — 3z2 = ± 12,

a hyperboloid of one or of two sheets, according to the sign of the last term.

Ex. 4. lx2 + Sy2 + iz2 + 6xy + iyz + 8zx = 8.

Discriminating cubic is a'3 — 9a'2 — 3a' + 20 = 0.

By Des Cartes's rule of signs this equation has two positive and one negative root,
and therefore represents a hyperboloid of one sheet.
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83. Let us proceed now to the case where we have D = 0.

In this case we have seen (Art. 65) that it is generally im-
possible by any change of origin to make the terms of the

first degree in the equation to vanish. But it i3 in general

quite indifferent whether we commence, as in Art. 65, by
transforming to a new origin, and so remove the coefficients

of x, y, z, or whether we first, as in this chapter, transform

to new axes retaining the same origin, and so reduce the terms

of highest degree to the form a'af + by + c'z*. When D = 0,

the first transformation being impossible we must commence
with the latter. And since the absolute term of the cubic of

Art. 79 is D, one of its roots, that is to say, one of the three

quantities a', U, c' must in this case = 0. The terms of the

second degree are therefore reducible to the form a'x* ± b'y'.

This is otherwise evident from the consideration that D =
is the condition that the terms of highest degree should be

resolvable into two real or imaginary factors, in which case

they may obviously be also expressed as the difference or sum
of two squares. In this way the equation is reduced to the form

aV ± b'y* + 2p'x + 2q'y + 2r'z + d= 0.

We can then, by transforming to a new origin, make the co-

efficients of x and y to vanish, but not that of z, and the equation

takes the form a
>

x*
± by + 2r

'

z + d- = _

I. Let r' = 0. The equation then does not contain z, and

therefore (Art. 24) represents a cylinder which is elliptic or

hyperbolic, according as a and b have the same or different

signs. Since the terms of the first degree are absent from

the equation the origin is a centre, but so is also equally

every other point on the axis of z, which is called the axis

of the cylinder. The possibility of the surface having a line of

centres is indicated by both numerator and denominator vanishing

in the co-ordinates of the centre, Art. 65 (see note p. 41).

If it happened that not only r but also d! = 0, the surface

would reduce to two intersecting planes.

II. If r be not = 0, we can by a change of origin make

the absolute term vanish, and reduce the equation to the form

a a? ± &'/ + 2r'z = 0.
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Let us first suppose the sign of V to be positive. In this

case while the sections by planes parallel to the planes of xs

or yz are parabolas, those parallel to the plane of xy are ellipses,

and the surface is called the Elliptic Paraboloid. It evidently

extends only in one direction, since the section by any plane

z = Jc is da? + b'y" = — ikr , and will not be real unless the

right-hand side of the equation is positive. When therefore

r is positive, the surface lies altogether on the negative side

of the plane of xy, and when r is negative, on the positive side.

III. If the sign of V be negative, the sections by planes

parallel to that of xy are hyperbolas, and the surface is called

a Hyperbolic Paraboloid. This surface extends indefinitely in

both directions. The section by the plane of xy is a pair of

right lines.

IV. If V = 0, that is, if tioo roots of the discriminating cubic

vanish, the equation takes the form

a'x
2 + 2q'y + 2r'z + d= 0,

but by changing the axes y and z in their own plane, and

taking for new co-ordinate planes the plane ay + r'z and a

plane perpendicular to it through the axis of x, the equation

is brought to the form

dx2 + qy -t-cZ= 0,

which (Art. 24) represents a cylinder whose base is a parabola.

V. If we have also q' = 0, r'=0, the equation a'a? + d=0
being resolvable into factors would evidently denote a pair

of parallel planes.

84. The actual work of reducing the equation of a paraboloid

to the form dx2 + b'y
2 + 2r'z = is shortened by observing that

the discriminant is an invariant; that is to say, a function of

the coefficients which is not altered by transformation of co-

ordinates [Higher Algebra, p. 51). Now the discriminant of

dx2 + b'y
2 + 2r'z is simply-a'&V'2

, which is therefore equal to

the discriminant of the given equation. And as d and V are

known, being the two roots of the discriminating cubic which

do not vanish, r is also known. The calculation of the dis-

criminant is facilitated by observing that it is in this case a
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perfect square {Higher Algebra, p. 124). Thus let us take the

example
5a;

2 - if + z* -+ 6zx + ixy + 2a? + % + 6z = 8.

Then the discriminating cubic is X3 — 5X2 — 14A. = whose roots

are 0, 7, and —2. We have therefore a' = 7, b' = - 2. The
discriminant in this case is (j> + 2q — 3r)

2

, or putting in the

actual values p = l, q = 2,r = 3 is 16. Hence we have 14r'
a = 16,

r = -77—r , and the reduced equation is 7x2 — 2w2 = —.—
; .

V(14)'
^ * V(14)

If we had not availed ourselves of the discriminant, we
should have proceeded as in Art. 68 to find the principal planes

answering to the roots 0, 7, — 2 of the discriminating cubic, and

should have found

x + 2y - 3z = 0, Ax + y + 2s = 0, x - 2y - z = 0.

Since the new co-ordinates are the perpendiculars on these

planes, we are to take

4a;+2/ + 2s=A'V(21), x-2y-s = Y*J{&), x+ 2y-3z = Z*J(U),

from which we can express x, y, s in terms of the new co-

ordinates, and the transformed equation becomes

which finally transformed to parallel axes through a new origin

gives the same reduced equation as before.

If in the preceding example the coefficients p, q, r had been

so taken as to fulfil the relation j> + 2q — 3r = 0, the discriminant

would then vanish, but the reduction could be effected with

even greater facility as the terms in a-, y, z could then be ex-

pressed in the form

(ix + y + 2a) + X (x - 2y - z).

Thus the equation

5x* -y2 + z* + Gzx+ ixy + 2x+ 2y+2z=%

may be written in the form

(4a;+ y+ 2z)
s - (a; - 2y - z)

2+ 2 (4a; + y

+

2a) - 2 (x - 2y - z) = 24,

which transformed as before becomes

21a;
2 - 6/ + 2a; V(21) - 2y V(6) = 24,

and the remainder of the reduction presents no difficulty.
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CHAPTER VI.

PROPERTIES OE QUADRICS DEDUCED FROM SPECIAL
FORMS OF THEIR EQUATIONS.

CENTRAL SURFACES.

85. We proceed now to give some properties of central

a;
2 y s

"

quadrics derived from the equation -^ + |j + -j = 1. This will

include properties of the hyperboloids as well as of the ellipsoids

if we suppose the signs of b' and of c* to be indeterminate.

The equation of the polar plane of the point x'y'z (or of the

tangent plane, if that point be on the surface) is (Art. 59)

d*
+

b*
+

c
2 ~

The length of the perpendicular from the origin on the tangent

plane is therefore (Art. 32) given by the equation

1/2 '2 '2x y z
2 4 ~ 7 4 ~ 4 '

p a b c

And the angles a, /3, <y which the perpendicular makes with the

axes are given by the equations

px n py' pz'
cosa=-i—ir , cosa= i

-y^-, cos7=-t-5-,

as is evident by multiplying the equation of the tangent plane

by p, and comparing it with the form

x coaa + y cos/3 + z 0037=^.

From the preceding equations we can also immediately get

an expression for the perpendicular in terms of the angles it

makes with the axes, viz.

p
2 = a' cos

2
a + b

2
cos

2
/3 + c

2
cos

2
7.

86. To find the condition that the plane ax + /3y + yz + 8 =
should touch the surface.
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Comparing this with the equation —*- + jf- + — = 1) we
Ct c

have at once
x' _ aa. y' _ 6/S z' cy

a~~T' "6
-
~T' c

=
~T'

and the required condition is

aV+&2
/3

2 +cY=S2
.

In the same way, the condition that the plane ax + /3y + yz

x* if a
2

should touch the cone -5 + V7—5 = is
a2 ¥ c

2

aV + &
2
/3

2 - Cy = 0.

These might also be deduced as particular cases of Art. 75.

87. The normal is a perpendicular to the tangent plane

erected at the point of contact. Its equations are obviously
a xa 2

^{x-x')=j{y -y') = -l
{z-z').

Let the common value of these be i2, then we have

, Rx , By'
, Rz'

*-*=^r, y-y=T ,
«-«=-?•

Squaring and adding we find that the length of the normal
r>

between x'y'z, and any point on it xyz is + — . But if xyz be

taken as the point where the normal meets the plane of xy, we
have 3 = 0, and the last of the three preceding equations gives

R = -c2
. Hence the length of the intercept on the normal be-

c
2

tween the point of contact and the plane of xy is —

.

88. The sum of the squares of the reciprocals of any three

rectangular diameters is constant. This follows immediately

from adding the equations

1 cos
2a cos

2
/3 cos

2

7pa c

1 _ cosV cos
a
/3' cos

2y'

jF~ IT + ~¥~ + ~cr
~'

JL - cosV ' cos
2^" cos

2 7"

„"«
—

„*
**"

A* /." >
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whence since cos
2
a + cos* a' + cos

2
a" = 1, &c, we have

1
J_ J_ __1 1 1

p p p a C

89. In like manner the sum of the squares of three perpen-

diculars on tangent planes, mutually at right angles, is constant,

as appears from adding the equations

f = cl* cos
2
a + 5

2
cos

2
/3 +c2

cos
2

7,

y2 =a2
cos

2
a' +S2

cos
2
/3' +c2

cos
2
7',

p" 2 = a2
cos

2
a" + Z>

2
cos

2
/3" + c

2
cosY'.

Hence the locus of the intersection of three tangent planes

which cut at right angles is a sphere ; since the square of its

distance from the centre of the surface is equal to the sum

of the squares of the three perpendiculars and therefore to

a
2 +62 + c

2
.

CONJUGATE DIAMETEES.

90. The equation of the diametral plane conjugate to the

diameter drawn to the point x'y'z on the surface is

xx' vij zz'

-^+f- + ^ = °> (Art. 68).

It is therefore parallel to the tangent plane at that point,

Since any diameter in the diametral plane is conjugate to that

drawn to the point x'y'z', it is manifest that when two diameters

are conjugate to each other, their direction-cosines are connected

by the relation

cos a cos a' cos j3 cos/3' cos7 cos 7'

? + W +
?

=

Since the equation of condition here given is not altered if

we write &a2

, M\ kc
2

for a\ S
2

, c
2
, it is evident that two lines

£C
2

2/
2

£
2

which are conjugate diameters for any surface -^ + ^ + —
2
= 1,

are also conjugate diameters for any similar surface

a'
+ F +

c
2 ~ k-

And by making h = we see in particular that any surface and

its asymptotic cone have common systems of conjugate diameters.
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Following the analogy of methods employed in the case of

conies we may denote the co-ordinates of any point on the

ellipsoid, by a cosX, b cos/i, c cosy, where X, /a, v are the

direction-angles of some line ; that is to say, are such that

cos
2
A, + cos

2
/*. + cosV =1. In this method the two lines answer-

ing to two conjugate diameters are at right angles to each

other; for writing cosa = acosX, cos a' = a cos X', &c, the re-

lation above written becomes

cosX cosX' + cos/a cos/a' + cos v cos v = 0.

91. The sum of the squares of a system of three conjugate

semi-diameters is constant.

For the square of the length of any semi-diameter x'
2 + y

n + z*

is, when expressed in terms of X, /i, v,

a2
cos

2X + V cos'V -|- c* cosV,

which when added to

a2
cos

2
X' + J

2
cos

2
// +c2 cosV,

a
2
cos

2
X" + S

2 cos>" + c
2 cosV

is equal to a2 + &
2 +c2

; since X, /a, v, &c. are the direction-

angles of three lines mutually at right angles.

92. The jparallelopiped whose edges are three conjugate semi-

diameters has a constant volume.

For if x'y'z', x"y"z'\ &c. be the extremities of the diameters

the volume is (Art. 35)

or abc
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For if c' be the semi-diameter to the point of contact, and 6 the

angle it makes with p, the volume of the parallelopiped under

the conjugate diameters a', '&', c is a'b'c cos#, but c' cos#=j?.

93. The theorems just given may also with ease be deduced

from the corresponding theorems for conies.

For consider any three conjugate diameters a, b', c\ and let

the plane of db' meet the plane of xy in a diameter A, and let

C be the diameter conjugate to A in the section a'b', then

we have A2 + G2 = a'
2 + V* ; therefore a'

2 + b'
2+ c'2 = A* + C 2 + c'\

Again, since A is in the plane xy, then if B is the diameter con-

jugate to A in the section by that plane, the plane conjugate to

A will be the plane containing B and containing the axis c, and

C, c' are therefore conjugate diameters of the same section as B, c.

Hence we have A 2+C2
+c'

2 =Ai + B 2 + c"; and since, finally,

A' + B2 = d* + b
2

, the theorem is proved. Precisely similar

reasoning proves the theorem about the parallelopipeds.

We might further prove these theorems by obtaining, as in

the note, p. 50, the relations which exist when the quantity
2 2 2 2 2 2

-» + tf> + -is in oblique co-ordinates is transformed to —„ + %s + —,

in rectangular co-ordinates. These relations are found to be

a? + b*+c* = a'
2 + b'

2 + c'
2

,

jy + CV + a
2
b
2 = b'

2
c
12

sin
2\ + e'V2 sin> + a'

2
S'

2
sin

2
y,

a'b'c* = d'*b
n
c

2
(1— cos

2\— cos
2
/*—cosV+2 cosX cos/* cose).

The first and last equations give the properties already ob-

tained. The second expresses that the sum of the squares of

the parallelograms formed by three conjugate diameters, taken

two by two, is constant, or that the sum of squares of reciprocals

of perpendiculars on tangent planes through three conjugate

vertices is constant.

94. The sum of the squares of the projections of three con-

jugate diameters on any line is constant.

Let the line make angles a, /3, 7 with the axes, then the

projection on it of the semi-diameter terminating in the point

x'y'z is x cosa + y' cos/3 + z' cos 7, or, by Art. 90, is

a cos A, cosa + b cos/i cos/3 + c cosv C0S7.
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Similarly, the others are

a cosV cosa + &cos/i' cos/3 + c cos v' cosy,

a cosX" cosa H-6 cos/i" cos/3 + c cosv" cosy;

and squaring and adding, we get the sum of the squares

a2
cos

8
a + b

2
cos

2
{3 + c

2
cos

2

y.

95. The sum of the squares of the projections of three con-

jugate diameters on any plane is constant.

If d, d', d" be the three diameters, 0, 6', 8" the angles made
by them with the perpendicular on the plane, the sum of the

squares of the three projections is d2 sm'6 + d'
2
sin

2 0' + d"
2
sin

2
0",

which is constant, since d* cos
20+ d 12

cos
2 0' + d"2

cos
2 6" is con-

stant by the last article ; and d2 + d'
2 4 d"2 by Art. 91.

96. To find the locus of the intersection of three tangent planes

at the extremities of three conjugate diameters.

The equations of the three tangent planes are

- cosA +7 cos/t -f - cosv =1,
a be '

- cos A' + f cos u! + - cosv' = 1,
a b

n
c

'

- cosA" + > cosit"+- cosv" = l,
a be

Squaring and adding, we get for the equation of the locus,

x2
y
2

z
2

„

a b c

97. To find the lengths of the axes of the section made by any

plane passing through the centre.

We can readily form the quadratic, whose roots are the

reciprocals of the squares of the axes, since we are given the

sum and the product of these quantities. Let a, /3, y be the

angles which a perpendicular to the given plane makes with the

axes, R the intercept by the surface on this perpendicular ; then

we have (Art. 88)

«'»
+

b'
2 + B2 ~ a1 +

b
2 +

c
2 '
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1 1 COS
2
a COS

2
/3

whence
1,1 /l 1 1 cos

2
a cos

2
/3 _ cos

2
7\

~2 " 775 1
~~2

' Z2 '
~~2 2 X2 "~~ a I )a o \a o c a- o c J

i-i /a , „„x 1 P
8

cos
2
a cos

2
/? cos

2
7whlle(Art.92)^ =^?

=w- +7^ + -^.
The quadratic required is therefore

1 1 /sin
2
a sin

2
/3 sin

2
7\ cos

2
a cos

2
/3 cos

2

7
~~4

"a 5 ' 72 ~I 2 J
"T~ 722 ~T 2 2~~ ~T" 27 2

==
r r V a b c J be ca ab

This quadratic may also be written in the form

a
2
cos

2
a F cos

28 c' cos
27 .

2 2 ' 72 2^2 2« — r — r c — r

This equation may be otherwise obtained from the principles

explained in the next article-

98. Through a given radius OB of a central quadric we can

in general draw one section of which OB shall be an axis.

Describe a sphere with OB as radius, and let a cone be

drawn having the centre as vertex and passing through the

intersection of the surface and the sphere, and let a tangent

plane to the cone be drawn through the radius OB, then OB
will be an axis of the section by that plane. For in it OB is

equal to the next consecutive radius (both being radii of the

same sphere) and is therefore a maximum or minimum ; while

the tangent line at B to the section is perpendicular to OB,

since it is also in the tangent plane to the sphere. OB is

therefore an axis of the section.

The equation of the cone can at once be formed by sub-

tracting one from the other, the equations

xl

if s
2

, x2
if s

2

a* V c
2

' r
2

r
2

r
2

'

when we get

'(?-?W(p-3+'(?-a-*
If then any plane x cosoc + y cos/3 + s C0S7 have an axis in

length = r, it must touch this cone, and the condition that it

should touch it, is (Art. 86)

o? cos
2
a b'* cos

2
/3 c

2
cos

2

7

which is the equation found in the last article.
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In like manner we can find the axes of any section of a

quadric given by an equation of the form

ax* + by" + cz* + 2lyz + 2mzx + 2nxy = 1.

The cone of intersection of this quadric with any sphere

\(x* + tf + z*) = l

is (a - X) x2 + (b — X) y
2 + (c - X) s

8 + llyz + 2mzx + 2nxy = 0,

and we see as before, that if X be the reciprocal of the square

of an axis of the section by the plane x cosa + y cos/3 + z cos 7,

this plane must touch the cone whose equation has just been

given. The condition that the plane should touch this cone

(Art. 75) may be written

a — X, w, m, cosa

92, b — X, I, cos/8

m, Z, c — X, cosy

cosa, cosjS, cos

7

=0,

which expanded is

X2 - X {(b + c) cos
2
a +(c + a) cos

2
/3 + (a+ b) cos

2
7

- 2l cosjS COS7 — 2m COS7 cosa — 2n cosa cos/3)

+ (be - P) cos
2
a + (ca —m2

) cos
2
/3 + (ab - n*) cos

2

7

+ 2 (mw — aZ) coS/S COS7 + 2 (nl — bin) cosy cosa

+ 2 (Zm — en) cosa cos^S = 0.

CIRCULAR SECTIONS.

99. We proceed to investigate whether it is possible to

draw a plane which shall cut a given ellipsoid in a circle. As

it has been already proved (Art. 69) that all parallel sections

are similar curves, it is sufficient to consider sections made by

planes through the centre. Imagine that any central section

is a circle with radius r, and conceive a concentric sphere

described with the same radius. Then we have just seen

that
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represents a cone having the centre for its vertex and passing

through the intersection of the quadric and the sphere. But

if the surfaces have a plane section common, this equation must

necessarily represent two planes, which cannot take place unless

the coefficient of either x\ y*, or z* vanish. The plane section

must therefore pass through one or other of the three axes.

Suppose for example we take r = b, the coefficient of y vanishes,

and there remains

which represents two planes of circular section passing through

the axis ofy.

The two planes are easily constructed by drawing in the

plane of xz a semi-diameter equal to b. Then the plane con-

taining the axis of y, and either of the semi-diameters which

can be so drawn, is a plane of circular section.

In like manner two planes can be drawn through each of

the other axes, but in the case of the ellipsoid these planes will

be imaginary ; since we evidently cannot draw in the plane of

xy a semi-diameter = c, the least semi-diameter in that section

being = b ; nor, again, in the plane of yz a semi-diameter = a,

the greatest in that section being = b.

In the case of the hyperboloid of one sheet c' is negative,

and the sections through a are those which are real. In the

hyperboloid of two sheets where both &
a and c

2
are negative,

if we take r' = - c
2

(&
2
being less than c

2

), we get the two real

sections,

'i i\
.

,/i r
.?
+
*j

+n?-Fr -

These two real planes through the centre do not meet the

surface, but parallel planes do meet it in circles. In all cases

it will be observed that we have only two real central planes

of circular section, the series of planes parallel to each of which

afford two different systems of circular sections.

100. Any two surfaces whose coefficients of x\ y
2

, a
2

, differ

only by a constant, have the same planes of circular section. Thus

Ax* +Bf + Cz* = 1 , and {A + IT) a? + (B +E)f+(C+H) z*= 1



CIRCULAR SECTIONS. 67

have the same planes of circular section, as easily appears

from the formula in the last article.

The same thing appears by throwing the two equations into

the form

-a = A cos" a + B cos
2
/3 + cos

2

y,
r

— = A cos* a + B cos*/3 + C 008*7 + fy

from which it appears that the difference of the squares of the

reciprocals of the corresponding radii vectores of the two sur-

faces is constant. If then in any section the radius vector of

the one surface be constant, so must also the radius vector of

the other. The same consideration shews that any plane cuts

both in sections having the same axes, since the maximum or

minimum value of the radiu3 vector will in each correspond

to the same values of a, /3, 7.

Circular sections of a cone are the same as those of a hyper-

boloid to which it is asymptotic.

101. Any two circular sections of opposite systems lie on the

same sphere.

The two planes of section are parallel each to one of the

planes represented by

Now since the equation of two planes agrees with the

equation of two parallel planes as far as terms of the second

degree are concerned, the equation of the two planes must

be of the form

x* ?-?)+'$-?)+'$-?>'>-•
where w, represents some plane. If then we subtract this from

the equation of the surface, which every point on the section

must also satisfy, we get

i(a,* + 2,

2 + s
8)- Ml =l,

which represents a sphere.

F2
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102. All parallel sections are as we have seen similar. If

now we draw a series of planes parallel to circular sections the

extreme one will be the parallel tangent plane which must

meet the surface in an infinitely small circle. Its point of

contact is called an umbilic. Some properties of these points

will be mentioned afterwards. The co-ordinates of the real

umbilics are easily found. We are to draw in the section,

whose axes are a and c, a semi-diameter = b, and to find the

co-ordinates of the extremity of its conjugate. Now the for-

mula for conies b'
2 = a

2 — eV applied to this case gives us
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would make the equation of the two planes take the imaginary

form 5V + (a
2 + &

2

) f = 0.

Indeed, it can be proved in general that no section of the

hyperbolic paraboloid can be a closed curve, for if we take its

intersection with any plane z = Ix + my + n, the projection on

,i , j. . a? if 2{lx+my + n) , . , .

the plane ot xy is — - ^ = —^ ^ ' which is necessarily

a hyperbola.

EECTILINEAE GENEEATOES.

104. We have seen that when the central section is an

ellipse all parallel sections are similar ellipses, and the section

by a tangent plane is an infinitely small similar ellipse. In

like manner when the central section is a hyperbola, the section

by any parallel plane is a similar hyperbola, and that by the

tangent plane reduces itself to a pair of right lines parallel to

the asymptotes of the central hyperbola. Thus if the equation

referred to any conjugate diameters be

* 4. £. _ sl - i

a'
2 + V 2

c'*
~ '

and we consider the section made by any plane parallel to the

plane of xz (y = /3), its equation is

a'
a

c"
2

V*
-

And it is evident that the value /3 = V reduces the section to

a pair of right lines. Such right lines can only exist on the

hyperboloid of one sheet, since if we had the equation

*L i. - -
a" ¥'~ +

c'
2 '

the right-hand side of the equation could not vanish for any

value of z. It is also geometrically evident that a right line

cannot exist either on an ellipsoid, which is a closed surface;

or on a hyperboloid of two sheets, no part of which, as we

saw, lies in the space included between several systems of two

parallel planes, while any right line will of course in general

intersect them all.
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10/). Throwing the equation of the hyperboloid of one sheet

into the form

*? *
2

1 f
a" c' tr

it is evident that the intersection of the two planes

lies on the surface ; and by giving different values to X we get

a system of right lines lying in the surface ; while, again, we

get another system by considering the intersection of the planes

What has been just said may be stated more generally as.

follows : If a, /3, 7, S represent four planes, then the equation

ay = /38 represents a hyperboloid of one sheet, which may be

generated as the locus of the system of right lines

a = X/3, X7 = 8,

or a — XS, X7 = /3.

In the case of the equation

2 2 2X 1/ z
1- = 1

2 * 7.2 2 )a c
'

the lines may be also expressed by the equations

- = - cos0 + sin#, %: = - sin# + cos#.
a c be

106. Any two lines belonging to opposite systems lie in the

same plane.

Consider the two lines

a - X/3, X7 — S,

a -X'S, X7-/3.

Then it is evident that the plane a — X/3 + XX'7 — X'S contains

both, since it can be written in either of the forms

(a - X/3) -1- X' (X7 - 8), a - X'S + X (X'7 - /3).

It is evident in like manner that no two lines belonging to

the same system lie in the same plane. Since no plane of
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the form (a - X/3) + h (Xy - S) can ever be identical with
(a - \'/3) + h' (X'y - 8) if \ and \' are different. In the same
way we see that both the lines

SC Z 11 Z
- = - cos0-sin0, t = - sin0 + cos#,
a c

1
o c '

x z . y z . ,

- = - cosffi+sinm, *~ = - sm<p— cos®,

which belong to different systems, lie in the plane

^ cos£ (9 + <f>) +| sin£ {0 + 4>)=- cos£ (0 - 0) -sin J (0-<f>).

Now this plane is parallel to the second line of the first

system

CC Z tJ z
- = - cos<f> — sin<f>, ^ = - sind + costi,
a c

T
' b c

T r '

but it does not pass through it, for the equation of a parallel

plane through this line will be found to be

^cos£(0 + </>)+|sin£(0 + <£)=?cos£(0-<£)+sin£(0-^),

which differs in the absolute term from the equation of the

plane through the first line.

107. We have seen that any tangent plane to the hyper-

boloid meets the surface in two right lines intersecting in the

point of contact, and of course touches the surface in no other

point. If through one of these right lines we draw any other

plane, we have just seen that it will meet the surface in a new

right line, and this new plane will touch the surface in the

point where these two lines intersect. Conversely, the tangent

plane to the surface at any point on a given right line in the

surface will contain the right line, but the tangent plane will

in general be different for every point of the right line. Thus
}

take the surface x<f> =y^ where the line xy lies on the surface,

and
<f>
and ^ represent planes (though the demonstration would

equally hold if they were functions of any higher degree).

Then using the equation of the tangent plane

(x - x') U; + (y - y') U; + (z- z<) U
s
' = 0,
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and seeking the tangent at the point x = 0, y = 0, « = s',we find

axf)' = yifr', where <j>' and i|/ are what
<f>

and ^ become on sub-

stituting these co-ordinates. And this plane will vary as z' varies.

All this is different in the case of the cone. Here every

tangent plane meets the surface in two coincident right lines.

The tangent plane then at every point of this right line is the

same, and the plane touches the surface along the whole length

of the line.

And generally, if the equation of a surface be of the form

X<f> + ifijr = 0,

it is seen precisely, as above, that the tangent plane at every

point of the line xy is a; = 0.

108. It was proved (Art. 104) that the two lines in which

the tangent plane cuts a hyperboloid are parallel to the asymp-

totes of the parallel central section ; but these asymptotes are

evidently edges of the asymptotic cone to the surface. Hence

every right line which can lie on a hyperboloid is parallel to

some one of the edges of the asymptotic cone. It follows also

that three of these lines (unless two of them are parallel,) cannot

all be parallel to the same plane ; since, if they were, a parallel

plane would cut the asymptotic cone in three edges, which

is impossible, the cone being only of the second degree.

109. We have seen that any line of the first system meets

all the lines of the second system. Conversely, the surface

may be conceived as generated by the motion of a right line

which always meets a certain number of fixed right lines.*

Let us remark in the first place, that when we are seeking

the surface generated by the motion of a right line, it is

necessary that the motion of the right line should be regulated

by three conditions. In fact, since the equations of a ,right

line include four constants, four conditions would absolutely

determine the position of a right line. When we are given

* A surface generated by the motion of a right line is called a ruled surface. If

every generating line is intersected by the next consecutive one, the surface is called

a developable. If not, it is called a shew surface. The hyperboloid of one sheet

belongs to the latter class ; the cone to the former.
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one condition less, the position of the line is not determined,

but it is so far limited that the line will always lie on a certain

surface-locus, whose equation can be found as follows: Write
down the general equations of a right line x=mz+p, y=nz+ q-

then the conditions of the problem establish three relations

between the constants m, n, p, q. And combining these three

relations with the two equations of the right line, we have

five equations from which we can eliminate the four quantities

m
i
n

) Pi it ana" the resulting equation in x, y, z will be the

equation of the locus required. Or, again, we may write the

equations of the line in the form

x — x' y — y z — z'

cos a cos/3 cos7 '

then the three conditions give three relations between the con-

stants x\ y\ z\ a, /3, 7, and if between these we eliminate

a, £, 7, the resulting equation in x\ y', z is the equa-

tion of the required locus, since x'y'z may be any point on

the line.

We see then that it is a determinate problem to find the

surface generated by a right line which moves so as always

to meet three fixed right lines.* For expressing, by Art. 40,

the condition that the moveable right line shall meet each of

the fixed lines, we obtain the three necessary relations between

m
i
niVi ?• Geometrically also we can see that the motion of

the line is completely regulated by the given conditions. For

a line would be completely determined if it were constrained

to pass through a given point and to meet two fixed lines,

since we need only draw planes through the given point and

each of the fixed lines, when the intersection of these planes

would determine the line required. If then the point through

which the fine is to pass, itself moves along a third fixed line,

we have a determinate series of right lines, the assemblage of

which forms a surface-locus.

110. Let us then solve the problem suggested by the last

article, viz. to find the surface generated by a right line which

* Or three fixed curves of any kind.
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always meets three fixed right lines, no two of which are in

the same plane. In order that the work may be shortened

as much as possible, let us first examine what choice of

axes we must make in order to give the equations of the

fixed right lines the simplest form.

And it occurs at once that we ought to take the axes, one

parallel to each of the three given right lines.* The only

question then is where the origin can most symmetrically be

placed. Suppose now that through each of the three right

lines we draw planes parallel to the other two, we get thus

three pairs of parallel planes forming a parallelopiped, of which

-the given lines will be edges. And if through the centre of

this parallelopiped we draw lines parallel to these edges, we

shall have the most symmetrical axes. Let then the equations

of the three pairs of planes be

x = + a, y = ±b, z = ±c,

then the equations of the three fixed right lines will be

y = b, z = — c; a = c, x = — a; x= a
: y = — b.

The equations of any line meeting the first two fixed lines are

z + c = X(y — h); z — c = (j,(x + a),

which will intersect the third if c + fia + \b = ; or replacing for

\ and fi their values,

c [x + a) {y-b) + a (z — c) (y — b) + b (z 4 c) (x + a),

which reduced is

ayz + bzx + cxy + abc= 0.

On applying the criterion of p. 54 this is found to repre-

sent a hyperboloid of one sheet, as is otherwise evident, since

it represents a central quadric and is known to be a ruled

surface. The problem might otherwise be solved thus

:

Assume for the equations of the moveable line

x — x y—y' z — z'

cosa cos/3 cos 7
'

* We could not do this indeed if the three given right linea happened to be all

parallel to the same plane. This case will be considered in the next Article. It will

not occur when the locus is a hyperboloid of one sheet, see Art. 108.
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the three conditions obtained by expressing that this intersects

each of the fixed lines are

y' — i _z' + c z' — c _x' + a x —a _y' + b

cos/8 C0S7 ' cosy cosa ' cosa cos/3
'

We can eliminate a, /3, 7 by multiplying the equations

together, and get for the equation of the locus,

(a-a)(y-J)(«-c) = (as + a)(y+ &)(* + c),

or reducing

ayz + bzx + cxy+ aba = 0,

the same equation as before.

The following is another general solution of the same pro-

blem : Let the first two lines be the intersections of the planes

a, /3 ; 7, 8 ; then the equations of the third can be expressed in

the form a = Ay + BB, /3 = Cy + DS. The moveable line, since

it meets the first two lines, can be expressed by two equations

of the form a = A,/3, y = /j,S. Substituting these values in the

equations of the third line we find the condition that it and

the moveable line should intersect, viz.

A/i+ B=\{C/t + D).

And eliminating \ and fi between this and the equations of the

moveable line, we get for the equation of the locus,

/3{Ay + BS)=a{Cy + m).

111. From the general theory explained in Art. 105, it is

plain that the hyperbolic paraboloid may also have right lines

q? 2/
2

Z
lying altogether in the surface. For the equation — — j-2 = -

(Art. 83) is included in the general form ay= ^S; and the

surface contains the two systems of right lines

* + f = x, xp +fW.
a \a bj c

The first equation shews that every line on the surface must

be parallel to one or other of the two fixed planes — ± | = ;

and in this respect is the fundamental difference between right

lines on the paraboloid and on the hyperboloid (see Art. 108).
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It is proved, as in Art. 106, that any line of one system

meets every line of the other system, while no two lines of

the same system can intersect.

We give now the investigation of the converse problem, viz.

to find the surface generated by a right line which always meets

three fixed lines which are all parallel to the same plane. Let

the plane to which all are parallel be taken for the plane of xy,

any line which meets all three for the axis of z, and let the

axes of x and y be taken parallel to two of the fixed lines.

Then their equations are

x = 0, z = a; 2/ = 0, z = b; x = my, z = c.

The equations of any line meeting the first two fixed lines are

x = X(z- a), y — /j,[z — b),

which will intersect the third if

\[c — a)= nip, [c — b),

and the equation of the locus is

[a — c) x (z — b) = m (b — c) y (z — a),

which represents a hyperbolic paraboloid since the terms of

highest degree break up into two real factors.

In like manner we might investigate the surface generated

by a right line which meets two fixed lines and is always parallel

to a fixed plane. Let it meet the lines

£c = 0, z = a; y = 0, z = — a,

and be parallel to the plane

x cosa + ?/ cos/3 + » cos7=2?.

Then the equations of the line are

x = \{z — a), y = /j,(z + a),

which will be parallel to the given plane if

cosy + A cosa + fi cos/3 = 0.

The equation of the required locus is therefore

cosy (s
2 — a") + x cosa [z + a) +y cos/3 (z — a) = 0,

which is a hyperbolic paraboloid since the terms of the second

degree break up into two real factors.
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A hyperbolic paraboloid is the limit of the hyperboloid of

one sheet, when the generator in one of its positions may lie

altogether at infinity.

We have seen (Art. 104) that a plane is a tangent to a

surface of the second degree when it /meets it in two real or

imaginary lines; and (Art. 83) that a paraboloid is met by
the plane at infinity in two real or imaginary lines. Hence
a paraboloid is always touched by the plane at infinity.

112. Four right lines belonging to one system cut all lines

belonging to the other system in a constant anharmonic ratio.

For through the four lines and through any line which

meets them all we can draw four planes; and therefore any

other line which meets the four lines will be divided in a

constant anharmonic ratio (Art. 38).

Conversely, if two non-intersecting lines are divided homo-

graphically in a series of points, that is to say, so that the

anharmonic ratio of any four points on one line is equal to

that of the corresponding points on the other; then the lines

joining corresponding points will be generators of a hyper-

boloid of one sheet.

Let the two given lines be a, /S
; y, 8. Let any fixed line

which meets them both be a = \'/3, y = /i'§; then, in order

that any other line a = \/3, y = /*8 should divide them homo-

graphically, we must have (Conies, Art. 57) —, = —
,

, and if we

eliminate X between the equations a = X/3, X'y = //\S, the result

is X'jSy = /i'a8.

113. In the case of the hyperbolic paraboloid any three

right lines of one system cut all the right lines of the other

in a constant ratio. For since the generators are all parallel

to the same plane, we can draw, through any three generators,

parallels to that plane, and all right lines which meet three

parallel planes are cut by them in a constant ratio.

Conversely, if two finite non-intersecting lines be divided,

each into the same number of equal parts, the lines joining

corresponding points will be generators of a hyperbolic para-
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boloid. By doing this with, threads, the form of this Surface

can be readily exhibited to the eye.

To prove this directly, let the line which joins two corre-

sponding extremities of the given lines be the axis of s; let

the axes of x and y be taken parallel to the given lines, and

let the plane of xy be half-way between them. Let the lengths

of the given lines be a and b, then the co-ordinates of two

corresponding points are

z = c, x = pa, y = 0,

z = -c, x = 0, y = (ii>,

and the equations of the line joining these points are

xy—h r = /", 2c* — pas = pac,

whence, eliminating p, the equation of the locus is

which represents a hyperbolic paraboloid.

SUEPACES OP REVOLUTION.

114. Let it be required to find the conditions that the

general equation should represent a surface of revolution. In

this case the equation can be reduced (see p. 52), if the surface

X* li* £
2

be central, to the form -y+^±-s = + l, and if the surface
'

a' a' ~ c* ~ '

x* v* 22
be non-central to the form —, + —„ = — . In either case then

a a e

when the highest terms are transformed so as to become the

sum of squares of three rectangular co-ordinates, the coefficients

of two of those squares are equal. It would appear then that

the required condition could be at once obtained by forming

the condition that the discriminating cubic should have equal

roots. Since however the roots of the discriminating cubic are

always positive^ its discriminant can be expressed as the sum

of squares (see Higher Algebra, p. 134), and will not vanish (the

coefficients of the given equation being supposed to be real)
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unless two conditions are fulfilled which can be obtained more
easily by the following process. We want to find whether

it is possible so to transform the equation as to have

ax* + by* + cz* + 2lyz + 2mzx + 2nxy =A (X* + Y*) + CZ%

but we have (p. 50)

x* + y* + z* = X*+Y* + Z*.

It is manifest then that by taking X = A, we should have the

following quantity a perfect square

:

(ax* + by* + cz* + 2lyz + 2mzx + 2nxy) - \ (x* + y* + s
2

),

and it is required to find the conditions that this should be

possible.

Now it is easy to see that when

Ax* + By* + Cz* + 2Lyz + 2Mzx + 2Nxy

is a perfect square, the six following conditions are fulfilled :*

AB=N\ BG=L\ CA = M\
AL = MN, BM=NL, CN=LM;

the three former of which are included in the three latter. In.

the present case then these latter three equations are

(a — X)l — mn, (b — X)m = «?, (c — \)n=Im.

Solving for \ from each of these equations we see that the-

reduction is impossible unless the coefficients of the given equa-

tion be connected by the two relations

mn . nl Im

I m n

If these relations be fulfilled and if we substitute any of these

common values for \ in the function

(a - \) x* + (b - X) y* + (c - X) z* + 2hjz + 2mzx + Inxy,

it becomes, as it ought, a perfect square, viz.

lmn(^ + ^- + -)"=(G-A)Z*,
\l in nj

and since the plane Z= represents a plane perpendicular to the

* That is to say, the reciprocal equation vanishes identically.
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axis of revolution of the surface, it follows that -7 -f — + - =
;

I m n
represents a plane perpendicular to that axis.

In the special case where the common values vanish which

have been just found for X, the highest terms in the given

equation form a perfect square, and the equation represents

either a parabolic cylinder or two parallel planes (see IV.

and V., p. 56). These are limiting cases of surfaces of re-

volution, the axis of revolution in the latter case being any

line perpendicular to both planes. The parabolic cylinder is

the limit of the surface generated by the revolution of an ellipse

round its minor axis, when that axis passes to infinity.

115. If one of the quantities I, m, n vanish, the surface

cannot be of revolution unless a second also vanish. Suppose

that we have I and m both = 0, the preceding conditions become

m , I

a — n -j = 0— n — = c,
I m

from which, eliminating the indeterminate — , we get

(a — c)(b — c) = ri\

This condition might also have been obtained at once by

expressing that

(a - X) a? +(b-X) y
l + (c - X) z* + 2nxy

should be a perfect square, and it is plain that we must have

X = c
;

(a — c) (b — c) = ri.

116. The preceding theory might also be obtained from the

consideration that in a surface of revolution the problem of

finding the principal planes becomes indefinite. For since every

section perpendicular to the axis of revolution is a circle, any

system of parallel chords of one of these circles is bisected by

the plane passing through the axis of revolution, and through

the diameter of the circle perpendicular to the chords, a plane

which is perpendicular to the chords. It follows that every

plane through the axis of revolution is a principal plane. Now
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the chords which are perpendicular to these diametral planes are

given (Art. 68) by the equations

(a—Jc)x+ny+mz=0, nx + (b-k) y+h=0,-mx+ly-\- (c-k) 2=0,

which when k is one of the roots of the discriminating cubic

represent three planes meeting in one of the right lines required.

The problem then will not become indeterminate unless these

equations all represent the same plane, for which we have the

conditions

k n m ' a — k n

n b —k I ' m I c — &

'

which expanded are the same as the conditions found already.

LOCI.

117. We shall conclude this chapter by a few examples of

the application of Algebraic Geometry to the investigation of

Loci.

Ex. 1. To find the locus of a point whose shortest distances from two given non-

intersecting right lines are equal.

If the equations of the lines are written in their general form, the solution of this is

obtained immediately by the formula of Art. 14. We may get the result in a simple

form by taking for the axis of z the shortest distance between the two lines, and choos-

ing for the other axes the lines bisecting the angle between the projections on their

plane of the given lines ; then their equations are of the form

z = c, y = mx ; z = — c, y = — mx,

and the conditions of the problem give

v ' 1 + m? 1 + m2

or cz (1 + to2) + mxy = 0.

The locus is therefore a hyperbolic paraboloid.

If the shortest distances had been to each other in a given ratio, the locus would

have been

{(1 + X) z + (1 - X) c] {(1 - X) z + (1 + X) o}

+ j-^2 {(1 + X) y + (1 - X) mx} ((1 - X) y + (1 + X) mx] = 0,

which represents a hyperboloid of one sheet.

Ex. 2. To find the locus of the middle points of all lines parallel to a fixed plane

and terminated by two non-intersecting lines.

Take the plane x = parallel to the fixed plane, and the plane 2 = 0, as in the last

example, parallel to the two lines and equidistant from them ; then the equations of

the lines are

z = r, y = mx + n; r = — c, y = m'x + n'.

a
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The locus is then evidently the right line which is the intersection of the planes

z = 0, 2y = (m + m') x + (n + n').

Ex. 3. To find the surface of revolution generated by a right line turning round a

fixed axis which it does not intersect.

Let the fixed line be the axis of z, and let any position of the other be x = mz + n,

y = m'z + n'. Then since any point of the revolving line describes a circle in a plane

parallel to that of xy, it follows that the value of x2 + y
2 is the same for every point in

such a plane section, and it is plain that the constant value expressed in terms of z is

(mz + n) 2 + (m'z + n') 2. Hence the equation of the required surface is

x2 + y
2 = (mz + n) 2 + (m'z + n') 2

,

which represents a hyperboloid of revolution of one sheet.

Ex. 4. Two lines passing through the origin move each in a fixed plane, remaining

perpendicular to each other, to find the surface (necessarily a cone) generated by a

right fine, also passing through the origin perpendicular to the other two.

Let the direction-angles of the perpendiculars to the fixed planes be a,b,c; a', V, c',

and let those of the variable line be a, /3, y ; then the direction-cosines of the intersec-

tions with the fixed planes, of a plane perpendicular to the variable line, will be pro-

portional to (Art 15)

cos |3 cose —cosy cos b, cosy cos a —cos a cose, cos a cos 5 — cos f! cos a.

cos /3 cos c' — cos y cos V, cosy cos a' — cos a cos c', cos a cos b' — cos /3 cos a',

and the condition that these should be perpendicular to each other is

(cos/3 cose — cosy cos b) (cos/3 cose' — cosy cos V)

+ (cosy cos a — cos a cose) (cosy cos a' — cos a cose')

+ (cosa cosJ — cos/3 cosa) (cosa cos5' — cos/3 cosa') = 0,

which represents a cone of the second degree.

Ex. 5. Two planes mutually perpendicular pass each through a fixed line : to find

the surface generated by then- line of intersection.

Take the axes as in Ex. 1. Then the equations of the planes are

X (z — c) + y — mx ; \' (z + c) +y + mx = 0,

which will be at right angles if W + 1 — m2 = ; and putting in for \, X' their values

from the pair of equations, we get

y
2 - «¥ + (1 - m2

) (z2 - c2) = 0,

which represents a hyperboloid of one sheet.

If the lines intersect, in which case c = 0, the locus reduces to a cone.

Ex. 6. To find the locus of a point, whence three tangent lines, mutually at right

x2 y2 2-2

angles, can be drawn to the quadric - + - + — = 1.
° ' a? b2 c2

If the equation were transformed so that these lines should become the axes of co-

ordinates, the equation of the tangent cone would take the form Ayz + Bzx + Cxy = 0,

since these three lines are edges of the cone. But the untransformed equation of the

tangent cone is, see Art. 74,

And we have seen (Art. 78) that if this equation be transformed to any rectangular

system of axes, the sum of the coefficients of x2
, y

2
, and z2 will be constant. We have
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only then to express the condition that this sum should vanish, when we obtain the
equation of the required locus, viz.

a? \m + cV
+

*2 U2
+
cV

+
c2 U2

+
&) ~ a2

+ ¥ +
c2

'

Ex. 7. To find the equation of the cone whose vertex is x'y'z' and which stands on

the conic in the plane of xy, ^- + ^- = 1.
a2 o2

The equations of the line joining any point a/3 of the base to the vertex are

a (z' - z) = z'x — x'z, /3 (z' — z) = z'y — y'z.

Substituting these values in the equation of the base, we get for the required cone

(z'x - x'z) "- (z'y - y'z) 2 _
d-

+
4« - {Z ~ *>"'

The following method may be used in general to find the equation of the cone

whose vertex is x'y'z'us, and base the intersection of any two surfaces U, V. Substitute

in each equation for x, x + Xx' ; for y,y + \j/', &c, and let the results be

U+ XSU+^ &U + &e. = 0,

V+ \SV + ¥ <5
27 + &c. = 0,

then the result of eliminating X between these equations will be the equation of the

required cone. For the points where the line joining x'y'z'w' to xyziu meets the surface

U are got from the first of these two equations ; those where the same line meets the

surface V are got from the second; and when the eliminant of the two equations

vanishes they have a common root, or the point xyzm lies on a line passing through

x'y'z'u> and meeting the intersection of the surfaces.

Ex. 8. To find the equation of the cone whose vertex is the centre of an ellipsoid

and base the section made by the polar of any point x'y'z'.

Ant. % + '{-„

a- o2

s2 fxx' mi' zz'\ 2

c2 \a? fi
2 l-J

Ex. 9. To find the locus of points on the quadric —, + jr2 + - = 1, the normals at

which intersect the normal at the point x'y'z'.

Ans. The points required are the intersection of the surface with the cone

a2 (y'z - z'y) (x — x') + i2 (z'x — x'z) (y - y') + c- (x'y — y'x) (z - z') = 0.

Ex. 10. To find the locus of the poles of the tangent planes of one quadric with

respect to another.

We have only to express the condition that the polar of x'y'z'w', with regard to

the second quadric, should touch the first, and have therefore only to substitute

C",. U„, Us , Uit for a, /3, y, <5 in the condition given Art 75. The locus is therefore a

quadric.

Ex. 11. To find the cone generated by perpendiculars erected at the vertex of a

given cone to its several tangent planes.

Let the cone be Lx- + My- + Xz2 = 0, and any tangent plane is Lx'x+ My'y+ X'z'; =

the perpendicular to which through the origin is 7-7 = -jj- , = yy • *f tllen tlle com"

mon value of these fractions be called p, we have x' = -£-, y' =
jjy

-' = ^r, substitu-

G2
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jj.2 f.1.
g2

ting which values in Lx'2 +My'2+ Nz'2 = 0, p
2 disappears, and we have — + j- + _ - o.

The form of the equation shews that the relation between the cones is reciprocal, and

that the edges of the first are perpendicular to the tangent plane to the second. It can

easily be seen that this is a particular case of the last example.

If the equation of the cone be given in the form

ax2 + by2 + cz2 + 2fyz + Igzx + llixy = 0,

the equation of the reciprocal cone will be the same as that of the reciprocal curve in

plane geometry, viz.

(be -f1
) x- + (ca - g

2
) y

2 + (ab - h2
) z2

+ 2 (gh -af)yz + 2 (kf- bg) zx + 2(fg- ch) xy = 0.

Ex. 12. A line moves about so that three fixed points on it move on fixed planes

:

to find the locus of any other point on it.

Let the co-ordinates of the locus point P be a, (3, y ; and let the three fixed planes

be taken for co-ordinate planes meeting the line in points A, B, C. Then it is easy

AB AC
to see that the co-ordinates of A are 0, -=^= j3, -=^ y, where the ratios AB : PB,

A C: PC are known. Expressing then, by Art. 10, that the distance PA is constant,

the locus is at once found to be an ellipsoid.

Ex. 13. A and are two fixed points, the latter being on the surface of a sphere.

Let the line joining any other point D on the sphere to A meet the sphere again in D'.

Then if on OD a portion OP be taken = AD1

, find the locus of P. [Sir W. E.

Hamilton].

We have AD2 = A02 + OD2 - 1AO.OD cos AOD. But AD varies inversely as the

radius vector of the locus, and OD is given, by the equation of the sphere, in terms of

the angles it makes with fixed axes. Thus the locus is easily seen to be a quadric of

which is the centre.

Ex. 14. A plane passes through a fixed line, and the lines in which it meets two

fixed planes are joined by planes each to a fixed point ; find the surface generated by

the line of intersection of the latter two planes.

Ex. 15. The four faces of a tetrahedron pass each through a fixed point. Find

the locus of the vertex if the three edges which do not pass through it move each in a

fixed plane.

The locus is in general a surface of the third degree having the intersection of the

three planes for a double point. It reduces to a cone of the second degree when the

four fixed points he in one plane.

Ex. 16. Find the locus of the vertex of a tetrahedron, if the three edges which pass

through that vertex each pass through a fixed point, if the opposite face also pass

through a fixed point and the three other vertices move in fixed planes.

Ex. 17. A plane passes through a fixed point, and the points where it meets three

fixed lines are joined by planes, each to one of three other fixed lines ; find the locus of

the intersection of the joining planes.

Ex. 18. The sides of a polygon in space pass through fixed points, and all the

vertices but one move in fixed planes ; find the curve locus of the remaining vertex.

Ex. 19. All the sides of a polygon but one pass through fixed points, the

extremities of the free side move on fixed lines, and all the other vertices on fixed

planes, find the surface generated by the free side.
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CHAPTER VII.

methods of abridged notation.

The principle op duality and kecipeocal polaks.

118. We shall in this chapter give examples of the appli-

cation to quadrics of methods of abridged notation. It is

convenient however first to shew that all the equations we
employ admit of a two-fold interpretation, and that every

theorem we obtain is accompanied by another reciprocal theorem.

In fact, the reader can see without difficulty that the whole

theory of Eeciprocal Polars explained (Conies, Chap. XV.) is

applicable to space of three dimensions. Being given a fixed

quadric (S), and any surface S, we can generate a new surfaces

by taking the pole with regard to 2 of every tangent plane

to 8. If we have thus a point on s corresponding to a tangent

plane of 8, reciprocally the tangent plane to * at that point

will correspond to the point of contact of the tangent plane

to 8. For the tangent plane to s contains all the points on s

consecutive to the assumed point; and to it must correspond

the point through which pass all the tangent planes of 8 con-

secutive to the assumed tangent plane ; that is to say, the point

of contact of that plane. Thus to every point connected with

one surface corresponds a plane connected with the other, and

vice versd ; and to a line (joining two points) corresponds a line

(the intersection of two planes). For example the degree of S,

being measured by the number of points in which an arbitrary

line meets it, is equal to the number of tangent planes which

can be drawn to 8 through an arbitrary right line. Thus the

reciprocal of a quadric is a quadric, since two tangent planes

can be drawn to a quadric through any arbitrary right line

(Art. 76).

119. In order to show what corresponds to a curve in space

we shall anticipate a little of the theory of curves of double



86 METHODS OF ABRIDGED NOTATION.

curvature to be explained hereafter. A cmwe in space may be

considered as a series of points in space 1, 2, 3, &c, arranged

according to a certain law. If each, point be joined to its next

consecutive, we shall have a series of lines 12, 23, 34, &c, each

line being a tangent to the given curve. The assemblage of

these lines forms a surface, and a developable surface (see note,

p. 75), since any line 12 intersects the consecutive line 23.

Again, if we consider the planes 123, 234, 345, &c. containing

every three consecutive points, we shall have a series of planes

which are called the osculating planes of the given curve, and

which are tangent planes to the developable generated by its

tangents. Now when we reciprocate, it is plain that to the

series of points, lines, and planes will correspond a series of

planes, lines, and points ; and thus, that the reciprocal of a

series of points forming a curve in space will be a series of

planes touching a developable. If the curve in space lies all

in one plane, the reciprocal planes will all pass through one

point, and will be tangent planes to a cone.

Thus the series of points common to two surfaces forms a

curve. Reciprocally the series of tangent planes common to

two surfaces touches a developable which envelopes both sur-

faces. To the series of tangent planes (enveloping a cone)

which can be drawn to the one surface through any point, cor-

responds the series of points on the other which lie in the

corresponding plane : that is to say, to a plane section of one

surface corresponds a tangent cone of the reciprocal. It easily

follows hence, that to a point and its polar plane with respect

to a quadric, correspond a plane and its pole with respect to

the reciprocal quadric.

120. The reciprocals are usually taken with regard to a

sphere whose centre is called the origin of reciprocation. To
the origin will evidently correspond the plane at infinity; and

to the section of one surface by the plane at infinity will corre-

spond the tangent cone which can be drawn to the other through

the origin. Thus then, when the origin is without a quadric,

that is to say, is such that real tangent planes can be drawn

from it to the surface, the reciprocal surface will have real
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points at infinity, that is to say, will be a hyperboloid ; when
the origin is inside, the reciprocal is an ellipsoid; when the

origin is on the surface, the reciprocal will be touched by the

plane at infinity, or what is the same thing (as we shall presently

see) the reciprocal is a paraboloid.

The reciprocal of a ruled surface (that is to say, of a surface

generated by the motion of a right line) is a ruled surface.

For to a right line corresponds a right line, and to the surface

generated by the motion of one right line will correspond the

surface generated by the motion of the reciprocal line.* Hence

to a hyperboloid of one sheet always corresponds a hyperboloid

of one sheet unless the origin be on the surface when the reci-

procal is a hyperbolic paraboloid.

121. When reciprocals are taken with regard to a sphere,

any plane is evidently perpendicular to the line joining the

corresponding point to the origin. Thus to any cone corre-

sponds a plane curve, and the cone whose base is that curve

and vertex the origin has an edge perpendicular to every

tangent plane of the first cone, and vice versti. In general two

cones (which may or may not have a common vertex) are said

to be reciprocal when every edge of one is perpendicular to a

tangent plane of the other (see Ex. 11, p. 83). For example

it appears from the last article, that the tangent cone from the

origin to any surface, is in this sense reciprocal to the asymptotic

cone of the reciprocal surface.

The sections by any plane of two reciprocal cones, having a

common vertex, are polar reciprocals iciih regard to the foot of

the perpendicular on that plane from the common vertex. For,

let the plane meet an edge of one cone in a point P, and the

perpendicular tangent plane to the other in the line QR ;
let M

* Mr. Cayley has remarked that the degree of any ruled surface is equal to the

degree of its reciprocal. The degree of the reciprocal is equal to the number of

tangent planes which can he drawn through an arbitrary right line. Now it will be

formally proved hereafter, but is sufficiently evident in itself, that the tangent plane

at any point on a ruled surface contains the generating line which passes through that

point. The degree of the reciprocal is therefore equal to the number of generating

lines which meet an arbitrary right line. But this is exactly the number of points in

which the arbitrary line meets the surface, since every point in a generating line is a

point on the surface.
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be the foot of the perpendicular on the plane from the vertex 0;

then it is easy to see that the line PM is perpendicular to QR
;

and if it meet it in 8, then since the triangle P08 is right-

angled, the rectangle PM.M8 is equal to the constant OM'\

The curve therefore which is the locus of the point P is the

same as that got by letting fall from M perpendiculars on the

tangents QR, and taking on each perpendicular a portion in-

versely as its length.

The following illustrates the application of the principle

here established : Through the vertex of any cone of the second

degree can be drawn two lines, called focal lines, such that the

section of the cone by a plane perpendicular to either line is a

conic, having for a focus the point where the plane meets the

focal line. For form a reciprocal cone by drawing through the

vertex lines perpendicular to the -tangent planes of the given

cone ; then this cone has two planes of circular section

(Art. 100) ; and, by the present article, the section of the given

cone by a plane parallel to either is a conic having for a focus

the foot of the perpendicular on that plane from the vertex.

What has been just proved may be stated, the focal lines of a

cone are perpendicular to the planes of circular section of the

reciprocal cone.

122. The reciprocal of a sphere with regard to any point

is a surface of revolution round the transverse axis. This may
be proved as at Conies, p. 269. It is easily proved that if we

have any two points A and B, the distances of these two points

from the origin are in the same ratio as the perpendicular from

each on the plane corresponding to the other {Conies, Art. 101).

Now the distance of the centre of a fixed sphere from the

origin, and the perpendicular from that centre on any tangent

plane to the sphere are both constant. Hence, any point on

the reciprocal surface is such that its distance from the origin

is in a constant ratio to the perpendicular let fall from it on

a fixed plane; namely, the plane corresponding to the centre

of the sphere. And this locus is manifestly a surface of re-

volution of which the origin is a focus ; and the plane in question

a directrix.
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By reciprocating properties of the sphere we thus get pro-

perties of surfaces of revolution round the transverse axis. The
left-hand column contains properties of the sphere, the right-

hand those of the surfaces of revolution.

The line joining focus to any

point on the surface is perpendi-

cular to the plane through focus

and the intersection with the direc-

trix plane of the tangent plane at

the point.

The cone whose vertex is the

focus and base any plane section is

a right cone, whose axis is the line

joining the focus to the pole of the

plane of section.

A particular case of Ex. 2 is " Every plane section of a

paraboloid of revolution is projected into a circle on the tangent

plane at the vertex."

Ex. 1. Any tangent plane to a

sphere is perpendicular to the line

joining its point of contact to the

centre.

Ex. 2. Every tangent cone to a

sphere is a right cone, the tangent

planes all making equal angles with

the plane of contact.

Ex. 3. Any plane is perpendi-

cular to the line joining centre to

its pole.

Ex. 4. Any plane through the

centre is perpendicular to the con-

jugate diameter.

Ex. 5. The cone whose base is

any section of a sphere has circular

sections parallel to the plane of

section.

Ex. 6. Every cylinder envelop-

ing a sphere is right.

Ex. 7. Any two conjugate* right

lines are mutually perpendicular.

Ex. 8. Any quadric enveloping a

sphere is a surface of revolution;

and its asymptotic cone therefore is

a right cone.

The line joining any point to the

focus is perpendicular to the plane

joining the focus to the intersec-

tion with the directrix plane of the

polar plane of the point.

Any plane through the focus is

perpendicular to the line joining the

focus to its pole.

Any tangent cone has for its

focal lines the lines joining the ver-

tex of the cone to the two foci.

Every section passing through

the focus has this focus for a focus.

Any two conjugate lines are such

that the planes joining them to the

focus are at right angles.

If a quadric envelope a surface of

revolution, the cone enveloping the

former, whose vertex is a focus of

the latter, is a cone of revolution.

* The polar planes with respect to a quadric of all the points of a line, pass

through a right line, which we call the conjugate line.
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123. The equation of the reciprocal of a central surface

with regard to any point is found as at Conies, Art. 319. For

the length of the perpendicular from any point on the tangent

plane is (see Art. 85)

p=— =V(«
2
cos

2a+52
cos

2/3+c2
cos

2
y) — [x coscx.+y' cos/3+z' cosy),

and the reciprocal is therefore

(xx + yy' + zz + P)2 = oV + b
2

y
2 + c

2
z
2
.

Thus the reciprocal with regard to the centre is

a quadric whose axes are the reciprocals of the axes of the

given one.

We have given (Ex. 10, p. 83) the method in general of

finding the equation of the reciprocal of one quadric with

regard to another. Thus the reciprocal with regard to the

sphere x2 + y
2 + s

2 = 7«
2
, is found by substituting x, y, z, — h2

for

a, /3, y, 8 in the tangential equation, Art. 75 ; or more symme-

trically, the tangential equation itself may be considered as the

equation of the reciprocal with regard to x2 + y
2 + z

2 + w* = Q;

a, /3, y, S being the co-ordinates.

The reciprocal of the reciprocal of a quadric is evidently the

quadric itself. If we actually form the equation of the re-

ciprocal of the reciprocal Ao? + .B/3
2 + &c, the new coefficient

of x2
is BCD + 2iQR - BE' -CQ2 - BL2

, which when we sub-

stitute for Bj C, &c. their values, will be found to be aA2
. And

A' will in like manner be a factor in every term, so that the

reciprocal of the reciprocal is the given equation multiplied by

the square of the discriminant (see Lessons on Higher Algebra,

Art. 26).

124. The principle of duality may be established indepen-

dently of the method of reciprocal polars, by shewing (as at

Conies, Art. 208) that all the equations we employ admit of a

twofold interpretation ; and that when interpreted as equations

in tangential co-ordinates they yield theorems reciprocal to those

which they give according to the mode of interpretation hitherto

adopted. We may call a, /3, Yj S the tangential co-ordinates
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of the plane ax + (3y + yz + Sw. Now the condition that this

plane may pass through a given point, being

ax' + fiy' + yz' + Bw = 0,

conversely, any equation of the first degree in a, jS, 7, 8,

Aa + B/3 + Cy + BB =

is the condition that this plane may pass through a point whose

co-ordinates are proportional to A, B, C, D; and the equation

just written may be regarded as the tangential equation of that

point. If the tangential co-ordinates of two planes are a, /3, 7, 8;

a', /3', 7', 8' it follows, from Art. 36, that a + ka, j3 + &/3', &c.

are the co-ordinates of a plane passing through the line of

intersection of the two given planes. And again, it follows

from Art. 8, that if L = 0, M= be the tangential equations of

two points, L + lcM= denotes a point on the line joining the

two given ones; and similarly (Art. 9), that L + M£+ k'N de-

notes a point in the plane determined by the three points

L, M, N.

Again, any equation in a, /3, 7, 8 may be considered as the

tangential equation of a surface touched by every plane

ax + /Sy + 7s + Bw whose co-ordinates satisfy the given equa-

tion. If the equation be of the n
th

order, the surface will be

of the n
h

class, or such that n tangent planes (fulfilling the

given relation) can be drawn through any line. For if we

substitute in the given equation a + ka", ff + &/S", &c. for a, /8,

&c, we get an equation of the n" degree in h
)
determining

n planes, satisfying the given relation, which can be drawn

through the intersection of the planes a'/SyS', a"/3"y"S".

125. The general tangential equation of the second degree

^a2 + B$3 + C72 + DS* + 2i/37 + 2Mya -I- 2Aa/3

+ 2Pa8 + 2 Q0S + 2ByB =

can be discussed by precisely the same methods as are used

(Arts. 71-75). If we substitute a + ka", &c. for a, &c, we get

a quadratic in k, which may be written S' + '2l-P+k*S" = 0. If

the plane a'P'y'B touch the surface in question, 8' = 0, and one

of the roots of the quadratic is k = 0. The second root will

be also & = 0, provided that P=0. In other words, the co-
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ordinates of any tangent plane consecutive to a'fi'y'B' must

satisfy the condition

dS' ~ dS' dS' ~ dS'
aM^W + td? + B

dv
=0 -

But this equation being of the first degree represents a point,

viz. the point of contact of dfi'y'S' through which every con-

secutive tangent plane must pass.

We may regard the relation just obtained as one connecting

the co-ordinates of a tangent plane with those of any plane

passing through its point of contact, and from the symmetry

of this relation we infer (as in Art. 59) that if a', /3', y', 8' be the

co-ordinates of any plane, those of the tangent plane at every

point of the surface which lies in that plane, must fulfil the

condition

dS' a dS' dS' . dS' n
a M +/3

dJ3'
+ ryW + S

dV
= -

But this equation represents a point through which all the

tangent planes in question must pass ; in other words, it re-

presents the pole of the given plane.

We can, by following the process pursued in Art. 75, deduce

from the general tangential equation of the second degree the

corresponding equation to be satisfied by its points. If the

tangential equation of any point on the surface be

x'a + y'/3 + z'y + w'S = 0,

and a/3yS the co-ordinates of the corresponding tangent plane

;

we infer from the equations already obtained, that if X be an

indeterminate multiplier, we must have

Xx = Aa + N/3 + My + PS ; Xy' = No. + B@ + Ly + Q8,

Xz'=Ma+L/3+ Cy + BB; Xw' = Pa+ Q/3 + By + DS.

Solving these equations for aftyS, we get the co-ordinates of the

polar plane of any assumed point; and expressing that these

co-ordinates satisfy the given tangential equation, we get the

relation to be satisfied by the x, y, z, w of any point on the sur-

face, a relation only differing by the substitution of capital for

small letters from that found in Art. 75.

It seems unnecessary to give further examples how all the

preceding discussions may be adapted to the corresponding
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equations in tangential co-ordinates. In what follows, we have

only to suppose the abbreviations to denote equations in tan-

gential co-ordinates, when we get direct proofs of the reciprocals

of the theorems actually obtained.

126. If U and V represent any two quadrics, then U+W
represents a quadric passing through every point common to

U and V, and if X be indeterminate it represents a series

of quadrics having a common curve of intersection. Since

nine points determine a quadric (Art. 54), U+W is the most

general equation of the quadric passing through eight given

points (see Higher Plane Curves, p. 21). For if U and V be

two quadrics, each passing through the eight points, U-\- XV
represents a quadric also passing through the eight points, and

the constant X can be so determined that the surface shall pass

through any ninth point, and can in this way be made to coin-

cide with any given quadric through the eight points. It

follows then that all quadrics which pass through eight points

have besides a whole series of common points, forming a com-

mon curve of intersection ; and reciprocally, that all quadrics

which touch eight given planes have a whole series of common

tangent planes determining a fixed developable which envelopes

the whole series of surfaces touching the eight fixed planes.

It is evident also that the problem to describe a quadric

through nine points may become indeterminate. For if the

ninth point lie any where on the curve which, as we have just

seen, is determined by the eight fixed points, then every quadric

passing through the eight fixed points will pass through the

ninth point, and it is necessary that we should be given a ninth

point, not bn this curve, in order to be able to determine the

surface. Thus if U and V be two quadrics through the eight

points, we determine the surface by substituting the co-ordinates

of the ninth point in U+XV=0; but if these co-ordinates

make U= 0, V= 0, this substitution does not enable us to de-

termine X.

127. Given seven points [or tangent planes] common to a

series of quadrics, then an eighth point [or tangent plane]

common to the whole system is determined.
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For let U, V, W be three quadrics, each of which passes

through the seven points, then U+W+ ft.W may represent

any quadric which passes through them ; for the constants X, fi

may be so determined that the surface shall pass through

any two other points, and may in this way be made to coin-

cide with any given quadric through the seven points. But

U+'kV+ fiW represents a surface passing through all points

common to U, V, W, and since these intersect in eight points,

it follows that there is a point, in addition to the seven given,

which is common to the whole system of surfaces.

We see thus that though it was proved in the last article

that eight points in general determine a curve of double curva-

ture common to a system of quadrics, it is possible that they

may not. For we have just seen that there is a particular case

in which to be given eight points is only equivalent to being

given seven. When we say therefore that a quadric is deter-

mined by nine points, and that the intersection of two quadrics

is determined by eight points, it is assumed that the nine or

eight points are perfectly unrestricted in position.*

128. If a system of quadrics have If a system of quadrics be in-

a common curve of intersection, that scribed in the same developable,

is to say, if they have eight points that is to say, if they have eight

in common, the polar plane of any common tangent planes, the locus

fixed point passes through a fixed of the pole of a fixed plane is a

right line. right line.

For if P and Q be the polar planes of a fixed point with

regard to U and V respectively, then P+\Q is the polar of

the same point with respect to U+W.
In particular, the locus of the centres of all quadrics in-

scribed in the same developable, or touching the same eight

planes, is a right line.

* The reader who has studied Higher Plane Curves, Arts. 22—27, will have no

difficulty in developing the corresponding theory for surfaces of any degree. Thus if

we are given one less than the number of points necessary to determine a surface of the

na degree, we are given a series of points forming a curve through which the surface

must pass ; and if we are given two less than the number of points necessary to deter-

mine the surface, then we are given a certain number of other points [namely as many
as will make the entire number up to n3

] through which the surface must also pass.
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129. If a system of quadrics pass through a common curve

of intersection [or be inscribed in a common developable], the

polars of a fixed line generate a hyperboloid of one sheet.

Let the polars of two points in the line be P+XQ, P' + \Q\
then it is evident that their intersection lies on the hyper-

boloid PQ' = P'Q.

180. If a system pass through a common curve, the locus

of the pole of a fixed plane is a curve in space of the third

degree. For eliminating X between P+ X Q, P + X Q', P" + X Q"

we get the system of determinants

P, P', P"

Q, Q', Q"

which represents a curve of the third degree. For the inter-

section of the surfaces represented by PQ' = P' Q, PQ" = P" Q,

is a curve of the fourth degree, but this includes the right

line PQ, which is not part of the intersection of PQ" = P" Q,

P' Q" = P" Q'. There is therefore -only a curve of the third

degree common to all three.

Reciprocally, if a system be inscribed in the same develop-

able, the polar of a fixed point envelopes the developable which

is the reciprocal of a curve of the third degree.

131. Given seven points on a Given seven tangent planes to

quadric, the polar plane of a fixed a quadric, the pole of a fixed plane

point passes through a fixed point. moves in a fixed plane.

For evidently the polar of a fixed point with regard to

U+ XV+ ftW will be of the form P+ XQ + pR, and will there-

fore pass through a fixed point.*

132. .Since the discriminant contains the coefficients in the

fourth degree, it follows that we have a biquadratic equation

to solve to determine X, in order that U+ XV may represent

a cone, and therefore that through the intersection of two quadrics

* Dr. Hesse has derived from this theorem -a construction for the quadric passing

through nine given points. Crelle, Vol. xxrv. p. 36. Cambridge and Dublin Mathe-

matical Journal, Vol. rv. p. 44. See also some further developments of the same

problem by Mr. Townsend, ib. Vol. IV. p. 241.
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four cones may be described. The vertices of these cones are

determined by the intersection of the four planes,

U^X'V
t , U

i + X'V
2 , U

S
+ XV

S , U
i + X'V

4 ,

where X' is one of the roots of the biquadratic just referred

to ; and they are given as the four points common to the

series of determinants,

v» v* u« u
t = 0.

V V V V' 1) ' Si 'si ' >

There are four points whose polars are the same with respect

to all quadrics passing through a common curve of intersection,

namely the vertices of the four cones just referred to. For to

express the conditions that

xv;+ y v;+zv;+wv; = <),

should represent the same plane, we find the very same set of

determinants. In like manner there are four planes whose poles

are the same with respect to a set of quadrics inscribed in the

same developable.

133. If the surface V break up into two planes, the form

TJ-V XV= 0, becomes U+ XLM= 0, a case deserving of separate

examination.* In general, the intersection of two quadrics is

a curve of double curvature of the fourth degree, but the inter-

section with Z7of any of the surfaces U+XLM, evidently reduces

to the two conies in which Uis cut by the planes L and If. Any
point on the line LM has the same polar plane with regard to all

surfaces of the system U+ XLM.'f For if P be the polar of any

* The case where U also breaks up into two planes has been discussed, p. 70.

f There are two other points whose polar planes are the same with regard to all the

quadrics, and which therefore (Art. 132) will be vertices of cones containing both the

craves of section. It is only necessary that P, the polar plane of one of these points

with regard to U should be the same plane as L'M+LM the polar with regard

to LM. Since then the polar plane of the point with regard to U passes through

LM, the point itself must lie on the polar line of LM with regard to V, that is to say,

on the intersection of the tangent planes where LM meets U. Let this polar line

meet fin AA', and LM in BB', then the points required will be FF', the foci of the

involution determined by AA', BB'. For since FF' forms a harmonic system either

with AA' or with BB', the polar plane of F either with regard to XI or LM passes

through F', and vice versa.
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point with regard to U, its polar with regard to U+ XLM will

be P+ X (L'M+LM1

) which reduces to P, when L = 0, M = 0.

Thus, in particular, at the two points where the line LM meets

U, all the surfaces have the same tangent plane. The form,

then, U+ XLM, may be regarded as denoting a system ofquadrics

having double contact with each other. Conversely, if two

quadrics have double contact, their line of intersection breaks

up into two plane curves. For ifwe draw any plane through the

two points of contact and through any point of their intersec-

tion, this plane will meet the quadrics in sections having three

points common, and having common also the two tangents

at the points of contact; these sections must therefore be

ideutical.

In like manner all surfaces of the system are enveloped by
two cones of the second degree. For take the point where

the intersection of the two given common tangent planes is cut

by any other common tangent plane ; then the cones having

this point for vertex, and enveloping each surface, have common

three tangent planes and two lines of contact, and are therefore

identical. The reciprocals of a pair of quadrics having double

contact will manifestly be a pair of quadrics having double con-

tact, and the two planes of intersection of the one pair will corre-

spond to the vertices of common tangent cones to the other pah-
.

134. If there he a plane curve common to three quadrics, each

pair must have also another common plane curve, and the three

planes of these last common curves, pass through the same line.

Let the quadrics be U, U+ LM, £7+ LN, then the last two

have evidently for their mutual intersection two plane sections

made by L, M- N.

135. Similar quadrics belong to the class now under dis~

cussion. Two quadrics are similar and similarly placed when

the terms of the second degree are the same in both (see

Conies, p. 208). Their equations then are of the form £7= 0,

U+cL = 0. We see then that two such quadrics intersect

in general in one plane curve, the other plane of intersec-

tion being at infinity. If there be three quadrics, similar and
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similarly placed, their three finite planes of intersection pass

through the same right line.

Spheres are all similar quadrics, and therefore are to be

considered as having a common section at infinity, which section

will of course be an imaginary circle.

A plane section of a quadric will be a circle if it passes

through the two points in which its plane meets this imaginary

circle at infinity. We may see thus immediately of how many

solutions the problem of finding the circular sections of a quadric

is susceptible. For the section of the quadric by the plane at

infinity meets the section of a sphere by the same plane in four

points, which can be joined by six right lines, the planes passing

through any one of which meet the quadric in a circle. The

six right lines may be divided into three pairs, each pair inter-

secting in one of the three points whose polars are the same

with respect to the section of the quadric and of the sphere.

And it is easy to see that tbese three points determine the

directions of the axes of the quadric.

An umbilic (Art. 102) is the point of contact of a tangent -

plane which can be drawn through one of these six right lines.

There are in all therefore twelve umbilics, though only four

are real. If a tangent plane be drawn to a quadric through

any line, the generators in that tangent plane evidently pass,

one through each of the points where the line meets the surface.

Thus, then, the umbilics must lie each on some one of the eight

generators, which can be drawn through the four points at

infinity common to the quadric and any sphere. Or, as Sir

W. Hamilton has remarked, the twelve umbilics lie three by three

on eight imaginary right lines.

A surface of revolution is one which has double contact with

a sphere at infinity. For an equation of the form a:
2 +y'i + as

2 = b

can be written in the form

{of +f + s
2 - r

2
) + {{a - 1) z* - {b - r*)} = 0,

and the latter part represents two planes. It is easy to see

then why in this case there is but one direction of real circular

sections, determined by the line joining the points of contact

of the sections at infinity of a sphere and of the quadric.
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136. If the two planes L, M coincide, the form U+XLM
becomes Z7+XL2 which denotes a system of surfaces touching

U at every point of the section of U by the plane L. Two
quadrics cannot touch in three points without their touching all

along a plane curve. For the plane of the three points meets

the quadrics in sections having common those three points and

the tangents at them. The sections are therefore identical.

The equation of the tangent cone to a quadric given p. 46, is a

particular case of the form U— 27. Also two concentric and

similar quadrics (Z7, U—c1

) are to be regarded as enveloping

each other, the plane of contact being at infinity. Any plane

obviously cuts the surfaces U and U— II in two conies having

double contact with each other, and if the section of one

reduce to a point-circle, that point must plainly be the focus

of the other. Hence when one quadric envelopes another the

tangent plane at the umbilic of one cuts the other in a conic

of which tlie umbilic is the focus ; and if one surface be a

sphere every tangent plane to the sphere meets the other surface

in a section of which the point of contact is the focus.

Or these things may be seen by taking the origin at the

umbilic and the tangent plane for the plane of a;y, when on

making s = 0, the quantity U—L* reduces to x*+y* — F, and

denotes a conic of which the origin is the focus, and I the

directrix.

Two quadrics enveloped by the same third intersect each other

in plane curves. Obviously U— L2

, U— M'\ have the planes

L- if, L +M for their planes of intersection.

137. The equation aL' + bM* + cN* + dP\ where L, M, N, P
represent planes, denotes a quadric such that any one of these

four planes is polar of the intersection of the other three.

For aH + blP + cN*' denotes a cone having the point LMN
for its vertex ; and the equation of the quadric shews that this

cone touches the quadric, P being the plane of contact. The

four planes form what I shall call a self-conjugate tetrahedron

with regard to the surface. It has been proved (Art. 132)

that given two quadrics there are always four planes whose

poles with regard to both are the same. If these be taken

H2
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for the planes L, if, JV, P, the equations of both can be

transformed to the forms

aU +hW + cN* -t- dP* = 0, a'L* +VM2 + c'N* + dP2 = 0.

It may also be seen, a priori, that this is a form to which

it must be possible to bring the system of equations of two

quadrics. For P, M, N, P involve implicitly three constants

each ; and the equations written above involve explicitly three

independent constants each. The system therefore includes

eighteen constants, and is therefore sufficiently general to ex-

press the equations of any two quadrics.

In like manner the equations of three quadrics may be

written in the form

aU +bM'i + cN* + dP2 +eQ> = 0,

a'L
2 +VSP +c'N 2 + <?P2 +e'QA = 0,

a"L* + VIP + c"N* + d'P* + e"Q* = 0,

where L, M, N
t
P, Q are five planes whose equations are con-

nected by the relation

L +M+N+P+Q = 0.

For P, M, N, P, Q involve implicitly three constants each ; and

the equations written above involve explicitly four independent

constants each. The system therefore includes twenty-seven

constants, and is consequently general enough to express the

equations of any three quadrics.
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CHAPTER VIII.

FOCI AND CONFOCAL SURFACES.*

138. When U represents a sphere, the equation of a

quadric having double contact with it, U=LM
)
expresses, as

at Conies, p. 225, that the square of the tangent from any point

on the quadric to the sphere is in a constant ratio to the rect-

angle under the distances of the same point from two fixed

planes. The planes L and M are evidently parallel to the

planes of circular section of the quadric since they are planes

of its intersection with a sphere ; and their intersection is there-

fore parallel to an axis of the quadric (Arts. 99, 135). We
have seen [Conies, p. 226) that the focus of a conic may be

considered as an infinitely small circle having double contact

with the conic, the chord of contact being the directrix. In

like manner we may define a focus of a quadric as an infinitely

small sphere having double contact with the quadric, the chord

of contact being then the corresponding directrix. That is to

say, the point <x/3y is a focus if the equation of the quadric can

be expressed in the form

(* -«)' + (y-#+(» -*) = *,

where
<f>

is the product of the equations of two planes. We
must discuss separately however the two cases, where these

planes are real and where they are imaginary. In the one

case the equation is of the form U=LM, in the other U=L*-{-3P.

In the first case the directrix (the line LM) is parallel to that

axis of the surface through which real planes of circular section

can be drawn; for example, to the mean axis if the surface

be an ellipsoid. In the second case the line LM is parallel to

one of the other axes.

* The properties treated of in this chapter were first studied in detail by

M. Chasles and by Professor Mao Cullagh, who about the same time independently

arrived at the principal of them. M. Chasles' results will be found in the notes to

his Aper<;u tlistorique, published in 1837.
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We can shew directly that the line LM is parallel to an

axis of the surface. For if the co-ordinate planes x and y be

any two planes mutually at right angles passing through LM;
then since L and M are both of the form \x + fiy, the quantities

LM and L* + M* will be both of the form ax* + 2hxy + by*.

And, as in plane geometry, it is proved that by turning round

the co-ordinate planes x and y, this quantity can be made

to take the form Ax'±By*. The equations then, U=LM,
U= L* -fM2

, written in full, are of the form

(x - aY +(y- /3)
2 + (* - yf = Ax* ± By*,

and since the terms yz, zx, xy do not enter into the equation,

the axes of co-ordinates are parallel to the axes of the surface.

139. We shall next examine whether a given central quadric

necessarily has a focus, and whether it has more than one.

For greater generality instead of taking the directrix for the

axis of z, we take any parallel line ; and the equation of the

last article becomes

(x - a)
2 + (y - ft* + (* - jf =A (x - a'f + B (y - /3')

2
;*

and we are to enquire whether any values can be assigned to

«, /3, 7, a, /3', A, B, which will make this identical with a given

equation ~* ,.* £—V — ^— =1.L^ M + N
Now first, in order that the origin may be the centre, we have

7 = 0, a = Aa', /3 = B/3' ; by the help of which equations, elimi-

nating a', /3', the form written above becomes

(l-A)x* + (l-B)tf +z*=^o? + ±^l3%

, . . N L-N N „ M-N
whence 1-^-j, ^~jr 5

1 ~ B=W B=Sr''
\-A „ 1-B

-a
2

'

A
+___^ = iV

;

a* 0'
°r L-N + M-N~

* When A and B have opposite signs the planes of contact of the focus with

the quadric are real, while they are imaginary when A and B have the same sign.
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Thus it appears that the surface being given, the v constants A
and B are determined, but that the focus may lie anywhere

on the conic

a' ff
5

_,
L-N + M-N~ '

which accordingly is called a, focal conic of the surface.

Since we have purposely said nothing as to either the signs

or the relative magnitudes of the quantities L, M
:
N, it follows

that there is a focal conic in each of the three principal planes,

and also that ' this conic is confocal with the corresponding

principal section of the surface ; the conies

L + M l
' L-N + M-N '

being plainly confocal. Any point a/3 on a focal conic being

taken for focus, the corresponding directrix is a perpendicular

to the plane of the conic drawn through the point

, a „, /3 La _, if/3

These values may be interpreted geometrically by saying that

the foot of the directrix is the pole, with respect to the principal

section of the surface, of the tangent to the focal conic at the

point a/3. For this tangent is

88
.

fly _ 1 or — +^ - 1L-N+ M-N~ ' £ + M ~ '

which is manifestly the polar of a'/3' with regard to j + ^ = 1.

Hence, from the theory of plane confocal conies, the line

joining any focus to the foot of the corresponding directrix is

normal to the focal conic. The feet of the directrices must

evidently lie on that conic which is the locus of the poles of

the tangents of the focal conic with regard to the corresponding

principal section of the quadric. The equation of this conic is

,
L-N ,M-N_

for if we eliminate a, /3 from the equation of the focal conic

and the equations connecting a^, a'/3', we obtain this relation
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to be satisfied by the latter pair of co-ordinates. The directrices

themselves form a cylinder of which the conic just written is

the base.

140. Let us now examine in detail the different classes of

central surfaces, in order to investigate the nature of their focal

conies and to find to which of the two different kinds of foci the

points on each belong. Now it is plain that the equation

L-N + M-N
will represent an ellipse when N is algebraically the least of

the three quantities L, M, N; a hyperbola when N is the

middle, and will become imaginary when N is the greatest.

Of the three focal conies therefore of a central quadric, one

is always an ellipse, one a hyperbola, and one imaginary. In

the case of the ellipsoid, for example, the equations of the focal

ellipse and focal hyperbola are respectively

x y

The corresponding equations for the hyperboloid of one sheet

are found by changing the sign of c
2
, and those for the hyper-

boloid of two sheets by changing the sign both of b'' and c
2

.

Further, we have seen that foci belong to the class whose

planes of contact are imaginary or are real, according as A
L-N

and B have the same or opposite signs, and that A = —=—
,

M-N .B= —=-;— . Now if N be the least of the three, both nume-M
rators are positive, and the denominators are also positive in

the case of the ellipsoid and hyperboloid of one sheet, but in

the case of the hyperboloid of two sheets one of the denomi-

nators is negative. Hence, the points on the focal ellipse are

foci of the class whose planes of contact are imaginary in the

cases of the ellipsoid and of the hyperboloid of one sheet, but

of the opposite class in the case of the hyperboloid of two sheets.

Next, let N be the middle of the three quantities ; then the two

numerators have opposite signs, and the denominators have

the same sign in the case of the ellipsoid, but opposite in the
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case of either hyperboloid. Hence the points of the focal

hyperbola belong to the class whose planes of contact are real

in the case of the ellipsoid, and to the opposite class in the case

of either hyperboloid. It will be observed then that all the

foci of the hyperboloid of one sheet belong to the class whose
planes of contact are imaginary; but that the focal conies of

the other two surfaces contain foci of opposite kinds, the ellipse

of the ellipsoid and the hyperbola of the hyperboloid being

those whose planes of contact are imaginary. This is equi-

valent to what appeared (Art. 138) that foci of the other kind
can only lie in planes perpendicular to that axis of a quadric

through which real planes of circular section can be drawn.

141. Focal conies with real planes of contact intersect the

surface in real points, while those of the other kind do not.

In fact, if the equation of a surface can be thrown into the

form Z7=_Z7 + IP, and if the co-ordinates of any point on the

surface make U= 0, they must also make L = 0, M= ; that is

to say, the focus must lie on the directrix. But in this case

the surface could only be a cone. For taking the origin at

the focus, the equation x* + 1/* + z* = L2
-\- J/ 2

, where L and 31
each pass through the origin, would contain no terms except

those of the highest degree in the variables, and would there-

fore represent a cone (p. 38).

The focal conic on the other hand, which consists of foci of

the first kind, passes through the umbilics. For if the equa-

tion of the surface can be thrown into the form U=LJl, and

the co-ordinates of a point on the surface make TJ= 0, they

must also make either L or J/= 0. But since the surface passes

through the intersection of U, L ; if the point U lies on L, the

plane L intersects the surface in an infinitely small circle ; that

is to say, is a tangent at an umbilic. From this property

Professor Mac Cullagh called focal conies of this latter kind

umbilical- focal conies.

142. The section of the quadric by a plane passing through

a focus and the corresponding directrix is a conic having the

same point and line for focus and directrix. For taking the

origin at the focus, the equation is either x 2 +y*-\- z* = LM, or
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x2 + y
2 + z

2 =L1 +M 2
. And if we make z = 0, the equation of

the section is x2 + y
2 = Im or = I

2 + m\ where Z, m are the sections

of L, M by the plane z. But if this plane pass through LM,
these sections coincide, and the equation reduces to a;

2 + y
2 — F,

which represents a conic having the origin for the focus and Z

for the directrix. Since the plane joining the focus and directrix

is normal to the focal conic (Art. 139) ; we may state the

theorem just proved, as follows : Every plane section normal to

a focal conic has for a focus the point where it meets the focal

conic.

x2
if z

2

143. If the given quadric were a cone y+ ~r+ ttt
= 0,

the reduction of the equation to the form U= L2 ±M2
proceeds

exactly as before, and it is proved that the co-ordinates of the

a
2

B"
focus must fulfil the condition -=

Tr + -=r=—

r

T = 0? which re-L -N M-N '

presents either two right lines or an infinitely small ellipse

according as L —N and M—N have opposite or the same signs.

In other words, in this case the focal hyperbola becomes two

right lines, while the focal ellipse contracts to the vertex of the

x2
v2

z*
cone. For the cone -= + %„—» = 0, the equation of the focal

a be 1 1

Hnes13^-^ = 0.

The focal lines of the cone, asymptotic to any hyperboloid,

are plainly the asymptotes to the focal hyperbola of the surface.

The foci on the focal lines are all of the class whose planes

of contact are imaginary; but the vertex itself, besides being

in two ways a focus of this kind, may also be a focus of the

other kind, for the equation of the cone can be written in any

of the three forms

d'-F , b
2 + c

2
, b

2 ~d2
, a2 + c

2
,

or =-^-x2+^^z\ or = ~^- f + —— z\

The directrix, which corresponds to the vertex considered as

a focus, passes through it.
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The line joining any point on a focal line to the foot of

the corresponding directrix is perpendicular to that focal line.

This follows as a particular case of what has been already proved

for the focal conies in general, but may also be proved directly.

The co-ordinates of the foot of the directrix have been proved

to be a! = j
—t= ,

y8' = -^—=r
r , the equations of the line joining

this point to a/3 are

£_ a. _ ( 1 _J__\M-N X L-N y ~'xp \M-N L-NJ>
and the condition that this should be perpendicular to the focal

line /3aj= ay is -= «. + =^
—t-

t
= 0, which we have already

seen is satisfied.

In like manner, as a particular case of Art. 142, the section

of a cone by a plane perpendicular to either of its focal lines

is a conic of which the point in the focal line is a focus. The

focal lines of this article are therefore identical with those de-

fined (Art. 121).

144. The focal lines of a cone are perpendicular to the cir-

cular sections of the reciprocal cone (see Art. 121).

For the circular sections of the cone Lx*+ My2 + Nz* = 0,

are (see Art. 99) parallel to the planes

[L-N)a? + (M-N)tf = 0,

and the corresponding focal lines of the reciprocal cone

Z + M +
J-
=
° are aS WC haVe jUSt S™*T=N + M!

=N= °»

and the lines represented by the latter equation are evidently

perpendicular to the planes represented by the former.

145. The investigation of the foci of the other species of

quadrics proceeds in like manner. Thus for the paraboloids,

a? V
included in the equation y + T>= 2a. This equation can be

written in either of the forms

(*-«r+/+ (*-7)
2=^(*-^«)2

+(*-7+^r,
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where L-M^^~ M-1

where __. = 27 -i.

It thus appears that a paraboloid has two focal parabolas,

which may easily be seen to be each confocal with the corre-

sponding principal section. The focus belongs to one or other

of the two kinds already discussed, according to the sign of

the fraction —T
— . In the case of the elliptic paraboloid

therefore, where both L and M are positive, if L be the

greater, then the foci in the plane xz are of the class whose

planes of contact are imaginary, while those in the plane yz

are of the opposite class. But since if we change the sign

either of L or of M, the quantity —
j
— remains positive, we

see that all the foci of the hyperbolic paraboloid belong to the

former class, a property we have already seen to be true of the

hyperboloid of one sheet.

It remains true that the line joining any focus to the foot

of the corresponding directrix is normal to the focal curve, and

that the foot of the directrix is the pole with regard to the

principal section of the tangent to the focal conic. The feet

of the directrices lie on a parabola and the directrices them-

selves generate a parabolic cylinder.

To complete the discussion it remains to notice the foci of

the different kinds of cylinders, but it is found without the

slightest difficulty that when the base of the cylinder is an

ellipse or hyperbola there are two focal lines; namely, lines

drawn through the foci of the base parallel to the generators

of the cylinder, while, if the base of the cylinder is a parabola,

there is one focal line passing in like manner through the focus

of the base.

146. The geometrical interpretation of the equation U=LM
has been already given. We learn from it this property of foci
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whose planes of contact are real, that the square of the distance

of any point on a quadric from such a focus is in a constant

ratio to the prqdvx,t of the perpendiculars let fall from the point

on the quadric, on two planes drawn through the corresponding

directrix, parallel to the planes of circular section. The corre-

sponding property of foci of the other kind, which is less

obvious, was discovered by Professor Mac Cullagh. It is, that

the distance of any point on the quadric from such a focus is in

a constant ratio to its distance from the corresponding directrix,

the latter distance being measured parallel to either of the planes

of circular section.

Suppose, in fact, we try to express the distance of the point

x'y'z from a directrix parallel to the axis of z and passing

through the point whose x and y are a', /3', the distance being

measured parallel to a directive plane z = mx. Then a parallel

plane through xyz, viz. z — z' = m [x - x') , meets the directrix

in a point whose x and y of course are a', /3', while its z is

given by the equation z— z =m («' — x'). The square of the

distance required is therefore

[x' - a'f + [y' - /3')
2 + nf (x - a')

2 = [y'- /S')
2 + (1 + nf) [x' - a')

2
.

In the equation then, of Art. 139,

(x - a)' +(y- 13)* + z\= A[x- aj + B{y- ff)%

where A and B are both positive and A is supposed greater

than jB, the right-hand side denotes B times the square of the

distance of the point on the quadric from the directrix, the

distance being measured parallel to the plane z = mx where

A — B
rr? = —~— . By putting in the values of A and B

t
given

in Art. 139, it may be seen that this is a plane of circular

section, but it is evident geometrically that this must be the

case. For consider the section of the quadric by any plane

parallel to the directive plane, and since evidently the distances

of every point in such a section are measured from the same

point on the directrix, the distance therefore of every point in

the section from this fixed point is in a constant ratio to its

distance from the focus. But when the distances of a variable

point from two fixed points have to each other a constant
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ratio, the locus is a sphere. The section therefore is the inter-

section of a plane and a sphere ; that is, a circle.

An exception occurs when the distance from the focus is

to be equal to the distance from the directrix. Since the locus

of a point equidistant from two fixed points is a plane, it

appears as before, that in this case the sections parallel to the

directive plane are right lines. By referring to the previous

articles it will be seen (see Art. 145) that the ratio we are

considering is one of equality (B—\) only in the case of the

hyperbolic paraboloid, a surface which the directive plane could

not meet in circular sections, seeing that it has not got any.

Professor Mac Cullagh calls the ratio of the focal distance to

that from the directrix, the modulus of the surface, and the foci

having imaginary planes of contact, he calls modular foci.*

147. It was observed (Art. 133) that all quadrics of the

form U— LM are enveloped by two cones, and when U repre-

sents a sphere, these cones must be of revolution as every cone

enveloping a sphere must be. Further, when U reduces to a

point-sphere, these cones coincide in a single one, having that

point for its vertex ; and we may therefore infer that the cone

enveloping a quadric and having any focus for its vertex is one

of revolution.

This theorem being of importance, we give a direct alge-

braical proof of it. First, it will be observed that any equa-

tion of the form a? + y' + z* = [ax + by 4 czf represents a right

cone. For if the axes be transformed, remaining rectangular,

but so that the plane denoted by ax + by + cz may become one

of the co-ordinate planes, the equation of the cone will become

* In the year 1836 Professor Mac Cullagh published this modular method of

generation of quadrics. In 1842 I published the supplementary property possessed

by the non-modular foci. Not long after M. Amyot independently noticed the same

property, but owing to his not being acquainted with Professor Mac Cullagh's method

of generation, M. Amyot failed to obtain the complete theory of the foci. Professor

Mac Cullagh has published a detailed account of the focal properties of quadrics,

which will be found in the Proceedings of the Royal Irish Academy, Vol. II., p. 446.

Mr. Townsend also has published ->• valuable paper (Cambridge and Dublin Mathe-

matical Journal, Vol. III., pp. 1, 97, 148) in which the properties of foci, considered

as the limits of spheres having double contact with a quadric, are very fully in-
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X +Y2 +Zi= \X'2

, which denotes a cone of revolution, since

the coefficients of F a
and Z* are equal.

But now if we form, by the rule of Art. 74, the equation

of the cone whose vertex is the origin and circumscribing

tf+tf + tf-L'-M*, where

L = ax + by + cz + d, M= a'x + b'y + c'z -+ d\

it is found to be

(d* + dn
)
(a;

8 + f + z* - U -Ml

) + {dL + d'Mf = 0,

or (d* + d") {x
2 +f + z*) - {d'L - dMf = 0,

which we have seen represents a right cone.

Cor. Since, in reciprocation, the cone whose vertex is the

origin corresponds to the asymptotic cone of the reciprocal

surface, it follows from this article, that the reciprocal of a
quadric with regard to anyfocus is a surface of revolution.

A few additional properties of foci easily deduced from the

principles laid down are left as an exercise to the reader.

Ex. 1. The polar of any directrix is the tangent to the focal conic at the corres-

ponding focus.

Ex. 2. The polar plane of any point on u directrix is perpendicular to the line

joining that point to the corresponding focus.

Ex. 3. If a line be drawn through a fixed point cutting any directrix of a quadric,

and meeting the quadric in the points A, B ; then if .F be the corresponding focus,

tan£AFO . tan §BFO is constant. This is proved as the corresponding theorem for

plane conies. Conies, p. 197.

Ex. 4. This remains true if the point move on any other quadric having the

same focus, directrix, and planes of circular section.

Ex. 5. If two such quadrics be cut by any line passing through the common direc-

trix, the angles subtended at the focus by the intercepts are equal.

Ex. 6. If a line through a directrix touch one of the quadrics, the chord intercepted

on the other subtends a constant angle at the focus.

148. The product of the perpendiculars from the two foci

of a surface of revolution round the transverse axis, on any

tangent plane, is evidently constant. Now if we reciprocate

this property with regard to any point by the method used in

Art. 122, we learn that the square of the distance from the

origin of any point on the reciprocal surface is in a constant

ratio to the product of the distances of the point from two

fixed planes.
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It appears from Art. 122, Ex. 5, that the two planes are

planes of circular section of the asymptotic cone to the new

surface, and therefore of the new surface itself. The intersection

of the two planes is the reciprocal of the line joining the two

foci; that is to say, of the axis of the surface of revolution.

The property just proved,* belongs as we know (Art. 146) to

every point on the umbilicar focal conic ; hence the reciprocal of

any quadric with regard to an umbilicar focus, is a surface

of revolution round the transverse axis ; but with regard to a

modular focus is a surface of revolution round the conjugate

axis.

By reciprocating properties of surfaces of revolution, we

obtain properties of any quadric with regard to focus and

corresponding directrix. It is to be noted that the axis of the

figure of revolution of either kind is the reciprocal of the

directrix corresponding to the given focus : and is parallel to

the tangent to the focal conic at the given focus (see Art. 139).

The left-hand column contains properties of surfaces of re-

volution, the right-hand of quadrics in general.

Ex. 1. The tangent cone whose The cone whose vertex is a focus

vertex is any point on the axis is and hase any section whose plane

a right cone whose tangent planes passes through the corresponding

make a constant angle with the directrix, is a right cone, whose axis

plane of contact, which plane is is the line joining the focus to the

perpendicular to the axis. pole of the plane of section, and this

right line is perpendicular to the

plane through focus and directrix.

Ex. 2. Any tangent plane is at The line joining a focus to any

right angles with the plane through point on the surface is at right

the point of contact and the axis. angles to the line joining the focus

to the point where the corresponding

tangent plane meets the directrix.

Ex. 3. The polar plane of any The line joining a focus to any

point is at right angles to the plane point is at right angles to the

containing that point and the axis. line joining the focus to the point

where the polar plane meets the

directrix.

* It was in this way I was first led to this property, and to observe the distinction

between the two kinds of foci.
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Ex. 4. Any two conjugate lines Any two conjugate lines pierce

are such that the planes joining a plane through a directrix parallel

them to the focus are at right to circular sections, in two points

angles. (Ex. 7, Art. 122.) which subtend a right angle at the

corresponding focus.

Ex. 5. If a cone circumscribe a The cone whose base is any plane

surface of revolution, one principal section of a quadric and vertex any

plane is the plane of vertex and focus has for one axis the line join-

axis, ing focus to the point where the

plane meets the directrix.

Ex. 6. The cone whose vertex The cone is a right cone whose

is a focus and base any plane sec- vertex is a focus and base the sec-

tion is a right cone. (Ex. 2, tion made by any tangent cone on

Art. 122.) a plane through the corresponding

directrix parallel to those of the

circular sections.

CONFOCAL SURFACES.

149. In the preceding section an account has been given

of the relations which each focus- of a quadric considered

separately bears to the surface. We shall in this section give

an account of the properties of the conies which are the as-

semblage of foci, and of the properties of confocal surfaces.

And we commence by pointing out a method by which we

should be led to the consideration of the focal conies of a quadric

independently of the method followed in the last section.

Two concentric and coaxal conies are said to be confocal

when the difference of the squares of the axes is the same for

both. Thus given an ellipse -^ + p = 1, any conic is confocal

with it whose equation is of the form

a"±\" b*±\*
'

If we give the positive sign to X\ the confocal conic will be

an ellipse; it will also be an ellipse when \'2 is negative as

long as it is less than 6
2
. When \2

is between V* and a2
the

confocal curve is a hyperbola, and when X2
is greater than a2

the curve is imaginary. If X2 = V the equation reducing itself

to y* = 0, the axis of x itself is the limit which separates con-

i
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focal ellipses from hyperbolas. But the two foci belong to

this limit in a special sense. In fact through a given point

x'y can in general be drawn two conies confocal to a given

one, since we have a quadratic to determine A2
, viz.

tf-K ' b
2 -X2

or X4 - X2
(a

2 + b
2 - x'

2 - y">) + a
2
b
2 - b

2xn - a\f = 0.

When y = this quadratic becomes (X
2 - J

s

)
(X

2 - a
2
+o;'

2

) = 0,

and one, of its roots is X2 = b
2

: but if we have also a;'
2 = a

2 — b'\

the second root is also X2 = 6
2

, and therefore the two foci are

in a special sense points corresponding to the value X2 = 5
2
. If

x2
y
2

. y
2

in the equation —
z
—-, + ./ „

= 1, we make X2 = Z>
2

,

y
_ = 0,

a — X # — X o — X
x2

we get the equation of the two foci ——^= 1.

150. Now in like manner two quadrics are said to be

confocal if the diiferences • of the squares of the axes be the
2 2 2X 1J Z

same for both. Thus given the ellipsoid -5 + fs + -i = 1, any

surface is confocal whose equation is of the form

x2 f z
2

«2 + X2
' b

2 ±\2
' c

2 ±X2

If we give X2 the positive sign, or if we take it negative

and less than c
2

, the surface is an ellipsoid. A sphere of infinite

radius is the limit of all ellipsoids of the system, being what

the equation represents when X2 = 00 . When X2
is between

c* and b
2
the surface is a hyperboloid of one sheet. When

it is between b
2 and a

2
it is a hyperboloid of two sheets. When

X2 = <? the surface reduces itself to the plane z = 0, but if we
z
2

make in the equation X2 = c
2

, —

^

5 = 0, the points on the conic
A — G

x2
y
2

thus found, viz. —g 5 + j$ ; = 1, belong in a special sense

to the limit separating ellipsoids and hyperboloids. In fact,

in general through any point x'y'z' can be drawn three surfaces

confocal to a given one; for regarding X2
as the unknown
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quantity, we have evidently a cubic for the determination of
it; namely,

x'* y" z
m _

a* -X2 + j« _x«
+

c" -X2 ~ ]
>

or a* (J
2 - X2

) (
c
2 - V) + y* (c

2 - X2

)
(a

2 - X") + z'
2
(a

2 - X2

)
(i» - A2

)

= (a
2 -X2

)(&
2 -X2

)(c
2 -X2

).

If s' = 0, one of the roots of this cubic is X2 = c
2

, the other two
being given by the equation

af (ft« _ x2

) + y-»
(

« - X2
) = (a

2 - X2

)
(J

2 - X2

),

and a root of this equation will also be X2 = c
3
, if

x y
a2-^ +

Z,
2 _ c

*- L

The points on the focal ellipse therefore belong in a special

sense to the value X2 = c
2
. In like manner the plane y =

separates hyperboloids of one sheet from those of two, and to

this limit belongs in a special sense the hyperbola in that

x* s
2

plane —^—^ + -5

—

yt
= 1. The focal conic in the third principal

plane is imaginary.

151. The three quadrics which can be drawn through a given

point confocal to a given one are respectively an ellipsoid, a

hyperboloid of one sheet, and one of two. For if we substitute

in the cubic of the last article successively

X2 = «2
, X2 = 6

2

, X2 = c
2
, X2 = -oo,

we get results successively -\ h — , which prove that the equa-

tion has always three real roots, one of which is less than c
2

,

the second between c
2 and &

2

, and the third between 6
s and a

2

;

and it was shown in the last article that the surfaces corres-

ponding to these values of X2
are respectively an ellipsoid, a

hyperboloid of one sheet, and one of two.

152. Another convenient way of solving the problem to

describe through a given point quadrics confocal to a given

one, is to take for the unknown quantity the primary axis

of the sought confocal surface. Then since we are given

12
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a!
2 - b'

2 and a 2 - c'
2 which we shall call ft

2 and ft
2
, we have the

equation

x'
2

y'
2

z'
2

a'
2 +

a'
2
-ft'

+
a'

2 -k2 '

or a'
6 - a'* {ft' + It + x'

2 + y'
2 + z'

2

)

+ a'
2 [ftW + x'

2
(A

2 + F) + y'
2Ul + «%} -*'W = 0.

From this equation we can at once express the co-ordinates

of the intersection of three confocal surfaces in terms of their

axes. Thus if a"', a"'\ a'"
2 be the roots of the above equation,

the last term of it gives us at once x'
J
ft
2k2 = aW"2

, or

(a
2 -6a

)(a
2 -c2)"

And by parity of reasoning, since we might have taken ¥ or c
1

for our unknown, we have

,2 _ b'
2
b"

2
b'"

2

,,_ c'V'V"
2

,
y -(b2 -a')(b'-c')>

Z
~{c2 -a2

)(c
2 -b2)'

N.B. In the above we suppose b'
2
, b"

2

, &c. to involve their

signs implicitly. Thus c"
2 belonging to a hyperboloid of one

sheet is essentially negative, as are also b'"
2 and c'"

2
.

153. The preceding cubic also enables us to express the

radius vector to the point of intersection in terms of the axes.

For the second term of it gives us

aF + y'2 + z'
2 + [a

2 - b
2

) + {a
2 - c

2

) = a'
2 + a"

2 + a""\

or x'
2 + y'2 + z'

2 = a'
2 + b"

2 +c'm.

This expression might also have been worked out directly from

the values given for x'
2

,
y'2

, z
n

in the last article, by a process

which may be employed in reducing other symmetrical functions

of these co-ordinates. For on substituting the preceding values

and reducing to a common denominator, x'
2 +y'2 +z'2

becomes

a'V'V"2
(b

2
-<?) + b'

2
b"

2
b'"

2
(c

2 - a2

) + c'V'V"2
(a

2 - b
2

)

(&
2 -c2

)(a
2 -c2

)(a
2 -&2

)

* These expressions enable us easily to remember the co-ordinates of the umbilics.

The umbilics are the points (Art. 142) where the focal hyperbola meets the surface.

But for the focal hyperbola a"2 = a'"2 = a2 — b2. The co-ordinates are therefore

a"1 — A2 ft2 — r2

a2 — c2 a2— c2
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But the numerator obviously vanishes if we suppose either

6
2 = c

2
, c* = a!

t

i
a
2 = 6

2
. It is therefore divisible by the de-

nominator. The division then is performed as follows : Any
term, for example oWV, when divided by a2 - 6

2
(or by

its equal a'
2 — b"*) gives a quotient a"V"V, and a remainder

&'W"2
c
2
. This remainder divided by a"

2 - b
m

gives a quotient

VV"V and a remainder &'2&"2
a'"V, which divided in like manner

by a'"
2 - V"* gives a quotient 6'2J"V and a remainder &

,2&"2
5'"V,

which is destroyed by another term in the dividend. Proceeding

step by step in this manner we get the result already obtained.

154. Two confocal surfaces cut each other everywhere at

right angles.

Let x'y'z' be any point common to the two surfaces,^/ and^"

the lengths of the perpendiculars from the centre on the tangent

plane to each at that point, then (Art. 85) the direction-cosines

of these two perpendiculars are

p'x p'y' p'z' p"x' p"y' p"z'

a*"' J'
2

' 7* ' IT ' W ' <F
"

And the condition that the two should be at right angles,

is, (Art. 13)

PP ja'V2 + Vbm +
c'V'j

But since the co-ordinates x'y's' satisfy the equations of both

surfaces we have

a'
2 +

Z>'
2 +

c'
2 ~"

' a"
2 + 6"2

c"
2

And if we subtract one of these equations from the other,

and remember that a"" -an = b"
a- b

n =c"2 — c'
2
, the remainder is

/_»« -2\ )
x '

, J/ , _f; ) _
[a -a

)

|a
,v ,2 + b%„, +

c
,v ,2| - u,

which was to be proved.

At the point therefore where three confocals intersect, each

tangent plane cuts the other two perpendicularly, and the

tangent plane to any one contains the normals to the other two.

155. If a plane be drawn through the centre parallel to any
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tangent plane to a quadric, the axes of the section made by that

plane are parallel to the normals to the two confocals through

the point of contact.

It has been proved that the parallels to the normals are at

right angles to each other, and it only remains to be proved

that they are conjugate diameters in their section. But (Art. 90)

the condition that two lines should be conjugate diameters is

cosa cos a' cos j3 cos/3' cos7 cos 7' _

The direction-cosines then of the normals being

p"x p"y' p"e' p'"x' p'"y' p'"z

lr> lr ' IF' Ir*
'

' lri '

'

T

77*
'

'

we have to prove that

P F
\a"a"*a'"* b'

2
b"

2
b'
m +

c'V'V"
2

}

But the truth of this equation appears at once on subtracting

one from the other the equations which have been proved in

the last article,

xn y"' a'
2

x"
z

y
n

z'
2

a'V'
2 + V%"%

c'V'
2 ~

' a'V"2 +
V*b""

+
e'V"

2 ~

156. To find the lengths of the axes of the central section of a

quadric by a plane parallel to the tangent plane at the point x'y'z'.

From the equation of the surface the length of a central

radius vector whose direction-angles are a, /3, 7 is given by
the equation

1 _ cos
2
a cos

2
/3 cos

2

7

72 ~ ~~1F~
+ ~W~ + ~d^

Put for a, /3, 7 the values given in the last article, and we find

for the length of one of these axes,

p
2 F |aV + ^"4 +

Now we have the equations,

a;'
2

, f_ ,
a'

2

«'V2 +
b'

2
b"

2 +
c'V* ~ °»

«2 y! «^_ 1
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Subtracting we have

x'* y" z-< 1

And substituting this value in the expression already found

for p' we get p
2 = a'

2 — a"
2

. In like manner the square of the

other axis is a'
2 — a'"

2
.

Hence, if two confocal quadrics intersect, and a radius of

one be drawn parallel to the normal to the other at any point

of their curve of intersection, this radius is of constant length.

157. Since the product of the axes of a central section by

the perpendicular on a parallel tangent plane is equal to abc

(Art. 54), we get immediately expressions for the lengths

P'i P"i P"- We have

q"W a

„2 _
«"25"2

c"
2

P ~ (a
2 - a"

2

)
(a'

2 - a'"
2

)
' p ~ (a"

2 - a'
2

)
(a"

2 - a'"
2
)

»

p"* = .

'-a") (a"'" -a"")'

These values might have been also obtained by substituting

in the equation

1 x y z
ti f4 "^ 7*4 ' '4 5p a o c

7

the values already found for a;'
2

,
y'*, z''

z and reducing the re-

sulting value for j?'
2 by the method of Art. 153.

The reader will observe the symmetry which exists between

these values for ^Z
2

,
p"'\ p'"'\ and the values already found for

x'\ y'\ z"\ If the three tangent planes had been taken as

co-ordinate planes, p', p", p" would be the co-ordinates of the

centre of the surface. The analogy then between the values

£orp'p"p'" and those for x'y'z' may be stated as follows: With

the point x'y'z' as centre three confocals may be described

having the three tangent planes for principal planes and inter-

secting in the centre of the original system of surfaces. The

axes of the new system of confocals are a', a", a" ; b', i", V"
;

c, c", c". The three tangent planes to the new system are the

three principal planes of the original system.

If a central section be parallel to one of these principal
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planes (the plane of yz for instance) in the surface to which it

is a tangent, it appears from Art. 156 that the squares of the

axes are a' - 1\ a? - c\ It follows then that the direction and
magnitude of the axes of the section are the same, no matter

where the point x'y'z' be situated. The squares of the axes

are equal, with signs changed, to the squares of the axes of the

corresponding focal conic*

, 158. If D be the diameter of a quadric parallel to the

tangent line at any point of its intersection with a confocal,

and p the perpendicular on the tangent plane at that point,

then pD is constant for every point on that curve of intersec-

tion. For the tangent line at any point of the curve of inter-

section of two surfaces is the intersection of their tangent planes

at that point, which in this case (Art. 154) is normal to the third

confocal through the point. Hence (Art. 156) D* = a
12— a'"'\

a'
a
&'V2

and therefore (Art. 157) p*D* = -% m which is constant if
i ,, i a —a

a, a be given.

159. To find the locus of the pole of a given plane with regard

to a system of confocal surfaces.

Let the given plane be Ax + By + Cz = 1, and its pole ^-
then we must identify the given equation with

whence ^r^=A gr^T*. j^^O.
Eliminating Xs between these equations we find, for the equa-

tions of the locus,

'~B~" ~C*-a>=l-P=*c*.

The locus is therefore a right line perpendicular to the given

plane.

* In the last edition, I said " equal to the axes of the corresponding foeal conies."

I owe to Mr. Todhunter the correction of a mistake which was the less excusable as

Chasles had given the theorem correctly. The section parallel to the plane of the
focal ellipse is a central section of an hyperboloid of two sheets, and is imaginary.

The section parallel to the plane of the imaginary focal conic is a central section of an
ellipsoid and is real.
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The theorem just proved, implicitly contains the solution of

the problem, "to describe a surface confocal to a given one to

touch a given plane." For since the pole of a tangent plane

to a surface is its point of contact, it is evident that but one

surface can be described to touch the given plane, its point of

contact being the point where the locus line just determined

meets the plane. The theorem of this article may also be

stated—"The locus of the pole of a tangent plane to any

quadric, with regard to any confocal, is the normal to the first

surface."

160. To find an expression for the distance between the point

of contact of any tangent plane, and its pole with regard to any

confocal surface.

Let x'y'z' be the point of contact of a tangent plane to the

surface whose axes are a, b, c; £, 17, f the pole of the same

plane with regard to the surface whose axes are a', b', c'. Then,

as in the last article, we have

x _ £ y' _ V z' _ £

, ,
a" -a" , , b

n-V
, , c'

2 -c*
,

whence f-aj = — x, r\-y=—r2—y, £-s=—-j-s,
Qi O C

squaring and adding

^-(•-^{y +^ + f}'
'2 a

whence D=- wherep is the perpendicular from the centre

on the plane. .

161. The axes of any tangent cone to a quadric are the

normals to the three confocals which can be drawn through the

vertex of the cone.

Consider the tangent plane to one of these three surfaces

which pass through the vertex x'y'z'; then the pole of that

plane with regard to the original surface lies (Art. 61) on the

polar plane of x'y'z', and (Art. 159) on the normal to the ex-

terior surface. It is therefore the point where that normal

meet3 the polar plane of x'y'z', that is to say, the plane of

contact of the cone.
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It follows, then (Art. 60), that the three normals meet

this plane of contact in three points, such that each is the

pole of the line joining the other two with respect to the

section of the surface by that plane. But since this is also

a section of the cone, it follows (Art. 67) that the three normals

are a system of conjugate diameters of the cone, and since they

are mutually at right angles they are its axes.

162. If at any point on a quadric a line be drawn touching

the surface and through that line two tangent planes to any

confocal, these two planes will make equal angles with the

tangent plane at the given point on the first quadric. For, by

the last article, that tangent plane is a principal plane of the

cone touching the confocal surface and having the given point

for its vertex, and the two tangent planes will be tangent

planes of that cone. But two tangent planes to any cone

drawn through a line in a principal plane make equal angles

with that plane.

The focal cones (that is to say, the cones whose vertices are

any points and which stand on the focal conies) are limiting

cases of cones enveloping confocal surfaces, and it is still true

that the two tangent planes to a focal cone drawn through any

tangent line on a surface make equal angles with the tangent

plane in which that tangent line lies. If the surface be a cone

its focal conic reduces to two right lines, and the theorem just

stated in this case becomes, that any tangent plane to a cone

makes equal angles with the planes containing its edge of

contact and each of the focal lines. This theorem, however,

will be proved independently in Chap. x.

163. It follows, from Art. 161, that if the three normals be

made the axes of co-ordinates, the equation of the cone must

take the form Ax* + Bif + (V = 0. To verify this by actual

transformation will give us an independent proof of the theorem

of Art. 161, and a knowledge of the actual values of -4, i?, C
will be useful to us afterwards.

The equation of the tangent cone given, Art. 74, is

,,''<'

*i\ r ^ *_ _ , v* 4. y. x t - 1u xjl x yjL .

z±
^ + ^ + 7- 1JU + F + ?- 1

J

=
l^ + # + Z- 1
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If the axes be transformed to parallel axes passing through the

vertex of the cone, this equation becomes, as is easily seen,

U*
+

6
2 +

c
a

1)w + V +
<?)

-W + T +
~s)

'

Now to transform to the three normals as axes, we have to

substitute the direction-cosines of these lines in the formulas

of Art. 17, and we see that we have to substitute

."~' .„"'—'
r px p x p X
for x, ^x+Z-^y+r— g

,
Lb W to

for y,^x+ P^y +^z,
, p'z' p"z' p'"z'
for z, r—x +^y + i^ z.

164. In order more easily to see the result of this substitu-

tion the following preliminary formulae will be useful

:

Let £! + £ + !?_! = £•

x" w'
2

z'
2

then since -^ + ^ +-^ - 1 = 0,
ft o c

a;'
2 «'2 »'2 8

we have _ + _ + _ =^—,.

In like manner
x1

* y
2

s
'2 8

aV'2
' 5

2
Z>"

2 ;

cc

x* y'3
z'» S

and hence „ „ ,, „ + *
a + -oW ' Fb'"V2 ' cVV ,a ~(a'8 -a!

)(a"
!-ay

a'
4 +

&'4
+

c'
4 ~/s

Lastly, since -* + ^ + -* = -*

,

a;'
2 y" z'

2
_ 8

and «V +W 4
c-r 0--0-'

. x'* jT _*P 5 1
W6 VC oV +

i'V
+

c'V ~ (a'
2 - a

2

)

2 /2
(a'

2 - a8

)

-

* It may be observed that this quantity <S is equal to

(a" - a2
) (a"2 - a2

) (a'"1 - a2
)

a2 b2 c2

for a2 — a'2, a2 — a"2, a2 — a'"2 are the roots of the cubic of Art. 150, whose absolute

termia«W<S2&
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165. When now we make the transformations directed, in

the left-hand side of the equation of Art. 163, the coefficient

of x" is found to be

and that of xy is

, „„( x'* y'* e- }W |aW2 +
Wb'*b"*

+
cVV'2

J

'

The left-hand side therefore of the transformed equation is

o,/ p'x
,

p"y
,

p'"z \
a

f
x* f z

2
)WW +

a"
2-a2 +

a'"
2- a2

)
b
\a'*-a*

+
a'"- ct

+
a'"

2-a2
j

"

But the quantity —T + %jL _j_ _ treated in like manner becomes

/ y'g j/'y
,

p'"* \

W2 - a2 +
a"

2 - a
2 +

a'"
2 - aV

'

Its square therefore destroys the first group of terms on the

other side of the equation, and the equation of the cone becomes

a;
2

y
2

a
2

12 2 ' 112 2 l 1112 2 )

a —a a —a a — a '

which is the required transformed equation of the tangent cone.

166. As a particular case of the preceding may be found

the equation of either focal cone (Art. 162) ; that is to say, the

cone whose vertex is any point x'y'z' and which stands on the

focal ellipse or focal hyperbola. These answer to the values

a2 - c
2
, a2 - b

2
for the square of the primary axis : the equa-

tions therefore are
2 2 2x v z

c'
2 +

c"
2 +

c'"
2

»

as
2

y
2

z* _
772 "<* Jin *T~ 71,12

"•

These equations might also have been found, by forming, as at

p. 83, the equations of the focal cones, and then transforming

them as in the last articles.

It may be seen without difficulty that any normal and the

corresponding tangent plane meet any of the principal planes
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in a point and line which are pole and polar with regard to

the focal conic in that plane. This is a particular case of

Art. 161.

The formulae employed in the articles immediately preced-

ing enable us to transform to the same new axes any other

equations.

Ex. 1. To transform the equation of the quadrie itself to the three normals

through any point x'y'z' as axes. The equation transformed to parallel axes becomes

a? b2 c2 \a2 o2 (? I

And when the axes are turned round, we get

/ p'x p"y p'"z \»_ ^
,

»*
,

s"

W2 - a2 a"2 - a2 a'"2 - a2 ) ~ a'2 - a2 a"2 - a2 a"'2 - a2 '

The quantity under the brackets on the left-hand side of the equation is evidently the

transformed equation of the polar plane of the point.

Ex. 2. The preceding equation is somewhat modified if the point x'y'z' is on the

surface. The equation transformed to parallel axes is

b2

LBtMW HF +
if
+ ?}

= 7'
then the equation, transformed to the three normals as axes, is

x2
y
2 z2 ^p'xy 2p"xz 2x

___ n
y»
+
a2 - a'2

+
a? - a"2

~
p (a2 - a'2)

~
p (a2 - a"2

)

+ J ~~ "

It is to be observed that y is the diameter parallel to the normal at the point x'y'z',

and that we have

1 1 1 _ 1 1 1

y
2
+

a2 - a'2
+

a2 - a"2 ~ a2
+

b2
+

c2
'

and the transformed equation may be otherwise written

(p'x—py) 2 (p"x—pz) 2
, ., „

a2
-" + a2 -a"2

+ (* + *)2 =**

Ex. 3. To transform the equation of the reciprocal surface with regard to any point

to the three normals through the point. The equation is (Art. 123)

(xx' + yy
1 + zz

1 + J2
)
2 = a2x2 + b2y

2 + <?z\

and the transformed equation is found to be

(a'2 - a2
) x2 + (a,"2 - a2) y

2 + (a'"2 - a2
) z2 + 2i? (p'x +p"y +p'"z) +i* = 0.

167. To return to the equation of the tangent cone (Art. 165)

.

Its form proves that all cones having a common vertex and cir-

cumscribing a series of confocal surfaces are coaxal and confocal.

For the three normals through the common vertex are axes to

every one of the system of cones ; and the form of the equation

shows that the differences of the squares of the axes are inde-
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pendent of a'. The equations of the common focal lines of the

cones are (Art. 143)

a? z>

a'
2 -a"2 ~a"2 -«'"2

' V

But it was proved (Art. 156) that the central section of the

hyperboloid of one sheet which passes through x'y'z' is

a?
,

s
2

'

"2 '2 "T" "2 ~'"2 )

and the section of the hyperboloid by the tangent plane itself is

similar to this, or is also

= 0.

Hence the focal lines of the system of cones are the generating

lines of the hyperboloid which passes through the point—a theorem

due to Chasles, Liouville, XI. 121, and also noticed by Jacobi

{Crelle, Vol. XII. p. 137).

This may also be proved thus : Take any edge of one of the

system of cones, and through it draw a tangent plane to that

cone and also planes containing the generating lines of the

hyperboloid ; these latter planes are tangent planes to the hyper-

boloid, and therefore (Art. 162) make equal angles with the

tangent plane to the cone. The two generators are therefore

such that the planes drawn through them and through any

edge of the cone make equal angles with the tangent plane to

the cone ; but this is a property of the focal lines (Art. 162).

Coe. 1. The reciprocals of a system of confocals, with

regard to any point, have the same planes of circular section.

For the reciprocals of the tangent cones from that point have

the same planes of circular section (Art. 144), and these reci-

procals are the asymptotic cones of the reciprocal surfaces.

Coe. 2. If a system of confocals be projected orthogonally

on any plane, the projections are confocal conies. The pro-

jections are the sections by that plane of cylinders perpendicular

to it, and enveloping the quadrics. And these cylinders may

be considered as a system of enveloping cones whose vertex

is the point at infinity on the common direction of their

generators.
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168. Two confocal surfaces can be drawn to touch a given line.

Take on the line any point x'y'z ; let the axes of the three

surfaces passing through it be a', a", a"\ and the angles the

line makes with the three normals a, /8, 7. Then it appears,

from Art. 165, that a is determined by the quadratic

cos
2
a cos

2
/3 cos

2
7

/2 2 ~ 'm 2 ' '"2 2a —a a —a a —a

If a and a' be the roots of this quadratic, the two cones

x" 1? z
l

-

n X* y" z'

V2 o 2 ^."2 « 2 V 2 n 2 ? rt
'2 n'2 "2 n'2 rt

'"2 n

'

2

have the given line as a common edge, and it is proved, pre-

cisely as at Art. 154, that the tangent planes to the cones

through this line are at right angles to each other. And since

the tangent planes to a tangent cone to a surface, by definition

touch that surface, it follows that the tangent planes drawn

through any right line to the two confocals which it touches, are

at right angles to each other.

The property that the tangent cones from any point to

two intersecting confocals cut each other at right angles, is

sometimes expressed as follows: two confocals seen from any

point appear to intersect everywhere at right angles.

169. If through a given line tangent planes be drawn to a

system of confocals, the corresponding normals generate a hyper-

bolic paraboloid.

The normals are evidently parallel to one plane; namely,

the plane perpendicular to the given line ; and if we consider

any one of the confocals, then, by Art. 159, the normal to any

plane through the line contains the pole of that plane with

regard to the assumed confocal, which pole is a point on the

polar line of the given line with regard to that confocal. Hence,

every normal meets the polar line of the given line with regard

to any confocal. The surface generated by the normals is

therefore a hyperbolic paraboloid (Art. 111). It is evident that

the surface generated by the polar lines, just referred to, is

the same paraboloid, of which they form the other system of

generators.



128 CONPOCAL SURFACES.

The points in which this paraboloid meets the given line

are the two points where this line touches confocals.

A special case occurs when the given line is itself a normal

to a surface TJ of the system. The normal corresponding to

any plane drawn through that line is found by letting fall a

perpendicular on that plane from the pole of the same plane

with regard to U (Art. 159), but it is evident that both pole

and perpendicular must lie in the tangent plane to Z7 to which

the given line is normal. Hence in this case all the normals

lie in the same plane.

From the principle that the anharmonic ratio of four planes

passing through a line is the same as that of their four poles with

regard to any quadric, it is found at once that any four of the

normals divide homographically all the polar lines correspond-

ing to the given line with respect to the system of surfaces. In

the special case, now under consideration, the normals will

therefore envelope a conic, which conic will be a parabola, since

the normal in one of its positions may lie at infinity ; namely,

when the surface is an infinite sphere (Art. 150). The point

where the given line meets the surface to which it is normal

lies on the directrix of this parabola.

170. If a, /3, 7 be the direction-angles, referred to the three

normals through the vertex, of the perpendicular to a tangent

plane of the cone of Arts. 163, &c, since this perpendicular lies

on the reciprocal cone, a, /3, 7 must satisfy the relation

(a" - a2
) cos

2
a + (a"

2 - a2

) cos
2
/3 + (a""

2 - a2

) cos
2

7 = 0,

or a'
2
cos

2
a + a"

2
cos

2
/3 + a'"

2
cos

2
7 = a2

.

This relation enables us at once to determine the axis of the

surface which touches any plane, for if we take any point on

the plane, we know a\ a", a" for that point, as also the angles

which the three normals through the point make with the plane,

and therefore a2
is known.

171. If the relation of the last article were proved inde-

pendently, we should, by reversing the steps of the demon-

stration, obtain a proof without transformation of co-ordinates
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of the equation of the tangent cone (Art. 165). The following

proof is due to M. Chasles : The quantity

a'
2
cos

2
a + a"

2
cos

2
/3 + a'"

2
cos

2

?

is the sum of the squares of the projections on a perpen-

dicular to the given plane of the lines a', a", a". We have

seen (Art. 157) that these are the axes of a surface having

x'y'z' for its centre and passing through the original centre.

And it was proved in the same article that three other con-

jugate diameters of the same surface are the radius vector

from the centre to x'y'z\ together with two lines parallel to

two axes of the surface and whose squares are a2 — S
2
, a2 — c

2
.

It was also proved (Art. 94) that the sum of the squares of

the projections on any line of three conjugate diameters of a

quadric is equal to that of any other three conjugate diameters.

It follows then that the quantity

a'
2
cos

2
a + a"

2
cos

2
/3 + a'"

2
cos

2
?

is equal to the sum of the squares of the projections on the

perpendicular from the centre on the given plane, of the radius

vector, and of two lines whose magnitude and direction are

known. The projections of the last two lines are constant,

while the projection of the radius vector is the perpendicular

itself which is constant if x'y'z belong to the given plane.

It is proved then that the quantity

a'
2
cos

2
a + am cos

2
/3 + a'"

2
cos

2

?

is constant while the point x'y'z' moves in a given plane ; and

it is evident that the constant value is the a
2
of the surface

which touches the given plane, since for it we have

cosa=l, cos/3 = 0, cos7 = 0.

172. The locus of the intersection of three planes mutually at

right angles, each of which touches one of three confocals is a sphere.

This is proved as in Art. 89.

Add together

_p* =o? cos
2
a +b* cos

2
/3 +c2

cos
2

?,

f =a'2
cos

2
a' +J'2

cos
2
/3' +c'

2
cos

2
?',

p'"* = a"
2
cos

2
a" + 5"2 cos

2
/3" + c"

2
cos

2
?",

when we get p
2 = a2 + ¥ + c

2 + {a'
2- a2

) + (a"
2- a

2

),

K
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where p is the distance from the centre of the intersection of

the planes.

Again, by subtracting one from the other, the two equations

f=a2
cos'

2a+&2
cos

2
/3+ c

2
008*7, f=d* cos

2
a+ J'

2
cos

2
/3+c'

2
cos

2

y,

we learn that the difference of the squares of the perpendiculars

on two parallel tangent planes to two confocals is constant and

equal a2 - a
1
.

It may be remarked that the reciprocal of the theorem of

Art. 89 is that if from any point there be drawn three radii

vectores to a quadric, mutually at right angles, the plane joining

their extremities envelopes a surface of revolution. If be on

the quadric, the plane passes through a fixed point.

173. Two cones having a common vertex envelope two con-

focals ; to find the length of the intercept made on one of their

common edges by a plane through the centre parallel to the tangent

plane to a confocal through the vertex. The intercepts made

on the four common edges are of course all equal, since the

edges are equally inclined to the plane of section which is

parallel to a common principal plane of both cones.

Let there be any two confocal cones

x y s n x' y' «'

a
2 +

/3
2 +

7
2 ~ "'

a'
2 +

/3'
2 + 7'

then for their intersection, we have

x' y
crV (/3

2 - t
2

) /3
a
/3'

2

(7
2 - «

2

) tV (a" - $) '

and if the common value of these be X2

, we have

a? +f + z* = X2
(a

2 - /3
2

) (/3
2 - 7

2

)
(a

2 - 7
2

).

Putting in the values of a
2

, /3
2

, 7
2 from the equations of the

tangent cones (Art. 168), and determining X2 by the equation
'27'2 '2

(see Art. 157) x'
2 = 7-3 „„. , „ ™

, we get for the square
v '

[a -a ){a —a )
1 L

of the required intercept

a'W2

__
(«'

2 -a2

)
(a'

2 -a'2)'
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If then the confocals be all of different kinds this value shews

that the intercept is equal to the perpendicular from the centre

on the tangent plane at their intersection.

In the particular case where the two cones considered are

the cones standing on the focal ellipse, and on the focal hyper-

bola, we have a
8 = a

2 — c
2

, a'
2 = a2 — b

2

, and the intercept reduces

to a. Hence, if through any point on an ellipsoid be drawn

a chord meeting both focal conies, the intercept on this chord by

a plane through the centre parallel to the tangent plane at the

point will be equal to the axis-major of the surface. This

theorem, due to Prof. MacCullagh, is analogous to the theorem

for plane curves, that a line through the centre parallel to a

tangent to an ellipse cuts off on the focal radii portions equal

to the axis-major.

174. M. Chasles has used the principles just established to

solve the problem to determine the magnitude and direction of

the axes of a central quadric being given a system of three

conjugate diameters.

Consider first the plane of any two of the conjugate dia-

meters, and we can by plane geometry determine in magnitude

and direction the axes of the section by that plane. The

tangent plane at P, the extremity of the remaining diameter,

will be parallel to the same plane. Now the centre of

the given quadric is the point of intersection of three con-

focals determined as in Art. 157, having the point P for then-

centre. If now we could construct the focal conies of this new

system of confocals, then the two focal cones, whose common

vertex is the centre of the original quadric, determine by their

mutual intersection four right lines. The six planes containing

these four right lines intersect two by two in the directions of

the required axes, while (Art. 173) the three tangent planes

through the point P cut off on these four lines parts equal in

length to the axes.

The focal conies required are immediately constructed. We
know the planes in which they lie and the direction of their

axes. The lengths of their axes are to be a
2 -«" 2

, a'
2 -a"2

;

a8 - a'
2

, a' - a"\ But now the lengths of the axes of the given

K2
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section are d' — a"\ a" — a"* (Art. 156), and these latter axes

being known, the axes of the focal conies are immediately found.

175. If through any point P on a quadric a chord be

drawn, as in Art. 173, touching two confocals, we can find

an expression for the length of that chord. Draw a parallel

semi-diameter through the centre, the length of which we shall

call R. And if through P there be drawn a plane conjugate

to this diameter, and a tangent plane, they will intercept

(counting from the centre) portions on the diameter whose

product = R2
.

' But the portion intercepted by the conjugate

plane is half the chord required, and the portion intercepted

by the tangent plane is the intercept found (Art. 173). Hence

2E> V{(a'
2 -a'!

)(a"
i -a12

) }

a'b'c'

When the chord is that which meets the two focal conies

;

a
2 = a'

2 - b'\ a'
2 = a'

2 - c'
2
, and C= A-1 a

176. To find the locus of the vertices of right cones which

can envelope a given surface.

In order that the equation -^
5 + —^-—„ + —^—-r, =

a —a a —a a — a

may represent a right cone, two of the coefficients must be

equal ; that is to say, a" = a', or a" = a", or in other words,

for the point x'y'z' the equation of Art. 150 must have two

equal roots, but from what was proved as to the limits within

which the roots lie, it is evident that we cannot have equal

roots except when \ is equal to one of the principal axes, or

when x'y'z' is on one of the focal conies. This agrees with

what was proved (Art. 147).

It appears, hence, as has been already remarked, that the

reciprocal of a surface, with regard to a point on a focal conic,

is a surface of revolution ; and that the reciprocal, with regard

to an umbilic, is a paraboloid of revolution. For an umbilic

is a point on a focal conic (Art. 141), and since it is on the

surface the reciprocal with regard to it is a paraboloid.

Another particular case of this theorem is that two right

cylinders can be circumscribed to a central quadric, the edges
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of the cylinders being parallel to the asymptotes of the focal

hyperbola. For a cone whose vertex is at infinity is a cylinder.

As a particular case of the theorem of this article, the cone

standing on the focal ellipse will be a right cone only when
its vertex is on the focal hyperbola, and vice versd. This

theorem of course may be stated without any reference to the

quadrics of which the two conies are focal conies; that the

locus of the vertices of right cones which stand on a given conic

is a conic of opposite species in a perpendicular plane. If the

equation of one conic be —
2 + yj = l, that of the other will

x* _ t
a b

It was proved (Ex. 8, p. 89) that if a quadric circumscribe

a surface of revolution, the cone enveloping the former whose

vertex is a focus of the latter is of revolution. From this

article then we see that the focal conies of a quadric are the

locus of the foci of all possible surfaces of revolution which

can circumscribe that quadric.

177. The following examples will serve further to illustrate

the principles which have been laid down

:

Ex. 1, To find the locus of the intersection of generators to a hyperholoid which

cut at right angles.

The section parallel to the tangent plane which contains the generators must be

an equilateral hyperbola, so that (Art. 156) (a"2 - a'2) + (a"2 - a'"2) = 0. But (Art.

153) the square of the radius vector to the point is

a"2 + J»2 + c»2 _ (<j"2 _ a/2) _ (a
»2 _ a'»2).

We have, therefore, the locus a, sphere, the square of whose radius is equal to

ra
"2

jf. J"2 + c"2. Otherwise thus : If two generators are at right angles, their plane

together with the plane of each and of the normal at the point, are a system of three

tangent planes to the surface, mutually at right angles, whose intersection lies on the

sphere r2 = a"2 + 6"2 + c"2 (Art. 89).

Ex. 2. To find the locus of the intersection of three tangent lines to a quadric

mutually at right angles (see Ex. 6, p. 82).

Let a, /3, y be the angles made by one of these tangents with the normals through

the locus point, and since each of these tangents lies in the tangent cone through

that point, we have the conditions

cos2

0,1-
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Adding, we have —
1 1 = 0,& '

a'2 -a2 a"2 - a2 a'"2 - a2
'

But a2 - a'2
, a2 - a"2

, a2 - a"'2 are the three roots of the cubic of Art. 150 which

arranged in terms of X2 is

X6 + X4 (x2 + y
1 + z2 - a? - J2 - c2) - X2

{(6
2 + c2) x2 + (c2 + o2

)f + (a2 + J2) z
2

_ jzc2 - e2a2 - a2i2
} + J2c2a:2 + c%y + a2J2z2 - a262c2 = 0.

And the sum of the reciprocals of the roots will vanish when the coefficient of X2 = 0.

This, therefore, gives us the equation of the locus required.

Ex. 3. The section of an ellipsoid by the tangent plane to the asymptotic cone

of a confocal hyperboloid is of constant area.

The area (Art. 92) is inversely proportional to the perpendicular on » parallel

tangent plane, and we have

p2 = a? cos2 a + b2 cos2
/3 + c2 cos2 y.

But since the perpendicular is an edge of the cone reciprocal to the asymptotic cone

of the hyperboloid, we have

= a"' cos2 a + V2 cosz
/3 + c'

2 cos2 y,

whence p2 = a2 — a'-.

Ex. 4. To find the length of the perpendicular from the centre on the polar plane

of x'y'z' in terms of the axes of the confocals which pass through that point.

Am. If a'2 - o2 = h2
, a"2 - a2 = h2, a'"2 - a2 = P,

1 _ VM2 fl i 1 1 1 1|

p2 ~ a2b2c' \a?
+

b2
+

c2
+

h2
+
k2
+

I
2
)

'

178. Two points, one on each of two confocal ellipsoids,

are said to correspond if

x_X y_Y z_Z

It is evident that the intersection of two confocal hyper-

boloids pierces a system of ellipsoids in corresponding points,
2 I'i "2

for from the value (Art. 152) x2 = —
5
—

2
^- , the quantity

a [a — b
)
[a —c)

-j is constant as long as the hyperboloids, having a'
2

, a"
2
for

axes, are constant.

It will be observed that, the principal planes being limits

of confocal surfaces, points on the principal planes determined

x'
2 X2

y'
2 Y2

by equations of the form -^ = -^—^ ,

(fr
= —^ , Z 2 = Q,

correspond to any point x'y'z' on a surface, and when x'y'z' is

in the principal plane, the corresponding point is on the focal
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179. The points on the plane of xy, which correspond to

the intersection of an ellipsoid with a series of confocal surfaces,

form a series of confocal conies, of which the points corre-

sponding to the umbilics are the common foci.

Eliminating z
2 between the equations

J f z_
2

x*_ f £_
a
2 + ¥ +

c
2 ~ ' a'

2 + 6'2
+

c'
2 ~ '

we find v

.J + V '* = 1,aa bo

whence the corresponding points are connected by the relation

£! II -
a"

+
6'2 ~

This is evidently an ellipse for the intersections with byper-

boloids of one sheet, and a hyperbola for the intersections with

hyperboloids of two.

The co-ordinates of the umbilics are

2 12
2 2

a — » 2 ~

the points corresponding to which are

X2 = a
2 -5a

, Y=0,

which are therefore the foci of the system of confocal conies.

Curves on the ellipsoid are sometimes expressed by what

are called elliptic co-ordinates ; that is to say, by an equation

of the form (a, a") = 0, expressing a relation between the

axes of the confocal hyperboloids which can be drawn through

the point. Now since it appears from this article that a is half

the sum and a" half the difference of the distances of the

points corresponding to the points of the locus from the points

which correspond to the umbilics, we can from the equation

<f>(a, a")=0 obtain an equation <f>(p+p, p — p') = 0, from which

we can form the equation of the curve on the principal plane

which corresponds to the given locus.

180. If the intersection of a sphere and an ellipsoid be pro-

jected on either plane of circular section by lines parallel to

the least (or greatest) axis, the projection will be a circle.
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This theorem is only a particular case of the following:

that "if any two quadrics have common planes of circular

section, any quadric through their intersection will have the

same ;" a theorem which is evident, since if by making z = in

U and in V, the result in each case represents a circle, making

z = in U+JcV, must also represent a circle.

It will be useful, however, to investigate this particular

theorem directly. If we take as axes the axis of y which is

a line in the plane of circular section and a perpendicular to

it in that plane, the y will remain unaltered, and the new
x2 = the old a? + z

2
. But since by the equation of the plane

«2 2
7i
2

7i
2 2 /i2

ot circular section z =—. .-n »ar, the new x =—, .^ r,x .

But for the intersection of

J + l + ?
=1

'
a? +f + ** = r%

2 2 7.2 2

we have —— xi
-i ^— y=r — c ,

which, on substituting for a?
2

,

V*-<? a" . J
a —

c

a
.

i
tc

2 becomes —^— (as
2 + #

2

)
= r

2 — c
2
.

«2 -c2 '6a
Z>
2

It will be observed that to obtain the projection on the

planes of circular sections we left y unaltered, and substituted
72 2 2

for a;
2

, -5
5 . 5-j a;

2
. But to obtain the points corresponding

Qj —GO ..

to any point, as in the last article, we substitute for x'\ —^
2
x'\

I* a — c

and for y*, -73 2 «A Now the squares of the former co-ordinates

5
2 -c2

have to those of the latter the constant ratio —5-5— . Hence
¥

we may immediately infer from the last article that the pro-

jection of the intersection of two confocal quadrics on a

plane of circular section of one of them is a conic whose foci

are the similar projections of the umbilics ; and, again, that

given any curve <j> (a, a") on the ellipsoid we can obtain the

algebraic equation of the projection of that curve on the plane

of circular section.
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181. The distance between two points, one on each of two

confocal ellipsoids is equal to the distance between the two corre-

sponding points.

We have

(x-Xy+(y-Y)*+(z-ZT

= x2
+ tfl-z* +X2+Y2 + Z2 -2[xX+yY+zZ).

Now (Art. 153)

x*-iy
2 + z

2 = a2
-fb'

2 + c"
2
, X2 + Y2 + Zi = A2 + B' 2 + C"\

But for the corresponding points

X 12 + Y'
2 + Z'2 = A2 + V + c"

2

, x'
2 + y'2 + z'

2 = a2 + Bn + C"2
.

The sum of the squares therefore of the central radii to the

two points is the same as that for the two corresponding points.

But the quantities xX, y Y, zZ are evidently respectively equal

Ax aX
to x'X', y' Y', z'Z', since X' =— , x' = —j- , &c. The theorem

of this article, due to Sir J. Ivory, is of use in the theory of

attractions.

182. In order to ohtain a property of quadrics analogous

to the property of conies that the sum of the focal distances

is constant, Jacobi states the latter property as follows : Take
the two points C and C" on the ellipse at the extremity of the

axis-major, then the same relation p + p = 2a which connects

the distances from C and 0" of any point on the line joining

these points, connects also the distances from the foci of any

point on the ellipse. Now, in like manner, if we take on the

principal section of an ellipsoid the three points which corre-

spond in the sense explained (Art. 178) to any three points

on the focal ellipse, the same relation which connects the dis-

tances from the former points of any point in their plane will

also connect the distances from the latter points of any point

on the surface. In fact, by Art. 181, the distances of the

points on the confocal conic from a point on the surface will

be equal to the distances of the point on the principal plane
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which corresponds to the point on the surface, from the three

points in the principal section.*

183. Conversely, let it be required to find the locus of

a point whose distances from three fixed points are connected

by the same relation as that which connects the distances from

the vertices of a triangle, whose sides are a, 5, c, to any point

in its plane. Let p, p\ p" be the three distances, then (Art. 50)

the relation which connects them is

av-/o (p'-n+v^-p*) (p^-n +c*
(P

"2v) w-p")
-a%b2+c*-d2)p*-b\c*+ai-V)p'*-c%a*+V-ci

)p
m+aibV=0.

But p
3 — p'\ &c. being only functions of the co-ordinates of the

first degree, the locus is manifestly only of the second degree.

That any of the points from which the distances are

measured is a focus, is proved by shewing that this equation

is of the form U+ LM, where U is the infinitely small sphere

whose centre is this point. In other words, it is required to

prove that the result of making p" = in the preceding equation

is the product of two equations of the first degree. But that

result is

a2

{p
h
< - c

2
) (jT - V) + [by - c'V"

2

)
{p"> - p"2 +b*- c

9

).

Let now the planes represented by p" — p
2 — c'

2

,

p'"2 — p'2 — ft* be

L and M, then the result of making p'2 = Q in the equation is

d2LM+ {PL - c*M) [L - M),

or 5«i" - ibcLM cos.4 + c
lM\

where A is the angle opposite a in the triangle abc. But this

breaks up into two imaginary factors, shewing that the point

we are discussing is a focus of the modular kind.

* Mr. Townsend has shewed from geometrical considerations (Cambridge and

Dublin Mathematical Journal, Tol. III., p. 154) that this property only belongs to

points on the modular focal conies, and in fact the points in the plane y which

correspond to any point x'y'z* on an ellipsoid are imaginary, as easily appears from

the formula of Art. 180. Mr. Townsend easily derives Jacobi's mode of generation

from MacCtdlagh's modular property. For if through any point on the surface we
draw a plane parallel to a circular section, it will cut the directrices corresponding

to the three fixed foci in a triangle of invariable magnitude and figure, and the

distances of the point on the surface from the three foci will be in a constant ratio

to its distances from the vertices of this triangle. And a similar triangle can be

formed with its sides increased or diminished in a fixed ratio, the distances from the

vertices of which to the point x'y'z' shall be equal to its distances from the foci.
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184. If several parallel tangent planes touch a series of
confocals, the locus of their points of contact is an equilateral

hyperbola.

Let a, /3, 7 be the direction-angles of the perpendicular on

the tangent planes. Then the direction-cosines of the radius

. , ,, dl
cos a b* cos/3 c

2
cos7

vector to any point of contact are , , :

rp rp rp

as easily appears by substituting in the formula (Art. 85)

cosa= j^-T , r cosa' for x and solving for cosoc'. Forming then

by Art. 15, the direction-cosines of the perpendicular to the

plane of the radius vector and the perpendicular on the tangent

plane, we find them to be

(J* — c") cos/3 C0S7 (c
2 — a'

2

) cosy cosa (**- ^O cosa cos/3

rp sin<£ rp sin$ rp s'm<p

where is the angle between the radius vector and the per-

pendicular. Now the denominator is double the area of the

triangle of which the radius vector and perpendicular are sides.

Double the projections, therefore, of this triangle on the co-

ordinate planes are

(S
a — c

2
) cos/3 cosy, (c

2 — a
2
) cosy cosa, (a

2 — Z>
2

) cosa cos/3.

Now these projections being constant for a system of confocal

surfaces, we learn that for such a system, both the plane of

the triangle and its magnitude is constant. If then CM be

the perpendicular on the series of parallel tangent planes and

PM the perpendicular on that line from any point of contact

P, we have proved that the plane and the magnitude of the

triangle GPM are constant, and therefore the locus of P is an

equilateral hyperbola of which CM is an asymptote.

CURVATURE OF QUADRICS.

185. The general theory of the curvature of surfaces will

be explained in Chap. XL, but it will be convenient to state

here some theorems on the curvature of quadrics which are

immediately connected with the subject of this chapter.
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If a normal section be made at any point on a quadric, its

radius of curvature at that point is equal to — , where 8 is the

semi-diameter parallel to the trace of the section on the tangent

plane, and p is the perpendicular from the centre on the tangent

plane.

We repeat the following proof by the method of infini-

tesimals from Conies, p. 354, which see.

Let P, Q be any two points on a quadric ; let a plane

through Q parallel to the tangent plane at P meet the central

radius CP in R, and the normal at P in 8, then the radius

of a circle through the points P, Q having its centre on PS
PQ''

is . But if the point Q approach indefinitely near to P,

QP is in the limit equal to QB ; and if we denote CP and

the central radius parallel to QB by a' and 8, and if P' be

the other extremity of the diameter CP, then (Art. 70)

82
: a'

2
:: QB' : PB.BP' (=2a'.PB)

;

therefore QB2 = '-.— and the radius of curvature = —, . -^r^.

.

a a PS
But if from the centre we let fall a perpendicular CM on the

tangent plane, the right-angled triangle CMP is similar to

PBS, and PB : PS :: a : p.' And the radius of curvature is

8' a 82

therefore —T . — = — ; which was to be proved.
a p p

If the circle through PQ have its centre not on PS, but on

any line PS', making an angle 6 with PS, the only change

PQ'
is that the radius of the circle is p, , S' being still on the

plane drawn through Q parallel to the tangent plane at P.

But PS evidently = PS' cos 6. The radius of curvature is

PQ*
therefore —p^ cos 6, or the value for the radius of curvature

of an oblique section is the radius of curvature of the normal

section through PQ, multiplied by cos#.

186. These theorems may also easily be proved analytically.

It is proved [Conies, p. 213) that if ax' + 2nxy + by
2 + 2mx =
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be the equation of any conic, the radius of curvature at the

origin is = =- . If then the equation of any quadric, the plane

of xy being a tangent plane, be

ax1 + 2nxy + by* + 2mxz + 2lyz + cz* 4 2rz = 0,

then the radii of curvature by the sections y = 0, x = are

• T T
respectively -

> t • But if the equation be transformed to

parallel axes through the centre, the terms of highest degree

remain unaltered, and the equation becomes

ax2 + 2nxy + by* + 2mxz -f 2lyz + cz'' = H.

TJ Tf
The squares of the intercepts on the axes of a; and y are — ,-=-.

This proves that the radii of curvature are proportional to the

squares of the parallel semi-diameters of a central section. And
since, by the theory of conies, the radius of curvature of that

section which contains the perpendicular on the tangent plane

S*
is — , the same is the form of the radius of every other section.

The same may be proved by using the equation of the

quadric transformed to any normal and the normals to two

confocals as axes (see Ex. 2, Art. 166), viz.

x2 y* z* 2p'xy 2p"xz 2x _
^ +Z^Za + d'-am ~ p{a?-a'*) ~jT^^O + J

The radii of curvature of the sections by the planes z = 0, y =
2 -'Si -2 _»2

are respectively , . The numerators are the

squares of the semi-axes of the section by a plane parallel to

the tangent plane (Art. 156).

The equation of the section made by a plane making an

angle 6 with the plane of y is found by first turning the

axes of co-ordinates round through an angle 0, by substituting

y cos 6 - s sin 6, y sin 6 + z cos 6 for y and s, and then making

the new z = 0. The coefficient of y
l
will then become

cos
2

sin'g
17a ~r a in )

a — a
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and the radius of curvature is

1 / cos'g sin
2
6>

p W-a'% + tf-a"

But this coefficient of y' is evidently the square of that semi-

diameter of the central section, which makes an angle 6 with

the axis y.

187. It follows from the theorem enunciated in Art. 185,

that at any point on a central quadric the radius of curvature

of a normal section has a maximum and minimum value, the

directions of the section for these values being parallel to the

axis-major and axis-minor of the central section by a plane

parallel to the tangent plane.

These maximum and minimum values are called the prin-

cipal radii of curvature for that point, and the sections to

which they belong are called the principal sections. It appears

(from Art. 155) that the principal sections contain each the

normal to one of the confocals through the point. The inter-

section of a quadric with a confocal is a curve such that at

every point of it the tangent to the curve is one of the prin-

cipal directions of curvature. Such a curve is called a line

of curvature on the surface.

In the case of the hyperboloid of one sheet the central

section is a hyperbola, and the sections whose traces on the

tangent plane are parallel to the asymptotes of that hyperbola

will have their radii of curvature infinite ; that is to say, they

will be right lines, as we know already. In passing through

one of those sections the radius of curvature changes sign ; that

is to 3ay, the direction of the convexity of sections on one

side of one of those lines is opposite to that of those on the

other.

188. The two principal centres of curvature are the two

poles of the tangent plane with regard to the two confocal surfaces

which pass through the point of contact. For these poles lie

on the normal to that plane (Art. 159), and at distances from
2 a 2 _ "2

it = and (Art. 160), but these have been just

P V
proved to be the lengths of the principal radii of curvature.
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We can also hence find, by Art. 160, the co-ordinates of

the centres of the two principal circles of curvature, viz.

bv yy c'v «"v vy c
m

z'x =
^r> *=-#-» z

=-r> *=?-> *--?-» '=-7-

189. If at each point of a quadric we take the two principal

centres of curvature, the locus of all these centres is a surface

of two sheets, which is called the surface of centres.

We shall show how to find its equation in the next chapter,

but we can see h priori the nature of its sections by the

principal planes. In fact, one of the principal radii of cur-

vature at any point on a principal section is the radius of

curvature of the section itself, and the locus of the centres

corresponding is evidently the evolute of that section. The
other radius of curvature corresponding to any point in the

c
2

section by the plane of xy is - , as appears from the for-

mula of Art. 185, since c is an axis in every section drawn

through the axis of z. From the formulae of Art. 188 the

co-ordinates of the corresponding centre are
5
— x\ —„— y' •

that is to say, they are the poles with regard to the focal

conic of the tangent at the point x'y' to the principal section.

The locus of the centres will be the reciprocal of the principal

section, taken with regard to the focal conic, viz.

2 2 72 2" ^ by
1 ^— — 1

.«\a ~ /7_2 '2V2
A *

{a?-c*f (V-

The section then by a principal plane of the surface (which is

of the twelfth degree) consists of the evolute of a conic, which

is of the sixth degree, and of a conic (it will be found)

three times over, this conic being a double line on the surface.

The section by the plane at infinity is also of a similar nature.

190. The reciprocal of the surface of centres is a surface

of the fourth degree.

It will appear from the general theory of the curvature of

surfaces, to be explained in Chap. XI., that the tangent plane

to either of the confocal surfaces through x'y's' is also a tangent
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plane to the surface of centres. The reciprocals of the intercepts

which the tangent plane makes on the axes are given by the

equation

The relation

*.=£. «=y. k=-

x"> yn z'
2

!i '2 ' 7 2 7 r'2 ' 2 tn 5 6 «
gives between f, 77, £ the relation

(r+^+n=(«2 -«'2

)(|+|I+^) 5

and the relation

x" y" z"
1- '1—1 = 1

a'
2 + V 2 +

c'
2

gives (a»f + &V + c
2

?
2 - 1) = (a

2 - a'
2

) (f + 1;

2 + H-
Eliminating a2 — a'

2
, we have

(f +

v

2

+ ft
1

= f5 + £ + S) («t + &v

+

c'^ - !)•*

But it is evident (as at Higher Plane Curves, p. 14) that £, 17, £

may be understood to be co-ordinates of the reciprocal surface

;

since, if £, 17, f be the co-ordinates of the pole of the tangent

plane with regard to the sphere a?+y* + z
3 = 1, the equation

xZ+yv-t z£— 1 being identical with that of the tangent plane,

£, 77, £ will be also the reciprocals of the intercepts made by

the tangent plane on the axis.

* This equation was first given, as far as I am aware, by Dr. Booth, Tangen-

tial Co-ordinates, Dublin, 1840.
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CHAPTER IX.

INVARIANTS AND COVARIANTS OF SYSTEMS OF QUADRICS.

191. It was proved (Art. 132) that there are four values

of X for which X U+ V represents a cone. The biquadratic

which determines X is obtained by equating to nothing the dis-

criminant of XU+ V. We shall write it

x4A + x3e + x'
2
<t> + xe' 4 a'= 0.

The values of X, for which XU+ V represents a cone, are

evidently independent of the system of co-ordinates in which

U and V are expressed. The coefficients A, O, &c. are there-

fore invariants whose mutual ratios are unaltered by transforma-

tion of co-ordinates. The following exercises in calculating

these invariants include some of the cases of most frequent

occurrence.

Ex. 1. Let both quadrics be referred to their common self-conjugate tetrahedron

(Art. 137). We may take

U= ax2 + by2 + cz2 + dm2
, V=x2 +f + z2 + w2

,

(see Art. 137, and Conies, Ex. 1, p. 323), then

A = abed, = abc + die + dca + dab, & = bc + ca + ab + ad + bd + cd,

B' = a + b + c + d, A' = 1.

Ex. 2. Let V, as before, be x2 + y
2 + z2 + w2

, and let U represent the general

equation. The general value of is

a'A + b'B + c'C +<TD + 21'L + 2m'M+ 2n'N + 2p'P + 2tfQ + 2r'R,

where A, B, &o. have the same meaning as in Art. 63. In the present case therefore

Q = A + B + C + D, e' = a + b + c + d;

we have also * = be - P + ca - m2 + ab - n2 + ad -p2 + bd - a2 + cd - r*.

Similarly, if Uis ax2 + by2 + cz2 + dw2
, and J* is the general equation,

6 is a'bed + b'eda + c'adb + d'abc, 6' is aA' + bB' + cC + dD'.

Ex. 3. Let U and V represent two spheres,

x2 + y
2 + z2 - p

2
,

(x-a)2 +(y-p) 2 +(z-y)2 - p'2
,

and let the distance between the centres be D,'(a? + P* + y
2 = -D2), then

A = -,°2, A' = -p'2
, e = D2 -3p2 -p'2

, e' = D2 -p2 -3p'2
, $ = 222 -3p2-3p",

and the biquadratic which determines X is

(X + l) 2 {- p
2X2 + (D2 - p

2 - p") X - p"\ - 0.

L
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Ex. 4. Let U represent %, + f= + % - 1, while V is the sphere
a* o£ c£

(x - a) 2 + {y - fi)
2 + {z - y)

2 - p
2

.

Ans. A=- —-^, A' = -p2
,a2b2cz

a?bV

The biquadratic found by equating to nothing the discriminant of XC+ V may be

written

a2 + X 62 + \ c: + \ , A."

Ex. 5. Let 0" represent the paraboloid ax2 + by2 + Irz and V the sphere as in

the last example.

Ans. A = — abr2, A' = — />
2
,

e = - r2 (a + b) + Idbry, 6' = aa? + i/32 + 2ry -(a + b) p
2
,

<b = ab (a2 + (i
2 - p

2
) + 2 (a + b) ry - r2

;

and the biquadratic may be written

\aa2 X6/32 „., ,

Xa + 1 Xb + 1

192. 7b examine the geometrical meaning of the condition

6 = 0. It appears, from Art. 191, Ex. 2, that when U is re-

ferred to a self-conjugate tetrahedron, 9 is

bcdd + cdab' + dabc + abed",

which will vanish when a', b\ c', d' all vanish. Hence will

vanish whenever it is possible to inscribe in V a tetrahedron which

shall be self-conjugate loiih regard to U. In like manner 9' will

vanish whenever A\ B\ G\ D' vanish. But A' = is the con-

dition that the plane x shall touch V. Hence 0' will vanish when-

ever it is possible to find a tetrahedron self-conjugate with regard to

V whosefaces touch V. By the first part of this article 9' = is

also the condition that it may be possible to inscribe in U a

tetrahedron self-conjugate with regard to V. Hence when one

of these things is possible, so is the other also. <J> = will be

fulfilled, if the edges of a self-conjugate tetrahedron, with

respect to either, all touch the other.

Ex. 1. The vertices of two self-conjugate tetrahedra, with respect to a quadric,

form a system of eight points, such that every quadric through seven will pass through

the eighth (Hesse, C'relle, Vol. XX., p. 297).
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Let any quadrie be described through the four vertices of one* tetrahedron, and
through three vertices of the second, whose faces we take for x, y, z, w. Then
because the quadrie circumscribes the first tetrahedron 6' = 0, or a + b + c + d =
(Art. 191, Ex. 2) ; and because it passes through three vertices of xyzw, we have

<s = 0, 6 = 0, c = ; therefore d = 0, or the quadrie goes through the remaining

vertex. It is proved, hi like manner, that any quadrie which touches seven of the

faces of the two tetrahedra touches the eighth.

Ex. 2. If a sphere be circumscribed about a self-conjugate tetrahedron, the length

of the tangent to it from the centre of the quadrie is constant. For (Art. 191, Ex. 4)

the condition = gives the square of the tangent a.
2 + /3

2 + y
2 — p

2 = a2 + b2 + c2.

This corresponds to M. Faure's theorem (Conies, p. 327). It may be otherwise stated

:

" The sphere which circumscribes a self-conjugate tetrahedron cuts orthogonally the

sphere which is the intersection of three tangent planes at right angles" (Art. 89).

Ex. 3. If a hyperboloid be such that — + j-2
+ — = 0, then the centre of a sphere

inscribed in a self-conjugate tetrahedron lies on the surface. This follows from the

condition 6' = (Art. 191, Ex. 4).

Ex. 4. The locus of the centre of a sphere circumscribing a tetrahedron, self-

conjugate with regard to a paraboloid, is a plane (Art. 191, Ex. 5).

193. To find the condition that two quadrics U, V should

touch each other. As in the case of conies (see Conies,

Art. 372) the biquadratic of Art. 191 will have equal roots

when the two quadrics touch. This is most easily proved by

taking the origin at the point of contact, and the tangent plane

for the co-ordinate plane z. Then, for both the quadrics, we

have «!=0,j? = 0, q = Q', and since, if we substitute these values

in the discriminant (Art. 63), it reduces to ^(ri'-ah), the bi-

quadratic becomes

(Xr + r'Y {{\n + n'f - (Xa + a') (\5 + b')} = 0,

which has two equal roots. The required condition is there-

fore found by forming the discriminant of the biquadratic of

Art. 191.

Ex. 1. To find the condition that two spheres may touch. The biquadratic for

this case (Art. 191, Ex. 3) has always two equal roots. This is because two spheres

having common a plane section at infinity, always have double contact at infinity

(Art. 133). The condition that they should besides have finite contact is got by

expressing the condition that the other two factors of the biquadratic should be

equal, and is (D2 - »'2 - r'2
)
2 = 4rV2

,
whence D = r± »•'.*

Ex. 2. Find the Jocus of the centre of a sphere of constant radius touching «

central quadrie. The equation got by forming the discriminant with respect to X

of the biquadratic of Art. 191, Ex. 4 is of the twelfth degree in x, y, z. When we

* Generally the biquadratic (Art. 191) will have two pairs of equal roots when

the quadrics have a generator common.

L2
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make p = 0, it reduces to the quadric taken twice, together with the equation of

the eighth degree considered (Art. 210 infra). The problem considered in thia

example is the same as that of finding the equation of the surface parallel to the

quadric (see Conies, Ex. 2, p. 324) ; namely, the surface generated by measuring

from the surface on each normal a constant length equal to p. The equation is of

the sixth degree in p
2

, and gives the lengths of the six normals which can be drawn

from any point xyz to the surface {Conies, p. 346). To find the section of the surface

by one of the principal planes, we use the principle that the discriminant with respect

to X of any algebraic expression of the form (\ — a) tp (X) is the square of <p (a)

multiplied by the discriminant of <p (X). If then we make z = in the equation,

the discriminant of

(X + c){^ + /i i_£l

is the conic 1- -^ 1 — —

,

a — c b — c c

taken twice, this curve being a double line on the surface, together with the dis-

criminant of the function within the brackets; this latter representing the curve of

the eighth order, parallel to the principal section of the ellipsoid.

Ex. 3. The equation of the surface parallel to » paraboloid is formed in like

manner by forming the discriminant of the biquadratic of Ex. 5, Art. 191. The

result represents a surface of the tenth degree, and when p = 0, reduces to the

paraboloid taken twice, together with the surface of the sixth degree considered

(Art. 211). The equation is but of the fifth degree in p
2

, showing that only five

normals can be drawn from any point to the surface. It is seen, as in the last

article, that the section by either principal plane is a parabola taken twice, together

with the curve parallel to a parabola.

194. It is to be remarked that when two surfaces touch,

the point of contact is a double point on their curve of inter-

section. In general, two surfaces of the mttL

and n
h
degrees

respectively intersect in a curve of the rnn
th

order. And at

each point of the curve of intersection there is a single tangent

line, namely the intersection of the tangent planes at that point

to the two surfaces. For any plane drawn through this line

meets the surfaces in two curves which touch: such a plane

therefore passes through two coincident points of the curve of

intersection.

But if the surfaces touch, then every plane through the point

of contact meets them in two curves which touch, and every

such plane therefore passes through two coincident points of

the curve of intersection. The point of contact is therefore

a double point on this curve.

And we can show that, as in plane curves, there are two

tangents at the double point. For there are two directions

in the common tangent plane to the surfaces, any plane through
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either of which meets the surfaces in curves having three points

in common.

Take the tangent plane for the plane of xy, and let the

equations of the surfaces be

z +- ax* + uinxy -t by* + &c,

z + dx* + 2n'xy + Vy* + &c,

then any plane y = /i<x cuts the surfaces in curves which oscu-

late (see Conies, p. 212), if

a + 2n/j, + byi
1 = a + 2n'/M 4 b'fi?.

The two required directions then are given by the equation

{a - a)

x

2 + 2 (n - W) xy + (b - V)f = 0.

The same may be otherwise proved thus. It will be proved

hereafter precisely as at Higher Plane Curves, p. 27, that if

the equation of a surface be it, + w
2
+ u

s
+ &c. = 0, the origin

will be on the surface, and w
2
will include all the right lines

which meet the surface in two consecutive points at the origin

;

while if u
y

is identically 0, the surface has the origin for a

double point, and w
2
includes all the right lines which meet

the surface in three consecutive points. Now in the case we
are considering, by subtracting one equation from the other,

we get a surface through the curve of intersection, viz.

[a - a) xl + 2 (n - ri) xy + (b- V)f + &c,

in which surface the origin is a double point, and the two

lines just written are two lines which meet the surface in

three consecutive points.

195. When these lines coincide there is a cusp or stationary

point (see Higher Plane Curves, p. 28) on the curve of inter-

section. We shall call the contact in this case stationary

contact. The condition that this should be the case, the axes

being assumed as above, is

{a-a!){b-b')=(n-rif.

Now if we compare the biquadratic for X, given Art. 193,

remembering also that in the form we are now working with,

we have r = r', we shall see that when this condition is
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fulfilled, three roots of the biquadratic become equal to — 1.

The conditions then for stationary contact are found by forming

the conditions that the biquadratic should have three equal

roots, viz., &=0, T=0, S and T being the two invariants

of the biquadratic.

196. Every sphere whose centre is on a normal to a quadric,

and which passes through the point where the normal meets

the surface, of course touches the surface. But it will have

stationary contact when the length of the radius of the sphere

is equal to one of the principal radii of curvature (Art. 187).

Let us take the tangent plane for plane of xy, and the two

directions of maximum and minimum curvature (Art. 187) for

the axes of x and y. Then since these directions are parallel

to the axes of parallel sections, the term xy will not appear in

the equation, which will be of the form z + ax'
2 + by' + &c. = 0.

By the last article, any sphere z + \ (x
2 + y'2 + z

2

) will have

stationary contact with this if (X. — a) (X — b) = 0, for we have

n and n each = 0. We must therefore have \ equal either to

a or b. Now if we make y = 0, the circle z + a(x'
2 + z

1

) is

evidently that which osculates the section s + ax2 + &c. ; and,

in like manner, the circle z + b (y'
2 + z'

2

) osculates z + by
2 + &c.

197. To find the equation of the surface of centres of a

quadric. If we form, for the biquadratic of Ex. 4, Art. 191,

the two equations #=0, J'=0, we have two equations con-

necting a, /3, 7, the co-ordinates of the centre of curvature of

any principal section, and p its radius. One of these equations

is a quadratic and the other a cubic in p
2

; and if we eliminate

/>

2 between them, we evidently have the equation of the locus

of the centres of curvature of all principal sections. The
problem may also be stated thus : If U and U' be any two

algebraical equations of the same degree and k a variable

parameter, it is generally possible to determine h so that the

equation U+kU' = may have two equal roots. But it is

not possible to determine k, so that the same equation may
have three equal roots, unless a certain invariant relation subsist

between the coefficients of Z7and U'. Now the present problem

is a particular case of the general problem of finding such an
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invariant relation. It is in fact to find the condition that it

may be possible to determine h so that the following biquadratic

in X may have three equal roots

:

a24X 5
a + \ <? + ~X X'

The following are the leading terms in the resulting equation

:

the remaining terms can be added from the symmetry of the

letters. We use the abbreviations b* — c' = a, c
2 - a2 = /3,

d* — 5
2 = 7 ; and further we write x, y, z instead of ax, by, cz :

«V2 4 3 (a
2 4 /3

2

) aVy + 3 (a
4 + 3a

2
/3

2 + /3
4

) aVi/'

+ 3 (2a
4
.+ 3a

2
y8

2 + 3a'V - 7/8*7*) cftityV

+ (a
6 + y3

6 + 9a
4
/3

2 + 9a
2
jS

4
) afy

8

+ 3 (a
6+ 6a

4
/3
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4

7
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2 +£¥ + 7

4
«
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) aV° - 3 (2/3
4 + 3/3V 4 3/3V - 77
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- 3 (/3

s + 6/8*0?+ 3/8V 4 3/3V + a
4

7
2 - 21aW) aV/

4 3 {14 (a
4
/3

24 a
2
/
84
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4
7
2
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a
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2
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2
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If we make in this equation z = 0, we obtain

(oV 4 /8y - a
2
/3

2

)

3
{(*

2 + y» - 7? + 27atyV}, see p. 143

-.2^4

-2fl2\ «.*04«.8«,2«,"
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The section by the plane at infinity is similar to that by the

principal planes, the highest terms in the equation being

(x* +f + zj {(<xV + /Sy+ 7V)
3 - 27oft3YafyV}.

In like manner we find the surface of centres of the paraboloid

ax* + by' + 2rz. If we write

a-b=m, a+b=p,ab=q, bx'+ay'=V, x'+y'^p*, qz^+prz+r^W,

the equation is

8 {q
2
z F+ qr (&V 4 a'f) + 2mV W}

3 + 27 T= 0,

where

T= q
5
rV1 - Wm'ql

r Wx'Y + 6m\Vs V 3 - Wm'qVz Vx'f

+ SmYrVfW+ 12mlqWV + Bm'qVp'V - 152m2

2V«W
+ 4Sm*pqVa?ytV+ 8m6qVz3 V+ 2<Lm

tqVzp*V+ 2im6qVpV
+ 12mYr5

p
l+i3mYr5xy+2lm°zr6

q(ax*+btf)+8m
B
(a

2
x'

2+byy.

The section by either plane x or y is a parabola, counted three

times, and the evolute of a parabola.

198. To find the condition that two quadrics shall he such that

a tetrahedron can be inscribed in one having two pairs of opposite

edges on the surface of the other.* The one quadric then can

have its equation thrown into the form Lyz + Pxw= 0, while

the coefficients a, b, c, d are wanting in the equation of the

other. We have, then,

A=L'P\ e = 2LP(Lp + Pl), <f>={Lp+Pl)*+2LP(lp-mq-nr),

0' = 2 (lp -mq- nr) {Lp + PI).

And the required condition is

4Ae* = e3 + 8A2
e'.

Similarly the condition that it may be possible to find a tetra-

hedron having two pairs of opposite edges on the surface of

one, and whose four faces touch the other, is

4A'e'<t> = 0'3 +8A"U

This may be derived from the equation examined in the next

article.

* This problem and its reciprocal appear to answer to the plane problem of

finding the condition that a triangle can be inscribed in one conic and circumscribed

about another.
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1 99. To find the general form of the equation of a quadric

which touches the four faces x, y, z, w of the tetrahedron of

reference. Since a tangent plane meets a quadric in a conic

which breaks up into two right lines, the condition that the

plane w should touch

** +y + a* + w* + 2Zy« + 2mzx + 2nxy + 2pxw + 2qyw + 2rzw,

is 1 + limn = P + m* -+ n2
.

And in order that the other three planes may touch we must have

l+2lqr=P+q*+r'i

, l+2mpr=m!i+^+ri

, l+2npq=n i

+p
i

+q\

We are about to shew that these conditions cannot be satisfied

for the equation of a proper quadric unless / =p, in = q, n = r.

We might, for example, satisfy the conditions otherwise by

taking one of the coefficients 1= 1, whence it easily follows that

we must have m = n, q = r. The equation of the quadric then

would be

x* + y* + z* + ««
s + 2yz + 2mx {y + z) 4 2pxw + 2qw {y + z) = 0,

or (y + z + mx + qw)
% = (m* — l)x* + 2 (mq —j>) xw+(q'—l) w*.

But in virtue of one of the given conditions, the right-hand side

of this equation is a perfect square. The quadric therefore

breaks up into two planes, a system which may be said to

touch any plane, as meeting 4t in two right lines.

The conditions in question are most easily discussed by

writing Z = cosZ, where L is a real or imaginary angle, &c.

The first condition then becomes cos L = cos (21± N) whence

L±M±N=Q, or = an even multiple of 7r, which will come

to the same thing as far as concerns the uses we shall make

of the equation. Now if we take all the signs +, the equations

L + M+N=0, L + Q + E = 0, M+P+R = 0, N+P+Q= 0,

give L — P, M- (), N— B respectively = 0, or = an even

multiple of w, whence cosi = cosP, or l=j>, m = q, n= r. If

we take one of the terms negative, as, for instance, if we write

the last condition N-P+ Q = 0, we easily find L = 0, or 1= 1,

a case already considered. The only case distinct from this

arises from systems of equations

L +M+N=0, L+Q + B = 0, M+P-B = 0, N-P-Q = o
}
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whence we have

cosJV=cos(Z+lf), cosQ = coa(L+M+P)
1

cosB= cos (M+P),

and if we write 2 cosZ = X -f — , &c, the equation becomes
A

x2 ^y2 + z
2 + w2 + yz(\ +A+zxU + -J+xy(\fi + —j

an equation which breaks up into the factors

f fix + — y + z 4- fipw j
(- x + \y + z-\ w\

.

Thus then we have proved that the most general equation of

a proper quadric touching the four planes x, y, z, w is

x2 + y
2 + z

2 + w2 + 2l (yz + xw) + 2m (zx + yw) + 2m (xy + zw) = 0,

where 1 + 2 linn = I' + m2 + n2
.

200. If V represent a cone we have A' = 0, and we proceed

to examine the meaning in this case of ©, 4>, ©'. For simplicity

we may take the origin as the vertex of V, or j>\ q\ r\ d' all = 0.

"We have then &' = d(a'b'c +2l'm'n -a'P -b'm'2
-c'ri

2

), or 6'

vanishes either if the cone break up into two planes, or if the

vertex of the cone be on the surface of U. Let the cone whose

vertex is the origin and which circumscribes Z7, viz.

d {ax'' + by
2, + cz

2 + 2lyz + 2mzx + 2nxy) — (px + qy + rz)
2

be written

&x2 + by + zz
2 + i[yz -f 2mza? + 2na;^ = 0,

then <& may be written

a (5'c
' _ p) + b [c'a' - m.'

2

) + c (a'V - n'
2

)

+ 21 {m'ri - a I') + 2m (n't! - b'ri) + 2n (I'm! - c'ri).

Hence by the theory of the invariants of plane conies (Conies,

Art. 375) <I> = expresses the condition that it shall be possible

to draw three tangent lines to U from the vertex of the cone V,

which shall form a system self-conjugate with regard to V. In

like manner
dQ = a (be - I

s

) + J',(ca -ms

), &c,
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or 9 vanishes whenever three tangent planes to U can be drawn

from the vertex of the cone V which shall form a system self-

conjugate with regard to V. The discriminant of the cubic in

X will vanish when the cone V touches U.

When V represents two planes, both A' and G' vanish.

Let the two planes be x and y, then V reduces to n'xy, and $
reduces to n

1
'

2
(r

2 — «?),, <J> will vanish therefore in this case when

the intersection of the two planes touches U. We have 6 = n'N,

and its vanishing expresses the condition that the two planes

should be conjugate with respect to U; or, in other words, that

the pole of either, with regard to U, should lie on the other.

For (see Note, p. 47) the coordinates of the pole of the plane

x are proportional to A, iV", 31, P, and the pole will therefore

lie in the plane y when N=0. The condition e" = 4A<I> is

satisfied if either of the two planes touches U.

201. The plane at infinity cuts any sphere in an imaginary

circle the cone standing on which, and whose vertex is the

origin, is x" + y* + z* = 0. Further, since this cone is also an

infinitely small sphere, any diameter is perpendicular to the

conjugate plane. If now we form the invariants of x* + y* + z
2

,

and the quadric given by the general equation, we get 6 = 0,

or A + B+ (7=0, as the condition that the origin shall be a

point whence three rectangular tangent planes can be drawn

to the surface, and <I> = 0, or

ad— p~ + bd— (f + cd— r
s = 0,

as the condition that the origin shall be a point whence three

rectangular tangent lines can be drawn to the surface. In

particular if the origin be the centre and therefore p, q, r all = 0,

and (the surface not being a cone) d not = 0, the cubic is

the same as that worked out (Art. 78). The condition <t> =

reduces to a + b + c = 0, as the condition that it shall be possible

to draw systems of three rectangular asymptotic lines to the

surface; and the condition 6 = 0, becomes

^(aJ + &c + ca-Zs
-?JJ

3 -ns
)=0,

as the condition that it shall be possible to draw systems

of three rectangular asymptotic planes to the surface. These
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two kinds of hyperboloids answer to equilateral hyperbolas in

the theory of plane curves (see Ex. 3, Art. 192).

Ex. Eveiy equilateral hyperbola which passes through three fixed points passes

through a, fourth; what corresponds in the theory of quadrics? It will be seen

that the truth of the plane theorem depends on the fact that the condition that

the general equation of a. conic shall represent an equilateral hyperbola is linear

in the coefficients. Thus then every rectangular hyperboloid (fulfilling the relation

a + b + c = 0) which passes through seven points passes through a fixed curve, and

which passes through six fixed points passes through two other fixed points. For

the conditions that the surface shall pass through seven points together with the

given relation enable us to determine all the coefficients of the quadric except one.

Its equation therefore containing but one indeterminate is of the form U+ hV which

passes through a, fixed curve. And when six points are given the equation can

be brought to the form D + kV+ IW which passes through eight fixed points.

202. Since any tangent plane to the cone x' + y' + z* is

xx + yy + zz — 0, where x'' + y
n + z

n = 0, and since any parallel

plane passes through the same line at infinity, we see that

a? + ft
2
+ 7* = is the condition that the plane ax + fty -f- yz + 8

shall pass through one of the tangent lines to the imaginary

circle at infinity through which all spheres pass. And therefore

a
8 + ft

2 + 7* = may be said to be the tangential equation of

this circle. The invariants formed with a
2 + ft

2 + y
2 and the

tangential equation of the surface are

6 = A* (a 4- h + c), # = A {be-T + ca- m' + ah- w2

),

the geometrical meaning of which has been stated in the last

article.

The condition that two planes should be at right angles

viz. aa' + ftft' + 77' = (Art. 28), being the same as the con-

dition that two planes should be conjugate with regard to

a? + ft' 4 T
2
, we see that two planes at right angles are con-

jugate with regard to the imaginary circle at infinity.

203. In general, the tangential equation of a curve in space

expresses the condition that any plane should pass through one

of the tangents of the curve. For instance, the condition

(Art. 76) that the intersection of the planes ax + fty + yz + Bw,

ax + ft'y + 7'z + h'w should touch a quadric, may be considered

as the tangential equation of the conic in which the quadric

is met by the plane ax + ft'y + ye + S'w.
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The reciprocal of a plane curve is a cone (Art. 119), and since

an ordinary equation of the second degree, whose discriminant

vanishes represents a cone, so a tangential equation of the second

degree, whose discriminant vanishes represents a plane conic.

From such a tangential equation Aa? + BJ3* + &c. we can derive

the ordinary equations of the curve, by first forming the reci-

procal of the given tangential equation according to the ordinary

rules, (BCD-\-&c.)x*+&c, when we shall obtain a perfect square,

viz. the square of the equation of the plane of the curve. And
the conic is determined, by combining with this the equation

x*(BC- V) +f (
CA - IP) + z

2 (AB - N*)

+ 2yz (2IN- AL) + 2zx (NL - BM) + 2xy (MI- CN) = 0,

which represents the cone joining the conic to the origin.

204. To find the equation of the cone which touches a quadrio

U along the section made in it by any plane ax + fiy + <yz + Sw.

The equation of any quadric touching U along this plane section

being kU+ (ax + /3y + yz + $wf = 0, it is required to deter-

mine Jc so that this shall represent a cone. We find in this

case <J>, ©', A' all =0. And if we denote by cr the quantity

Aa? + Bf3* + &c. (Art. 75), the equation to determine k has

three roots = 0, the fourth root being given by the equation

kA + a = 0. The equation of the required cone is therefore

o-U= &(ax + /3y + yz + 8wy. When the given plane touches

U, we have cr = 0, Art. 75, and the cone reduces to the tangent

plane itself, as evidently ought to be the case. Under the

problem of this article is included that of finding the equation of

the asymptotic cone to a quadric given by the general equation.

205. The condition o- = 0, that ax + fiy + yz + Sw should

touch U, is a contravariant (see Conies, Art. 380) of the third

order in the coefficients. If we substitute for each coefficient

a, a+\a, &c, we shall get the condition that ax + fiy + yz + Sw

shall touch the surface U+W, a condition which will be of

the form a + Xr + XV +XV = 0. The functions cr, cr', t, t'

each contain a, /?, &c. in the second degree, and the coefficients

of U and V in the third degree. In terms of these functions
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can be expressed the condition that the plane ax + fty + 72 f 8w

should have any permanent relation to the surfaces U, V; as

for instance that it should cut them in sections u, v, connected

by such permanent relations as can be expressed by relations

between the coefficients of the discriminant of u + Xv. Thus if

we form the discriminant with respect to X of ct+Xt+XV+XV,
we get the condition that ax + fty i- 7s •+ Sv> should meet the

surfaces in sections which touch ; or, in other v/ords, the con-

dition that this plane should pass through a tangent line of the

curve of intersection of U and V. This condition is of the

eighth order in a, ft, 7, S, and of the sixth order in the coeffi-

cients of each of the surfaces. Thus again t = expresses the

condition that the plane should cut the surfaces in two sections

such that a triangle self-conjugate with respect to one can be

inscribed in the other, &c.

The equation o- = may also be regarded as the tangential

equation of the surface U; and, in like manner, t = 0, t' =
are tangential equations of quadrics having fixed relations to

U and V. Thus, from what we have just seen, t = is the

envelope of a plane cutting the surfaces in two sections having

to each other the relation just stated. And the discriminant of

g + Xt + XV + Xsa is the tangential equation of the curve of

intersection of U and V.

Or, again, tr = may be regarded as the equation of the

surface reciprocal to £7" with regard to x* + y* + s
2 + w 1,

(Art. 123).

And, in like manner, a- + \r +XV + XV is the equation of the

surface reciprocal to U+ X V. Since, if X varies, U+ XV de-

notes a series of quadrics passing through a common curve,

the reciprocal system touches a common developable, which is

the reciprocal of the curve UV. And the discriminant of

a + Xt + XV +XV may be regarded at pleasure as the tan-

gential equation of the curve UV, or as the equation of the

reciprocal developable. This equation is, as was remarked

above, of the eighth degree in the new variables, and of the

sixth in the coefficients of each surface.

206. "We can reciprocate the process employed in the last

article. If <r = 0, tr' = be the -tangential equations of two
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quadrics, we can form the equation in ordinary co-ordinates

answering to <7 + \a'. This will be of the form

A2U+ XA T+ X2
A'T 4 X8

A'
2 V= 0,

and will represent a system of quadrics all touching a common
developable, whose equation is found by forming the discrimi-

nant of the equation last written. Thus, for example, using

the canonical forms, let

U= ax* + by* + cs
2 + dw\ V= ax* + b'y" + Jz* + d'w*

then <r = Aa? + B& + Of + X>5
2

, J = A'a* + B'P + 0'>f + D'S*,

where A = bed, B=cda, &c, and the reciprocal of a- + \<r' is

{BODx* + &c.} + \ {{BCD' + CDB' + DBG') x* + &c.}

+ \*{(B'C'D + G'D'B+ D'B'C)x*+&c.} + \3
{B'C'D'x*+&c.}=0.

Putting in the values for B, G, D, &c, we find

BCDx* + &c. = A'U,

while the coefficient of \ is

A {aa' {b'e'd + c'd'b + d'b'c) x* + &c.}.

Just as all contravariants of the system o-, a can be ex-

pressed in terms of two fixed contravariants t, t' together with

<r, cr', so all covariants of the system ?7, V can be expressed in

terms of the two fixed covariants T, T', together with U, V and

the invariants (Art. 191). Eeciprocating what was stated in the

last article we can see that the quadric T is the locus of a point

whence cones circumscribing U and V are so related that three

edges of one can be found, which form a self-conjugate system

with regard to the second, and three tangent planes of the second

which form a self-conjugate system with regard to the first.

If we please we may use instead of T and T' the quadric 8,

which is the locus of the poles with respect to V of all the

tangent planes to U, and S' the locus of the poles with respect

to U of all the tangent planes to V (see Ex. 10, p. 83). By
the help of the canonical form we can see the relations con-

necting 8 and 8' with T and T. Thus we easily find

8= bcda'*x* + cdab'Y + dabcV + abcd'V = 0.

But T' = aa{bcd' + cdb' + dbc')x
i + &c.

= [bedd + cdab' + ddbd + abed') {ax* + &c.) - {bcda'V + &c),
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hence T' — QV— 8, and in like manner T=e'U—8'. It ap-

pears thus that U, S', T have a common curve of intersection.

Ex. 1. To find the locus of a point whose polar planes with respect to U touch

U+W. We have then in <r + Xt + XV + XV to substitute Uv K,, U3t Ut for

a, j3, y, &. The result is expressible in terms of the covariants by means of the

canonical forms U= x2 + y
2 + z2 + w2

, V= ax2 + by2 + cz2 + dw2
. For the result is

x2 + kc. + \{(b + c + d) x2 + &c.} + X2 {(4c + cd + db) x2 + &o.} + X3 (bcdx2 + &c.) = 0,

or AU+ X (eU- AV) + X2 (SZ7- 7") + X' {Q'U- T) = 0.

In like manner the locus of points, whose polar planes with respect to V touch

U+W. is

QV-V + \{<bV-T) +\2 (8V- A'U)+X3A'V=0.

Ex. 2. To find the locus of a point whose polar planes with respect to V and V
are a conjugate pair with regard to U+W. In the same manner that the con-

dition that two points should be conjugate with respect to U is ax'x" + by'y" + &c. = 0,

so the condition that two planes should be conjugate is Aaa! + -B/3/3' + &c. = 0.

Applying this to the case where a, a' are Z7j, U2 , we get for the canonical form

ax2 + &c. + X {(6 + c + d) ax2 + &c.) + X2 {(6c + cd+ db) ax2 + &c.) + X3bcdax2 + &c,

or AV+\T' + \2T+\3A'U=0.

207. What has been stated in the last article enables us

to write down the equation of the developable circumscribing

two given quadrics U, V. We have seen that its equation is

the discriminant of the cubic A*U+\AT+\*A'T + X9
A'

2
F,

where if

U= ax' + If + cz" + dw% T= ad {b'c'd+ c'd'b + d'b'c) x* + &c.

Clearing the discriminant of the factor A 2
A'

a

, the result is

27A2
A'

2U2 V2 + 4A' UT" + 4A VT S = T'T" + 18AA'TT' UV,

an equation of the eighth degree in the variables, and the tenth

in tbe coefficients of each of the quadrics. By making U= 0,

we see that the developable touches V along the curve UT,

and that it meets U again in the curve of intersection of U
with T'"

2 — 4A VT. We shall presently see that the latter locus

represents eight right lines, real or imaginary generators of the

quadric U.

It is otherwise evident what is the curve of contact of the

developable with U. For the point of contact with U of a

common tangent plane to UV is the pole with regard to U
of a tangent plane to V, and therefore is a point on the surface

S' ; and we have proved, in the last article, that the curves

US', TU are the same.
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The section of the developable by one of the principal planes

(w) is most easily obtained by reverting to the process whence
the equation was formed. The common tangent developable

of x* + y* + z* + w\ ax* + by* + cz* + dw* is the discriminant of

ax* by* cz' dw*

X+a X + b X + c X + d

Hence, as in Art. 193, if we make w = 0, the discriminant will be

f ax* by* cz* \
2

\a — d b — d c— dj '

multiplied by the discriminant of

<ix* by* cz*
+ C-T-T +X + a X + b X + c

'

In order to obtain the latter discriminant, differentiate with

regard to X, when we have

ax* by* _cz*_ «V b*f cV _ n
{X+a)*

+
(X+bf

+
(X+c)* ~ ' [X+a)*

+
(X+bf

+
(X+cf~ '

,
ax* 7 by* cz*

Thence (vH- i ' c
' JxTbf

= c - a
' (xT^f

= a - J;

and, substituting in the given equation, the result is

x \J{a (b — c))±y n/{b (c -a)} ±z *J{c (a — b)} = 0.

The section therefore is a conic counted twice and four right

lines.

208. To find the condition that a given line should pass

through the curve of intersection of two quadrics U and V.

Suppose that we have found, by Art. 76, the condition, p = Q,

that the line should touch U, and that we substitute in it for

each coefficient a, a+Xa\ the condition becomes p+Xtr+X*p'=0j

and if the line have any arbitrary position, we can by solving

this quadratic for \, determine two surfaces passing through

the curve of intersection UV and touching the given line. But

if the line itself pass through UV, then it is easy to see that

these two surfaces must coincide, for that the line cannot, in

general, be touched by a surface of the system anywhere but

in the point where it meets UV. The condition therefore which

M
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we are seeking is Tr
i = ipp'. It is of the second order in the

coefficients of each of the surfaces and of the fourth in the co-

efficients of each of the planes determining the right line.

The condition tt = will be fulfilled if the right line is cut

harmonically by the two surfaces. In the case where the two

quadrics are ax* + If + cz' + dw\ dx'
2 + b'y* + c'z' + dw% and the

right line is ax+j3y + 72 +8w, dx+fi'y + y'z + B'w, the quantity

p is (see Art. 76) 2a5 (78* - yBf, by which notation we mean

to express the sum of the six terms of like form, such as

cd(a/3'- a'/3)
2

, &c. Then it is 2 (ab' + bd) (78' - 7'S)
2
, and

77
2 — ipp is

2 {ab'- a'bf (yS- y'Sy+22 [ab'- a'b) (ac - dc) (78'- y'Bf {08-pSf

+ l

2^{(ad'-dd)(cb'-c'b)+(ac'-dc)(db'-d'b)}(aff-a'fiy(yB'-ry'B)\

209. To find the equation of the developable generated by the

tangent lines of the curve common to Uand V.

If we consider any point on any tangent to this curve, the

polar plane of this point with regard to either U or V passes

evidently through the point of contact of the tangent on which

it lies. The intersection therefore of the two polar planes

meets the curve UV. We find therefore the equation of the

developable required, by substituting in the condition of the

last article, for a, /3, &c, a', /3', &c, the differential coefficients

U
l7
U

2 , &c, Fj, F
2 , &c. This developable will then be of the

eighth degree in the variables and of the sixth in the coefficients

of each surface. When we use the canonical form of the

quadrics, it then easily appears that the result is,

2{ab'-a'bY(cd'-c'df^wl

+ 22 (ab' - a'b) (ac' - a'c) (cd - c'd)* [bd! - b'dffz^w*

+ 2asy*V {{ab' - a'b) {cd
1 - c'd) - {ad! - a'd) {be' - b'c))

x {(ad' - a'd) (be' - b'c) - (bd' - b'd) (cd - c'd)}

x {{bd! — b'd) (cd — c'a) — (ab' — a'b) (cd' — c'd)}.

When we make in the above equation w = we obtain a perfect

square, hence each of the four planes x, «/, 2, w meets the de-

velopable in plane curves of the fourth degree which are double
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lines on the surface* This is, h priori, evident since it is plain

from the symmetry of the figure, that through any point in

one of these four planes through which one tangent line of
the curve UV passes, a second tangent can also be drawn.

By the help of the canonical form the previous result can
be expressed in terms of the covariant quadrics when the de-

velopable is found to be

4 (0 UV-TU-A F2

)
(©' UV- TV- A' U)= ($>UV- TU-T V)\

The curve UV is manifestly a double linef on the locus re-

presented by this equation, as we otherwise know it to be, and
the locus meets U again in the line of the eighth order deter-

mined by the intersection of U with T'*-iATV. This is the

same line as that found in Art. 207.

210. We can show geometrically (as was stated Art. 207)

that a generator of the quadric U at each of the eight points

of intersection of the three surfaces U, V, S', (or U, V, T) is

also a generator of the developable, and that therefore these

eight lines form the locus of the eighth order, U, T'
2 — 4ATK

For the surface S' being the locus of the poles with regard

to U of the tangent planes to V
:
the tangent plane to V at

one of the eight points in question is also a tangent plane to U,

and therefore passes through one of the generators to U at the

same point. This generator is therefore the line of intersection

of the tangent planes to U and V, and therefore is a generator

of the developable in question.

* See Cambridge and Dublin Mathematical Journal, Vol. III., p. 171. where, though

only the Geometrical proof is given, I had arrived at the result by actual formation

of the equation of the developable. See Ibid, Vol. II., p. OS. The equations were

also worked out by Mr. Cayley, Ibid, Tol. v., pp. 50, 51.

( It is proved, as at Higher Plane Curves, p. 39, (fee also p. 7'2 of this volume)

that when the equation of a surface is U-<p + UV\lr + Y2
x = 0, then UV is a double

line on the surface, the two tangents at any point of it being given by the equation

tt-<j>' + vv^j/ + r'x' = 0, where a, e are the tangent planes at that point to U and V,

and <p' is the result of substituting in <£ the co-ordinates of this point. Applying

this to the above equation it is immediately found that the two tangents are given

by the equation (TU— T' V)- — 0, where in T, T' the co-ordinates of the point are

supposed to be substituted. Tims the two tangents at every point of the double curve

coincide, and the curve is accordingly called a cuspidal curve on the surface.

M2
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211. The calculation In Art. 209 may also be made as

follows : We have seen (Art. 76) that if we multiply by A the

condition that a line shall touch £7, we get

{Ao? + &c.) {Ac*!* + Sec.) = {Aaa! + &c.)
2
.

We form then the corresponding formula for the condition that

the intersection of two polar planes shall touch U+ X V, multi-

plied by the discriminant of that surface: and we find, by

Examples 1 and 2, Art. 206,

{A U+ X{® U- A V) + A2
(4- U-T') + X3 (©' U- T)\

x {(© V- T') + X (* V- T) + X> (© V- A' U) + X3
A' V\

= {AV+XT' + X2T+X3A'U)\

But it can easily be verified that this result is divisible, as it

ought to be, by
A + XB + X^ + X3®' + XiA\

and the quotient is

(©UV- TV- A V) + X (*UV- TU- T V)
+ X2 (©'UV- TV- A' U') = 0.

Thus then we see that ®UV= T'U+AV is the condition

that the intersection of the two polar planes should touch Uj

while $ UV= TU+ T V is the condition that it should be cut

harmonically by the surfaces Z7, V; and again the equation of

the developable is

i{®UV-T'U-AV'){&UV-TV-A'W)^{^UV-TU-TV)\

212. The equation ax'+bf+cz2+X(x'+f+ 2
2
) = 1, denotes

(Art. 100) a system of concentric quadrics having common
planes of circular section. And the form of the equation shows

that the system in question has common the imaginary curve

in which the point sphere x? + i/
2 + z

2 meets any quadric of the

system. Again, since the tangential equation of the system

of confocal quadrics

of f z>

a+X b+X c+X
is aof + ijff + cy' + X («" + £* + </) = *,

it follows reciprocally that a system of confocal quadrics is

touched by a common imaginary developable; namely, that
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enveloped by the tangent planes drawn to any surface of the

system, through the tangent lines to the imaginary circle at

infinity. The equation of this developable is found by forming
the discriminant with regard to X of the equation of the

system of quadrics. Tf we write b-c =/, c-a=g, a — b = h,

the equation is

[x> + tf + ^y (fx* + tftf + AV - 2ghtfz*- 2A/»V- 2fgxY)

+ 2/» [g -h)a»+ 2tf (A -/) tf + 2A2 (/- g) z°

+ 2/lA - 3/) ay -
2.9 [gh - 3/

2

) xy - 2f[fg - 3A2
) asV

+ 2A (<?A - 3/") arts* + 2g (gf- 3A
2

)
yV - 2A (A/- 3/) *y

+ 2 (/-.?) (<7 - h) (A -/)^V + (/* - fifth) x*

+ ( <7

4 "WW f + V? - 6A
s/9)

s* + 2fg (fg - 3A
2

) *y
+ 2gh [gh - 3/») 2/V+ 2A/(A/- 3/) sV + 2fth (A - <?) x*

+W(/~ *)/ + Wfy [9 ~f) **+fW = 0.

It may be deduced from this equation, or as in Art. 193,

that the focal conies, and the imaginary circle at infinity, are

double lines on the surface.

213. In like manner, if c- = be the general equation of a

quadric, and if we form the reciprocal of a + X (a
2 + /8

s + rf)

we get

As
Z7-f^A [{a (b+ c) - m'-n*} x*+ {b (c + a) -r?-F}tf

-t- {c(a + b)-P -m*\s? + {d(a + b + c)-f -tf -r>]

+ 2yz [al— mn) + 2zx (bm — In) + 2xy (en — hn)

+ 2x {[b + c)p — nq- mr\ + 2y {(c + a) q — np — Ir)

+ 2z {{a + b)r-lq- np]\

+ \*{D(x*+tf+z*)+A+B+C-2Px-2Qy-<2Rz} + \*=0.

This is the equation of a series of confocal surfaces, and its

discriminant with respect to X will represent the developable

considered in the last article. If we write the coefficients of

X and X2
respectively T and T', then T=0 denotes the locus

of points whence three rectangular lines can be drawn to touch

the given quadric, and T = the locus of points whence three

rectangular tangent planes can be drawn to the same quadric.
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If the paraboloid — + j- + 2z be treated in the same way,

we obtain, as the equation of a system of confocal surfaces,

(bx
2+ay2+2abz)+\{x2

+y
2+2(a+b)z-ab}+Xi{2z-(a+b)}-\s

=Q,

and the developable which they all touch is, if we write a—b=m
1

4 (x
2 +yj (x

2 + y
2 + z

2

) + Wmz (x
2 + y

2 + z
2

)
(x

2 - f)

+ is (x
2

4- f) (ax
2 + by

2

) + 16mV + 32mV (a;
2 + y

2

)

+ 2im(bx2+ ay2
)z

2+(ax2+byy+8m(bx2
+af) (x*-y

2)+12<m2xy
+ 1 6 (a + b) m2

z (x
2 + y

2 + z
2

)
- I2m*z (ax

2 + by
2

)

+ \2mabz (x
2 - f) + 4?wV (a

2 + iab + b
2
) + Am' (6V + a2

f)

+ 2abm (ax
2 - by

2

) + 4.m
2
ab (a + b) z + a

2bV = 0.

The locus of intersection of three rectangular tangent planes

to the paraboloid is the plane 2» = a + &, and of three rect-

angular tangent lines is the paraboloid of revolution

xA 4 y
2 + 2 (a + b) z - ah.

214. We shall now show that several properties of confocal

surfaces are particular cases of properties of systems inscribed

in a common developable. It will be rather more convenient

to state first the reciprocal properties of systems having a

common curve.

Since the condition that a quadric should touch a plane

(Art. 75) involves the coefficients in the third degree, it follows

that of a system of quadrics passing through a common curve,

three can be drawn to touch a given plane, and reciprocally,

that of a system inscribed in the same developable, three can

be described through a given point. It is obvious that in the

former case one can be described through a given point, and

in the latter, one to touch a given plane. In either case, two

can be described to touch a given line ; for the condition that

a quadric should touch a right line (Art. 76) involves the co-

efficients of the quadric in the second degree.

It is also evident geometrically, that only three quadrics

of a system having a common curve can be drawn to touch

a given plane. For this plane meets the common curve in four

points, through which the section by that plane of every surface
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of the system must pass. Now, since a tangent plane meets

a quadric in two right lines, real or imaginary, (Art. 104)

these right lines in this case can be only some one of the three

pairs of right lines which can be drawn through the four points.

The points of contact which are the points where the lines of

each pair intersect, are [Conies, p. 139) each the pole of the

line joining the other two with regard to any conic passing

through the four points. Hence (p. 43) if the vertices of one

of the four cones of the system be joined to the three points,

the joining lines are conjugate diameters of this cone.

215. Now, let there be a system of quadrics of the form

S+Xf^ + y-j-s'), since a^ + y' + s
8

is a cone, the origin is

one of the four vertices of cones of the system. And since

x' + if + z* is an infinitely small sphere, any three conjugate

diameters are at right angles, and we conclude that three

surfaces of the system can be drawn to touch any plane, and

that the lines joining the three points of contact to the origin

are at right angles to each other. And since a system of con-

centric and confocal quadrics is reciprocal to a system of the

form jS+X^ +y + s
2

), we infer that three confocal quadrics

can be drawn through any point and that they cut at right

angles.

Again (Art. 128) the polar planes of any point with regard

to a system of the form S+X^i y* + a
8

)
pass through a right

line, the plane joining which to the origin is perpendicular to

the line joining the given point to the origin; as is evident

from considering the particular surface of the system x* + y* + z*.

Reciprocally then the locus of the poles of a given plane with

regard to a system of confocals is a line perpendicular to that

plane.

216. We have seen that a + X (a* + £*+ 7*) is the tangential

equation of a system of confocals : and when the discriminant

of this equation vanishes it represents one of the focal conies.

Thus then we can find the tangential equation of the focal

conies of a given surface by determining X from the equation

D\a +(ab + bc+ ca-F-m--ri')A\*+(a + b + c)A'
!\ + A3= 0.
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Thus, let the surface be

la? + 6/+ 5a
2- 4yz - 4xy + 10a; -f iy + 6a + 4 = 0,

we have A = - 972, and the cubic is

162A.
3 + 99\2A + 18A2

A. + A3 = 0,

whose factors are 3\ + A, 6X + A, 9A. + A, whence \ = 108, 162,

or 324.

The tangential equation of the given surface divided by 6 is

a
2-8/32-ll7

''!+27S2+26/37+46Ya+34a/3-54aS-54
i
e8-547S=0.

Thus then the tangential equations of the three focal conies are

obtained by altering the first three terms of the equation last

written into

19a
2 + 10/3* + 77

2
, 28a

2 + 19/3
2 + I67

2
, 55a

2 + 46/3
2 + 43y

2

,

respectively. Their ordinary'' equations are found, as in Art.

203, to be the intersections of

2x - 2y 4 a + w, 1 la:
2 + 44/ 4- lis

2- 32yz 4 2sar - 40a:?/

;

x + 2y + 2a + 5w, 67a:
2 + 68/ + 83a

2 - 2iyz - 62zx - 32xy

2x + y-2z + w, 5a;
2 - 3y

2 + 9a
2 + 2yz - 16sa3 + 2xy.

217. In order to find in quadriplanar coordinates the tan-

gential equation of a surface confocal to a given one, it is

necessary to find the equivalent in quadriplanar co-ordinates to

the equation a
2+ /3

2+ y
2 = 0.* It is evident that if as, y, a, w re-

present any four planes, and if their equations referred to any

three rectangular axes be X cosA + Y co&B-i- Z cosC=j>, &c,
then the coefficient of X in ax + (3y + <yz -{ Bw is

a cosA + /3 cosA' + 7 cos J." + 8 cosA"\

and the sum of the squares of the coefficents of X, Y, Z is

a
2 + /3

2 + y
2 + 8

2 - 2/3^ cos [yz)
~ 27a cos

(
zx

)
— 2a/8 cos [xy)

— 2aS cos(a;w) — 2/3S cos (yw) — 278 cos (aw),

where (yz) denotes the angle between the planes y, a. This

quantity then equated to nothing is the tangential equation

of the imaginary circle at infinity. The processes of the last

* This condition evidently expresses that the length is infinite of the perpendicular

let fall from any point on any of the planes which satisfy the equation.
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articles then can be repeated by substituting the quantity just

written for a
8 + /3

2 +72
. We thus find, without difficulty, the

condition that the general equation in quadriplanar co-ordinates

should represent a paraboloid, or either class of rectangular

hyperboloid ; the equations of the loci of points whence systems

of three tangent planes or tangent lines are at right angles;

the equations of the focal conies, &c.

218. We have seen (Art. 202) that the condition to rect-

angular co-ordinates aa'+ ftft'+yy'=Q, that the planes <xa; + &c.,

a'x 4- &c. should be at right angles, expresses that the planes

should be conjugate with respect to the imaginary circle at

infinity. It follows that the condition of perpendicularity in

quadriplanar coordinates is

a' {a — ft cos(xy) — 7 cos (xz) — 8 cos(xw)}

+ ft' {— a cos (xy) + ft — 7 cos (yz) — & cos [yw)\ + &c. = 0.

Any theorems concerning perpendiculars may be generalized

projectively by substituting any fixed conic for the imaginary

circle at infinity ; and thus, instead of a perpendicular line and

plane, we get a line and plane which meet the plane of the

fixed conic in a point and line which are pole and polar with

respect to that conic (see Conics
y
p. 308). The theorems may

be extended further (see Conies^ p. 340) by substituting for the

fixed conic a fixed quadric, when instead of a line perpendicular

to a plane, we should have a line passing through the pole of

the plane with regard to the fixed quadric. These latter ex-

tensions however are theorems suggested, not proved.

Ex. Any tangent plane to a sphere Any plane section of a quadric is met

is perpendicular to the corresponding in a conjugate line and point, by any

radius. tangent plane and the line joining its

point of contact to the pole of the plane

of section.

219. The tangential equation of a sphere, to rectangular

co-ordinates, is written down at once by expressing that the

distance of the centre from any tangent plane is constant. The

equation is therefore

{ax' + fty
1

+ 7s' + By = r
2
(a

s + ft" + 7') •
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If then x, y\ z\ w be the co-ordinates of the centre of a

sphere, the tangential equation of the sphere in quadriplanar

co-ordinates must be

{ax' + fiij + yz + Sw'f = r
2
{a

2 + /3
2 + 7

2 + S
2 - 2a/3 cos [xy) - &c.}.

If the sphere touch the four planes x, y }
e, w, the coefficients

of a
2

, /3
2

, 7
2
, 8

s must vanish, and the tangential equation of

such a sphere must therefore be

(a ± /3 + 7 ± Sj
2 = a

2 + /S
2 + 7

2 + S
2 - 2a/3 cos(xy) - &c.

There are therefore eight spheres which touch the faces of a

tetrahedron. Taking all positive signs, we get the tangential

equation of the inscribed sphere

a/3 cos
2

^ {xy) + fty cos
2

| {ye) + 7a cos
2

^ {zx)

+ aS cos
2
-! {xw) + (38 cos

2

J [yw) + 7S cos
2 i {zw) = 0.

Forming the reciprocal of this, and writing I, m
}
n, p, q, r for

the coefficients in this equation, we get the corresponding quad-

riplanar equation, viz.

Iqrx
1 + mpry2 + npqz" + Imnvf + (Jp— mq — nr) {Ixw +pyz)

+ {mq — nr — Ip) {myw + qxz) + {nr - Ip — mq) {nzw + rxy) = 0.

220. The equation of the sphere circumscribing a tetra-

hedron may be most simply obtained as follows : Let the

four perpendiculars on each face from the opposite vertex be

p, p\ p\ p". Now the equation in piano of the circle circum-

scribing any triangle abc may be written in the form

{bcfyz {cafzx {abfxy
FT, 1

T, P }
— = "J,

PP P P PP

where x,p, &c. denote perpendiculars on the sides of a triangle

the lengths of which are {be), &c. But it is evident that for

any point in the face w, the ratio x :p is the same whether

x and p denote perpendiculars on the plane x or on the line

xw. We are thus led to the equation required, viz.

(bcfyz {ca)*z% {abfxy {adfxw {bdfyw {cdfzw _
pp" p"p pp' pp" p'p" p"p"

For this is a quadric whose intersection with each of the four

faces is the circle circumscribing the triangle of which that
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face consists. If this equation be reduced to rectangular co-

ordinates it will be found that the coefficients of x'\ y'\ z* are

each = — ] . Hence if we substitute the co-ordinates of any
point, we get — the square of the tangent from that point to

the sphere.

Coe. The square of the distance between the centres of the

inscribed and circumscribing spheres is

7? _ p* j. f(M
2

,
(caY (ah)* (adf {Id)' (cdf

\PP PP PP PP PP P> P

221. The equation of any other sphere can only differ from

the preceding by terms of the first degree, which must be of

(x it z uo \
- + —, + — +—,), the second
p p p p J

factor denoting the plane at infinity. If then we add to the

equation of the last article the product of these two factors,

identify with the general equation of the second degree and

eliminate the indeterminate constants, we obtain the conditions

that the general equation of the second degree in qnadriplanar

co-ordinates aa;
2 + hy' + &c. may represent a sphere, viz.

hp'
i + cp'"

i -'2\p'p" _ cp'" + ap'-2mp"p _ a/ + hp* - 2np/

{bey
~

{ca)'
~

{abf

_ a.p'+Ap""-2ppp'" _ bp'
2
+d^'"

2-2qyy" cp"*+&p""
i-frp"p""

{adf
~ '

{bdy {cd)*

222. It was shown (Art. 205) that by forming the con-

dition that ax + fiy + yz + 8w should touch U+ X V, we get

an equation in \ whose coefficients are the invariants r

piano A, A', 9, 6' of the sections of U and V by the give

plane. It was also shown {Conies, Art. 382) that if we forL

the invariants of any conic and the pair of circular points at

infinity, = is the condition that the curve should be a

parabola, 6' = the condition that it should be an equilateral

hyperbola, and e'
2 = 4e the condition that the curve should

pass through either circular point at infinity. Applying then

these principles to any quadric in rectangular co-ordinates and

the tangential equation of the imaginary circle o? + (3
i

-\-'f1
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we get for the condition, 9 = 0, that any section should be

a parabola,

{be- F) a
2 + (ca - m2

)

2 + [ab - n") y*

+ 2 [mn -at) 0y + 2 (nl- bm) 7a + 2 (Im -en) a/3 = ;

for the condition 9' = that it should represent an equilateral

hyperbola

(b + c) a
2

-I- (c + a) 0* + (a + b) y'-2l0y- 2mya - 2na/3 = 0,

while 6' 2 = 49 (a
2 + /3

2 + 7
2

) is the condition that the plane

should pass through any of the four points at infinity common
to the quadric and any sphere.

223. We know from the theory of conies that if a = be

the tangential equation of a conic, and a = the tangential

equation of the two circular points at infinity in its plane,

cr + Xcr' = is the tangential equation of any confocal conic.

Now the tangential equation of the pair of points where the

imaginary circle a
2+0'+y2

is met by the plane a'x+0'y+y'z + B'w

is evidently (a'
2 + /3'

2 + y'2

)
(a

2 + /3
2 + y

2

)
- (owe' + 00 + yy'f = 0.

Thus then the tangential equation of all conies confocal to the

section by a'x + 0y + y'z + B'w of ax2 + by
2 + cz

2 + dw2

, is

o
2
{{cd0

2 + dby'
2 + bcB'

2

) + X (0* + y'2
)}

-f
2
{{cdo!

2 + day'
2 + acB'

2

) + X (a'
2 + y'2

)}

+ y
2
{(bda

12+ da02 + abB") + X (a'
2 4 2

)}

+ B
2
(bcu

12 + ca0* + aby'
2

) -2{ad + X) 0y'0y

-2{bd+ X) y'a'ya. -2(cd+ X) a'0a0

- 2bca'B'aS - 2ca0B'0B - 2aby'B'yS = 0.

If we form the reciprocal of this according to the ordinary

rules, we get the square of a!x + 0y + y'z + B'w multiplied by

22 + X29' + X2
(a

2 + 0* + y
2

) 9 where 2 is the condition that

ax + 0y + y'z + B'w should touch the given quadric, and 9', 9
have the same signification as in the last article. By equating

the second factor to nothing we obtain the values of X which

give the tangential equations of the foci of the plane section

in question.
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Ex. 1. To find the foci of the section of ix> + y
2 - 4z2 + 1 by x + y + z. The

equation for X is found to be 3X2 + 2X = 16, whence X = 2 or = — §. The equation

of the last article, for the values a' = p = y' = 1, and the given values of a, b, c, d, is

a2 (-3 + 2X) + 2X/?->(5 + 2X)y2 -16,52 -2(4 + X)/3y-2(l + X)ya-l-2(4-X)a/3 = 0.

Substituting X = 2 it becomes (a + 2/3 — 37)" — 16<52, whence the co-ordinates of the

foci are +\, ± f,
+" f . The other value of X gives the imaginary foci.

Ex. 2. To find the locus of the foci of all central sections of the quadric

ax2 + by2 + cz2 + 1. Making & = 0, the equation for X is found to be

o+X 4 + X c+X
By the help of this relation the tangential equation of the foci is reduced to the form

f
aa' pp yy' \ - tea'- + cap!2 + aby-

U + X
+

4 + X
+

c + xJ (a + X) (4 + X) (c + X) "~ "

Thus then the co-ordinates of the foci are

a' ft"
y' ,_ bca12 + cap2 + aby'2

*~'a~+\' S ~b~+\'
C_

c + X'
W" ~

(a + X) (4 + X) (c + X)"

Solving for a, p, y' from the first three equations and substituting in the equation

for X, we get
(ax2 + if + cz2) + X (a* + y

2 + c=) = ;

solving for X and substituting in the value for 1c
2
. we get the equation of the locus, viz.

(i^y^z2)[bc^2{{a^)ij2+(a,-c)z2}
2+<xiy2{(b-c)z2+(b-a)x2

}
2+aiz2{(c-a)x2+(c-b)y2

}
2
]

= w2 {(a -b)y2 + (a-c) :} {(4 - c) z2 + (6 - a) x2
} {(c - a) x2 + (0 - b) y

2
},

a surface of the eighth degree having the centre of the given quadric as a multiple

point.

The left-hand side of the equation may be written in the simpler form

(a? + </ + -"-) {ax2 + by2 + as2) {a (4 - c)2 y2z2 + b(c- a)2 ;V + <(«- bf a?y2}.

Eor a discussion of this surface see a paper by M. Painvin, NoureNes Annales,

Second Series in. 481.

Ex. 3. To find the locus of foci of sections parallel to an axis, (say a = 0). The

equation which must break up into factors is in this case

a- {(c + X) fT- + (4 + X) y"- + be*2
} + fP {(a. + X) y

n
- + acS*} + y

2 {{a + X) jT- + o4^}

+ IT-a (cP2 + by"2) - 2 (a + X) Py'Py - 2capS'pS - 2aby'6'y£ = 0.

The condition that the resolution into factors shall be possible is

(a + X) {by'2 + of?
2
) + abcV2 = 0.

Subject to which condition the equation becomes

M^X)«-^+ ^^'= +^ ={t^' +^}'
whence p = by, y' = cr, aS" = (a + X) to, substituting which values in the equation

of condition we have (a + X) to
2 + acz2 + aby2 = ; whence again substituting in

be (a + X) x2 = (c + X) P2 + (b + X) y"- + bctT-,

we get for the required locus

(bf + c;2) {b* (a - c) y
2 + <? (a - b) z2 - obex2} = tr= {4= (a - c) y

2 + <? (a - b) z2}.

It is obvious that the methods of this and the preceding article can be applied to

equations in quadriplanar co-ordinates.
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224. Given four quadrics the locus of a point whose polar

planes with respect to all four meet in a point is a surface of

the fourth degree, which we call the Jacobian of the system of

quadrics (see Conies, p. 344). Its equation in fact is evidently

got by equating to nothing the determinant formed with the

four sets of differential coefficients Uv Ua Us1
£f ; V

lt
Va &c.

It is evident that when the polars of any point with regard

to U, F, W, T meet in a point, the polar with respect to

\U+(iV+ vW+ttT will pass through the same point. The

Jacobian is also the locus of the vertices of all cones which

can be represented by \U+ /aV+vW+ttT. Thus then given

six points the locus of the vertices of all cones of the second

degree which can pass through them is a surface of the fourth

degree. For if T, U, V, W be any quadrics through the six

points, every quadrie through them can be represented by

XU+fiV+ vU+ttT, since this last form contains the three

independent constants which are necessary to complete the

determination of the surface.

If in any case XU+ fiV+ vW+ irT can represent two planes,

the intersection of those planes lies on the Jacobian.

If the four surfaces have a common self-conjugate tetra-

hedron the Jacobian reduces to four planes. For let the

surfaces be ax* + by* + cz? + dw\ ax' + b'y
2 + &c, &c, then we

have JJ
x
=ax, V

1
= a'x, &c, and it is easy to see that the

Jacobian is xyzw multiplied by the determinant [ab'd'd"').

If one of the quantities U be a perfect square Z2

, L is a

factor in Z7
l5
C

2,
&c, and the Jacobian consists of a plane and

a surface of the third order. If the surfaces have common

four points in a plane, it is evident geometrically that this

plane is part of the Jacobian ; and if they have a plane section

common to all, this plane counts doubly in the Jacobian, which

is only a surface of the second degree besides. Thus the

Jacobian of four spheres is a sphere cutting the others at

right angles.

Coe. If a surface of the system W+ fiV+vW touch T,

the point of contact is evidently a point on the locus considered

in this article, and therefore lies somewhere on the curve of

intersection of T with the Jacobian. Again, if a surface of
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the system \U+ /* V touch the curve of intersection of T, W;
that is to say, if at one of the points where ~kU+fiV meets

1\ TF, the tangent plane to the first pass through the inter-

section of the tangent planes to the two others, the point of

contact is evidently a point on the Jacobian of the system.

It follows that sixteen surfaces of the system XU+ fi V can be

drawn to touch T, TF; for since three surfaces of degrees

m, n,j> meet in mnp points, the Jacobian which is of the fourth

degree meets the intersection of the two quadrics T, W in

sixteen points.

225. To reduce a pair of quadrics Z7, V to the canonical

form xl + y
l + s* + 10

s
, ax' + by* + cz* + dw'\ In the first place

the constants a, b, c, d are given by the biquadratic

AX* - ©Xs + *X2 - &'\ + A' = 0.

Then solving the equations

x2 + y* + z*+ w'
2
=Z7, a{bc + cd+db)xi + &c. = T,

a(b + c+d)x*±&c. = T', ax* + &c = F,

we find a;
2

,
y*, «*, wa

, in terms of the known functions £7, F,

T, T'. Strictly speaking we ought to commence by dividing

U and F by the fourth root of A, in order to reduce them to

a form in which the discriminant of U shall be 1. But it will

come to the same thing if leaving U and V unchanged we

divide by A, T and T' as calculated from the coefficients of

the given equation.

Ex. 1. To reduce to the canonical form

5x"- - Uf - lie5 - 6u>2 + 24i/z + 22ias - 20zy + St/m + izw = 0,

25a;2 - Wtf - 15z2 - 5w2 + 38yz + i6zx - 3(% - Wxw + 10yw + 18zm = 0.

The reciprocals of these equations are

550a2+ 1036/32+ 850y2-SUP+ 212O0y+ 500ya- 520«/3- 180ct5+ 2088/3(5+ 1980yS= 0,

3950a2+ 800|82+ 2750y2- 9720a2+ 11200/3y+ 4900ya- 4160a/3+ 25920/3S+ 16200yd= 0.

And the biquadratic is

8100 {X* - 10X3 + 35X2 - 50X + 24} = ;

whence a. b, c, d are 1, 2, 3, 4. We then calculate T and T' by the formula

T=x* {^(oi-re2) +C"(oc-m2
) +£'(ad-pT) +2L\al-mn) + 2Q' (aq-np) +2E'(ar-mp)}

+ 2y« [A' (al - mn) + If (o7 - qr) + Q (ql-br) + R' (W- cq)

+ J/' (tot - en) + N' (In -bm) + L'(P- Ic) +P (2pl -nr- mq)} + &c,
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and dividing T and 7" so calculated by A (= 8100), we write

X2 + F2 + Z 2 +W
= 5a:2 - XXf - llz2 - 6w2 + 24yz + llzx - 20xy + 8yw + izw,

X2 + 2F2 + 3Z 2 + 4W2

= 25m2 - 10y2 - 15z2 - 5w2 + 38yz + 4Gza: - dQxy - Wxm + lOyw + 18zm,

9X2 + 16F2 + 21Z 2 + 24W*

= 161a;2 - 100/ - 135z2 - 55io2 + 30%z + 342za: - 250a;!/ - 70xw + YO^w + 126zro,

26X2 + 38F2 + 42Z 2 + 44W2

= 280X2 - 300y2 - 360z2 - 170»2 + 772</z + 776za; - 628xy - 108a» + 180yu> + 252zw.

Then from 24C- V+ V - T, we get

6X2 = - 6 {2a: + 3y-2ts- 2wf.
And, in like manner,

F2 = - (x + 2y - 3z + 2w)2
, Z2 = (3x-y + z -to) 2

, J*'2 = (a; + y + z + w)\

Ex. 2. It having heen shown that a;
2
, j/

2
, 22, vfl can be expressed in terms of

U, V, T, V, it follows that the square of the Jacobian of these four surfaces can also

be expressed as a function of them. We find thus

2 = AT"4 - 6T3 T' +®W2 - 9'77"3 - AT1

+ V {(6
2 - 2A4>) T3 + (9* - 39' A)W + (99' - 4AA') 7T'2 - A'07"3

}

+ Z7((9'2 - 2A'3>) T'3 + (9'* - 36A') T'*T+ (99' - 4AA') T'T* - AQ'T3
}

+ AF!
{($

2 - 290' + 2AA') T2 - (9'<I> - 30A') 77' + *AT'[

+ A'P"2 {(4>
2 - 260' + 2AA') 7"2 - (9* - 3A0') TV + A*72

J

+ T {(9'2 - 2A'4>) F3A2 - (0'<t>2 - 299'2 + 50'A'A - 9<S>A') 72 £7A

+ (02* - 2<S2A - 99'A + 4A'A2
) A'VV - AA'^P3

}

+ 7" {(0
2 - 2A*) £T3A'2 - (0*2 - 20'02 + 59AA' - 0'<f>A) TJWA'

+ (9'2* - 2$2A' - 90'A' + 4AA'2
) APT2 - A2A'0'F3

}

+ A3A'2 V* + A2A'3 U* - PT3A2 {0'3 - 39'*A' + 30A'2
} - U3 FA'2 {93 - 39*A+ 30'

A

2
}

+ AA'C2F2
I*

3 - 34>AA' + 392A' + 30'2A - 399'$}.

226. Given three quadrics the locus of a point whose polar

planes with respect to all three meet in a line is a curve of the

sixth order, which may be called the Jacobian curve of the

system. For such a point must evidently satisfy all the equa-

tions got by equating to nothing the determinants of the system

v» v« ua u<

V V V V
w» w„ w

t , w4

and it will be shown hereafter that such a system represents

a curve of the sixth order.
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227. If we form the discriminant of X U+ fi V+ v W, the

coefficients of the several powers of X, /j,, v will evidently be

invariants of the system U, V, W. There are two invariants

however of this system, (which we shall call 7, J) which deserve

special attention as being also invariants of any three quadrics

of the system X U+ pV+ v W. The invariant which we call 7
vanishes whenever any four of the points of intersection of

U, V, W lie in a plane, or, in. other words, whenever it is

possible to find values of X, /x, v, which will make \U+pV+vW
represent two planes. If, as at Art. 137, we write

U= ax* + fo/
2 + cz

2 + du* + ew
2

,

V= a!a? + b'f + cVJ + d'u* + eV,

TF=aV + by + c"z* + d"u? + e"o\

(where x+>/ + z+ u + v = 0), we shall show that in this case

I is the product of the ten determinants (ab'c"), &c. For

(ab'c") a;
2 + (db'c") w.

2 + [eb'd') v
1

is evidently a surface of the

system X Z7+ fx V+ vW which will reduce to two planes, if one

of the determinants (ab'c") vanishes. Thus we see that I is

of the tenth order in the coefficients of each of the surfaces.

That I is of the tenth degree may be otherwise seen as follows

:

Let Z7, U\ V, W be four quadrics passing each through the

same sis points ; then since through these points twenty planes

[ten pairs of planes] can be drawn, it follows that the problem

to determine X, yu., v, so that U+XW + fiV+ vW may repre-

sent two planes, admits of ten solutions. But X might also be

determined by forming the invariant 7 of the system U, V, W,

and then substituting for each coefficient a of U, a -I- Xa'. And
since there are ten values of X, the result of substitution must

contain X in the tenth degree; and therefore 7 must contain

the coefficients of U in the same degree.

228. The invariant which we call J vanishes whenever any

two of the eight points of intersection of the surfaces U
}
V, W

coincide.* Thus, if at any point common to the three surfaces,

* This invariant is called by Mr. Cayley the tact-invariant of a svstem of three

quadrics, as that considered Art. 193 is the tact-invariant of a system of two..

N
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their three tangent planes pass through a common line, the

consecutive point on this line will also be common to all the

surfaces. Such a point will also be the vertex of a cone of

the system XU+fiV+vW. For take the point as origin and

if the tangent planes be x, y, ax + by, the equations of the

surfaces are x + w
2 , y + v

2, ax + by-+ w
2 , where «

2 , v
t,
w

2
de-

note terms of the second degree. And it is evident that

aU+ b V— W is a cone having the origin for its vertex.

J will be of the sixteenth degree in the coefficients of each

of the surfaces. For if in J we substitute for each coefficient

a of U, a + Xd where a is the corresponding coefficient of

another surface U', it is evident that the degree of the result

in A, is the same as the number of surfaces of the system

U+ X U' which can be drawn to touch the curve of intersection

of V, W; that is to say, sixteen (Cor., Art. 224).

229. If ax2 + by* + cz
2 + du2 + ev

2
represent a cone, the co-

ordinates of the vertex satisfy the four equations got by diffe-

rentiating with respect to x, y, z, u; that is to say, (remem-

bering that x-\-y + z + u + vis supposed to =0) ax = ev, by = ev,

&c. The co-ordinates of the vertex may then be written

-
, j , - , -j , - , substituting which values in the condition

connecting x, y, z, u, v, we obtain the discriminant of the

surface, viz. 11111
- + T + - + j +-=0.
a b c a e

Thus then if we write the equations of U, V, W in the form

here used, the discriminant of XU+ fiV+ vW is

1 ! P
^

i Ti + Tl Ti TTi + &c - = j

Xa + fia + va Xb -+ fib + vb

and when XU+ fi V+ vW represents a cone, if we substitute the

co-ordinates of the vertex in the equations of one of the surfaces,

we get

(Xa + fid + vd'f (Xb + fib' + vb")
2

a
+ 7TTX7J/X »̂ + &c

- = °> &c-

(Xa + fid + vd'f (Xb + fib' + vb"]'
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But these equations are the differentials of the discriminant

with respect to X, fi, v. Hence we derive the theorem that

if we form the discriminant of XU+ y. V+ v W, and then the

discriminant of this again with respect to \, /it, v ; J will be

a factor in the result. It may be shewn easily that I must also

be a factor in this result, and the result is in fact 2V.*

230.f The lines joining ike vertices of any tetrahedron to the

corresponding vertices of its polar tetrahedron with regard to a
quadric belong to the same system of generators of a hyperboloid

of one, sheet, and the intersections of corresponding faces of the

two tetrahedra possess the same property.

The result of substituting the co-ordinates of any point 1,

in the polar of another point 2, is the same as that of sub-

stituting the co-ordinates of 2 in the polar of 1. Let this result

be called [1, 2]. Let the polar of 1 be called P
t
. Then it is

easy to see that the line joining the point 1, to the intersection

ofP
9
,P

3
,P

4)
is

P. P. P
t

[1, 2] [1, 3] [1, 4]
*

For this denotes a right line passing through the intersection

of P
2)
P

9 , P4, and whose equation is satisfied by the co-ordinates

of 1. The notation will be more compact if we call the four

polar planes x, y, z, w, and denote the quantities [1, 1], [1, 2],

* An analogous theorem, due to Mr. Cayley, is that if U and V be homo-

geneous functions of two variables of the n01 degree; and if we form the discri-

minant of U + XV and then the discriminant of this with respect to X, the result

'will be AB2C 3 where A is the result of ehmination between U and V; B (of the

degree 2 (» — 2) (ra — 3) in both sets of coefficients) vanishes whenever X. can be so

determined that U+W shall have two pairs of equal factors ; and C (of the degree

3 (» — 2)) vanishes whenever X can be determined so that U+W shall have three

equal factors. In like manner, if U and V be homogeneous functions of three varia-

bles, the disciiminant with regard to X of the discriminant of U+W is still AErC*,

where *i (of the degree 3» (« — 1) in each set of coefficients) is the condition that U
and V should touch, B vanishes whenever it is possible to determine X so that

V + XV may have two double points ; and C, so that it may have a cusp. Lastly,

when U, V, W are three conies, the discriminant with respect to X, /i, v of the dis-

criminant of XC+ fiV + uW is ABr, where A = is the condition that the curves

should intersect and B = is the condition that XU + fiV+uW should ever be a

perfect square.

t The following theorems, which in the last edition were given in Chap, vii., have

been inadvertently omitted from their proper place.

N2
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[1, 3], [1, 4] by a, w, m,p, that is to say, by the same letters

by which we have expressed the coefficients of x'\ xy, xz, xw
in the general equation of a quadric. Then the equations of

the four lines we are considering are

y z w
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Let A, B, G, &c. have the same meaning as at p. 40, with
reference to the a, b, c, &c. of the last article. Then the equa-
tion of the plane containing the three points 1, 2, 3, is easily

seen to be

Px + Qy + Bz + Dw = 0.

And the equations of the four lines are

x = 0, Ny + Mz-\- Pw = 0,

y = 0, Nx + Lz + Qw = 0,

a = 0, Mx + Ly + Bw = 0,

w = 0, Px + Qy + Bz = 0.

Now the conditions that any line

ax + $y + yz + Bw = 0, a'x + fi'y + j'z + S'w = 0,

should intersect each of these are found to be

N(yB' - 7'8) + M(b? - 873) + P (#/ - /3'7) = 0,

N{Sy' - S'y) + Q (7«' - y'a) + L (aS' - Sat) = 0,

M (J3E? - /3'S) + L {lot - S'a) +B (a/3' - a'/S) = 0,

P (fi'y -Pi) + QH ~ 7«') + -B 08a' - /3'a) = 0,

and, as before, the theorem is proved by the fact that these

conditions when added vanish identically. The equation of the

hyperboloid is found to be

x*MNP+ y'LNQ + z*LMB + w'PQB

+ xyN(PL +QM)+ yzL{QM+BN) + zxM(PL + BN)

+ xwP {MQ + BN) +ywQ (LP + NB) + zwB (LP+ QM).

As a particular case of these theorems the lines joining each

vertex of a circumscribing tetrahedron to the point of contact

of the opposite face are generators of the same hyperboloid.

232. Pascal's theorem for conies may be stated as follows

:

" The sides of any triangle intersect a conic in six points lying

in pairs on three lines which intersect each the opposite side of

the triangle in three points lying in one right line." M. Chasles

has stated the following as the analogous theorem for space

of three dimensions :
" The sides of a tetrahedron intersect a

quadric in twelve points, through which can be drawn four
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planes, each containing three points lying on edges passing

through the same angle of the tetrahedron; then the lines

of intersection of each such plane with the opposite face of

the tetrahedron, are generators of the same system of a certain

hyperboloid."

Let the faces of the tetrahedron be x, y, z, w, and the quadric

nj
Xyt*+y* + z* + w*-(l+^yz-(m + ^)zx-(n +^

-(p+-J xw - (2 +-) vw -
(
r +

"J
zw

i

then the four planes may be written

x = ny +111Z + pw, , y = nx+ Iz + qw,

z = mx+ ly +rw, w=jix + qy + rz,

whose intersections with the planes a?, y, 2, w, respectively are

a system of lines proved in the last article to be generators of

the same hyperboloid.
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CHAPTER X.

CONES AND SPHERO-CONICS.

233. If a cone of any degree be cut by any spbere, whose

centre is the vertex of the cone, the curve of section will

evidently be such that the angle between two edges of the cone

is measured by the arc joining the two corresponding points

on the sphere. When the cone is of the second degree, the

curve of section is called a sphero-conic. By stating many of

the properties of cones of the second degree as properties of

sphero-conics, the analogy between them and corresponding

properties of conies becomes more striking.*

Strictly speaking, the intersection of a sphere with a cone

of the n
th

degree is a curve of the 2n
th

degree : but when the

cone is concentric with the sphere, the curve of intersection

may be divided, in an infinity of ways, into two symmetrical

and equal portions, either of which may be regarded as analo-

gous to a plane curve of the n
ta

degree. For if we consider

the points of the curve of intersection which lie in any hemi-

sphere, the points diametrically opposite evidently trace out

a perfectly symmetrical curve in the opposite hemisphere.

Thus then a sphero-conic may be regarded as analogous

either to an ellipse or to a hyperbola. A cone of the second

degree evidently intersects a concentric sphere in two similar

closed curves diametrically opposite to each other. One of

the principal planes of the cone meets neither curve, and if we

look at either of the hemispheres into which this plane divides

* See M. Chasles's Memoir on Sphero-conics (published in the Sixth Volume of the

Transactions of the Royal Academy of Brussels, and translated by Professor Graves,

Dublin, 1837), from which the enunciations of many of the theorems in this chapter

are taken. See also M. Chasles's later papers Comptes Rendus, March and June, 1860.
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the sphere, we see a closed curve analogous to an ellipse. But

if we look at one of the hemispheres into which the sphere

is divided by a principal plane meeting both the opposite

curves, we see a curve consisting of two opposite branches

like a hyperbola.

The curve of intersection of any quadric with a concentric

sphere is evidently a sphero-conic.

234. The properties of spherical curves have been studied

by means of systems of spherical co-ordinates formed on the

model of Cartesian co-ordinates. Choose for axes of co-ordi-

nates any two great circles OX, OY intersecting at right

angles, and on them let fall perpendiculars PM, PN from any

point on the sphere P. These perpendiculars are not, as in

plane co-ordinates, equal to the opposite sides of the quad-

rilateral OMPN; and therefore it would seem that there is

a certain latitude admissible in our selection of spherical co-

ordinates, according as we choose for co-ordinates the per-

pendiculars PM, PN, or the intercepts OM, ON which they

make on the axes.

M. Gudermann of Cleves has chosen for co-ordinates the

tangents of the intercepts OM, ON (see Crelle's Journal,

Vol. VI., p. 240), and the reader will find an elaborate discussion

of this system of co-ordinates in the appendix to Dr. Graves's

translation of Chasles's Memoir on Sphero-conics. It is easy

to see however that if we draw a tangent plane to the sphere

at the point 0, and if the lines joining the centre to the points

M, N, P, meet that plane in points m, n, p ; then Om, On will

be the Cartesian co-ordinates of the point p. But Om, On

are the tangents of the arcs OM, ON. Hence the equation

of a spherical curve in Gudermann's system of co-ordinates

is in reality nothing but the ordinary equation of the plane

curve in which the cone joining the spherical curve to the

centre of the sphere is met by the tangent plane at the

point 0.

So again, if we choose for co-ordinates the sines of the per-

pendiculars PM, PN, it is easy to 3ee in like manner that the

equation of a spherical curve in such co-ordinates is only the
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equation of the orthogonal projection of that curve on a plane

parallel to the tangent plane at the point 0.

It seems, however, to us that the properties of spherical

curves are obtained more simply and directly from the equa-

tions of the cones which join them to the centre, than from

the equations of any of the plane curves into which they can

be projected.

235. Let the co-ordinates of any point P on the sphere be

substituted in the equation of any plane passing through the

centre (which we take for origin of co-ordinates), and meeting

the sphere in a great circle AB, the result will be the length

of the perpendicular from P on that plane ; which is the sine

of the spherical arc let fall perpendicular from P on the great

circle AB. By the help of this principle the equations of

cones are interpreted so as to yield properties of spherical

curves in a manner precisely corresponding to that used in

interpreting the equations of plane curves.

Thus, let a, /3 be the equations of any two planes through

the centre, which may also be regarded as the equations of the

great circles in which they meet the sphere, then (as at Conies,

p. 55) a — ft/3 denotes a great circle such that the sine of the

perpendicular arc from any point of it on a is in a constant

ratio to the sine of the perpendicular on /3; that is to say,

a great circle dividing the angle between a and /3 into parts

whose sines are in the same ratio.

Thus, again, a — ft/3, a — ft'/3 denote arcs forming with a

and /3 a pencil whose anharmonic ratio is p . And a — ft/8,

a + ft/3 denote arcs forming with a, /3 a harmonic pencil.

It may be noted here that if A' be the middle point of

an arc AB, then B', the fourth harmonic to A', A and B, is

a point distant from A' by 90°. For if we join these points

to the centre G, CA' is the internal bisector of the angle A CB,

and therefore GB' must be the external bisector. Conversely,

if two corresponding points of a harmonic system are distant

from each other by 90°, each is equidistant from the other two

points of the system.
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It is convenient also to mention here that if xy'z' be the

co-ordinates of any point on the sphere, then xx' + yy' + zz'

denotes the great circle having xy'z' for its pole. It is in

fact the equation of the plane perpendicular to the line joining

the centre to the point xy'z

.

236. We can now immediately apply to spherical triangles

the methods used for plane triangles (Conies, p. 56, &c). Thus

if a, /3, 7 denote the three sides, then, as in plane triangles,

la = m/3 = ny denote three lines meeting in a point, one of

which passes through each of the vertices : while

«j/3 + ny — la, ny + la — m/3, la + m/3 — ny

are the sides of the triangle formed by connecting the points

where each of these joining lines meets the opposite sides of

the given triangle ; and la + rnft + ny passes through the inter-

sections of corresponding sides of this new triangle and of the

given triangle.

The equations a = /3 = y evidently represent the three bi-

sectors of the angles of the triangle. And if A, B, C be the

angles of the triangle, it is easily proved that as in plane

triangles a cos^l = /3 cosJB = y cosC denote the three per-

pendiculars. It remains true, as at Conies, p. 57, that if the

perpendiculars from the vertices of one triangle on the sides

of another meet in a point, so will the perpendiculars from the

vertices of the second on the sides of the first.

The three bisectors of sides are a sin.4 = /3 sinZ?=7 sin (7.

The arc a sinA + fi s'mB+y sinC passes through the three

points where each side is met by the arc joining the middle

points of the other two ; or, again, it passes through the

point on each side 90° distant from its middle point, for

a s'mA + ft smB meet 7 in two points which are harmonic

conjugates with the points in which a, /3 meet them, and since

one is the middle point the other must be 90° distant from it

(Art. 235). It follows from what has been just said that the

point where a miA + fi smB+y sinC meets any side is the

pole of the great circle perpendicular to that side, and passing

through its middle point, and hence that the intersection of

the three such perpendiculars (that is to say, the centre of
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the circumscribing circle) is the pole of the great circle

a sin^ + yg sinB+y sin(7. The equations of the lines joining

the vertices of the triangle to the centre of the circumscribing

circle are found to be

« = ft 7
sm^B+C-A) sm$[0+A-B) sm^{A + B-C)'

287. The condition that two great circles ax + by + cz,

dx + b'y + c'z should be perpendicular is manifestly

ad + bb' + cc' = 0.

The condition that a<x + bB + cy
}

a'ct + b'B + c'y should be per-

pendicular is easily found from this by substituting for a, /3, y
their expressions in terms of x, y, z. The result is exactly the

same as for the corresponding case in the plane, viz.

aa'+bb'+cc'-{bc'+b'c) cosA -(ca'+c'a) cosB-(ab'+bd) cos (7=0.

In like manner the sine of the arc perpendicular to aa + b/3 + cy,

and passing through a given point is found by substituting the

co-ordinates of that point in aa + bB + cy and dividing by the

square root of

a3 + b* + c*

-

Ibc cosj4 - 2ca cosB- 2ab cosO.

238. Passing now to equations of the second degree, we
may consider the equation ay= mB* either as denoting a cone

having a and 7 for tangent planes, while B passes through

the edges of contact, or as denoting a sphero-conic, having

a and 7 for tangents, and B for their arc of contact. The

equation plainly asserts that the product of the sines of per-

pendiculars from any point of a sphero-conic on two of its

tangents is in a constant ratio to the square of the sine of the

perpendicular from the same point on the arc of contact.

In like manner the equation ay = JcBS asserts that the pro-

duct of the sines of the perpendiculars from any point of a

sphero-conic on two opposite sides of an inscribed quadrilateral

is in a constant ratio to the product of sines of perpendiculars

on the other two sides. And from this property again may be

deduced, precisely as at Conies, p. 225, that the anharmonic

ratio of the four arcs joining four fixed points on a sphero-
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conic to any other point on the curve is constant. In like

manner almost all the proofs of theorems respecting plane

conies (given Conies, Chap. XIV.) apply equally to sphero-

conics.

239. If a, /3 represent the planes of circular section (or

cyclic planes) of a cone, the equation of the cone is of the

form x' + y* + zi = ha.ft (Art. 99), which interpreted, as in the

last article, shews that the product of the sines of perpen-

diculars from any point of a sphero-conic on the two cyclic arcs

is constant. Or, again, that, " Given the base of a spherical

triangle and the product of cosines of sides, the locus of vertex

is a sphero-conic, the cyclic arcs of which are the great circles

having for their poles the extremities of the given base." The
form of the equation shews that the cyclic arcs of sphero-conics

are analogous to the asymptotes of plane conies.

Every property of a sphero-conic can be doubled by con-

sidering the sphero-conic formed by the cone reciprocal to

the given one. Thus (Art. 121) it was proved that the cyclic

planes of one cone are perpendicular to the focal lines of the

reciprocal cone. If then the points in which the focal lines

meet the sphere be called the foci of the sphero-conic, the

property established in this article proves that the product

of the sines of the perpendiculars let fall from the two foci

on any tangent to a sphero-conic is constant.

240. If any great circle meet a sphero-conic in two points

P, Q }
and the cyclic arcs in points A, P, then AP=BQ.

This is deduced from the property of the last article in

the same way as the corresponding property of the plane

hyperbola is proved. The ratio of the sines of the perpen-

diculars from P and Q on a is equal to the ratio of the sines

of perpendiculars from Q and P on /3. But the sines of

the perpendiculars from P and Q on a are in the ratio

sin4P: sinAQ, and therefore we have

sin^tP: smAQ :: smBQ : sinPP,

whence it may easily be inferred that AP= BQ.

Eeciprocally, the two tangents from any point to a sphere-
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conic make equal angles with the arcs joining that point to

the two foci.

241. As a particular case of the theorem of Art. 240 we
learn that the portion of any tangent to a sphero-conic intercepted

between the two cyclic arcs is bisected at the chord of contact.

This theorem may also be obtained directly from the equation

of a tangent, viz.

2 (axe' + yij 4 zz') = h (<x'/3 4 a/3')

.

The form of this equation shews that the tangent at any point

is constructed by joining that point to the intersection of its

polar {xx' 4 yy 4 zz', see Art. 235) with a'/3 4 /3'a which is the

fourth harmonic to the cyclic arcs a, /3, and the line joining

the given point to their intersection. Since then the given

point is 90° distant from its harmonic conjugate in respect of

the two points where the tangent at that point meets the

cyclic arcs, it is equidistant from these points (Art. 235).

Reciprocally, the lines joining any point on a sphero-conic

to the two foci make equal angles with the tangent at that

point.

242. From the fact that the intercept by the cyclic arcs

on any tangent is bisected at the point of contact, it may at

once be inferred by the method of infinitesimals (see Conies,

Art. 396) that every tangent to a sphero-conic forms with the

cyclic arcs a triangle of constant area, or a triangle the sum of

whose base angles is constant. This may also be inferred tri-

gonometrically from the fact that the product of sines of per-

pendiculars on the cylic arcs is constant. For if we call the

intercept of the tangent c, and the angles it makes with the

cyclic arcs A and B, the sines of the perpendiculars on a

and /3 are respectively sin|c sin-4, sin|csinB. But consider-

ing the triangle of which c is the base and A and B the base

angles, then by spherical trigonometry,

sin^c sinJ. sini?=- cos£ cos(#— C).

But C is given, therefore 8, the half sum of the angles, is given.

Reciprocally, the sum of the arcs joining the two foci to
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any point on a sphero-conic is constant. Or the same may be

deduced by the method of infinitesimals (see Conies, p. 349)

from the theorem that the focal radii make equal angles with

the tangent at any point.*

243. Conversely, again, we can find the locus of a point

on a sphere, such that the sum of its distances from two

fixed points on the sphere may be constant. The equation

cos(p + p') = cosa may be written

cos'p + cos'p' - 2 cosp cosp cosa=sin2
a.

If then a and /3 denote the planes which are the polars of

the two given points, since we have a = cosp, the equation

of the locus is

«» + /3
a - 2a/3 cosa = sin

2a (a
2 + if + s

2

).

In order to prove that the planes a and /3 are perpendicular

to focal lines of this cone, it is only necessary to shew that

sections parallel to either plane have a focus on the line per-

pendicular to it. Thus let a', a" be two planes perpendicular

to each other and to a, and therefore passing through the

line which we want to prove a focal line. Then since

^ +^ + z
2 = a

2
+ a'

2 +a"2

,

the equation of the locus becomes

sin
2
a(a'

2 + a''
2

) = (/3-acosa) 2
.

If then this locus be cut by any plane parallel to a, a'
2 + a"

s

is the square of the distance of a point on the section from

the intersection of a'a", and we see that this distance is in a

constant ratio to the distance from the line in which /3 — a. cosa

* Here again we can see that a sphero-conic may be regarded either as an

ellipse or hyperbola. The focal lines each evidently meet the sphere in two dia-

metrically opposite points. If we choose for foci two points within one of the

closed curves in which the cone meets the sphere, then the swm of the focal dis-

tances is constant. But if we substitute for one of the focal distances FP, the

focal distance from the diametrically opposite point, then since F'P = 180° — FP,

we have the difference of the focal distances constant.

In like manner we may say that a variable tangent makes with the cyclic arcs

angles whose difference is constant, if we substitute its supplement for one of the

angles at the beginning of this article.
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is cut by the same plane. This line is therefore the directrix

of the section, the point a'a" being the focus.

We see thus also that the general equation of a cone having

the line xy for a focal line is of the form x'' + y* = (aaj+Jy+cz)2

;

whence again it follows that the sine of the distance of any point
on a sphero-conic from a focus is in a constant ratio to the sine

of the distance of the same point from a certain directrix arc.

244. Any two variable tangents meet the cyclic arcs in four

points which lie on a circle. For if L, M be two tangents

and R the chord of contact, the equation of the sphero-conic

may be written in the form LM=Bii

; but this must be iden-

tical with a/3 = x* + y'2 + z2
. Hence a/3 —LM is identical with

x2 + y
2 + z'

2 — H*. The latter quantity represents a small circle,

having the same pole as B, and the form of the other shews that

that circle circumscribes the quadrilateral aL/3M.

Reciprocally, the focal radii to any two points on a sphero-

conic form a spherical quadrilateral in which a small circle can

be inscribed. From this property again may be deduced the

theorem that the sum or difference of the focal radii is con-

stant, since the difference or sum of two opposite sides of such

a quadrilateral is equal to the difference or sum of the re-

maining two.

245. From the properties just proved for cones can be

deduced properties of quadrics in general. Thus the product

of the sines of the angles that any generator of a hyperboloid

makes with the planes of circular section is constant. For the

generator is parallel to an edge of the asymptotic cone whose

circular sections are the same as those of the surface. Again,

since the focal lines of the asymptotic cone are the asymptotes

of the focal hyperbola, it follows from Art. 242 that the sum

or difference is constant of the angles which any generator of

a hyperboloid makes with the asymptotes to the focal hyper-

bola. Again, given one axis of a central section of a quadric,

the sum or difference is given of the angles which its plane

makes with the planes of circular section. For (Art. 98) given

one axis of a central section its plane touches a cone concylic
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with the given quadric, and therefore the present theorem

follows at once from Art. 242.

We get an expression for the sum or difference of the angles,

in terms of the given axis, by considering the principal sec-

tion containing the greatest and least axes of the quadric.

We obtain the cyclic planes by inflecting in that section

semi-diameters OB, OB' each = b.

Then the planes containing these

lines and perpendicular to the

plane of the figure are the cyclic

planes. Now if we draw any

semi-diameter d making an angle

a with OC, we have

But a is obviously an axis of the section which passes

through it and is perpendicular to the plane of the figure,

and (if a be greater than b) a. is evidently half the sum of

the angles BOA', B'OA' which the plane of the section makes

with the cyclic planes. If a be less than b, OA' falls between

OB, OB', and a is half the difference of BOA', B'OA'. But

this sum or difference is the same for all sections having the

same axis. Hence, if a, b' be the axes of any central section,

making angles 8, & with the cyclic planes, we have

cos^(g-g') Bin'Hfl-fl')

6'
+

d>

i_ _ cos
2

%{0 + ff) sm^jd+ff)

a"
~

T~ +
a"

sin# sin#\

Subtracting, we have

1 _1_ _ /I _ V
¥ ~ d* ~ {<? d\

or, the difference of the squares of the reciprocals of the axes of

a central section is proportional to the product of the sines of

the angles it makes with the cyclic planes.

246. We saw (Art. 240) that given two sphero-conics

having the same cyclic arcs, the intercept made by the outer
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on any tangent to the inner is bisected at the point of contact

;

and hence, by the method of infinitesimals, that tangent cuts

off from the outer a segment of constant area [Conies, Art. 396).

Again, if two sphero-conics have the same foci, and if

tangents be drawn to the inner from any point on the outer,

these tangents are equally inclined to the tangent to the outer

at that point. Hence, by infinitesimals, (see Conies, p. 355)

the excess of the sum of the two tangents over the included

arc of the inner conic is constant. This theorem is the reci-

procal of the first theorem of this article, and it is so that

it was obtained by Dr. Graves (see his translation of Chasles's

Memoir, p. 77).

247. To find the locus of the intersection of two tangents to

a sphero-conic which cut at right angles. This is in other words

to find the cone generated by the intersection of two rect-

3? 11* Z*
angular tangent planes to a given cone -j + ?= -f -~ ~ 0. Let

the direction-angles of the perpendiculars to the two tangent

planes be a'/8y, a."/3"y"; then they fulfil the relations

A cosW+B cos*/3'+C cosV=0, A cosV+5 cos
2
/3"+ C cos

2

7"=0.

But if a, /3, 7 be the direction-cosines of the line perpendicular

to both, we have cos
sa=l — cosV — cos

2
a", &c. Therefore

adding the two preceding equations, we have for the equation

of the locus,

Ax" +Bf + Cz2 =(A + B+C) [x* +f + z
2

),

a cone concyclic with the reciprocal of the given cone. Reci-

procally, the envelope of a chord 90° in length is a sphero-

conic, confocal with the reciprocal of the given cone.

248. To find the locus of the foot of the perpendicular from

the focus of a sphero-conic on the tangent. The work of this

question is precisely the same as that of the corresponding

problem in plane conies, and the only difference is in the inter-

pretation of the result. Let the equation of the sphero-conic

(Art. 243) be x2 + y
2 = f where t= ax + by+ as, then the equa-

tion of the tangent is

xx' + yy'' = «',
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and of a perpendicular to it through the origin is

(x — at') y—(y' — it') x = 0.

Solving for x\ y', and t' from these two equations, and sub-

stituting in x"
i + y''i = t"\ we get for the locus required,

(x* + f) {(a
2 + ¥ - 1) (a

2 + f) + 2cz [ax + by) + cV} = 0.

The quantity within the brackets denotes a cone whose circular

sections are parallel to the plane s.

249. It was proved (Art. 236) that the relation

a sinA + /3 sini? + 7 sin G=

is not, as in piano, an identical relation satisfied by the perpen-

diculars from any point. It remains then to ask how the

three perpendiculars from any point on three fixed great circles

are connected. But this question we have implicitly answered

already, for the three perpendiculars are each the complement

of one of the three distances from the three poles of the sides

of the triangle of reference. If then a, J, c be the sides

;

A, B, C the angles of the triangle of reference, then a, /3, 7
the sines of the perpendiculars on the sides from any point

are connected by the following relation, which is only a trans-

formation of that of Art. 52,

a
2
sin

2
J. + /3

2
sin

2
i? + 7

2
sin

2

+ 2,87 sini? sin C cosa+27a sinC sin4 cosJ+2a/3 sin^l sini? cose

= 1 — cos'A - cos
2
i? - cos

2 (7-2 cosA cosB cos C.

The equation in this form represents a relation between the

sines of the arcs represented by a, /3, 7. If we want to get

a relation between the perpendiculars from any point of the

sphere on the planes represented by a, /3, 7, we have evidently

only to multiply the right-hand side of the preceding equation

by r
2
, and that equation in a, /8, 7 will be the transformation

of the equation xl + y'2 + z
2 = r

2
-

Hence, it appears that if we equate the left-hand side of

the preceding equation to zero, the equation will be the same

as x' + y' + «
2 = 0, and therefore denotes the imaginary circle

which is the intersection of two concentric spheres; that is to

say, the imaginary circle at infinity (see Art. 135).
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250. This equation may be used to find the equation of the

sphere inscribed in a given tetrahedron, whose faces are

oe, /3, 7, 8. If through the centre three planes be drawn
parallel to a, /3, 7, the perpendiculars on them from any point

will be a — r, ft- r, 7 - r. The equation of the sphere is

therefore

(a - r)
2 shrM + (/3 - rf sinlS+ &c.

= r
2
(1 - cosl4 -cos22?-cos2 (7- 2 cos^l cosi? cosC).

But if i, M, N, P denote the areas of the four faces, we have

La+l£P + Ny+F8 = {L + M+N+F)r.

Hence by eliminating r we arrive at a result reducible to the

form of Art. 219.

251. The equation of a small circle (or right cone) is easily

expressed. The sine of the distance of any point of the circle

from the polar of the centre is constant. Hence, if a be that

polar the equation of the circle is a
2 = cos

s
/3 (a;

2 + ?/
2 + a

2
).

All small circles then being given by equations of the form

S=a?, their properties are all cases of those of conies having

double contact with the same conic.

The theory of invariants may be applied to small circles.

Let two circles S, S' be

x 2+f + z* - a
2
sec

2
/>, x'

z + 1/
2 + z

1 - /3
2
sec

2
/)',

and let us form the condition that \8->r S' should break up

into factors. This cubic being

\3A + X2 +\& + A' = 0,

we have A = — tan
2

/?, A' = — tan2p',

© =sec2
/3 sec

2
/)' sin

2
Z) — 2 tan

2
/) —tan

2
/)',

©' = sec
2
/) sec

2
/)' sin

2
J? - 2 tan

2
/)' - tan

2

/),

where D is the distance between the centres.

Now the corresponding values for two circles in a plane are

A = -j-2

, A' = -r' 2

, = Z>
2 -2r2-/2

,
0' = D2 -2r' 2 -V.

Hence, if any invariant relation between two circles in a plane

is expressed as a function of the radii and of the distance

02
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between their centres, the corresponding relation for circles

on a sphere is obtained by substituting for r, r\ D; tan*-, tan/-',

and seer sec/ sinZ>.

Thus the condition that two circles in a plane should touch

is obtained by forming the discriminant of the cubic equation,

and is either D = or D = r + r. The corresponding equation

therefore for two circles on a sphere is

tanr ±tanr' = seer seer' sinD, or sinD = sin [r + r).

Again, if two circles in a plane be the one inscribed in,

the other circumscribed about the same triangle, the invariant

relation is fulfilled ©2 = 4A©', which gives for the distance

between their centres the expression IP = R* — 2Er.

The distance therefore between the centres of the inscribed

and circumscribed circles of a spherical triangle is given by

the formula

sec
2
i? sec'V sin

2
Z) = tan

2
i? — 2 tani? tanr.

So, in like manner, we can get the relation between two

circles inscribed in, and circumscribed about the same spherical

polygon.

252. The equation of any small circle (or right cone) in

trilinear co-ordinates must (Art. 249) be of the form

a2
sin'J. + yS

2 sm'B+y2
sin

2 G

+ 2/37 sm-^ sin(7 cosa+27a sin (7 s'mA cos6+ 2a/3 sin.4 sinB cose

= (la + mfi + nyy.

If now the small circle circumscribe the triangle a/3y, the

coefficients of a
2

,
/3'\ and y

2 must vanish, and we must therefore

have la + raft + wy = a. smA + /3 sinZ? + 7 sin G. Hence, as was

proved before, this represents the polar of the centre of the

circumscribing circle. Substituting the values, sin.4, sini?,

sinC, for I, m, n; the equation of the small circle becomes

/3y tan \a + 70c tan \b + a/3 tan \c = 0.

The equation of the inscribed circle turns out to be of

exactly the same form as in the case of plane triangles, viz.

co?,\A V(a) + cos|5 VQ8) + cos£CV(7) = °-
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The tangential equation of a small circle may either be derived

by forming the reciprocal of that given at the commencement
of this article, or directly from Art. 237, by expressing that the

perpendicular from the centre on Xa + /j,f3 + vy is constant.

We find thus for the tangential equation of the circle whose
centre is a'/3V and radius p

sin
2

p (X
2 + ft? + v

3 - 2(jlv cosA - 2vX cosB - 2X//, cos G)

=
(
a'A + /3> + 7Vr;

a form also shewing (see Art. 251) that every circle has double

contact with the imaginary circle at infinity.

253. As a concluding exercise on the formulas of this

chapter, we investigate Dr. Hart's extension of Feuerbach's*

theorem for plane triangles, viz. that the four circles which

touch the sides are all touched by the same circle.

It is easier to work with the tangential equations. The
tangential equations of circles which touch the sides of the

triangle of reference must want the terms X2

,
/a

2

, v
2

, and there-

fore evidently are

X2 + fi
2 + v

2 — 2fMv cosA — 2vX coaB—2X/i cosG= (X + pi ± v)*

;

or fiv cos
2^4 + vX cos

2
|i?-r X/m cos

2|(7=0 (1),

fivcos^A-vX sm^B-X/i sin
2£C=0 (2),

-fj,v Bm*$A + v\ cos^B-Xfj, sin
a£C=0 (3),

— fiv &m*%A-vX sin
2fB + X/i cos

2|C=0 (4),

all which four are touched by the circle (5)

X2
4- /*

2 + v
2 — 2p,v cosJ. — 2vX cos 2?— 2Xfi cos G

= {X cos(£- G) + p cos( G- A) + v cos(A - B)f.

For the centres of similitude of the cirqles (1) and (5) are given

by the tangential equations

(X+/* + v)±{X cos(B-C) + fi cos(C-^)+vcos(^-5)} = 0,

one of them therefore is

X sin
2^ - G) + p sin

2

£( G - A) + v mf±[A - B).

* In tie Conies and elsewhere I hare erroneously ascribed this theorem to Terquem.
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And (Conies, p. 119) the condition that this point should be

on the circle (1) is

cos£4 sin^(B- C) + cos\B £m\(Q-A) + cos£<7 %m\(A-B)^%

which is satisfied. It is proved, in like manner, that the circle

(5) touches the other three circles. The co-ordinates of the

point of contact have been proved to be

sin^(B-C), sm"i(G-A), aln'^A- B).

254. The co-ordinates of the centre of Dr. Hart's circle

have been proved to be cos(B—C), cos(G—A)
1
cos(A — B).

This point therefore lies on the line joining the point whose

co-ordinates are cosi? cos C, cosO cosA, cosA cosB to the point

whose co-ordinates are sin-SsinC, sinCsin^, sin.4 sini?; that

is to say, (Art. 236) on the line joining the intersection of per-

pendiculars to the intersection of bisectors of sides. Since

cos.4 - cos(B - G) = 2 nn$(A + B-C) sin \{C + A - B)

;

the centre lies also on the line joining the point cos .4, cosB,

cosC to the point

sm(S-B)sm[8-C), sin(S-C) sin(S-A), £n{S-A) sin(S-B).

The first point is the intersection of lines drawn through each

vertex making the same angle with one side that the per-

pendicular makes with the other; the second point is the in-

tersection of perpendiculars let fall from each vertex on the

line joining the middle points of the adjacent sides. The centre

of Dr. Hart's circle is thus constructed as the intersection of

two known lines.

255. The problem might also have been investigated by

the direct equation. We write a sin.4 = a:, &c. so that the

equation of the imaginary circle at infinity is U= 0, where

JJ= xl + y* + z* + 2yz cos a + 2zx cosb + 2xy cose.

Then the equation of the inscribed circle is

U= {x cos (s- d)+y cos (s — b) + z cos (s — c)}'
1

,

where 2s = a + b + c. For this equation expanded is

af sin
2(s— a) +y' sm\s—b) +z' sm\s—c) — 2yz sin (s-b) sin(s— c)

— 2zx sin (s — c) sin (s — a) — 2xy sin (s — a) sin (s — b) = 0.
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TJ is not altered if we change the sign of either a, b, or c.

Consequently, we get three other circles also touching x, y, z

if we change the signs of either a, b, or c in the equation of

the inscribed circle. All four circles will be touched by

Tj_ (x cos ^5 cos^c y cos^c cos|-a z cos|a cos^J)
2

( cos|-a cos \b
'

cos^c
J

'

This last equation not being altered by changing the sign of

a, b, or c, it is evident that if it touches one it touches all.

Now one of its common chords with the inscribed circle is

f . . cosiJ cosAcl f , 7 .

x < cos (s — a) —-—— > + y \ cos ls—b)-
{

v ; cos^a )
J

{
v

cos^-c cosset

cosAZ>

which reduced is

x

{ , . cosia cos ib
+ z ^ costs - e) —-—

—

{
v cos£c

+ -=-? r^-7 n +
sin(s-J)— sin (s—c) sin(s—c)— sin(s—a) sin(s—a)-sin(s-J)

But the condition that the line Ax+By + Cz shall touch

»J(ax) + »J{by) + V(c«) is T + » + Ti • -^PP^S tnis condition,

the line we are considering will touch the inscribed circle if

sin(s — a) {sin(s-S) - sin(s-c)}

+sin(s-J){sin(s-e)— sin(s-a)}+sin(s-c){sin(s—a)-sin(s-5)}=0;

a condition which is evidently fulfilled. It will be seen that

the condition is also fulfilled that the common tangent in ques-

tion should touch *J{x) + \%) + V(a) 5 that is to say, the sphero-

conic which touches at the middle points of the sides; a fact

remarked by Sir Wm. Hamilton, and which leads at once to

a construction for that tangent as the fourth common tangent

to two conies which have three known tangents common.

The polar of the centre of Dr. Hart's circle has been thus

proved to be

asm^
c^i^l%^ sin5 C-^^+ 7 sinC

C<^=
5

cos^a cos|6 cos^c

or a tan -|a + /3 tan$ + y tan $c = 0,
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which may be also written

a cos (S- A) + /3 cos (S - B) + y cos (S- C) = 0,

forms which lead to other constructions for the centre of this

circle.

The radius of the circle touching three others whose centres

are known, and whose radii are r, r', r'\ may be formed by

substituting r + B, r +B, r" + B for d, e, / in the formulae of

Arts. 51, 52, and solving for B. Applying this method to

the three escribed circles I have found that the tangent of

the radius of Dr. Hart's circle is half the tangent of the radius

of the circumscribing circle of the triangle.*

* With reference to what was stated (p. 183) as to the intersection of a cone

with a sphere, Mr. Cayley has referred me to a paper by Mbbius, in Abhandlungen

der K. Scwks. Gesellschaft, "Vol. I., in which he shows that a concentric cone may meet

a sphere either in twin curves, that is, in two detached curves opposite to each other

;

or may meet in single curves each of which is its own opposite. Thus a great circle

is evidently its own opposite. Or, again, if the cone project a plane curve of the

third degree consisting of an oval and infinite braneh, the part projecting the oval

meets in twin curves ; and the remaining part in a simple curve. In a cone of odd

degree the number of single sheets is odd, as easily appears from what was stated

about the ovals of plane curves {Higher Plane Curves, p. 200).
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CHAPTER XL

GENERAL THEORY OF SURFACES.

INTEODUCTOET CHAPTEB.

256. Keseeving for a future chapter a more detailed ex-

amination of the properties of surfaces in general, we shall

in this chapter give an account of such parts of the general

theory as can be obtained with least trouble.

Let the general equation of a surface be written in the form,

A
+ Bx+Cy + Dz

+ Ex* + Fy* + Gza + 'lllyz + 2Kzx + 2Lxy

4 &c. = 0,

or, as we shall write it often for shortness,

U + U
l + M

2 + M
3 + &C* - )

where w
2
means the aggregate of terms of the second degree,

&c. Then it is evident that u consists of one term, u
x
of three,

w
2
of six, &c. The total number of terms in the equation is

therefore the sum of n+1 terms of the series 1, 3, 6, 10, &c,

The number of conditions necessary to determine a surface,

of the w01
degree is one less than this, or = —

^

'

.

The equation above written can be thrown into the form

of a polar equation by writing p cosa, p cos/8, p COS7, for

£c, y, z, when we obviously obtain an equation of the n
m

degree,

which will determine n values of the radius vector answering

to any assigned values of the direction-angles a, /3, 7.
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257. If now the origin be on the surface, we have u = 0,

and one of the roots of the equation is always p = 0. But a

second root of the equation will be p = if a, /8, y be con-

nected by the relation

B cosa + G cos/3 + D cosy = 0.

Now multiplying this equation by p it becomes Bx+Cy+Dz=0,
and we see that it expresses merely that the radius vector must

lie in the plane u, = 0. No other condition is necessary in order

that the radius should meet the surface in two coincident

points. Thus we see that in general through an assumed

point on a surface we can draw an infinity of radii vectores

which will there meet the surface in two coincident points ; that

is to say, an infinity of tangent lines to the surface ; and these

lines lie all in one plane, called the tangent plane, determined

by the equation u
t
= 0.

258. The section of any surface made by a tangent plane

is a curve having the point of contact for a double point.*

Every radius vector to the surface, which lies in the tangent

plane, is of course also a radius vector to the section made

by that plane; and since every such radius vector (Art. 257)

meets the section at the origin in two coincident points, the

origin is, by definition, a double point (see Higher Plane

Curves, p. 27).

We have already had an illustration of this in the case

of hyperboloids of one sheet, which are met by any tangent

plane in a conic having a double point, that is to say, in

two right lines.> And the point of contact of the tangent

plane to a quadric of any other species is equally to be con-

sidered as the intersection of two imaginary right lines.

From this article it follows conversely, that any plane

meeting a surface in a curve having a double point touches

the surface, the double point being the point of contact. If

the section have two double points, the plane will be a double

* I had supposed that this remark was first made by Mr. Cayley: Gregory's

Solid Geometry, p. 132. I am informed however by Professor Cremona that the point

had been previously noticed by the Italian geometer, Bedetti, in a memoir read before

the Academy of Bologna, 1841. The theorem is a particular case of that of Art. 19-1.
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tangent plane; and if it have three double points, the plane

will be a triple tangent plane. Since the equation of a plane

contains three constants, it is possible to determine a plane

which will satisfy any three conditions, and therefore a finite

number of planes can in general be determined which will

meet a given surface in a curve having three double points:

that is to say, a surface has in general a determinate number

of triple tangent planes. It will also have an infinity of double

tangent planes, the points of contact lying on a certain curve

locus on the surface. The degree of this curve, and the

number of triple tangent planes will be subjects of investi-

gation hereafter.

259. Through an assumed point on a surface it is generally

possible to draw two lines which shall there meet the surface

in three coincident points.

In order that the radius vector may meet the surface in

three coincident points, we must not only, as in Art. 257,

have the condition fulfilled

B cosa -I- G cos/3 + D cosy = 0,

but also E cos
2
a -+ F cos

2
,8 + G cos

2

7

+ 2H cos/3 cosy + 2if cosy cosa + 2L cosa cos/3 = 0.

For if these conditions were fulfilled, A being already supposed

to vanish, the equation of the n" degree which determines p,

becomes divisible by p
3
, and has therefore three roots = 0.

The first condition expresses that the radius vector must lie

in the tangent plane u
t
. The second expresses that the radius

vector must lie in the surface w
?
= 0, or

Ex2 + Fy* + Gz* + 2Hyz + 2Ksx+ 2Lxy = 0.

This surface is a cone of the second degree (Art. 62) and

since every such cone is met by a plane passing through its

vertex in two right lines, two right lines can be found to

fulfil the required conditions.

Every plane (besides the tangent plane) drawn through

either of these lines, meets the surface in a section having

the point of contact for a point of inflexion. For a point of
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inflexion is a point, the tangent at which meets the curve

in three coincident points (Higher Plane Curves, p. 35). On
this account we shall call the two lines which meet the surface

in three coincident points, the inflexional tangents at the

point.

The existence of these two lines may be otherwise perceived

thus. We have proved that the point of contact is a double

point in the section made by the tangent plane. And it has

been proved (Higher Plane Curves, p. 28) that at a double

point can always be drawn two lines meeting the section (and

therefore the surface) in three coincident points.

260. A double point may be one of three different kinds

according as the tangents at it are real, coincident, or imaginary.

Accordingly the contact of a plane with a surface may be of

three kinds according as the tangent plane meets it in a section

having a node, a cusp, or a conjugate point; or in other

words, according as the inflexional tangents are real, coincident,

or imaginary.

Dupin, who first noticed* the difference between these three

kinds of contact, stated the matter as follows : Suppose that

we confine our attention to points so near the origin that all

powers of the co-ordinates above the second may be neglected,

then the tangent plane (or a very near plane parallel to it)

meets any surface u
t
+ u

2
+ u

3
+ &c. in the same section in

which it meets the quadric ii
t
+ u

2
. And according as the

sections of this quadric by planes parallel to the tangent plane

are ellipses, hyperbolas, or parabolas, so the section made by

the tangent plane is to be considered as an infinitely small

ellipse, hyperbola, or parabola. This infinitely small section

Dupin calls the indicatrix at the point of contact, and he divides

the points of the surface, according to the nature of the in-

dicatrix into elliptic, hyperbolic, and parabolic points. We
shall presently show that there will be in general on every

surface a number of parabolic points forming a curve locus,

this curve separating the elliptic from the hyperbolic points.

* See Dupin's Dereloppements de Gecmetrie, p. 48.
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If the tangent plane be made the plane of xy, and the equa-

tion of the surface be

z + Ax* + 2Bxy + Cif + 2Bxz + 2Eyz + Fz* + &c. = 0,

it is manifest that the origin will be an elliptic, hyperbolic,

or parabolic point, according as B'1 is less, greater than, or

equal to AC* «

261. Knowing the equation of the tangent plane when
the origin is on the surface, we can, by transformation of

co-ordinates, find the equation of the tangent plane at any
point. It is proved precisely as at Art. 58 that this equation

may be written in either of the forms

, ,. dU' ,
. ,. dU' , ,, dU' n

dU' dU' dU' dU' nx n7 +yw +z ^r+wM =

262. Let it be required now to find the tangent plane at

a point, indefinitely near the origin, on the surface

z + Ax* + 2Bxy 4- Gyl + 2Bxz + 2JEyz + Fz* + &c. = 0.

We have to suppose x, y so small that their squares may be

neglected ; while, since the consecutive point is on the tangent

plane, we have 3' = 0: or, more accurately, the equation of

the surface shows that z is a quantity of the same order as

the squares of x and y'. Then, either by the formula of the

last article, or else directly by putting x-\-x\ y+y' for x
and y, and taking the linear part of the transformed equation,

the equation of a consecutive tangent plane is found to be

z + 2 (Ax -f By') x + 2 (Bx + Cy) y = 0.

* This is sometimes expressed as follows : When the plane of xy is the tangent

plane, and the equation of the surface is expressed in the form z = <p (j, y), we have

an elliptic, hyperbolic, or parabolic point according as I

~

J
is less, greater than,

or equal to N^ \T~z) • ^ ™H ^e found that this is equivalent to the statement

in the text ; but we do not enter into details, because we shall have seldom occasion

in practice to deal with equations where z is given explicitly as a function of x and y.
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Now (see Conies, Art. 141) (Ax + By') x + (Bx' + Gy') y denotes

the diameter of the conic Ax2 + 2Bxy + Cy2 = F, which is con-

jugate to that to the point x'y. Hence any tangent plane is

intersected by a consecutive tangent plane in the diameter of the

indicatrix which is conjugate to the direction in which the con-

secutive point is taken.

This in fact is geometrically evident from Dupin's point

of view. For if we admit that the points consecutive to the

given one lie on an infinitely small conic, we see that the tan-

gent plane at any of them will pass through the tangent line to

that conic; and this tangent line ultimately coincides with

the diameter conjugate to that drawn to the point of contact

:

for the tangent line is parallel to this conjugate diameter and

infinitely close to it.

Thus then all the tangent lines which can be drawn at

a point on a surface may be distributed into pairs such that the

tangent plane at a consecutive point on either will pass through

the other. Two tangent lines so related are called conjugate

tangents.

In the case where the two inflexional tangents are real,

the relation between two conjugate tangents may be otherwise

stated. Take the inflexional tangents for the axes of x and y,

which is equivalent to making A and C=0 in the preceding

equation: then the equation of a consecutive tangent plane is

z + %B (x'y + y'x) = 0. And since the lines x, y, x'y 4 y'x,

x'y — y'x form a harmonic pencil, we learn that a pair of

conjugate tangents form, with the inflexional tangents, a harmonic

pencil.

263. In the case where the origin is a parabolic point,

the equation of the surface can be thrown into the form

z + Ay% + &c. = 0, and the equation of a consecutive tangent

plane will te z+ 2Ay'y = 0. Hence the tangent plane at every

point consecutive to a parabolic point passes through the in-

flexional tangent; and if the consecutive point be taken in

this direction so as to have y = 0, then the consecutive tangent

plane coincides with the given one. Hence the tangent plane

at a parabolic point is to he considered as a double tangent
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plane, since it touches the surface in two consecutive points.*

In this way parabolic points on surfaces may be considered

as analogous to points of inflexion on plane curves: for we
have proved {Higher Plane Curves, p. 35) that the tangent

line at a point of inflexion is in like manner to be regarded

as a double tangent. A further analogy between parabolic

points and points of inflexion will be afterwards stated.

It is convenient to have a name to distinguish double

tangent planes which touch in two distinct points, from those

now under consideration where the two points of contact coin-

cide. We shall therefore call the latter stationary tangent

planes, the word expressing that the tangent plane being

supposed to move round as we pass from one point of the

surface to another, in this case it remains for an instant in

the same position. For the same reason we have called the

tangent lines at points of inflexion in plane curves, stationary

tangents.

264. If on transforming the equation to any point on a

surface as origin we have not only u = but also all the terms

in m
:
= 0, so that the equation takes the form

Ex* + Fif + Gz* + 2Hyz + 2Kex + iLxy + u
3 + &c. = 0,

then it is easy to see in like manner that every line through

the origin meets the curve in two coincident points; and the

origin is then called a double point. It is easy to see also

that a line through the origin there meets the surface in three

coincident points, provided that its direction-cosines satisfy the

equation

E cos
8a + F cos

2
/3 + G cos

2

y

4 2iZ" cos/3 COS7 + IK cosy cosa + 2L cosa cos/3 = 0.

In other words, through a double point on a surface can be

drawn an infinity of lines which will meet the surface in three

coincident points, and these will all lie on a cone of the second

degree whose equation is u =0. Further, of these lines six will

* I believe this was first pointed out in a paper of mine, Cambridge and Dublin

Mathematical Journal, Vol. III., p. 45.
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meet the surface in four coincident points; namely, the lines

of intersection of the cone u
2
with the cone of the third degree

«. = «
Double points on surfaces might be classified according to

the number of these lines which are real, or according as two

or more of them coincide, but we shall not enter into these

details. The only special case which it is important to mention

is when the cone «
2
resolves itself into two planes ; and this

again includes the still more special case when these two

planes coincide; that is to say, when m
2

is a perfect square.

265. Every plane drawn through a double point may in

one sense be regarded as a tangent plane to the surface, since

it meets the surface in a section having a double point, but

in a special sense the tangent planes to the cone u
2
are to be

regarded as tangent planes to the surface, and the sections

of the surface by these planes will each have the origin as a

cusp. To a double point then on a surface (which is a point

through which can be drawn an infinity of tangent planes),

will in general correspond on the reciprocal surface a plane

touching the surface in an infinity of points, which will in

general lie on a conic. If however the double point be of

the special kind noticed at the end of the last article, there

will correspond to it on the reciprocal surface a double tangent

plane having two points of contact.

266. The results obtained in the preceding articles by taking

as our origin the point we are discussing, we shall now extend

to the case where the point has any position whatever. Let us

first remind the reader (see p. 28) that since the equations of a

right line contain four constants, a finite number of right lines

can be determined to fulfil four conditions (as, for instance,

to touch a surface four times) ; while an infinity of lines can

be found to satisfy three conditions (as, for instance, to touch

a surface three times), those right lines generating a certain

surface, and their points of contact lying on a certain locus.

In a subsequent chapter we shall return to the problem to

determine in general the number of solutions when four con-
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ditions are given, and to determine the degree of the surface

generated, and of the locus of points of contact, when three

conditions are given. In this chapter we confine ourselves to

the case when the right line is required to pass through a

given point, whether on the surface or not. This is equivalent

to two conditions; and an infinity of right lines (forming a

cone) can be drawn to satisfy one other condition ; while a

finite number of right lines can be drawn to satisfy two other

conditions.

We use Joachimsthal's method employed, Conies, p. 87

;

Higher Plane Curves, p. 61 ; and at p. 45 of this volume.

If the quadriplanar co-ordinates of two points be x'y'z'w,

x"y"z"w", then the points in which the line joining them is

cut by the surface are found by substituting in the equation

of the surface, for x, \x + /xx", for y, Xy' + fxy", &c. The
result will give an equation of the m

th
degree in X : //., whose

roots will be the ratios of the segments in which the line joining

the two given points is cut by the surface at any of the points

where it meets it. And the co-ordinates of any of the points

of meeting are Xx + fJ-'x", X'y' + p'y", XV + p'z", X'io' + /j.'w'\

where X' : // is one of the roots of the equation of the n" degree.

All this will present no difficulty to any reader who has mastered

the corresponding theory for plane curves. And, as in plane

curves, tbe result of the substitution in question may be written

x"v

+

x">av + -^x-yA 2
U' + &c. = 0,

where A represents the operation

d d d d

dx dy' dz dw'

'

Following the analogy of plane curves we shall call the surface

represented by

the first polar of the point x'y'z'w. We shall call

f , d , <l_ ,d_
, ^_\\j_q

\ dx dy dz dw)

* As at p. 35, Ul}
U„ r3 , Ut , denote the differential coefficients of U with regard

to x, y, «, to.

P
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the second polar, and so on : the polar plane of the same point

being

Each polar surface is manifestly also a polar of the point x'y'z'w'

with regard to all the other polars of higher degree.

If a point be on a surface all its polars touch the tangent

plane at that point : for the polar plane with regard to the

surface is the tangent plane ; and this must also be the polar

plane with regard to the several polar surfaces. This may
also be seen by taking the polar of the origin with regard to

u wn + ujjo
1'1

-f w
2
w"~

2 + &c,

where we have made the equation homogeneous by the in-

troduction of a new variable w. The polar surfaces are got

by differentiating with regard to this new variable. Thus the

first polar is

nujri
1'1 + [n - 1 ) u^vf'

2 + (w — 2) w2
iu"~

3 + &c,

and if u = 0, the terms of the first degree, both in the surface

and in the polar, will be u
x
.

267. If now the point x'y'z'w be on the surface, U' vanishes,

and one of the roots of the equation in X : ytt, will be fi = 0.

A second root of that equation will be /i = 0, and the line

will meet the surface in two coincident points at the point

x'y'z'w, provided that the coefficient of X"
_1

/x vanish in the

equation referred to. And in order that this should be the

case, it is manifestly sufficient that x"y"z"w" should satisfy the

equation of the plane

xu;+ y u;+zu;+wUi=Q.

It is proved then that all the tangent lines to a surface which

can be drawn at a given point lie in a plane whose equation

is that just written. By subtracting from this equation, the

identity

x'U^+y'U^ + z'U' + w'U^O,

we get the ordinary Cartesian equation of the tangent plane, viz.

(x - x') u;+y-y') u; + {z- z') u; = o.



GENERAL THEORY OP SURFACES. 211

Hence again, by Art. 42, can immediately be deduced the

equations of the normal, viz.

x — x' y—y' z — z'

~W~
z=

~ur
=
~~uT'

268. The right line will meet the surface in three con-

secutive points, or the equation we are considering will have

for three of its roots fi = 0, if not only the coefficients of \" and

X"""
1

/* vanish, but also that of X""
2
/^ : that is to say, if the line

we are considering not only lies in the tangent plane, but

also in the polar quadric

( d d d d \
8
„, n

\ ax ay dz dw J

Now (Art. 266) when a point is on a surface all its polars

touch the surface. The tangent plane therefore, touching the

polar quadric, meets it in two right lines, real or imaginary,

which are the two inflexional tangents to the surface.

(Art. 259.)

269. Through a point on a surface can he drawn (re + 2) (re - 3)

tangents which will also touch the surface elsewhere.

In order that the line should touch at the point x'y'z'w,

we must, as before, have the coefficients of X" and \"~l

fi = ;

in consequence of which the equation we are considering be-

comes one of the (re - 2)
ffl

degree, and if the line touch the

surface a second time, this reduced equation must have equal

roots. The condition that this should be the case involves

the coefficients of that equation in the degree n - 3 ; one term,

for instance, being (A
2
U'. U)

n's
. By considering that term we

see that this discriminant involves the co-ordinates x'y'z'w in

the degree (n - 2) (re - 3), and xyzw in the degree (re + 2) (re — 3).

When therefore x'y'z'w is fixed, it denotes a surface which

is met by the tangent plane in (re + 2) (re - 3) right lines.

Thus then we have proved that at any point on a surface

an infinity of tangent lines can be drawn : that these in general

lie in a plane ; that two of them pass through three consecutive

points, and (re + 2) (re - 3) of them touch the surface again.

P2
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270. Let us proceed next to consider the case of tangents

drawn through a point not on the surface. Since we have

in the preceding articles established relations which connect

the co-ordinates of any point on a tangent with those of the

point of contact, we can, by an interchange of accented and

unaccented letters, express that it is the former point which

is now supposed to be known, and the latter sought.

Thus for example, making this interchange in the equation

of Art. 267, we see that the points of contact of all tangent

lines (or of all tangent planes) which can be drawn through

x'y'z'w', lie on the first polar, which is of the degree [n — 1) : viz.

x U
x
+ y' U

2
+ z U

s
+ w' U

t
= 0.

And since the points of contact lie also on the given surface,

their locus is the curve of the degree n[n— 1), which is the

intersection of the surface with the polar.

271. The assemblage of the tangent lines which can be

drawn through x'y'z'w form a cone, the tangent planes to which

are also tangent planes to the surface. The equation of this

cone is found by forming the discriminant of the equation of

the n
th

degree in \ (Art. 266). For this discriminant expresses

that the line joining the fixed point to xysw meets the surface

in two coincident points; and therefore xyzw may be a point

on any tangent line through x'y'z'w'. The discriminant is easily

seen to be of the degree n [n - 1 ), and it is otherwise evident

that this must be the degree of the tangent cone. For its

degree is the same as the number of lines in which any plane

through the vertex cuts it. But such a plane meets the surface

in a curve to which n (n — 1) tangents can be drawn through

the fixed point, and these tangents are also the tangent lines

which can be drawn to the surface through the given point.

272. Through a point not on the surface can in general be

drawn n{n— 1) («- 2) inflexional tangents. We have seen,

Art. 268) that the co-ordinates of any point on an inflexional

tangent are connected with those of its point of contact by

the relations V = 0, A U' = 0, A' U' = 0. If then we consider

the xyzw of any point on the tangent as known ; its point of
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contact is determined as one of the intersections of the given

surface U, which is of the n
tb

degree, with its first polar A V,

which is of the (n- l)
th

, and with the second polar A*Z7, which

is of the («-2)'\ There are therefore n(n-l)(n-2) such

intersections.

273. Through a point not on the surface can in general he

drawn \n [n — \){n — 2) [n — 3) double tangents to it. The points

of contact of such lines are proved by Art. 269 to be the

intersections of the given surface, of the first polar, and of the

surface represented by the discriminant discussed in Art. 269,

and which we there saw contained the co-ordinates of the point

of contact in the degree [n — 2) (n — 3). There are therefore

n{n— 1) (« — 2) (n- 3) points of contact: and since there are

two points of contact on each double tangent, there are half

this number of double tangents.

Thus then we have completed the discussion of tangent

lines which pass through a given point. We have shown that

their points of contact lie on the intersection of the surface

with one of the degree n — 1, that their assemblage forms a

cone of the degree n(n— 1), that n(n— l)[n — 2) of them

are inflexional, and \n in — 1) (« — 2) (n — 3) of them are

double.

These latter double tangents are also plainly double edges

of the tangent cone, since they belong to the cone in virtue of

either contact. Along such an edge can be drawn two tangent

planes to the cone, namely, the tangent planes to the surface

at the two contacts.

The inflexional tangents, however, are also to be regarded

as double tangents to the surface : since the line passing through

three consecutive points is a double tangent in virtue of joining

the first and second, and also of joining the second and third.

The inflexional tangents are therefore double tangents whose

points of contact coincide. They are therefore double edges

of the tangent cone ; but the two tangent planes along any

such edge coincide. They are therefore cuspidal edges of

the cone. We have proved then that the tangent cone which

is of the degree n(n—\) has n (n — 1) (n — 2) cuspidal edges,
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and \n (n — 1) (w — 2) (n — 3) double edges ; that is to say, any

plane meets the cone in a section having such a number of

cusps and such a number of double points.

274. It is proved precisely as for plane curves {Higher Plane

Curves, page 51), that if we take on each radius vector a length

whose reciprocal is the n
tb

part of the sum of the reciprocals

of the n radii vectores to the surface, then the locus of the

extremity will be the polar plane of the point: that if the

point be on the surface, the locus of the extremity of the mean

between the reciprocals of the n — 1 radii vectores will be the

polar quadric, &c.

By interchanging accented and unaccented letters in the

equation of the polar plane, it is seen that the locus of the

poles of all planes which pass through a given point is the

first polar of that point. The locus of the pole of a plane

which passes through two fixed points is hence seen to be a

curve of the (n — l)
2

degree, namely, the intersection of the

two first polars of these points. We see also that the first

polar of every point on the line joining these two points must

pass through the same curve. And in like manner the first

polars of any three points on a plane determine by their in-

tersection (n — l)
3
points, any one of which is a pole of the

plane, and through which points the first polar of every other

point on the plane must pass.

275. From the theory of tangent lines drawn through a

point we can in two ways derive the degree of the reciprocal

surface. First ; the number of points in which an arbitrary

line meets the reciprocal is equal to the number of tangent

planes which can be drawn to the given surface through a

given line. Consider now any two points A and B on that

line, and let C be the point of contact of any tangent plane

passing through AB. Then since the line AG touches the

surface, C lies on the first polar of A ; and for the same reason

it lies on the first polar of B. The points of contact therefore

are the intersection of the given surface, which is of the n
th

degree with the two polar surfaces, which are each of the degree
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(n — 1). The number of points of contact, and therefore the

degree of the reciprocal, is n{n — l)
2
.

276. Otherwise thus: let a tangent cone be drawn to the

surface having the point A for its vertex ; then since every

tangent plane to the surface drawn through A touches this

cone, the problem is, to find how many tangent planes to the

cone can be drawn through any line AB; or if we cut the

cone by any plane through B, the problem is to find how many
tangent lines can be drawn through B to the section of the

cone. But the class of a curve whose degree is n [n — 1), which

has n{n — l)(n — 2) cusps, and \n{n- 1) (« — 2) [n — 3) double

points, is

w(n-l) {n[n- l)-\] -3n{n-l) (n-2)

-«(n-l)(n-2) (»-3)=n(n-l)*.

Generally the section of the reciprocal surface by any plane cor-

responds to the tangent cone to the original surface through

any point. And it is easy to see that the degree of the tangent

cone to the reciprocal surface (as well as to the original surface)

through any point is n(«— l).

277. Returning to the condition that a line should touch

a surface

xVl + yVl + sUJ + k>Z7/ = 0,

we see that if all four differentials be made to vanish by the

co-ordinates of any point, then every line through the point

meets the surface in two coincident points ; and the point is

therefore a double point. The condition that a given surface

may have a double point is obtained by eliminating the variables

between the four equations ff = 0, &c, and is called the dis-

criminant of the given surface [Lessons on Higher Algebra,

page 43). The discriminant being the result of elimination

between four equations, each of the degree n — 1, contains the

coefficients of each in the degree [n — lf, and is therefore of

the degree 4 (n — l)
3
in the coefficients of the original equation.

It is obvious from what has been said, that when a surface

has a double point, the first polar of every point passes through

the double point.
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The surfaces represented by Z7„ Z7
2 , &c, may happen not

merely to have points in common, but to have a whole curve

common to all four surfaces. This curve will then be a double

curve on the surface U, and every point of it will be a double

point. Now we saw (Art. 258) that the surface represented

by the general Cartesian equation of the n
th

degree will, in

general, have an infinity of double tangent planes ; the re-

ciprocal surface therefore will, in general, have an infinity of

double points, which will be ranged on a certain curve. The

existence then of these double curves is to be regarded among

the " ordinary singularities" of surfaces (see Higher Plane

Curves, page 47).

When the point x'y'z'w is a double point, U' and AU'
vanish identically ; and any line through the double point meets

the surface in three consecutive points if it satisfies the equation

A'
2
U' = 0, which represents a cone of the second degree.

278. The polar quadric of a parabolic point on a surface

is a cone.

The polar quadric of the origin with regard to any surface

n
,

71—1 , n-2
i f /\

UJlO + U
L
W + U.JJD + &C. = 0,

(where, as in Art. 266, we have introduced w so as to make

the equation homogeneous) is found by differentiating n — 2

times with respect to w. Dividing out by (n~ 2) [n — 3). ..3,

and making ie = l, the polar quadric is

n (n - 1) w + 2 [n - 1) u, + 2w
a
= 0.

Now the origin being a parabolic point, we have seen, Art. 260,

that the equation is of the form

z + Cf + 2Dzx + 2Ezy + Fz* + &c,

[or, in other words, w = 0, and u
2

is of the form u
l
v

1
+ w^].

The polar quadric then is

e(n-l + 2Dx + 2Ey + Fz) + Cf = 0.

But we have seen (page 40) that any equation represents a

cone when it is a homogeneous function of three quantities,

each of the first degree. The equation just written therefore

represents a cone whose vertex is the intersection of the three
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planes, s, n — 1 +Wx + lEy + Fz, and y. The two former

planes are tangent planes to this cone, and y the plane of

contact.

-79. It follows from the last article that if we form the

locus of points whose polar quadrics represent cones, this

will meet the surface in the parabolic points. This locus is

found by writing down the discriminant of A 2
U' = 0. If a,

d'
2V d*U'

b, &c, denote the second differential coefficients , „ , -}-&
»

&c, the discriminant will be (page 40)

abcd+ lalqr -f 2bmpr + 2cnpq + Idhnn — adV — bdm* — cdn* — bep*

— caq* — abr" + Pp* -f m*q
2
+ n'r' — Imnqr — 2nhp — 2lmpq = 0.

This denotes a surface of the degree 4 (n — 2), which we shall

call the Hessian of the given surface. In the same manner

then as the intersection of a plane curve with its Hessian de-

termines the points of inflexion, so the intersection of a surface

with its Hessian determines a curve of the degree in (n — 2),

which is the locus of parabolic points (see Art. 263.)

280. It follows from what has been just proved that through

a given point can be drawn An (n — \) (n — 2) stationary tangent

planes (see Art. 263). For since the tangent plane passes

through a fixed point, its point of contact lies on the polar

surface, whose degree is n — 1 ; and the intersection of this sur-

face with the surface U, and the surface determined in the

last article as the locus of points of contact of stationary tangent

planes, determine -in [n — 1) {n — 2) points.

Otherwise thus ; the stationary tangent planes to the surface

through any point are also stationary tangent planes to the

tangent cone through that point, and if the cone be cut by

any plane, these planes meet it in the tangents at the points

of inflexion of the section. But the number of points of in-

flexion on a plane curve is determined by the formula (Higher

Plane Curves, page 91)

i — « = 3 (v — /*).

But in this case, Art. 273, we have v = n (•»- 1)
!

, fi = n (n- 1)

;
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therefore v— fi = n (n — 1) (n — 2), K — n(n— 1) (n — 2). Hence,

as before, i = in (n — 1) (n — 2).

The number of double tangent planes to the cone is de-

termined by the formula

2(t-8) = (v-/*)(v+p-9),

and 2$ = «(ra-l)(«-2)(n-3); (v + /i- 9) = w3 -n!! -9.

Hence 2t = ji (m— 1) (n — 2) (n
3 — ri* + n— 12).

It follows then that through any point can be drawn t double

tangent planes to the surface, where t is the number just de-

termined. It will be proved hereafter, that the points of contact

of double tangent planes lie on the intersection of the surface

with one whose degree is (n — 2) («
3 — «

2 + n — 12).

281. If a right line lie altogether in a surface it will touch

the Hessian and therefore the parabolic curve, (Cambridge and

Dublin Mathematical Journal, Vol. IV., p. 255).

Let the equation of the surface be xcf> + y-^r = 0, and let

us seek the result of making x and y = in the equation of

the Hessian, so as thus to find the points where the line meets

- ., . d*U d'U d"U „
that surface. JNow evidently -^-j- , -^--.

,
-=—=—

, all contain
J dz ' dw dzdw

x or y as a factor, and therefore vanish on this supposition.

And if we make c = 0, d= 0, r = in the equation of the

Hessian, it becomes a perfect square (Ip — mof, showing that

the right line touches the Hessian at every point where it

meets it. If we make x = 0, y = in Ip — ma, it reduces to

-r ~r- —¥ i It is evident that when the taDErent plane
dz dw dw dz

touches all along any line, straight or curved, this line lies

altogether in the Hessian. The reader can verify this without

difficulty, with regard to the surface x<p + y
2

^.

CURVATURE OF SURFACES.

282. We proceed next to investigate the curvature at any

point on a surface of the various sections which can be made

by planes passing through that point.
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In the first place let it be premised that if the equation of

a curve be u
t
4 w

2
+ u

s
+ &c. = 0, the radius of curvature at the

origin is the same as for the conic u
1
+ u

i
. For it will be

remembered that the ordinary expression for the radius of

curvature includes only the co-ordinates of the point and the

values of the first and second differential coefficients for that

point. But if we differentiate the equation not more than twice,

the terms got from differentiating u
s, u

t , &c. contain powers

of x and y, and will therefore vanish for x = 0, y = 0. The
values therefore of the differential coefficients for the origin are

the same as if they were obtained from the equation u
x
4- «

s
= 0.

It follows hence that the radius of curvature at the origin

(the axes being rectangular) of y + ax2 + 2bxy + cy* + &c. =

is — (see Conies, p. 213) ; or this value can easily be found

directly from the ordinary expression for the radius of curva-

ture [Higlier Plane Curves, p. 108).

283. Let now the equation of a surface referred to any

tangent plane as, plane of xy and the corresponding normal

as axis of s, be

z + Ax" + 2Bxy + Cif + 2Dxz + lEyz + Fz* + &c. = 0,

and let us investigate the curvature of any normal section, that

is, of the section by any plane passing through the axis of z.

Thus, to find the radius of curvature of the section by the

plane xz, we have only to make y = in the equation, and

we get a curve whose radius of curvature is half the reciprocal

of A. In like manner the section by the plane yz has its

radius of curvature = half the reciprocal of C. And in order

to find the radius of curvature of any section whose plane makes

an angle 6 with the plane xz, we have only to turn the axes of

x and y through an angle 6 (by substituting xcosd — ysmd
for x, and xsin0+ycos0 for y, Conies, p. 8); and by then

putting y = it appears as before that the radius of curvature

is half the reciprocal of the new coefficient of x* ; that is to say,

^r?=A cos"0 + IB cos0 sin0-f C sin
2
0.
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284. The reader will not fail to observe that this expression

for the radius of curvature of a normal section is identical in

form with the expression for the square of the diameter of a

central conic in terms of the angles which it makes with the

axes of co-ordinates. Thus if p be the semi-diameter answer-

ing to an angle 6 of the conic Ax'2 + 2Bxy + Cy2 = \, we have

B = p\

It may be seen otherwise that the radii of curvature are

connected with their directions in the same manner as the

squares of the diameters of a central conic. For we have

seen that the radii of curvature depend only on the terms in

w.j and m
2

. The radii of curvature therefore of all the sections

of Mj -f u
2
+ u

3
+ &c. are the same as those of the sections of

the quadric u
i
+ u

2 ; and it was proved (p. 140) that these are

all proportional to the squares of the diameters of the central

section parallel to the tangent plane.

It is plain that the conic, the squares of whose radii are

proportional to the radii of curvature, is similar to the in-

dicatrix.

285. We can now at once apply to the theory of these

radii of curvature all the results that we have obtained for

the diameters of central conies. Thus we know that the

quantity A cos
2 0+ IB cos# sin# + C svri'd admits of a maxi-

mum and minimum value; that the values of 6 which corre-

spond to the maximum and minimum are always real, and

belong to directions at right angles to each other; and that

those values of 9 are given by the equation (see Conies, p. 146)

B cos
2
6 -{A- C) cos0 sin<9-B sin

2 = 0.

Hence, at any point on a surface there are among the normal

sections, one for which the value of the radius of curvature

is a maximum and one for which it is a minimum ; the direc-

tions of these sections are at right angles to each other; and

they are the directions of the axes of the indicatrix. They

plainly bisect the angles between the two inflexional tangents.

We shall call these the principal sections, and the correspond-

ing radii of curvature the principal radii.
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If we turn round the axes of x and y so as to coincide

with the directions of maximum and minimum curvature just

determined, it is known that the quantity Ax2 + iBxy + Cy*

will take the form A'x* -f B'y*. Now the formula of the last

article, when the coefficient of xy vanishes, gives the following

expression for the half reciprocal of any radius of curvature

^s =A' cos*6 + B' sm'6. But evidently A' and B' are the

values of this half reciprocal corresponding to 6 = 0, and 6 = 90°.

Hence any radius of curvature is expressed in terms of the

two principal radii p and p', and of the angle which the direction

of its plane makes with the principal planes, by the formula

1 cos
2

sin
2
(9 „.— = ).
*

B p p

It is plain (as in Conies, p. 148) that A' and B\ or — ,
—

,

are given by a quadratic equation, the sum of these quantities

being A + C and their product AG—B*.
When p = p\ all the other radii of curvature are also = p.

The form of the equation then is z + A(x'* + y*) + &c. = 0, or

the indicatrix is a circle. The origin is then an umbilic.

From the expressions in this article we deduce at once, as

in the theory of central conies, that the sum of ike reciprocals

of the radii of curvature of two normal sections at right angles

to each other is constant; and again, if normal sections he made

through a pair of conjugate tangents (see Art. 262) the sum

of their radii of curvature is constant.

286. It will be observed that the radius of curvature, being

proportional to the square of the diameter of a central conic,

does not become imaginary, but only changes sign, if the

quantity A cos
2
6 + 22? cos<? sin#+ C sin*0 becomes negative.

Now if radii of curvature directed on one side of the tangent

plane are considered as positive, those turned the other way

must be considered as negative; and the sign changes when

the direction is changed in which the concavity of the curve

is turned.

* This formula (with the inferences drawn from it) is due to Euler.
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At an elliptic point on a surface; that is to say, when B*

is less than AG, the sign of A cos
2
6 + 2B cos 6 sin 6 + C sin

2 9

remains the same for all values of 6; and therefore at such

a point the concavity of every section through it is turned in

the same direction.

At a hyperbolic point, that is to say, when B" is greater

than AC, the radius of curvature twice changes sign and the

concavity of some sections is turned in an opposite direction

to that of others. The surface in fact cuts the tangent plane

in the neighbourhood of the point, and the inflexional tangents

mark the directions in which the surface crosses the tangent

plane and divide the sections whose concavity is turned one

way from those which are turned the other way.* And when

we have chosen a hyperbola the squares of whose diameters

are proportional to one set of radii, then the other set of radii

are proportional to the squares of the diameters of the con-

jugate hyperbola.

287. Having shewn how to find the radius of curvature

of any normal section, we shall next show how to express,

in terms of this, the radius of curvature of any oblique section,

inclined at an angle <£ to the normal section, but meeting the

tangent plane in the same line. Thus we have seen that the

radius of curvature of the normal section made by the plane

y — is half the reciprocal of A. Now let us turn the axes

of y and z round in their plane through an angle cf> (which is

done by substituting e cos<j>—y sin$ for z, and z §m.$-\-y cos<£

for y). If we now make the new ?/ = 0, we shall get the

equation (still to rectangular axes) of the section by a plane

making an angle <j> with the old plane y = 0, but still passing

through the old axis of x ; and this equation will plainly be

z cos(j> + Ax' + iBxz sin<£ + Gz l
sin

2

+ Wxz cos(f> + 2Ez'
z
sin0 + Fzl

cos'<j> + &c,

* The illustration of the summit of a mountain pass will enable the reader to

conceive how a surface may in two directions sink below the tangent plane, and on

the other sides rise above it. The shape of a saddle affords another familiar illustra-

tion of the same thing.
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and by the same method as before the radius of curvature is

found to be , or is =Bcos(f>, where E is the radius

of curvature of the corresponding normal section. This is

Meunier's theorem, that the radius of curvature of an oblique

section is equal to the projection on the plane of this section of
the radius of curvature of a normal section passing through the

same tangent line. Thus we see that of all sections which can

be made through any line drawn in the tangent plane, the

normal section is that whose radius of curvature is greatest;

that is to say, the normal section is that which is least curved

and which approaches most nearly to a straight line.

Meunier's theorem has been already proved in the case of

a quadric (see p. 140), and we might therefore, if we had

chosen, have dispensed with giving a new proof now; for

we have seen that the radius of curvature of any section of

M
i + % + M

s + &c - is the same as that of the corresponding

section of the quadric u
l
+ «,,.

288. It was proved (Art. 194) that if two surfaces u
1
+u

i
+&c.

J

«i + «
2
4- &c. touch, their curve of intersection has a double point,

the two tangents at which are the intersections of the plane u
x

with the cone u
2
- t>

2
. When the plane touches the cone, the

surfaces have what we have called stationary contact. It is

also proved, as at Art. 196, that a sphere has stationary contact

with a surface when the centre is on the normal and the radius

equal to one of the principal radii of curvature. In fact, the

condition for stationary contact between

z + ax2 + 2nxy f by* + &c, z + a'x* + 2n'xy + b'y
2 + &c.

is (a-a')(b-b') = (n-n'y,

which when n and n both vanish implies either a=a' or b = b'.

The surface therefore z + Ax* + Cy* + &c. will have stationary

contact with the sphere 2rz + x* -{-
y*

-{ z* if r = —-. or —-,; but

these are the values of the principal radii.

289. The principles laid down in the last article enable

us to find an expression for the values of the principal radii

at any point; the axes of co-ordinates having any position.
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If we transform the equation to any point x'y'z on the

surface as origin, it becomes

dU' dU' dU' 1 ( d d d\\
T , ,

X a^ +^W +Z '^r+^[X
d^'

+ lJ d^
+ Z

d7)
U+&C-

or if we denote the first differential coefficients by L, M, iV,

and the second by a, b, c, &c.

2 (Lx+My+Nz) + ax* + by
2 + cz

2 + 2lyz + 2msx + 2nxy + &c. = 0.

The equation then of any sphere having the same tangent

plane is

2(Lx + My + Nz) + X(x2 + y
2
-+z

2

)
= 0,

and the sphere will have stationary contact with the quadric if

X be determined so as to satisfy the condition that Lx+My+Nz
shall touch

(a — X) x* + (b — X) y
2 + (c — X) z

2 + 2lyz + 2mzx + 2nxy.

This condition is

ot, L
1, M

c-X, N
N =0,

which expanded is

{(j_X)(c-X)-r} JL2+{(o-X)(a-X)-m ''!

}ilf
!!+{(a-X)(J-X)-«2

}iV
ra

+2{rnn-(a-X)l}MN+2{nl-(b-X)m}NL-t2{lm-(c-X)n}LM=0,

or X is given by the quadratic

(L2 +M2+N2

) X
2 - {(b + c) L2 + (c + a)M2 + (a + b) N2

- 21MN- 2mNL - 2nLM] X

+ {be - V) L2 + (ca - m2

)M2 + (ab - ri*)N2

+ 2 (mn - al) MN+ 2 [nl-bm) NL + 2(lm- en) LM= 0.

Now if r be the radius of the sphere

X (x
2 + y

2 + z
2

) +2 (Lx + My + Nz),

we have r
2 = r-g . We therefore find the principal

X
If Ti , JJT2 , XTV\

radii by substituting — for X in the preceding

quadratic.

a — X,
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The absolute term in the equation for X may be simplified

by writing for L
)

il/", N their values from the equations

(n — 1) L = ax + ny + mz +pw, &c,

when the absolute term reduces to — -, where S is the
(«-l)

Hessian, written at full length, Art. 279. We might have seen

a prion' that for any point on the Hessian, the absolute term

must vanish. For since the directions of the principal sections

bisect the angles between the inflexional tangents ; when the

inflexional tangents coincide, one of the principal sections coin-

cides with their common direction, and the radius of curvature

of this section is infinite, since three consecutive points are on

a right line. Hence one of the values of X (which is the

reciprocal of r) must vanish. By equating to nothing the

coefficient of \ in the preceding quadratic, we obtain the

equation of a surface of the degree 3« — 4, which intersects

the given surface in all the points where the principal radii

are equal and opposite : that is to say, where the indicatrix

is an equilateral hyperbola.

The quadratic of this article might also have been found

at once by Art. 98, which gives tbe axes of a section of the

quadric

ax2 + by* + cz'
2 + '2hjz + 2mzx + 2nxy = 1

made parallel to the plane Lx + My + A; = 0.

290. From the equations of the last article we can find

the radius of curvature of any normal section meeting the

tangent plane in a line whose direction-angles are given.

For the centre of curvature lies on the normal, and if we

describe a sphere with this centre, and radius equal to the

radius of curvature, it must touch the surface, and its equation

is of tbe form

2 (Lx + My + Xz) + \ (x* + y
s + s

2

) = 0.

The consecutive point on that section of the surface which we

are considering satisfies this equation, and also the equation

«! + «
a = °>

2 (Lx + My + Nz) 4 ax* + by* + cz' + 2bjz + 2msx 4- 2nxy= 0.

Q
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Subtracting, we find

ax* + by* + cz* + 2 lyz + 2mzx + 2nxy

x'+y* + z*

And since this equation is homogeneous, we may write for

x, y, z the direction-cosines of the line joining the consecutive

A . . , . , s ^(L* + M* + N)
point to the origin. As in the last article A, =— .

Hence
*/(L' + M* + N*)

a cos
2
a+&cos'

2
/3+ccos

s
7-+ 2£cos/3cos7+2mcos7cosa+2wcosa cos/3

*

The problem to find the maximum and minimum radius of

curvature is therefore to make the quantity

ax1 + by* + cz* + llyz + 2mzx + 2nxy

a maximum or minimum, subject to the relations

Lx + My + Nz = 0, a?+y*+s*=l.

And thus we see again that this is exactly the same problem

as that of finding the axes of the central section of a quadric

by a plane Lx + My + Nz.

291. In like manner the problem to find the directions of

the principal sections at any point is the same as to find the

directions of the axes of the sectioD by the plane Lx + My + Nz
of the quadric ax" + by* +- cz* + 2lyz 4 2mzx + 2nxy = 1.

Now given any diameter of a quadric, one section can

be drawn through it having that diameter for an axis; the

other axis being plainly the intersection of the plane perpen-

dicular to the given diameter with the plane conjugate to it.

Thus if the central quadric be U= 1, and the given diameter

pass through x'y'z', then the diameter perpendicular and con-

jugate is the intersection of the planes

xx'+yy' + zz' = 0, x'U^+y'U^ s'Z7
3
= 0.

If the former diameter lie in a plane Lx' + My' + Nz\ the

latter diameter traces out the cone which is represented by

the determinant obtained on eliminating x'y'z' from the three

preceding equations: viz.

[Ms - Ny) TJ
X
+ (Nx - Lz) U

2 + (Ly - Mx) U
3
= 0.
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And this coDe must evidently meet the plane Lx + My + Nz
in the axes of the section hy that plane. Thus then the

directions of the principal sections are determined as the inter-

section of the tangent plane Lx + My + Nz with the cone

(Mm — Ny) (ax + ny + mz) + (Nx — Lz) (nx + by + Iz)

+ (Ly — Mx) (rnx + ly + cz) = 0,

or (Mm - Nn) x> + (Nn - LI) f + (LI- Mm) s
a

+ {L(b-c)-nM+ mN) yz + [Ln + M(o-a)- NT] zx

+ {- Lm + Ml+N(a - b)} xy = 0.

292. The methods used in Art. 289 enable us also easily

to find the conditions for an umbilic* If the plane of xy be

the tangent plane at an umbilic the equation of the surface

is of the form

z +A (x* + f) + 2Dxz + 2Eyz + Fz> + &c. = ;

and if we subtract from it the equation of any touching

sphere, viz.

z + \(xi + y* + z'
I

)=0,

it is evidently possible so to choose X (namely, by taking it

= A) that all the terms in the remainder shall be divisible

by z. We see thus that if u
x
+ u

2 -f &c. represent the surface,

and m, + Xu
2
any touching sphere, it is possible, when the

origin is an umbilic, so to choose X that w
2
— \v

2
may contain

Mj as a factor. We see then by transformation of co-ordinates

as in Art. 289, that any point x'y'z will be an umbilic if it

is possible so to choose X that

(a - X) x" + (b-\)y* + (c- X) z
2 + 2lyz + 2mzx + 2nxy

may contain as a factor Lx + My + Nz. If so, the other factor

must be
a — X b — X c —

X

* We might find the condition for an umbilic by forming the condition that the

quadratic of Art. 289 should have equal roots. But, as at p. 51, this quadratic having

its roots always real is one of the class discussed, Higher Algebra, p. 134; whose dis-

criminant can be expressed as the sum of squares. If therefore we only consider real

tunbilics, the result of equating the discriminant to nothing is equivalent to two

conditions, which can be more easily obtained as in the text.

Q2
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Multiplying out and comparing the coefficients of yz, zx, xy,

we get the conditions

(
& - x)^-+(c - x)^= 2Z

)
(c-\)-^+(a-X)j

i

= 2m
i

(a-\) J+(J-\)^=2b.

Eliminating ~k between these equations we obtain for an umbilic

the two conditions

bN*+cM'-2lMN _ cLi + aN*-2mLN_ aM* + IV- 2nLM

Since there are only two conditions to be satisfied, a surface

of the n
th

degree has in general a determinate number of

umbilics ; for the two conditions, each of which represents a

surface, combined with the equation of the given surface de-

termine a certain number of points. It may happen however

that the surfaces represented by the two conditions intersect

in a curve which lies (either wholly or in part) on the given

surface. In such a case there will be on the given surface

a line, every point of which will be an umbilic. Such a

line is called a line of spherical curvature.

293. There is one case in which the conditions of the

last article are not applicable in the form in which we have

written them. They appear to be satisfied by making L = 0,

bWi + cM2 -2U[N
o = r™—575 ? whence we might conclude that the

N* + M* °

surface L = must always pass through umbilics on the given

surface. Now it is easy to see geometrically that this is not

the case, for L (or Z7j) is the polar of the point yzw with

respect to the surface, so that if L necessarily passed through

umbilics it would follow by transformation of co-ordinates that

the first polar of every point passes through umbilics. On
referring to the last article, however, it will be seen that the

investigation tacitly assumes that none of the quantities L, M,N
vanish ; for if any of them did vanish, some of the equations

which we have used would contain infinite terms. Supposing
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then L to vanish, we must examine directly the condition that

My + Nz may be a factor in

(a - X) *2 + (b - X) y' + (c - X) s
s + Hyz + imzx + 2nxy.

We must evidently have X = a, and it is then easily seen that

bN* + cJ\P - 2L1AV , „ .

we must, as betore, have a = ™

—

Tr; , while m
jst

z

-t ip
addition, since the terms Imzx + 2nxy must be divisible by

My+ JSfz, we must have Mm = Nn. Combining then with the

two conditions here found, L = 0, and the equation of the

surface, there are four conditions which, except in special

cases, cannot be satisfied by the co-ordinates of any points.

If we clear of fractions the conditions given in the last

article, it will be found that they each contain either L, M,

or JV^ as a factor. And what we have proved in this article

is that these factors may be suppressed as irrelevant to the

question of umbilics.*

We now proceed to draw some other inferences from what

was proved (Art. 288) ; namely, that the two principal spheres

have stationary contact with the surface.

294. JVIien two surfaces have stationary contact, they touch

in two consecutive points.

The equations of the two surfaces being

s + ax* + Inxy + by
3 + &c. = 0, z + a'x' + in'xy + b'y

2 + &c,

* From what has been said we can infer the number of umbilics which a surface

of the n01 degree will in general possess. We have seen that the umbilics are deter-

mined as the intersection of the given surface with a curve whose equations are of

the form —,= „ = —, . Now if A, B, C be of the degree ?, and A', B", C" of the
A Jr C

degree m, then AB' - BA', AC - CA' are each of the degree I + m, and intersect in

a curve of the degree (1 + i»)». But the intersection of these two surfaces includes

the curve AA' of the degree An which does not he on the surface BC — CB'. The

degree therefore of the curve common to the three surfaces is P +Jm + 111-. In the

present case / = 3» — 4. nt = 2m - 2, and the degree of the curve would seem to be

19„2 _ 46n + 2S. But we have seen that the system we are discussing includes three

curves such as

L, a (M- + .V 3
) - {!>X- + cJP - 2LVX)

which do not pass through umbilics. Subtracting therefore from the number just

found 3 (» — 1) (3» — 4), we see that the umbihcs are determined as the intersection

of the given surface with a curve of the degree (10h2 - 2an + 16), and therefore that

the number of umbilics is in general » (10t>2 - 25» + 16).
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the tangent planes at a consecutive point are (Art. 262)

s + 2 (ax + ny') x + 2 (nx' + by') y = 0,

z + 2 (ax + m'?/') a; + 2 (nV + b'y') y = 0.

That these may be identical, we must have

ax + ny = ax + ny ', nx + by = nx + b'y',

and eliminating £c' : y' between these equations, we have

(a — a) (b — b') = (n — m')
2

,

which is the condition for stationary contact.

The sphere, therefore, whose radius is equal to one of the

principal radii touches the surface in two consecutive points;

or two consecutive normals to the surface are also normals to

the sphere, and consequently intersect in its centre. Now we

know that in plane curves the centre of the circle of curvature

may be regarded as the intersection of two consecutive normals

to the curve. In surfaces the normal at any point will not

meet the normal at a consecutive point taken arbitrarily. But

we see here that if the consecutive point be taken in the

direction of either of the principal sections, the two consecutive

normals will intersect, and their common length will be the

corresponding principal radius. On account of the importance

of this theorem we give a direct investigation of it.

295. To find in what cases the normal at any point on a

surface is intersected by a consecutive normal. Take the tangent

plane for the plane of xy, and let the equation of the surface be

z + Ax2 + 2Bxy + Gtf + 2Dxz + ZEyz + Fz'
2 + &c. = 0.

Then we have seen (Art. 262) that the equation of a consecutive

tangent plane is

z + 2 (Ax + By') x+2 (Bx' + Cy') y-0,

and a perpendicular to this through the point x'y' will be

a*- 3 **

_ y-y' _ 9,
Ax'+By' Bx' + Cy'

This will meet the axis of z (which was the original normal) if

x' y'

Ax' + By' ~ Bx' + Cy"
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The direction therefore of a consecutive point whose normal
meets the given normal is determined by the equation

Bx* + {0 - A) x'y' - By" = 0.

But this is the same equation (Art. 285) which determines the

directions of maximum and minimum curvature. At any point

on a surface therefore there are two directions, at right angles

to each other, such that the normal at a consecutive point

taken on either, intersects the original normal. And these

directions are those of the two principal sections at the point.

Taking for greater simplicity the directions of the principal

sections as axes of co-ordinates ; that is to say, making .5 =
in the preceding equations, the equation of a consecutive normal

becomes
, = '

,
= 2z, whence it is easy to see that the

normals corresponding to the points y' = 0, x' = intersect the

axis of z at distances respectively z = —r , z =—= . The inter-
2ji 2

cepts therefore on a normal by the two consecutive ones which

intersect it are equal to the principal radii.*

296. We may also arrive at the same conclusions by seek-

ing the locus of points on a surface, the normals at which meet

a fixed normal which we take for axis of z. Making x = 0,

y= in the equation of any other normal we see that the

point where it meets the surface must satisfy the condition

jY
=

4f. The curve where this surface meets the given

surface has the extremity of the given normal for a double

* M. Bertrami, in his theory of the curvature of surfaces, calculates the angle

made by the consecutive normal with the plane containing the original normal

and the consecutive point x'y'. Supposing still the directions of the principal sec-

tions to be axes of co-ordinates, the direction-cosines of the consecutive normal are

proportional to 2.4a;', 2Ci/, while those of » tangent line perpendicular to the radius

vector are proportional to — y', x', 0. Hence the cosine of the angle between these

two lines, or the sine of the angle which the consecutive normal makes with the normal

section, is proportional to (C — A) x'y'; or, if a be the angle which the direction

of the consecutive point makes with one of the principal tangents, is proportional to

(C— A) sin la. When a = or = 90°, this angle vanishes and the consecutive normal

is in the plane of the original normal.
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point, the two tangents to which are the two principal tangents

to the surface at that point. (See Ex. 9, p. 83).

The special case where the fixed normal is one at an

umbilic deserves notice. The equation of the surface heing of

the form z + A (x
2 + f) + &c. = 0, the lowest terms in the equa-

tion xU
i
=yU„ when we make 2 = 0, will be of the third

degree, and the umbilic is a triple point on the curve locus.

Thus while every normal immediately consecutive to the normal

at the umbilic meets the latter normal, there are three directions

along any of which the next following normal will also meet

the normal at the umbilic*

297. A line of curvature^ on a surface is a line traced on

it such that the normals at any two consecutive points of it

intersect. Thus starting with any point if on a surface, we

may go on to either of the two consecutive points iV, N' whose

normals were proved to intersect the normal at M. The normal

at N, again, is intersected by the consecutive normals at two

points P, P', the element NP being a continuation of the

element MN while the element NP' is approximately per-

pendicular to it. In like manner we might pass from the point

P to another consecutive point Q and so have a line of curva-

ture MNPQ. But we might evidently have pursued the same

process had we started in the direction MN'. H«nce, at any

point M on a surface can be drawn two lines of curvature

;

these cut at right angles and are touched by the two " prin-

cipal tangents" at M. A line of curvature will ordinarily not

be a plane curve, and even in the special case where it is plane

* Sir W. R. Hamilton has pointed out (Elements of Quaternions, Art. 411) how
this is verified in the case of a quadric. He has proved that the two imaginary

generators (see p. 98) through any umbilic are lines of curvature, the third line of

curvature through the umbilic being the principal section in which it lies. In fact

for a point on *t principal section, the cone (Ex. 9, p. 83) breaks up into two planes.

The normal therefore at such a point only meets the normals at the points of the prin-

cipal section, and at the points of another plane section. For the umbilic the latter

plane is a tangent plane and the section reduces to the two imaginary generators. The

normals along either lie in the same imaginary plane. At every point on either

generator, distinct from the umbilic, the two directions of curvature coincide with the

line, which is perpendicular to itself. (Conies, p. 336).

t The whole theory of lines of curvature, umbilics, &c. is due to Monge. See his

"Application de 1' Analyse a la Geometrie," p. 124, Liouville's Edition.
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it need not coincide with a principal normal section at M, though

it must touch such a section. For the principal section must be

normal to the surface, and the line of curvature may be oblique.

A very good illustration of lines of curvature is afforded

by the case of the surfaces generated by the revolution of any

plane curve round an axis in its plane. At any point P of

such a surface one line of curvature is the plane section passing

through P and through the axis, or, in other words, is the

generating curve which passes through P. For all the normals

to this curve are also normals to the surface, and being in

one plane, they intersect. The corresponding principal radius

at P is evidently the radius of curvature of the plane section

at the same point. The other line of curvature at P is the

circle which is the section made by a plane drawn through

P perpendicular to the axis of the surface ; for the normals

at all the points of this section evidently intersect the axis

of tho surface at the same point, and therefore intersect each

other. The intercept on the normal between P and the axis

is plainly the second principal radius of the surface.

The generating curve which passes through P is a prin-

cipal section of the surface, since it contains the normal and

touches a line of curvature ; but the section perpendicular to

the axis is not a principal section because it does not contain

the normal at P. The second principal section at that point

would be the plane section drawn through the normal at P
and through tho tangent to the circle described by P. The

example chosen serves also to illustrate Meunier's theorem;

for tho radius of the circle described by P (which, as we have

seen, is an oblique section of the surface) is the projection on

that plane of the intercept on the normal between P and the

axis, and we have just proved that this intercept is the radius,

of curvature of the corresponding normal section.

298. It was proved (Art. 291) that the direction-cosines of

the tangent line to a principal section fulfil the relation

(J/COS7— iVcos/3) (a cosa + H cos/3 + »? cos 7)

+ (iVcosa — L COS7) [n cosa + b cos/3 + I C0S7)

+ [L cos/8 -M cosa) {m cosa + I cos/3 + c COS7) = 0.
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Now the tangent line to a principal section is also the tangent

to the line of curvature; while, if ds be the element of the

arc of any curve, the projections of that element upon the

three axes being dx, dy, dz, it is evident that the cosines of

the angles which ds makes with the axes are -7- , ~, -r .

ds ds 7 ds

The differential equation of the line of curvature is therefore

got by writing dx, dy, dz for cosa, cos/3, cosy in the preceding

formula.

This equation may also be found directly as follows (see

Gregory's Solid Geometry, p. 256) : Let «, /3, 7 be the co-

ordinates of a point common to two consecutive normals.

Then, if xyz be the point where the first normal meets

the surface, by the equations of the normal we have

—==— = —~- = —r^- : or if we call the common value ofL M N
these fractions 6, we have

a = x+L8, /3 = y + M8, y = z+W.
But if the second normal meet the surface in a point x + dx,

y + dy, z + dz, then expressing that a/87 satisfies the equations

of the second normal, we get the same results as if we differen-

tiate the preceding equations, considering a/3y as constant, or

dx + Ld6 + 0dL = 0,dy + Md6 + 6dM= 0, dz + NdO + 6dN= 0,

from which equations eliminating 0, dQ, we have the same

determinant as in Art. 291, viz.

dx, dy, dz

L, M, N
dL, dM, dN = 0.

Of course

dL=adx+ ndy+ mdz, dM=ndx+ bdy+ Idz, dN=mdx+ Idy+ cdz.

Ex. To find the differential equation of the lines of curvature

of the ellipsoid

7vr dz

c
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Substituting these values in the preceding equation it becomes,

when expanded,

(5" - c
2

) xdydz + (c
2 - a2

)
ydzdx + (a

2 - tf) zdxdy = 0.

Knowing as we do that the lines of curvature are the inter-

sections of the ellipsoid with a system of concentric quadrics

(Art. 187), it would be easy to assume for the integral of this

equation Ax1 + By* + Cz'
z = 0, and to determine the constants

by actual substitution. If we assume nothing as to the form

of the integral we can eliminate z and dz by the help of the

equation of the surface, and so get a differential equation in

two variables which is the equation of the projection of the lines

of curvature on the plane of xy. Thus, in the present case,

multiplying by -5 and reducing by the equation of the ellipsoid

and its differential, we have

{{b*-6>)xay+{c*-a*)ydx}\^ +
?^J

= (a
2-&2

)

jl-J
- |]<ferfy,

a2
(Z>

2
-c*) . a2

(a
2 -J2

)orwntmg ^^r^f-^ -^r1

^£)H**-W-B) d-l-xy = 0,

the integral of which (see Boole's Differential Equations, Ex. 3,

p. 135) is aa,r
' x y 1

B~BC =
AO+1 1

or the lines of curvature are projected on the principal plane

into a series of conies whose axes a', b' are connected by the

relation

a*(a*-c2
) b

K
{b*-c?) _

a*(a
2 -F) +

F(b*-a'J)~

It is not difficult to see that this coincides with the account

given of the lines of curvature in Art. 187.

299. The theorem that confocal quadrics intersect in lines

of curvature is a particular case of a theorem due to Dupin,*

* Developpements de Geome'trie, cinqui&ne Meinoire. The demonstration here

given is by Professor W. Thomson : see Gregory's Solid Geometry, p. 2(33. Cambridge

Mathematical Journal, Vol. IV., p. 62.
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which we shall state as follows: If three surfaces intersect at

right angles, and if each pair also intersect at right angles at

their next consecutive common point, then the directions of the

intersections are the directions of the lines of curvature on each.

Take the point common to all three surfaces as origin, and

the three rectangular tangent planes as co-ordinate planes ; then

the equations of the surfaces are of the form

x + ay* + 2byz + cz
l + 2dzx + &c. = 0,

y + a'z
2 + 2b'zx + ex1 + 2d'zy + &c. = 0,

s + a"x
2 + 2b"xy + c'y' + &c. = 0.

At a consecutive point common to the first and second surfaces,

we must have x = 0, y = 0, z = z' where z is very small. The

consecutive tangent planes are

(1 + 2dz) x + 2bz'y + 2cz'z = 0,

2b'zx + (1 + 2d'z) y + 2aYs = 0.

Forming the condition that these should be at right angles and

only attending to the terms where z' is of the first degree, we
have b + V = 0.

In like manner, in order that the other pairs of surfaces

may cut at right angles at a consecutive point, we must have

b' + b" = 0, b" + b = 0, and the three equations cannot be ful-

filled unless we have b, b', b" each separately = ; in whiph

case the form of the equations shows (Art. 295) that the axes

are the directions of the lines of curvature on each. Hence

follows the theorem in the form given by Dupin ; namely, that

if there be three systems of surfaces, such that every surface of one

system is cut at right angles by all the surfaces of the other two

systems, then ilie intersection of two surfaces belonging to different

systems is a line of curvature on each. For, at each point of

it, it is, by hypothesis, possible to draw a third surface cutting

both at right angles.

300. If two surfaces cut at right angles,* and if their inter-

section is a line of curvature on one, it is also a line of curvature

on the other.

* This is also true if they cut at any constant angle.
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Proceeding as in the last article, and taking the origin at

any point of their intersection, we must, in order that they may
cut at right angles, have b + V = 0, whence if b = 0, b' = 0.

Otherwise thus : the direction-cosines of the tangent planes

of the two surfaces heing proportional to L, M, N; L', M', N'
;

the direction-cosines of their line of intersection are propor-

tional to MN'-M'N, NL'-N'L, LM'-L'M; and in order

that this intersection should be the direction of a line of curva-

ture on the first surface, we must have the condition fulfilled

(Art. 298)

MN'-M'N, NL'-N'L, LM'-ML'
L, M, N

I dL, dM, dN = 0,

which expanded is

(LL' + MM' + NN') (LdL + MdM+ NdN)

- (L* + ill- + N*) [L'dL + M'dM+ N'dN) = 0.

If the two surfaces are at right angles, we have

LL' + MM' + NN' = 0,

and the condition just written reduces to

L'dL + M'dM+ N'dN= 0,

from which two equations we infer

LdL' + MdM' + NdN' = ;

but this is the condition that the line of intersection should be

a line of curvature on the second surface.

301. A line of curvature is, by definition, such that

the normals to the surface at two consecutive points of it

intersect each other. If then we consider the surface gene-

rated by all the normals along a line of curvature, this will be

a developable surface (Note, p. 72) since two consecutive gene-

rating lines intersect. The developable generated by the nor-

mals along a line of curvature manifestly cuts the given surface

at right angles.

The locus of points where two consecutive generators of

a developable intersect is a curve whose properties will be more
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fully explained in the next chapter, and which is called the

cuspidal edge of that developable. Each generator is a tan-

gent to this curve, for it joins two consecutive points of the

curve; namely, the points where the generator in question

is met by the preceding and by the succeeding generator (see

Art. 119).

Consider now the normal at any point M of a surface

;

through that point can be drawn two lines of curvature

MNPQ, &c, MN'PQ\ &c. : let the normals at the points

M, N, P, Q, &c. intersect in (7, D, E, &c, and those at

M, N', P', Q' in C, D', E' ; then it is evident that the curve

CDE, &c. is the cuspidal edge of the developable generated by
the normals along the first line of curvature, while G'D'E' is

the cuspidal edge of the developable generated by the normals

along the second. The normal at M, as has just been ex-

plained, touches these curves at the points G, C which are

the two centres of curvature corresponding to the point M.
What has been proved may be stated as follows: The

cuspidal edge of the developable generated by the normals

along a line of curvature, is the locus of one of the systems

of centres of curvature corresponding to all the points of that

line.

302. The assemblage of the centres of curvature C, 0"

answering to all the points of a surface is a surface of two

sheets called the -surface of centres (see Art. 189). The curve

CDE lies on one sheet while G'D'E' lies on the other sheet.

Every normal to the given surface touches both sheets of the

surface of centres: for it has been proved that the normal a

M touches the two curves CDE, G'D'E', and every tangent

line to a curve traced on a surface is also a tangent to the

surface.

Now if from a point, not on a surface, be drawn two con-

secutive tangent lines to a surface, the plane of those lines is

manifestly a tangent plane to the surface ; for it is a tangent

plane to the cone which is drawn from the point touching the

surface. But if two consecutive tangent lines intersect on the

surface, it cannot be inferred that their plane touches the
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surface. For if we cut the surface by any plane whatever,

any two consecutive tangents to the curve of section (which,

of course, are also tangent lines to the surface) intersect on the

curve, and yet the plane of these lines is supposed not to touch

the surface.

Consider now the two consecutive normals at the points

M, N, these are both tangents to both sheets of the surface

of centres. And since the point C in which they intersect is on

the first sheet but not necessarily on the second, the plane of

the two normals is the tangent plane to the second sheet of

the surface of centres.

The plane of the normals at the points 31, N' is the tangent

plane to the other sheet of the surface of centres. But because

the two lines of curvature through 31 are at right angles to

each other, it follows that these two planes are at right angles

to each other. Hence, the tangentplanes to the surface of centres

at the two points C, 0", where any normal meets it, cut each

other at right angles.

303. It is manifest that for every umbilic on the given surface,

the two sheets of the surface of centres have a point common

;

or, in other words, the surface of centres has a double point

;

and if the original surface have a line of spherical curvature,

the surface of centres will have a double line. The two sheets

will cut at right angles every where along this double line.

This however is not the only case where tbe surface of centres

has a double line. A double point on that surface arises not

only when the two centres which belong to the same normal

coincide, but also when two different normals intersect, and the

point of intersection is a centre of curvature for each. It was

shewn, p. 229, that a surface of the n
tti

degree possesses

ordinarily a definite number of umbilics, and, therefore, in

general not a line of spherical curvature. Hence a double line

of the first kind is not among the ordinary singularities of the

surface of centres. But that surface will in general have a

double line of the second kind. Through any point several

normals can be drawn to a surface : every point on the surface

of centres is a centre of curvature for one of these normals,
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a locus of points on the surface will be each a centre of cur-

vature for two normals, and there will even be a definite number

of points each a centre of curvature for three normals.*

304. It is convenient to define here a geodesic line on a

surface, and to establish the fundamental property of such

a line; namely, that its osculating plane (see Art. 119) at any

point is normal to the surface. A geodesic line is the form

assumed by a strained thread lying on a surface and joining

any two points on the surface. It is plain that the geodesic

is ordinarily the shortest line on the surface by which the two

points can be joined, since, by pulling at the ends of the

thread, we must shorten it as much as the interposition of the

surface will permit. Now the resultant of the tensions along

two consecutive elements of the curve, formed by the thread,

lies in the plane of those elements, and since it must be de-

stroyed by the resistance of the surface, it is normal to the

surface ; hence, the plane of tivo consecutive elements of the geo-

desic contains the normal to the surface.^

The same thing may also be proved geometrically. In the

first place, if two points A, C in different planes be connected

* The possibility of double lines of the second kind was overlooked by Monge
and by succeeding geometers ; and oddly enough first came to be recognized in con-

sequence of M. Kummer's having had a model made of the surface of centres of an

ellipsoid (see Monatsberichte of the Berlin Academy, 1862). Instead of finding the

sheets, as he expected, to meet only in the points corresponding to the umbilies, he

found that they intersected in a curve, and that they did not cut at right angles along

this line. Of course when the existence of the double line was known to be a fact

its mathematical theory was evident. M. Clebsch had, on purely mathematical

grounds, independently arrived at the same conclusion in an elaborate paper on the

normals to an ellipsoid, of equal date with Kummer's paper, though of later pub-

lication. A discussion of the surface of centres of an ellipsoid, founded on Clebsch's

paper, will be given in Chapter xiv.

f I have followed Monge in giving this proof, the mechanical principles which it

involves being so elementary that it seems pedantic to object to the introduction of

them. For the benefit of those who would prefer a purely geometrical proof I add

one or two in the text. For readers familiar with the theory of maxima and minima

it is scarcely necessary to add that a geodesic need not be the absolutely shortest line

by which two points on the surface may be joined. Thus, if we consider two points

on a sphere joined by a great circle, the remaining portion of that great circle, ex-

ceeding 180° is a geodesic though not the shortest line connecting the points. The

geodesic however will always be the shortest line if the two points considered be

taken sufficiently near.



CURVATUKE 0? SURFACES. 241

by joining each to a point B in the intersection of the two

planes, the sum of AB and BC will be less than the sum of

any other joining lines AB', B'C, it AB and BC make equal

angles with TT, the intersection of the planes. For if one

plane be made to revolve about TT' until it coincide with the

other, AB and BC become one right line, since the angle TBA
is supposed to be equal to T'BC; and the right line AC is

the shortest by which the points A and C can be joined.

It follows then that if AB and BC be consecutive elements

of a curve traced on a surface, that curve will be the shortest

line connecting A and C when AB and BC make equal

angles with BT, the intersection of the tangent planes at A
and C.

We see then that AB (or its production) and BC are con-

secutive edges of a right cone having BT for its axis. Now
the plane containing two consecutive edges is a tangent plane

to the cone ; and since every tangent plane to a right cone

is perpendicular to the plane containing the axis and the line

of contact, it follows that the plane ABC (the osculating plane

to the geodesic) is perpendicular to the plane AB, BT which

is the tangent plane at A. The theorem of this article is thus

established.

M. Bertrand has remarked (Liouville, t. Sill., p. 73, cited

by Cayley, Quarterly Journal, Vol. I., p. 186) that this funda-

mental property of geodesies follows at once from Meunier's

theorem (see Art. 287). For it is evident, that for an inde-

finitely small arc the chord of which is given, the excess in

length over the chord is so much the less as the radius of

curvature is greater. The shortest arc therefore joining two

indefinitely near points A, B, on a surface is that which has

the greatest radii of curvature, and we have seen that this

is the normal section.

305. Returning now to the surface of centres, I say that

the curve CDE (Art. 302), which is the locus of points of inter-

section of consecutive normals along a line of curvature, is

a geodesic on the sheet of the surface of centres on which it

lies. For we saw (Art. 302) that the plane of two consecutive
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normals to the surface (that is to say, the plane of two con-

secutive tangents to this curve) is the tangent plane to the

second sheet of the surface of centres and is perpendicular to

the tangent plane at G to that sheet of the surface of centres

on which C lies. Since then the osculating plane of the curve

CDE is always normal to the surface of centres, the curve is

a geodesic on that surface.

306. We have given the equations connected with lines of

curvature on the supposition that the equation of the surface

has been given, as it ordinarily is, in the form <£ (x, 3/, z) = 0.

As it is convenient, however, that the reader should be able

to find here the formulae which have been commonly employed,

we shall conclude this chapter by giving the principal equations

in the form given by Monge and by most subsequent writers,

viz. when the equation of the surface is in the form z = cj>(x, y).

We use the ordinary notations

dz =pdx + qdy, dp = rdx + sdy, dq — sdx + tdy.

We might derive the results in this form from those found

already ; for since we have JJ— cf> [x, y) — z = 0, we have

dU_ dU_ d_£__i
dx

~ P ' dy
-!?

' de
~ h

with corresponding expressions for their second differential

coefficients. We shall, however, repeat the investigations for

this form as they are usually given.

The equation of a tangent plane is

z-z=p{x-x') + q{y-y),

and the equations of the normal are

[x — x') +p [z — z') = 0, y — y' + q {
z — «') = 0.

If then a/37 be any point on the normal and xyz the point

where it meets the surface, we have

(a - x) +p (7 - s) = 0, (#-#) + q{j-z) = 0.

And if a/37 also satisfy the equations of a second normal, the

differentials of these equations must vanish, or

dx +pdz = (7 — z) dp, dy + qdz =(y — z)dq;
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whence, eliminating (7 — »), we have the equation of condition

(dx +pdz) dq = (dy + qdz) dp.

Putting in for dz, dp, dq their values already given, and

arranging, we have

& {(1 +f) s-Mt} +
d
£{(l +qy-[l+f)t} - {(l+p*)s-pqr}=0.

This equation determines the projections on the plane of xy of

the two directions in which consecutive normals can be drawn

so as to intersect the given normal.

307. From the equations of the preceding article we can

also find the lengths of the principal radii. The equations

dx +pdz = (7 — z) dp, dy + qdz = (y — s) dq,

when transformed as above become

{1 +p2 — (7 — z) r] dx + {pq - (7 - z) s\ dy = 0,

{l + q*-(y-z)t}dy+{pq-(y-z)s}dx= 0,

whence eliminating dx : dy, we have

^- zf{rt-s")-^-z){{l + q
i)r-2pqs+{l +p

i
)t} + {l+pi

+q
i
)^0.

Now 7 — z is the projection of the radius of curvature on the

axis of z ; and the cosine of the angle the normal makes with

that radius being —rr-
5 ^ , we have

i?=(7- 2)V(l+/ + 2
2

)-

Eliminating then 7-2 by the help of the last equation, B is

given by the equation

R* (rt-J)-B {(1 + q
2
)r - 2pqs + (1 +/) *} V(l + j>" + ?

8

)

+ {l+p* + q7= 0.

308. From the preceding theorems can be deduced

Joachimsthal's theorem (see Crelle, Vol. xxx., p. 347) that if a

line of curvature be a plane curve, its plane makes a constant

angle with the tangent plane to the surface at any of the

points where it meets it. Let the plane be z = 0, then the

equation of Art. 306

(dx + pdz) dq= [dy + qdz) dp

R2
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becomes dxdq = dydp. But we have also pdx-\-qdy = Q, con-

sequently pdp + qdq = ;
p* + q'' = constant. But p'" + q* is the

square of the tangent of the angle which the tangent plane

makes with the plane xy; since cos7= -7- =
s-, .r *' V(l+f+2')

Otherwise thus (see IAouville, Vol. XI., p. 87) : Let MM',
M'M" be two consecutive and equal elements of a line of

curvature, then the two consecutive normals are two perpen-

diculars to these lines passing through their middle points i, /',

and C the point of meeting of the normals is equidistant from

the lines MM', M'M". But if from G we let fall a perpen-

dicular CO on the plane MM'M", will be also equidistant

from the same elements; and therefore the angle GIO = GTO.
It is proved then that the inclination of the normal to the plane

of the line of curvature remains unchanged as we pass from

point to point of that line.

More generally let the line of curvature not be plane. Then,

as before, the tangent planes through MM' and through M'M"
make equal angles with the plane MM'M". And evidently

the angle which the second tangent plane makes with a second

osculating plane M'M"M'" differs from the angle which it

makes with the first by the angle between the two osculating

planes. Thus we have Lancret's theorem, that along a line

of curiature the variation in the angle between the tangent plane

to the surface and the osculating plane to the curve is equal to

the angle between the two osculating planes.

For example, if a line of curvature be a geodesic it must

be plane. For then the angle between the tangent plane and

osculating plane does not vary, being always right : therefore

the osculating plane itself does not vary. From the same prin-

ciples we obtain a simple proof of the theorem of Art. 300.

309. Finally, to obtain the radius of curvature of any

normal section. Since the centre of curvature a/37 ^es on

the normal, we have

(a-a;)+jj(y-«)=0, (£~y) + q (7 -*) = 0.

Further, we have

(a-z) 2 +(/3- <V)

2 +(7-z) 2 = ^.
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And since this relation holds for three consecutive points of the

section which is osculated by the circle we are considering,

we have

(a — x) dx + {fi
— y)dy + (7 — s) dz = 0,

(a - x) d*x + (0 - y) d
2

y + (7 - z) d*z = dx* + dtf + dz\

Combining this last with the preceding equations, we have

a — x & — y 7 — a_ B _ dx' -+ dy* + dz"

p q 1
—
V(l +P* + 2

2

)
~P^x + qd*y - d*z

'

But differentiating the equation dz =jadx + qdy, we have

d*z —pd*x— qd'y = r<h? + 2sdxdy + tdy",

.. ., „dx* + dy'* + {pdx + qdyy
whence Jt = ± V(l +/ + ft) rdx> jJ*dy +

™
•

The radius of curvature therefore of a normal section whose

projection on the plane of xy is parallel to y = tnx is

±v(i +/ +g8

)

(i+/)+
,
2r:^+gV2 .

v r a ' r + 2sm + tm

The conditions for an umbilic are got by expressing that this

value is independent of m, and are

r s t
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CHAPTER XII.

CURVES AND DEVELOPABLES.

SECTION I. PROJECTIVE PROPERTIES.

310. It was proved (p. 13) that two equations represent

a curve in space. Thus the equations U= 0, V= represent

the curve of intersection of the surfaces Z7, V.

The degree of a curve in space is measured by the number

of points in which it is met by any plane. Thus, if Z7, V be

of the mm and n
th

degrees respectively, the surfaces which they

represent are met by any plane in curves of the same degrees,

which intersect in mn points. The curve UV is therefore of

the km" degree.

By eliminating the variables alternately between the two

given equations, we obtain three equations

which are the equations of the projections of the curve on the

three co-ordinate planes. Any one of the equations taken

separately represents the cylinder whose edges are parallel to

one of the axes, and which passes through the curve (Art. 24).

The theory of elimination shows that the equation
<f> («/, z) =

obtained by eliminating x between the given equations is of

the mn a
degree. And it is also geometrically evident that

any cone or cylinder* standing on a curve of the r
n

degree

is of the r
tb

degree. For if we draw any plane through the

vertex of the cone [or parallel to the generators of the cylinder]

this plane meets the cone in r lines ; namely, the lines joining

the vertex to the r points where the plane meets the curve.

* A cylinder is plainly the limiting case of a cone, whose vertex is at infinity.
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311. Now, conversely, if we are given any curve in space

and desire to represent it by equations, we need only take the

three plane curves which are the projections of the curve on

the three co-ordinate planes ; then any two of the equations

$ (#) z
)
= 0, ty (z, x) = 0, x ix ~ y) = will represent the given

curve. But ordinarily these will not form the simplest system

of equations by which the curve can be represented. For if

r be the degree of the curve, these cylinders being each of

the r
th

degree, any two intersect in a curve of r
2
degree ; that

is to say, not merely in the curve we are considering but in

an extraneous curve of the degree r
s — r. And if we wish

not merely to obtain a system of equations satisfied by the

points of the given curve, but also to exclude all extraneous

points, we must preserve the system of three projections; for

the projection on the third plane of the extraneous curve in

which the first two cylinders intersect will be different from

the projection of the given curve.

It may be possible by combining the equations of the three

projections to arrive at two equations U= 0, V— 0, which shall

be satisfied for the points of the given curve, and for no other.

But it is not generally true that every curve in space is the

complete intersection of two surfaces. To take the simplest

example, consider two quadrics having a right line common,

as, for example, two cones having a common edge. The
intersection of these surfaces, which is in general of the fourth

degree, must consist of the common right line, and of a curve

of the third degree. Now since the only factors of 3 are 1

and 3, a curve of the third degree cannot be the complete

intersection of two surfaces unless it be a plane curve ; but

the curve we are considering cannot be a plane curve,* for

if so any arbitrary line in its plane would meet it in three

points, but such a line could not meet either quadric in more

than two, and therefore could not pass through three points

of their curve of intersection.

* Curves in space which are not plane curves have commonly been called

"curves of double curvature." In what follows, I use the word "curve" to de-

note a curve in space, which ordinarily is not a plane curve, and I add the adjec-

tive •' twisted" when I want to state expressly that the curve is not a plane curve.
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312. If a curve be either the complete or partial inter-

section of two surfaces U, V, the tangent to the curve at any

point is evidently the intersection of the tangent planes to the

two surfaces, and is represented by the equations

xu;+ y u; + zu;+wu;=o,

xv;+ y v:+zv; + wv;=o.

The direction-cosines of the tangent are plainly proportional

to MN'-M'N, NL'-N'L, LM'-L'M, where L, if, &c. are

the first differential coefficients.

An exceptional case arises when the two surfaces touch, in

which case the point of contact is a double point on their

curve of intersection. All this has been explained before (see

Art. 104). As a particular case of the above, the projection

of the tangent line to any curve is the tangent to its projec-

tion ; and when the curve is given as the intersection of the

two cylinders y = <j>[z), x = y{r(z)
1

the equations of the tan-

gent are

T'lis may be otherwise expressed as follows: Consider any

element of the curve ds ; it is projected on the axes of co-

ordinates into dx, dy, ds. The direction-cosines of this element

are therefore ~ ,
—

,
~

, and the equations of the tangent are

x — x
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enter more fully into the latter theory. In fact it was proved

(Art. 119) that the reciprocal of a series of points forming a

curve is a series of planes enveloping a developable. We there

showed that the points of a curve regarded as a system of

points 1, 2, 3, &c. give rise to a system of lines ; namely, the

lines 12, 23, 31, &c. joining each point to its next consecutive,

these lines being the tangents to the curve : and that they also

give rise to a system of planes, viz. the planes 123, 234, &c.

containing every three consecutive points of the system, these

planes being the osculating planes of the curve. The as-

semblage of the lines of the system forms a surface whose

equation can be found when the equation of the curve is given.

For the two equations of the tangent line to the curve involve

the three co-ordinates x', y', z, which being connected by two

relations are reducible to a single parameter; and by the

elimination of this parameter from the two equations, we obtain

the equation of the surface. Or, in other words, we must

eliminate x'y'z' between the two equations of the tangent and

the two equations of the curve. We have said (Art. 119)

that the surface generated by the tangents is a developable,

since every two consecutive positions of the generating line

intersect each other. The name given to this kind of surface

is derived from the property that it can be unfolded into a

plane without crumpling or tearing. Thus imagine any series

of lines Aa, Bb, Gc, Dd, &c. (which for the moment we take

at a finite distance from each other) and such that each inter-

sects the consecutive in the points a, b, c, &c. ; and suppose

a surface to be made up of the faces AaB, BbC, CcD, &c,

then it is evident that such a surface can be developed into

•a plane by turning the face AaB round aB as a hinge until

it formed a continuation of BbC; by turning the two, which

we had thus made into one face, round cC until they formed

a continuation of the next face, and so on. In the limit when

the lines Aa, Bb, &c. are indefinitely near, the assemblage of

plane elements forms a developable which, as just explained,

can be unfolded into one plane.

The reader will find no difficulty in conceiving this from

the examples of developables with whieh he is most familiar,
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viz. a cone or a cylinder. There is no difficulty in folding

a sheet of paper into the form of either surface and in un-

folding it again into a plane. But it will easily be seen to

be impossible to fold a sheet of paper into the form of a sphere

(which is not a developable surface) ; or, conversely, if we cut

a sphere in two it is impossible to make the portions of the

surface lie smooth in one plane.

314. The plane AaB containing two consecutive gene-

rating lines is evidently, in the limit, a tangent plane to the

developable. It is plain that we might consider the surface

as generated by the motion of the plane AaB according to

some assigned law, the envelope of this plane in all its positions

being the developable. Now if we consider the developable

generated by the tangent lines of a curve in space, the equa-

tions of the tangent at any point x'y'z are plainly functions

of those co-ordinates, and the equation of the plane containing

any tangent and the next consecutive (in other words, the

equation of the osculating plane at any point x'y'z) is also

a function of these co-ordinates. But since x'y'z are connected

by two relations, namely, the equations of the curve ; we can

eliminate any two of them, and so arrive at this result, that

a developable is the envelope of a plane whose equation contains

a single variable parameter. To make this statement better

understood we shall point out an important difference between

the cases when a plane curve is considered as the envelope of

a moveable line, and when a surface in general is considered as

the envelope of a moveable plane.

315. The equation of the tangent to a plane curve is a

function of the co-ordinates of the point of contact ; and these

two co-ordinates being connected by the equation of the curve,

we can either eliminate one of them, or else express both in

terms of a third variable so as to obtain the equation of the

tangent as a function of a single variable parameter. The
converse problem to obtain the envelope of a right line whose

equation includes a variable parameter has been discussed,

Higher Plane Curves, p. 93. Let the equation of any tan-
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gent line be u = 0, where u is of the first degree in x and y,

and the constants are functions of a parameter k. Then
the line answering to the value of the parameter a -)- h is

, du h d*u h* „ , ,, .
, „ .

, ,. . ,u+-y- - + ts «-= + <*c-i aQd the point ot intersection or these
da. 1 da 1.2

' r

,...,,, ,. „ du h d2u
two lines is given by the equations u = 0, -7- + — -=-, + &c. = 0.

And, in the limit, the point of intersection of a line with the

next consecutive (or, in other words, the point of contact of

any line with its envelope) is given by the equations u — 0,

-j— = 0. If from these two equations we eliminate a we obtain

the locus of the points of intersection of each line of the system

with the next consecutive ; that is to say, the equation of the

envelope of all these lines. It is easy to prove that the result

of this elimination represents a curve to which u is a tangent.

We get that result, if in u we replace a by its value, in terms of

x and y, derived from the equation —=0. Now, if we differen-

. du fdu\ du da. , du (du\ du da
tiate, we have 7= 7 +77™ r= r +tti' ax \dx) da ax ay \dyj da dy '

where (t-j, f-^-J are the differentials of u on the supposition

that a is constant. And since -7- = it is evident that t- ,
—

da dx ' dy

are the same as on the supposition that a is constant. It follows

that the eliminant in question denotes a curve touched by u.

If it be required to draw a tangent to this curve through

any point, we have only to substitute the co-ordinates of that

point in the equation u = 0, and determine a so as to satisfy

that equation. This problem will have a definite number of

solutions, and the number will plainly be the number of tan-

gents which can be drawn to the curve from an arbitrary

point; that is to say, the class of the curve. For example,

the envelope of the line

aa
8 + 35a

2 +3ca + <2=0,

where a, b, c, d, are linear functions of the co-ordinates, is

plainly a curve of the third class.
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316. Now let us proceed in like manner with a surface.

The equation of the tangent plane to a surface is a function

of the three co-ordinates, which being connected by only one

relation (viz. the equation of the surface), the equation of the

tangent plane, when most simplified, contains two variable

parameters. The converse problem is to find the envelope of

a plane whose equation u = contains two variable parameters

a, /3. The equation of any other plane answering to the

values a + h, /3 + k will be

/, du , du\ 1 / 7 „ d\ „ \

Now, in the limit, when h and k are taken indefinitely small,

they may preserve any finite ratio to each other k = Xh. We
see thus that the intersection of any plane by a consecutive

one is not a definite line, but may be any line represented by

the equations m = 0, j + X j^=0, where X is indeterminate.

But we see also that all planes consecutive to u pass through

,i • • i ,i ,• ^ du „ du
the point given by the equations u = 0, -j- = 0, -^ = 0.

From these three equations we can eliminate the parameters

a, /3, and so find the locus of all those points where a plane of

the system is met by the series of consecutive planes. It is

proved, as in the last article, that the surface represented by

this eliminant is touched by u. If it be required to draw a

tangent plane to this surface through any point, we have only

to substitute the co-ordinates of that point in the equation u = 0.

The equation then containing two indeterminates a and /3 can

be satisfied in an infinity of ways; or, as we know, through

a given point an infinity of tangent planes can be drawn to

the surface, these planes enveloping a cone.

Suppose, however, that we either consider /3 as constant,

or as any definite function of a, the equation of the tangent

plane is reduced to contain a single parameter, and the envelope

of those particular tangent planes which satisfy the assumed con-

dition is a developable. Thus, again, we may see the analogy

between a developable and a curve. When a surface is con-
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sidered as the locus of a number of points connected by a given

relation, if we add another relation connecting the points we
obtain a curve traced on the given surface. Bo when we con-

sider a surface as the envelope of a series of planes connected

by a single relation, if we add another relation connecting the

planes we obtain a developable enveloping the given surface.

317. Let us now see what properties of developables are to

be deduced from considering the developable as the envelope

of a plane whose equation contains a single variable parameter.

In the first place it appears that through any assumed point

can be drawn, not as before an infinity of planes of the system,

forming a cone ; but a definite number of planes. Thus, if it

be required to find the envelope of aa? + Sbd' -t 3ca + d, where

a, b, c, d represent planes, it is obvious that only three planes

of the system can be drawn through a given point, since on

substituting the co-ordinates of any point we get a cubic for a.

Again, any plane of the system is cut by a consecutive plane

in a definite line; namely, the line m = 0, -^-=0; and, if we

eliminate a between these two equations, we obtain the sur-

face generated by all those lines, which is the required

developable.

.

It is proved, as at Art. 315, that the plane u touches the

developable at every point which satisfies the equations w = 0,

^->=0; or, in other words, touches along the whole of the line
da

of the system corresponding to u. It was proved (Art. 107)

that in general when a surface contains a right line the tangent

plane at each point of the right line is different. But in the

case of the developable the tangent plane at every point is

the same. If x be the plane which touches all along the line

xy, the equation of the surface can be thrown into the form

x(j> + y*\}r = (seep. 72).*

* It seems unnecessary to enter more fully into the subject of envelopes in general,

since what is said in the test applies equally if «, instead of representing a plane,

denote any surface whose equation includes a variable parameter. Monge calls the

curve « = 0, — = 0, in which any surface of the system is intersected by the con-
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318. Let us now consider three consecutive planes of the

system, and it is evident as before that their intersection satisfies

the equations u — 0, -=- = 0, -^ = 0. For any value of a, the

point is thus determined where any line of the system is met

by the next consecutive. The locus of these points is got by

eliminating a between these equations. We thus obtain two

equations in x, y, z, one of them being the equation of the

developable. These two equations represent a curve traced

ou the developable. Thus it is evident that starting with the

definition of a developable as the envelope of a moveable plane,

we are led back to its generation as the locus of tangents to

a curve. For the consecutive intersections of the planes form

a series of lines, and the consecutive intersection of the lines

are a series of points forming a curve to which the lines are

tangents. We shall presently show that the curve is a cuspidal

edge* on the developable.

319. Four consecutive planes of the system will not meet

in a point unless the four conditions be fulfilled u = 0, -r = 0,
1

da. '

d 2u n d3
u T . . ... - .

-=-„ = 0, -,
8
= 0. It is in general possible to find certain

values of a, for which this condition will be satisfied. For

if we eliminate x
} y 1

a, we get the condition that the four

secutive, the characteristic of the envelope. For the nature of this curve depends

only on the manner in which the variables x, y, z enter into the function u
}
and not

on the manner in which the constants depend on the parameter. Thus, when u
represents a plane, the characteristic is always a right line, and the envelope is the

locus of a system of right lines. When u represents a sphere, the characteristic,

being the intersection of two consecutive spheres, is a circle ; and the envelope is the

locus of a system of circles. And so envelopes in general may be divided into families

according to the nature of the characteristic.

* Monge has called this the " arete de rebroussement," or "edge of regression" of

the developable. There is a similar curve on eveiy envelope, namely, the locus of

points in which each " characteristic" is met by the nest consecutive. The part of

the characteristic on one side of this curve generates one sheet of the envelope, and

that on the other side generates another sheet. The two sheets touch along this

curve which is their common limit, and is a cuspidal edge of the envelope. Thus in

the case of a cone the parts of the generating lines on opposite sides of the vertex

generate opposite sheets of the cone, and the cuspidal edge in this case reduces itself

to a single point, namely, the vertex.
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planes, whose equations have been just written, shall meet in a
point. This condition is that a function of a is equal to nothing,

whence we shall in general get a determinate number of
values of a for which the condition is satisfied. There are

therefore in general a certain number of points of the system
through which four planes of the system pass; or, in other

words, a certain number of points in which three consecutive

lines of the system intersect. We shall call these, as at Higher
Plane Curves, p. 28, the stationary points of the system ; since

in this case the point determined as the intersection of two
consecutive lines, coincides with that determined as the inter-

section of the next consecutive pair.

Eeciprocally, there will be in general a certain number of

planes of the system which may be called stationary planes.

These are the planes which contain four consecutive points

of the system ; for, in such a case, the planes 123, 234 evidently

coincide.

320. We shall now show how, from Pliicker's equations con-

necting the ordinary singularities of plane curves,* Mr. Cayleyt
has deduced equations connecting the ordinary singularities of

developables. We shall first make an enumeration of these

singularities. We speak of the "points of the system," the

" lines of the system," and the " planes of the system" as ex-

plained (Art.' 119).

Let m be the number of points of the system which lie in

any plane ; or
r
in other words, the degree of the curve which

generates the developable.

Let n be the number of planes of the system which can be

drawn through an arbitrary point. We have proved (Art. 317)

* These equations are as follows : see Higher Plane Curves, p. 91. Let fi be the

degree of a curve, v its class, 8 the number of its double points, x that of its double

tangents, k the number of its cusps, t that of its points of inflexion; then

i/ = n(fi-l)-2$-3K; n= v (k - 1) - 2t - 3t,

i = 3fi Qi - 2) - 68 - 8k; k = 3v (» - 2) - 6t - 8t.

Whence also t - k = 3 (» - /j.) ; 2 (t - S) = (u - fi) {v + fi - 9).

f See Iiouville's Journal, Yol. X., p. 245 ; Cambridge and Dublin Mathematical

Journal, Vol. v., p. 18.
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that the number of such planes is definite. We shall call this

number the class of the system.

Let r be the number of lines of the system which intersect

an arbitrary right line. It is plain that if we form the con-

dition that w, -5- and any assumed right line may intersect,

the result will be an equation in a, which gives a definite

number of values of a. Let r be the number of solutions

of this equation. We shall call this number the rank of

the system, and we shall show that all other singularities

of the system can be expressed in terms of the three just

enumerated.

Let a. be the number of stationary planes, and j3 the number

of stationary points (Art. 319).

Two non-consecutive lines of the system may intersect.

When this happens we call the point of meeting a " point

on two lines," and their plane a "plane through two lines."

Let x be the number of "points on two lines" which lie

in a given plane, and y the number of "planes through two

lines" which pass through a given point.

In like manner we shall call the line joining any two points

of the system a " line through two points," and the intersection

of any two planes a " line in two planes." Let g be the number
of " lines in two planes" which lie in a given plane, and /* the

number of " lines through two points" which pass through a

given point.

The developable has other singularities which will be deter-

mined in a subsequent chapter, but these are the singularities

which Plucker's equations (note, p. 255) enable us to determine.

321. Consider now the section of the developable by any

plane. It is obvious that the points of this curve are the traces

on its plane of the "lines of the system," while the tangent

lines of the section are the traces on its plane of the " planes

of the system." The degree of the section is therefore r,

since it is equal to the number of points in which an arbitrary

line drawn in its plane meets the section, and we have such

a point whenever the line meets a " line of the system."
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The class of the section is plainly n. For tlie number of

tangent lines to the section drawn through an arbitrary point

is evidently the same as the number of "planes of the system"

drawn through the same point.

A double point on the section will arise whenever two
" lines of the system" meet the plane of section in the same

point. The number of such points by definition is x. The
tangent lines at such a double point are usually distinct, because

the two planes of the system corresponding to the lines of the

system intersecting in any of the points x are commonly different.

The number of double tangents to the section is in like

manner g ; since a double tangent arises whenever two planes

of the system meet the plane of section in the same line.

The m points of the system which lie in the plane of section

are cusps of the section. For they are double points as being

the intersection of two lines of the system ; and the tangent

planes at these points coincide, since the two consecutive lines,

intersecting in one of the points ?», lie in the same plane of

the system. This proves, what we have already stated, that

the curve whose tangents generate the developable is a cuspidal

edge on the developable ; for it is such that every plane meets

that surface in a section which has as cusps the points where

the same plane meets the curve.

Lastly, we get a point of inflexion (or a stationary tangent)

wherever two consecutive planes of the system coincide. The

number of points of inflexion is therefore a.

We are to substitute then in the formulae, note p. 255,

/M = r, v = n
:

S = x, T=y, « = m, i = a.

And we have

,i= r (r- 1) - 2x - 3m
;

r= n {n - 1) - 2g- 3a,

a = Br (>• - 2) - 6x - 8?»
;
m = 3» [n -2)-6g- 8a,

whence also

m - a = 3 (r - n) ; 2 (x - g) = (r - n) (r + n - 9).

322. Another system of equations is found by considering

the cone whose vertex is any point and which stands on the

given curve. It appears at once by considering the section



258 PROJECTIVE PROPERTIES OF CURVES.

of a cone by any plane that the same equations connect the

double edges, double tangent planes, &c. of cones, which con-

nect the double points, double tangents, &c. of plane curves.

The edges of the cone which we are now considering are

the lines joining the vertex to all the points of the system
;

and the tangent planes to the cone are the planes connecting

the vertex with the lines of the system, for evidently the plane

containing two consecutive edges of the cone must contain the

line joining two consecutive points of the system.

The degree of the cone is plainly the same as the degree of

the curve and is therefore m.

The class of the cone is the same as the number of tangent

planes to the cone which pass through an arbitrary line drawn

through the vertex. Now since each tangent plane contains

a line of the system, it follows that we have as many tangent

planes passing through the arbitrary line as there are lines

of the system which meet that line. The number sought is

therefore r.*

A double edge of the cone arises when the same edge of

the cone passes through two points of the system, or 8 = h.

The tangent planes along that edge are the planes joining

the vertex to the lines of the system which correspond to

each of these points.

A double tangent plane will arise when the same plane

through the vertex contains two lines of the system ; or t = y.

A stationary or cuspidal edge of the cone will only exist

when there is a stationary point in the system ; or k — /3.

Lastly, a stationary tangent plane will exist when a plane

containing two consecutive lines of the system passes through

the vertex ; or t = n.

Thus we have fi = m, v = r, S = h, T = y, k = /3, t = n.

Hence by the formulae (note p. 255)

r= m{m-l)-2h-?j^; in = r (r - 1) -2?/-3w,

n = 3m (m - 2) - 6h - 8/3 ; /3 = 3r (r - 2) - &ij - 8m.

* It ia easy to see that the class of this cone is the same as the degree of the

developable which ia the reciprocal of the points of the given system. Hence, the

degree of the developable generated hy the tangents to any curve is the same as the

degree of the developable which is the reciprocal of thepoints of that curve, see note, p. 87.
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Whence also

(n - /3) = 3 (?• - m) ; 2 (y- h) = (•>• - mi) (r + »i - 9).

And combining these equations with those found in the last

article, we have also

a - /3 = 2 (n - m) ; x -y = n- m ; 2(g-h) = (n- m)(n +m - 7).

•Pluckcr's equations enable us, when three of the singularities

of a plane curve are given, to determine all the rest. Now
three quantities r, m, n are common to the equations of this

and of the last article. Hence, when any three of the singu-

larities which we have enumerated, of a curve in space, are

given, all the rest can he found.*

323. To illustrate this theory, let us take the developable

which is the envelope of the plane

at + hot*'
1 + %Jc (k - 1) cr2 + &c. = 0,

where t is a variable parameter, a, b, c, &c. represent planes,

and 7c is any integer.

The class of this system is obviously k, and the equation

of the developable being the discriminant of the preceding

equation, its degree is 2(&— 1); hence r = 2 (k — 1).

Also it is easy to see that this developable can have no

stationary planes. For in general if we compare coefficients

in the equations of two planes, three conditions must be satisfied

in order that the two planes may be identical. If then we
attempt to determine t so that any plane may be identical

with the consecutive one, we find that we have three conditions

to satisfy, and only one constant t at our disposal.

Having then k= I; r — 2 (k - 1), a = 0, the equations of the

last two articles enable us to determine the remaining singu-

larities. The result is

m = 3(&-2); /3 = 4(£-3); x = 2 (&- 2) (fc-3)

;

y = 2(£-l)(fc-3); g = i2 {k- 1) (fc-2) ; * = £ (9# -53& + 80).

* It is to tie observed that besides those -which we count as the ordinary sin-

gularities, a curve may have others. Thus if it have 6 points at which three points of

the system lie in a right line, the tangent line at every such point is doubly a line of

the system, and meets in a cusp the section of the developable by any plane. Instead

then of having, as in Art. 3*21, k = -i, we have k = -i + 8. And in like manner

(Art. 322) we have • = n + 6.

S2
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The greater part of these values can be obtained independently

as at Higher Plane Curves, p. 94. But in order to economize

space we do not enter into details.

324. The case considered in the last article, which is that

when the variable parameter enters only rationally into the

equation, enables us to verify easily many properties of de-

velopables. Since the system w = 0,
-J

= is obviously re-

ducible to

at* + [k - 1 ) U™ + &c. = 0, It"'
1 + (&-!) <^"2 + &c. = 0,

and the system u = 0, -j- = 0, -^ — is reducible to

ari +{k-z) br3 + &c. = o, &r2 + {h - 2) cf-
s + &c. = 0,

cf+(7c-2)dtt-'> + &c. = 0;

it follows that a is itself a plane of the system (namely, that

corresponding to the value £=<»), ab is the corresponding line,

and abc the corresponding point. Now we know from the

theory of discriminants (see Higher Algebra, p. 47) that the

equation of the developable is of the form a(f> + b*yfr = 0, where

y}r is the discriminant of u when in it a is made = 0. Thus we

verify what was stated (Art. 317) that a touches the develop-

able along the whole length of the line ab. Further, ^r is

itself of the form bj> + c
2
-^'. If now we consider the section

of the developable by one of the planes of the system (or, in

other words, if we make a = in the equation of the develop-

able), the section consists of the line ab twice and of a curve

of the degree r — 2 ; and this curve (as the form of the equation

shows) touches the line ab at the point a5c,*and consequently

meets it in r — 4 other points. These are all " points on two

lines," being the points where the line ab meets other lines

of the system. And it is generally true that if r be the rank

of a developable each line of the system meets r — 4 other lines

of the system. The locus of these points forms a double curve

on the developable, the degree' of which is x, and the other

properties of which will be given in a subsequent chapter,

where we shall also determine certain other singularities of
" the developable.
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We add here a table of the singularities of some special
sections of the developable. The reader, who may care to
examine the subject, will find no great difficulty in establishing
them. I have given the proof of the greater part of them,
Cambridge and Dublin Mathematical Journal, Vol. v., p. 24.

Section by a plane of the system

//. = r-2, v = n-l, t = «, K = m-3, r=g-n + 2, B = x~2r+8.
Cone whose vertex is a point of the system

A*=m-1, v=r-2, * = n-8, k = /3, T =y-2r+8, Z=fi-m + 2.

Section by plane passing through a line of the system

/* = r-l, v = n, t = a + ], K = m-2, r=g-l, § = x -r + ±.

Cone whose vertex is on a line of the system

fi = m, v=r-l, i = n-2, *=j8 + l, r<=y-r+4, S = h-l m

Section by plane through two lines

/* = r-2, v = n, * = oc + 2, « = m-4, T =g-2, 8 = a;-2r+9«
Cone whose vertex is a point on two lines

fj,
= m, v = r-2, t = w-4, k = /3+2, T =#-2r + 9, 8 =h- 2fc

Section by a stationary plane

j*=r-3, v=n-2, t=oc-l, /c=m-4, r=y-2n+ 6, S=a;-3r+13„
Cone whose vertex is a stationary point

fi=m-2, v=r-3, *=»-4, «=/3-l, T=y-3r+13, S=A-2?n+6.

SECTION II. CLASSIFICATION OF CURVES.

325. The following enumeration rests on the principle that

a curve of the degree r meets a surface of the degree p in

pr points. This 'is evident when the curve is the complete

intersection of two surfaces whose degrees are m and n.

For then we have r = mn and the three surfaces intersect in

mnp points. It is true also by definition when the surface

breaks up into p planes. We shall assume that, in virtue

of the law of continuity, the principle is generally true.

The use we make of. the principle is this. Suppose that

we take on a curve of the degree r, as many points as are

sufficient to determine a surface of the degreep ; then if the

number of points so assumed be greater than pr, the surface
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described through the points must altogether contain the curve
;

for otherwise the principle would be violated.

We assume in this that the curve is a proper curve of the

degree r, for if we took two curves of the degrees m and n

(where m+n = r), the two together might be regarded as a

complex curve of the degree r, and if either lay altogether on

any surface of the degree p, of course we could take on that

curve any number ofpoints common to the curve and surface. All

this will be sufficiently illustrated by the examples which follow.

326. There is no line of the first degree hut the right line.

For through any two points of a line of the first degree and

any assumed point we can describe a plane which must alto-

gether contain the line, since otherwise we should have a line

of the first degree meeting the plane in more points than one.

In like manner we can draw a second plane containing the

line, which must therefore be the intersection of two planes

;

that is to say, a right line.

There is no proper line of the second degree but a conic.

Through any three points of the line we can draw a plane,

which the preceding reasoning shows must altogether contain

the line. The line must therefore be a plane curve of the

second degree.

The exception noted at the end of the last article would

occur if the line of the second degree consisted of two light

lines not in the same plane ; for then the plane through three

points of the system would only contain one of the right lines.

In what follows we shall not think it necessary to notice this again,

but shall speak only of proper curves of their respective orders.

327. A curve of the third degree must either be a plane

cubic or the partial intersection of two quadrics, as explained,

Art. 311*

* Non-plane curves of the third degree appear to have been first noticed by
Mobius in his Barycentrie Calculus, 18:27. Some of their most important properties

are given by M. Chasles in Note XXXIII. to his Apercu IHstorique, 1837, and in a

paper in Liouville's Journal for 1857, p. 397. More recently the properties of these

curves have been treated of by M. Schrbter, Crelle, Vol. lvi., and by Professor Cremona

of Milan, Crelle, Vol. Lvni., p. 138. Considerable use has been made of the latter

paper in the articles which immediately follow.
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For through seven points of the curve and any two other
points describe a quadric ; and, as before, it must altogether
contain the curve. If the quadric break up into two planes,
the curve may be a plane curve lying in one of the planes.
As we may evidently have plane curves of any degree we
shall not think it necessary to notice these in subsequent cases.
If then the quadric do not break up into planes, we can draw
a second quadric through the seven points, and the intersection
of the two quadries includes the given cubic. The complete
intersection being of the fourth degree, it must be the cubic
together with a right liue ; it is proved therefore that the
only non-plane cubic is that explained, Art. 311.

328. The cone containing a curve of the m01
degree and

whose vertex is a point on the curve, is of the degree m — 1

;

hence the cone containing a cubic and whose vertex is on the
curve is of the second degree, in- can thus describe a twisted

cubic through six given jwints. For we can describe a cone
of the second degree of which the vertex and five edges are

given, since evidently we are thus given five points in the

section of the cono by any plane, and can thus determine that

section. If then we are given six points a, b, c, d, e, f, we
can describe a cone having the point, a for vertex, and the

lines ab, ac, ad, ac, af for edges ; and in like manner a cone
having b for vertex and the lines ba, be, bd, be, bf for edges.

The intersection of these cones consists of the common edge ab

and of a cubic which is the required curve passing through

the six points.

The theorem that the lines joining six points of a cubic

to any seventh are edges of a quadric cone, leads at once to

the following by Pascal's theorem : " The' lines of intersection

of the planes 712, 74o; 723, 756 ; 734, 761 lie in one plane."

Or in other words, " the points where the planes of three con-

secutive angles 567, 671, 712 meet the opposite sides lie in

one plane passing through the vertex 7.'"* Conversely if this

* M. Cremona adds that when the six points are fixed and the seventh variable,

this plane passes through a fixed chord of the cubic
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be true for two vertices of a heptagon it is true for all the

rest : for then these two vertices are vertices of cones of the

second degree containing the other points, which must there-

fore lie on the cubic which is the intersection of the cones.

329. A cubic traced on a hyperboloid of one sheet meets all its

generators of one system once, and those of the other system twice.

Any generator of a quadric meets in two points its curve

of intersection with any other quadric, namely, in the two points

where the generator meets th'e other quadric. Now when the

intersection consists of a right line and a cubic, it is evident

that the generators of the same system as the line, since they

do not meet the line, must meet the cubic in the two points

;

while the generators of the opposite system, since they meet

the line in one point, only meet the cubic in one other point.

Conversely we can describe a system of hyperboloids through

a cubic and any chord which meets it twice. For take

seven points on the curve, and an eighth on the chord joining

any two of them ; then through these eight points an infinity

of quadrics can be described. But since three of these points

are on a right line, that line must be common to all the

quadrics, as must also the cubic on which the seven points lie.

330. The question to find the envelope of at
3 — 3bi* + Set — d

(where a, b, c, d represent planes and t is a variable parameter)

is a particular case of that discussed, Art. 323. We have

r = 4, m = n = 3, a = /3 = 0, x = y — Q, g = h=l.

Thus the system is of the same nature as the reciprocal system,

and all theorems respecting it are consequently two-fold. The
system being of the third degree must be of the kind we are

considering ; and this also appears from the equation of the

envelope

{ad- be)* = 4 (6
2 - ac) (c

2 - bd)

,

for it is easy to see that any pair of the surfaces ad — be, b
2 — ac,

c
2 — bd, have a right line common, while there is a cubic

common to all three, which is a double line on the envelope.

It appears from the table just given that every plane con-

tains one "line in two planes"; or that the section of the
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developable by any plane has one double tangent; while re-

ciprocally through any point can be drawn one line to meet
the cubic twice ; the cone therefore, whose vertex is that point,

and which stands on the curve, has one double edge ; or in

other words, the cubic is projected on any plane into a cubic

having a double point.

The three points of inflexion of a plane cubic are in one

right line. Now it was proved (Art. 322) that the points of in-

flexion correspond to the three planes of the system which can

be drawn through the vertex of the cone. Hence the three

points of the system which correspond to the three planes which

can be drawn through any point 0, lie in one plane passing

through that point.*

Further it is known that when a plane cubic has a conjugate

point, its three points of inflexion are real ; but that when the cubic

has a double point, the tangents at which are real, then two of

the points of inflexion are imaginary. Hence if the chord which

can be drawn through any point meet the cubic in two real

points, then two of the planes of the system which can be drawn

through are imaginary. Reciprocally, if through any line

two real planes of the system can be drawn, then any plane

through that line meets the curve in two imaginary points, and

only one real one."("

331. These theorems can also be easily established alge-

braically; for the point of contact of the plane at
3 -3bt*+Sct-d,

being given by the equations at=b, bt=c, ct=d, may be denoted

by the co-ordinates a=l, b = t, c = f, d=f. Now the three

values of t answering to planes passing through any point are

given by the cubic a'f - 3b't* + 'Set - d' = 0, whence it is evident

from the values just found, that the points of contact lie in the

plane ad— 3b'c + 3c'b — d'a = 0. But this plane passes through

the given point. Hence the intersection of threeplanes of the system

lies in the plane of the corresponding points. The equation just

written is unaltered if we interchange accented and unaccented

* Chasles, Llourille, 1S57. Schroter, Crelte, Vol. lvi.

t Joacbimsthal, Crelle, Vol. LVI., p. 15. Cremona, Crelle, Vol. LVIII., p, 146.
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letters. Hence if a point A be in the plane of points of contact,

corresponding to any point B, B will be in the plane in like

manner corresponding to A. And again, the planes which thus

correspond to all the points of a line AB pass through a fixed

right line, namely the intersection of the planes corresponding

to A and B. The relation between the lines is plainly reci-

procal. To any plane of the system will correspond in this

sense the corresponding point of the system ; and to a line in

two planes corresponds a chord joining two points.

The three points where any plane Aa + Bb + Cc + Dd
meets the curve have their th given by the equation

Dt + Ctf + Bt + A = 0, and when this is a perfect cube, the

plane is a plane of the system. From this it follows at once, as

Joachimsthal has remarked, that any plane drawn through the

intersection of two real planes of the system meets the curve

in but one real point. For in such a case the cubic just written

is the sum of two cubes and has but one real factor.

332. We have seen (Art. 130) that a twisted cubic is the

locus of the poles of a fixed plane with regard to a system

of quadrics having a common curve. More generally such

a curve is expressed by the result of the elimination of A

between the system of equations \a = a, \b = b', Ac = c. Now
since the anharmonic ratio of four planes whose equations are

of the form \a = a, X'a = a, &c. depends only on the

coefficients A, V, &c. (see Conies, Art. 59), this mode of

obtaining the equation of the cubic may be interpreted as

follows : Let there be a system of planes through any line aa,

a homographic system through any other line bb', and a third

through cc', then the locus of the intersection of three corre-

sponding planes of the systems is a twisted cubic. The lines

aa', bb', cc are evidently lines through two points, or chords

of the cubic. Reciprocally, if three right lines be homo-

graphically divided, the plane of three corresponding points

envelopes the developable generated by a twisted cubic, and

the three right lines are " lines in two planes" of the system.

The line joining two corresponding points of two homo-

graphically divided lines, touches a conic when the lines are
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in one plane, and generates a hyperboloid when they are not.

Hence given a series of points on a right line and a homo-
graphic series either of tangents to a conic or of generators

of a hyperboloid, the planes joining each point to the corre-

sponding line envelope a developable as above stated.

Ex. If the four faces of ;<, tetrahedron pass through fixed lines, and three ver-

tices move in fixed lines, the locus of the remaining vertex is a twisted cubic.

Any number of positions of the base form ii system of planes which divide homo-

graphically the three lines on which the comers of the base move, whence it

follows that the three planes which intersect in the vertex are corresponding planes

of three homographic systems.

333. From the theorems of the last article it follows con-

versely that "the planes joining four fixed points of the system

to any variable line through two points form a constant an-

harmonic system" and " four fixed planes of the system divide

any ' line in two planes' in a constant anliarmonic ratio." It

is very easy to prove these theorems independently. Thus

we know that the section of the developable by any plane -4* of

the system, consists of the corresponding line a of the system

twice, together with a conic to which all other planes of the

system are tangents. Thus then the anharmonic property of

the tangents to a conic shows that four of these planes cut

any two lines in two planes, AB, A in the same anharmonic

ratio ; and in like manner A is cut in the same ratio as CD.

As a particular case of these theorems, since the lines of

the system are both lines in two planes and lines through

two points
;
four fixed planes of the system cut all the lines of

the system in the same anharmonic ratio ; and the planesjoining

four fixed points of the system to all the lines of the system are

a constant anharmonic system.

Many particular inferences may be drawn from these

theorems, as at Conies, p. 282, which see.

Thus consider four points a, /8, 7, S; and let us express

that the planes joining them to the lines a, b, and aft, cut

the line 78 homographically. Let the planes A, B meet 70 in

* It is often convenient to denote the planes of the system by capital letters, the

corresponding lines by italics, and the corresponding point by Greek letters.
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points t, t'. Let the planes joining the line a to /3, and the

line b to a meet 78 in k, h'. Then we have

If the points t, k' coincide, it follows from the first equation

that the points Jc, t' coincide, and from the second that the

points t, t', 7, § are a harmonic system. Thus we obtain

Prof. Cremona's theorem, that if a series of chords meet the

line of intersection of any plane A with the line joining the

corresponding point a to any line b of the system, then they

will also meet the line of intersection of the plane B with

the line joining /9 to a ; and will be cut harmonically where

they meet these two lines and where they meet the curve.

The reader will have no difficulty in seeing when it will

happen that one of these lines passes to infinity, in which case

the other line becomes a diameter.

334. We have seen that the sections of the developable

by the planes of the system are conies. We may therefore

investigate the locus of the centres of these conies, or more

generally the locus of the poles with respect to these conies

of the intersections of their planes with a fixed plane. Since

in every plane we can draw a " line in two planes" we may
suppose that the fixed plane passes through the intersection

of two planes of the system A, B.

Now consider the section by any other plane C; the traces

on that plane of A and B are tangents to that section, and

the pole of any line through their intersection lies on their

chord of contact, that is to say, lies on the line joining the

points where the lines of the system a, b meet G. But since

all planes of the system cut the lines a, b homographically,

the joining lines generate a hyperboloid of one sheet, of which

a and b are generators. However then the plane be drawn
through the line AB, the locus of poles is this hyperboloid.

But further, it is evident that the pole of any plane through

the intersection of A, B lies in the plane which is the harmonic

conjugate of that plane with respect to those tangent planes.

The locus therefore which we seek is a plane conic. It is plain

also from the construction that since the poles when any plane
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A + \B is taken for the fixed plane, lie on a conic in the

plane A — XB; conversely the locus when the latter is taken

for fixed plane is a conic in the former plane.*

335. In conclusion, it is obvious enough that cubics may-

be divided into four species according to the different sections

of the curve by the plane at infinity. Thus that plane may
either meet the curve in three real points ; in one real and

two imaginary points; in one real and two coincident points,

that is to say, a line of the system may be at infinity; or

lastly, in three coincident points, that is to say, a plane of

the system may be altogether at infinity. These species have

been called the cubical hyperbola, cubical ellipse, cubical hyper-

bolic parabola, and cubical parabola. It is plain that when

the curve has real points at infinity, it has branches proceeding

to infinity, the lines of the system corresponding to the points

at infinity being asymptotes to the curve. But when the

line of the system is itself at infinity, as in the third and fourth

cases, the branches of the curve are of a parabolic form pro-

ceeding to infinity without tending to approach to any finite

asymptote. Since the quadric cones which contain the curve

become cylinders when their vertex passes to infinity, it is

plain that three quadric cyclinders can be described containing

the curve, the edges of the cylinders being parallel to the

asvmptotes. Of course in the case of the cubical ellipse two

of these cylinders are imaginary: in the case of the hyper-

bolic parabola there are only two cylinders, one of which is

parabolic, and in the case of the cubical parabola there is

but one cylinder which is parabolic.

It follows, from Art. 330, that in the case of the cubical

ellipse the plane at infinity contains a real line in two planes,

which is imaginary in the case of the cubical hyperbola. That

is to say, in the former case, but not in the latter, two planes

of the system can be parallel. From the anharmonic property

we infer that in the case of the cubical parabola three planes

of the system divide in a constant ratio all the lines of the

* The theorems of this article are taken from Prof. Cremona's paper.
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system. In this case all the planes of the system cut the

developable in parabolas. The system may be regarded as

the envelope of xt - 3yf + Szt - d where d is constant. For

further details we refer to Prof. Cremona's Memoir.

336. We proceed now to the classification of curves of higher

orders. We have proved (Art. 325) that through any curve

can be described two surfaces, the lowest values of whose de-

grees in each case there is no difficulty in determining. It

is evident then on the other hand that if commencing with

the simplest values of ft, and v we discuss all the different

cases of the intersection of two surfaces whose degrees are

p, and v, we shall include all possible curves up to the r
tu

order,

the value of this limit r being in each case easy to find when

fi and v are given. With a view to such a discussion we
commence by investigating the characteristics of the curve of

intersection of two surfaces.* We have obviously m = pv,

and if the surfaces are without multiple lines and do not touch,

as we shall suppose they do not, their curve of intersection has

no multiple points (Art. 194), and therefore (3 — 0. In order to

determine completely the character of the system, it is necessary

to know one more of its singularities, and we choose to seek

for r, the degree of the developable generated by the tangents.

Now this developable is got by eliminating x'y'z' between the

four equations

£7'=o, v=o, u;x+u;y+u;z+u;w=o, f>+f;^+f:>+f>=o.

These equations are respectively of the degrees //., v, fi — 1,

v — 1 : and since only the last two contain xye, these variables

enter into the result in the degree

fiv (v — 1) + (IV (ft, — 1) =/£V (fl + V — 2).

Otherwise thus : the condition that a line of the system

should intersect the arbitrary line

ax + (3y + yz + Biv, ax + f3'y + y'z + S'w

* The theory explained in the remainder of this section is taken from a paper

dated July, 1849, which I published in the Cambridge and Dublin Mathematical
Journal, Vol. v,, p. 23.
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fM — 2, 2, &c. A specimen term of the result is ($U)»~
1 V

I
T1

.

Thus it appears that the result contains the variables xyz in

the degree v— l + v(/i — 1) = fiv — 1 ; while it contains xyz'

in the degree (/* - 1) (v - 1). Every edge of this cone of the

degree fiv— 1, whose vertex is a point on the curve, is of

course a "line through two points." If now in this cone

we consider the co-ordinates of any point xyz on the cone

as known and xyz as sought, this equation of the degree

(/a — l)(v — 1) combined with the equations U and V determine

the "points" belonging to all the "lines through two points"

which can pass through the assumed point. The total number

of such points is therefore /av(/x — 1) (y- 1), and the number

of lines through two points is of course half this.

The number determined in this article, I call the number

of apparent double points in the intersection of two surfaces,

for to an eye placed at any point two branches of a curve

appear to intersect if any line drawn through the eye meet

both branches.

338. Let us now consider the case when the curve UV
has also actual double points ; that is to say, when the two

surfaces touch in one or more points. Now in this case, the

number of apparent double points remains precisely the same

as in the last article, and the cone, standing on the curve

of intersection and whose vertex is any point, has as double

edges the lines joining the vertex to the points of contact in

addition to the number determined in the last article. It

is easy to see that the investigation of the last article does

not include the lines joining an arbitrary point to the points

of contact. That investigation determines the number of cases

when the radius vector from any point has two values the

same for both surfaces, but the radius vector to a point of

contact has only one value the same for both, since the point

of contact is not a double point on either surface. Every
point of contact then adds one to the number of double edges

on the cone, and therefore diminishes the degree of the de-

velopable by two. This might also be deduced from Art. 336

since the surface generated by the tangents to the curve of
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intersection must include as a factor the tangent plane at a
point of contact, since every tangent line in that plane touches
the curve of intersection.

If the surfaces have stationary contact at any point (Art. 195)

the line joining this point to the vertex of the cone is a cuspidal

edge of that cone. If then the surfaces touch in t points of

ordinary contact and in |3 of stationary contact, we have

m = ftv, /8 = /3, 2h = fiv(fi — 1) (v — 1) +2*,

r = ftv (ft + v - 2) - 2t - 3/3,

and the reader can calculate without difficulty how the other

numbers in Art. 336 are to be modified.

We can hence obtain a limit to the number of points at

which two surfaces can touch if their intersection do not break

up into curves of lower order ; for we have only to subtract the

number of apparent double points from the maximum number of

double points which a plane curve of the degree ftv can have

(Higher Plane Curves, p. 31).

339. We shall now show that when the curve of inter-

section of two surfaces breaks up into two simpler curves,

the characteristics of these curves are so connected that, when

those of the one are known, those of the other can be found.

It was proved (Art. 337) that the points belonging to the

" lines through two points" which pass through a given point

are the intersection of the curve UV with a surface whose

degree is (ft— 1) (v— 1). Suppose now that the curve of inter-

section breaks up into two whose degrees are in and »»', where

m + m' = ftv, then evidently the "two points" on any of these

lines must either lie both on the curve m, both on the curve

m'
}
or one on one curve and the other on the other. Let the

number of lines through two points of the first curve be h,

those for the second curve A', and let H be the number of lines

which pass through a point on each curve, or, in other words,

the number of apparent intersections of the curves. Considering

then the points where each of the curves meets the surface

of the degree (ft — 1) (v — 1), we have obviously the equations

m(ft-l)(v-l) = 2h+H, m'(ft-l)(v-l) = 2h'-hff,

whence 2 (A - A') = (m - rri) (ft - 1) (v - 1 ).

T
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Thus when m and h are known m' and Ji can be found. To

take an example which we have already discussed, let the

intersection of two quadrics consist in part of a right line

(for which in - 1, A' = 0), then the remaining intersection must

be of the third degree in = 3, and the equation above written

determines h=l.

340. In like manner it was proved (Art. 336) that the

locus of points, the intersection of whose polar planes with

regard to U and V meets an arbitrary line, is a surface of

the degree
fj,
+ v - 2. The first curve meets this surface in

the t points where the curves m and in intersect (since U
and V touch at these points) and in the r points for which

the tangent to the curve meets the arbitrary line. Thus then

m (fi 4 v — 2) = r + t, m [fj,+ v — 2) = r +t,

(in — m') (fi + v — 2) = i— >•',

an equation which can easily be proved to follow from that

in the last article.

The intersection of the cones which stand on the curves

m, in consists of the t lines to the points of actual meeting

of the curves and of the H lines of apparent intersection ; and

the equation H+ 1 = mm is easily verified by using the values

just found for H and t, remembering also that m'=jiv — m,

r =m [m— 1) — 2k.

341. Having now established the principles which we shall

have occasion to -employ, we resume our enumeration of the

different species of curves of the fourth order. Every quartic

curve lies on a quadric. For the quadric determined by nine

points on the curve must altogether contain the curve (Art. 325).

It is not generally true that a second quadric can be described

through the curve ; there are therefore two principal families

of quartics, viz. those which are the intersection of two quadrics,

and those through which only one quadric can pass.* We
commence with the curves of the first family. The character-

* The existence of this second family of quartics was first pointed out in the

Memoir already referred to.
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istics of the intersection of two quadrics which do not touch
are (Art. 336)

mi = 4, n = 12, r = 8, a=16, /3 = 0, as =16, y = 8, #=38, 7i = 2.

Several of these results can be established independently.

Thus we have given (Art. 209) the equation of the developable

generated by the tangents to the curve, which is of the eighth

degree. It is there proved also that the developable has in

each of its four principal planes a double line of the fourth

order, whence x = 16* Again, it is shown, p. 163, that the

equation of the osculating plane is Tu = T'v, (« and v being the

tangent planes to U and V at the point), which contains the

co-ordinates of the point of contact in the third degree.

If then it be required to draw an osculating plane through

any assumed point, the points of contact are determined as

the intersections of the curve UV with a surface of the third

degree, and the problem therefore admits of twelve solutions

;

« = 12. Lastly, every generator of a quadric containing the

curve is evidently a "line through two points" (Art. 339).

Since then we can describe through any assumed point a

quadric of the form U+ X V, the two generators of that quadric

which pass through the point are two lines through two points

;

or h = 2. The lines through two points may be otherwise found

by the following construction, the truth of which it is easy to

see : Draw a plane through the assumed point 0, and through

the intersection of its polar planes with respect to the two

quadrics, this plane meets the quartic in four points which

lie on two right lines intersecting in 0.

A quartic of this species is determined by eight points

(Art. 126).

342. Secondly, let the two quadrics touch : then (Art. 338)

the cone standing on the curve has a double edge more than

in the former case, and the developable is of a degree less

by two. Hence

»i = 4, n = 6, r = 6; g = 6, h = 3; a = 4, /3 = 0; .r = 6, y=4.

* It has been mentioned (p. 161) that the developable circumscribing tn-o quadrics

has, as double Hues, a conic in each of the principal planes. The number y = 8

is thus accounted for.

T2
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Thirdly, the quadrlcs may touch at a stationary point, when

we have

m = 4, n = 4, r = 5
;
g = 2, h = 2 ; a = 1, /3 = 1 ; a? = 2, */ = 2.

This system* may be expressed as the envelope of

af+Gcf + ldt+e,

where t is a variable parameter. The envelope is

(ae + 3c
2

)

3 = 27 (ace - ad' - c
3

)

2

,

which expanded contains a as a factor and so reduces to the

fifth degree. The cuspidal edge is the intersection of ae + 3c
z

,

ice - 3d*.

Since a cone of the fourth degree cannot have more than

three double edges, two quadrics cannot touch in more points

than one, unless their curve of intersection break up into

simpler curves. If two quadrics touch at two points on the

same generator, this right line is common to the surfaces,

and the intersection breaks up into a right line and a cubic.

If they touch at two points not on the same generator, the

intersection breaks up into two plane conies whose planes

intersect in the line joining the points.

343. If a quartic curve be not the intersection of two

quadrics it must be the partial intersection of a quadric and

a cubic. We have already seen that the curve must lie on a

quadric, and if through thirteen points on it, and six others which

are not in the same plane,f we describe a cubic surface, it must
contain the given curve. The intersection of this cubic with

the quadric already found must be the given quartic together

with a line of the second degree, and the apparent double

points of the two curves are connected by the relation h-h' = 2.

as appears on substituting in the formula of Art. 339 the values

m = 4, tri = 2, /j, = 3, v = 2. When the line of the second degree

is a plane curve (whether conic or two right lines), we have

* I owe this remark to Mr. Cayley.

t This limitation is necessary, otherwise the cubic might consist of the quadric
and of a plane. Thus if a curve of the fifth order lie in a quadric it cannot be
proved that a, cubic distinct from the quadric can contain the given curve - see

Cambridge and Dublin Mathematical Journal, Vol, v. p, 27.
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n = ; therefore h = 2, or the quartic is one of the species

already examined having two apparent double points. It is

easy to see otherwise that if a cubic and quadiic have a plane
curve common, through their remaining intersection a second
quadric can be drawn; for the equations of the quadric and
cubic are of the form zio = u

2
, zv

i
= uax, which intersect on

i\ = xw. If, however, the cubic and quadric have common
two right lines not in the same plane, this is a system having
one apparent double point, since through any point can be

drawn a transversal meeting both lines. Since then h'=l,
h = 3 or these quartics have three apparent double points, and
are therefore essentially distinct from those already discussed

which cannot have more than two. The numerical character-

istics of these curves are precisely the same as those of the

first species in Art. 342, the cone standing on either curve

having three double edges, and the difference being that one

of the double edges in one case proceeds from an actual double

point, while in the other they all proceed from apparent double

points.

This system of quartics is the reciprocal of that given by
the envelope of a? + 4bf + 6c? + 4dt + e. Moreover, this latter

system has, in addition to its cuspidal curve of the sixth

order, a nodal curve of the fourth which is of the kind now
treated of.

It is proved, as in Art 329, that these quartics are met

in three points by all the generators of the quadiic on which

they lie, which are of the same system as the lines common
to the cubic and quadric, and are met once by the generators

of the opposite system. The cone standing on the curve,

whose vertex is any point of it, is then a cubic having a double

edge, that double edge being one of the generators passing

through the vertex of the quadiic which contains the curve.

Thus while any cubic may be the projection of the inter-

section of two quadiics, quartics of this second family can

only be projected into cubics having a double point. The

quadric may be considered as the surface generated by all

the "lines through three points" of the curve. It is plain

from what has been stated, that evert/ quartic, having three



278 CLASSIFICATION OF CURVES.

apparent double points, may be considered as the intersection

of a quadric with a cone of the third order having one of the

generators of the quadric as a double edge.

344. Mr. Cayley has remarked that it is possible to de-

scribe through eight points a quartic of this second family.

We want to describe through the eight points a cone of the

third degree having its vertex at one of them, and having

a double edge, which edge shall be a generator of a quadric

through the eight points. Now it was proved (Art. 341) that

if a system of quadrics be described through eight points all

the generators at any one of them lie on a cone of the third

degree, which passes through the quartic curve of the first

family determined by the eight points. Further, if 8, 8', S"

be three cubical cones having a common vertex and passing

through seven other points, \S+fiS'+vS" is the general

equation of a cone fulfilling the same conditions ; and if it have

a double edge, A,#, + /*$/ + vS", passes through that edge.

Eliminating then X, /^, v between the three differentials, the

locus of double edges is the cone of the sixth order

s, (sjs: - s:'sj + s, [8:&: - «') + s
3
(s;s: - s^) = o.

The intersection then of this cone of the sixth degree with

the other of the third determines right lines, through any of

which can be described a quadric and a cubic cone fulfilling

the given conditions. It is to be observed, however, that the

lines connecting the assumed vertex with the seven other points

are simple edges on one of these cones and double edges on

the other, and these (equivalent to fourteen intersections) are

irrelevant to the solution of the problem. Four quartics there-

fore can be described through the points.

345. Mr. Cayley has directed my attention to a special case

of this second family of quartics which I had omitted to notice.

It is, when the curve has a linear inflexion of the kind noticed,

note, p. 259 ; that is to say, when three consecutive points of

the curve are on a right line. Such a point obviously cannot

exist on a quartic of the first family ; for the line joining the

three points must then be a. generator of both quadrics, whose
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intersection would therefore break up into a line and a cubic;
and would no longer be a quartic. Let us examine then in what
case three consecutive planes of the system af+ibf+Gcf+idt+e
can pass through the same line. If such a case occurs we may
suppose that we have so transformed the equation that the

singular point in question may answer to t = oo
; the three planes

a, b, c, must therefore pass through the same line ; or c must
be of the form Xa + fib. But we may then transform the equa-

tion further by writing for t,t+6, and determining 6 so that the

quantity multiplying b in the coefficient of f shall vanish. The
system then is the envelope of a plane at+lbf+QXatf-t-idt+e.

A still more special case is when X vanishes, or when the plane

reduces to at
4, + ±b? + idt + e ; it is obvious then that we have

two points of linear inflexion
; one answering to t = oo

, the other

to t= 0. The developable in this latter case is

{ae-ibd) 3 = 2T(ad* + eby;

which has for its edge of regression the intersection of ae — ibd

with ad2 + eb
s

; but this consists of a curve of the fourth degree

with the lines ab, de. This system then is one whose reciprocal

is of the same nature; for we have m = » = 4, ft. = k = 3,

a; = y = 4. And the section of the developable by any plane has

six cusps, viz. the four poiuts where the plane meets the cuspidal

edge, and the two where it meets the double generators ab. de.

In the case previously noticed where c does not vanish but is equal

to \a, there is but one point of linear inflexion ; the envelope in

question is then the reciprocal of a system for which m = 4,

« = 5, r = 6, 7«=3, & = 4, .r = 5, y=4. Another special case

to be considered is when a curve has a double tangent ; such

a line being doubly a line of the system is a double line on

the developable. But this case does not occur in curves of the

fourth order.*

346. There is no difficulty in carrying on this enumeration

to curves of higher orders.f This is done with regard to curves

* For other properties of curves of the fourth order, see papers by M. Chasles,

Comptes Hernias, Vols. Liv. and lv. ; and by II. Cremona, Memoirs of the Bologna

Academy, 18(51.

+ To complete the enumeration of curres up to the fourth order, it would be

necessary to classify, according to their apparent double points, improper systems made
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of the fifth order in the memoir already cited. It is easy to see

that besides plane quintics we have, I., quintics which are the

partial intersection of a quadric and a cubic, the remaining

intersection being a right line. These quintics have four ap-

parent double points, and may besides have two actual nodal

or cuspidal points. We may have, II., quintics with five

apparent double points, and which may besides have one actual

nodal or cuspidal point ; these curves being the partial inter-

section of two cubics, the remaining intersection being a quartic

of the second class. We may have, III., quintics with six

apparent double points being the partial intersection of two

cubics, the remaining intersection being an improper quartic

with four apparent double points. To these may be added,

IV., quintics with six apparent double points which are the

partial intersection of a quadric and a quartic surface ; the re-

maining intersection being three lines not in the same plane.

347. Instead of proceeding, as we have done, to enumerate

the species of curves arranged according to their respective

orders, we might have arranged our discussion according to the

order of the developables generated, and have enumerated the

different species of developables of the fourth, fifth, &c. orders.

This is the method followed by Chasles, who has enumerated

the species of developables up to the sixth order [Comptes

Bendus, Vol. LIV.), and by Schwarz (Crelle, Vol. LXIV., p. 1)

who has carried on his enumeration to the seventh order.

Schwarz's discussion contains the answer to the following ques-

tion started by Mr. Cayley : The equation considered, Art. 323,

where the parameter enters rationally, denotes a single plane

whose envelope is a class of developables which Mr. Cayley

calls planar developables ; on the other hand, if the parameter

up of simpler curves of lower orders. Thus, we have, for m = 2, h = 1, two lines

not in the same plane ; m — 3, h = 1 , a conic and a line once meeting It ; h = 2, a conic

and line not meeting it ; h = 3, three lines, no two of which are in the same plane

;

m ~ 4, h = 2, a plane cubic and line once meeting it, or a twisted cubic and line

twice meeting it, or two conies having two points common j m = 4, h — 3, a plane

cubic and line not meeting it, or a twisted cubic and line once meeting it, or two
conies having one point common ; m = 4, h = 4, a twisted cubic and non-intersecting

line, or two non-intersecting conies ; h = 5, a conic and two lines meeting neither the

conic nor each other ; h = 6, four lines no two of which are in the same plane.



CLASSIFICATION OF CURVES. 281

entered by radicals, the equation rationalized would denote a
system of planes whose envelope would therefore be called a
multiplanar developable : now it is proposed to ascertain con-
cerning each developable, what is, in this sense, the degree of its

planarity. M. Schwarz has answered this question by shewing
that the developables of the first seven orders are all planar.
His method depends on the following principle established by
Riemann * Crelic, Liv., 133 : the co-ordinates of a plane curve
can be expressed rationally as functions of a single variable,

if it have its maximum number of double points; that is to say,
if

\ (^ - 1) - 2) - (« + S) = ; if this number be = 1, the co-
ordinates can be expressed in terms of one variable, and the
square root of an integral function of the third or fourth order
in this variable ; and generally, it is on this numberf that the
degree of simplicity of the expression of the co-ordinates of

a curve in terms of one variable depends. By considering then
a section of a developable, Schwarz shews that it is planar if

£ (r - 1) (r - 2) - (m + x) = 0, Uplanar if it = 1, &c.

348. The discussion of the possible characteristics of a de-

velopable of given order, depends on the principle (p. 261)

that the section by a plane of the system is a curve of degree
»• — 2 having in — 3 cusps. Thus, if the developable be of the

fifth order the section by a plane of the system is a cubic ; and
as this can have no more than one cusp, the edge of regression

is at most of the fourth degree. And it cannot be of lower

degree, since we have already seen that twisted cubics generate

developables only of the fourth order. Hence the only de-

velopablesj of the fifth order are those, considered p. 276,

generated by a curve of the fourth order.

* See also Clebsch's paper, Crelle, lxiii. 189.

f Clebsch shows that this number is not only the same for a curve and its re-

ciprocal, but also for auy curve (such as the evolute) derived so that one point of

the derived curve answers to one point of the original. In like manner for curves

of double curvature, the number

}(r_ 1) (r - -2) - {m + x) = i(r - 1) (r - 2) - (» + y)

= J(i»- 1) (in -2)-(h + fl = i (» - 1} (h - 2) - (i + o)

is the same for every system derived in the manner just explained.

J The properties of these developables are treated of by Professor Cremona,

ComjJtes Bendus, Vol. LIT., p. 60-1.
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In the same manner the section of a developable of the

sixth order by a plane of the system is a quartic, which may

have one, two, or three cusps. We have therefore w = 4, 5,

or 6 ; and, in like manner, n is confined within the same limits

;

and therefore, p. 261, the section by the plane of the system is

at most of the fifth class. Now a curve of the fourth degree

with one cusp must have two other double points if it is only

of the fifth class : and, if it have two cusps, it must have one

other double point. In any case, therefore, this quartic has

three double points, and the developable is planar. The case

when the quartic has only one cusp (or m = 4) has been already

considered. The edge of regression has a nodal point ; and

the system is the reciprocal of the system which envelopes

at + ibf + Get + idt + Affl = 0,

where there is a double plane of the system answering to t —
and also to t = co .

If, again, the quartic section have three cusps, it is of the

third class, and therefore for the developable n = 4. This then

is also a case already discussed, Art. 343, the developable being

the envelope of

at + ibf + 6ct + 4tdt + e = 0.

Lastly, when the quartic has two cusps, it must, as we have

seen, also have a double point, and therefore be of the fourth

class. Hence n = 5, From the preceding formulae the charac-

teristics of a system for which in = n = 5, r = 6, are g = k = 4
1

x = y = 5, a = /3 = 2; and, if we take the two stationary planes

answering to t = co
,

t = 0, the system is the envelope of

at + 5Xat + lOcf + lOdt + 5/jft+/= 0.

M. Schwarz has noticed that the stationary tangent planes

may be replaced by a triple tangent plane ; that is to say, the

system may be the envelope of

at + b\at + Wftaf + lOdt + bet +/= 0.

I have not examined with any care the theory of the effects

of triple points of the curve of intersection of two surfaces on

the number of its apparent double points. But (considering
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the case where X. and ji vanish in the equation last written) if

we make h and e = in the equations which I have given

{Cambridge and Dublin Mathematical Journal, v. 158) for the

edge of regression of the developable which results as the

envelope of a quintic, the edge of regression is found to be the

intersection of 2tf — odf, with af
2 — 12(T<3. And this intersection

is the right line ef with a curve of the fifth order, having the

point dcf for a triple point. For this being a double point on

each surface is a quadruple point on their curve of intersection

;

and since the right line passes through the point def, the re-

maining curve has a triple point at that point.

349. We shall conclude this section by applying some of

the results already obtained in it, to the solution of a problem

which occasionally presents itself :
" Three surfaces whose

degrees are /x, v, p have a certain curve common to all three

;

how many of their fivp points of intersection are absorbed

by the curve? In other words, in how many points do the

surfaces intersect in addition to this common curve?" Now
let the first two surfaces intersect in the given curve, whose

degree is ?m, and in a complementary curve fiv — m, then the

points of intersection not on the first curve must be included

in the (fiv — in) p intersections of the latter curve with the

third surface. But some of these intersections are on the

curve w, since it was proved (Art. 340) that the latter curve

intersects the complementary curve in m (//. + v - 2) - r points.

Deducting this number from (fj.v — m) p we find that the sur-

faces intersect in fivp-m(fi + v + p-2) + r points which are

not on the curve m; or that the common curve absorbs"

m (u, + v + p — 2) — r points of intersection.

In precisely the same way we solve the corresponding

question if the common curve be a double curve on the sur-

face p. "We have then to subtract from the number [fiv — m) p,

•2 {m ffi + v — ^—r} points, and we find that the common curve

diminishes the intersections by m (p + 2/t + 2v - 4) - 1r points.

These numbers expressed in terms of the apparent double

points of the curve m are

m{/i + v + p--m-i) + 2h and m (p + 2/* -t- 2v - 2m - 2) + ih.
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350. The last article enables us to answer the question:

" If the intersection of two surfaces is in part a curve of order

m which is a double curve on one of the surfaces; in how

many points does it meet the complementary curve of inter-

section?" Thus, in the example last considered, the surfaces

fi, p intersect in a double curve m and a complementary curve

lip — 2m; and the points of intersection of the three surfaces

are got by subtracting from (fip - 2m) v the number of inter-

sections of the double curve with the complementary. Hence

[lip — 2m) v-i = p,vp - m (p + 2/a + 2v — 4) + 2r,

whence i =m (p + 2[t — 4) — 2r.

We can verify this formula when the curve m is the complete

intersection of two surfaces Z7, V whose degrees are k and I.

Then p is of the form AW + BUV+ CV* where A is of the

degree p — 2k, &c, and /*. is of the form DU+EV where D
is of the degree /i — k. The intersections of the double curve

with the complementary are the points for which one of the

tangent planes to one surface at a point on the double curve

coincides with the tangent plane to the other surface. They
are therefore the intersection of the curve UV with the surface

AE'-BDE+CD1 which is of the degree p + 2fi-2 [k+l).

The number of intersections is kl [p + 2/4 — 2 (k + 1)} which coin-

cides with the formula already obtained on putting kl=m,
kl(k + l-2)=r.

351. From the preceding article we can show how, when
two surfaces partially intersect in a curve which is a double

curve on one of them, the singularities of this curve and its

complementary are connected. The first equation of Art. 340

ceases to be applicable because the surface //. + v - 2 altogether

contains the double curve, but the second equation gives us

m (/* + v — 2) = 2t + r = r + 2m (fi + 2v — 4) - 4r,

whence 4r — r = (2m — m')(fi + v—2) + 2m (y — 2).

In like manner we find that the apparent double points of

the two curves are connected by the relation

8h-2h' = (2m-m.') -1) (v-1) - 2m(v-l).
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Thus when a quadric passes through a double line on a cubic

the remaining intersection is of the fourth degree, of the sixth

rank, and has three apparent double points.

SECTION III. NON-PROJECTIVE PROPERTIES OF CURVES.

352. As we shall more than once in this section have

occasion to consider lines indefinitely close to each other, it

is convenient to commence by showing how some of the

formulae obtained in the first chapter are modified when the

lines considered are indefinitely near. We proved (Art. 14)

that the angle of inclination of two lines is given by the

formula

sin
2 = (cos/3 cosy' - cosjS' cosy)

2 + (cosy cosa' — cosy' cosa)2

+ (cosa cos$' — cosa' cos/3)
2
.

When the lines are indefinitely near we may substitute for

cosa', cosa + 8 cosa, &c, and put sin#= 80, when we have

86' = (cosyS 8 cosy — cosy 8 cos/3)
a
-f (cosy 8 cosa — cosa 8 cosy)

2

-f (cosa ScosyS- cos^S Scosa) 2
.

If the direction-cosines of any line be - , — , - where
r ' r ' r

f + m* + }i
2 = j-

a
, the preceding formula gives

r<86* = (mSn - n8mf + (n8l - 18nf + (18m - mSZ)
2
.

Since we have
cos

2
a + cos

2
/3 + cos

s

y = 1

;

cosa Scosa + cosj3 Scos^ + cosy Scosy = 0,

if we square the latter equation and add it to the expression

for S0
2
, we get another useful form

86* = {8 cosa)
2 4 (8 cos/3)

2 + (S cosy)
2

.

It was proved (Art. 15) that cos/S cosy' — cos/3' cosy, &c.

are proportional to the direction-cosines of the perpendicular

to the plane of the two lines. It follows then that the direc-

tion-cosines of the perpendicular to the plane of the consecutive

lines just considered are proportional to mSn — n8m
t
nSl— ISn,

18m - mhl, the common divisor being r*80.
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Again, it was proved (Art. 43) that the direction-cosines of

the line bisecting the external angle made with each other by

two lines are proportional to

cos a — cos a, cos /3 — cos /3', cos 7 — cos 7', &c.

Hence when two lines are indefinitely near, the direction-cosines

of a line drawn in their plane, and perpendicular to their

common direction are proportional to S cosot, 8 cos/3, S C0S7,

the common divisor being 80.

353. We proved (Art. 312) that the direction-cosines of

doc tIn dz
a tangent to a curve are -=-

, -j- ,
-=-

, while, if the curve be

given as the intersection of two surfaces, these cosines are

proportional to MN' - MN, NL - N'L, LM' - L'M, where

L, M, &c. denote the first differential coefficients.

An infinity of normal lines can evidently be drawn at any

point of the curve. Of these, two have been distinguished by

special names ; viz. the normal which lies in the osculating

plane, which is commonly called the principal normal ; and

the normal perpendicular to that plane, which being normal

to two consecutive elements of fhe curve, has been called by

M. Saint-Venant the Binormal.

All the normals lie in the plane perpendicular to the tangent

line, viz.

[x — x) dx + [y — y) dy+iz — z') dz =

in the one notation ; or in the other

(MN' - M'N) [x - x') + {NL' - N'L) [y - y')

+ {LM'-L'M)(z-z')=0.

354. Let us consider now the equation of the osculating

plane. Since it contains two consecutive tangents of the curve,

its direction-cosines (Art. 352) are proportional to

dyd'z — dzd'*y, dzd 2x — dxd'2z
1
dxd2

y — dyd'
2
x,

quantities which for brevity we shall call X, Y, Z. The equa-

tion of the osculating plane is therefore

X(x-x')+Y(y-y'}+Z(z-z') = 0,
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The same equation might have been obtained (by Art. 30)
by forming the equation of the plane joining the three con-
secutive points

x'y'z' • x + dx, y' + dy\ z + dz'
;

x + Ux + d*x, y' + <2dy' + d\j\ z + 2dz' + d*z.

In applying this formula we may simplify it by taking one
of the co-ordinates at pleasure as the independent variable,

and so making d*x, d*y or d*s = 0.

355. In order to be able to illustrate by an example the

application of the formula? of this section, it is convenient here

to form the equations and state some of the properties of the

helix or curve formed by the thread of a screw. The helix may
be defined as the form assumed by a right line traced in any
plane when that plane is wrapped round the surface of a right

cylinder.* From this definition the equations of the helix are

easily obtained. The equation of any right line y = mx ex-

presses that the ordinate is proportional to the intercept which
that ordinate makes on the axis of x. If now the plane of

the right line be wrapped round a right cylinder so that the

axis of x may coincide with the circular base, the right line

will become a helix, and the ordinate of any point of the

curve will be proportional to the intercept, measured along

the circle, which that ordinate makes on the circular base,

counting from any fixed point on it. Thus the co-ordinates

of the projection on the plane of the base, of any point of

the helix are of the form x = a cos 0, y = a sin 0, where a is

the radius of the circular base. But the height z has been

just proved to be proportional to the arc 0. Hence the equa-

tions of the helix are

x = a cos j , y = a sin -=-
, whence also x2 + y' = d\

We plainly get the same values for x and y when the arc in-

creases by 27r, or when z increases by 2irh ; hence the interval

between the threads of the screw is 2Trh.

* Conversely * heUx becomes a right line when the cylinder on which it ia

traced ia developed into a plane, and is therefore a geodesic on the cylinder (Art. 304).
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Since we have

a . z , v -, -, a z 7 x 7

dx = -r sm- dz = ~j_dz, dy = ^ cosj-dz = ^dz,

we have ds*=
a *

dz\ It follows that £ is constant, or

the angle made by the tangent to the helix with the axis

of z (which is the direction of the generators of the cylinder)

is constant. It is easy to see that this is the same as the

angle made with the generators by the line into which the

helix is developed when the cylinder is developed into a

plane.

The length of the arc of the curve is evidently in a constant

ratio to the height ascended.

The equations of the tangent are (Art. 312)

x — x y—y'_ z — z

y x h

If then x and y be the co-ordinates of the point where the

tangent pierces the plane of the base, we have from the pre-

ceding equations

(x - x'f +{y-y'Y~ (a" + y'*) J = «2

J ,

or the distance between the foot of the tangent and the pro-

jection of the point of contact is equal to the arc which

measures the distance along the circle of that projection from

the initial point. This also can be proved geometrically, for

if we imagine the cylinder developed out on the tangent plane,

the helix will coincide with the tangent line, and the line

joining the foot of the tangent to the projection of the point

of contact will be the arc of the circle developed into a right

line. Thus then the locus of the points where the tangent

meets the base is the involute of the circle.

The equation of the normal plane is

y'x — x'y = h(z — z').

To find the equation of the osculating plane, we have

d*x = —72 ocdz*, d'y = — p ydz'\ d*z = 0,
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whence the equation of the osculating plane is

h (y'x — x'y) + a* (z — z') = 0.

The form of the equation shows that the osculating plane makes
a constant angle with the plane of the base. We leave it

as an exercise to the reader to find the tangent, normal

plane, and osculating plane of the intersection of two central

quadrics.

356. We can give the equation of the osculating plane

a form more convenient in practice when the curve is given

as the intersection of two surfaces U, V. Since the osculating

plane passes through the tangent line, its equation must be

of the form

\ [Lx 4 My 4 Nz 4 Pw) = ft {L'x 4 M'y + N'z + P'w),

where Lx + &c. is the tangent plane to the first surface. This

equation is identically satisfied by the co-ordinates of a point

common to the two surfaces, and by those of a consecutive

point; and on substituting the co-ordinates of a second con-

secutive point, we get

t
t=Ld*x+Md>y+Ndiz+Pd*w

1
\=L'd*x+M'd2y+Ndiz+P'd2

w.

But differentiating the equation

Ldx 4 Mdy 4 Ndz + Pdw = 0,

we get Ld*x + Md*y + Nd*z + Pd'w = - V\

where V = adx* + bdy' + cdz* + ddw*

-f lldydz 4 2mdzdx + 2ndxdy + 2pdxdw -f 2qdydw + Srdzdw,

where a, 5, &c. are the second differential coefficients. Now
dx, &c. satisfy the equations

Ldx + Mdy 4 Ndz 4 Pdw = 0, 11dx 4 M'dy 4 N'dz + Pdw =
;

and since we may either, as in ordinary Cartesian equations,

take w as constant ; or else x, or y, or z ; or more generally

may take any linear function of these co-ordinates as constant

;

wo may therefore add to the two preceding equations the

arbitrary equation

adx 4 fidy 4 ydz 4 Sdio = 0.

u
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Now it can easily be verified that if we substitute in any

quadric the intersection of three planes

Lx + My+Nz+Pw, L'x+M'y + N'z + P'w, ax + By + yz 4 Bw,

the residt U' will be proportional to the determinant (see p. 48)

a,
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This equation has been verified in the case of two quadrics,

see note, p. 163.

Ex. 1. To find the osculating plane of

ax2 + bf + cz- + dm2
, a'x2 + b'y2 + c'z2 + d'w2.

Ans. (flit - ba') (ac' - ca') (ad' - da') x'sx + (ba' - b'a) (be' - b'c) (bd' - b'd) y'*y

+ (ca' - c'a) (cb' - c'b) (cd' - c'd) z'3z + (da' - d'a) (db' - d'b) (dc' - d'e) ro'3w = 0.

Ex. 2. To find the osculating plane of the line of curvature

x2 y1 z- . x2 y2 z2

a'
+

b*
+

c5 ~ ' a7
"
2
+ V2

+
7* ~ l '

. a"2xx' b"2mj c"2zz' ,

357. The condition that four points should lie in one plane,

or, in other words, that a point on the curve should be the

point of contact of a stationary plane, is got by substituting

in the equation of the plane through three consecutive points,

the co-ordinates of a fourth consecutive point. Thus from the

equation of Art. 351 the condition required is the determinant

d*x(dyd*z - dzd*y) + d3

y (dzd*x-dxd*z) +d3z[dxd*y - dyd 2z)=0.

If a curve in space be a plane curve, this condition must

be fulfilled by the co-ordinates of every point of it.

When the curve is given as the intersection of two surfaces

C, F, Clebsch works out as follows (see Crelle, lxiii. 1)

the condition for a point of osculation. Writing for brevity

8=(m-iyT, 8'={n-iyT the equation given in the last

article for the osculating plane is

(T'L-TL')x+(TM-TM,)y+{T'y-TX')z+(TP-TF)w=Q,

and the equation of a consecutive osculating plane differs from

this by terms

(
T'dL + LdT- TdL' - L'dT) x + &c. = 0.

And in order that the two planes may coincide, introducing

an arbitrary differential dt, we must have the four equations

T'dL 4 LIT - TdL - LdT=
(
TL - TL') dt, &c

If now we write

T= AL' + BM' 4 CN' + DP, T = A'L + B'M+ CX+ B'P,

U2
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A-*— R-iiLL &c

where .4, 5, &c. are proportional to minors of the determinant

8, and where in fact

dLn *dar
we must have

AL +BM+ CN+ DP= 0, AdL + BdM+ CdN+ DdP= 0,

A'L' + &c. = 0, J.VZL' + &c. = ;

for if in the determinant S, we substitute for the last column,

either L, M, N, P; or dL, dM, dN, dP, it is easy to see that the

determinant vanishes. Multiply then the four equations last

considered by A, B, C, D respectively, and add ; and we have,

after dividing by T,

dT+ -| (§ dL' + §, dM' + §, dN' +§ dP) = Tdt,

which we may write

dT+^d(T) = Tdt,

where by d
(
T) we may mean the differential of T considered

merely as a function of L', M', N', P' ; a, b, &c. being regarded

as constants. Similarly we have dT + \d(T) = Tdt. Let us

now write at full length for dT, T
x
dx + T

s
dy + &c; and elimi-

nate dx, dy, dz, dw, dt between the two equations just obtained,

and the three conditions, p. 289, which connect dx, dy, dz, dw,
when we obtain the required condition in the form of a de-

terminant

^, +OT, T
2
+ \{T^ T

a
+ ^(T

3),
T
t
+${T

A\ T
t;+\{t;), t;+\{t;), t; + ^{t;), t;+%[t;), t

=0.

Now T is a function of x, y, z, w of the degree 3m + 2n — 8

but when regard is paid only to the xyzw which enter into

L, M', &c, (T) is of the degree 2 (n — 1) ; if therefore we
multiply the first four columns by x, y, z, w respectively and
subtract from 3(m + n — 3) times the last column, the first

four terms of the last column vanish ; and the equation just

L,
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written may be reduced by cancelling the fifth row and column
of the determinant. The condition that we have just obtained is

of the degree &m 4 6« - 20 in the coefficients of U and V,

as might be inferred from the value of a, Art. 336. If the

surfaces IT and V are quadrics, and therefore the coefficients

«, b, &c. really constant, (TJ, (T
8)

&c. are identical with

T^ T
3l

&c. and the condition that we have obtained is the

result of equating to nothing the Jacobian of the four surfaces

T, T\ U, V.

358. We shall next consider the circle determined by three

consecutive points of the curve, which, as in plane curves, is

called the circle of curvature. It obviously lies in the oscu-

lating plane : its centre is the intersection of the traces on

that plane, by two consecutive normal planes; and its radius

is commonly called the radius of absolute curvature, to dis-

tinguish it from the radius of spherical curvature, which is

the radius of the sphere determined by four consecutive points

on the curve, and which will be investigated presently. If

through the centre of a circle a line be drawn perpendicular

to its plane, any point on this line is equidistant from all the

points of the circle, and may be called a pole of the circle.

Now the intersection of two consecutive normal planes, evidently

passes through the centre of the circle of curvature, and is

perpendicular to its plane. Monge has therefore called the

lines of intersection of two consecutive normal planes, the polar

lines of the surface. It is evident that all the normal planes en-

velope a developable of which these polar lines are the generators,

and which accordingly has been called the polar surface. We
shall presently state some properties of this surface. The polar

line is evidently parallel to the line called the Binomial

(Art. 353).

359. In order to obtain the radius of curvature we shall

first calculate the angle of contact, that is to say, the angle

made with each other by two consecutive tangents to the

curve. The direction-cosines of the tangent being -^- ,
-~-

, -^ ,
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it follows from Art. 352 that dd the angle between two con-

secutive tangents is given by either of the formulae

or &w=x2+ra + zi!

,

where X= dyd^z - dzd'*y, &c.

The truth of the latter formula may be seen geometrically

:

for the right-hand side of the equation denotes the square of

double the triangle formed by three consecutive points (Art. 31)

;

but two sides of this triangle are each ds, and the angle between

them is dd, hence double the area is ds'dd.

If now ds be the element of the arc, the tangents at the

extremities of which make with each other the angle dd, then

since the angle made with each other by two tangents to a

circle is equal to the angle that their points of contact subtend

at its centre, we have pdd — ds. And the element of the arc

and the two tangents being common to the curve and the

circle of curvature, the radius of curvature is given by the

formula

ds . „ ds
1

'%+w+m
. .

ds"
or p

-
X*+Y* + Z*'

Ex. To find the radius of curvature of the helix. Using the formulae of Art. 355,

a2 + h-
we find p — ; or the radius of curvature is constant.

* By performing the differentiations indicated, another value for dd2 is found

without difficulty,

ds2 d62 = (d 2xf + {d 2
yf + (d 2z)2 - {d 2

s)
2
.

This formula may also be proved geometrically. Let AB, BC be two consecutive

elements of the curve ; AD a line parallel and equal to BC; then since the projections

of BC on the axes are dx + d 2x, dy + d 2
y, dz + d 2

z, it is plain that the projections

on the axes of the diagonal BD are d 2x, d 2
y, d 2

z, whence BD2 = {d2x)2 + (<Py) 2 + (cpz) 2.

But BD projected on the element of the arc is d 2
$, and on a line perpendicular to it

is ds dd : whence
{d 2

s)
2 + {dsdd) 2 = (d 2x) 2 + {d 2

yf + {d 2zf.
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360. Having thus determined the magnitude of the radius

of curvature, we are enabled bv the formulae of Art. 352 also

to determine its position. For the direction-cosines of a line

drawn in the plane of two consecutive tangents, and perpen-

dicular to their common direction are by that article,

, dx jdy . dz

1 ,dx \ ..dy 1 ,dz ds ds ds

dd
a
dl>dd

d
d~s>d8

d
Js>

orp
~dT' p ~a7' p ~dT-

If x\ y\ z' be the co-ordinates of a point on the curve,

and x, y, z those of the centre of curvature, then the projec-

tions of the radius of curvature on the axes are x' — x,y'— y,

z' — s] but they are also p cos a, p cos/3, p cosy. Putting in

then for cos a, cos/3, cos 7 their values just found, the co-ordinates

of the centre of curvature are determined by the equations

, dx ,dy -.dz
d-r=- d-f- d-r

,
„ as ,

. j as , ..as
*-*=p-2Tiy-y=p — .

*~*=p —

•

361. When a curve is given as the intersection of two

surfaces which cut at right angles, an expression for the radius

of curvature can be easily obtained. Let r and r be the

radii of curvature of the normal sections of the two surfaces,

the sections being made along the tangent to the curve; and

let </> be the angle which the osculating plane makes with

the first normal plane : then, by Meunier's theorem, we have

p = r cos0 and also p = r sin$, whence ~a = -^ + 75 •

The same equations determine the osculating plane by the

T
formula tan<£ = - .T r

If the angle which the surfaces make with each other be a>,

the corresponding formula is

sin*&) 112 cosw
= ""2 T ~7a

p- r r rr

We can hence obtain an expression for the radius of cur-

vature of a curve given as the intersection of two surfaces.
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We may write L* + M* + 2P = IP, L" + M'* + N'* = R'
2

;
and

we have
LL + MM' + NN'

COS CO =
RR'

. , {MN' - M'Nf + {NL' - N'Lf + [LM' - L'Mf
bib 01

WW2
We must then substitute in the formula of Art. 290,

cosa =
MN'-M'N

, cos/3 =
NL'-N'L

RR sina> ' RR' sinai

The denominator of that formula becomes

a, n, in, L, L'

n, b, I, M, M'

in, I, c, N, N'

L, M, N
l; w, n'

which reduced, as in Art. 356, becomes

LM'-L'M
cos7 = —vtv—- •

' RR sin to

[m-iy7
S. And we

In like manner

(m- 1)* R*R'2
sin* co

S

{n-iyR2R' 3 smi
co

S'

Whence —, = -. —, r,6n ,4 . 6

p
l (m — If R

6Ri sm6
co

+
S" 2SS' cosw

[n - If R'R" sin
6
o> (m - 1)" (n - 1)" R°R'B

sin
6

362. Let us now consider the angle made with each other

by two consecutive osculating planes, which we shall call the

angle of torsion, and denote by dij. The direction-cosines of

the osculating plane being proportional to X, Y, Z; the second

formula of Art. 352 gives

(T+ Y2+Z*)W= (
YdZ-ZdY)l+ (ZdX-XdZy+ (XdY- YdX)\

Now Y= dzd2x — dxd 2
z, Z= dxd^y — dyd2

x,

dY= dzdsx — dxd s
z, dZ— dxd 3

y — dyd 3
x.
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Therefore (Lessons on Higher Algebra, p. 26)

YdZ-ZdY^Mdx,
where If is the determinant

Xd»x+YdSj + Zd3
z.

Hence
(
X* + Y* +Zi

)' dr," = J/W,

d Mds
V X'+Y' + Z''

This formula may be also proved geometrically. For M
denotes six times the volume of the pyramid made by four
consecutive points, while X~ + Y'+Z" denotes four times the
square of the area of the triangle formed by three consecutive
points. Now if A be the triangular base of a pyramid, A' an
adjacent face making an angle t) with the base, s the side
common to the two faces, and p the perpendicular from the
vertex on s, so that 2A'=sp: then for the volume of the
pyramid we have 3 Y=Ap sin?? and 6 Vs = 2Aj>s sin i? = AAA' sin 17.

Now in the case considered, the common side is ds, and in
the limit A = A' hence 6 Vds = <LA*dr). q. e. d.

Following the analogy of the radius of curvature which is

j£, the later French writers denote the quantity* -£- by the

letter »•, and call it the radius of torsion ; but the reader will

observe that this is not, like the radius of curvature, the radius

of a real circle intimately connected with the curve.

363. In the same manner, however, as we have considered

an osculating circle determined by three consecutive points of

the system, we may consider an osculating right cone determined

by three consecutive planes of the system. Imagine that a

sphere is described having as centre the point of the system

in which the three planes .intersect ; let the lines of the system

passing through that point meet the sphere in A and _B;

and let the corresponding planes meet the same sphere in

AT, BT; then if we describe a small circle of the same sphere

The quantity -r is also sometimes called the " second curvature" of the curve,
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passing through A and B, and touched by AT, BT, the cone

whose vertex is the centre, and which stands on that small

circle will evidently osculate the given curve. The problem

then is, being given dr) the angle between two consecutive

tangents to a small circle of a sphere, and dO the corresponding

arc of the circle to find H its radius.

Let be the centre of the circle, and from the right-

„ , , m tan-4 Tr .,

angled triangle GAT we have amiT=^jfg -» then

$ be the external angle between two tangents to a circle,

s the length of the two tangents ; H the radius of the circle

is given by the formula tan.ff= / iT - In tte limit s is

els

the element of the arc of the circle, and tan If=^ , or, ac-

dd r
cording to the notation used, tan.3"= -=- = -.*

364. Imagine that through every line of the system there

is drawn a plane perpendicular to the corresponding osculating

plane, the assemblage of these planes generates a developable

which is called the rectifying developable. The reason of the

name is, that the given curve is obviously a geodesic on this

developable, since its osculating plane is, by construction, every

where normal to the surface. If therefore the developable be

developed into a plane, the given curve will become a right

line.

The intersection of two consecutive planes of the rectifying

developable is the rectifying line. Now since the plane passing

through the edge of a right cone perpendicular to its tangent

plane passes through its axis, it follows that the rectifying

plane passes through the axis of the osculating cone considered

in the last article ; and therefore that the rectifying line is

the axis of that osculating cone. The rectifying line may be

therefore constructed by drawing in the rectifying plane a

* It has been proved by M. Bertrand that when the ratio r : p is constant, the

curve must be a helix traced on a cylinder : and by Puiseux, that when r and p

are both constant, the cylinder has a circular base,
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line making with the tangent line an angle H, where H has
the value determined in the last article.

The rectifying surface is the surface of centres of the original
developable. In fact it was proved (Art. 302) that the normal
planes to the original surface along the two principal tangents
touch the surface of centres ; but the generating line itself
is in every point of it one of the principal tangents ; the recti-
fying plane therefore touches the surface of centres which is

the envelope of all these rectifying planes. The centre of
curvature at any point on a developable of the other principal
section, namely, that perpendicular to the generating line, is

the point where its plane meets the corresponding rectifying
line

;
for evidently the traces on this plane of two consecutive

rectifying planes are two consecutive normals to the section.

Hence if I be the distance of any point on the developable
from the cuspidal edge measured along the generator, the radius
of curvature of the transverse section is I tan H. When I

vanishes, this radius of curvature vanishes, as it ought, the
point being a cusp.

In the case of the helix the rectifying surface is obviously

the cylinder on which the curve is traced.

365. Tofind the angle between two successiveradiiofcurvature.*
Let AB, BG be traces on any

sphere with radius unity, of planes

parallel to the osculating and

normal planes, then the central

radius to B is the direction of the

radius of curvature. If AB', B'C
be consecutive positions of the os-

culating and normal planes, B' is in the direction of the con-

secutive radius of curvature, and BB' measures the angle

between them. Now the triangle BOB' being a very small

right-angled triangle, we have

BB'* = BO*+OB'\

* The reader will find simple geometrical investigations of this and other formula?

connected with curves of double curvature in a paper by Mr. Routh, Quarterly Journal

ofMathematics, Vol. VII., p. 37.
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But since the angle ABO is right, BO measures BAB', which

is dr], the angle between two consecutive' osculating planes,

and OB' measures OCB\ which is dd, the angle between

two consecutive normal planes. The required angle is there-

fore given by the formula BBn = drf + dff' ;
where dr) and

dd have the values already found. The series of radii of

curvature at all the points of a curve generate a surface on

the properties of which we have not space to dwell. It is

evidently a skew surface (see note, p. 72), since two consecutive

radii do not in general intersect (see Art. 368, infra).

Ex. 1. To find the equation of the surface of the radii of curvature in the case

of the helix.

The radius of curvature being the intersection of the osculating and normal planes

has for its equations (Art. 355) x'y = y'x, z - z', from which we are to eliminate

x'y'z' by the help of the equations of the curve. And writing the equations of the

helix x = a cos as, y = a sin tiz, the required surface is y cosrcz = x sinmz.

Ex. 2. To find the equation of the developable generated by the tangents of

a helix. The equations of the tangent being

(x — a cosrez') = — na sinraz' (z — z'), y — a sinnz' = na cosnz' (z — z'),

the result of eliminating z' is found to be

f (x> + ifl- arf-i . f , (x2 + y
1 - arf)

x coslnz ± v—^ '- ! + y sm \nz ± i « M- = a.

Since this equation becomes impossible when k2 + y
2 < a1

, it is plain that no part of

the surface lies within the cylinder on which the helix is traced.

366. We shall now speak of the polar developable generated

by the normal planes to the given curve. Fourier has re-

marked, that the " angle of torsion" of the one system is

equal to the " angle of contact" of the other, as is sufficiently

obvious since the planes of this new system are perpendicular

to the lines of the original system, and vice versa. The reader

will observe however that it does not follow that the -y of
, ds

one system is equal to the -y- of the other, because the ds is

not the same for both.

Since the intersection of the normal planes at two con-

secutive points Kj K' of the curve is the axis of a circle of

which K and K' are points (Art. 358), it follows that if any

point D on that line be joined to K and if', the joining lines

are equal and make equal angles with that axis.
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_

It is plain that three consecutive normal planes intersect
in the centre of the osculating sphere; hence the cuspidal edge
of the polar developable is the locus of centres of spherical cur-
vature.

In the case of a plane curve this polar developable reduces
to a cylinder standing on the evolute of the curve.

367. Every curve has an infinity of evolutes lying on the
polar developable;* that is to say, the given curve may be
generated in an infinity of ways by the unrolling of a string
wound round a curve traced on that developable. Let MM',
MM", &c. denote the successive elements of the curve, K, K',
&c. the middle points of these elements, then the planes drawn
through the points K perpendicular to the elements are the
normal planes. The lines AB, A'B', &c. are the lines in
which each normal plane is intersected by the consecutive;
these lines being the generators of the polar developable, and

hence tangents to the cuspidal edge RS of that surface. Draw
now at pleasuref any line KD in the first normal plane,

meeting the first generator in D; join DK' which beiDg in

the second normal plane will meet the second generator A'B',

say in D'. In like manner, let K"D' meet A'B" in D". We
get thus a curve DD'D" traced on the polar developable which

is an evolute of the given curve. For the lines DK, D'K', &c.

the tangents to the curve DD'D", are normals to the curve

* See Monge, p. 396.

f This figure is taken from Leroy's Geometry of Three dimensions.
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KK'K", and the lengths DK=DK, D'K' = D'K", &c. (see

Art. 366). If therefore DK be a part of a thread wound round

DD'D", it is plain that as the thread is unwound the point K
will move along the given curve.

Since the first line DK was arbitrary the curve has an

infinity of evolutes. A plane curve has thus an infinity of

evolutes lying on the cylinder whose base is the evolute in the

plane of the curve. For example, in the special case where

this evolute reduces to a point; that is, when the curve is a

circle, the circle can be described by moving round a thread

of constant length fastened to any point on the axis passing

through the centre of the circle.

In the general case, all the evolute curves DD'D", &c. are

geodesies on the polar developable.

For we have seen (p. 241) that a curve is a geodesic when

two successive tangents to it make equal angles with the inter-

section of the corresponding tangent planes of the surface ;

.

and it has just been proved (Art. 366) that DK, DK which

are two successive tangents to the evolute make equal angles

with AB which is the intersection of two consecutive tangent

planes of the developable. An evolute may then be found

by drawing a thread as tangent from K to the polar develop-

able, and winding the continuation of that tangent freely round

the developable.

368. The locus of centres of curvature is a curve on the

polar developable, but is not one of the system of evolutes.

Let the first osculating plane MM'M" meet the first two normal

planes in KG, K'C, then G is the first centre of curvature:

and in like manner the second centre is G', the point of inter-

section of KG', K"G', the lines in which the second oscu-

lating plane M'M"M'" is met by the second and third normal

planes. Now the radii KG, KG' are distinct, since they

are the intersections of the same normal plane by two different

osculating planes, KG' will therefore meet the line AB in a

point I which is distinct from G. Consequently the two radii

of curvature KG, KG' situated in the planes P, P have no

common point in AB the intersection of these planes; two
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consecutive radii therefore do not intersect, unless in the case

where two consecutive osculating planes coincide.

The centres of curvature then not being given by the suc-

cessive intersections of consecutive radii; these radii are not
tangents to the locus of centres. Any radius therefore KG
would not be the continuation of a thread wound round CO' C",

and the unwinding of such a thread would not give the curve

KK'K", except in the case where the latter is a plane curve.*

369. To find the radius of the sphere through four con-

secutive points. Let R be the radius of any sphere, p the

radius of a section by a plane making an angle t) with the

normal plane at any point; then, by Meunier's theorem,

Bcosr] = p- and for a consecutive plane making an angle

•9 + 877, we have Sp = - E sin 17 St;. Hence B2 = p
!

+(-£-).

We have then only to give in this expression to p and dq
the values already found (Arts. 360, 362).

-j- is obviously the length of the perpendicular distance

from the centre of the sphere to the plane of the circle of

curvature.

370. To find the co-ordinates of the centre of the osculating

sphere.

Let the equation of any normal plane be

(a - x) dx + (/? -y) dy + (7 - z) dz = 0,

where xyz is the point on the curve, and a/Sy any point on

* The characteristics of the polar developable may be investigated by arguments

similar to those used Sir/her Plane CWr&j. Art. 116. They are »' = 7» + r, </ = 0,

r* = 3/rt + », m' = 5m + a, where m, n, <kc, having the same meaning as in Art. 320, are

the characteristics of the given curve, and i»\ n', &c. the corresponding characteristics

of the polar developable. 'When, as is here supposed, there is nothing special in the

character of the points at infinity of the given curve, the normal planes corresponding

to these points are altogether at infinity ; and the corresponding generators of the

polar developable, are common to three consecutive planes. The plane at infinity

meets the polar developable in m lines, each reckoned three times, and a curve of

the nih order.
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the plane ; then the equation of a consecutive normal plane

combined with the preceding gives

(a - x) d2x + (0 - y) d*y + (y - s) d*z = ds\

And the equation of the third plane gives

(a - x) d*x + (/? - y) d3

y + (7 - z) d3x = 3dsd*s.

Let us denote as before dyd 2
z — dzd''y, &c. by X, Y, Z;

dyds
z - dzd 3

y, &c. by X', Y, Z', and the determinant

Xd*x + Yd 3

y + Zd
3
z by M. Then solving the preceding equa-

tions, we have

if (a - x) = - X'dt + 3Xdsd\ M{/3 -y)=- Yds' + 3 Ydsd\

M{y-z)=- Z'ds* -f BZdsd's.

By squaring and adding these equations we obtain another

expression for M\ which is what the value in the last article

would become when for p and -J- we substitute their values.
d-v)

We add a few other expressions, the greater part of which

admit of simple geometrical proofs, the details of which want

of space obliges us to omit.

Ex. 1. If o- be the arc of the curve which is the locus of centres of absolute

curvature,
da1 = dp" + p

2dtf ; or da- = Sdij.

Ex. 2. If 2 be the length of the arc of the locus of centres of spherical curvature

dS = —— ; where 8 = -j- is the distance between the centres of the osculating circle

and osculating sphere. From this expression we immediately get values for the

radii of curvature and of torsion of this locus, remembering that the angle of torsion

is the angle of contact of the original and vice versa.

Ex. 3. The angle between two consecutive rectifying lines is dS.

Ex. 4. The angle \\r between two successive R's is given by the formula

ifty2 = ds2 + d2? - dlP*

* The reader will find further details on the subjects treated of in this section in

a Memoir by M. de Saint-Venant, Journal de TEcole Polytechnique, Cahier XXX,,
who has also collected into a table about a hundred formulas for the transformation

and reduction of calculations relative to the theory of non-plane curves ; and in a
paper by M. Frenet, Iiouville, Vol. xvn., p. 437. I abridge the following historical

sketch from M. de Saint-Venant's Memoir :
" Curve lines not contained in the same

plane have been successively studied by Clairaut {Recherches sw les courbes a double

courbwe, 1731), who has brought into use the title by which they have been com-
monly known (previously, however, employed by Pitot) and who has given expressions
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SECTION IV. CURVES TRACED ON SURFACES.

371. It remains to say something of the properties of curves

considered as belonging to a particular surface. Thus the

sphere we know has a geometry of its own, where great circles

take the place of lines in a plane; and in like manner each

surface has a geometry of its own, the geodesies on that surface

answering to right lines.*

We have already by anticipation given the fundamental

property of a geodesic (Art. 304). The differential equation

is immediately obtained from the property there proved, that

the normal lies in the plane of two successive elements of the

curve and bisects the angle between them ; hence L, M, N
which are proportional to the direction-cosines of the normal

must be proportional to d -j- , d -j , d -j- , which are the

direction-cosines of the bisector (Art. 352). Thus " if the tan-

gents to a geodesic make a constant angle with a fixed plane,

for the projections of these curves, for their tangents, normals, arc, &c ; by Monge
(Memoire sur les din'loppces, cj*c. presented in 1771, and inserted in Vol. X., 1785,

of the ' Sarants etrangers' as well as in his 'Apjilication de VAnalyse a la Geometrie ')

who gave expressions for the normal plane, centre and radius of curvature, evolutes,

. polar lines and polar developable, centre of osculating sphere, for the criterion for

'points of simple inflexion' where four consecutive points are in a plane, and for

'points of double inflexion' where three consecutive points are in a right line; by
Tinseau (Solution de qitelques problemes, ifc'. presented in 1774, Savants ctrangers.

Vol. IX., 1780) who was the first to consider the osculating plane and the developable

generated by the tangents; by Lacroix (Calcul Differentiel) who was the first to

render the formulas symmetrical by introducing the differentials of the three co-

ordinates ; and by Lancret (Memoire sur les eourbes a double courbure, read 1802,

and inserted Vol. I.. 1805, of Sarants etrangers de l'lnstitut) who calculated the

angle of torsion, and introduced the consideration of the rectifying lines and rectify-

ing surface." The reader will find some interesting and novel researches respecting

curves of double curvature in Sir Wm. Hamilton's Elemettts of Quaternions; as, for

instance, the theory of the osculating twisted cubic which passes through six con-

secutive points of the curve.

* M. Chasles has studied the geometry of curves traced on the hyperboloid of

one sheet (Compter Jieiulus, Vol. liii., p. 985) taking for co-ordinates the intercepts

made by the two generators through any point on two fixed generators taken for

axes. It is easy to show that in this method the most general equation of a plane

section is of the form
Axy + Bx + Cy + D = 0,

and generally that the order of any curve is equal to the sum of the highest powers

of j- and y in its equation, whether these highest powers occur in the same term

or not.

X



306 CURVES TRACED ON SURFACES.

the normals along it will be parallel to that plane," and vice

versd (Dickson, Cambridge and Dublin Mathematical Journal,

Vol. V., p. 168). For from the equation

dx , dy dz , .

a -T- + -t- + c -j- = constant,
ds as as

which denotes that the tangents make a constant angle with

a fixed plane, we can deduce

aL + bM+ cN= 0,

which denotes that the normals are parallel to the same plane.

372. If through any point on a surface there be drawn two

indefinitely near and equal geodesies, the line joining their ex-

tremities is at right angles to both.*

Let AB= AC, and let us suppose the angle at B not to

BO
be right, but to be = 6. Take BD = z ,° ' COS0 '

and then because all the sides of the tri-

angle BCD are infinitely small it may be

treated as a plane triangle and the angle

DCB is a right angle. We have therefore

DC<DB, AD + DC<AB, and therefore

<AC. It follows that AC is not the

shortest path from A to C, contrary to hypothesis. Or the

proof may be stated thus: The shortest line from a point A
to any curve on a surface meets that curve perpendicularly.

For if not, take a point D on the radius vector from A and

indefinitely near to the curve ; and from this point let fall

a perpendicular on the curve [which we can do by taking

along BC a portion =BD cos# and joining the point so found

to D], We can pass then from D to the curve more shortly

by going along the perpendicular than by travelling along the

assumed radius vector which is therefore not the shortest path.

Hence, if every geodesic through A meet the curve per-

pendicularly, the length of that geodesic is constant. It is

also evident mechanically that the circle described on any

* This theorem is due to Gauss, who also proves it by the Calculus of Variations

;

see the Appendix to Liouville's Edition of Monge, p. 528.
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surface by a strained cord from a fixed point is every where

perpendicular to the direction of the cord.

373. The theorem just proved is the fundamental theorem

of the method of infinitesimals, applied to right lines (Conies,

pp. 347, &c). All the theorems therefore which are there

proved by means of this principle will be true if instead of

right lines we consider geodesies traced on any surface. For

example, " if we construct on any surface the curve answering

to an ellipse or hyperbola ; that is to say, the locus of a point

the sum or difference of whose geodesic distances from two

fixed points on the surface is constant; then the tangent at

any point of the locus bisects the angle between the geodesies

joining the point of contact to the fixed points." The converse

of this theorem is also true. Again, " if two geodesic tangents

to a curve, through any point P, make equal angles with the

tangent to a curve along which P moves, then the difference

between the sum of these tangents and the intercepted arc of

the curve which they touch is constant" (see Conies, Art. 399).

Again, " if equal portions be taken on the geodesic normals

to a curve, the line joining their extremities cuts all at right

angles," or " if two different curves both cut at right angles

a system of geodesies they intercept a constant length on each

vector of the series." We shall presently apply these principles

to the case of geodesies traced on quadrics.

374. As the curvature of a plane curve is measured by the

ratio which the angle between two consecutive tangents bears

to the element of the arc ; so the geodesic curvature of a curve

on a surface is measured by the ratio borne to the element

of the arc by the angle between two consecutive geodesic

tangents. The following calculation of the radius of geodesic

curvature, due to M. Liouville,* gives at the same time a proof

of Meunier's theorem.

Let mn, »j> be two consecutive and equal elements of the

curve. Produce nt= 7nn, and let fall tq perpendicular to the

surface : join nq and qp. Then since nt makes an infinitely

* Appendix to Monge, p. J7i>.

x2
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small angle -with the surface, its projection nq is equal to it. nq

is the second element of the normal

section, and is also the second element

of the geodesic production of ran. If

now 6 be the angle of contact tnp,

and ff be tnq the angle of contact

of the normal section we have tp = 6ds,

tq = 6'ds. Now the angle qtp (= <£)

is the angle between the osculating plane of the curve and

the plane of normal section, and since tq = tp cos </> we have

& = cosrf) and -^ = which is Meunier's theorem ; B being
M p

the radius of curvature of the normal section and p that of the

given curve.

Now; in like manner, pnq being 6" the geodesic angle of

contact, we have pq = 8"ds and pq = tp sm<p, or -= .

The geodesic* radius of curvature is therefore . , . It is
sm<p

easy to see that this geodesic radius is the absolute radius of

curvature of the plane curve into which the given curve would

be transformed, by circumscribing a developable to the given

surface along the given curve, and unfolding that developable

into a plane.

375. The theory of geodesies traced on quadrics may be said

to depend on Joachimsthal's fundamental theorem that at every

point on such a curve pD is constant where, as at Art. 158, p is

the perpendicular from the centre on the tangent plane at the

point, and D is the diameter of the quadric parallel to the tan-

gent to the curve at the same point. This may be proved

by the help of the two following principles: (1) If from any

point two tangent lines be drawn to a quadric, their lengths

are proportional to the parallel diameters. This is evident

* I have not adopted the name "second geodesic curvature" introduced by

M. Bonnet. It is intended to express the ratio bome to the element of the arc by
the angle which the normal at one extremity makes with the plane containing the

element and the normal at the other extremity.
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from Art. 70; and (2) If from each of two points A, B on
the quadric perpendiculars be let fall on the tangent plane at

the other, these perpendiculars will be proportional to the per-

pendiculars from the centre on the same planes. For the

length of the perpendicular from x"y"z" on the tangent plane

„t i i > • fx'x" ijy" z'z" \ n , ,. ,
at xy z is p \—p- + ^p- + — - 1) , and the perpendicular

from x'y'z' on the tangent plane at x"y"z" is

, fx'x" «'«" z'z" \

If now from the points A, B there be drawn lines AT, BT
to any point T on the intersection of the tangent planes at

A and B, and if AT make an angle t with the intersection

of the planes, the angle between the planes being a> • then the

perpendicular from A to the intersection of the planes is

A T sin i and from A on the other plane is A T sin i sin co.

In like manner the perpendicular from B on the tangent plane

&tA lsBTs'mi' sin<u. If therefore the lines A T, .BTmake equal

angles with the intersection of the planes, the lines AT, BT
are proportional to the perpendiculars from A and B on the two

planes. But AT and BT are proportional to D and D', and

the perpendiculars are as the perpendiculars from the centre

p' and p. Hence Dp = D'p'. But it was proved (Art. 308)

that if A T, TB be successive elements of a geodesic they make
equal angles with the intersection of the tangent planes at

A and B. Hence the quantity pD remains unchanged as we
pas3 from point to point of the geodesic, q.e.d.*

376. On account of the importance of the preceding theorem

we wish also to show how it may be deduced from the diffe-

rential equations of a geodesic.f Differentiating the equation

U AP N^ _
B*

+
R*

+ B*~ '

* This proof is by Dr. Graves, Cvelle, Vol. xlii., p. 279.

t See Joaohimsthnl, Crelle, Vol. xxvi., p. 155 ; Bonnet, Journal de TEcoh Poly-

techniqne, Vol. XIX., p. 138; Dickson, Cambridge and Dublin Mathematical Journal,

Vol. v., p. 168.
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(wherei,M, Nave the differential coefficients andiJ
2=i2+M2

+iv^),

and then substituting for L, &c, d-^,&c. (Art. 371), we get

It is to be remarked that this equation is also true for a

line of curvature ; for since -= , &c. are the direction-cosines of

the normal, the direction-cosines of a line in the same plane

with two consecutive normals and perpendicular to them are

(Art, 352) proportional to d l-p) , &c - Hence the -5-, &c. of

a line of curvature are proportional to d ( p J

. But if now

we differentiate

dx'
2

di/
2 dz

2

_
~d?

+ l?
+ d?~ '

and substitute for -5- the value just given, we have again the

equation

If we actually perform the differentiations, and reduce the result

by the differential equation of the surface Ldx + Mdy + Ndz = 0,

and its consequence

dLdx + dMdy + dNdz = - (Ld*x + Md'2

y + Nd'zz),

we get

(dLdx + dMdy + dNdz) (dRds - Rd'2
s)

+ (dLd'x + dMd 2

y + dNd'z) Bds = 0,

dLd'2x + dMd'2

y + dNd2
z dR d 2

s „
or — h — — — =

dLdx + dMdy + dNdz R ds

377. The preceding equation is true for a geodesic or line

of curvature on any surface, but when the surface is only of

the second degree, a first integral of the equation can be found.

In fact we have

dLd 2x + dMd*y + dNd'z = \d (dLdx + dMdy + dNdz).
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This may be easily verified by using the general equation of
a quadric, or more simply by using the equation

x* y" z*

rf
+ p + f

I,

when L = ~, M=l N=~- dL-— dM-%? JN--

by substituting which values the equation is at once established.

The equation of the last article then consists of terms each
separately integrable. Integrating we have

B* [dLdx + dMdy + dNdz) = Gds\

Now from the preceding values

t £ t _ I

dL dx dMdy dN dz _ 1 dx2
1 dy* 1 dz*

-" - ~* + T* + ~i ~ ~*
>

and — ^ + ^?Z_i
.

c^ a
f. = L tfL + ±'??L + ±

ds ds ds ds ds ds d' ds" b'* ds* c
2
us

But the right-hand side of the equation denotes the reciprocal

of the square of a central radius whose direction-cosines are

dx dy dz

ds 1 ds ' ds'

The geometric meaning therefore of the integral we have

found is pD = constant.*

378. The constant pD has the same value for all geodesies

which pass through an umhilic. For at the umbilic the p is

etc

of course common to all, being = -j- ; and since the central

section parallel to the tangent plane at the umbilic is a circle,

the diameter parallel to the tangent line to the geodesic is

* Dr. Hart proves the same theorem as follows : Consider any plane section of

an ellipsoid, let w be the perpendicular from the centre of the section on the

tangent line, d the diameter of the section parallel to that tangent, i the angle the

plane of the section makes with the tangent plane at any point. Then along the

section rod is constant, and it is evident that pD is in a, fixed ratio to wd sini.

Hence along the section pD varies as sini and will be a, maximum where the

plane meets the surface perpendicularly. But a geodesic osculates a series of nor-

mal sections; therefore, for such a line pD is constant, its differential always

vanishing. Cambridge and Dublin Mathematical Journal, Vol. IV., p. 84.
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constant ; being always equal to the mean axis b. Hence for

a geodesic passing through an umbilic, we have pD = ac.

Let now any point on a quadric be joined by geodesies to

two umbilics, since we have just proved that pD is the same

for both geodesies, and since at the point of meeting the p is

the same for both, the D for that point must also have the

same value for both; that is to say, the diameters are equal

which are drawn parallel to the tangents to the geodesies at

their point of meeting. But two equal diameters of a conic

make equal angles with its axes; and we know that the axes

of the central section of a quadric parallel to the tangent plane

at any point are parallel to the directions of the lines of cur-

vature at that point. Hence, the geodesies joining any point

on a quadric to two umbilics make equal angles with the lines

of curvature through that point.*

It follows that the geodesies joining any point to the two-

opposite umbilics, which lie on the same diameter, are con-

tinuations of each other ; since the vertically opposite angles

are equal which these geodesies make with either line of cur-

vature through the point.

It follows also (see Art. 373) that the sum or difference is

constant of the geodesic distances of all the points on the same

line of curvature from two umbilics. The sum is constant

when the two umbilics chosen are interior with respect to the

line of curvature ; the difference when for one of these um-
bilics we substitute that diametrically opposite so that one

of the umbilics is interior, the other exterior to the line of

curvature.

If A, A' be two opposite umbilics, and B another umbilic,

since the sum PA + PB is constant and also the difference

PA' -PB; it follows that PA + PA' is constant; that is to

say, all the geodesies which connect two opposite umbilics are

of equal length. In fact, it is evident that two indefinitely near

geodesies connecting the same two points on any surface must

be equal to each other.

* This theorem and its consequences developed in the following articles are due

to Mr, Michael Roberts, Lioucille, Vol. XI., p. 1.
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379. The constant pD has the same value for all geodesies

which touch the same line of curvature.

It was proved (Art. 158) that pD has a constant value all

along a line of curvature; but at the points where either

geodesic touches the line of curvature both p and D have the

same value for the geodesic and the line of curvature.

Hence then a system of lines of curvature has properties

completely analogous to those of a system of confocal conies

in a plane ; the umbilics answering to the foci. For example,

two geodesic tangents drawn to one from any point on another

make equal angles with the tangent at that point. Dr. Graves's

theorem for plane conies holds also for lines of curvature, viz.

that the excess of the sum of two tangents to a line of cur-

vature over the intercepted arc is constant, while the intersection

moves along another line of curvature of the same species

(see Conies, p. 355).

380. The equation pJO = constant has been written in another

convenient form.* Let a', a" be the primary semi-axes of two

confocal surfaces through any point on the curve, and let i be

the angle which the tangent to the geodesic makes with one of

the principal tangents. Then since a2 — a'
2

, a" — a"
2
(Art. 156) are

the semi-axes of the central section parallel to the tangent plane,

any other semi-diameter of that section is given by the equation

1 cos
s,
i sin

2
«s"

v,-i
• 1 (q

a -a,2
)(a

a-Q
, A „t ^

while, again, -
a
= ^—

—

J^ (Art. 157).

The equation thereforepD = constant is equivalent to

(a
2 - a") cos

2
t' + (a

2 - a"
2

) sin
2
i = constant,

or to a' cos
2
i+ a"'

1
sin

2
i= constant.

381. The locus of the intersection of two geodesic tangents to

a line of curvature, which cut at right angles, is a sphero-conic.

* By Iiouvflle, Vol, ix., p. 401.
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This is proved as the corresponding theorem for plane conies.

If a, a" belong to the point of intersection, we have

a"
2
cos

2i+a"'2 sm2
a = constant, a

1
'
2 sinV+a"* cos%'= constant,

hence a'
2 + a'"

2 = constant

;

and therefore (Art. 153) the distance of the point of intersection

from the centre of the quadric is constant. The locus of inter-

section is therefore the intersection of the given quadric with

a concentric sphere. The demonstration holds if the geodesies

are tangents to different lines of curvature ; and, as a par-

ticular case, the locus of the foot of the geodesic perpendicular

from an umbilic on the tangent to a line of curvature is a

sphero-conic.

382. To find the locus of intersection of geodesic tangents

to a line of curvature loMch cut at a given angle (Besge,

Liouville, Vol. XIV., p. 247).

The tangents from any point whose a\ a" are given, to

a given line of curvature are determined by the equation

a'
2
cos

2
«'-f a"

2
sin

2i=/3; and since they make equal angles with

either of the principal tangents through that point, i the angle

they make with one of these tangents is half the angle they

make with each other. We have therefore

tan^ yr';) ;
Un^'^-OV(^

>1
V(a - /3)

' a
2 + a"

2 - 2/3 '

(
a* + a"

2 - 2/3)
2
tan

2 = 4/3 (a'
2 + a'"

2

)
- 4a'V2 - 4/3

2
.

This is reduced to ordinary co-ordinates by the equations

(Arts. 152, 153)

a'
2 + a"'

2 = x2 +f + z
2 + b

2 + c
2 - d2

: a'
2
a"

2 =gVzgjjgzg)
7 a2 '

whence it appears that the locus required is the intersection

of the quadric with a surface of the fourth degree.*

* Mr. Michael Roberts has proved (Liouville, Vol. xv., p. 291) by the method
of Art. 179, that the projection of this curve on the plane of circular sections is

the locus of the intersection of tangents at a constant angle to the conic into

which the line of curvature is projected.
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383. It was proved (Art. 168) that two confocals can be
drawn to touch a given line; that if the axes of the three
surfaces passing through any point on the line be a, a', a"
and the angle the line makes with the three normals at the
point be a, /3, 7; then the axis-major of the touched confocal
is determined by the quadratic

cos
2
at cos

2
/S cos

8
7

a* - a
2 + ^T* + £53? = °'

Let us suppose now that the given line is a tangent to the
quadric whose axis is a, we have then cosa = 0, since the line
is of course at right angles to the normal to the first surface;
and we have cos/3 = sin 7, since the tangent plane to the sur-
face a contains both the line and the other two normals. The
angle 7 is what we have called * in the articles immediately
preceding. The axis then of the second confocal touched by
the given line is determined by the equation

sin
3
i cos

8
i

•

.» _ 11 +— 5 = 0, or a"
2
cos'i+ a"

2
sin

2^= a2
.

If then we write the equation of a geodesic (Art. 381)
a'

2 cosV+a"2
sin

2
* = a

2
, we see from this article that that equa-

tion expresses that all the tangent lines along the same geodesic

touch the confocal surface whose primary axis is a.*

The geodesic itself will touch the line of curvature in which
this confocal intersects the original surface; for the tangent

to the geodesic at the point where the geodesic meets the

confocal is, as we have just proved, also the tangent to the

confocal at that point. The geodesic therefore and the intersection

of the confocal and the given surface have a common tangent.

The osculating planes of the geodesic are plainly tangent

planes to the same confocal ; since they are the planes of two

consecutive tangent lines to that confocal.

The value of pD for a geodesic passing through an

umbilic is ac (Art. 378) ; and the corresponding equation

is therefore a'
2 cosV+ a"

2 surV=a2 — J*. Now the confocal,

* The theorems of thia article are taken from M. Chasles'i Memoir, LicmviUe,

Vol. xi., p. 5.
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whose primary axis is >J(d' -V), reduces to the umbilicar focal

conic. Hence, as a particular case of the theorems just proved,

all tangent lines to a geodesic which passes through an umbilic,

intersect the umbilicar focal conic.

Conversely, if from any point on that focal conic recti-

linear tangents be drawn to a quadric and those tangents

produced geodetically on the surface, the lines so produced

will pass through the opposite umbilic; the whole lengths

from to the umbilic being equal.

384. From the fact (proved p. 127) that tangent planes

drawn through any line to the two confocals which touch it

are at right angles to each other, we might have inferred

directly, precisely as at Art. 305, that tangent lines to a

geodesic touch a confocal. For the plane of two consecutive

tangents to a geodesic being normal to the surface is tangent

to the confocal touched by the first tangent. The second

tangent to the geodesic therefore touches the same confocal

;

as, in like manner, do all the succeeding tangents. Having
thus established the theorem of the last article, we could, by
reversing the steps of the proof, obtain an independent de-

monstration of the theorem pD = constant.

385. The developable circumscribed to a quadric along a
geodesic has its cuspidal edge on another quadric, which is the

same for all geodesies touching the same line of curvature.

For any point on the cuspidal edge is the intersection of

three consecutive tangent planes to the given quadric, and
the three points of contact, by hypothesis determine an oscu-

lating plane of a geodesic which (Art. 383) touches a fixed

confocal. The point on the cuspidal edge is, the pole of this

plane with respect to the given quadric; but the pole with
respect to one quadric of a tangent plane to another lies on
a third fixed quadric.

386. M. Chasles has given the following generalization of
Mr. Eoberts's theorem, Art. 378. If a thread fastened at two

fixed points on one quadric A be strained by a pencil moving
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along a confocal B (so that the thread of course lies in geo-
desies where it is in contact with the quadrics and in right
lines in the space between them), then the pencil will trace
a line of curvature on the quadric B. For the two geodesies
on the surface B, which meet in the locus point P, evidently
make equal angles with the locus of P; but these geodesies
have as tangents the rectilinear parts of the thread which
both touch the same confocal ; therefore (Art. 383) the pD is

the same for both geodesies, and hence the line bisecting the
angle between them is a line of curvature.

A particular case of this theorem is that the focal ellipse

of a quadric can be described by means of a thread fastened
to two fixed points on opposite branches of the focal hyperbola.

387. Elliptic Co-ordinates. The method used (Arts. 381, 382)
in which the position of a point on the ellipsoid is defined by
the primary axes of the two hyperboloids intersecting in that

point, is called the method of Elliptic Co-ordinates (see p. 135
and Higher Plane Curves, p. 276). It being more convenient

to work with unaccented letters, I follow M. Liouville* in

denoting the quantities which we have hitherto called a, a"

by the letters fi, v; and in this notation the equation of the

lines of curvature of one system would be of the form

fi = constant, and those of the other v = constant. The equation

of a geodesic (Art. 380) would be written //cosV+ v
8
sin** = /*'*;

and when the geodesic passes through an umbilic, we have
/*'" = o?-V = h\ It will be remembered (Art. 149) that /j, lies

between the limits h and Jc, and v between the limits k and 0.

Throwing the equation of a geodesic into the form

ft? + v
2
tan

2
i = /*'" (1 + tanV)

;

we see that it is satisfied (whatever be /a') by the values

fj?
= v

2

, tan'
Jt'=— 1. Whence it follows that the same pair of

imaginary tangents, drawn from an umbilic, touch all the lines

of curvature,! a further analogy to the foci of plane conies.

* I cannot, however, bring myself to imitate him in calling the axis of the

ellipsoid/); and his denoting the quantities a-— b-, a2 — c2 (which we call A2
, i2) by

the letters b-, c2 , seems likely to confuse.

f ITr. Roberts, Liouvilk, Vol. XV., p. 289.
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388. To express in elliptic co-ordinates the element of the

arc of any curve on the surface. Let us consider first the

element of any line of curvature, p = constant. Let that line be

met by the two consecutive hyperboloids, whose axes are v and

v + dv ; then, since it cuts them perpendicularly, the intercept

between them is equal to the difference between the central

perpendiculars on the tangent planes to the two hyperboloids.

But (Art. 172) (p"+dp") 2 -2}" 2 = (v + dvy-v* or p"dp" = vdv.

Now we have proved that dp" = do; the element of the arc

we are seeking, and

n^V
_
y»(A'-v»)(fl'-0

P ~ (a
2 -a"2

)
(a'

2 -a"2

)
(a

2 - v*) (^ - v
2

)
'

Hence da =^—^-^ dv .

In like manner the element of the arc of the line of curvature

v = constant is given by the formula

Now if through the extremities of the element of the arc ds

of any curve, we draw lines of curvature of both systems, we

form an elementary rectangle of which da, do are the sides

and ds the diagonal. Hence

_ (a
2
-//)(// -v2

) ,
y-W-f)

aS ~ {p?-h2

)
(tf - /**) ^ +

(A
2 - v

2

)
(ft" - v

2

)
'

389. In like manner we can express the area of any portion

of the surface bounded by four lines of curvature ; two lines

/tt
, ^2,

and two v
t ,

v
2
. For the element of the area is

d<r
>
da

* ~ VIO^-A")^- S) (A
2 - v

2

)
[V - v*)}

t* '

the integral of which is

pi ju,
2 VK -

A'''')
dp [

"' V(«
2 - v

2

) t?v

'

J ft V{(/*' - A2

)
(A* - gj /», Vt(A

2 - Q g - v
2
)}

'

* The area of the surface of the ellipsoid was thus first expressed by Legendre,

Traite des Fonctions EUiptiques, Vol. I., p. 352.
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i

So, in like manner, we can find the differential equation of the
orthogonal trajectory of a curve whose differential equation is

Mdfi + JSfdv. For the orthogonal trajectory to Pda + Qda is

, . , da- da .

plainly -p — ; since do-, da are a system of rectangular

co-ordinates. But Md/t, + Ndv can be thrown without difficulty

into the form Pda + Qda by the equations of the last article.

The equation of the orthogonal trajectory is thus found to be

a} - u!' da a2 - v
2

dv

(/*" - A
2

)
[k* - /*) M (A

2 - v
2

)
{tf - v

2

) N ''

390. The first integral of a geodesic /t
2 cosV+v2

sin
2
* = ///

2

can be thrown into a form in which the variables are separated

and the second integral can be obtained. That equation gives

-MSfc?
But tan^-

da
- - </{("'-MP -*)&-')} <fc

da "
V{(«

2 - v
2

) {? - A2

)
(*»- //)} fo '

whence equating, we have

</[<?-/**) dp - V(a
3 -v2)^

V(^
2 - /*") (/.

a - A2

) (^ - //) *
V{(^'

2 - v=) (A
2 - v

2

)
(A

2 - v
2

)}
~ °'

the terms of which can be integrated separately.*

If the geodesic passes through the umbilics, we have ft* = A2

(Art. 387), and the equation of the geodesic is

*/(d
i — fir) j V(«

2 — v
2

) _

391. 2b _/?«<? aw expression for the length of any portion of

a geodesic. The element of the geodesic is the hypotenuse of

a right-angled triangle of which da, da are the sides and whose

base angle is i. Hence we have ds = sinida ± cos ida; and

* The equation of a geodesic was first integrated by Jacobi, CreJIe, Vol. six,,

p. 309 ; see also Hesse, Vorlesungen, p. 275. The reader is recommended also to refer

to the method of integration employed by TTeierstrass, MonatsiericMe der Berliner

Akademie, 1861, p. 9SG.
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putting in sun = "

t
_' , coat = _ ^ , and giving

da, dcr' the values of Art. 388, we have

*\/W- A2

) (^ - y"
a

) J
* V 1 (*" - "

2

)
(*" - "

8

)

If p be the element of a line through the umbilics, we have

dp =^ \Z{¥=t)
± dv

\/{w^v)
It is to be noted that when we give to the radical in the last

article the sign + we must give that in this article the sign —

.

This appears by forming (Art. 389) the differential equation of

the orthogonal trajectory to a geodesic through an umbilic, an

equation which must be equivalent to dp = (Art. 372).

392. In place of denoting the position of any point on an

ellipsoid by the elliptic co-ordinates //., v, we might U3e geodesic

polar co-ordinates and denote a point by p its geodesic distance

from an umbilic, and by a> the angle which the radius vector

makes with the line joining the umbilics. Now the equation

(Art. 390) of a geodesic passing through an umbilic gives the

sum of two integrals equal to a constant. This constant can-

not be a function of p since it remains the same as we go along

the same geodesic : it must therefore be a function of u> only

:

and if we pass from any point to an indefinitely near one, not

on the same geodesic radius vector, we shall have

_vVV)^ vV - v
2

) dv

(/* - W) v]F - ^)
± W - *) 7(¥^7) ~ $ W dw -

We shall determine the form of the function by calculating

its value for a point indefinitely near the umbilic, for which

fi = v = h. The left-hand side of the equation then becomes

>v/(Ht«)
x limit of {&? + *£?) •

Now if we Put

/jl = Ji+t], v = h-B, the quantity whose limit we want to find

dr) d&
18

2hn + v*
~ 2kz - e*

'
whlch

>
as ^ and e tend to vanish, becomes

the limit of I (^ -
^
e

)
or of±d log 2

.
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Now since the angle external to the vertical angle of the

triangle formed by the line joining any point to two umbilics,

is bisected by the direction of the line of curvature, that external

angle is double the angle i in the formula yu,'

2 cosV+ v' sin
2
i'= K*.

In the limit when the vertex of the triangle approaches the

umbilic, the external angle of the triangle becomes a>, and
we have at the umbilic

{h + t))* cos'^co + {h- s)
2
sin

2 £w = K\

and in the limit tanHw = — .2
e

Using this value, the limit of the left-hand side of the equation is

4\/(J^)^los tan>)-

We have therefore

*/((?-/**) dp *J(d'-v*)dv _ 1 //a5 -,

(jf - tf) V(^
2 - /*") (A" - v') V(&" - v

2

)

~ h V U" - *

And the constant which occurs in the integrated equation of

a geodesic through an umbilic is of the form

<^V(^) lostan>+a

393. If P, Q be two consecutive points on a curve, and if

PP' be drawn perpendicular to the geodesic radius vector OQ,

it is evident that PQ2 = PP'2 + P Q\ Now since (Art. 372)

OP=OP\ we have P'Q = dp, while PP' being the element

of an arc of a geodesic circle, for which p is constant (or

dp = 0), must be of the form Pd<o. Hence the element of the

arc of a curve on any surface can be expressed by a formula

ds? = dp' + P2
do)

2
. We propose now to examine the form of

the function P for the case of radii vectores drawn through

an umbilic of an ellipsoid. Let us consider the line of cur-

vature /A — /*. We have then (Art. 391)

And by the same article
J

2 2

7 2 7 8« -"
dp =dv TT-T3)
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, _,,
,
(^-A2

)(a
2 -va

) .,
whence P2

dco* =^ ^5 ^ dv\

But (Art. 392), when yx is constant,

(A
2 - v

2

) V(A
2 - v

2

)
~ A A/ U2 - AV sin w

Putting in this value for c?v, we have

(«'-A2)(A°-Qf/^-A*) _ aw _ l
h

2 {¥-h2

) sin
2o (&

2 - a
2

)
(Z>

2 -

c

2

) sin
2w sin

2w

(Art. 152); therefore p_ #

,,*

sma)

In this investigation it is not necessary to assume the result

of the last article. If we substitute for the right-hand side of

the equation in the last article an undetermined function of &>,

it is proved in like manner that P = y<p (co). We determine

then the form of the function by remembering that in the neigh-

bourhood of the umbilic the surface approaches to the form

of a sphere. Now on a sphere the formula of rectification

is ds' — dp' -f sin
2
pda>\ Hence P= sin/3. But in the sphere

y= sin p sin w. The function therefore which multiplies y is

1

sin to
'

394. Consider now the triangle formed by joining any

point P to the two umbilics 0, 0'. Then for the arc OP
we have the function P= -P— and for the arc O'P, connecting:

sin a>
' °

P with the other umbilic, we have the function P' = .

smw '

and P : P' :: sinta' : sinw, an equation analogous to that which

expresses that the sines of the sides of a spherical triangle

are proportional to the sines of the opposite angles ; since P
and P in the rectification of arcs on the ellipsoid answer to

smp, s'mp' on the sphere.

395. Again, if P be any point on a line of curvature we
know (Art. 378) dp±dp '

: =0, where p and p are the distances

from the two umbilics. Now if 6 be the angle which the

radius vector OP makes with the tangent, the perpendicular
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element Pda> is evidently dp tanfl. But the radius vector O'P
makes also the angle 6 with the tangent. Hence, we have

dot du>'
Pda> ± Pdoi' = 0, or

>
= <>•

sin a> sin to

whence tan ^co tan ^to' is constant when the sum of sides of the

triangle is given; and tan|<w is to tan^a>' in a given ratio

when the difference of sides of the triangle is given. Thus
then the distance between two umbilics being taken as the

base of a triangle, when either the product or the ratio of

the tangents of the halves of the base angles is given ; the

locus of vertex is a line of curvature.*

From this theorem follow many corollaries : for instance, " If

a geodesic through an umbilic meet a line of curvature in

points P, _P', then (according to the species of the line of curva-

ture) either the product or the ratio of tan |P0'0, tan \P'0' is

constant." Again, " if the geodesies joining to the umbilics

any point P on a line of curvature meet the curve again in P,
P", the locus of the intersection of the transverse geodesies

O'P, OP" will be a line of curvature of the same species."

396. Mr. Roberts's expression for the element of an arc

perpendicular to an

umbilical geodesic has a^_
been extended as fol-

lows by Dr. Hart

:

Let OT, OT be two

consecutive geodesies

touching the line of

curvature formed by

the intersection of the

surface with a confocal

B, dco the angle at

which they intersect

;

then the tangent at

any point T of either

* This theorem, as well as those on which its proof depends, (Art. 392, 4c). is

due to Mr. M. Roberts, to whom this department of Geometry owes so much,

(Liouville, Tola. SIIT., p. 1, and IV., p. 275),

T2
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geodesic touches B in a pointP (Art. 383) ; and if TT be taken

conjugate to TP, the tangent plane at T passes through TP
(Art. 262) and the tangent line to the geodesic at T touches

the confocal B in the same point P. We want now to express

in the form Pda> the perpendicular distance from T' to TP.

Let the tangents at consecutive points, one on each geodesic,

intersect in P' and make with each other an angle d<f>'. Let

normals to the surface on which the geodesies are drawn

at the points T„ T,' meet the tangents PT, PT at the

points T
2 , TJ, then since the difference between T

X
T^ T^TJ

is infinitely small of the third order, PT
2
d§ and P'T

t

d<p' are

equal, to the same degree of approximation. But PT
% , P'T

t

are proportional to D and D', the diameters of the surface

B drawn parallel to the two successive tangents to the geo-

desic. Hence Dd§ = D'dfi. This quantity therefore remains

invariable as we proceed along the geodesic ; but at the point

0, d<p = dco; if therefore D
n
be the diameter of B parallel to

the tangent at to the geodesic, Ddj> = I) da> ; and there-

fore the distance we want to express PTd<p = ~ tdco, where

t[=PT) is the length of the tangent from T to the confocal B;

or ~ t is a mean between the segments of a chord of B drawn

through T parallel to the tangent at 0. When the geodesic

passes through an umbilic, the surface B reduces to the plane

of the umbilics, and ~ t becomes the line drawn through T

to meet the plane of the umbilics parallel to the tangent at
;

which is Mr. Roberts's expression.

Hence, if a geodesic polygon circumscribe a line of curva-

ture, and if all the angles but one move on lines of curvature,

this also will move on a line of curvature, and the perimeter

of the polygon will be constant when the lines of curvature

are of the same species. The proof is identical with that

given for the corresponding property of plane conies [Conies,

Art. 401).*

* See Cambridge and Dublin Mathematical Journal, Vol. it., p. 192.
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397. If a geodesic joining any umbilic to that diametrically

opposite, and making an angle co with the plane of the um-
bilics, be continued so as to return to the first umbilic, it will

not, as in the case of the sphere, then proceed on its former

path, but after its return will make with the plane of the um-

bilics an angle different from to. In order to prove this we
shall investigate an expression for 0, the angle made with

the plane of the umbilics by the osculating plane at any point

of that geodesic.

It is convenient to prefix the following lemma: In a

spherical triangle let one side and the ad-

jacent angle remain finite while the base

diminishes indefinitely, it is required to find

the limit of the ratio of the base to the

difference of the base angles measured

the same direction. The formula of spherical

« , * t>\ 1 n cos i (a + 6) .

trigonometry cos £ (A + B) = sin \ (J *-j - gives us m the

limit dd = cosad\jr. But evidently
j
sin ad->jr = sin 9d<f>. Hence

dO d<j>

sm0 tana'

Now we know (Art. 383) that the tangent line at any point

of a geodesic passing through an umbilic, if produced, goes to

meet the plane of the umbilics in a point on the focal hyper-

bola ; and the osculating plane of the geodesic at that point

will be the plane joining the point to the corresponding tangent

of the focal hyperbola. We know also (Art. 3 76) that the

cone circumscribing an ellipsoid and whose vertex is any point

on the focal hyperbola is a right cone.

Let now PP be an element of an umbilical geodesic pro-

duced to meet the focal

hyperbola in H. Let

P'P" be the consecutive

element meeting the focal

hyperbola in H''; then

if Eli, H'h' be two con-

secutive tangents to the

focal hyperbola ; PBk,
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P'H'K will be two consecutive osculating planes. Imagine

now a sphere round H', and consider the spherical triangle

formed by radii to the points h, Ji, P. Then if d<f> be the

angle hH'h', the angle of contact of the focal hyperbola;

6 the angle between the osculating plane and hH'h' the plane

of the umbilics, while hE'P is a the semi-angle of the cone

;

then the spherical triangle is that considered in our lemma,

, , dQ d<b
and we have -^—p, = .

sine' tana

In order to integrate this equation we must express d<f> in

terms of a; and this we may regard as a problem in plane

geometry, for a is half the angle included between the tangents

from H to the principal section in the plane of the umbilics,

while d<f} is the angle of contact of the focal hyperbola at the

same point. Now if a, V ; a", b" be the axes of an ellipse

and hyperbola passing through H, confocal to an ellipse whose

axes are a, b ; and if 2a be the angle included between the

tangents from H to the latter ellipse, we have (see Conies,

a
Ex. 12, p. 198) tan

2
a = -^

5
. Differentiating, regarding a"

as constant (since we proceed to a consecutive point along the

same confocal hyperbola), we have da = — tan a -75 ~
2

- But

if, p, p be the central perpendiculars on the tangents at H
to the ellipse and hyperbola, we have a'da'=pdp (Art. 388).

Now dp is the element of the arc of the focal hyperbola, and

if p be the radius of curvature at the same point, dp = pdcj>.

But p = ;
—

. Hence da = — tana —
-f- or da = tana—~r .

p p ab

But a'
2 = a* + (a

2 - a"
2

) cot
2
a, b" = F + (a

2 - a"
2

) cot" a.

TT dcf> a"b"da
Hence —— = —

tana *J{a
2 -a"* + d2

tan
2
a) V(«

2 -a"* + F tan
B
a)

'

In the case under consideration the axes of the touched

ellipse are a, c ; while the squares of the axes of the confocal

hyperbola are a2 - b
2

, W — c
2

. Hence we have the equation

dd_ vV-Z.2

) V^-c'Va
sin 6 V(&* + «

2
tan

2
a) *J(b'' + c

2
tan

2
a)

"
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Integrating this, and taking one limit of the integral at
the umbilic where we have 6 = a>, and a = \tt • we have

I
tanjfl = f« V(a

8 -5a)V(y-cVa
8 tan |a> J^ V(&" + a8

tan
2
a) V(&* + c

2
tan

2
a)

'

If then / be the value of this integral ; we have
tan£0 = & tan^co, where h = e

I
.

Now this integral obviously does not change sign between
the limits ± %tt, that is to say, in passing from one umbilic
to the other. If then to' be the value of 6 for the umbilic
opposite to that from which we set out ; at this limit / has
a value different from zero, and k a value different from unity

;

and we have tan|<i)' = &' tan i to ; a is therefore always different

from co. And in like manner the geodesic returns to the original

umbilic, making an angle to" such that tan£a>" = &2
tan -|to,

and so it will pass and repass for ever making a series of

angles the tangents of whose halves are in continued pro-

portion.*

398. If we consider edges belonging to the same tangent

cone, whose vertex is any point H on the focal hyperbola, a

(and therefore h) is constant ; and the equation tan£0 = & tan-|o>

d9 dot .. T , .

gives -r—-j
=

. JNow since the osculating: plane of the
sin a sin to ° r

geodesic is normal to the surface, and therefore also normal

to the tangent cone, it passes through the axis of that cone.

If then we cut the cone by a plane perpendicular to the axis,

the section is evidently a circle whose radius is -r~ , and the
sine/'

element of the arc is A—-. , or '-.— . Now this element, being:
sin 6/ ' sin to

°

the distance, at their point of contact, of two consecutive sides

of the circumscribing cone, is what we have called (Art. 393)

Pdco, and we have thus from the investigation of the last

article an independent proof of the value found for P (Art. 393).

* The theorems of thia article are Dr. Hart's, Cambridge and Dublin Mathe-

matical Journal, Vol. it., p. S2 ; but in the mode of proof I have followed

Mr. William Roberts, Liouville, 1857, p. "213.
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399. Lines of level. The inequalities of level of a country

can be represented on a map by a series of curves marking

the points which are on the same level. If a series of such

curves be drawn, corresponding to equi-different heights, the

places where the curves lie closest together evidently indicate

the places where the level of the country changes most rapidly.

Generally, the curves of level of any surface are the sections

of that surface by a series of horizontal planes, which we may

suppose all parallel to the plane of xy. The equations of the

horizontal projections of such a series are got by putting z = c

in the equation of the surface; and a differential equation common

to all these projections is got by putting dz=0 in the differential

equation of the surface, when we have

JJ^dx + U
2
dy = 0.

We can make this a function of x and y only, by eliminating

the z which may enter into the differential coefficients, by the

help of the equation of the surface.

Lines ofgreatest slope. The line of greatest slope through any

point is the line which cuts all the lines of level perpendicularly

;

and the differential equation of its projection therefore is

TJ
x
dy - U

2
dx = 0.

The line of greatest slope is often denned as that, the tan-

gent at every point of which makes the greatest angle with

the horizon. Now it is evident that the line in any tangent

plane which makes the greatest angle with the horizon is

that which is perpendicular to the horizontal trace of that

plane. And we get the same equation as before by expressing

that the projection of the element of the curve (whose direction-

cosines are proportional to dx, dy) is perpendicular to the trace

whose equation is

U^x-^+U^y-y'j-U/^O*

* It is evident that the differential equation of the curve, which is always per-

pendicular to the intersection of the tangent plane, [whose direction-cosines are as

L, M, JV] by a fixed plane whose direction-cosines are a, b, c, is

dx, dy, dz

L, M, N
,

b, c =0.
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Ex. To find the line of greatest slope on the quadric Aa? + Bf + Cz* = D.

The differential equation is Axdy = Bydx, which integrated, gives (-,)* = (lY.
where the constant has been determined by the condition that the line shall pass
through the point * = »', ,j = y>. The line of greatest slope is the intersection of
the quadric by the cylinder whose equation has just been written, and will be a curve
of double curvature except when x',j lies in one of the principal planes when the
equation just found reduces to x= or y = 0.

400. We shall conclude this chapter by giving an account
of Gauss's theory of the curvature of surfaces* In plane curves
we measure the curvature of an arc of given length by the
angle between the tangents, or between the normals, at its

extremities
; in other words, if we take a circle whose radius

is unity, and draw radii parallel to the normals at the ex-
tremities of the arc, the ratio of the intercepted arc of the

circle to the arc of the curve affords a measure of the cur-

vature of the arc. In like manner if we have a portion of

a surface bounded by any closed curve, and if we draw radii

of a unit sphere parallel to the normals at every point of the

bounding curve, the area of the corresponding portion of the

sphere is called by Gauss the total curvature of the portion

of the surface under consideration. And if at any point of

a surface we divide the total curvature of the superficial element

adjacent to the point by the area of the element itself, the

quotient ir called the measure of curvature for that point.

401. We proceed to express the measure of curvature by
a formula. Since the tangent planes at any point on the

surface, and at the corresponding point on the unit sphere

are by hypothesis parallel ; the areas of any elementary portions

on each are proportional to their projections on any of the

co-ordinate planes. Let us consider then their projections on

the plane of xy, and let us suppose the equation of the surface

to be given in the form z =
<f>

(x, y).

If then x, y, z be the co-ordinates of any point on the surface,

X, Y, Z those of the corresponding point on the unit sphere,

x + dx, x+ &r, X+dX, X+SX
}
&c, the co-ordinates of two

adjacent points on each : then the areas of the two elementary

* His paper has been reprinted in the appendix to Lkniville's edition of Monge,
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triangles formed by- the points considered, are evidently in the

ratio

dXBY- dYBX :dxBy- dy Bx.

But dX, dY, SX, BY are connected with dx, dy, &c, by

the same linear transformations, viz.

JV dX , dX , ,v dY dY
dX

-dx
dx +

-dy
d̂ dY=J^ dx +

lTy
dy>

BX=^ hx +
df Sy, BY^Bx + ^By:

dx «y dx dy "

•whence by the theory of linear transformations, or by actual

multiplication,

dXBY-dYBX^dxSy-dyBx)^f~f g),
, 4,

..
+
dXdY dXdY. ., .

and the quantity -t— -7- —5 5— 1S the measure ot curvature.
1 dx dy dy dx

Now X, Y, Z beiDg the projections on the axes of a unit

line parallel to the normal are proportional to the cosines of

the angles which the normal makes with the axes. We have

therefore

PX= —tt-—; s— sr , Y=

dX _ (1 + g
8

) r -pqs dX _ (l+q*)s-pqt

dX
(1+/ + 2T ' ^ (1+/ + 2

2

)

1
'

dY _ (l + p*)s-pqr dY _[l Jtp'
1
)t -pqs

dx
(1+/+2T '

dy
(i+f + qi

'

dX dY dX dY (rt-s2
)whence -^

dx dy dy dx (1 +p' + q
s

f
'

But from the equation of (Art. 307, p. 243) it appears that

the value just found for the measure of curvature is -^y* > where

B and B! are ike two principal radii of curvature at the point.

402. It is easy to verify geometrically the value thus found.

For consider the elementary rectangle whose sides are in the

directions of the principal tangents. Let the lengths of the
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sides be X, X', and consequently its area XX'. Now the normals

at the extremities of X intersect, and if they make with each

other an angle 6, we have 8 = -~ where R is the corresponding

radius of curvature. But the corresponding normals of the

sphere make with each other, by hypothesis, the same angle;

and their length is unity. If therefore ji be the length of

the element on the sphere corresponding to X, we have -5 = /"•

\

'

'i
In like manner we have -^7 = m' ; and ^-, = -s™ : which wasK XX Jxti

to be proved.

403. Gauss has proved that if a surface supposed to be

flexible but not extensible be deformed in any way : (that is to

say, if the shape of the surface be changed, yet so that the

distance between any two points measured along the surface

remains the same) then the measure of curvature at every

point remains unaltered. We have had an example of such

a change in the case of a developable surface which is such a

deformation of a plane (Art. 313). And the measure of cur-

vature vanishes for the developable as well as for the plane,

one of the principal radii being infinite (Art. 364). To establish

the theorem in general, let us suppose that any point on the

surface instead of being given by three co-ordinates connected

by the equation of the surface is given by two independent

co-ordinates. Let

dx = adu + a'dv, dy = bdu -+ b'dv, dz — cdu + c'dv,

then ds> = dx' + dif + da" = (a" + b* + c
2

) du
1

+ 2 [ad + bb' + cc) dudv + (a"
z
•+ b"* + c"

2

) dv\

If we write this equation

ds* = Edi? + 2Fdudv + Gdv\

what we want to prove is that the measure of curvature, or

that the product of the principal radii, is a function of E, F, G.

In fact, let x'y'z' denote the point of the deformed surface

corresponding to any point xyz of the given surface. Then
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x, y', z are given functions of x, y, z, and can therefore also

be expressed in terms of u and v. And the element of any

arc of the deformed surface can be expressed in the form

ds'
2 = E'du2 + 2F'dudv + G'dv\

But the condition that the length of the arc shall be un-

altered by transformation, manifestly requires E=E', F=F',

G = G'. Any function therefore of E
}
F, G is unaltered by

such a deformation as we are considering.

Now it will be remembered (see p. 224) that the principal

radii are given by a quadratic, in which the coefficient of V
is (L2 + M' +N2

)

2

; and the absolute term is

(be - F)V + (ca - m2

)M2 + (ab - n2

) N2

+ 2 (mn - al) MN+ 2 (nl - bm) NL + 2 (lm - en) LM*
We shall separately express each of these quantities in

terms of E, F
:
G.

404. Now if we substitute in the equation of the surface

Ldx + Mdy + Ndz = 0, the values of dx, dy, dz given in the

last article, and remember that since u and v are independent

variables, the coefficients of du and dv must vanish separately,

we have

La+Mb + Nc=0, La + Mb' + Nc =0.

Consequently we have

L = \(bc'-b'c), M=X(ca'-c'a), N=\(ab' -a'b),

where A, is indeterminate, and

L2 +M2 +N 2 = X2
{{a

2 + b
2 + c

2

)
(a'

2 + b'
2 + c'

2

)
- {aa' + bb' + cc')

2

},

= \2 (EG-F 2

).

(See Lessons on Higher Algebra, Art. 26).

405. Let us now examine the result of making in the

absolute term, given Art. 403, the same substitution, viz.

* We use Roman letters in order that the a, b, o of p. 224 may not be confounded

with «, b, c used in a different sense in this article.
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L=\(bc' — b'c), &c. Now an equation which we had occasion
to use in the theory of conies (see Conies, Art. 386) enables
us to write this result in a more simple form. Let us write
down the equation of a conic

a.r
2 + by* + cs

2 + 2\yz 4 2mzx 4 2na-y = 0,

and substituting for x,y,z; a + Tea', b + W, c + led ; let us write

the result V+ 2lcV+ k2 U\ then

UU' - F2 = (be - V) {be' - cb'Y + (ca - m2

)
{ca' - da)

2 + &c.

In fact, either side of this equation, equated to nothing, ex-

presses the condition that the line joining the points abc, a'b'c'

should touch the conic. The equation however may be verified

by actual multiplication. What we want to calculate then is

X'{UU'-V 2

) where

U = aa* + W 4 cc' + 2\bc 4 2mca + 2na5,

U' = a«'
2 + b&'

2
-I- cc'

2 4 2lZ>'c' + 2mc'a' + 2na'b',

V= &ad + hbb' + ccc 4 1 {be + b'c) 4 m {ca 4 ca) + n {ab' + a'b).

Now let us differentiate the equation Ldx + Mdy + Ndz = 0,

and we get

LtPx + MPy + MTs
= - {ndx

2 4 bdy2 + cdz2 + 2\dydz + 2mdzdx 4 2ndxdy).

If now we write

d 2x = adit? 4 a'dudi) 4 a"dv*,

d2

y = pdu2 + /3'dudv 4 P"dv\

d 2
z = <ydu

2 4 y'dudv 4 y"dv
2

,

and making these substitutions on the left-hand side of the

preceding equation, substitute for dx, dy, dz, from Art. 403,

we get, by equating the coefficients of dii\ dude, and dv
2

.

La 4 Mp 4 A 7 = -I U, La' 4 MP' 4AY = - V,

La" + MP" + N7" = -U',

and what we want to calculate is the value of

X2 {{La 4 M0 4 A 7) {La" 4 Mp" 4 AY') - {La! 4 MP' 4A7 ')
2

},

when for L, M, N are substituted the values in Art. 404.
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The result Is X4 multiplied by

a, 5, c

a, o , c

a, /3, 7 a
,

/3 , 7

a, b, c x a, J, c

a', 5', c' a', J', c

Now if these products be expanded according to the ordinary

rule for multiplication of determinants, they give the difference

between the two determinants*

aa" + /3(3" + 77", aa" + 5/3" + cy", a'a" + 5'/3" + c'7"

aa + 5/3 -f cy, a2 + b
2 + c

8

,
aa' + bb' -+ cc'

a
'

a + ftp + c'y, aa' + bb' + cc', a' + b" + c'
2

B« + /3'
2 + y'\ aa! + 5/3' + 07', a'a' + Vff + c'y'

ad 4- 5/8' + cy', a? + b
2 + c

2

, aa' + 55' 4 cc'

a'a' + 5'/3' + c'7', aa' + 55' + cc, a
n + b'

2 + c'
2

406. Now it is easy to show that the terms in these deter-

minants are functions of E, F, G and their differentials. Ee-

ferring to the definitions of a, b, c, a, d, a", &c. (Arts. 403, 405)

it is obvious that

da , da _ da „ _ a'a' „—
aw

'

dv du,"
1 dv"1

'

whence since

E=a2 + b
2 + c

2

, F=aa' + bb' + cc', G = a" + b'
2 + c'

2

,

aa+ 5/3 + 07 = i^,

dG

az'+bP + cy'=\
d~,

a'a' + 573' + c'7' = J^ , a'a" + 5'/3" + c'7" = |^ ,

«a'+5^' + C7"=^-(a'a' + 5'/3+C7') = ^-|^7 ,a
7

!*

0% ^ a«

It will be seen that these equations express in terms of E, F, G
every term in the preceding determinants except the leading

a'a + 5'/3 +c'7 = ^ -(aa' +5/3' +cy') = ^-\

* I owe to Mr. Williamson the remark that the application of thia rule exhibits

the result in a form which manifests the truth of Gauss's theorem.
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one in each. To express these, differentiate, with regard to v,

the equation last written, and we have

Again, differentiate, with regard to w, the equation

«v +^ +cy=if

,

and we have

cm \ du du duj

Now because -j- = -=-
, &c, the quantities within the brackets

in the last two equations are equal. And since the leading

term in each determinant is multiplied by the same factor, in

subtracting the determinants we are only concerned with the

difference of these terms, and the quantity within the brackets

disappears from the result. This result is X4
multiplied by

the difference of the determinants

and

<FF
t
dlE

dudv a
dv*

'

%
dE

* du 1

dF dE
du * dv '

<PQ
* d>/ '

, dE
' dv 1

. da

dF
dv

1
aa

^ du ' 1
d6?

<ZE . £?«=

_ w
'" du

du

F

a

We get the measure of curvature by dividing the quantity

now formed, by (La
-I- HP + N*)* whose value is given (Art. 404)

when the common factor X* disappears and the result is ob-

viously a function of E, F, G and their differentials. Gauss's

theorem is therefore proved.
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We add the actual expansion of the determinants, though

not necessary to the proof. Writing the measure of curvature

K, we have

(dE dG _dE dG _^dEdF dF dF_^dF dG)

\du dv dv du dv dv du dv du du)

G
{dFdG_

2
dEdF/dE\ 2

'

[du du du dv \dv J

,„_ T^tFE n d 2F d''G

(Liouville's Monge, p. 523).*

407. We may consider two systems of curves traced on

the surface, for one of which u is constant, and for the other v

;

so that any point on the surface is the intersection of a curve

of each system. The expression then ds' — Edit* + iFdudv + Gdv*

shows that >J(E) du is the element of the curve, passing through

the point, for which v is constant; and /J(G)dv is the element

of the curve for which u is constant. If these two curves

intersect at an angle to, then since ds is the diagonal of a

parallelogram of which *J(E) du, *J{G) dv are the sides, we

have coso)= ,,,-,,-»-, while the area of the parallelogram being
\f\EG)

dadd sin<o = \/(EG — F2
) dudv. If the curves of the system u

cut at right angles those of the system v, we must have F= 0.

A particular case of these formulas is when we use geodesic

polar co-ordinates in which case we saw that we always have

an expression of the form ds* = dp* + P2
d(o". Now if in the

formulas of the last article we put F=0, E= constant, it

becomes

* MM. Bertrand, Diguet, and Puiseux (see Liouville, Vol. xiii., p. 80 ; Appendix

to Monge, p. 583) hare established Gauss's theorem by calculating the perimeter and

area of a geodesic circle on any surface, whose radius, supposed to be very small, is s.

ITS 7TS*
They find for the perimeter 2tts — v, pp , , and for the area irs 1—

. And of course

the supposition that these are unaltered by deformation implies that RR' is constant.



CURVES TRACE*!} ON SURFACES. 337

and if we put

13=1, G = P\ u=p, A'=^, we have ^+-^,=0,

an equation which must be satisfied by the function P on any
surface, if Pdm expresses the element of the arc of a geodesic

circle. Mr. Roberts verifies (Cambridge and Dublin Mathe-

matical Journal, Vol. in., p. 161) that this equation is satisfied

v
by the function -^— on a quadric.J smw ^

408. Gauss applies these formulae to find the total curvature,

in his sense of the word, of a geodesic triangle on any surface.

The element of the area being Pdcodp, and the measure of

1 d*P
curvature being — -_ -^ ; the total curvature is found by

d''P
twice integrating — -j-^ dp dm. Integrating first with respect

dp

to p, we get ( C — -j-
)
da. Now if the radii are measured

from one vertex of the given triangle, the integral is plainly

to vanish for p = ; and it is plain also that for p = we must

dP
have t- = 1 : for as p tends to vanish, the length of an element

dp

perpendicular to the radius tends to become pda>. Hence the

first integral is da> (l - -j-
J

.

This may be written in a more convenient form as follows

:

Let be the angle which any radius vector makes with the

element of a geodesic ab. Now
since aa = Pd<o, bb'= (P+dP) da ;

and

if cb = aa'i we have b'c = dPdco
)
and

dP
the angle b'ac=^- dm. But b'ac is° dp

evidently the diminution of the angle

dP
8 in passing to a consecutive point ; hence dd = — -j- dco. The

integral just found is therefore dm + d0, which integrated a

second time is m + 6' - 0", where o> is the angle between the

z
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two extreme radii vectores which we consider, and 0', 6" are

the corresponding values of 0. If we call A, B, C the internal

angles of the triangle formed by the two extreme radii and

by the base, we have a> = A, 6'=B, 6" = ^ — C, and the total

curvature is A + B+G—ir. Hence the excess over 180° of

the sum of the angles of a geodesic triangle is measured by

the area of that portion of a unit sphere which corresponds to

the directions of the normals along the sides of the given

triangle.

The portion on the unit sphere corresponding to the area

enclosed by a geodesic returning upon itself is half the sphere.

For if the radius vector travel round so as to return to the

point whence it set out the extreme values of & and 8" are

equal, while a has increased by 27r. The measure of cur-

vature is therefore 2ir or half the surface of the sphere.*

* For some other interesting theorems, relative to the deformation of surfaces,

see Mr. Jellett's paper "On the Properties of Inextensible Surfaces," Transactions

of the Royal Irish Academy, Vol. XXII. I have not happened to meet with what

would appear to be valuable memoirs by MM. Boivr and Bonnet, on the Theory

of Surfaces applicable to one another, to one of which was awarded the Prize of

the French Academy in 1860.
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CHAPTER XIII.

FAMILIES OF SURFACES.

409. Let the equations of a curve

</> (x, y, z, c„ c.;. . .cj = Q, f (as, y, *, c
J}

c„. . .c„) = 0,

include m parameters, or undetermined constants: then it is

evident that if n equations connecting these parameters be

given, the curve is completely determined. If, however, only

n — 1 relations between the parameters be given, the equa-

tions above written may denote an infinity of curves : and the

assemblage of all these curves constitutes a surface whose

equation is obtained by eliminating the n parameters from the

given b+1 equations ; viz. the n — 1 relations, and the two

equations of the curve. Thus, for example, if the two equa-

tions above written denote a variable curve, the motion of

which is regulated by the conditions .that it shall intersect w — 1

fixed directing curves, the problem is of the kind now under

consideration. For by eliminating x, y}
z between the two

equations of the variable curve and the two equations of any

one of the directing curves, we express the condition that these

two curves should intersect, and thus have one relation between

the n parameters. And having n - 1 such relations we find

the equation of the surface generated, in the manner just stated.

We had (Art. 109) a particular case of this problem.

Those surfaces for which the form of the functions
<f>

and i/r

is the same, are said to be of the same family, though the

equations connecting the parameters may be different. Thus

if the motion of the same variable curve were regulated by

several different sets of directing curves, all the surfaces

generated would be said to belong to the same family. In

several important cases the equations of all surfaces belonging

to the same family can be included in one equation involving

z2
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one or more arbitrary functions ; the equation of any individual

surface of the family being then got by particularizing the form

of the functions. If we eliminate the arbitrary functions by

differentiation, we get a partial differential equation, common

to all surfaces of the family, which ordinarily is the expression

of some geometrical property common to all surfaces of the

family, and which leads more directly than the functional equa-

tion to the solution of some classes of problems.

410. The simplest case is when the equations of the variable

curve include but two constants.* Solving in turn for each of

these constants, we can throw the two given equations into

the form u = c , v = c
2 ; where u and v are known functions of

a*, y, z. In order that this curve may generate a surface we

must be given one relation connecting c,, c
2 ,

which will be of

the form c
t
= $ (c

2)
; whence putting for c, and c

2
their values,

we see that, whatever be the equation of connection, the equa-

tion of the surface generated must be of the form u —
<f>

(v).

We can also in this case readily obtain the partial diffe-

rential equation which must be satisfied by all surfaces of the

family. For if U= represents any such surface, U can only

differ by a constant multiplier from u — <j) (v). Hence we have

\ JJ= u — <j>(v), and differerrdating

with two similar equations for the differentials with respect to

y and z. Eliminating then X and cf>' (u), we get the required

partial differential equation in the form of a determinant

u« u„ Us

= 0.

In this case u and v are supposed to be known functions of the

co-ordinates ; and the equation just written establishes a relation

of the first degree between U
i:
U^ U

s
.

If the equation of the surface were written in the form

* If there were but one constant the elimination of it would give the equation of

a definite surface, not of a family of surfaces.
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2 -$(«,«/)= ; we- should have Z7
3
= l, U

x

= -p, U
2
= -q,

where p and q have the usual signification, and the partial

differential equation of the family is of the form Pp + Qq = B,

where P, Q, R are known functions of the co-ordinates. And
conversely the integral of such a partial differential equation,

which (see Boole's Differential Equations, p. 322) is of the form

u=
<f> («), geometrically represents a surface which can be gene-

rated by the motion of a curve whose equations are of the

form w = c
1 ,

w = c
2

.

The partial differential equation affords the readiest test

whether a given surface belongs to any assigned family. We
have only to give to £f , U

2, U3}
their values derived from the

equation of the given surface, which values must identically

satisfy the partial differential equation of the family if the

surface belong to that family.

411. If it be required to determine a particular surface of

a given family u =
<f>

(t>), by the condition that the surface shall

pass through a given curve, the form of the function in this

case can be found by writing down the equations u = c„ v = c
2,

and eliminating x, y, z between these equations aDd those 0-

the fixed curve, when we find a relation between c
t
and c

2,

or between u and v, which is the equation of the required

surface. The geometrical interpretation of this process is that

we direct the motion of a variable curve u = c
iy

v = c
a
by the

condition that it shall move so as always to intersect the given

fixed curve. All the points of the latter are therefore points

on the surface generated.

If it be required to find a surface of the family u=<f)(v)

which shall envelope a given surface, we know that at every

point of the curve of contact U^ Z7
2 , Us ,

&c. have the same

value for the fixed surface and for that which envelopes it.

If then in the partial differential equation of the given family,

we substitute for U
t , Z7

2 , Ua
their values derived from the equa-

tion of the fixed surface, we get an equation which will be

satisfied for every point of the curve of contact, and which

therefore combined with the equation of the fixed surface deter-

mines that curve. The problem is therefore reduced to that
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considered in the first part of this article ; namely, to describe

a surface of the given family through a given curve. All this

theory will be better understood from the following examples

of important families of surfaces belonging to the class here

considered ; viz. whose equations can be expressed in the form

u = cp (v).

412. Cylindrical Surfaces. A cylindrical surface is gene-

rated by the motion of a right line, which remains always

parallel to itself. Now the equations of a right line include

four independent constants ; if then the direction of the right

line be given, this determines two of the constants, and there

remain but two undetermined. The family of cylindrical sur-

faces belongs to the class considered in the last two articles.

Thus if the equations of a right line be given in the form

x = Iz +p, y = mz + q ; I and in which determine the direction

of the right line are supposed to be given ; and if the motion

of the right line be regulated by any condition (such as that

it shall move along a certain fixed curve, or envelope a certain

fixed surface) this establishes a relation between p and q, and

the equation of the surface comes out in the form

x — lz — § (y — mz)

.

More generally, if the right line is to be parallel to the

intersection of the two planes ax-\-by + cz, a'x + b'y + c'z, its

equations must be of the form

ax + hy + cz — a, a'x + b'y + c'z = /3,

and the equation of the surface generated must be of the form

ax + by + cz = ^> [a'x + b'y + c'z).

Writing ax -+ by + cz for w, and a'x + b'y + c'z for v in the

equation of Art. 410, we see that the partial differential equa-

tion of cylindrical surfaces is

[be' - b'c) L\ + {ca' - c'a) £7 + (ab' - a'b) U
a
= 0,

or (Ex. 3, p. 26) U
x
cosa + Z7

2
cos/3 + Z7

8
C0S7 = 0, where a, ft, 7

are the direction-cosines of the generating line. Eemembering
that Z7

1?
C

2 ,
U

a
are proportional to the direction-cosines of the

normal to the surface, it is obvious that the geometrical mean-
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ing of this equation is that the tangent plane to the surface
is always parallel to the direction of the generating line.

Ex. 1. To find the equation of the cylinder whose edges are parallel to x = h,
y = mz, and which passes through the plane curve z = 0, <j> (x, y) = 0.

Ans. <p(x — lz, y- mz) = 0.

Ex. 2. To find the equation of the cylinder whose sides are parallel to the
intersection of ax + by + cz, a'x + Vy + c'z, and which passes through the intersec-
tion of ax + py + yz = S, F(x, y, z) = 0. Solve for x, y, z between the equations
ax + by + cz = a, a'x + b'y + c'z = v, ax + fly + yz = S, and substitute the resulting
values in F (x, y, z) = 0.

Ex. 3. To find the equation of a cylinder, the direction-cosines of whose edges
are I, m, n, and which passes through the curve U=0, V^0. The elimination
may be conveniently performed as follows : If x', y', z' be the co-ordinates of the
point where any edge meets the directing curve ; x, y, z those of any point on

the edge, we have —r- = "-—^ = . Calling the common value of these
l vi %

functions 8, we have

x' — x — Id, y' — y — w0, z' = z — nd.

Substitute these values in the equations U = 0, V = 0, which x'y'z' must satisfy

;

and between the two resulting equations eliminate the unknown 6, the result will

be the equation of the cylinder.

Ex. 4. To find the cylinder, the direction-cosines of whose edges are I, m, n,

' and which envelopes the quadric Ax* + By2 + Cz2 = 1. From the partial differential

equation, the curve of contact is the intersection of the quadric with

Alx + Bmy + Cnz = 0.

Proceeding then as in the last example the equation of the cylinder is found to be

{AP + Bm2 + Cn2
) (Ax

2 + By2 + Cz2 - 1) = {Alx + Bmy + Cnz)2.

413. Conical Surfaces. These are generated by the motion

of a right line which constantly passes through a fixed point.

Expressing that the co-ordinates of this point satisfy the equa-

tions of the right line, we have two relations connecting the

four constants in the general equations of a right line. In this

case therefore the equations of the generating curve contain

but two undetermined constants, and the problem is of the kind

discussed Art. 410.

Let the equations of the generating line be

x-a _ y — /3 _ z — y
I m n '

where a, /S, 7 are the known co-ordinates of the vertex of the

cone, and I, m, n are proportional to the direction-cosines of the

generating line; and where the equations, though apparently
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containing three undetermined constants, actually contain only

two, since we are only concerned with the ratios of the quan-

tities I, m, n.

Writing the equations then in the form

x— a _ I y- /8 _m^
z — 7 w ' z — 7 w '

we see that the conditions of the problem must establish a

relation between - and — , and that the equation of the cone
n »

must be of the form - J
'• — :

7 \s - 7/z

It is easy to see that this is equivalent to saying that the

equation of the cone must be a homogeneous function of the

three quantities x — a,y — fi,z — <y; as may also be seen directly

from the consideration that the conditions of the problem must

establish a relation between the direction-cosines of the gene-

rator : that these cosines being ~-rp= 5
—-=• , &c. any equation

expressing such a relation is a homogeneous function of Z, m, n
7

and therefore of x — a, y - /3, z — 7, which are proportional

to I, m, n.

When the vertex of the cone is the origin, its equation is

of the form - = <£(-); or, in other words, is a homogeneous

function of a?, y, z.

The partial differential equation is found by putting

m= , v = - , in the equation of Art. 410, and when
z — 7 ' z — 7

* '

cleared of fractions is

z — 7, 0, - (x — a)

0, *-7, -(y-£) =0,

or (x-a) U
r +(y-f3) U2

+(z-y) tf
3
= 0.

This equation evidently expresses that the tangent plane at

any point of the surface must always pass through the fixed

point a/37.
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We have already given in p. 83 the method of forming the

equation of the cone standing on a given curve; and p. 212

the method of forming the equation of the cone which envelopes

a given surface.

414. Gonoidal Surfaces. These are generated by the motion

of a line which always intersects a fixed axis and remains

parallel to a fixed plane. These two conditions leave two of

the constants in the equations of the line undetermined, so that

these surfaces are of the class considered Art. 410. If the axis

is the intersection of the planes a, /3, and the generator is to

be parallel to the plane 7 ; the equations of the generator are

a = Cj/3, 7 = c
2,

and the general equation of conoidal surfaces

is obviously -5 = $ (7).*

The partial differential equation is (Art. 410)

P^ - a/3
t ,

/3a, - a/3
2 ,

/3a
3
- a/3

3

%, 7„> %
where a = a.

1
x + a

iy + a
3
s + a

4, &c. The left-hand side of the

equation may be expressed as the difference of two deter-

minants ( DX73) - a
( Ufi2%) = 0.

This equation may be derived directly by expressing that

the tangent plane at any point on the surface contains the gene-

rator : the tangent plane, therefore, the plane drawn through

the point on the surface, parallel to the directing plane, and

the plane a'/3— a/3' joining the same point to the axis, have

a common line of intersection. The terms of the determinant

just written are the coefficients of x, y, z in the equations of

these three planes.

In practice we are almost exclusively concerned with right

conoids ; that is, where the fixed axis is perpendicular to the

directing plane. If that axis be taken as the axis of z, and

the plane for plane of xy, the functional equation isy = x<f> (a),

and the partial differential equation is x £7, + y D3
= 0.

* In like manner the equation of any surface generated by the motion of a

a _ (y\

line meeting two fixed lines a/3, yS must be of the form ^-cp\^j.

:0,
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The lines of greatest slope (Art. 400) are in this ease always

projected into circles. For in virtue of the partial differential

equation just written, the equation of Art. 400,

U
i
dx-U^dy = 0,

transforms itself into xdx + ydy = 0, which represents a series

of concentric circles. The same thing is evident geometrically :

for the lines of level are the generators of the system; and

these being projected into a series of radii all passing through

the origin, are cut orthogonally by a series of concentric

circles.

Ex. 1. To find the equation of the right conoid passing through the axis of

z and through a plane curve, whose equations are x = a, F {y, z) = 0. Eliminating

then x, y, z between these equations and y = c^x, z = c2 , we get F^^t, c2) = ;

or the required equation is F[— , z 1 = 0.

Wallis's cono-cuneus is when the fixed curve is a circle [x = a, ?/
2 + z2 = r2

].

Its equation is therefore a2
y
2 + x2z2 = r2x2

.

Ex. 2. Let the directing curve be a helix, the fixed line being the axis of the

cylinder on which the helix is traced. The equation is that given Ex. 1, p. 300.

This surface is often presented to the eye, being that formed by the under surface

of a spiral staircase.

415. Surfaces of Revolution. The fundamental property of

a surface of revolution is that its section perpendicular to its

axis must always consist of one or more circles whose centres

are on the axis. Such a surface may therefore be conceived

as generated by a circle of variable radius whose centre

moves along a fixed right line or axis, and whose plane is

perpendicular to that axis. If the equations of the axis be

—=— = =
, then the generating circle in any posi-

tion may be represented as the intersection of the plane per-

pendicular to the axis Ix + my + nz = c
1}
with the sphere whose

centre is any fixed point on the axis

These equations contain but two undetermined constants; the

problem therefore is of the class considered (Art. 410) and the

equation of the surface must be of the form

(x - a)
2 + (y- /S)

2 + (« - v)
2 = ^ [he + my + nz).
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When the axis of z is the axis of revolution we may take the
origin as the point afiy, and the equation becomes

a? + tf + z> = 4>(»), or z = f{x'
2

+y*).

The partial differential equation is found by the formula of

Art. 410 to be

I, m, n

x - a, y - /3, z - 7 =0,

or {m{z-j)- n {y-P)} Z7
t

+ {n(x-o)-l{z-y)) 11 + {I(y- /S) -m (as- a)} Z7
3
= 0.

When the axis of z is the axis of revolution this reduces to

yU
t
-xU

t
= Q.

The partial differential equation expresses that the normal

always meets the axis of revolution. For if we wish to ex-

press the condition that the two lines

x — o. y—fi 2-7 x — x' y — y' z-

l U. U.

should intersect ; we may write the common value of the equal

fractions in each case, 6 and 6
'. Solving then for x, y1

z, and

equating the values derived from the equations of each line,

we have

a + W^x' + Uf, 0+m6 = y'+Ujy, y + nd = z'+U
3
6'

;

whence eliminating 6, & the result is the determinant already

found

x' -a, y'-P, z' - 7 -0.

416. The equation of the surface generated by the revo-

lution of a given curve round a given axis, is found (Art. 411)

by eliminating x, y, z between

Ix + my + nz (x- ay+(y-f3y+(z- 7y=v,

and the two equations of the curve ; replacing then u and v by

their values. We have already had an example of this (Ex. 3,

p. 82), and we take, as a further example, " to find the surface
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generated by the revolution of a circle [y = 0, (x — af 4 z' = r
2

]

round an axis in its plane [the axis of z]."

Putting z = w, x*+ y
li = v and eliminating between these

equations, and those of the circle, we get

y(v)- ay+ u* = r\ or W(x* +f)-ay + s
2 = r*,

which cleared of radicals is

(x
2 + f + z

2 + o" - rj = 4a2
{x

2 + f).

It is obvious that when a is greater than r, that is to say, when

the revolving circle does not meet the axis, neither can the

surface, which will be the form of an anchor ring, the space

about the axis being empty. On the other hand, when the

revolving circle meets the axis, the segments into which the axis

divides the circle generate distinct sheets of the surface, inter-

secting in points on the axis z = V(»"
2 -«2

), which are nodal

points on the surface.

The sections of the anchor ring by planes parallel to the

axis are found by putting y = constant in the preceding equa-

tion. The equation of the section may immediately be thrown

into the form SS' = constant, where 8 and S' represent circles.

The sections are lemniscates of various kinds (see fig., Higher

Plane Curves, p. 204). It is geometrically evident, that as the

plane of section moves away from the axis, it continues to cut

in two distinct ovals, until it touches the surface \jj
= a — r\

when it cuts in a curve having a double point [Bernoulli's Lem-
niscate] ; after which it meets in a continuous curve.

Ex. Verify that x3 + y
3 + z3 - Zxyz = r3 is a surface of revolution.

Ans. The axis of revolution is x = y = 2.

417. The families of surfaces which have been considered

are the most interesting of those whose equations can be ex-

pressed in the form u -
<f> (»). We now proceed to the case

when the equations of the generating curve include more than

two parameters. By the help of the equations connecting

these parameters, we can, in terms of any one of them, express

all the rest ; and thus put the equations of the generating curve

into the form >

F{x,y, z, c,
<f>

(c), yjr{c), &c.j = 0, f{x,y, z, c, <£ (c), f (c), &c.}= 0.
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The equation of the surface
, generated is obtained by elimi-

nating c between these equations
; and, as has been already

stated, all surfaces are said to be of the same family for which
the form of the functions F and / is the same, whatever be the
forms of the functions <£, ^, &c. But since evidently the
elimination cannot be effected until some definite form has
been assigned to the functions

</>, ^, &c. it is not generally
possible to form a single functional equation including all sur-
faces of the same family: and we can only represent them,
as above written, by a pair of equations from which there
remains a constant to be eliminated. We can however elimi-

nate the arbitrary functions by differentiation and obtain a
partial differential equation, common to all surfaces of the same
family

; the order of that equation being, as we shall presently
prove, equal to the number of arbitrary functions 0, yjr, &c.

It is to be remarked however that in general the order of
the partial differential equation obtained by the elimination of
a number of arbitrary functions from an equation is higher than
the number of functions eliminated. Thus if an equation in-

clude two arbitrary functions
<f>,

yjr, and if we differentiate with
respect .to x and y which we take as independent variables,

the differentials combined with the original equation form a
system of three equations containing four unknown functions

<f), ^r, <j>', yjr'. The second differentiation (twice with regard

to x, twice with regard to y, and with regard to x and y)
gives us three additional equations ; but then from the system

of six equations it is not generally possible to eliminate the

six quantities
<f>, ty, <£', ijr', <£", \}r". We must therefore pro-

ceed to a third differentiation before the elimination can be

effected. It is easy to see, in like manner, that to eliminate

n arbitrary functions we must differentiate 2n — l times. The

reason why, in the present case, the order of the differential

equation is less, is that the functions eliminated are all functions

of the same quantity.

418. In order to show this it is convenient to consider first

the special case, where a family of surfaces can be expressed

hy a single functional equation. This will happen when it is
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possible by combining the equations of the generating curve

to separate one of the constants so as to throw the equations

into the form u = c
l

; F(x, y, z, cv c
2
...ej = 0. Then express-

ing, by means of the equations of condition, the other constants

in terms of c
t , the result of elimination is plainly of the form

F{x, y, z, it,
<f>

(u), i/r (u), &c.} =0.

Now if, we denote by F
lt

the differential with respect to x of

the equation of the surface, on the supposition that u is con-

stant, we have

„ _ dF tt v dp TT IP dF

Now in these equations, the derived functions $', ty', &c. only

enter in the term -=-
; they can therefore be all eliminated

together; and we can form the equation, homogeneous in

V, v» ua
3. u»
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These are the first integrals of the final differential equation

of the w
ta

order. In like manner we can form \n (n — 1 ) equa-

tions of the second order, each containing two arbitrary func-

tions, and so on.

419. If we take x and y as the independent variables, and

as usual write dz=pdx + qdy
1
dp = rdx-t sdy^&x,., the process

of forming these equations may be more conveniently stated

as follows :
" Take the total differential of the given equation

on the supposition that u is constant,

F
t
dx + F^dy + F

s
[pdx + qdy) = ;

put dy = mdx, and substitute for m its value derived from the

differential of u = 0, viz.

u^dx + u
2
dy + u

3
(pdx + qdy) = 0."

For if we differentiate the given equation with respect to

x and y, we get

dF

dF
and the result of eliminating -j- from these two equations is

the same as the result of eliminating m between the equations

K +PFs + m (
F

t + 2Fi) = °> M
»
+-P"» + m (

M
2 + 2ua) = °-

It is convenient in practice to choose for one of the equations

representing the generating curve, its projection on the plane

of xy\ then since this equation does not contain z, the value

of m derived from it will not contain p or q, and the first

differential equation will be of the form

p + qm = Bj

B being also a function not containing p or q. The only terms

then containing r, s, or * in the second differential equation are

those derived from differentiating p + qm-, and that equation

will be of the form
r + 2sm + tm* = S,

where S may contain x, y, z, p, q, but not r, s, or t. If now
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we had only two functions to eliminate, we should solve for

these constants from the original functional equation of the

surface, and from p + qm = E ; and then substituting these values

in to and in S, the form of the final second differential equation

would still remain
r 4 2sto' -f tm'"

2 = 81

,

where to' and 8' might contain as, y, z, p, q. In like manner

if we had three functions to eliminate, and if we denote the

partial differentials of z of the third order by a, /3, y, 8, the

partial differential equation would be of the form

a + 3m/3 + Zm'<y + 711*8 = T.

And so on for higher orders. This theory will be illustrated

by the examples which follow.

420. Surfaces generated by lines parallel to a fixed plane.

This is a family of surfaces which includes conoids as a par-

ticular case. Let us in the first place take the fixed plane

for the plane of xy. Then the equations of the generating

line are of the form z = c„ y = c^x -\- c
3

. The functional equa-

tion of the surface is got by substituting in the latter equation

for c
2, <f> («), and for c

g ty [z). Since in forming the partial

differential equation we are to regard z as constant, we may
as well leave the equations in the form z = cv y = cx + c.

These give us

p + qm = 0, to = c
2
.

According as we eliminate c
3

or c
2 , these equations give us

p + qc
2
= 0, px\ qy = qc

3
. There are therefore two equations

of the first order, each containing one arbitrary function, viz.

P+ 1$ (
a
) = °) px+qy = qf (z).

To eliminate completely arbitrary functions, differentiate

p> + qm = 0, remembering that since to = c
2

it is to be regarded
as constant when we get

r + 2sm + tm? = 0,

and eliminating m by means of p + qm = 0, the required equa-
tion is

q'r-^pqs+p^t-O,
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Next let the generating line be parallel to ax + by + cz ; its

equations are

ax + by + cz = Cj, y=^c
i
x+c

s

-

1

and the functional equation of the family of surfaces is got by
writing for c

2
and c

a,
functions of ax + by + cz. Differentiating,

we have

a + cp +m (b + cq) = 0, w. = c
2
.

The equations got by eliminating one arbitrary function are

therefore

a + cp + (b + cq)
<f>

{ax + by + cz) = 0,

(a + cp) x + (b + cq) y=(b + cq)y}r [ax -\-by + cz).

Differentiating a-f bm + c(p + mq), and remembering that m
is to be regarded as constant, we have

r + 2sm + brri' = 0,

and introducing the value of m already found

(b + cqf r - 2 [a + cp) (b + cq) s+(a + cp)*t= 0.

421. This equation may also be arrived at by expressing

that the tangent planes at two points on the same generator

intersect, as they evidently must, on that generator. Let

a, /3, 7 be the running co-ordinates, x, y, z those of the point

of contact ; then any generator is the intersection of the tan-

gent plane
ry-z=p(a-x) + q(/3-y),

with a plane through the point of contact parallel to the fixed

plane
a (a - x) + b (/3 -y) + c (7 - z) = 0,

whence (a + cp) (a - x) + [b + cq) [fi-y) = 0.

Now if we pass to the line of intersection of this tangent plane

with a consecutive plane, a, /9, 7 remain the same, while

x
i V-i

z
i Pi $ var7- Differentiating the equation of the tangent

plane, we have

(rdx + sdy) (a-x) + (sdx + tdy) (f3-y)= 0,

And eliminating a-x, @-y,

(b -t cq) (rdx + sdy) = (a + cp) (sdx + tdy).

A A
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But since the point of contact moves along the generator which

is parallel to the fixed plane, we have

adx + bdy + cdz = 0, or (a + cp) dx + (b + cq) dy = 0.

Eliminating then dx, dy from the last equation, we have, as before,

(b + cqf r-2(a + cp)(b + cq) s + (a + cpf t= 0.

422. Surfaces generated by lines which meet a fixed axis.

This class also includes the family of conoids. In the first

place let the fixed axis be the axis of z ; then the equations

of the generating line are of the form y = c
t
x, z = c

2
x + c

8 ; and

the equation of the family of surfaces is got by writing in the

II

latter equation for c
2
and c

s , arbitrary functions of - . Diffe-

rentiating, we have »i = c
1 , p + niq = c

2 , whence

2>x + qy = x<f>(£j, and z-px- qy = ^ (f)
•

Differentiating again, we have r + 2sm + tm2 = 0, and putting

for m, its value =c, = -, the required differential equation is

rx'* + 2sxy + ty* = 0.

This equation may also be obtained by expressing that two

consecutive tangent planes intersect in a generator. As, in

Art. 421, we have for the intersection of two consecutive tan-

gent planes

(rdx + sdy) (a. — x) + (sdx + tdy) (fi
— y) = 0.

But any generator lies in the plane ay=fix, or (a— x)y = (/3—y) x.

Eliminating therefore

x (rdx + sdy) + y (sdx -f- tdy) = 0.

dv Q v
But -£ = — = — . Therefore, as before, rx2 + 2sxy + ty* = 0.

dx a x ' ° J

More generally let the line pass through a fixed axis a/3,

where a. = ax + by+cz + d, /3 = dx + b'y + c'z + d'. Then tbe

equations of the generating line are a = e,/3, y = c
i
x-\- c

s , and the

equation of the family of surfaces is y = x<j> -5 + i/r ^ . Diffe-

rentiating, we have

m = c
a , a + cp + m (b + cq) — c, [d -\-c'p + m (b' + c'q)}.
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Differentiating again, we have r + Ism + trri
1 = 0, and putting

in for in from the last equation, the required partial differential

equation is

{[a + cp)p-{a: + c'p)a>;'t

-2{(a + cp)fi- {a' + c» a} {[I + cq) - [V + c'q) a} s

+ {{b+cq)$- {V + c'q) a}
2
r = 0.

423. If the equation of a family of surfaces contain n

arbitrary functions of the same quantity, and if it be required

to determine a surface of the family which shall pass through

n fixed curves, we write down the equations of the generating

curve u = c„ F(x, y, z, c , c
2,

&c.) = 0, and expressing that the

generating curve meets each of the fixed curves, we have a

sufficient number of equations to eliminate c„ c
2,

&c. Thus

to find a surface of the family x + y§ (a) + yfr (a) = which shall

pass through the fixed curves y = a, F(x, z) = 0; y = —a,

F
t
(x, z) = 0. The equations of the generating line being z = c„

x=yc
i
+ c

a , we have, by substitution,

F(ac.
2
+ <s„ cj = 0, F

t
(c, - ac^ c,) = 0,

or replacing for c„ c
3,

their values,

F{x+ e, (a-y), a} =0, F, [x-c
2
(a + y), z\ = 0,

by eliminating c
2
between which the required surface is found.

Ex. Let the directing curves be

y = a
< % + % = x

' y = ~ a
<

** + * = <?,

we eliminate c2 between

{g + «,(q-lQ}' g = 1 {a _«i (« + 1()}« + ,« = A
b2 c-

Solving for c2 from each, we have

- J(c2 — z1
) — x ., . ...

c
v

_
x — 4(c — <n .

a-y ~ a + y

The result ia apparently of the eighth degree, but is resolvable into two conoida

distinguished by giving the radicals the same or opposite signs in the last equation.

424. We have now seen that when the equation of a family

of surfaces contains a number of arbitrary functions of the same

quantity, it is convenient, in forming the partial differential

AA2
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equation, to substitute for the equation of the surface, the two

equations of the generating curve. It is easy to see then

that this process is equally applicable when the family of

surfaces cannot be expressed by a single functional equation.

The arbitrary functions which enter into the equations (Art. 417)

are all functions of the same quantity, though the expression of

that quantity in terms of the co-ordinates is unknown. If then

differentiating that quantity gives dy = mdx, we can eliminate

the unknown quantity ra, between the total differentials of the

two equations of the generating curve, and so obtain the partial

differential equation required. In practice it is convenient to

choose for one of the equations of the generating curve, its

projection on the plane xy.

For example, let it be required to find the general equation

of ruled surfaces ; that is to say, of surfaces generated by the

motion of a right line. The equations of the generating line

are z = c
l
x + c

3 , y = c^x + c
t , and the family of surfaces is ex-

pressed by substituting for c
2 , c

s , c
4

arbitrary functions of e,.

Differentiating, we have p + mq = cn m = c
2

. Differentiating

the first of these equations, m being proved to be constant by
the second, we have r + Ism -f tin

1 = 0. As this equation still

includes m or c
2, the expression for which, in terms of the

co-ordinates is unknown, we must differentiate again, when we
have a. + 3/3m + 3ym'

2 4 Bms = 0, where a, j3, y, 8 are the third

differential coefficients. Eliminating m between the cubic and

quadratic just found, we have the required partial differential

equation. It evidently resolves itself into the two linear equa-

tions of the third order got by substituting in turn for m in

the cubic the two roots of the quadratic.

This equation might be got geometrically by expressing that

the tangent planes at three consecutive points on a generator

pass through that generator. The equation dz=pdx + qdy is

a relation between l,p, q, which are proportional to the direc-

tion-cosines of a tangent plane, while dx, dy, dz are proportional

to the direction-cosines of any line in that plane passing through

the point of contact. If then we pass to a second tangent plane,

through a consecutive point on the same line, we are to make

p, q vary while the mutual ratios of dx, dy, dz remain constant.
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This gives rdx* + 2sdxdy + tdtf = 0. To pass to a third tan-
gent plane, we differentiate again, regarding dx : dy constant

;

and thus have adxs + 3/3dx'
2dy + 3ydxdy* + Sdy* = 0. Elimi-

nating dx : dy between the last two equations, we have the
same equation as before.

The first integrals of this equation are found, as explained
(Art. 418), by omitting the last equation and eliminating all

but one of the constants. Thus we have the equation

p + mq = c
i ,
from which it appears that one of the integrals is

p + mq = <f>
(m), where m is one of the roots of r + Ism + tm? = 0.

The other two first integrals are

y — mx = \{r(m), and z —px — mqx = x(m).

The three second integrals are got by eliminating m, from
any pair of these equations.

425. Envelopes. If the equation of a surface include n
parameters connected by n - 1 relations, we can in terms of

any one express all the rest, and throw the equation into

the form

z = F{x,y, c,<l>(c), f (c), &c.}.

dT?
Eliminating c between this equation and -j- = 0, we find the

etc

envelope of all the surfaces obtained by giving different values

to c. The envelopes so found are said to be of the same

family as long as the form of the function F remains the same,

no matter how the forms of the functions <f>, ^, &c. vary.

dW
The curve of intersection of the given surface with -j- is the

characteristic (see p. 254) or line of intersection of two con-

secutive surfaces of the system. Considering the characteristic

as a moveable curve from the two equations of which c is to

be eliminated, it is evident that the problem of envelopes is

included in that discussed, Art. 417, &c. If the function F
contain n arbitrary functions <j>, \jr, &c, then since -y- contains

<j>', yjr', &c, it would seem, according to the theory previously

explained, that the partial differential equation of the family
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ought to be of the 2n
tu

order. But on examining the manner

in which these functions enter, it is easy to see that the order

reduces to the w
th

. In fact, differentiating the equation z = F,

we get

_, dF „ dF

rfF
1

but since -j- = 0, we havep =F1,q = F2 , where, since F
t
and F

t

are the differentials on the supposition that c is constant, these

quantities only contain the original functions
<f>, ty and not the

derived </>', yjr'. From this pair of equations we can form

another, as in Art. 424, and so on, until we come to the n
m

order, when, as easily appears from what follows, we have

equations enough to eliminate all the parameters.

426. We need not consider the case when the given equation

contains but one parameter, since the elimination of this between

the equation and its differential gives rise to the equation of

a definite surface and not of a family of surfaces. Let the

equation then contain two parameters a, 6, connected by an

equation giving & as a function of a, then between the three

equations z — F^p = F
t , q — F2,

we can eliminate a, b, $nd the

form of the result is evidentlyf(x, y, z,j>, q) = 0.

For example, let us examine the envelope of a sphere of

fixed radius, whose centre moves along any plane curve in the

plane of xy. This is a particular case of the general class of

tubular surfaces which we shall consider presently.

Now the equation of such a sphere being

and the conditions of the problem assigning a locus along which

the point a/3 is to move, and therefore determining j3 in terms

of a, the equation of the envelope is got by eliminating a

between

(x-af+ti-tWy + z^r*, (a:-a) + {y-$(a)}$'(a)=0.

Since the elimination cannot be effected until the form of the

function <j> is assigned, the family of surfaces can only be ex-

pressed by the combination of two equations just written.
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We might also obtain these equations by expressing that the
surface is generated by a fixed circle, which moves so that
its plane shall be always perpendicular to the path along which
its centre moves. For the equation of the tangent to the

locus of a/3 is

dB
J/-0=fa[x-a) or y- 0(a) = £'(«) (a>- a).

And the plane perpendicular to this is

0* - «) + $°-{y -0 («)} = <>,

as already obtained. To obtain the partial differential equa-

tion, differentiate the equation of the sphere, regarding a, B as

constant, when we have x - a + pz = 0, y — B + qz = 0. Solving

for x — a, y — B and substituting in the equation of the sphere,

the required equation is

s
2 (l+/+ 2

2)=r*.

We might have at once obtained this equation as the geo-

metrical expression of the fact that the length of the normal

is constant and equal to r, as it obviously is.

427. Before proceeding further we wish to show how the

arbitrary functions which occur in the equation of a family

of envelopes can be determined by the conditions that the

surface in question passes through given curves. The tangent

line to one of the given curves at any point of course lies in

the tangent plane to the required surface ; but since the en-

veloping surface has at any point the same tangent plane as

the enveloped surface which passes through that point, it

follows that each of the given curves at every point of it

touches the enveloped surface which passes through that point.

If then the equation of the enveloped surface be

z = F(x,y, Cl,c2 ...cJ,

the envelope of this surface can be made to pass through n — 1

given curves ; for by expressing that the surface whose equa-

tion has been just written touches each of the given curves,

we obtain n — 1 relations between the constants c„ c
a , &c,

which combined with the two equations of the characteristic
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enable us to eliminate these constants. For example, the

family of surfaces discussed in the last article contains but

two constants and one arbitrary function, and can therefore

be made to pass through one given curve. Let it then be

required to find an envelope of the sphere

which shall pass through the right line x = inz, y = 0- The

points of intersection of this line with the sphere being given

by the quadratic

(mz - a)
2 + /3

s + a
2= r

s
, or (1 + »i

2

) a
2 - 2?nza + a2

-f /3
2 - r" = 0,

the condition that the line should touch the sphere is

(1 W)(a2 + /3
2 -r2)=™V.

We see thus that the locus of the centres of spheres touching

the given line is an ellipse. The envelope required then is

a kind of elliptical anchor ring, whose equation is got by
eliminating a, /8 between

(x - a)
2 + (y - /3)

2 + a
2 = r2

, (1 + m2

)
(a

2 + /3
2 - r

2
) = mV,

(z-a)c?a4 (y-/3)d/3 = 0, ado. + (1 + »i
2

)
0d/3 = 0,

from which last two equations we have

(l+m2
)/3(a:-a) = a(?/-/3).

The result is a surface of the eighth degree.

428. Again, let it be required to determine the arbitrary

function so that the envelope surface may also envelope a
given surface. At any point of contact of the required sur-

face with the fixed surface a =/(*, y), the moveable surface

z =F (x, y, c„ c
2 ,

&c.) which passes through that point, has

also the same tangent plane as the fixed surface. The values

then of^> and q derived from the equations of the fixed surface

and of the moveable surface must be the same. Thus we have

fi=Fiif2 = Fzi an(* if between these equations and the two
equations z = F, z =f, which are satisfied for the point of
contact, we eliminate x, y, z, the result will give a relation

between the parameters. The envelope may thus be made
to envelope as many fixed surfaces as there are arbitrary



FAMILIES OF SUliFACES. 361

functions in the equation. Thus, for example, let it be re-

quired to determine a tubular surface of the kind discussed

(Art. 427), which shall touch the sphere a:
2 +f + z

l = R*. This
surface must then touch (x - a)

2 + (y - /3)
2 + a" = r

2
. We have

therefore - = X^ 2 _ ^Z^ . conditions which imply 2 = 0,
z z ' z z

' * J '

a? a; — a _— = -5 or pa? = ay. Eliminating x and y by the help of

these equations, between the equation of the fixed and move-

able sphere, we get 4 (a
2 + /3

2

) E> = (R2 -r* + a
2 + /3

2

)

2
. This

gives a quadratic for a
2 + j3

2

, whose roots are (R + r)
2

; showing

that the centre of the moveable sphere moves on one or other

of two circles, the radius being either R + r. The surface

required is therefore one or other of two anchor rings, the

opening of the rings corresponding to the values just assigned.

429. We add one or two more examples of families of en-

velopes whose equations include but one arbitrary function. To
find the envelope of a right cone whose axis is parallel to the

axis of z, and whose vertex moves along any assigned curve

in the plane of xy. Let the equation of the cone in its

original position be z* =m2
(x' + y') ; then if the vertex be

moved to the point a, j3, the equation of the cone becomes

z' = m* {(x — a)
2 + (y - /3)

2

}, and if we are given a curve

along which the vertex moves, /3 is given in terms of a.

Differentiating we have jpz =m2
(x - a), qz = rri' (y — /3) ; and

eliminating we have p
i +q* = m\ This equation expresses

that the tangent plane to the surface makes a constant angle

with the plane of xy, as is evident from the mode of generation.

It can easily be deduced hence that the area of any portion

of the surface is in a constant ratio to its projection on the

plane of xy.

430. The families of surfaces, considered (Arts. 426, 429),

are both included in the following: "To find the envelope of a

surface of any form which moves without rotation, its motion

being directed by a curve along which any given point of the

surface moves." Let the equation of the surface in its original

position be z = F{x,y), then if it be moved without turning
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so that the point originally at the origin shall pass to the

position a/87, the equation of the surface will evidently he

z — y=F(x — a,y — fi). If we are given a curve along which

the point afiy is to move, we can express a, /3 in terms of 7,

and the problem is one of the class to be considered in the

next article, where the equation of the envelope includes two

arbitrary functions. Let it be given however that the directing

curve is drawn on a certain known surface, then, of the two

equations of the directing curve, one is known and only one

arbitrary, so that the equation of the envelope includes but

one arbitrary function. Thus if we assume /3 an arbitrary

function of a, the equation of the fixed surface gives 7 as a

known function of a, /3. It is easy to see bow to find the partial

differential equation in this case. Between the three equations

z-y=F(x-a,y-/3),p=F
1
{x-a,y-/3),q =F

2
(x-a,y-/3),

solve for x — a,y — fi,
z — 7, when we find

x-a=f(p, q), y-P = Y{p, q), z-7 = Y(p, ?)•

If then the equation of the surface along which a/37 is to move
be T (a, /3, 7) = 0, the required partial differential equation is

T {x-fip, q), y-Y(p, q), *-yfa q)} =0.

The three functions /, '/, "/, are evidently connected by the

relation oV
s

f=pdf+qar'f.
It is easy to see that the partial differential equation just

found is the expression of the fact that the tangent plane at

any point on the envelope, is parallel to that at the corre-

sponding point on the original surface.

Ex. To find the partial differential equation of the envelope of a sphere of con-
stant radius whose centre moves along any curve traced on a fixed equal sphere

x1 + y
z + zz — r2.

The equation of the moveable sphere is (x — of + (1/ — /3)
2 + (2 — y)

2 = r2, whence

x - a. +p (a - 7) = 0, y - ft + q (z - y) = 0,

and we have

_ — —
j»* „ _ — qr _ r

If we write 1 +p* + f = p* it is easy to see, by actual differentiation, that the
relation is fulfilled

'J=-*(9-*ffl-
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The partial differential equation U
[xp +prf + (yp + qrf + (zp - rf = ph-%

01 (x' + f + si) (l +i,2 + j2)j + 2 (j>x + qy-z)r = 0.

431. We now proceed to investigate the form of the partial

differential equation of the envelope, when the equation of the

moveable surface contains three constants connected by two
relations. If the equation of the surface be 2 = F{x, y, a, b, c),

then we have p =Fs , q =F2
. Differentiating again, as in

Art. 419, we have

r + sm =Fn +mFn , s + tm =Fa+mFa ;

and eliminating m, the required equation* is

(r-F
il)(t-FJ = (s-FJ\

The functions F
tl , FK, Fm contain a, b, c, for which we are

to substitute their values in terms of p, q, x, y, z derived from
solving the preceding three equations, when we obtain an equa-

tion of the form

Br + 2Ss + Tt + U[rt - s*) = V,

where B, 8, T, Uj V are connected by the relation

BT+ UV= 8\

432. The following examples are among the most important

of the cases where the equation includes three parameters.

Developable Surfaces. These are the envelope of the plane

z = ax+by + c, where for b and c we may write <p [a) and i{r (a).

Differentiating we have p = a, q = b, whence q = (j>(p). Any
surface therefore is a developable surface if p and q are con-

nected by a relation independent of x
} y, z. Thus the family

(Art. 429) for which p
2 + q* = m2

, is a family of developable

surfaces. We have also z —px — qy = yfr (p), which is the other

first integral of the final differential equation. This last is

got by differentiating again the equations p = a, q = b, when

we have r + sm = 0, s + tm = 0, and eliminating m, rt — s
2 = 0,

which is the required equation.

* I owe to Professor Boole my knowledge of the fact that when the equation

of the moveable surface contains three parameters, the partial differential equation

is of the form stated above. See his Memoir, Phil. Trans. 1862, p. 437,
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By comparing Arts. 289, 307 it appears that the condition

rt = s
2

is satisfied at every parabolic point on a surface. The

same thing may be shewn directly by transforming the equation

rt-s2 = into a function of the differential coefficients of U,

by the help of the relations

Ul+F U3
= 0, U

i
+ qU3

= 0,

Uu 4 2Ultp + UaP'=-rUti U
l2
+pU

23 + qUl3+MU33
= -sU

3 ;

when the equation rt - s
2

is found to be identical with the equa-

tion of the Hessian. We see now then that every point on a

developable is a parabolic point, as is otherwise evident, for

since (Art. 324) the tangent plane at any point meets the

surface in two coincident right lines, the two inflexional

tangents at that point coincide. The Hessian of a develop-

able must therefore always contain the equation of the surface

itself as a factor. The Hessian of any surface being of the

degree in — 8, that of a developable consists of the surface

itself, and a surface of 3« — 8 degree which we shall call

the Pro-Hessian.

In order to find in what points the developable is met by

the Pro-Hessian, I form the Hessian of xu + y
2
v, and I find that

we get the developable itself multiplied by a series of terms in

which the part independent of x and y is v j
-j-j- -j—% — I , , )

•

.

This proves that any generator xy meets the Pro-Hessian in

the first place where xy meets v ; that is to say, twice in the

point on the cuspidal curve (»z), and in r — 4 points on the model

curve (%) ; and in the second place, where the generator meets

the Hessian of u considered as a binary quantic ; that is to say,

in the Hessian of the system formed hy these r — 4 points com-

bined with the point on (m) taken three times; in which

Hessian the latter point will be included four times. The
intersection of any generator with the Pro-Hessian consists

of the point on (»w) taken six times, of the r — i points on

(a;), and of 2 (r — 5) other points.*

* Mr. Caylsy has calculated the equation of the Pro-Hessian (Quarterly Journal,

Vol. vi. p. 108) in the case of the developables of the fourth and fifth orders, and of.
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433. Tubular Surfaces. Let it be required to find the

differential equation of the envelope of a sphere of constant
radius, whose centre moves on any curve. We have, as in

Art. 430,

(a - a)» + (y -£)*+(*- 7)' = .#*,

x-a.+p(z-y)=Q, y-/8 + 2 (*-7)=0,

whence 1 +p* + (z - 7) r + m {pq + [z - y) s] = 0,

pq + (s - y) s + m {1 + q
2 + (z - 7) t} = 0.

And therefore

{l+p*+ (z-y)r} {l + q> + (z- y) t] = {pq + (z-y)s}\

Substituting for z — y its value j-
——, jrj (Art. 400) this

becomes

Ei
(rt-s*)-B{(l+qi

)r-2pqs^l+f)t}J{l+/+q*)+(l+f+q>y=0,

which denotes, Art. 306, that at any point on the required

envelope one of the two principal radii of curvature is equal

to R as is geometrically evident.

434. We shall briefly show what the form of the diffe-

rential equation is when the equation of the surface whose

envelope is sought contains four constants. We have, as

before, in addition to the equation of the surface the three

equations p = F„ q =Fa (r -Fn )
(t - FJ = {s - FJ. Let us,

for shortness, write the last equation pr = ai, and let us write

a -Fn]
= A,j3-Fat = B,y-Fm = C,S-F^ = D; then, diffe-

rentiating pr = cr
2
, we have

(A + Bm) T-h(G+ Dm) p - 2 {B+ Cm) a- = 0.

Substituting for m from the equation a + rrn = 0, and remember-

ing that pr = c2

, we have

At3 - ZBo-t' + 3 Ga\ - Da3 = 0,

that of the sixth order considered, p. 276. The Pro-Hessian of the developable of the

fourth order is identical with the developable itself. In the other two cases the

cuspidal curve is a cuspidal curve also on the Pro-Hessian, and is, counted six

times in the intersection of the two surfaces. I suppose it may be assumed that

this is generally true. The nodal curve is but a simple curve on the Pro-Hessian,

and therefore is only counted twice in the intersection.
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in which equation we are to substitute for the parameters im-

plicitly involved in it, their values derived from the preceding

equations. The equation is therefore of the form

a + 3/3m + Sym2 + Bm3 = U,

where m and U are functions of x, y, z, p, q:
r, s, t. In like

manner we can form the differential equation when the equa-

tion of the moveable surface includes a greater number of

parameters.

435. Having in the preceding articles explained how

partial differential equations are formed, we shall next show

how from a given partial differential equation can be de-

rived another differential equation satisfied by every charac-

teristic of the family of surfaces to which the given equation

belongs (see Monge, p. 53). In the first place, let the given

equation be of the first order; that is to say, of the form

f(xi y, z, p, q) = 0. Now if this equation belong to the en-

velope of a moveable surface, it will be satisfied not only by

the envelope but also by the moveable surface in any of its

positions. This follows from the fact that the envelope touches

the moveable surface, and therefore that at the point of contact

x, y, z, p, q are the same for both. Now if x, y, z be the

co-ordinates of any point on the characteristic, since such a

point is the intersection of two consecutive positions of the

moveable surface, the equation f(x, y, z, p, q) = will be

satisfied by these values of x, y, z, whether p and q have the

values derived from one position of the moveable surface or

from the next consecutive. Consequently, if we differentiate

the given equation, regarding p and q as alone variable, then

the points of the characteristic must satisfy the equation

Pdp + Qdq = 0.

Or we might have stated the matter as follows: Let the

equation of the moveable surface be z = F(x, y, a), where
the constants have all been expressed as functions of a single

parameter a. Then (Art. 425) we have p = F
l
(x, y, a),

q =F2
(cc

5 y, a), which values of p and q may be substituted in

the given equation. Now the characteristic is expressed by



FAMILIES OF*SURFACES. 867

combining with the given equation its differential with respect

to a : and a only enters into the given equation in consequence
of its entering into the values for p and q. Hence we have,

as before. P^ +Q$ = .

da da
Now since the tangent line to the characteristic at any point

of it, lies in the tangent plane to either of the surfaces which
intersect in that point, the equation dz =pdx +- qdy is satisfied,

whether p and q have the values derived from one position of

the moveable surface or from the next consecutive. We have

therefore
J-

dx + -^ dy = 0. And combining this equation with

that previously found, we obtain the differential equation of the

characteristic Pdy — Qdx = 0.

Thus if the given equation be of the form Pp + Qq = B,
the characteristic satisfies the equation Pdy - Qdx = 0, from

which equation combined with, the given equation and with

dz =pdx -f- qdy, can be deduced Pdz = Bdx, Qdz = Rdy. The
reader is aware (see Boole's Differential Equations, p. 322) of

the use made of those equations in integrating this class of

equations. In fact, if the above system of simultaneous equa-

tions integrated give u = c
t
, v = c

2 , these are the equations of

the characteristic, or generating curve, in any of its positions,

while in order that v may be constant whenever u is constant,

we must have u =
<f>

(v).

Ex. Let the equation be that considered (Art. 426), viz. z2 (1 +p' + q
2
) = r2

, then

any characteristic satisfies the equation pdy = qdx, which indicates (Art. 400) that

the characteristic is always o, line of greatest slope on the surface, as is geome-

trically evident.

436. The equation just found for the characteristic generally

includes p and q, but we can eliminate these quantities by com-

bining with the equation just found, the given partial diffe-

rential equation and the equation dz =pdx + qdy. Thus, in the

last example, from the equations z
l

(1 +p" + q') = r\ qdx =pdy,

we derive

z* [dx
2 + dy' + dz

2

)
= r

a
{dx

1 4 dy*).

The reader is aware that there are two classes of differential

equations of the first order, one derived from the equation of
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a single surface, as, for instance, by the elimination of any

constant from an equation £7=0, and its differential

Ufa -+ Ufa 4- Ufa = 0.

An equation of this class expresses a relation between the

direction-cosines of every tangent line drawn at any point on

the surface. The other class is obtained by combining the

equations of two surfaces, as, for instance, by eliminating three

constants between the equations U— 0, V= and their diffe-

rentials. An equation of this class expresses a relation satisfied

by the direction-cosines of the tangent to any of the curves

which the system U, V represents for any value of the con-

stants. The equations now under consideration belong to the

latter class. Thus the geometrical meaning of the equation

chosen for the example is that the tangent to any of the curves

denoted by it, makes with the plane of xy an angle whose

cosine is - . This property is true of every circle in a vertical

plane whose radius is r; and the equation might be obtained

by eliminating the constants a, /3, m, between the equations

(x - a)
2 + (y - /S)

a + z> = r% x - a +m (y - /3) = 0.

437. The differential equation found, as in the last article,

is not only true for every characteristic of a family of surfaces,

but since each characteristic touches the cuspidal edge of the

surface generated, the ratios dx : dy : dz are the same for

any characteristic and the corresponding cuspidal edge ; and
consequently the equation now found is satisfied by the cuspidal

edge of every surface of the family under consideration. Thus
in the example chosen, the geometrical property expressed by
the differential equation not only is true for a circle in a

vertical plane, but remains true if the circle be wrapped on

any vertical cylinder; and the cuspidal edge of the given
family of surfaces always belongs to the family of curves thus

generated.

Precisely as a partial differential equation in p} q (express-

ing as it does a relation between the direction-cosines of the

tangent plane), is true as well for the envelope as for the par-
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ticular surfaces enveloped ; so the total differential equations here

considered are true both for the cuspidal edge and the series

of characteristics which that edge touches. The same thing

may be stated otherwise as follows: the system of equations

U= 0, -j- = which, when a is regarded as constant, represents

the characteristic, represents the cuspidal edge when a is an
unknown function of the variables to be eliminated by means

d?U
of the equation -=-5- = 0. But evidently the equations U= 0,

-j- = have the same differentials when a is considered as
da.

variable, subject to this condition, as if a were constant.

Thus, in the example of the last article} if in the equations

(x-af + (y - fif + z* = r% (x-a.) + m (y

-

/S) = 0, we write

/3=(/>(a), m = (p'(ct), and combine with these the equation

1 -f
<f>'

(a)
2 = (y — /3) <j>" (a), the differentials of the first and

second equations are the same when a is variable in virtue

of the third equation, as if it were constant ; and therefore the

differential equation obtained by eliminating a, /3, m between

the first two equations and their differentials, on the supposition

that these quantities are constant, holds equally when they

vary according to the rules here laid down. And we shall

obtain the equations of a curve satisfying this differential

equation by giving any form we please to cj> (a) and then

eliminating a between the equations

{x-aY + [y-4>{a)]i + z
i = r\ x- a + <j>' (a) [y - <£(«)} = 0,

* It is convenient to insert here a remark made by Mr. M. Roberts, viz. that if

in the equation of any surface we substitute for x, x + \dx, for y, y + Xcly, for z,

z + \dz, and then form the discriminant with respect to \, the result will be the

differential equation of the cuspidal edge of any developable enveloping the given

surface. In fact it is evident -(see Art.. 271) that the discriminant expresses the

condition that the tangent to the curve represented by it touches the given surface.

Thus the general equation of the cuspidal edge of developables circumscribing a

sphere is

(x1 + y- + z2 - a?) (cbs1 + dy2 + dz-) = (xdx + ydy + zdz)",

or (ydz — zdy)- + (zdx - xdz)"- + (xdy — ydx) 2 = a- (dx- + dy- + dz2).

In the latter form it is evident that the same equation is satisfied by a geodesic

BB
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438. In like manner can be found the differential equation

of the characteristic, the given equation being of the second

order (see Monge, p. 74). In this case we can have two

consecutive surfaces, satisfying the given differential equation,

and touching each other all along their line of intersection.

For instance, if we had a surface generated by a curve moving

so as to meet two fixed directing curves, we might conceive

a new surface generated by the same curve meeting two new

directing curves, and if these latter directing curves touch the

former at the points where the generating curve meets them,

it is evident that the two surfaces touch along this line. In

the case supposed then the two surfaces have x, y, z, p, q

common along their line of intersection and can differ only

with regard to r, s, t. Differentiate then the given differential

equation considering these quantities alone variable, and let

the result be Rdr + Sds + Tdt= 0. But since p and q are con-

stant along this line, we have drdx + dsdy = 0, dsdx + dtdy = 0.

Eliminating then dr, ds, dt, the required equation for the cha-

racteristic is

Rdtf - Sdxdy + Tdx' = 0.

In the case of all the equations of the second order, which

we have already considered, this equation turns out a per-

fect square. When it does not so turn out, it breaks up

into two factors, which, if rational, belong to two independent

characteristics represented by separate equations ; and if not,

denote two branches of the same curve intersecting on the point

of the surface which we are considering.

439. In fact when the motion of a surface is regulated by

a single parameter (see Art. 316), the equation of its envelope,

as we have seen, contains only functions of a single quantity,

and the differential equation belongs to the simpler species

just referred to. But if the motion of the surface be regulated

traced on any cone whose vertex is the origin. For if the cone be developed into

a plane, the geodesic will become a right line, and if the distance of that line from

the origin be a, then the area of the triangle formed by joining any element ds to

the origin is. half ads, but this is evidently the property expressed by the preceding

equation.
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by two parameters, its contact with its envelope being not a

curve, but a point; then the equation of the envelope will

in general contain functions of two quantities, and the diffe-

rential equation will be of the more general form. As an

illustration of the occurrence of the latter class of equations in

geometrical investigations, we take the equation of the family

of surfaces which has one set of its lines of curvature parallel

to a fixed plane, y = mx. Putting dy = mdx in the equation

of Art. 306, the differential equation of the family is

m'{{l+ q^s-pqt} + m[(l-\-q
i

)r-[l-\-f)t}-{{l+f)s-pqr}=0.

As it does not enter into the plan of this treatise to treat of

the integration of such equations, we refer to Monge, p. 161

for a very interesting discussion of this equation. Our object

being only to show how such differential equations present

themselves in geometry, we shall show that the preceding

equation arises from the elimination of a, /3 between the follow-

ing equation and its differentials with respect to a and /3

:

(x - a)
2 + [y - Pf + [z -

<f>
(a + m/3)}* = f{i3- mo)\

Differentiating with respect to a and /3, we have

(x — a) + [z-
<f>)

$' =m yfr'yjr,

[y-P) + m i
z ~ <t>)

4>' = ~ V^i
whence (cc — a) + m (y - @) + (1 + m?) (z - <j>) <f>'

= 0.

But we have also

(x-a)+p(s-<l>)=0, (y-0) + 2(*-0=<>,

whence [x - a) + m {y - /3) + (p + mq) {z-<j>) = 0.

And by comparison with the preceding equation, we have

p + m.q = (1 + m?) </>' (a + mfi). If then we call a + mfi, y, the

problem is reduced to eliminate 7 between the equations

x + my-y+{p + mq){z-<f>(y)} = 0, p + mq = (1 + m*) £'(7).

Differentiating with regard to x and y, we have

(1 +f + mpq) + (r + ms) {z-(f> (7)} = {1 + [p + mq) </>'} yt ,

[m (1 4 q*) +pq) + {s + rnt) {z -
<f> (7)} = {1 + {p + mq) 0'} 7s ,

but from the second equation

r + ms : s + mt : : 7, : 72
.

BB2
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Hence the result is

(1 +p2 + mpq) (s + mt) = {m (1 + q
1

) +pq} [r + rns),

as was to be proved.

RULED SURFACES.*

440. On account of the importance of ruled surfaces, we

add some further details as to this family of surfaces.

The tangent plane at any point on a generator evidently

contains that generator, which is one of the inflexional tangents

(Art. 259) at that point. Each different point on the gene-

rator has a different tangent plane (Art. 107) which may be

constructed as follows: We know that through a given point

can be drawn a line intersecting two given lines ; namely, the

intersection of the planes joining the given point to the given

lines. Now consider three consecutive generators, and through

any point A on one, draw a line meeting the other two. This

line, passing through three consecutive points on the surface,

will be the second inflexional tangent at A, and therefore the

plane of this line and the generator at A is the tangent plane

at A. In this construction it is supposed that two consecutive

generators do not intersect, which ordinarily they will not do.

There may be on the surface, however, singular generators

which are intersected by a consecutive generator, and in this

case the plane containing the two consecutive generators is a

tangent plane at every point on the generator. In special

cases also two consecutive generators may coincide, in which

case the generator is a double line on the surface.

441. The (inharmonic ratio of four tangent planes passing

through a generator is equal to that of their four points of con-

tact. Let three fixed lines A, i?, C be intersected by four

transversals in points aa'a'a", bb'b"b"\ cc'c'c". Then the an-

harmonic ratio \bb'b"b'") = [cc'c'c'"}, since either measures the

ratio of the four planes drawn through A and the four trans-

* The theorems in this section are principally taken from M. Chasles's Memoin
Quetelet's Correspondance, t. XI., p. 50, and from Mr. Cayley's paper, Cambridge and

Dublin Mathematical Journal, Vol. vii., p. 171. See also his Memoir, Philosophical

Transactions, 1863, p. 453.
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versals. In like manner [cc'c'c'"} = {aa'a"a'"} either measuring
the ratio of the four planes through B (see Art. 112). Now-
let the three fixed lines be three consecutive generators of the

ruled surface, then by the last article, the transversals meet
any of these generators A in four points, the tangent planes

at which are the planes containing A and the transversals.

And by this article it has been proved that the anharmonic

ratio of the four planes is equal to that of the points where

the transversals meet A.

442. We know that a series of planes through any line and

a series at right angles to them form a system in involution, the

anharmonic ratio of any four being equal to that of their four

conjugates. It follows then, from Art. 441, "that the system

formed by the points of contact of any plane, and of a plane

at right angles to it, form a system in involution ; or, in other

words, the system of points where planes through any generator

touch the surface, and where they are normal to the surface,

form a system in involution. The centre of the system is the

point where the plane which touches the surface at infinity,

is normal to the surface ; and by the known properties of in-

volution, the distances from this point of the points where

any other plane touches and is normal, form a constant rect-

angle.

443. The normals to any ruled surface along any generator,

generate a hyperbolic paraboloid. It is evident that they are

all parallel to the same plane, namely, the plane perpendicular

to the generator. We may speak of the anharmonic ratio

of four lines parallel to the same plane, meaning thereby that

of four parallels to them through any point. Now in this

sense the anharmonic ratio of four normals is equal to that

of the four corresponding tangent planes, which (Art. 441) is

equal to that of their points of contact, which again (Art. 442)

is equal to that of the points' where the normals meet the

generator. But a system of lines parallel to a given plane

and meeting a given line generates a hyperbolic paraboloid,

if the anharmonic ratio of any four is equal to that of the
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four points where they meet the line. This proposition follows

immediately from its converse, which we can easily establish.

The points where four generators of a hyperbolic paraboloid

intersect a generator of the opposite kind, are the points of

contact of the four tangent planes which contain these gene-

rators, and therefore the anharmonic ratio of the four points

is equal to that of the four planes. But the latter ratio is

measured by the four lines in which these planes are inter-

sected by a plane parallel to the four generators, and these

intersections are lines parallel to these generators.

444. The central points of the involution (Art. 442) are,

it is easy to see, the points where each generator is nearest

the next consecutive, that is to say, the point where each

generator is intersected by the shortest distance between it

and its next consecutive. The locus of the points on the

generators of a ruled surface, where each is closest to the

next consecutive, is called the line of striction of the surface.

It may be remarked, in order to correct a not unnatural

mistake (see Lacroix, Vol. III., p. 668), that the shortest distance

between two consecutive generators is not an element of the

line of striction. In fact if A a, Bb, Oc be three consecutive

generators, ah the shortest distance between the two former,

then b'c the shortest distance between the second and third

will in general meet Bb in a point b' distinct from b, and

the element of the line of striction will be ah' and not ab»

Ex. 1. To find the line of striction of the hyperbolic paraboloid

«2



EULED SURFACES. 375

When the two generators approach to coincidence, we have for the co-ordinates of
the point where either is intersected by their shortest distance

l_ a2 -b2 1
' 1.

— " n . jo i 1a2 + b2 \2 ' a b a2 + b2 \

andhence (a2 + V) (
x
- + f) = (a

2 - b2) (*-f), Or
*
+ J^ = .

\a bj ' \a bj a3 b3

The line of striction is therefore the parabola in which this plane cuts the surface.
The same surface considered as generated by the lines of the other system hag another
line of striction lying in the plane

*-£ =
a? bs

Ex. 2. To find the line of striction of the hyperboloid

a2 b2 c2
~

Ans. It is the intersection of the surface with

a2A2 b2B2 _ c2C2

x2 y
2 ~ z2

*

where A
1̂
+ l, B^ + l, C=±-±.

445. Given any generator of a ruled surface, we can de-

scribe a hyperboloid of one sheet, which shall have this gene-

rator in common with the ruled surface, and which shall also

have the same tangent plane with that surface at every point

of their common generator. For it is evident from the con-

struction of Art. 440 that the tangent plane at every point

on a generator is fixed, when the two next consecutive gene-

rators are given, and consequently that if two ruled surfaces

have three consecutive generators in common, they will touch

all along the first of these generators. Now any three non-

intersecting right lines determine a hyperboloid of one sheet

(Art. 76) ; the hyperboloid then determined by any generator

and the two next consecutive will touch the given surface as

required.

In order to see the full bearing of the theorem here enun-

ciated, let us suppose that the axis of z lies altogether in any

surface of the n
tti

degree, then every term in its equation must

contain either x or y ; and that equation arranged according

to the powers of x and y will be of the form

un_x
x + orJ + uny + v^xy + wM_y + &c. = 0,

where «„_,, vn_t
denote functions of z of the (n — l)

m
degree, &c.
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Then (see Art. 107) the tangent plane at any point on the axis

will be u ,x + v ,y = 0, where u , denotes the result of sub-n—

1

u-lt/ / n—l

stituting in un_x
the co-ordinates of that point. Conversely, it

follows that any plane y = mx touches the surface in n— 1

points, which are determined by the equation u
n_ x
+ mvn^ = 0.

If however u ,, v , have a common factor u„, so that the
ji-17 n—l el

terms of the first degree in x and y may be written

u
e
[u^f^x + vn_v_{y) = 0, then the equation of the tangent plane

will be u\
y
x + v'

7r_p_,y
= 0, and evidently in this case any

plane y = mx will touch the surface only in n—p— 1 points.

It is easy to see that the points on the axis for which u
p
=

are double points on the surface. Now what is asserted in the

theorem of this article is, that when the axis of z is not an

isolated right line on a surface, but one of a system of right

lines by which the surface is generated, then the form of the

equation will be

« ,_2
{ux + vy) + &c. = 0,

so that the tangent plane at any point on the axis will be the

same as that of the hyperboloid ux + vy, viz. ux + v'y — 0. And
any plane y = mx will touch the surface in but one point. The

factor u
n_%

indicates that there are on each generator n — 2

points which are double points on the surface.

446. We can verify the theorem just stated, for an im-

portant class of ruled surfaces, viz., those of which any gene-

rator can be expressed by two equations of the form

at + bf
1-1 + ci

m-2 + &c. = 0, a'f + b'f-
1 + cT* + &c. = 0,

where a, a\ b, b', &c. are linear functions of the co-ordinates,

and t a variable parameter. Then the equation of the surface

obtained by eliminating t between the equations of the gene-

rator (see Higher Algebra, p. 34), may be written in the form of

a determinant, the first row and first column of which are

identical, viz., {ab'), (ac), (ad
1

), &c. Now the line ad is a

generator, namely, that answering to t= oo ; and we have

just proved that either a or a' will appear in every term, both

of the first row and of the first column. Since then every

term in the expanded determinant contains a factor from the
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first row and a factor from the first column, the expanded
determinant will be a function of, at least, the second degree
in a and a\ except that part of it which is multiplied by (ab'),

the term common to the first row and first column. But that

part of the equation which is only of the first degree in a
and a determines the tangent at any point of ad'; the ruled

surface is therefore touched along that generator by the hy-

perboloid ab' — bd = 0.

If a and b (or d and b') represent the same plane, then

the generator act! intersects the next consecutive, and the plane

a touches along its whole length. If we had b = lca, b' = 7cd,

the terms of the first degree in a and a' would vanish, and

ad would be a double line on the surface.

447. Returning to the theory of ruled surfaces in general,

it is evident that any plane through a generator meets the

surface, in that generator and in a curve of the (n — l)
tb

degree

meeting the generator in n— 1 points. Each of these points

being a double point in the curve of section is (Art. 258) in

a certain sense a point of contact of the plane with the surface.

But we have seen (Art. 445) that only one of them is properly

a point of contact of the plane ; the other n — 2 are fixed points

on the generator, not varying as the plane through it is

changed. They are the points where this generator meets

other non-consecutive generators, and are points of a double

curve on the surface. Thus then a skew ruled surface in general

has a double curve which is met by every generator in n—2
points. It may of course happen that two or more of these

n _ 2 points may coincide, and that the multiple curve on the

surface may be of higher order than the second. In the case

considered in the last article it can be proved (see Appendix

on the Order of Systems of Equations) that the multiple curve

is of the order £ (m + n — 1) (m + n — 2), and that there are on

it £ (m + n — 2) (m. + n — 3) (m + n - 4) triple points.

A ruled surface having a double line will in general not

have any cuspidal line unless the surface be a developable,

and the section by any plane will therefore be a curve having

double points but not cusps.
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448. Consider now the cone whose vertex is any point,

and which envelopes the surface. Since every plane through

a generator- touches the surface in some point, the tangent

planes to the cone are the planes joining the series of gene-

rators to the vertex of the cone. The cone will, in general,

not have any stationary tangent planes : for such a plane would

arise when two consecutive generators lie in the same plane

passing through the vertex of the cone. But it is only in

special cases that a generator will be intersected by one con-

secutive ; the number of planes through two consecutive gene-

rators is therefore finite; and hence one will, in general, not

pass through an assumed point. The class of the cone, being

equal to the number of tangent planes which can be drawn

through any line through the vertex, is equal to the number

of generators which can meet that line, that is to say, to the

degree of the surface (see note, p. 87). We have proved now
that the class of the cone is equal to the degree of a section

of the surface; and that the former has no stationary tangent

planes as the latter has no stationary, or cuspidal, points. The
equations then which connect any three of the singularities

of a curve prove that the number of double tangent planes

to the cone must be equal to the number of double points

of a section of the surface ; or, in other words, that the number

of planes containing two generators which can be drawn

through an assumed point, is equal to the number of points of

intersection of two generators which lie in an assumed plane.*

449. We shall illustrate the preceding theory by an enu-

meration of some of the singularities of the ruled surface gene-

rated by a line meeting three fixed directing curves, the degrees

of which are «i„ m
2 , m3.f

The degree of the surface generated is equal to the number

of generators which meet an assumed right line; it is there-

fore equal to the number of intersections of the curve m with

* These theorems are Mr. Cayley's. Cambridge and Dublin Mathematical Journal,

Vol. Til,, p. 171.

t I published a discussion of this surface, Cambridge and Dublin Mathematical

Journal, Vol. VIII., p. 45.
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the ruled surface having for directing curves the curves m
2 , m a

and the assumed line ; that is to say, it is m
l
times the degree

of the latter surface. The degree of this again is, in like

manner, «i
2
times the degree of the ruled surface whose directing

curves are two right lines and the curve «i
3, while by a repe-

tition of the same argument, the degree of this last is 2m
a
.

It follows that the degree of the ruled surface when the

generators are curves m„ m
2 , wi

3 , is 2«i
1
w.

2
»i

3
.

The three directing curves are multiple lines on the surface,

whose orders are respectively »2
2
w

3 ,
im

s
m rn^rn^. For through

any point on the first curve pass m
2
m

3
generators, the inter-

sections namely of the cones having this point for a common
vertex, and resting on the curves m

2 , in
a

.

450. The degree of the ruled surface, as calculated by
Art. 449, will admit of reduction if any pair of the directing

curves have points in common. Thus if the curves «i
2 , rn

a

have a point in common, it is evident that the cone whose

vertex is this point, and base the curve in
1

will be included

in the system, and that the order of the ruled surface proper

will be reduced by m
x , while the curve m

1
will be a multiple line

of degree only mjn
s
— 1. And generally if the three pairs made

out of the three directing curves have common respectively

a, ft, 7 points, the order of the ruled surface will be reduced

by m,a 4 mji + m
3
y,* while the order of multiplicity of the

directing curves will be reduced respectively by a, /3, 7. Thus

if the directing lines be two right lines and a twisted cubic,

the surface is in general of the sixth order, but if each of the

lines intersect the cubic, the order is only of the fourth. If each

intersect it twice the surface is a quadric. If one intersect it

twice and the other once, the surface is a skew surface of the

third degree on which the former line is a double line.

Again, let the directing curves be any three plane sections

of a hyperboloid of one sheet. According to the general theory

the surface ought to be of the sixteenth order, and let us see

how a reduction takes places. Each pair of directing curves

* My attention was called by Mr. Cayley to this reduction which takes place

when the directing curves have points in common.
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Lave two points common ; namely, the points in which the

line of intersection of their planes meets the surface. And the

complex surface of the sixteenth order consists of six cones of

the second order, together with the original quadric reckoned

twice. That it must be reckoned twice, appears from the fact

that the four generators which can be drawn through any point

on one of the directing curves, are two lines belonging to the

cones, and two generators of the given hyperboloid.

In general, if we take as directing curves three plane sec-

tions of any ruled surface, the equation of the ruled surface

generated will have, in addition to the cones and to the original

surface, a factor denoting another ruled surface which passes

through the given curves. For it will generally be possible

to draw lines, meeting all three curves, which are not gene-

rators of the original surface.

451. The order of the ruled surface being 2m
l
m

i
m

s,
it

follows, from Art. 447, that any generator is intersected by
2w

1
wz

a
?w

a
— 2 other generators. But we have seen that at

the points where it meets the directing curves, it meets

[
m

t
m

a
~ 1

) + [
m

a
m

i
~ *) + [

m
i
m

t
- !) other generators. Conse-

quently it must meet 2m
1
wi

a
m

a
- [m

2
m

a
+ wyn, + m^) + 1 gene-

rators, in points not on the directing curves. We shall establish

this result independently by seeking the number of generators

which can meet a given generator. By the last article, the

degree of the ruled surface whose directing curves are the curves

m„ m
2 ,
and the given generator, which is a line resting on both,

is 2m
1
m

2
— m

1
— m

a
. Multiplying this number by wt

8 , we get the

number of points where this new ruled surface is met by the

curve m
B
. But amongst these will be reckoned (mm — 1) times

the point where the given generator meets the curve m. Sub-
tracting this number then, there remain

2»i
1
to

2
to

3
- m

i
m

s
— rnpi

z
— mjn^ + 1

points of the curve m
s ,
through which can be drawn a line to

meet the curves «i
l5
m

3 , and the assumed generator. But this

is in other words the thing to be proved.

452. We can examine in the same way the order of the
surface generated by a line meeting a curve «j, twice, and
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another curve w
2

once. It is proved, as in Art. 449, that the
order is w

2
times the order of the surface generated by a line

meeting m
l
twice, and meeting any assumed right line. Now

if \ be the number of apparent double points of the curve m
,

that is to say, the number of lines which can be drawn through
an assumed point to meet that curve twice, it is evident that the
assumed right line will on this ruled surface be a multiple

line of the order A„ and the section of the ruled surface by a
plane through that line, will be that line \ times, together with
the ^m

1
(m

t
— 1) lines joining any pair of the points where the

plane cuts the curve m
x
. The degree of this ruled surface will

then be \ + ^ml
(m

i
- 1), and, as has been said, the degree

will be m
2
times this number, if the second director be a curve

m
%
instead of a right line.

The result of this article may be verified as follows : Con-
sider a complex curve made up of two simple curves «i

t,
m

ki ;

then a line which meets this system twice must either meet
both the simple curves, or else must meet one of them twice.

The number of apparent double points of the system is

\ +K +mi
m

2 j* ana< the order of the surface generated by a

line meeting a right line, and meeting the complex curve

twice, is

i (
m

i +™JK +m2
-l)+h

l
+\ + mjn^ = {^m, (»», - 1) + \}

+ {*»»
ll
K-l)+^}+2m

I
m

|
.

453. The order of the surface generated by a line which meets

a curve three times may be calculated as follows, when the

curve is given as the intersection of two surfaces U, V: Let

xy'z'vj be any point on the curve, xyzw any point on a gene-

rator through x'y'z'w ; and let us, as at p. 271, form the two

equations SU + ^\$2
U' + &c. =0, SV + ^XS'

2V + &c. = 0.

Then if the generator meet the curve twice again, these

equations must have two common roots. If then we form the

conditions that the equations shall have two common roots ; and

* Where I use h in these formulas Mr. Cayley uses r, the rank of the system,

substituting for h from the formula r — m (m — 1) — 2A. And when the system is

a complex one we hare simply B - r, + r2.
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between these and XT = 0, V = 0, eliminate x'y'z'w, we shall

have the equation of the developable ; or rather that equation

three times over, since each generator corresponds to three diffe-

rent points on the curve UV. But since V and V do not

contain xyzw, the order of the result of elimination will be the

product of pq the order of V, V by the weight of the other

two equations; (see Appendix on the Order of Systems of

Equations.) If, then, we apply the formulae given in that

appendix for finding the weight of the system of conditions,

that two equations shall have two common roots
;

putting

m=p-l, n = q — l, X = 0, X =p ,
/x = 0, /J,' = q, the result is

^{pq — 2) [2pq — 3 {p + q) + 4}, and the order of the required

developable is this number multiplied by \pq. But the inter-

section of U
:
V is a curve (see p. 271), for which m = pq,

2h=pq(p — l)[q — 'i), whence pq [p + q) = m" + in — 2h. Sub-

stituting these values, the order of the developable expressed

in terms of to and h is

i (to - 2) (&h + to - to'
2

), or (to -2)h — \m. (to - 1) (to - 2),

a number which may be verified as in the last article.

454. The ruled surfaces considered in the preceding articles

have all a certain number of double generators. Thus if a line

meets the curve to, twice, and also the curves to
2
and to

3 , it

belongs doubly to the system of lines which meet the curves

to,, to
2
, to

3
and is a double generator on the corresponding sur-

face. But the number of such lines is evidently equal to the

number of intersections of the curve m
3
with the surface gene-

rated by the lines which meet to, twice, and also m
2,

that is

to say, is to
2
to

3
{|-to, (to, — 1) + A,} ; the total number of double

generators is therefore

|to,to
2
to

3
(to, -f m

2
+ to

3
- 3) + \m2

m
3
+ hjn^ + A

3
to,to

2
.

In like manner the lines which meet to, three times, and also to
2

belong triply to the system of lines which meet to, twice, and also

to
2 ; and the number of such triple generators is seen by the last

article to be to
2
(to, — 2) \ - |-to,to

2
(to, — 1 )

(m, - 2). The surface

has also double generators whose number we shall determine

presently, being the lines which meet both m
1
and to

2
twice.
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Lastly, the lines which meet a curve four times, are multiple

lines of the fourth order on the surface generated by the lines

which meet the curve three times. We can determine the

number of such lines when the curve is given as the intersection

of two surfaces, but will first establish a principle which admits

of many applications.

455. Let the equations of three surfaces U, F, W contain

xyzw in the degrees respectively X, V, X" ; and x'y'z'w' in

degrees fi, fi', /t", and let the XX'X" points of intersection of

these surfaces all coincide with x'y'z'w' ; then it is required to

find the order of the further condition which must be fulfilled

in order that they may have a line in common. When this

is the case, any arbitrary plane ax + (3y + yz + Sw must be

certain to have a point in common with the three surfaces

(namely, the point where it is met by the common line), and

therefore the result of elimination between Z7, V, W, and the

arbitrary plane, must vanish. This result is of the degree

XX'X" in u(5y8, and fiX'X" + fi'X"X + fi"XX' in x'y'z'w'. The first

of these numbers (see appendix on the Order of Systems of

Equations) we call the order, and the second the weight of the

resultant. Now, since the resultant is obtained by multiplying

together the results of substituting in ax + fiy + yz + Sw, the

co-ordinates of each of the points of intersection of U, V, W,
this resultant must be of the form n [ax + /%' + yz + Sw')xx'*-".

The condition ax' + /3y' + yz + Sw = 0, merely indicates that the

arbitrary plane passes through x'y'z'w\ in which case it passes

through a point common to the three surfaces, whether they

have a common line or not. The condition therefore that they

should have a common line is n = ; and this must be of the

degree
fjbX'X" + fi'X'X + fi"XX' — XX'X"

;

that is to say, the degree of the condition is got by subtracting the

orderfrom the weight of the equations U, V, W.

456. Now let x'y'z'w be any point on the curve of intersec-

tion of two surfaces U, V, xyzw any other point ; and, as in

Art. 453, let us form the equations 8U+ ^XSaU+ &c. = 0,
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8 V+ |XS2 V+ &c. = 0. If x'y'z'w be a point through which a

line can be drawn to meet the curve in four points, and xyzw

any point whatever on that line, these two equations in A will

have three roots common. And therefore if we form the three

conditions that the equations should have three roots common,

these conditions considered as functions of xyzw, denote surfaces

having common the line which meets the curve in four points.

But if x'y'z'w had not been such a point, it would not have been

possible to find any point xyzw distinct from x'y'z'w', for which the

three conditions would be fulfilled ; and therefore in general the

conditions denote surfaces having no point common but x'y'z'w.

The order then of the condition which x'y'z'w' must fulfil, if it be

a point through which a line can be drawn to meet the curve in

four points, is, by the last article, the difference between the

weight and the order of the system of conditions, that the equa-

tions should have three common roots. But (see appendix on

the Order of Systems of Equations) the weight of this system of

conditions is found by making m = p — 1, n = q — 1, X =p, yu = q,

X' = q = 0, to be

I WZ* -W CP + 2) +W + fyq (p + qT

+ \hpq (p + q) - \Zpq - 66 [p + q) + 108}

;

while the order of the same system is

i {PY-¥Y {p+ q)+ 2fq*+ 2pq [p+qf-Zpq (?+ ?)-f 13p2 -36}.

The order then of the condition 11 = to be fulfilled by

x'y'z'w, being the difference of these numbers, is

^{2/q
3

-6pY <j>+s)+^ps(p+sY+l8Ps{p+s)-^i>s-eHp+s)+^
The intersection of the surface n with the given curve deter-

mines the points through which can be drawn lines to meet in

four points ; and the number of such lines is therefore \ of the

number just found multiplied hj pq. As before, putting pq = m,

pq [p 4- q) = m2 +m — 2h ; the number of lines meeting in four

points is found to be

ii {- m* + 18m3 - 71m* + 78?n - iSmli + I32h + 12&
2
).*

* It may happen, as Mr. Cayley has remarked, that the surface n may altogether

contain the given curve, in which case an infinity of lines can he drawn to meet
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From this number can be derived tbe number of lines wbich

meet both of two curves twice. For, substitute in tbe formula

just written m
l
+ m

2
for m, and h

t
-+ \ +m^ for h, and we

have the number of lines which meet the complex curve four

times.* But from this take away the number of lines which

meet each four times, and the number given (Art. 454) of those

which meet one three times and the other once ; and the re-

mainder is the number of lines which meet both curves twice, viz.

\h
a + {m^ (m

l

— 1) (ma
- 1).

457. Besides the multiple generators, the ruled surfaces we
have been considering have also nodal curves, being the locus

of points of intersection of two different generators. I do not

know any direct method of obtaining the order of these nodal

curves ; but Mr. Cayley has succeeded in arriving at a solution

of the problem by the following method. Let m be one of

the curves used in generating one of the surfaces we have been

considering, M the degree of that surface, $ (m) the degree

of the aggregate of all the double lines on that surface ; then

if we suppose m to be a complex curve made up of two simple

curves m, and m
2 ; the surface will consist of two surfaces

M
1}
M

2
having as a double line the intersection of M and M

3t

in addition to the double lines on each surface. Thus then

<f>
(m) must be such as to satisfy the condition

$ (*», + wi
s )
=

<f>
(to,) + (m

a)
+ -Mi-Mj.

Using then the value already found for M
l

in terms of m
l?

solving this functional equation, and determining the constants

involved in it by the help of particular cases in which the

problem can be solved directly, Mr. Cayley arrives at the

conclusion, that the order of the nodal curve distinct from the

multiple generators, is in the case of the surface generated by

a line meeting three curves »»,, ma m^

% ftt,Myw
s
{4jw,»8

a
w2g - (wyw„ + m

i
m

1
+ m^) — 2 (m,+ rn

2
+ «i

3)
+ 5},

in four points. Thus the curve of intersection of a ruled surface by a surface of the

p"> order is evidently such that every generator of the ruled surface meets the curve

in p points.

CO
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in the case of the surface generated by a line meeting m, twice

and m
2
once, is

«. UKK - 2)K - 3) + im t
(*n - 1) {m t

- 2) (m, - 3)}

+m
2
(m-1) ^h'+^mf-m- Ij+Jm, (m,-l) «-5wyfl0)},

and in the case of the surface generated by a line meeting m
1

three times, is

\\*m
x
(m, - 5) - \\ [m

t

l - 5m,3 + 5m* - 49 jm, + 120)

+A K" - 6m
i

5 + Sl^j* - 270m.
3 + 868^ - 408^,).
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CHAPTER XIV.

SURFACES DERIVED FROM QUADRICS.

THE WAVE SURFACE.

458. Before proceeding to surfaces of the third degree,

we think it more simple to treat of surfaces derived from

quadrics, the theory of which is more closely connected with

that explained in preceding chapters. We begin by defining,

and forming the equation of, Fresnel's Wave Surface.*

If a perpendicular through the centre be erected to the

plane of any central section of a quadric, and on it lengths be

taken equal to the axes of the section, the locus of their ex-

tremities will be a surface of two sheets which is called the

wave surface. Its equation is at once derived from Arts. 97,

98, where the lengths of the axes of any section are ex-

pressed in terms of the angles which a perpendicular to its

plane makes with the axes of the surface. The same equa-

tion then expresses the relation which the length of a radius

vector to the wave surface bears to the angles which it

makes with the axes. The equation of the Wave Surface is

therefore

aV by <w

where r* = %* +y* + «*. Or, multiplying out,

{x* +f + «*) (aV + by + cV)

- {oV (6* + c") + »y (c* + a*) + cV (a
2 + 6

2
)} +aW= 0.

* See Fresnel, Memoires de Tlnslitut, Vol. vn,, p. 136, published 1827.

CC2
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From the first form we see that the intersection of the wave

surface by a concentric sphere, is a sphero-conic.

459. The section by one of the principal planes [e.g. the

plane z) breaks up into a circle and ellipse

[a? +f - c
2

) (
aV + jy - o**").

This is also geometrically evident, since if we consider any

section of the generating quadric, through the axis of z, one

of the axes of that section is equal to c, while the other axis

lies in the plane xy. If then we erect a perpendicular to

the plane of section, and on it take portions equal to each

of these axes, the extremities of one portion will trace out a

circle whose radius is c, while the locus of the extremities of

the other portion, will plainly be the principal section of the

generating quadric, only turned round through 90°. In each

of the principal planes the surface has four double points;

namely, the intersection of the circle and ellipse just men-

tioned. If x, y be the co-ordinates of one of these intersec-

tions, the tangent cone (Art. 264) at this double point, has

for its equation

4 {xx' 4 yy' - (?) (aW + Fyy' - a2
tf) + z* (a

2 - c
2

) (5
2 - c

2

)
= 0.

The generating quadric being supposed to be an ellipsoid, it

is evident that in the case of the section by the plane z, the

circle whose radius is c lies altogether within the ellipse

whose axes are a, b : and in the case of the section by the

plane x, the circle whose radius is a, lies altogether without

the ellipse whose axes are b, c. Real double points occur

only in the section by the plane y ; they are evidently the

points corresponding to the circular sections of the generating

ellipsoid.

The section by the plane at infinity also breaks up into

factors a;
2 + y* + z\ aV + Vy% + c

2
3
2
, and may therefore also be

considered as an imaginary circle and ellipse, which in like

manner give rise to four imaginary double points of the surface

situated, at infinity. Thus the surface has in all sixteen nodal

points, only four of which are real.
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460. The wave surface is one of a class of surfaces which

may be called apsidal surfaces. Any surface being given, if

we assume any point as pole, draw any section through that

pole, and on the perpendicular through the pole to the plane

of section, take lengths equal to the apsidal (that is to say,

to the maximum or minimum) radii of that section ; then the

locus of the extremities of these perpendiculars is the apsidal

surface derived from the given one. The equation of the

apsidal surface may always be calculated, as in Art. 98. First

form the equation of the cone whose vertex is the pole, and

which passes through the intersection with the given surface

of a sphere of radius r. Each edge of this cone is proved

(as at Art. 98) to be an apsidal radius of the section of the

surface by the tangent plane to the cone. If then we form

the equation of the reciprocal cone, whose edges are perpen-

dicular to the tangent planes to the first cone, we shall obtain

all the points of intersection of the sphere with the apsidal

surface. And by eliminating r between the equation of this

latter cone and that of the sphere, we have the equation of the

apsidal surface.

461. If OQ be any radius vector to the generating surface,

and OP the perpendicular to the

tangent plane at the point Q, then

OQ will be an apsidal radius of ^

the section passing through OQ
and through OB which is sup-

posed to be perpendicular to the

plane of the paper POQ. For

the tangent plane at Q passes

through PQ and is perpendicular to the plane of the paper;

the tangent line to the section QOB lies in the tangent plane

and is therefore also perpendicular to the plane of the paper.

Since then OQ is perpendicular to the tangent line in the

section Q OB, it is an apsidal radius of that section.

It follows that OT, the radius of the apsidal surface corre-

sponding to the point Q, lies in the plane POQ and is per-

pendicular and equal to OQ.
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462. The perpendicular to the tangent plane to the apsidal

surface at T lies also in the plane POQ, and is perpendicular

and equal to OP*
Consider first a radius OT" of the apsidal surface, inde-

finitely near to OT, and lying in the plane TOR, perpendicular

to the plane of the paper. Now OT" is by definition equal

to an apsidal radius of the section of the original surface by

a plane perpendicular to OT, and this plane must pass through

OQ. Again an apsidal radius of a section is equal to the

next consecutive radius. The apsidal radius therefore of a

section passing through OQ, and indefinitely near the plane

QOR, will be equal to OQ. It follows then that OT=OT,
and therefore that the tangent at T to the section TOR is

perpendicular to OT, and therefore perpendicular to the plane

of the paper. The perpendicular to the tangent plane at T
must therefore lie in the plane of the paper, but this is the

first part of the theorem which was to be proved.

Secondly, consider an indefinitely near radius OT" in the

plane of the paper; this will be equal to an apsidal radius

of the section ROQ, where OQ' is indefinitely near to OQ.
But, as before, this apsidal radius being indefinitely near to

OQ will be equal to it, and therefore OT" will be equal

as well as perpendicular to OQ. The angle then T'TO is

equal to QQO, and therefore the perpendicular OS is equal

and perpendicular to OP.

It follows from the symmetry of the construction that if

a surface A is the apsidal of B, then conversely B is the apsidal

of A.

463. The polar reciprocal of an apsidal surface, with respect

to the origin 0, is the same as the apsidal of the reciprocal, with

respect to 0, of the given surface.

For if we take on OP, OQ portions inversely proportional

to them, we shall have Op, Oq, a radius vector and corre-

sponding perpendicular on tangent plane of the reciprocal of

* These theorems are due to Prof. MacCuHagh, Transactions of the Royal Irish

Academy, Vol. xvi.
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the given surface. And if we take portions equal to these

on the lines OS, OT which lie in their plane, and are respec-

tively perpendicular to them, then by the last article we shall

have a radius vector, and corresponding perpendicular on tan-

gent plane, of the apsidai of the reciprocal. But these lengths

being inversely as OS, OT are also a radius vector, and per-

pendicular on tangent plane of the reciprocal of the apsidai.

The apsidai of the reciprocal is therefore the same as the

reciprocal of the apsidai.

In particular, the reciprocal of the wave surface generated

from any ellipsoid, is the wave surface generated from the reci-

procal ellipsoid.

We might have otherwise seen that the reciprocal of a

wave surface is a surface also of the fourth degree, for the

reciprocal of a surface of the fourth degree is in general of

the thirty-sixth degree (Art. 275) ; but it is proved, as for plane

curves, that each double point on a surface reduces the degree

of its reciprocal by two m

T and we have proved (Art. 459) that

the wave surface has sixteen double points.

To a nodal point on any surface (which i3 a point through

which can be drawn an infinity of tangent planes, touching

a cone of the second degree) answers on the reciprocal surface

a tangent plane, having an infinity of points of contact, lying

in a conic. From knowing then that a wave surface has four

real double points, and that the reciprocal of a wave surface

is a wave surface, we infer that the wave surface ha3 four

tangent planes which touch all along a conic. We shall now
show geometrically that this conic is a circle.*

464. It is convenient to premise the following lemmas

:

Lemma I. u If two lines passing through a fixed point, and

at right angles to each other, move each in a fixed plane, the

* Sir W. E. Hamilton first shewed that the wave surface has four nodes, the

tangent planes at whieh envelope cones, and that it has four tangent planes

which toneh along circles, Transactions of the Boyal Irish Academy, Vol. xvn.,

p. 132. Dr. Lloyd experimentally verified the optical theorems thence derived,

Ibid. p. 145. The geometrical investigations which follow are due to Professor

MacCullagh, p. 248.
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plane containing the two lines envelopes a cone whose sections

parallel to the fixed planes are parabolas,*' The plane of the

paper is supposed to be parallel to one of the fixed planes,

and the other fixed plane is supposed to pass through the

line MN. The fixed point in which the two lines intersect

is supposed to be above the paper, P being the foot of the

perpendicular from it on the plane

of the paper. Now let OB be one

position of the line which moves in

the plane OMN, then the other line

OA which is parallel to the plane

of the paper being perpendicular to

OB and to OP is perpendicular to

the plane OBP. But the plane

OAB intersects the plane of the

paper in a line BT parallel to OA, and therefore perpendicular

to BP. And the envelope of BT is evidently a parabola of

which P is the focus and MN the tangent at the vertex.

Lemma II. " If a line G be drawn perpendicular to

OAB, it will generate a cone whose circular sections are

parallel to the fixed planes." (Ex. 4, p. 82). It is proved, as

in Art. 121, that the locus of G is the polar reciprocal, with

respect to P, of the envelope of BT. The locus is therefore

a circle passing through P.

Lemma III, " If a central radius of a quadric moves in a

fixed plane, the corresponding perpendicular on a tangent plane

also moves in a fixed plane." Namely, the plane perpendicular

to the diameter conjugate to the first plane, to which the

tangent plane must be parallel,

465. Suppose now (see figure, Art. 461) that the plane

OQR (where OB is perpendicular to the plane of the paper)

is a circular section of a quadric, then OT is the nodal radius

of the wave surface, which remains the same while Q moves
jn the plane of the circular sections; and we wish to find

the cone generated by OS. But OS is perpendicular to OB
fl'lnch moves in the plane of the circular sections and to OP
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•which moves in a fixed plane by Lemma III., therefore 08
generates a cone whose circular sections are parallel to the

planes POB, QOB. Now T is a 'fixed point, and T8 is

parallel to the plane POB, therefore the locus of the point

8 is a circle.

The tangent cone at the node is evidently the reciprocal of

the cone generated by OS, and is therefore a cone whose

sections parallel to the same planes are parabolas.

Secondly, suppose the line OP to be of constant length,

which will happen when the plane POB is a section perpen-

dicular to the axis of one of the two right cylinders which

circumscribe the ellipsoid, then the point 8 is fixed, and it is

proved precisely as in the first part of this article that the

locus of T is a circle.

466. The equations of p. 192 give immediately another

form of the equation of the wave surface. It is evident

thence, that if 6, & be the angles which any radius vector

makes with the lines to the nodes, then the lengths of the

radius vector are, for one sheet,

1
_
coa

t ^[B-ff) sin^fl-fl')

p
2
~

c
2 ~

+
a" '

and for the other

J_ _ coa
,
j(fl + fl') sin' |(fl+<?')

r" a

while - - -
2
=

f-j
- -i) sin0 sin0'.

p p \c a J

It follows hence also that the intersections of a wave surface

with a series of concentric spheres, are a series of confocal

sphero-conics. For in the preceding equations if p or p be

constant, we have 8 ±6' constant.

467. The equation of the wave surface has also been ex-

pressed as follows by Mr. W. Eoberts in elliptic co-ordinates.

The form of the equation

«v iy cv
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shows that the equation may he got by eliminating r* between

the equations

i —u, v — b'
v — c

Giving r
2 any series of constant values, the first equation

denotes a series of confocal quadrics, the axis of z being the

primary axis, and the axis of x the least. Since r
8

is always

less than a
2 and greater than c

2
, the equation always denotes

a hyperboloid, which will be of one or of two sheets according

as r
2
is greater or less than b

1
. The intersections of the hyper-

boloids of one sheet with corresponding spheres generate one

sheet of the wave surface, and those of two sheets the other.

Now if the surface denote a hyperboloid of one sheet, and

if X, fi, v denote the primary axes of three confocal surfaces

of the system now under consideration which pass through any

point, then the equation gives us r
2— c

2= /*
2

, but (Art. 153)

whence the equation in elliptic co-ordinates is

\2 + „» = <* + h*-\ P = a2
+ V- c\

In like manner the equation of the other sheet is

The general equation of the wave surface also implies

(i'+ v
2 = a

2
4 b

2— c
2
, but this denotes an imaginary locus.

Since, if \ is constant, p, is constant for one sheet and v

for the other, it follows that if through any point on the sur-

face be drawn an ellipsoid of the same system, it will meet

one sheet in a line of curvature of one system, and the other

sheet in a line of the other system.

If the equations of two surfaces expressed in terms of

\, fi, v, when differentiated give

PdX + Qdfi + Bdv =- 0, PdX + Q'd/n + Edv = 0,

the condition that they should cut at right angles is (Art. 389)

PF{X>-W){X*-Tc*) QQ'W-VjjF-fj,*) BR'(h*-v*)(k*-v*)

(V-/**)(V-,,») + (x
2-^)^2-/) + {X*-v*)(S-v*)

-°'

which is satisfied if P=0, $ = 0, i? = 0. Hence any surface
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v = constant cut8 at right angles any whose equation is of the

form <j> (\, fi) = 0. The hyperboloid therefore, v = constant,

cuts at right angles one sheet of the wave surface, while it

meets the other in a line of curvature on the hyperboloid.

468. The plane of any radius vector of ike wave surface and
the corresponding perpendicular on the tangent plane, makes equal

angles with the planes through the radius vector and the nodal

lines. For the first plane is perpendicular to OR (Art. 461)

which is an axis of the section QOR of the generating ellipsoid,

and the other two planes are perpendicular to the radii of

that section whose lengths are h, the mean axis of the ellipsoid,

and these two equal lines make equal angles with the axis.

The planes are evidently at right angles to each other, which

are drawn through any radius vector, and the perpendiculars

on the tangent planes at the points where it meets the two

sheets of the surface.

Reciprocating the theorem of this article we see that the

plane through any line through the centre and through one

of the points where planes perpendicular to that line touch

the surface, makes equal angles with the planes through the

same line and through perpendiculars from the centre on the

planes of circular contact (Art. 465).

469. If the co-ordinates of any point on the generating

ellipsoid be x'y'z', and the primary axes of confocals through

that point a', a" ; then the squares of the axes of the section

parallel to the tangent plane are a*— a", a1 — a" 2

,
which we

shall call p
2

, p
12

. These then give the two values of the

radius vector of the wave surface, whose direction-cosines are

P?L
t
PL

,
PI

. We shall now calculate the length and the
a* ' b' ' C*

direction-cosines of the perpendicular on the tangent plane at

either of the points where this radius vector meets the surface.

It was proved (Art. 462) that the required perpendicular is

equal and perpendicular to the perpendicular on the tangent

plane at the point where the ellipsoid is met by one of the

axes of the section ; and the direction-cosines of this axis are
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*-rr , ^Mr , ^75- • The co-ordinates of its extremity are then

these several cosines multiplied by p, and the direction-cosines

of the corresponding perpendicular of the ellipsoid are

p aV2
'

9 Vbn ' P cV"

1 f x'* y'
2

z'*
where _ = py*|_ +^ + __

Now if the quantity within the brackets be multiplied by

(a? — a'*Y, we see at once that it will become —, + —% . Hence

P2 -
py »

ana ^ -_p« +_p*
•

This then gives the length of the perpendicular on the

tangent plane at the point on the wave surface which we are

considering. Its direction-cosines are obtained from the con-

sideration that it is perpendicular to the two lines whose

direction-cosines are respectively

it 1 it 1 a 1 11 11 11px_ py_ p_z_^ px p yy Pn P±
a
» 2 ,

&
»* » ™ , Jrp ^i, ,

jrp
Vb„ ,

jrp -^ .

Forming by Art. 15 the direction-cosines of a line perpendicular

to these two, we find, after a few reductions,

^'(i-C), &(i-£\, ^'(i-C).
pp \ a"V pp \ 6V P/3 \ J

In fact it is verified without difficulty that the line whose

direction-cosines have been just written is perpendicular to

the two preceding.

It follows hence also, that the equation of the tangent

plane at the same point is

-,

(
i
--S) +^(i

-f-)+ -'(
i ~?)=^

In like manner the tangent plane at the other point where
the same radius vector meets the surface is



aW
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We obtain by reciprocation a similar construction, to de-

termine the points where planes parallel to a given one touch

the two sheets of the surface.

Ex. 1. To transform the equation of the surface, as at p. 125, so as to make the

radius vector to any point on the surface the axis of z, and the axes of the corre-

sponding section of the generating ellipsoid the axes of x and y.

Am. (x2 +f + z2) {p
2z2 + (p'2 + p

2
) x> + (p"2 + p'2

) f + typ'xz + 1pp"yz + 1p'p"xy\

-p2z2 (p
2 + p'2) - x2 (pY + p'2p'2 +p"V + jo

2/2
)

- y* {pV +p'2p'2 + p"V + pV) - ipp'pnxz - ipp'W +i>VV2 = o.

It is easy to see that if we make x and y = in the equation thus transformed,

we get for z2 the values p
2 and p'2 as we ought. If we transform the equation to

parallel axes through the point z = p, the linear part of the equation becomes

2pp (p
2 - p'2

) (pz +p'x),

from which the results already obtained as to the position of the tangent plane may
be independently established.

Ex. 2. To transform similarly the equation of the reciprocal of the wave surface

\2

obtained by writing — for a, &a, in the equation of the wave surface.

Ans. {x2 + y
2 + z2) {p

2p'2x2 +p2
p
2
y
2 - 2pp'p'2xz - 1pp"p2yz + z2 {p'2p'2 +p"2

p
2 + p

2p'2
)}

- X« (p2 +p"2 + p'2) x2 - \" {p
2 +p'2 + p

2
) y

2 - X4 (p'2 +p"2 + p
2 + p'2) z*

+ 2X»"ar^ + Vtfpp'xz + 2\.4pp"yz + Xs = 0.

X2

We know that the surface is touched by the plane z — — , and if we put in this

value for z, we find, as we ought, a curve having for a double point the point y = 0,

jt/X2

x = -— . If in the equation of the curve we make y = 0, we get

from which we learn that that chord of the outer sheet of the wave surface which

joins any point on the inner sheet to the foot of the perpendicular from the centre

on the tangent plane is bisected at the foot of the perpendicular. The inflexional

tangents are parallel to

\p'V2 +p2
Go'

2 - p
2
)} x2 - 2p'p"p2xy + \p'2p

2 + p
2 (p'2 - p

2
)} y

2
,

a result of which I do not see any geometrical interpretation.*

* I have no space for a discussion what the lines of curvature on the wave
surface are not, though a hasty assertion on this subject in Crelle's Journal has led

to interesting investigations by M. Bertrand, Comptes Rendus, Nov. 1858 ; Combescure
and Brioschi, Tortolini's Annali di Matematica, Vol. n., pp. 135, 278. It is worth

while to cite an observation of Brioschi, that if in the plane Ix + my + nz = <p ;

I, m, n, <p be functions of two variables u, i>, as in Art. 403, then the plane will

envelope a surface in which curves of the families « = constant, v = constant, will,
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472. The Surface of Centres. We have already showed
(Art. 197) how to obtain the equation of the surface of centres

of a quadric. We consider the problem under a somewhat
more general form as it has been discussed by Clebsch (Crelle,

Vol. 62., p. 64), some of whose results we give, working with

the canonical form ; and we refer to his paper for fuller details

and for his method of dealing with the general equation. By
the method of Art. 218, we may consider the normal to a sur-

face as a particular case of the line joining the point of contact

of any tangent plane to the pole of that plane with respect

to a certain fixed quadric. The problem then of drawing a

normal to a quadric from a given point may be generalized as

follows : Let it be required to find a point xyzw on a quadrie

Z7, (ax* + by* + cz'' + dw\ such that the pole, with respect to

another quadric F, (a?+y* + 2
s + w2

), of the tangent plane to

U at xyzw., shall lie on the line joining xyzw to a given poirjt

sc'y'z'vf. The co-ordinates of any point on this latter line may
be written in the form x — X#, y' — Xy, z' — Xz, w — Xio, and

expressing that the polar plane of this point, with regard to V,

shall be identical with the polar plane of xyzw, with respect

to U, we get the equations

x' = (a + X)x, y'
'= (b + X) y, a' = (c + \)3, w''=[d+X)w.

And since xyzw is a point on Z7, \ is determined by the equation

by'
2

cz"' duP
f . -. \i + /. . ->\a + /j , -w\

= 0.
(a + X)*^ {b + Xf " [c + xy (d+ Xf

When X is known, a;, y, a, w are determined from the preceding

system of equations, and since the equation in \ is of the sixth

degree, the problem admits of six solutions. If we form the

at their intersection, be touched by conjugate tangents of the surface, if the condition

be fulfilled,
l, m, n, q>

hi m2>
TC» <t>i

hv mm nvn $12 = °-

where the suffixes 1, 2, denote differentiation with respect to u and » respectively

:

while the curves will cut at right angles if

(P + m* + »") {% + mi»»2 + V2) = Ifli + mmi + nni) (
lh + mmi + ""»)•



400 THE SURFACE OF CENTRES.

discriminant, with regard to \, of this equation, we get the

locus of points x, y\ z\ w for which two values of \ coincide,

and rejecting a factor a/yVV2 (which indicates that two values,

coincide for all points on the principal planes) we shall have

a surface of the twelfth degree answering to the surface of

centres.

473. The problem of finding the surface of centres itself is

easily made to depend on an equation of like form ; for (Art. 188)

the co-ordinates of a centre of curvature answering to any point

x'y'z' on an ellipsoid, are

_ a'v _vy _t±X ~ a2
'

V ~ W '

Z ~
c
2

'

Solve for x', y\ z' from these equations, and substitute in the

equations satisfied by x'y'z', viz.

xn y" z'* , x'* yn z
n

„

a, + v 1-
c
* - h , « + yw I"

cV, - ",

and write for a"\ a2 - A2

, &c, and we get

JV cV
i ^

i
i

(a
2 - A2

)

2 T {V - A2

)

2 T
(c

2 - A2

)

2

aV &y cV
(a

2 - A
2

)

3 +
(6

2 - A2

)

3
+

(c
2 - A

2

)

3 ~

These two equations represent a curve of the fourth degree,

which is the locus of the centres of curvature answering to

points on the intersection of the given quadric with a given

confocal. The surface of centres is got by eliminating A2 be-

tween the equations ; or (since the second equation is the diffe-

rential of the first with respect to A2
) by forming the discriminant

of the first equation.

474. I first showed in 1857 [Quarterly Journal, Vol. II.,

p. 218) that the problem of finding the surface of centres was

reducible to elimination between a cubic and a quadratic, and

Clebsch has proved that the same reduction is applicable to

the problem considered in its most general form. In fact, let

A denote the discriminant of fiU+W; viz. for the canonical
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form, (Art. 137) (a/*-f X) {bfi + X) (c/» + X) (<?/* + X), and let O
denote the reciprocal of jttZ7+XF, viz.

(fy* + X) (c/* + X) (^ 4-X)aj' + (e/t + X) [d/t + X) (a/* + X) y* + &c.

then we have — = —--— + —U. l &cA a/i + X V + X +

Now if we differentiate the right-hand side of this equation
with respect to /* and then make /i = l, we obtain the equation
(Art. 472) which determines X, which therefore may be written

12 — -A—
d/j, d/j,

This last equation, which is the Jacobian of 12 and A, being
the result of eliminating m between A+ mXQ, and its differential *

will be verified when A + mXQ, has two equal roots. Its diffe-

,.
,

. _ d*A A d*Q. . . , , „ ,. .

rential again 12 -^ = A -^ being the result of elimination

between A-f »iXX2 and its second differential, will be verified

when A + mXQ, ha3 three equal factors. But both Jacobian and
its differential vanish when both A and 12 vanish. Thus then,

as was stated (Note p. 179), the discriminant of the Jacobian
of two algebraic functions A, 12, contains as a factor the result

of elimination between A and £2; and as another factor, the

condition that it shall be possible to determine m, so that

A + mXQ, may have three equal factors. In the present case,

the eliminant of A, X2, gives the factor afyW, and it is the

other condition which gives the surface answering to the surface

of centres. And this condition is formed, as in Art. 197, by
eliminating m between the 8 and T of the biquadratic A + rnXQ,.

475. The discriminant of any algebraic function

r
«^(X) + (X-«)>(X),

must evidently be divisible by a ; and if after the division we
make a = 0, it can be proved that the remaining factor is yjr (a)

<f>
(a)

3
multiplied by the discriminant of <j> (X). Thus then, the

section of Clebsch's surface by the principal plane w is the conic

* The factor X is added to make Q as well as A a biquadratic function in /i : \.

D D
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ax' by' c#
2

+ a + -, -^ taken three times, together with

the curve of the sixth degree, which is the reduced discriminant of

ax'' by* cz
2

{a+\y {b+xy {c + xy

Clebsch has remarked that this conic and curve touch each

other, and the method we have adopted leads to a simple proof

of this. For evidently the discriminant of

ax2
by* cz'

(a + \y '

(5 4\) 2
' (c+xy

may be regarded as the envelope of all conies which can be

represented by this equation, and therefore touches every parti-

cular conic of the system in the four points where it meets the

conic represented by the differential of the equation with re-

gard to X, viz.

ox2
bif cz'

Ja + X)
3 +

Jb + Xj
+

(c + X)
3

The co-ordinates of these points are ax'' = (a + X)
3 (b- c),

by' = {b + xy (c — a), cz' =(c + X)
3
(a — b); and the equations of

the common tangents at them to the conic and its envelope are

In the case under consideration X = — d. If then we use the

abbreviations

(a-b) (a-c) (a- d)=- A', (b-a) (b- c) (b-d) = -B\
(c-a){c-b)(c-d)=-C2

,
{d - a)(d- b)(d-c) = - D\

the equations of the common tangents to the conic, and the

envelope curve, are

xa$ «J* sc*

The reasoning used in this article can evidently be applied to

other similar cases. Thus the surface parallel to a quadric

(p. 1 48) is met by a principal plane in a curve of the eighth order

and a conic, taken twice, which touches that curve in four

points; and again, the four right lines (Art. 207, p. 161) touch

the conic in their plane.
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476. Beside the cuspidal conies in the principal planes, there

are other cuspidal conies on the surface, which are found by

investigating the locus of points for which the equation of the

sixth degree (Art. 472) has three equal roots. Differentiating

that equation twice with regard to X, we arrive at a system of

equations reducible to the form

by2
cz

l dw'

«V Vtf cV d'W
(a + X)

4
[b + X)

4
(c + X)

4
{d+ xy

«v by cv <zw
{a+xy ' {b+xy^ (c+xy^ {d+xy

The result of eliminating X between these three equations,

will be a pair of equations denoting a curve locus. Now solving

these equations, we get

ax* by*^^ = {b-c){c-d)(d-b), * =(c-a)(a-d){c-d),&c.

which gives us a + X, b + X, &c. proportional to a'asM4

, &c.

Substituting from which equations in the equation (Art. 472)

ax2
by* cz* dw1

- + 7JTTT7* + TTTTv + 7^TT\2 = >
(a + Xf {b + X)

2
' {c+xy ' (d + X)

2

a^x tyy d-z d^w
weget _ ± _| ± _ ± _. = 0;

whence we learn that the locus which we are ^investigating

consists of curves situated in one or other of eight planes ; and

that these planes meet the principal planes in the common

tangents to the conic and envelope curve considered in the last

article.*

But if we eliminate X between the three equations

a + X = aV^*, b + X = tfy
kBl

, c+X = cVC\
so as to form a homogeneous equation in x, y, z, we get

jAi {b-c)xi+tfBi (c-a)yi + JCi {a-b)zk = 0,

* The existence of these eight planes may be also inferred from the consideration,

that the equation of the reciprocal of the wave-surface is of the form (Art. 190)

V = VW, which has therefore as double points, the eight points of intersection

of U, V, W. The surface of centres then has eight imaginary double tangent

planes, which touch the surfaces in conies (see Art. 205).

dd2
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which denotes a cone of the second degree touched by the planes

x, y, s. Hence the cuspidal curves in the eight planes, are

conies which touch the cuspidal conies in the principal planes.

477. There will be a nodal curve on the surface answering to

the points for which the equation of Art. 472 has two pairs

of equal roots. Now we saw (Art. 474) that the condition for

a single pair of equal roots is got by eliminating m between a

quadratic and a cubic equation, namely, the 8 and T of the

biquadratic A + inkH. If we write these equations

a + bm + cm* = 0, A + Bm + Cm* + Dm" = 0,

it will be found that the degrees in x, y, s, w of these coefficients

are respectively 0, 2, 4 ; 0, 2, 4, 6 ; and the result of elimination

is, as we know, of the twelfth degree. Now the condition that

the equation of Art. 472 may have two pairs of equal roots, is

simply that this cubic and quadratic may have two common
values of m. Generally, if the result of eliminating an inde-

terminate in between two equations denotes a surface, the system

of conditions that the equations shall have two common roots

will represent a double curve on that surface. Thus the result

of eliminating m between two quadratics

a + hm 4- can
2

, a'+ b'm+c'm* is (ac — ca')* + (ba — b'a)(bc — b'c) — 0.

But if we remember that a (be — b'c) = b (ac — ca) -f c (ba — S'a),

this result may be written

a (ac — ca')* — b (ac — ca) (ba — b'a) + c (ba — b'a)* = 0,

showing that the intersection of ac' — ca\ ba — b'a, (which must

separately vanish if the equations have both roots common) is a

double curve on the surface.

And to come to the case immediately under consideration, if

we have to eliminate between

a + bm + cm* = 0, A + JBm+ Cm* + Dm* = 0,

we may substitute for the second equation that derived by

multiplying the first by A, the second by a, and subtracting, viz.

(Ba - IA) -f (Ca-cA)m + Dam* = 0,
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and thus, as has been just shewn, the result of elimination may
be written aP 2 - hPQ + cQ' = 0, where

P= bcA - acB + a*D, Q = {ac- V) A + ab'B- a" G.

We thus see that the curve PQ is a double curve on the surface

of centres: but since P is of the sixth degree and Q of the

fourth, the nodal curve PQ is of the twenty-fourth. Further

details will be found in Clebsch's paper already referred to.

478. We have discussed, p. 148, the problem of finding the

equation of a surface parallel to a quadric. The locus of the

feet of perpendiculars let fall, from any fixed point, on the

tangent planes of a surface is a derived surface to which French

mathematicians have of late thought it worth while to give a

distinctive name, "podaire," which we shall translate as the

pedal of the given surface. From the pedal may, in like

manner, be derived a new surface, and from this another, &c.

forming a series of second, third, &c. pedals. Again, the

envelope of planes drawn perpendicular to the radii vectores of

a surface, at their extremities, is a surface of which the given

surface is the pedal, and which we may call the first negative

pedal. The surface derived in like manner from this is the

second negative, and so on. Pedal curves and surfaces have

been studied in particular by Mr. W. Koberts, Liouville, Vols. x.

and XII., by M. Tortolini, and by Mr. Hirst, Tortolini's Annali,

Vol. II., p. 95. We shall here give some of their results, but

must omit the greater part of them, which relate to problems con-

cerning rectification, quadrature, &c., which, on account of want

of space, cannot be included in this treatise. If Q be the foot

of the perpendicular from on the tangent plane at any

point P, it is easy to see that the sphere described on the

diameter OP touches the locus of Q; and consequently the

normal at any point Q of the pedal passes through the middle

point of the corresponding radius vector OP. It immediately

follows hence that the perpendicular OS on the tangent plane

at Q lies in the plane PO Q, and makes the angle QOR = PO Q,

so that the right-angled triangle QOB is similar to POQ; and

if we call the angle Q OR, a, so that the first perpendicular Q
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is connected with the radius vector by the equation p = pcosa,

then the second perpendicular OR will be p cos^a, and so on.*

It is obvious that if we form the polar reciprocals of a

curve or surface A and its pedal B, we shall have a surface a

which will be the pedal of b ; hence if we take a surface 8
and its successive pedals $,, S2 , ...#„, the reciprocals will be

a series 8', 8_
l7 8^ ».S'_n, the derived in the latter case

being negative pedals.

It is also obvious that the first pedal is the inverse (Higher

Plane Curves, p. 239) of tbe polar reciprocal of the given sur-

face (that is to say, the surface derived from it by substituting

in its equation, for the radius vector, its reciprocal) ; and that

the inverse of the series S
ti

S
2 , ...8 will be the series

S',S'_
X
,...S'^.

479. As we shall not have opportunity to return to the

general theory of inversion, we give in this place the following

statement (taken from Hirst, Tortolini, Vol. II., p. 165) of the

principal properties of inverse surfaces.

(1) Three pairs of corresponding points on two inverse

surfaces lie on the same sphere, (and two pairs of corresponding

points on the same circle) which cuts orthogonally the unit

sphere whose centre is the origin.

(2) By the property of a quadrilateral inscribed in a circle

the line ab joining any two points on one curve makes the

same angle with the radius vector Oa, that the line joining

the corresponding points a'b' makes with the radius vector Ob'.

In the limit then, if ab be the tangent at any point a, the

corresponding tangent on the inverse curve makes the saro«>

angle with the radius vector.

(3) In like manner for surfaces, two corresponding tangent

planes are equally inclined to the radius vector, the two cor-

* Thus the radius vector to the nth pedal is of length p cos" a, and makes with the

radius vector to the curve the angle na. Using this definition of the method of

derivation Mr. Roberts has considered fractional derived curves and surfaces.

Thus for »=£, the curve derived from the ellipse is Cassini's oval. An
analogous surface may be derived from the ellipsoid.
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responding normals lying in the same plane with the radius

vector, and forming with it an isosceles triangle whose base
is the intercepted portion of the radius vector.

(4) It follows immediately from (2) that the angle which two
curves make with each other at any point is equal to that which
the inverse curves make at the corresponding point.

(5) In like manner it follows from (3) that the angle which

two surfaces make with each other at any point is equal to that

which the inverse surfaces make at the corresponding point.

(6) The inverse of a line or plane is a circle or sphere

passing through the origin.

(7) Any circle may be considered as the intersection of a

plane, and a sphere A through the origin. Its inverse there-

fore is another circle, which is a sub-contrary section of the

cone whose vertex is the origin, and which stands on the given

circle.

(8) The centre of the second circle lies on the line joining

the origin to a the vertex of the cone circumscribing the sphere

A along the given circle. For a is evidently the centre of

a sphere B which cuts A orthogonally. The plane therefore

which is the inverse of A cuts B' the inverse of B orthogonally,

that is to say, in a great circle, whose centre is the same as

the centre of B'. But the centres of B and of B' lie in a right

line through the origin.

(9) To a circle osculating any curve, evidently corresponds

a circle osculating the inverse curve.

(10) For inverse surfaces, the centres of curvature of two

corresponding normal sections lie in a right line with the origin.

To the normal section a at any point m corresponds a curve

a situated on a sphere A passing through the origin; and

the osculating circle c of a! is the inverse of c the osculating

circle of a. If now a, be the normal section which touches

a at the point m, then by Meunier's theorem, the centre of

c' is the projection on its plane of the centre of c
t
the oscu-

lating circle of ar But the normal m'c, evidently touches the
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sphere A at m\ so that c, is the vertex of the cone circum-

scribed to A along c', and theorem (10) therefore follows from

theorem (8).

(11) To the two normal sections at m whose centres of

curvature occupy extreme positions on the normal at m, will

evidently correspond two sections enjoying the same pro-

perty; therefore to the two principal sections on one surface

correspond two principal sections on the other, and to a line

of curvature on one, a line of curvature on the other.

a? y* z'
2

480. The first pedal of the ellipsoid -5+T5 + — = 1, being

the inverse of the reciprocal ellipsoid, has for its equation

«v + &y + cv

=

[x' +f

+

zy.

This surface is Fresnel's " Surface of Elasticity." The inverse

of a system of confocals cutting at right angles is evidently a

system of surfaces of elasticity cutting at right angles; the

lines of curvature therefore of the surface of elasticity are

determined as the intersection with it of two surfaces of the

same nature derived from concyclic quadrics.

The origin is evidently a double point on this surface, and

the imaginary circle in which any sphere cuts the plane at

infinity is a double line on the surface.

481. Mr. Cayley first obtained the • equation -of the first

negative pedal of a quadric, that is to say, of the envelope

of planes drawn perpendicular to the central radii at their

extremities. It is evident that if we describe a sphere passing

through the centre of the given quadric, and touching it at

any point x'y'z, then the point xyz on the derived surface

which corresponds to x'y'z', is the extremity of the diameter

of this sphere, which passes through the centre of the quadric.

We thus easily find the expressions

«=*(*-£), y=y(»-p), *=*'(2 -?);

where t = xn + y
n + z''\
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Solving these equations for x\ y', z' and substituting their

values in the two equations

xx' + yy' + zz'^x^+f + z", K + € + ^ = 1,
Or C

2 2 '2X If zwe get
-i

s£—
f-
——— = t

K-) (•-*) K)

Now the second of these equations is the differential, with

respect to £, of the first equation ; and the required surface

is therefore represented by the discriminant of that equation,

which we can easily form, the equation being only of the fourth

degree. If we write this biquadratic

At + iBf + 6 Gf + iDt 4 E,

it will be found that A and B do not contain x, y, s, while

G, D, E contain them, each in the second degree. Now the

discriminant is of the sixth degree in the coefficients, and is

of the form A<f> + B*ty ; consequently it can contain x, y, -z

only in the tenth degree. This therefore is the degree of the

surface required.

It appears, as in other similar cases, that the section by one

of the principal planes s, consists of the discriminant of

x* y
„ t

+
„ t~

'

2- -j 2-ja
a o

which is a curve of the sixth degree, and is the first negative

pedal of the corresponding principal section of the ellipsoid,

together with the conic, counted twice, obtained by writing

t= 2c
2

, in the last equation. This conic, which is a double curve

on the surface, touches the curve of the sixth degree in four

points. The double points on the principal planes evidently

answer to points on the ellipsoid, for which t = x'
i + y"1 + z''' = 2a2

or 2&
2
or 2c

2
. There is a cuspidal conic at infinity, and besides,

a finite cuspidal curve of the sixteenth degree.
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The reader will find [Philosophical Transactions, 1858, and

Tortolini, Vol. II., p. 168) a discussion by Mr. Cayley of the

different forms assumed by the surface and by the cuspidal and

nodal curves according to the different relative values of a2
, b'\ c

2
.

482. Mr. W. Koberts has solved the problem discussed

in the last article in another way, by proving that the problem

to find the negative pedal of a surface, is identical with that

of forming the equation of the parallel surface. The former

problem is to find the envelope of the plane

xx + yy + zz = x +y + z

where x', y', z satisfy the equation of the surface. The second

problem, being that of finding the envelope of a sphere whose

centre is on the surface and radius = k, is to find the envelope of

(x-xy + (y-y'y+(z-z'y = Jc%

or 2xx + 2yy' + 2zz' = »" + f + z' - li + xn + y' 2 + z'\

Now in finding this envelope the unaccented letters are treated

as constants, and it is evident that both problems are particular

cases of the problem to find, under the same conditions, the

envelope of

ax + by' + cz' = xn + y
n + z

ri + d.

And it i3 evident that if we have the equation of the parallel

surface, we have only to write in it for F, a? + y* -f «
8
, and

then \x, \y, \z for x,y,z- when we have the equation of the

negative pedal. Thus having obtained (p. 148) the equation

of the parallel to a quadric, we can find by the substitutions

here explained, the equation of the first negative, the origin

being anywhere, as easily as when the origin is the centre.

Further, if we write for k, h + k\ and then make the same
substitution for Jc, we obtain the first negative, the origin being

anywhere, of the parallel to the quadric, a problem which it

would probably not be easy to solve in any other way.

Having found, as above, the equation of the first negative

of a quadric, we have only to form its inverse, when we have

the equation of the second positive pedal of the reciprocal

quadric (Art. 478).
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Ex. 1. To find the envelope of planes drawn perpendicularly at the extremities

of the radii vectores to the plane ax + by + cz + d.

Here the parallel surface consists of a pair of planes, whose equation is

(ax + by + cz + a)2 = lc
2
, that of the envelope is therefore

(ax + by + cz + id)2 = x2 + y
2 + z2.

Ex. 2. To find, in like manner, the first negative of the sphere

(x - a)2 + (y - p)
2 + (z - y)

2 = r2
.

The parallel surface consists of the pair of concentric spheres

(x - a)2 + (y - §)
2 + (z- y)

2 = (r ± h)2.

The envelope is therefore

(x - 2a)2 + (y - 2/3)
2 + (a - 1y)

2 = [2r ± J(x2 + y
2 + z2)}

2
,

which denotes a quadric of revolution.
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CHAPTER XV.

SURFACES OF THE THIRD DEGREE.

483. The general theory of surfaces, explained p. 201, &c.,

gives the following results, when applied to cubical surfaces.

The tangent cone whose vertex is any point, and which en-

velopes such a surface is, in general, of the sixth degree, having

six cuspidal edges and no ordinary double edge. It is con-

sequently of the twelfth class, having twenty-four stationary,

and twenty-seven double tangent planes. Since then through

any line twelve tangent planes can be drawn to the surface,

any line meets the reciprocal in twelve points ; and the reciprocal

is, in general, of the twelfth degree. Its equation can be

found as at Higher Plane Curves, p. 99. The problem is the

same as that of finding the condition that the plane

ax + fiy + yz + Bw

should touch the surface. Multiply the equation of the surface

by B
3

, and then eliminate Bw by the help of the equation of

the plane. The result is a homogeneous cubic in x, y, z,

containing also a, yS, 7, 8 in the third degree. The discriminant

of this equation is of the twelfth degree in its coefficients,

and therefore of the thirty-sixth in afiyB : but this consists of

the equation of the reciprocal surface multiplied by the

irrelevant factor B
M

. The form of the discriminant of a homo-
geneous cubical function in x, y, z is 64#3 = T* [Higher Plane

Curves, p. 190). The same then will be the form of the re-

ciprocal of a surface of the third degree, 8 being of the fourth,

and T of the sixth degree in «, /9, 7, B
;

(that is to say, 8
and T are contravariants of the given equation of the above

degrees). It is easy to see that they are also of the same
degree in the coefficients of the given equation.
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484. Surfaces may have either multiple points or multiple
lines. When a surface has a double line of the degree p;
then any plane meets the surface in a section having p double
points. There is, therefore, the same limit to the degree of
the double curve on a surface of the w " degree, that there is

to the number of double points on a curve of the n
th

degree.

Since a curve of the third degree can have only one double
point ; if a surface of the third degree has a double line, that

line must be a right line.* A cubic having a double line is

necessarily a ruled surface, for every plane passing through
this line meets the surface in the double line, reckoned "twice,

and in another line; but these other lines form a system of

generators resting on the double line as director. If we make
the double line the axis of z, the equation of the surface will

be of the form

(ax
s + 3bx2

y + 3cxf + dy") + z (a'x* + ib'xy + ctf)

+ (aV + 2b"xy + c"y*) = 0,

which we may write w
3
+ zu^ + v

2
= 0. At any point on the

double line there will be a pair of tangent planes »'m + » = 0.

But as z -varies this denotes a system of planes in involution

(Conies, p. 295). Hence the tangent planes at any point on the

double line, are two conjugate planes of a system in involution.

There are two values of z\ real or imaginary, which will

make z'u
2
+ v

2
a perfect square ; there are therefore two points

on the double line at which the tangent planes coincide; and

any plane through either of which meets the surface in a section

having this point for a cusp. If the values of these squares

be X* and Y'\ it is evident that u
2
and v

2
can each be expressed

in the form IX* +mYi
. If then we turn round the axes so

as to have for co-ordinate planes, the planes X, Y, that is to

say, the tangent planes at the cuspidal points ; then every term

* If a surface have a double or other multiple line, the reciprocal formed by
the method of the last article would vanish identically ; because then every plane

meets the surface in a curve having a double point, and therefore the plane

ax + fy + yz + Sw is to be considered as touching the surface, independently of

any relation between a, /3, y, S. The reciprocal can be found in this case by
eliminating x, y, *, w between u = 0, a - uu P = u2> 7 = M3> $ = 'V
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iii the equation will be divisible by either a? or y'\ and the

equation may be reduced to the form zx* = wy2.*

In this form it is evident that the surface is generated by

lines y = \x,z = X2w ; intersecting the two directing lines xy,

zw, and the generators join the points of a system on zw

to the points of a system in involution on xy
:
homographic

with the first system. Any plane through zw meets the surface

in a pair of right lines, and is to be regarded as touching the

surface in the two points where these lines meet zw. Thus

then as the line xy is a line, every point of which is a double

point, so the line zw is a line, every plane through which is

a double tangent. The reciprocal of this surface, which is

that considered Art. 450, is of like nature with itself.

The tangent cone whose vertex is any point, and which

envelopes the surface, consists of the plane joining the point

to the double line, reckoned twice, and a proper tangent cone

of the fourth order. When the point is on the double line the

cone reduces to the second order.

485. There is one case, to which my attention was called

by Mr. Cayley, in which the reduction to the form zx* = wy"

is not possible. If w
2
and v

2,
in the last article, have a common

factor, then choosing the plane represented by this for one of

the co-ordinate planes, we can easily throw the equation of

the surface into the form y
3 + x {zx + wy) = 0.

The plane x touches the surface along the whole length of

the double line, and meets the surface in three coincident right

lines. The other tangent plane at any point coincides with

the tangent plane to the hyperboloid zx + wy. This case may
be considered as a limiting case of that considered in the last

* It is here supposed that the planes X, Y, the double planes of the system in

inrolution, are real. We can always, however, reduce to the form w (a? ± y
2
) + 2zxy,

the upper sign corresponding to real, and the lower to imaginary, double planes.

In the latter case the double line is altogether "really" in the surface, every

plane meeting the surface is a section having the point where it meets the line

for a real node. In the former case this is only true for a limited portion of the

double line, sections which meet it elsewhere having the point of meeting for a con-

jugate point; the two cuspidal points marking these limits on the double line.

A right line, every point of which is a cusp, cannot exist on a cubic unless when
the surface is a, cone.
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article; viz., when the double director xy coincides with the

single one wz. The following generation of the surface may
be given : Take a series of points on xy, and a homographic

series of planes through it; then the generator of the cubic

through any point on the line, lies in the corresponding plane,

and may be completely determined by taking as director a

plane cubic having a double point where its plane meets the

double line and such that one of the tangents at the double point

lies in the plane which corresponds to the double point considered

as a point in the double line.*

486. The argument which proves that a proper cubic curve

cannot have more than one double point does not apply to

surfaces. In fact the line joining two double points, since it

is to be regarded as meeting the surface in four points, must

lie altogether in the surface ; but this does not imply that the

surface breaks up into others of lower dimensions. The con-

sideration of the tangent cone however supplies a limit to the

number of double points on the surface. We have seen

(Art. 273) that the tangent cone is of the sixth degree, and

has six cuspidal edges, and it is known that a curve of the sixth

degree having six cusps can have only four other double points.

Since then every double point on the surface adds a double edge

to the tangent cone, a cubical surface can at most have four

double points.

When a surface has a double point, the line joining this

point to any assumed point is, as has been said, a double edge

of the tangent cone from the latter point ; and it is easy to

see that the tangent planes along this double edge are the planes

drawn through this line to touch the cone generated by the tan-

gents at the double point. If then this cone break up into two

planes, it follows that such a point entails a cuspidal edge on the

tangent cone through any assumed point. A cubic then can

have only three such biplanar double points. The reciprocal

of a cubic then having one or more double points may be

of any degree from the tenth to the third, each ordinary

* The reader is referred to an interesting geometrical memoir on cubical ruled

surfaces by Cremona, " Atte del Beale Istituto Lombardo," Vol. II., p. 291.
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double point reducing the degree by two, and each biplanar

by three.

If the two planes of contact at a biplanar point coincide,

the line joining this uniplanar node to any assumed point will

be a triple edge on the tangent cone through that point, and

the degree of the reciprocal will be reduced by six. Dr. Schafli

[Phil. Trans. 1863, p. 201) has added the following cases to those

noticed by me
; (1) biplanar nodes where a plane different from

both nodal planes touches the surface along the nodal edge,

which lowers the class of the surface by four ; (2) biplanars

where one of the two nodal planes touches the surface

along the nodal edge, which lowers the class by jive ; (3)

where one nodal plane osculates along the nodal edge, which

lowers the class by six ; (4) uniplanars where the nodal plane

touches the surface along a line, which lowers the class by
seven ; (5) where the nodal plane osculates along a line, which

lowers the class by eight.

Ex. 1. "What is the degree of the reciprocal of xyz — w3 ?

Ans. There are three biplanar points in the plane w, and the reciprocal is a cubic.

Ex. 2. "What is the reciprocal of - H 1 h — = ?
x y z w

Ans. This represents a cubic having the vertices of the pyramid xyzw for double

points; and the reciprocal must be of the fourth degree.

The equation of the tangent plane at any point x'y'z'w' can be thrown into the
Ix my nz pw

torm ^2 + Zn + jr2 + ^5 = 0, whence it follows that the condition that

ax + fy + yz + Sw
should be a tangent plane is

(fe)J + (m/?)
5 + (my) J + (pS)* = 0,

an equation which, cleared of radicals, is of the fourth degree. Generally the re-

ciprocal of ax" + by" + cz" + dwn is of the form

" n n n

Aa.*- 1 + B/3"- 1 + Cy"1
"

1 + DS~l = 0,

(Higher Plane Curves, p. 102.)

The tangent cone to this surface, whose vertex is any point on the surface,

being of the fourth degree, and having four double edges, must break up into
two cones of the second degree. The properties of the reciprocal of this surface,
which is of the fourth degree, and is such that every tangent plane cuts it in two
conies, have lately been studied by Steiner, Kummer, Weierstrass, Schroter, Cremona,
(see Crelle, Vols, lxiii. lxiv.).

A cubic having four double points is also the envelope of

M! + b/P + cyz + 2ip7 + Imya + 2na(3,

where a, b, c, 1, m, n represent planes; and a : y, /3 : y are two variable parameters.
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It is obvious that the envelope is of the third degree ; and it is of the fourth class

;

since if we substitute the co-ordinates of two points we can determine four planes
of the system passing through the line joining these points.

Generally the envelope of act" + J/3" + &c. is of the degree 3 (« - l)2 and of the
class re2

. The tangent cone from any point is of the degree 3re (n — 1). It has a
cuspidal curve whose order is the same as the order of the condition that D + \V
may represent a plane curve having a cusp, U and V denoting plane curves of the
re
tB order; or, in other words, is equal to the number of curves of the form
U+W+fiW which can have a cusp. The surface has a nodal curve whose
order is the same as the number of curves of the form U+W+fiW which can
have two double points. For these numbers, see Appendix on the order of systems
of equations.

487. The equation of a cubic having no multiple point may-
be thrown into the form ax3 + by3 + cz" + dv3 + ew3 = 0, where
x, y, z

1
v, w represent planes, and where for simplicity we

suppose that the constants implicitly involved in x, y, &c. have
been so chosen, that the identical relation connecting the equa-

tions of any five planes (Art. 37) may be written in the form

x + y + z+v + w = 0. In fact the general equation of the third

degree contains twenty terms and therefore nineteen indepen-

dent constants, but the form just written contains five terms

and therefore four expressed independent constants, while besides

the equation of each of the five planes implicitly involves three

constants. The form just written therefore contains the same

number of constants as the general equation. This form given

by Mr. Sylvester in 1851 (Cambridge and Dublin Mathematical

Journal, Vol. VI., p. 199) is most convenient for the investi-

gation of the properties of cubical surfaces in general.*

* It was observed (Higher Plane Curves, Art. 18) that two forms may apparently

contain the same number of independent constants, and yet that one may be less gene-

ral than the other. Thus when a form is found to contain the same number of constants

as the general equation, it is not absolutely demonstrated that the general equation is

reducible to this form ; and Clebsch has noticed a remarkable exception in the case of

curves of the fourth order. In the present case, though Mr. Sylvester gave his theorem

without further demonstration, he states that he was in possession of a proof that the

general equation could be reduced to the sum of five cubes, and in but a single way.

Such a proof has been published by Mr. Clebsch (Crelle, Vol. lix., p. 193). He erro-

neously ascribes the theorem in the text to Sterner, who gave it in the year 1856

(Crelle, Vol. Mil., p. 133). It chanced that surfaces of the third order were studied in

this country a few years before German mathematicians turned their attention to this

subject ; and consequently, though, as might be expected from his ability, M. Steiner's

investigations led him to several important results, these had been almost all well

known here some years before.

EE
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488. If we write the equation of the first polar of any point

with regard to a surface of the n
th

order

x'L +y'M + z'N+ w'P= 0,

then, if it have a double point, that point will satisfy the

equations

ax + ny + mz +pw = 0, nx' + by' + lz' + qw' = 0,

mx + ly + cz' + rw = 0, px + qy 4 rz'+ dw = 0,

where a, b, &c. denote second differential coefficients corre-

sponding to these letters, as we have used them in the general

equation of the second degree. Now if between the above

equations we eliminate x'y'z'w', we obtain the locus of all points

which are double points on first polars. This is of the degree

4 (n — 2) and is in fact the Hessian (Art. 279). If we eliminate

the xyzw which occur in a, b, &c, since the four equations

are each of the degree (n — 2), the resulting equation in x'y'z'w

will be of the degree 4 [n — 2)
3
, and will represent the locus of

points whose first polars have double points. Or, again, .ST is

the locus of points whose polar quadrics are cones, while the

second surface, which we shall call J, is the locus of the vertices

of such cones. In the case of surfaces of the third degree, it

is easy to see that the four equations above written are sym-

metrical between xyzw and x'y'z'w' ; and therefore that the

surfaces H and J are identical. Thus then if the polar quadric

of any point A with respect to a cubic be a cone whose vertex

is -S, the polar quadric of B is a cone whose vertex is A. The

points A and B are said to be corresponding points on the

Hessian (see Higher Plane Curves, p. 154, &c.)

489. The tangent plane to the Hessian of a cubic at A is the

polar plane of B with respect to the cubic. For if we take any

point A' consecutive to A and on the Hessian, then since the

first polars of A and A' are consecutive and both cones, it

appears (as at Higher Plane Curves, p. 155) that their inter-

section passes indefinitely near B, the vertex of either cone;

therefore the polar plane of B passes through AA' ; and, in

like manner, it passes through every other point consecutive

to A. It is therefore the tangent plane at A. And the
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polar plane of any point A on the Hessian of a surface of any

degree is the tangent plane of the corresponding point B on the

surface J. In particular the tangent planes to U along the para-

colic curve, are tangent planes to the surface J: that is to say,

in the case of a cubic the developable circumscribing a cubic

along the parabolic curve, also circumscribes the Hessian. If

any line meet the Hessian in two corresponding points A, B,

and in two other points C, J), the tangent planes at A, B inter-

sect along the line joining the two points corresponding to C, D.

490. We shall also investigate the preceding theorems by

means of the canonical form. The polar quadric of any point

with regard to ax3
-+ by

3 + cz* + dv
3 + ew3

is got by substituting

for w its value — (x + y + z + v), when we can proceed according

to the ordinary rules, the equation being then expressed in

terms of four variables. We thus find for the polar quadric

ax'x* + by'y
2 + cz' z' + dv'v* + ew'v? = 0. If we differentiate this

equation with respect to x, remembering that dw — — dx, we
get ax'x = ew'w ; and since the vertex of the cone must satisfy

the four differentials with respect to x, y, z, v, we find that

the co-ordinates x, y', z\ v\ w of any point A on the Hessian

are connected with the co-ordinates x, y, z, v, w of B, the

vertex of the corresponding cone, by the relations

ax'x = by'y = cz'z — dv'v — ew'w.

And since we are only concerned with mutual ratios of co-

ordinates, we may take 1 for the common value of these quan-

tities and write the co-ordinates of B. —;, ^—71 —, -n » —, •
7 ax by cz 1 dv ' eio

Since the co-ordinates of B must satisfy the identical relation

x 4. y + z + v H- w = 0, we thus get the equation of the Hessian

1 111 1 „— + T-+-+ T-+— =0,
ax by cz dv ew

or bcdeyzvw + cdeazvwx + deab vwxy -I- edbcwxyz + dbcdxyzv = 0.

This form of the equation shows that the line vw lies altogether

in the Hessian, and that the point xyz is a double point on the

Hessian; and since the five planes x, y, z, v, w give rise to

ten combinations, whether taken by twos or by threes, we have

EE 2
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Mr. Sylvester's theorem that the five planes form a pentahedron

whose ten vertices are double points on the Hessian and whose

ten edges lie on the Hessian. The polar quadric of the point

xyz is dv'v
1 + ew'w'\ which resolves itself into two planes inter-

secting along vw, any point on which line may be regarded

as the point B corresponding to xyz ; thus then there are ten

points ichose polar quadrics break up into pairs of planes ; these

points are double points on the Hessian, and the intersections of

the corresponding pairs of planes are lines on the Hessian. It

is by proving these theorems independently* that the reso-

lution of the given equation into the sum of five cubes can

be completely established.

The equation of the tangent plane at any point of the

Hessian may be written

x y z v w
L -K_. J L . I —

ax by cz dv ew

which, if we substitute for x, —-, , &c., becomes
' ' ax ' '

axnx + by'*y + cz'*z + dv''*v + ew'
zw = 0,

but this is the polar plane of the corresponding point with

regard to U (Art. 489).

491. If we consider all the points of a fixed plane, their

polar planes envelope a surface, which (as at Higher Plane

Curves, p. 152) is also the locus of points whose polar quadrics

touch the given plane. The parameters in the equation of the

variable plane enter in the second degree ; the problem is

therefore that considered (Ex. 2, Art. 486) and the envelope

is a cubic surface having four double points. The polar planes

of the points of the section of the original cubic by the fixed

plane are the tangent planes at those points, consequently this

polar cubic of the given plane is inscribed in the developable

formed by the tangent planes to the cubic along the section by

* It will appear from the appendix "cm the order of systems of equations,"

that a symmetric determinant of p rows and columns, each constituent of which is

a function of the ntb order in the variables, represents a surface of the npth degree

having $p {p* — 1) n3 double points ; and thus that the Hessian of «. surface of the

n
-" degree always has 10 (n — 2)

3 double points.
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the given plane {Higher Plane Curves, Art. 161). The polar

plane of any point A of the section of the Hessian by the

given plane, touches the Hessian (Art. 489) and is therefore a

common tangent plane of the Hessian and of the polar cubic

now under consideration. But the polar quadric of P, being

a cone whose vertex is A, is to be regarded as touching the

given plane at A ; hence B is also the point of contact of the

polar plane of A with the polar cubic. We thus obtain a

theorem of Steiner's that the polar cubic of any plane touches

the Hessian along a certain curve. This curve is the locus of

the points B corresponding to the points of the section of

the Hessian by the given plane. Now if points lie in any

plane Ix + my + nz +pv + qw, the corresponding points lie on

I m n i) q
the surface of the fourth order \- =—

|

h -r- + — . Now
ax by cz av ew

the intersection of this surface with the Hessian is of the

sixteenth order, and includes the ten right lines xy, ew, &c.

The remaining curve of the sixth order is the curve along

which the polar cubic of the given plane touches the Hessian.

The four double points lie on this curve ; they are the

points whose polar quadrics are cones touching the given

plane.

492. If on the line joining any two points x'y'z', x"y"z",

we take any point x' + \x", &c, it is easy to see that its

polar plane is of the form P„ + 2\P
12
+ A,

2P
22 , where Pn , P22

are the polar planes of the two given points, and P
12

is the

polar plane of either point with regard to the polar quadric

of the other. The envelope of this plane, considering \
variable, is evidently a quadric cone whose vertex is the inter-

section of the three planes. This cone is clearly a tangent

cone to the polar cubic of any plane through the given line,

the vertex of the cone being a point on that cubic. If the

two assumed points be corresponding points on the Hessian, P
vanishes identically ; for, the equation of the polar plane, with

respect to a cone, of its vertex vanishes identically. Hence the

polar plane of any point of ike line joining two corresponding

points on the Hessian passes through the intersection of the tangent
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planes to the Hessian at these points.* In any assumed plane

we can draw three lines joining corresponding points on the

Hessian ; for the curve of the sixth degree considered in the

last article meets the assumed plane in three pairs of corre-

sponding points. The polar cubic then of the assumed plane

will contain three right lines ; as will otherwise appear from

the theory of right lines on cubics which we shall now explain.

493. We said, note, p. 28, that a cubical surface necessarily

contains right lines, and we now enquire how many in general

lie on the surface.")" In the first place it is to be observed that

if a right line lie on the surface, every plane through it is a

double tangent plane because it meets the surface in a right

line and conic ; that is to say, in a section having two double

points. The planes then joining any point to the right lines

on the surface are double tangent planes to the surface and

therefore also double tangent planes to the tangent cone whose

vertex is that point. But we have seen (Art. 483) that the

number of such double tangent planes is twenty-seven.

This result may be otherwise established as follows: let

us suppose that a cubic contains one right line, and let us

examine in how many ways a plane can be drawn through

the right line, such that the conic in which it meets the

surface may break up into two right lines. Let the right

line be wz ; let the equation of the surface be wU=zV; let

us substitute w=/mz, divide out by z, and then form the dis-

criminant of the resulting quadric in x, y, z. Now in this

quadric it is seen without difficulty that the coefficients of

x 1

, xy, and y" only contain /jl in the first degree ; that those of

xz and yz contain (i in the second degree, and that of z' in

* Steiner saya that there are one hundred lines such that the polar plane of

any point of one of them passes through a fixed line, but I believe that his theorem

ought to be amended as above.

f The theory of right lines on a cubical surface was first studied in the year

1849 in a correspondence between Mr. Cayley and me, the results of which were

published, Cambridge and Dublin Mathematical Journal, Yol. IV., pp. 118, 252.

Mr. Cayley first observed that a definite number of right lines must lie on the surface

;

the determination of that number as above, and the discussions in Art. 496 were

supplied by mc.
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the third degree. It follows hence that the equation obtained

by equating the discriminant to nothing is of the fifth degree

in /J> : and therefore that through any right line on a cubical

surface can be drawn five planes, each of which meets the surface

in another pair of right lines ; and consequently, every right

line on a cubic is intersected by ten others. Consider now the

section of the surface by one of the planes just referred to.

Every line on the surface must meet in some point the section

by this plane, and therefore must intersect some one of the

three lines in this plane. But each of these lines is inter-

sected by eight in addition to the lines in the plane ; there

are therefore twenty-four lines on the cubic besides the three

in the plane ; that is to say, twenty-seven in all.

We shall hereafter show how to form the equation of a

surface of the ninth order meeting the given cubic in those

lines.

494. Since the equation of a plane contains three inde-

pendent constants, a plane may be made to fulfil any three

conditions, and therefore a finite number of planes can be

determined which shall touch a surface in three points. We
can now determine this number in the case of a cubical surface.

We have seen that through each of the twenty-seven lines

can be drawn five triple tangent planes : for every plane

intersecting in three right lines touches at the vertices of the

triangle formed by them, these being double points in the

section. The number 5 x 27 is to be divided by three, since

each of the planes contains three right lines ; there are therefore

in allforty-five triple tangent planes.

495. Every plane through a right line on a cubic is obviously

a double tangent plane ; and the pairs of points of contact form

a system in involution. Let the axis of z lie on the surface,

and let the part of the equation which is of the first degree

in x and y be (aa
a + bz + c) x + (a'z

2 + b'z + c')y; then the two

points of contact of the plane y =/ix are determined by the

equation
(as

2 + bz + c) + fi (a'z
2 + b'z + c) = 0,

but this denotes a system in involution (Oonics, p. 295). It
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follows hence, from the known properties of involution, that

two planes can be drawn through the line to touch the surface

in two coincident points : that is to say, which cut it in a line

and a conic touching that line. The points of contact are

evidently the points where the right line meets the parabolic

curve on the surface. It was proved (Art. 281) that the right

line touches that curve. The two points then where the line

touches the parabolic curve, together with the points of

contact of any plane through it, form a harmonic system.

Of course the two points where the line touches the parabolic

curve may be imaginary.

496. The number of right lines may also be determined

thus. The form ace - bdf, (where a, b, &c. represent planes)

is one which implicitly involves nineteen independent constants,

and therefore is one into which the general equation of a

cubic may be thrown.* This surface obviously contains nine

lines [ab, cd, &c). Any plane then a=fib which meets the

surface in right lines meets it in the same lines in which it

meets the hyperboloid pee — df. The two lines are therefore

generators of different species of that hyperboloid. One meets

the lines cd, ef; and the other the lines cf de. And, since

fi has three values, there are three lines which meet ab, cd, ef.

The same thing follows from the consideration that the hyper-

boloid determined by these lines must meet the surface in

three more lines (Art. 339).

Now there are clearly six hyperboloids, ab, cd, ef; ab, cf de,

&c. which determine eighteen lines in addition to the nine

with which we started, that is to say as before, twenty-seven

in all.

If we denote each of the eighteen lines by the three which

it meets, the twenty-seven lines may be enumerated as follows

:

there are the original nine ab, ad, af cb, cd, cf, eb, ed, ef: to-

gether with (ab.cd.ef)^ [ab.cd.ej)
z,

[ab.cd.ef)
3,

and in like

manner three lines of each of the forms ab.cf.de, ad.be. ef,

ad.be.cf af.bc.de, af.be.cd. The five planes which can be

* It will be found, in one hundred and twenty ways,
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drawn through any of the lines ab are the planes a and b,

meeting respectively in the pairs of lines ad, of; be, be ; and
the three planes which meet in {ab.cd.ef)

x ,
{ab.cf.de)/,

(ab.cd.rf)
t ,

{ab.cf.de)./, {ab.cd.ef\, {ab.cf.de)
s
. The five

planes which can be drawn through any of the lines (ab.cd.ef)^

cut in the pairs of lines, ab, {ab.cf.de)
1 ; cd, (af.cd.be)^

ef, {ad. beef)/, and in {ad. be. cf")„ {af.bc.de)/, {ad.be.cf)
3,

{af.be. de)^

497. Prof. Schafli has made a new arrangement of the

lines {Quarterly Journal of Mathematics, Vol. n., p. 116) which

leads to a simpler notation, and gives a clearer conception

how they lie. Writing down the two systems of six non-

intersecting lines

ab, cd, ef, {ad.be. cf) x ,
{ad.be. cf)^ {ad.be. cf) s ,

cf,be,ad,{ab.cd.ef\, {ab.cd.ef)^, {ab.cd.ef)/,

it is easy to see that each line of one system, does not intersect

the line of the other system which is written in the same

vertical line, but that it intersects the five other lines of the

second system. We may write then these two s)7stems

«,) a» «3l «4> ff
'5> ««>

K K \l h
*l Kl &

6>

which is what Schafli calls a " double-six." It is easy to see

from the previous notation that the line which lies in the

plane of a
t , b^ is the same as that which lies in the plane of

«
2, b

t
. Hence the fifteen other lines may be represented by

the notation c
12 , cM , &c, where c

12
lies in the plane of a

v , b
t ,

and there are evidently fifteen combinations in pairs of the

six numbers 1, 2, &c. The five planes which can be drawn

through c
12

are the two which meet in the. pairs of lines

«A> aAl aIld th°Se Which m
f
et m V»l C

S6
C
4B>

C
S6
C
45-

The™
are evidently thirty planes which contain a line of each of the

systems a, b, c: and fifteen planes which contain three c lines.

It will be found that out of the twenty-seven lines can be

constructed thirty-six " double-sixes."

498. We can now geometrically construct a system of

twenty-seven lines which can belong to a cubical surface. We
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may start by taking arbitrarily any line a
t
and five others

which intersect it, Z>
2 , Z>

s , &
4 , 6

6 , 6
6

. These determine a cubical

surface, for if we describe such a surface through four of the

points where o, is met by the other lines and through three

more points on each of these lines, then the cubic determined

by these nineteen points contains all the lines, since each line

has four points common with the surface. Now if we are

given four non-intersecting lines, we can in general draw two

transversals which shall intersect them all; for the hyperboloid

determined by any three meets the fourth in two points through

which the transversals pass* Through any four then of the

lines b
3 , bv 5

6 , b
s
we can draw in addition to the line a

t
another

transversal «
B,
which must also lie on the surface since it meets

It in four points. In this manner we construct the five new

lines a , a , a,, ol, a,. If we then take another transversal
27 37 4? 67 6

meeting the four first of these lines, the theory already ex-

plained shows that it will be a line 5, which will also meet

the fifth. We have thus constructed a " double-six." We
can then immediately construct the remaining lines by taking

the plane of any pair a,&
2 , which will be met by the lines

J,, a
2

in points which lie on the line c^.

499. M. Schafli has made an analysis of the different

species of cubics according to the reality of the twenty-seven

* If the hyperboloid touches the fourth line, the two transTeraala reduce to a

single one, and it is evident that the hyperboloid determined by any three others of

the four lines also touches the remaining one. This remark I believe is Mr. Cayley's.

If we denote the condition that two lines should intersect by (12), then the condition

that four lines should be met by only one transversal is expressed by equating to

nothing the determinant

- (12), (13), (14)

(21), - (23), (24)

(31), (32), - (34)

(41), (42), (43), - .

The vanishing of the determinant formed in the same manner from five lines, is the

condition that they are all met by a common transversal. The vanishing of the

similar determinant for six lines, expresses that they are connected by a relation

which has been called the " involution of six lines ;" and which will be satisfied when

the lines can be the directions of six forces in equilibrium. The reader will find

several interesting communications on this subject by Messrs. Sylvester and Cayley,

and by M. Chasles, in the Comptes Rendus for 1861, Premier Semestre.
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lines. He finds thus five species : A. all the lines and planes

real; B. fifteen lines and fifteen planes real; G. seven lines

and five planes real; that is to say, there is one right line

through which five real planes can be drawn, only three of

which contain real triangles ; D. three lines and thirteen planes

real : namely, there is one real triangle through every side of

which pass four other real planes; and, E. three lines and

seven planes real.

I have also given {Cambridge and Dublin Mathematical

Journal, Vol. IV., p. 256) an enumeration of the modifications

of the theory when the surface has one or more double points.

It may be stated generally that the cubic has always twenty-

seven right lines and forty-five triple tangent planes, if we
count a line or plane through a double point as two, through

two double points as four, and a plane through three such

points as eight. Thus, if the surface has one double point,

there are six lines passing through that point, and fifteen

other lines one in the plane of each pair. There are fifteen

treble tangent planes not passing through the double point.

Thus 2 x 6 + 15 = 27 ; 2 x 15 + 15 = 45.

Again, if the surface have four double points, the lines are

the six edges of the pyramid formed by the four points (6x4),

together with three others lying in the same plane, each of

which meets two opposite edges of the pyramid. The planes

are the plane of these three lines 1, six planes each through

one of these lines and through an edge (6 x 2), together with

the four faces of the pyramid (4x8).

The reader will find the other cases discussed in the paper

just referred to, and in a later memoir by Schafli in the Philo-

sophic Transactions for 1863.

500. It is known that in a plane cubic the polar line, with

respect to the Hessian, of any point on the curve, meets on

the curve the tangent at that point. Clebsch has given as

the corresponding theorem for surfaces, The polar plane, with

respect to the Hessian, of any point on the cubic, meets the tangent

plane at that point, in the line which joins the three points of

inflexion of the section by the tangent plane. It will be re-
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membered that the section by a tangent plane is a cubic

having a double point, and therefore having only three points

of inflexion lying on a line. If w be this line, xy the double

point, the equation of such a curve may be written

x*+y*-\- Gxyw = 0.

Writing then the equation of the surface, (the tangent plane

being z), xs + y
3 + &xyw + zu = 0, where u is a complete function

of the second degree u = dz* + 6pxio + Qqyio + 3rzw + &c, where

we have only written the terms which we shall actually require

;

and working out the equation of the Hessian, we find the terms

below the second degree in x, y, z to be d2w4 + d{r — %pq) zuf.

The polar plane then of the Hessian with respect to the point

xyz is idw + (r — 2pq) z, which passes through the intersection

of zw as was to be proved.

If the tangent plane pass through one of the right lines

on the cubic, the section by it consists of the right line x and

a conic, and may be written xs + Qxyw = ; and, as before, the

polar plane of the point xyz with respect to the Hessian passes

through the line w, a theorem which may be geometrically

stated as follows : When the section by the tangent plane is a

line and a conic, the polar plane, with respect to the Hessian, of
either point in which the line meets the conic, passes through the

tangent to the conic at the other point. If the tangent plane

passes through two right lines on the cubic, the section reduces

to xyw, and the polar plane still passes through w, that is to say,

through the third line in which the plane meets the cubic. If

the point of contact is a cusp, it is proved in like manner that

the line through which the polar plane passes is the line joining

the cusp to the single point of inflexion of the section.

The conclusions of this article may be applied with a slight

modification to surfaces of higher degree than the third: for

if we add to the equation of the surface with which we have

worked, terms of higher degree in xyz than the third, these

will not affect the terms in the equation of the Hessian which

are below the second degree in x, y, z. And the theorem is

that the polar plane, with respect to the Hessian, of any point

on a surface intersects the tangent plane at that point, in the
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line joining the points of inflexion of the section by the tangent
plane of the polar cubic of the same point.

INVARIANTS AND COVARIANTS OP A CUBIC.

501. We shall in this section give an account of the

principal invariants, covariants, &c. that a cubic can have.

We only suppose the reader to have learned from the Lessons

on Higher Algebra, or elsewhere, some of the most elementary

properties of these functions. An invariant of the equation

of a surface is a function of the coefficients, whose vanishing

expresses some permanent, property of the surface^ as for

example that it has a nodal point. A covariant, as for

example the Hessian, denotes a surface having to the original

surface some relation which is independent of the choice of

axes. A contravariant is a relation between a, £, <y, S, ex-

pressing the condition that the plane ax + /3y + <yz + Sw shall

have some permanent relation to the given surface, as for

example that it shall touch the surface. The property of

which we shall make the most use in this section is that

proved (Lessons on Higher Algebra, p. 66), viz. that if we sub-

stitute in a contravariant for a, /?, &c, -=- , -=-
, &c, and then

operate on either the original function or one of its covariants

we shall get a new covariant, which will reduce to an invariant

if the variables have disappeared from the result. In like

manner if we substitute in any covariant for x, y, &c, -j- ,
-7-

,

&c, and operate on a contravariant, we get a new contravariant.

Now in discussing the properties of a cubic we mean to use

Mr. Sylvester's canonical form in which it is expressed by the

sum of five cubes. We have calculated for this form the

Hessian (Art. 490), and there would be no difficulty in calcu-

lating other covariants for the same form. It remains to show

how to calculate contravariants in the same case. Let us

suppose that when a function U is expressed in terms of four

independent variables, we have got any contravariant in a, /3,

7, <5 : and let us examine what this becomes when the function
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is expressed by five variables connected by a linear relation.

But obviously we can reduce tbe function of five variables to

one of four, by substituting for tbe fifth its value in terms

of tbe others: viz. w = - (x + y + s-f v). To find then the

condition that the plane ax + /% + 7s + $v + zw may have any

assigned relation to the given surface, is the same problem as

to find that the plane (a - e) x + (/3 - s) y + (7 - e) z -+ (8 - e) v

may have the same relation to the surface, its equation being

expressed in terms of four variables ; so that the contravariant

in five letters is derived from that in four by substituting

a— e, /3 — s, 7 — e, 8 — e respectively for a, /3, 7, 8. Every

contravariant in five letters is therefore a function of the

differences between a, /3, 7, 8, e. This method will be better

understood from the following example.

Ex. The equation of a quadrie is given in the form

ace2 + bif + cz2 + dv2 + evfl = 0,

where x + y + z + v + w~0; to find the condition that ax + (3y + yz + Sv + cw

may touch the surface. If we reduce the equation of the quadrie to a function of

four variables by substituting for w its value in terms of the others, the coefficients

of x2
, y

2
, z2, v2 are respectively a + e, b + e, c + e, d+e while every other coefficient

becomes e. If now we substitute these values in the equation of Art. 75, the con-

dition that the plane ax + fy + yz + Sv touches, becomes

a2 (bed + bee + cde + dbe) + J3
2 (cda + ede + dae + ace) + y

2 (dab + doe + abe + bde)

+ S2 (abe + abe + bce + eae) - 2e (adfiy + bdya + cda/3 + bcaS + eafid + abyS) = 0.

Lastly, if we write in the above for a, (3, &«., a — e, ft— t, &c, it becomes

bed (a - t)2 + cda(j3- e)2 + dab (y - t)
2 + abe (8 - e)2 + bee (a - S)2 + cae{fi- Sf

+ abe (y -Sf + adeifi- yf + bde(a- yf + cde (a - /3)
2 = 0.

a contravariant which may be briefly written Ycde (a - /3)
2 = 0.

i

502. We have referred to the theorem that when a con-

travariant in four letters is given, we may substitute for

a, /3, 7, S differential symbols with respect to x, y, z, w ; and

that then by operating with the function so obtained on any

covariant we get a new covariant. Suppose now that we operate

on a function expressed in terms of five letters a;, y, z, v, w.

Since x appears in this function both explicitly and also

where it is introduced in w, the differential with respect to

d d dw .
,

. , , .

* is -j- + -j- -j- , or, in virtue ot the relation connecting w
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with the other variables, ^ 7- . Hence a contravariant in
' ax dw

four letters is turned into an operating symbol in five by
substituting for

n %. d d d d d d d d
'

' dx dw ' dy dw ' dz dw ' dv dvo

'

But we have seen in the last article that the contravariant

in five letters has been obtained from one in four, by writing

for a, a — 8, &c. It follows then immediately that if in any

contravariant in five letters we substitute for a, /3, 7, 8, s,

d d d d d ,. . 77 . 7

T 1 T 1 ~J~ 1 T 1 T~ '
we °btam an operating symbol, with

which operating on the original function, or on any covariant,

we obtain a new covariant or invariant. The importance of

this is that when we have once found a contravariant of the

form in five letters we can obtain a new covariant without

the laborious process of recurring to the form in four letters.

Ex. "We have seen that 2c<fe (a — f))
2 is a contravariant of the form

ax2 + by2 + cz2 4- dv2 4- ew2
.

If then we operate on the quadric with Sccfe ( •=— -^-
J

, the result, which only differs

by a numerical factor from

bcde + cdea + deab + eabc + abed,

is an invariant of the quadric. It is in fact its discriminant, and could have been

obtained from the expression Art. 63, by writing, as in the last article, a + e, b + e,

c + e, d + e for a, b, c, d, and putting all the other coefficients equal to e.

503. In like manner it is proved that we may substitute

in any covariant function for x, y, z, v, w, differential symbols

with regard to a, /3, 7, S, e, and that operating with the function

so obtained on any contravariant we get a new contravariant.

In fact if we first reduce the function to one of four variables,

and then make the differential substitution which we have a

right to do, we have substituted for

d d d d , / d d d d\
x,y,^,v,w;

TgL
, ^g, Ty , Ts

, and -
(^
- +_+- + ^j .

But since the contravariant in five letters was obtained from

that in four by writing a — e for a, &c, it is evident that the

differentials of both with regard to a, /3, 7, S are the same,
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while the differential of that in five letters with respect to e

is the negative sum of the differentials of that in four letters

with respect to a, /3, 7, S. But this establishes the theorem.

By this theorem and that in the last article we can, being

given any covariant and contravariant, generate another, which

again combined with the former gives rise to new ones

without limit.

504. The polar quadric of any point with regard to the

cubic ax3 + by
s + cz

s + dv
3 + ew" is

axx™ + byy'
1 + czz

n + dvv'
1
-+ eww" = 0.

Now the Hessian is the discriminant of the polar quadric.

Its equation therefore, by Ex., Art. 502, is '2,bcdeyzvw = Q, as

was already proved, Art. 490. Again, what we have called

(Art. 491) the polar cubic of a plane

ax + /% + <yz + hv •+ ew,

being the condition that this plane should touch the polar

quadric is (by Ex., Art. 501) 1,cdezvw (a — /3)'
2 = 0. This is

what is called a mixed concomitant, since it contains both

sets of variables x, y, &c, and a, /3, &c.

If now we substitute in this for a, /3, &c, -=-
,

-=- , &c,

and operate on the original cubic, we get the Hessian ; but

if we operate on the Hessian we get a covariant of the fifth

order in the variables, and the seventh in the coefficients to

which we shall afterwards refer as <J>,

5> = abcde2abm2y*z -

In order to apply the method indicated (Arts. 502, 503) it

is necessary to have a contravariant; and for this purpose I

have calculated the contravariant a which occurs in the equation

of the reciprocal surface, which, as we have already seen, is

of the form 64<7
3 = t\ The contravariant o- expresses the

condition that any plane ax + $y + &c. should meet the surface

in a cubic for which Aronhold's invariant S vanishes. It is

of the fourth degree both in a, /3, &c. and in the coefficients

of the cubic. In the case of four variables the leading term

is a" multiplied by the S of the ternary cubic got by making
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x = m the equation of the surface. The remaining terms

are calculated from this by means of the differential equation

(Lessons on Higher Algebra, p. 70). The form being found

for four variables, that for five is calculated from it as in

Art. 501. I suppress the details of the calculation which

though tedious presents no difficulty. The result is

<r = Soici(a-e)08-e)(7-e)(S-e) [1].

For facility of reference I mark the contravariants with

numbers between brackets, and the covariants by numbers be-

tween parentheses, the cubic itself and the Hessian being

numbered (1) and (2). We can now, as already explained,

from any given covariant and contravariant generate a new
one, by substituting in that in which the variables are of lowest

dimensions, differential symbols for the variables, and then

operating on the other. The result is of the difference of

their degrees in the variables, and of the sum of their degrees

in the coefficients. If both are of equal dimensions, it is in-

different with which we operate. The result in this case is

an invariant of the sum of their degrees in the coefficients.

The results of this process are given in the next article.

505. (a) Combining fl) and [I], we expect to find a con-

travariant of the first degree in the variables, and the fifth

in the coefficients ; but this vanishes identically.

(b) (2) and [1] gives an invariant to which we shall refer

as invariant A,

A = 2&VW - 2abcde Zabc.

If A be expressed by the symbolical method explained

(Lessons on Higher Algebra, p. 77), its expression is

(1235) (1246) (1347) (234S) (5678)*.

(c) Combining [1] with the square of (l) we get a covariant

quadric of the sixth order in the coefficients

abode [ax* + by
1 + cz* + dv' + ew') (3),

which expressed symbolically is (1234) (1235) (1456) (2456).

(d) (3) and [1] gives a contravariant quadric

«WcVVS(a-/3)a

[2].

FF
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(e) (1) and [2] gives a covariant plane of the eleventh order

in the coefficients

a
8#WV (ax + by + cz + dv + ew) (4)

.

(f) (3) and [2] gives an invariant B,

azbVdV(a + b + c + d+e).

(g) Combining with (3) the mixed concomitant (Art. 504)

we get a covariant cubic of the ninth order in the coefficients

abode ~2cde (a + b) zvio (5).

(It) Combining (5) and [1] we have a linear contravariant

of the thirteenth order, viz.

abcdeS (a - b) [a — /3) {(a + b) c'd'
2
e* - abcde (cd+ de + ec)}.

It seems unnecessary to give further details as to the steps

by which particular covariants are found, and we may therefore

sum up the principal results.

506. It is easy to see that every invariant is a symmetric

function of the quantities a, b, c, d, e. If then we denote the

sum of these quantities, of their products in pairs, &c, by

jo, q, r, s, t; every invariant can be expressed in terms of

these five quantities, and therefore in terms of the five following

fundamental invariants, which are all obtained by proceeding

with the process exemplified in the last article

A = s
z -M, B=fp, 0=1% D = l

e

q, E=f;
whence also G'*-AE=4-fr.

We can, however, form skew invariants which cannot be

rationally expressed in terms of the five fundamental invariants,

although their squares can be rationally expressed in terms of

these quantities. The simplest invariant of this kind is got

by expressing in terms of its coefficients the discriminant

of the equation whose roots are a, b, c, d
f

e. This, it will

be found, gives in terms of the fundamental invariants

A, .B, C, D, E, an expression for t
M

multiplied by the product

of the squares of the differences of all the quantities a, b, &c.

This invariant being a perfect square, its square root is an

invariant F of the one hundredth degree. Its expression in
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terms of the fundamental invariants is given, Philosophical

Transactions, 1860, p. 233.

The discriminant of the cubic can easily be expressed in

terms of the fundamental invariants. It is obtained by elimi-

nating the variables between the four differentials with respect

to x, g, z, y, that is to say,

ax* = by' = cz
2 = dv* = ew\

Hence a?, y", &c. are proportional to bcde, cdea, &c Sub-
stituting then in the equation x +y +z + v + w =

1
we get the

discriminant

>s/{bcde) + \/(cdea) + >J(deab) + >J(eabc) + \]{dbcd) = 0.

Clearing of radicals, the result, expressed in terms of the

principal invariants, is

(A 2 - UBf = 16384 (Z> + 2A C),

507. The cubic has four fundamental covariant planes of

the orders 11, 19, 27, 43 in the coefficients, viz.

L = f2ax, L' = f'2bcdex
1
L" = f2d2

x^ L"'=f^,d3
x.

Every other covariant, including the cubic itself, can in

general be expressed in terms of these four, the coefficients

being invariants. The condition that these four planes should

meet in a point, is the invariant F of the one hundredth

degree.

There are linear contravariants the simplest of which, of the

thirteenth degree, has been already given ; the next being of

the twenty-first, f2 (a — b)(a — j3)] the next of the twenty-

ninth, tlLcde {a — b) (a — /3), &c.

There are covariant quadrics of the sixth, fourteenth, twenty-

second, &c. orders ; and contravariants of the tenth, eighteenth,

&c, the order increasing by eight.

There are covariant cubicsof the ninth order 2,tcde(a+b)zuv,

and of the seventeenth, ^2aV, &c.

If we call the original cubic U, and this last covariant F,

since if we form a covariant or invariant of U+W, the

coefficients of the several powers of \ are evidently covariants

or invariants of the cubic : it follows that given any covariant

or invariant of the cubic we are discussing, we can form from

FF2
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it a new one of the degree sixteen higher in the coefficients,

by performing on it the operation

„ d ,
a
d „ d ™ d , d

da db dc dd de

Of higher covariants we only think it necessary, here to mention

one of the fifth order, and fifteenth in the coefficients txyzvw

which gives the five fundamental planes : and one of the ninth

order, © the locus of points whose polar planes with respect to

the Hessian touch their polar quadrics with respect to Z7. Its

equation is expressed by the determinant, p. 47, if a, /S, &c.

denote the first differential coefficients with respect to the Hessian,

and a, b, &c. the second differentials with respect to the cubic.

The equation of a covariant whose intersection with the

given cubic determines the twenty-seven lines is © = 4H$,

where * has the meaning explained, Art. 504. We shall give

M. Clebsch's proof of this at the end of the volume. I had

verified the form, which had been suggested to me by geometrical

considerations, by examining the following form, to which the

equation of the cubic can be reduced, by taking for the planes

x and y the tangent planes at the two points where any of

the lines meets the parabolic curve, and two determinate planes

through these points for the planes to, 2,

z*y + w2x 4 2xyz + 2xyw + ax'y + by*x + cx*z + dy'w — 0.

The part of the Hessian then which does not contain either

x or y is «V: the corresponding part of <t> is — 2 {cz
b + dwb

)

,

and of is - 8wV (ca
c

-f div
b

). The surface ©-4H$ has

therefore no part which does not contain either x or y, and

the line xy lies altogether on the surface, as in like manner

do the rest of the twenty-seven lines.*

* This section is abridged from a paper which I contributed to the Philosophical

Transactions, 1860, p. 229. Shortly after the reading of my memoir, and before its

publication, there appeared two papers in Crelle's Journal, Yol. lviii., by Professor

Clebsch of Carlsruhe, in which some of my results were anticipated : in particular the

expression of all the invariants of a cubic in terms of five fundamental : and the

expression given above for the surface passing through the twenty-seven lines. The

method however which I pursued was different from that of Professor Clebsch, and

the discussion of the covariants, as well as the notice of the invariant F, I believe were

new. Clebsch has expressed his last four invariants as functions of the coefficients of

the Hessian. Thus the second is the invariant (1234)'' of the Hessian, &c.
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CHAPTER XVI.

GENERAL THEORY OF SURFACES.

508. We shall in this chapter proceed, in continuation of

Art. 281, with the general theory of surfaces, and shall first

state for surfaces in general a few theorems proved for quadrics

(Art. 224, &c).

The locus of the points whose polar planes with regard to

four surfaces U, F, W, T {whose degrees are m, n, p, q) meet

in a point, is a surface of the degree m+n+p+q—i; which

we call the Jacobian of the system. For its equation is

evidently got by equating to nothing the determinant whose

constituents are the four differential coefficients of each of the

four surfaces. If a surface of the form \ Z7+ /j,V+ vW touch T,

the point of contact is evidently a point on the Jacobian, and

must lie somewhere on the curve of the degree q(m+n+p+q— 4)

where the Jacobian meets T. In like manner, pq (m+n+p+ q— 4)

surfaces of the form \U+ pV, can be drawn so as to touch

the curve of intersection of T, W; for the point of contact

must be some one of the points where the curve TW meets

the Jacobian.

It follows hence that the tact-invariant of a system of three

surfaces U, V, W; that is to say, the condition, that two of the

mnp points of intersection may coincide, contains the coefficients

of the first in the degree np (2m + n +p — 4) ; and in like manner

for the other two surfaces. For if in this condition we sub-

stitute for each coefficient a of U, a + \a, where a' is the

corresponding coefficient of another surface U' of the same

degree as U, it is evident that the degree of the result in \, is

the same as the number of surfaces of the form Z7+ \V which

can be drawn to touch the curve of intersection of V, W.*

* Moutard, Terqmm's Annates, Vol. six., p. 58.
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I had arrived at the same result otherwise thus: (see

Quarterly Journal, Vol. I., p. 3S&) Two of the points of inter-

section coincide if the curve of intersection TJV touch the

curve TJW. At the point of contact then the tangent planes

to the three surfaces have a line in common : and these planes

therefore have a point in common with any arbitrary plane

ax + fiy + 72: + 810. The point of contact then satisfies the

determinant, which has for one row, a, /3, 7, 8 ; and for the

other three the four differentials of each of the three surfaces.

The condition that this determinant may be satisfied by a point

common to the three surfaces is got by eliminating between the

determinant and U, V, W. The result will contain a, /3, 7, S

in the degree mnp j and the coefficients of U in the degree

np (m + n +jy — 3) + mnjy. But this result of elimination con-

tains as a factor the condition that the plane ax + /3y + 73 + &w
may pass through one of the points of intersection of U", V

7
W.

And this latter condition contains a, /3, 7, 8 in the degree mnp
r

and the coefficients of U in the degree np. Dividing out this

factor, the quotient, as already seen, contains the coefficients of

Uin the degree

np (2m + n +p> — 4).

509. The locus of points whose polar planes with regard

to three surfaces have a right line common, is, as may be

inferred from the last article, the Jacobian curve denoted by
the system of determinants

v* u«
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then as in the last article we see that the tact-invariant of two
surfaces U, V, that is to say, the condition that they should

touch, contains the coefficients of U in the degree

n (n'
2 + 2m'n' + 3m' 2

)

or n(7^ + 2mn + S7n
i -in-8m+6),

and in like manner contains the coefficients of U in the

degree m (m2 + 2m«H- 3ri*-4m-"8n + 6). Moutard, Terquem,

Vol. xix., p. 65.

We add, in the form of examples, a few theorems to which
it does not seem worth while to devote a separate article.

Ex. 1. Two surfaces U, V of the degrees m, n intersect ; the number of tangents

to their curve of intersection which are also inflexional tangents of the first surface,

is mn (3m + In— 8).

The inflexional tangents at any point on a surface are generating lines of the polar

quadric of that point ; any plane therefore through either tangent touches that polar

quadric. If then we form the condition that the tangent plane to V may touch the

polar quadric of U, which condition involves the second differentials of U in the

third degree, and the first differentials of V in the second degree, we have the equa-

tion of a surface of the degree (3m + 2n — 8) which meets the curve of intersection

in the points, the tangents at which are inflexional tangents on U.

Ex. 2. In the same case to find the degree of the surface generated by the in-

flexional tangents to U at the several points of the curve UV.
This is got by eliminating x'y'z'w', between the equations

U' = 0, V' = 0, AU' = 0, Az U' = 0,

which are in x'y'z'w' of the degrees respectively m, n, m—1, m — 2, and in xyzm of

the degrees 0, 0, 1, 2. The result is therefore of the degree mn (3m — 4).

Ex. 3. To find the degree of the developable which touches a surface along its

intersection with its Hessian. The tangent planes at two consecutive points on the

parabolic curve, intersect in an inflexional tangent (Art. 2G3) ; and, by the last ex-

ample, since n — 4 (m — 2), the degree of the surface generated by these inflexional

tangents is 4m (m — 2) (3m — 4). But since at every point of the parabolic curve the

two inflexional tangents coincide, and therefore the surfaces generated by each of

these tangents coincide, the number just found must be divided by two, and the

degree required is 2m (m — 2) (3m — 4).

Ex. 4. To find the characteristics, as at p. 261, of the developable which touches

a surface along any plane section of a surface whose degree is m. The section of the

developable by the given plane is the section of the given surface, together with the

tangents at its 3m (m — 2) points of inflexion. Hence we easily find

jit = 6m (m — 2), v = m (m — 1), r — m (3m — 5), a — 0, /3 = 2m (5m — 11), &c.

Ex. 5. To find the characteristics of the developable which touches a surface of

the degree m along its intersection with a surface oftegree n.

Ans. v — mn (m — ,1), o = 0, r = mn (3m + n — 6), whence the other singularities

are found as at p. 261.
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Ex. 6. To find the characteristics of the developable touching two given surfaces,

neither of which has multiple lines.

A m. v = mn (m - l) 2 (n - 1)
J

; a = 0, r = ma (»» - 1) (n - 1) (m + » - 2).

Ex. 7. To find the characteristics of the curve of intersection of two developables.

The surfaces are of degrees r and r', and since each has a nodal and cuspidal curve

of degrees respectively x and m, x' and m', therefore the curve of intersection has

rx' + r'r and mn' + r'm actual nodal and cuspidal points. The cone therefore which
stands on the curve and whose vertex is any point, has nodal and cuspidal edges in

addition to those considered at p. 271 ; and the formulae there given must then be

modified. We have as there p. = rr' ; but the degree of the reciprocal of this cone is

p = rr' (r + »•' - 2) - r (1x' + 3m') - r' (2x + 3m),

or, by the formulas of p. 257, p = rn' + nr'. In like manner

v — nr' + a'r + Srr'.

Ex. 8. To find the characteristics of the developable generated by a line meeting

two given curves. This is the reciprocal of the last example. We have therefore

v ~ rr', p = rm' + mr', p = fir' + ft'r + drr'.

CONTACT OF LINES WITH SURFACES.

510. We now return to the class of problems proposed in

Art. 266, viz. to find the degree of the curve traced on a surface

by the points of contact of a line which satisfies three conditions.

The cases we shall consider are : (A) to find the curve traced

by the points of contact of lines which meet in four con-

secutive points
;

(B) when a line is an inflexional tangent at

one point and an ordinary tangent at another, to find the

degree of the curve formed by the former points ; and
(
C) that

of the curve formed by the latter; (D) to find the curve

traced by the points of contact of triple tangent lines. To
these may be added: (a) to find the degree of the surface

formed by the lines A
;

(b) to find the degree of that formed

by the lines considered in (B) and
(
G)

;
(c) to find the degree

of that generated by the triple tangents.

Now to commence with problem A ; if a line meet a surface

iii four consecutive points we must at the point of contact not

only have U' = 0, but also AW = 0, A 2
Z7' = 0, As

U' = 0. The
tangent line must then be common to the surfaces denoted by

the last three equations.

But since the six points of intersection of these surfaces are

all coincident with x'y'z'w\ the problem is a case of that treated

in Art. 455. Since then, by that article, the condition FT = 0,
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that the three surfaces should have a common line, is of the degree

\'\"fj, + X"\fi' + W'fj." — W'}J' •

substituting

\ = 1, V = 2, X" = 3; f*
= n-l, fi' = n-2, fj,"

= n-3;
we find that 17 is of the degree (lira -24). The points of con-

tact then of lines which meet the surface in four consecutive

points : or (as we may call them) of double inflexional tangents ;

he on the intersection of the surface with a derived surface B
of the degree \\n — 24.*

511. The equation of the surface generated by the double

inflexional tangents is got by eliminating x'y'z'w between

V' = 0, AZ7' = 0, Aa
*7' = 0, A 3

£7' = 0; which result, by the

ordinary rule, is of the degree

n (n - 2) (n - 3) + In (w - 1) (n - 3) + 3ra (n - 1) (n - 2)

= 6n3 - 22w2 + 18n.

Now this result expresses the locus of points whose first, second,

and third polars intersect on the surface ; and since if a point

be anywhere on the surface, its first, second, and third polars

intersect in six points on the surface, we infer that the result

of elimination must be of the form U6M=Q. The degree

of M is therefore

2n(«-3)(3n-2).

512. We can in like manner solve problem B. For the

point of contact of an inflexional tangent we have U' = 0,

AV = 0, A zV = : and if it touch the surface again, we have

* I gave this theorem in 1849 (Cambridge and Dublin Journal, Vol. IV., p. 260).

I obtained the equation in an inconvenient form (Quarterly Journal, Vol. I., p. 336)

:

and in one more convenient (Philosophical Transactions, 1860, p. 229) which I shall

presently give. But I substitute for my own investigation the very beautiful piece

of analysis by which Professor Clebsch performed the elimination indicated in the

text, Crelle, Vol. lviii., p. 93. As the calculation is long, and the method, which is

applicable to other problems also, deserves to be studied, I have thought, it better to

place it by itself in an appendix than to introduce it here. Mr. Cayley has observed

that exactly in the same manner as the equation of the Hessian is the transformation

of the equation rt — s2 which is satisfied for every point of a developable, so the

equation S = is the transformation of the equation (p. 356) which is satisfied for

every point on a ruled surface.



442 CONTACT OF LINES WITH SURFACES.

besides W' = 0, where W is the discriminant of the equation

of the degree re — 3 in X : /x, which remains when the first

three terms vanish of the equation, p. 209. For W then we
have X" = (re + 3) (re — 4), ft," = (re — 3) (re - 4) ; and having.S7 as

in the last article, X=l, fx = n — 1; X' = 2, pl = n — 2, we

have for the degree of n

2 (re - 3) (re - 4) + (re - 2) (re + 3) (re - 4)

+ 2 (re - 1) (re + 3) (re - 4) - 2 (re + 3) (re - 4).

The degree then of the surface which passes through the

points B is (re - 4) {Zri
1 + 5re - 24).

The equation of the surface generated by the lines (b)

which are in one place inflexional and in another ordinary-

tangents is found by eliminating x'y'z'io' between the four

equations U' = Q, At7' = 0, A2
E/" = 0, W' = 0, and from what

has been just stated as to the degree of the variables in each

of these equations the degree of the resultant is

re (re - 2) (re - 3) (re - 4) + 2« (re - I) (re - 3) (re - 4)

+ re (re - 1) (re - 2) (re + 3) (re - 4) = re (re - 4) (re
3 + 3re

2 - 20w + 18).

But it appears, as in the last article, that this resultant contains

as a factor, U in the power 2 (re + 3) (re - 4). Dividing out

this factor the degree of the surface (b) remains

re (re - 3) (re - 4) (re
2 + 6re - 4).

513. In order that a tangent at the point x'y'z'w' may
elsewhere be an inflexional tangent, we must have A U' = 0,

(an equation for which X = l, /i = n — 1), and besides we must

have satisfied the system of two conditions that the equation

of the degree re — 2 in X : fi, which remains when the first

two terms vanish of the equation, p. 209, may have three

roots all equal to each other. If then X', fi!
• X", /a" be the

degrees in which the variables enter into these two conditions,

the order of the surface which passes through the points (G)

is, by Art. 455, X>" + X>' + [n-2) X'X". But (see Appendix

on the order of systems of equations)

X'X" = (re - 4) (re
2 + re + 6), X>" + X>' = (re - 2) (re - 4) (re + 6).
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The order of the surface G is therefore

(n - 2) (n - 4) (w
2 + 2re + 12).

The locus of the points of contact of triple tangent lines

is investigated in like manner, except that for the conditions

that the equation just considered should have three roots all

equal, we substitute the conditions that the same equation should

have two distinct pairs of equal roots. It will be proved in the

Appendix that for this system of conditions we have

XV = | (re - 4) (n - 5) (w
2 + 3w + 6),

X>" + X'V = (re - 2) (re - 4) (re - 5) (n + 3).

The order of the surface which determines the points (2?)

is, therefore, -|- (re — 2) (re - 4) (re — 5) (re* + 5re + 12).

To find the surface generated by the triple tangents we
are to eliminate xy'z'w between U' = 0, AZ7' = 0, and the two

conditions, the order of the result being

nfi'fi" + n (n - 1) (X'/n" -f yJ'fi!)

:

but since this result contains as a factor U : in order to find

the order of the surface (c) we are to subtract reX'X" from the_

number just written. Substituting the values just given for

X'X", X'fi" H- X'V ; and for ft ft", f (n - 2} (n - 3) (» - 4) {n - 5),

we get for the order of the surface (c),

n(n-3)(n- 4) [n - 5) (re
2 + 3re - 2),

a number which probably ought to be divided by three.

514. There remains to be considered another class of

problems, viz., the determination of the number of tangents

which satisfy four conditions. The following is an enumera-

tion of these problems. To determine: (a) the number of

points at which both the inflexional tangents meet in four con-

secutive points; (/3) the number of lines which meet in five

consecutive points; (7) the number of lines which are doubly

inflexional tangents in one place, and ordinary tangents in

another; (S) of lines inflexional in two places; (s) inflexional

in one place and ordinary tangents in two others; (£) of lines

which touch in four places.
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The first of these problems has been solved as follows by

Clebsch, Crelle, Vol. lxiii., p. 14. It was proved, Art. 500, that

the points of inflexion of the section by the tangent plane at

any point on a surface, of the polar cubic of that point, lie on

the plane xH
x
+yH2 -f zHs

+ wH^. Let it be required now to

find the locus of points xy'z'w on a surface such that the line

joining xy'z'w' to one of these points of inflexion may meet

any assumed line, as for instance that joining the points x"y"z"w",

x"y"'z"'w" : this is, in other words, to find the condition that

co-ordinates of the form Xx + fix" + vx", Xy' + /iy" + vy'", &c.

may satisfy the equation of the tangent plane A U, of the polar

with respect to the Hessian AH', and of the polar cubic A*£T.

But if we substitute co-ordinates Xx + fix" + vx" in the equa-

tions of any two planes P, Q; we determine X, fi, v to be

respectively proportional to P'Q'"-P"Q", P"Q'-PQ"\
P Q" - P" Q'. In the present case P and Q being A V, AH,
we have P = and Q proportional to H, and the co-ordinates

of the intersection of the planes AC/"', AH', and the plane joining

the three points, .are {P'Q'"-P"Q")x'+ P"Q'x"-P' Q'x"', &c.
}

and since P" is of the degree n — 1 and Q" of the degree 4re — 9

in xy'z'w', these values of the co-ordinates are of the degree

bn — 9 in xy'z'w . The result then of substituting these co-

ordinates in A8U is of the degree 3 (5n — 9) + (n — 3) = IGn — 30.

But if we substitute co-ordinates of the form \x' + fix" + vx"'

in A 3
U, the coefficient of X3

vanishes since x'y'z'w' is on U, and
the coefficients of Xz

/n, XV vanish since fix' + vx" is in the

tangent plane. And since fi and v have the common factor

Q or H, the result is divisible by H'\ and the quotient is of

the degree 8ra - 14. This then is the degree of the locus

required.

Now I say that the points at which two doubly inflexional

tangents can be drawn belong to this locus. At any one of

these points the doubly inflexional tangents evidently both lie

on the polar cubic of that point, and their plane will therefore -

intersect that cubic in a third line which, as we saw (Art. 500),

lies in the plane AH'. Every point on that line is to be con-

sidered as a point of inflexion of the polar cubic ; and therefore

the plane through the point x'y'z'w' and any arbitrary line must
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pass through a point of inflexion. The points then whose

number we are investigating, and which are evidently double

points on the curve US, are counted doubly among the

n (lln — 24) (8m — 14) intersections of the curve US with the

locus determined in this article. Let us examine now what

other points of the curve US can belong to the locus. At
any point on this curve the doubly inflexional tangent lies in

the polar cubic, the section of which by the tangent plane

consists of a line and conic ; and since all the points of in-

flexion of such a system lie in the line, the doubly inflexional

tangent itself is in this case the only line joining x'y'z'w'

to a point of inflexion. And we have seen, Art. 511, that

the number of doubly inflexional tangents which can meet

an assumed line is 2m (n- 3) (3m — 2). We have then the

equation

2a 4 2m [n - 3) (3m - 2) = n (11m - 24) (8m - 14),

whence a = n (41k*- 162m + 162),

which is the solution of the problem proposed.

515. I investigate as follows the number of points /S through

which a line can be drawn to meet the surface in five con-

secutive points. For such points, it is evident by the method

already pursued that we must have the conditions satisfied

U' = 0, AU' = 0, Aa
Z7' = 0, A3

Z7' = 0, A*U' = 0. Let us elimi-

nate xyzw between the last four equations, and the result is

of the form Z7
6
$, where <p IS of the degree 44m — 96. In the

case where w = 4, <f>
denotes the surface generated by the

doubly inflexional tangents, and from a consideration of this

case I have been led to conclude that the general form of.</>

is U\jr + #4
. The factor Z7

6
in the eliminant of the four sur-

faces is accounted for by the fact that for every point on U,

the first, second, third, and fourth polars have six points com-

mon. If, however, the point be on the curve US, since AC',

Aa C, A SC have a line common, there will be a seventh point

common to them with A4 C. Thus we see that the curve US
ought to form part of the locus <£. But again, the points for

which the four polars have eight points common are either the
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points on US for which a line meets the surface in five con-

secutive points, or the double points on US, or the points

where US meets H and for which the two inflexional tangents

coincide. All these points ought to lie on the intersection of

US with ijr. Thus I have been led to form the equation

n (43m - 96) (11m - 24) = 8» (41m
2 - 162w + 162)

+ 4n(n-2) (llre-24)+/3,

whence /3 = m (m- 4) (103 m — 204); but I own that this result

needs confirmation. The other problems stated in the last

article have not yet been solved.

CONTACT OP PLANES WITH SURFACES.

516. We can discuss the cases of planes which touch a

surface, in the same manner as we have done those of touching

lines. Every plane which touches a surface meets it in a

section having a double point : but since the equation of a

plane includes three constants, a determinate number of tan-

gent planes can be found which will fulfil two additional

conditions. And if but one additional condition be given, an

infinite series of tangent planes can be found which will satisfy

it, those planes enveloping a developable, and their points of

contact tracing out a curve on the surface. It may be re-

quired either to determine the number of solutions when two
additional conditions are given, or to determine the nature of

the curves and developables just mentioned, when one additional

condition is given. Of the latter class of problems we shall

consider but two, viz., the discussion of the case when the

plane meets the surface in a section having a cusp ; or, when
it meets in a section having two double points. Other cases

have been considered by anticipation in the last section, as

for example, the case when a plane meets in a section having

a double point, one of the tangents at which meets in four

consecutive points.

517. Let the co-ordinates of three points be x'y'z'w',

x"y"z"w", xyzw ; then those of any point on the plane through

the points" will be \x + fix" + vx, ~ky' + /j,y" + ry, &c. : and if
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we substitute these values for xyzw in the equation of the

surface, we shall have the relation' which must be satisfied for

every point where this plane meets the surface. Let the result

of substitution be [IT] = 0, then [Z7] may be written

x"v

+

x">a„w + \;-va tr

+

K"2

(M„

+

v&)' w + &c. = o,

where A„ = ," - l̂ + y" |, + s" A + M,"^ ;

_ d d d d

dx " dy' ds' dw
'

The plane will touch the surface if the discriminant of this

equation in X, //., v vanish- If we suppose two of the points

fixed and the third to be variable, then this discriminant will

represent all the tangent planes to the surface which can be

drawn through the line joining the two fixed points.

We shall suppose the point x'y'z'w to be on the surface,

and the point x"y"z"w" to be taken anywhere on the tangent

plane at that point: then we shall have Z7' = 0, A
lt
U'= 0,

and the discriminant will become divisible by the square of

A U'. For of the tangent planes, which can be drawn to a

surface through any tangent line to that surface, two will

coincide with the tangent plane at the point of contact of

that line. If the tangent plane at x'y'z'w be a double tan-

gent plane, then the discriminant we are considering, instead

of being, as in other cases, only divisible by the square of

the equation of the tangent plane, will contain its cube as a

factor. In order to examine the condition that this may be

so, let us for brevity write the equation [U] as follows, the

coefficients of X", X"'
1

/^ being supposed to vanish,

TX^v -H-X"-
2

C<V + 2B(iv + Cf) + &c. = 0.

T represents the tangent plane at the point we are considering,

C its polar quadric, while A = is the condition that x"y"z"w"

should lie on that polar quadric. Now it will be found that

the discriminant of [Z7] is of the form

TA{B*-ACY4> + T{ ) = 0,

where <j> is the discriminant when T vanishes as well as V
and A„ U'. In order that the discriminant may be divisible
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by T3

, some one of the factors which multiply 2
12 must either

vanish or be divisible by T.

518. First then let A vanish. This only denotes that the

point x"y"z"w" lies on the polar quadric of x'y'z'w : or, since

it also lies in the tangent plane, that the point x"y"z"w" lies

on one of the inflexional tangents at x'y'z'w'. Thus we learn

that if the class of a surface be p, then of the p tangent

planes which can be drawn through an ordinary tangent line,

two coincide with the tangent plane at its point of contact,

and there can be drawn p — 2 distinct from that plane : but

that if the line be an inflexional tangent, three will coincide

with that tangent plane, and there can be drawn only p — 3

distinct from it. If we suppose that x'y'z'w' has not been

taken on an inflexional tangent, A will not vanish, and we may
set this factor aside as irrelevant to the present discussion.

We may examine at the same time the conditions that T
should be a factor in B? — A G, and in

<f>.

The problem which arises in both these cases is the follow-

ing: Suppose that we are given a function V, whose degrees

in x'y'z'w', in x"y"z"w", and in xyzw are respectively (A, ytt, fi).

Suppose that this represents a surface having as a multiple

line of the order /*, the line joining the first two points; or,

in other words, that it represents a series of planes through

that line : to find the condition that one of these planes should

be the tangent plane T whose degrees are («— 1, 0, ]). If so,

any arbitrary line which meets T will meet V, and therefore

if we eliminate between the equations T=0, 7=0, and the

equations of an arbitrary line

ax + by + cz + dw = 0, ax + b'y + c'z + d'w = 0,

the resultant R must vanish. This is of the degree fi in abed,

in a'b'c'd', and in x"y"z"w", and of the degree /a (n — 1) + \
in x'y'z'w'. But evidently if the assumed right line met the

line joining x'y'z'w, x"y"z"w", B would vanish even though T
were not a factor in V. The condition (Jf=0), that the two
lines should meet, is of the first degree in all the quantities

we are considering: and we see now that B is of the form



CONTACT OF PLANES WITH SURFACES,' 449

M^M'. R' remains a function of ac'y'z'w' alone, and is of the

degree /*(«-2) + \.

519. To apply this to the case we are considering, since

the discriminant of [U] represents a series of planes through

x'y'z'w, x"y"z"w", it follows that B'- AG and <j> both represent

planes through the same line. The first is of the degrees

{2 (n - 2), 2, 2}, while
<f>

is of the degrees (n - 2) (rc
a - 6),

n - 2n* -{ n — 6, ns — 2n* + n — 6, as appears by subtracting the

sum of the degrees of T2

, A, and (B'' —AGf from the degrees

of the discriminant of [27], which is of the degree n(n— 1)*

in all the variables. It follows then from the last article that

the condition {H= 0) that T should be a factor in B* - AG
is of the degree 4(w — 2), and the condition [K=0) that T
should be a factor in <j> is of the degree (n — 2) [n

3 — ri' + n— 12).

At all points then of the intersection of U and H the tan-

gent plane must be considered double. H is no other than

the Hessian ; the tangent plane at every point of the curve

UH meets the surface in a section having a cusp, and is to be

counted as double (Art. 263). The curve UK is the locus of

points of contact of planes which touch the surface in two

distinct points.

520. Let us consider next the series of tangent planes

which touch along the curve UH. They form a developable

whose degree is p = 2n («- 2) (3?i-4), Ex. 3, p. 439. The

class of the same developable, or the number of planes of the

system which can be drawn through an assigned point, is

v = in{n — 1) (w — 2). For the points of contact are evidently

the intersections of the curve UK with the first polar of

the assigned point. We can also determine the number of

stationary planes of the systerm If the equation of U, the

plane z being the tangent plane at any point on the curve UJFJ,

be z + 2/

2
-t-w

8
+ &c. = 0, it is easy to show that the direction

d''u
of the tangent to UH is in the line -j-j- = 0. Now the tan-

gent planes to U are the same at two consecutive points

proceeding along the inflexional tangent y. If then u
5

do

CT G
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not contain any term a;
3

,
(that is to say, if the inflexional tan-

gent meet the surface in four consecutive points) the direction

of the tangent to the curve UH is the same as that of the

inflexional tangent : and the tangent planes at two consecutive

points on the curve UH will be the same. The number of

stationary tangent planes is then equal to the number of inter-

sections of the curve UH with the surface 8. But since the

curve touches the surface, as will be seen in the Appendix,

we iave <x = 2m (n — 2) (11m- 24). From these data all the

singularities of the developable which touches along UH caii

be determined, as at p. 259. We have

fi = n (n - 2) (28m - 60), v = 4w(m-1) (w-2), p = 2n(«-2)(3«-4),

a = 2n (n - 2) (lira - 24), /3= n [n - 2) (70m - 160)

;

2g = n (n - 2) (16m* - 64n3 + 80m2 - 108w + 156),

2h = n(n-2) (784m
4 - 4928?i

s + 10320m2 - 7444m + 548).

The developable here considered answers to a cuspidal line

on the reciprocal surface, whose singularities are got by inter-

changing yt, and v, a and /3, &c. in the above formulae.

The class of the developable touching along UK, which is

the degree of a double curve on the reciprocal surface, is seen

as above to be n{n— l) (n — 2) (n
3 — w2

-f n— 12). Its other

singularities will be obtained in the next section, where we
shall also determine the number of solutions in some cases where

a tangent plane is required to fulfil two other conditions.

THEORY OF RECIPROCAL SURFACES.

521. Understanding by the ordinary singularities of a

surface, those which in general exist either on the surface or

its reciprocal, we may make the following enumeration of

them. A surface may have a double curve of degree b and

a cuspidal of degree c. The tangent cone determined as in

Art. 27.1, includes doubly the curve standing on the double

curve, and trebly that standing on the cuspidal curve, so that

if the degree of the tangent cone proper be a, we have

a+26-f 3c = m(m-1).
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The class of the cone a is the same as the degree of the

reciprocal. Let a have 8 double and k cuspidal edges. Let

b have k apparent double points, and t triple points which

are also triple points on the surface ; and let c have h apparent

double points. Let the curves b and e intersect in y points,

which are stationary points on the former, in /3 which are

stationary points on the latter, and in i which are singular

points on neither. Let the curve of contact a meet b in p
points, and c in <r points. Let the same letters accented denote

singularities of the reciprocal surface.

522. We saw (Art. 272) that the points where the curve

of contact meets A2
Z7 give rise to cuspidal edges on the tan-

gent cone. But when the line of contact consists of the

complex curve a + 2b + 3c, and when we want to determine

the number of cuspidal edges on the cone a, the points where

b and c meet A'U are plainly irrelevant to the question.

Neither shall we have cuspidal edges answering to all the

points where a meets A 2
27, since a common edge of the cones

a and c is to be regarded as a cuspidal edge of the complex

cone, although not so on either cone considered separately.

The following formulae contain an analysis of the intersections

of each of the curves a, b, c, with the surface A2
U,

a(n-2) = K + p + 2cr •)

b(n-2)=p + 20 + Sy + 3ti (A).

c(w-2) = 2cr + 4/3-|-7 J

The reader can see without difficulty that the points indicated

in these formulae are included in the intersections of A'U
with a, b, c, respectively: but it is not so easy to see the

reason for the numerical multipliers which are used in the

formulas. Although it is probably not impossible to account

for these constants by a priori reasoning, I prefer to explain

the method by which I was led to them inductively.*

* The first attempt to explain the effect of nodal and cuspidal lines on the degree

of the reciprocal surface, was made in the year 1847 in two papers which I con-

tributed to the Cambridge and Dublin Mathematical Journal, Vol. n., p. 65, and

iv., p. 188. It was not till the close of the year 1849, however, that the discovery

of the twenty-seven right lines on a cubic, by enabling me to form a clear conception

GG2
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523. We know that the reciprocal of a cubic is a surface

of the twelfth degree which has a cuspidal edge of the twenty-

fourth degree, since its equation is of the form GiS3 = T2

,

where S is of the fourth, and T of the sixth degree (p. 412).

Each of the twenty-seven lines on the surface answers to a

double line on the reciprocal (p. 414). The proper tangent

cone, being the reciprocal of a plane section of the cubic,

is of the sixth degree, and has nine cuspidal edges. Thu3 we

have a' = 6, V = 27, c' = 24, n' = 12, a + 2b' + 3c =12.11. The
intersections of the curves c and V with the line of contact of

a cone a through any assumed point, answer to tangent planes

to the original cubic, whose points of contact are the inter-

sections of an assumed plane with the parabolic curve UH,

and with the twenty-seven lines. Consequently there are

twelve points <r', and twenty-seven points p ; one of the

latter points lying on each of the lines of which the nodal

line of the reciprocal surface is made up.

Now the sixty points of intersection of the curve a with

the second polar which is of the tenth degree, consist of

the nine points k, the twenty-seven points p', and the twelve

points <j . It is manifest then that the last points must

count double, since we cannot satisfy an equation of the form

9a + 21b + 12c = 60, by any integer values of a, S, c except

1, 1, 2. Thus we are led to the first of the equations (A).

Consider now the points where any of the twenty-seven

lines b meets the same surface of the tenth order. The points

ft' answer to the points where the twenty-seven right lines

touch the parabolic curve ; and there are two such points on

each of these lines (Art. 281). There are also five points t

on each of these lines (Art. 493), and we have just seen that

there is one point p. Now since the equation a +26 + 5c =10,

can have only the systems of integer solutions (1, 2, 1) or

(3, 1, 1), the ten points of intersection of one of the lines

with the second polar must be made up either />' + 2ft' + 1', or

3jo' + ft' + 1', and the latter form is manifestly to be rejected.

of the nature of the reciprocal of a cubic, led me to the theory in the form here

explained. Some few additional details will be found in a memoir which I contributed

to the Transactions of the Royal Irish Academy, Vol. XXIII., p. 461.



THEORY OF RECIPROCAL SURFACES. 453

But considering the curve V as made up of the twenty-seven

lines, the points t' occur each on three of these lines: we are

then led to the formula V (n' - 2) = p + 2/3' + 3t'.

The example we are considering does not enable us to

determine the coefficient of 7 in the second formula A, because

there are no points 7 on the reciprocal of a cubic.

Lastly, the two hundred and forty points in which the curve

c meets the second polar are made up of the twelve points er',

and the fifty-four points /3'. Now the equation 12a +- 545 = 240

only admits of the systems of integer solutions (11, 2), or (2, 4),

and the latter is manifestly to be preferred. In this way we
are led to assign all the coefficients of the equations (.4) except

those of 7.

524. Let us now examine in the same way the reciprocal

of a surface of the n
tb

order, which has no multiple points.

We have then ra' = w(«-l) 2
, n — 2= (n — 2)(«

2
+l), a =n(n-l);

and for the nodal and cuspidal curves we have (Art. 280)

b' = \n (n- 1) {n- 2) (w
3 -«* + n - 12), c' = in(n-l) («-2).

The number of cuspidal edges on the tangent cone to the

reciprocal, answering to the number of points of inflexion on

a plane section of the original, gives us k =3n(n— 2). The
points p and cr', answer to the points of intersection of an

assumed plane with the curves UK and TJH (Art. 519)

:

hence p = n (n — 2) [n
3 — ri

l + n — 12) , a = 4w [n — 2) . Substitute

these values in the formula a' (ri — 2) = k + p -t- 2a-', and it is

satisfied identically, thus verifying the first of formulae (.4).

We shall next apply to the same case the third of the

formulae (A), It was proved (Art. 520) that the number of

points /3' is 2n (n— 2) (llw — 24). Now the intersections of the

nodal and cuspidal curves on the reciprocal surface answer to

the planes which touch at the points of meeting of the curves

US, and UK on the original surface. If a plane meet the

surface in a section having an ordinary double point and a cusp,

since from the mere fact of its touching at the latter point it is

a double tangent plane, it belongs in two ways to the system

which touches along UK; or, in other words, it is a stationary
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plane of that system. And since evidently the points /3' are

to be included in the intersections of the nodal and cuspidal

curve, the points U, H, K must either answer to points ft'

or points 7'. Assuming, as it is natural to do, that the

points /3 count double among the intersections of UHK
we have

7
' = n {4(«-2)}.{(w-2)(ns -n*+«-12)}-4w(«-2)(lln-24)

= An {n - 2) (n - 3) (ri
1 + Sn- 16).

But if we substitute the values already found for c', ri, <t\ /3',

the quantity c (ri — 2) — 2a-' - 4/3' becomes also equal to the

value just assigned for 7'. Thus the third of the formulae A
is verified. It would have been sufficient to assume that the

points /3 count fi times among the intersections of UHK, and

to have written the third of the formula provisionally

c(n-2) = 2o- + 4/3 + \7,

when, proceeding as above, it would have been found that the

formulae could not be satisfied unless X = 1, fi = 2.

It only remains to examine the second of the formulas (A).

We have just assigned the values of all the quantities involved

in it except t'. Substituting then these values we find that the

number of triple tangent planes to a surface of the rc
m

degree

is given by the formula

M = n (n - 2) (ri - in6 + Iri - 45n" 4 114n* - II In2 + 548n - 960).

525. It was proved (Art. 273) that the points of contact

of those edges of the tangent cone which touch in two distinct

points lie on a certain surface of the degree (n — 2) (n — 3).

Now when the tangent cone is, as before, a complex cone

a + 2b + 3c, it is evident that among these double tangents

will be included those common edges of the cones ab, which

meet the curves a, b in distinct points : and similarly for the

other pairs of cones. If then we denote by [ab] the number

of the apparent intersections of the curves a and b ; that is

to say, the number of points in which these curves seen

from any point of space seem to intersect, though they do

not actually do so ; the following formulas will contain an
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analysis of the intersections of a, b, c, with the surface of

the degree (n - 2) (n - 3)

:

a (n - 2) (w - 3) = 2S + 3 [«o] + 2 [aJ],

J (n - 2) (n - 3) = 4k+ [ab] + 3 [5c],

c{n-2)(n-3) = &h + [ac] + 2[bc].

Now the number of apparent intersections of two curves is at

once deduced from that of their actual intersections. For if

cones be described having a common vertex and standing on
the two curves, their common edges must answer either to

apparent or actual intersections. Hence,

*[ab]=ab-2p, [ac] = ac-3a; [be] = be - 3/3 - 2y - i.

Substituting these values, we have

a(n-2) (n-3)=28 + 2ab+&ac-4p-9a -,

b(n-2)(n-S) = 4k+a& + 3bc-9ft-6y-3i-2p i...(B).

c [n— 2) (» - 3) = 6A + ac + 2bc - 6/3 - 47 - 2» - 3c- J

The first and third of these equations are satisfied identically

if we substitute for /3, 7, p, 0-, &c. the values used in the last

article, to which we are to add 2h' = n (n — 2) [n
2— 9), t' = 0,

and the value of h' given (Art. 520), viz.

2h' = n(n~2) (Wn4 - 64?z
3 + 80<ft

2 - 108m + 156).

The second equation enables us to determine Jc' by the equation

8# = n (n - 2) [n
w - 6ra

9
-f- 16n

8 - 54ra
7

+ 164n6- 288w5 + 547 n* - 1058ra
3+ 1068ji'— 1214n + 1464)

;

from this expression the rank of the developable of which b' is

the cuspidal edge can be calculated by the formula

B' = b'*-b'-2k'-6t'-3y'.

Putting in the values already obtained for these quantities,

we find

E = bn{n-2)[n-3) (n
2 + 2w-4).

* If the surface have a nodal curve, but no cuspidal, there will still be a deter-

minate number i of cuspidal points on the nodal curve, and the above equation

receives the modification [ab] = ab — 2p — i. In determining however the degree of

the reciprocal surface the quantity [aS] is eliminated.
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This is then the rank of the developable formed by the planes

which have double contact with the given surface.*

526. From formulae A and B we can calculate the diminu-

tion in the degree of the reciprocal caused by the singularities

on the original surface enumerated Art. 521. If the degree of

a cone diminish from m to m— l
y
that of its reciprocal diminishes

from m (m - 1) to (m - l) {m - I— 1) ; that is to say, is reduced

by I (2m- I— 1). Now the tangent cone to a surface is in

general of the degree n(ra-l), and we have seen that when

the surface has nodal and cuspidal lines this degree is reduced

by 25 + 3c. There is a consequent diminution in the degree

of the reciprocal surface

Z>=(25 + 3c) (2m8 -2n -25 -3c- 1).

But the existence of nodal and cuspidal curves on the surface

causes also a diminution in the number of double and cuspidal

edges in the tangent cone. From the diminution in the degree

of the reciprocal surface just given must be subtracted twice

the diminution of the number of double edges and three times

that of the cuspidal edges. Now from formulas A, we have

K =(a-rb-c) [n - 2) + 6y8 + 4? + 3£.

But since if the surface had no multiple lines the number of

cuspidal edges on the tangent cone would be (a + 25 + 3c) [n— 2),

the diminution of the number of cuspidal edges is

K= (35 + 4c) [n - 2) - 6/3 - 4? - St.

Again, from the first system of equations (Art. 525), we have

{a -2b- 3c) (w - 2) (n - 3) = 28 - 8k - 18h - 12 [5c],

* In order to verify the theory it would be necessary to show that this number

B' coincides with what may be deduced from Ex. 5, p. 439. In the first place the

developable generated by the cuspidal curve on the reciprocal surface corresponds

with that which envelopes the given surface along US, and which, by the example

cited, ought to be of the degree 28re (n — 2)
2
, but if we subtract from this the number

ft', we get the value already determined. In like manner, if we take the surface

enveloping the given surface along UK (Art. 520) and subtract from the degree de-

termined, as in the example cited, 4y' + ft' + Gt', we get not R' but $R'. Possibly this-

may be because all the tangent planes which envelope the developable in question

are double tangent planes; but it must be owned that there are points in all this

theory which need further explanation.
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and putting for [be] its value,

28 = (a-25- 3c) (re-2) (n-3)+8k+18h + 125c - 36/3 - 24? - 12t.

But if the surface had no multiple lines 28 would

= (a + 25 + 3c) (w - 2) (n - 3).

The diminution then in the number of double edges is given

by the formulas

2H= (45 -l- 6c) [n - 2) (n - 3) - &h -, 18h - 125c + 36/3 + 24y + 1 2»,

The entire diminution then in the degree of the reciprocal

D - 3iT— 2H is, when reduced,

« (75 + 12c) - 45
2 - 9e'

2 - 85 - 15o + Sk + lSh- 18/8- 12Y-12t+ 9«.

527. The formula} -B, reduced by the formulas

a -f 25+3c = n (»- 1),

become a(— 4w + 6) = 28 — aa— 4/3 — 9a- •>

5(-4w + 6)=4^-252 -9y8-67-3;-2pi (C).

c(-4n + 6) = 6A-3c*-6/8-47-2i- 3o-J

To each of these formulas we add four times the corre-

sponding formula A • and we simplify the results by writing

for a' — a -^-28 — 3k, ri the degree of the reciprocal surface, by

giving B the same meaning as in Art. 525, and by writing for

c
2 — c — 2h — 3/3, 8 the order of the developable generated by

the curve c ; when we obtain the formulas in a more convenient

shape, vi?.

ri — a = k, — a ~\

2.5 = 2/3-/3-3* 1 (Z>).

3#+c=£ + 5<7-2.d

From the first of equations A and D we may also obtain

the equatfon

(n — 1) a = ri + p + 3cr,

the truth of which may be seen from the consideration that a,

the curve of simple contact from any one point, intersects the

first polar of any other point, either in the ri points of contact

of tangent planes passing through the line joining the two

points, or else in the p points where a meets 5, or the a points

where it meets c, since every first polar passes through the

curves 5, c.
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528. The effect of multiple lines in diminishing the degree

of the reciprocal may be otherwise investigated. The points

of contact of tangent planes which can be drawn through a

given line are the intersections with the surface of the curve

of degree (« — l)
2 which is the intersection of the first polars

of any two points on the line. Now let us first consider the

case when the surface has only an ordinary double curve of

degree b. The first polars of the two points pass each through

this curve, so that their intersection breaks up into this curve

b and a complemental curve d. Now in looking for the points

of contact of tangent planes through the given line, in the

first place, instead of taking the points where the complex

curve b + d meets the surface, we are only to take those in

which d meets it, which causes a reduction bn in the degree

of the reciprocal. But, further, we are not to take all the

points in which d meets the surface : those in which it meets

the curve h being to be rejected ; those being in number

25 (n — 2) - r (Art. 339) where r is the rank of the system b.

Now these points consist of the r points on the curve b
}

the tangents at which meet the line through which we are

seeking to draw tangent planes to the given surface, and of

25 [n — 2) — 2r points at which the two polar surfaces touch.

These last are cuspidal points on the double curve b ; that is

to say, points at which the two tangent planes coincide, and

they count for three in the intersections of the curve d with

the given surface, since the three surfaces touch at these points

;

while the r points being ordinary points on the double line

only count for two. The total reduction then is

nb + 2r + 3 {2b (n - 2) - 2r] ~b(7n- 12) - 4r,

which agrees with the preceding theory.

If the curve b, instead of being merely a double curve,

were a multiple curve on the surface of the order p of mul-

tiplicity, I have found for the reduction of the degree of the

reciprocal (see Transactions of the Royal Irish Academyr

, Vol.

xxiii., p. 485)

b (p - 1) (3p + 1) n - 2bp {? - I), -p* (p - 1) r,
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for the reduction in the number of cuspidal edges of the cone

of simple contact

h{B [p - l)
a « -p (p- 1) (2p - 1)] -p [p - 1) [p - 2) r,

and for twice the reduction in the number of its double edges

2bp (p - 1) «* - h [p- l) [Up - 8) n

+ bp
[ p - 1) [8p - 2) -p" [p - l)

2
b
2 +p(p-l) (4p - 6) r*

DEVELOPABLE SUEFAOES.

529. The theory just explained ought to enable us to

account for the fact that the degree of the reciprocal of a

developable reduces to nothing. This application of the theory

both verifies the theory itself and enables us to determine some

singularities of developables not given, p. 256. We use the

notation of the section referred to. The tangent cone to a

developable consists of n planes; it has therefore no cuspidal

edges and \n [n — 1) double edges. The simple line of contact

[a) consists of n lines of the system each of which meets the

cuspidal edge m once, and the double line x in [r — 4) points.

The lines m and x intersect at the a points of contact of the

stationary planes of the system; for since there three con-

secutive lines of the system are in the same plane, the inter-

section of the first and third gives a point on the line x.f

We have then the following table. The letters on the left-

hand side of the equations refer to the notation of this Chapter

and those on the right to that of Chapter xn.

:

p=w(r-4), <x = n, «=0, /3 = /?, h = h, i—a; n'=0, S=r-

and the quantities t, y, B remain to be determined. On sub-

* The method of this article is not applied to the case where the surface has a

cuspidal curve in the Memoir from which I cite, and I have not sinee attempted

to repair the omission.

f It is only on account of their occurrence in this example that I was led to

include the points iin the theory.
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stituting these values in formulae A and D, pp. 451, 457, we

get the system of equations

rc (r - 2) = n [2 + (r - 4)},

x{r-2)=n(r-4) + 2j3+ 3y + 3t,

m{r-2)=2n + + y, ,~
— n = — n,

2i2 = 2re(r-4)-/3-3a,

3r + m = 5m — 2a + /3,

The first and fourth of these equations are identically true, and

the sixth is verified by the equations of Arts. 321, 322. The

three remaining equations determine the three quantities, whose

values have not before been given, viz. t the number of " points

on three lines" of the system
; 7 the number of points of the

system through each of which passes another non-consecutive

line of the system ; and B the rank of the developable of

which x is the cuspidal edge. These quantities being deter-

mined, we can by an interchange of letters write down the

reciprocal singularities, viz. the number of " planes through

three lines," &c.

Ex. 1. Let it be required to apply the preceding theory to the case considered,

Art. 323.

Ans. y = 6 (k - 3) (k- 4), 3t = i (k - 3) (k - 4) (*- 5),

h = (k - 3) (2<y - l&fc* + blk - 65), B = 2 (k - 1) (k - 3).

And for the reciprocal singularities

y' = 2 {k - 2) (k - 8), Zf = i(k- 2) (k - 3) (k - 4),

k' = (k - 2) (k - 3) (2*2 - 104 + 11), R' = 6 (* - 3)
2

.

Ex. 2. Two surfaces intersect the sum of whose degrees is p and their product q.

Ans. y = q (pq — 2q — Gp + 16).

This follows from the table, p. 271 , but can be proved directly by the method used

(Arts. 337, 453), see Transactions of the Royal Irish Academy, Vol. XXIII., p. 469,

R = 3q(p-2){q(p-3)-l}.

Ex. 3. To find the singularities of the developable generated by a line resting

twice on a given curve. The planes of this system are evidently "planes through

two lines" of the original system: the class of the system is therefore y; and the

other singularities are the reciprocals of those of the Bystem whose cuspidal edge

is x, calculated in .this article. Thus the rank of the system, or the order of the

developable is given by the formula

1R' = 1m (r - 4) - a - 3/3.
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530. Since the degree of the reciprocal of a ruled surface

reduces always to the degree of the original surface (p. 87)

the theory of reciprocal surfaces ought to account for this re-

duction. I have not obtained this explanation for ruled surfaces

in general, but some particular cases are examined and ac-

counted for in the Memoir in the Transactions of the Royal
Irish Academy already cited. I give only one example here.

Let the equation of the surface be derived, as in Art. 446, from

the elimination of t between the equations

at + htT1 + &c. = 0, at1 + b'r
1 + &c. = 0,

where a, a', &c. are any linear functions of the co-ordinates.

Then if we write Jc+l=
fj,,

the degree of the surface is p,

having a double line of the order ^ {/a. — 1) (ft - 2), on which

are £ (/* — 2) (fi — 3) (fi- 4) triple points. For the apparent

double points of this double curve, we have

2* = i(/*-2)(,t-S)(ft*-5/» + 8);

and the developable generated by that curve is of the order

2(yti — 2) [ft — 3). It will be found then that we have

a = 20u-l), & = |0u-l)(M -2), * = 3(/*-2), 5 = 2(^-2)^-3)
values which agree with what was proved, Art. 526, viz. that

the number of cuspidal edges in the tangent cone is diminished

by 3b(p, -2) —3t; while the double edges are diminished by

2b (ji — 2) (/[* — 3) - 4&. In verifying the separate formula? B
the remark, note, p. 455, must be attended to.

I have also tried to apply this theory to the surface, which

is the envelope of the plane act + 5/3™ + 07™ + &c, where

a, /3, 7 are arbitrary parameters ; but have only succeeded when

n = 3. We have here (see p. 417) « = 12, «' = 9, a = 18; b,

being the number of cubics with two double points (that is, of

systems of conic and line) which can be drawn through seven

points, is 21 ; c is 24, since the cuspidal curve is the intersection

of the surfaces of the fourth and sixth order represented by

the two invariants of the given cubic equation; for the same

reason h = 180 and SW- c-2h- 3/3= 192 -3,8; t being the

number of cubics with three double points (that is, of systems

of three right lines) which can be drawn through six points,

is 15. The reciprocal of envelopes of the kind we are con^
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sidering can have no cuspidal curve. This consideration gives

k. = 27, 8 = 108. The formulae A and D then give

180 = 27 + p + 2<r, 210 = ^+2/3 + 37+45, 240 = 2<r + 4/3 + 7,

9-18 = 27-0-, 2.5 = 2,3-/3, 3 (192 -3/3) + 24 = 5<r + /3.

These six equations determine the five unknowns and give one

equation of verification. We have

p = 81, <r = 36, = 42, 7 = 0, i? = 60.

531. It may be mentioned here that the Hessian of a ruled

surface meets the surface only in its multiple lines, and in the

generators each of which is intersected by one consecutive.

For, p. 376, if xy be any generator, that part of the equa-

tion which is only of the first degree in x and y is of the form

(xz+yw)(f). Then, Art. 281, the part of the Hessian which

does not contain x and y is

t+z f\U +w f)- wzffazj V aw) dz dw

which reduces to <£\ But xy intersects <p only in the points

where it meets multiple lines. But if the equation be of the

form ux + vy* (Art. 281) the Hessian passes through xy. Thus

in the case considered in the last article, the number of lines

which meet one consecutive are easily seen to be 2 (fi — 2)

;

and the curve UH whose order is ifi (/i — 2) consists of these

lines each counting for two and therefore equivalent to 4 (/a — 2)

in the intersection ; together with the double line equivalent

to 4 [)jl — 1) (/a — 2). Again, if a surface have a multiple line

whose degree is m, and order of multiplicity p, it will be a

line of order 4 {p — 1 ) on the Hessian, and will be equivalent

to Amp (p — 1) on the curve UH. Now the ruled surface

generated by a line resting on two right lines and on a curve

m (which is supposed to have no actual multiple point) is of

order 2m, having the right lines as multiples of order m;
having \m{m — \)+h double generators, and 2r generators

which meet a consecutive one. Comparing then the order of

the curve UH with the sum of the orders of the curves of

which it is made up, we have

16m (m — 1) = 8?n [m - 1) + 4m [m — 1) + 8h + 4?- = 0,

an equation which is identically true.
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APPENDIX I.

ON THE CALCULUS OF QUATERNIONS.

1. The Calculus of Quaternions having been successfully

employed by its inventor Sir W. E. Hamilton in the deduction

of geometrical theorems, it may seem proper to add some

account of it to that which has been given in the preceding

pages of other methods of investigating the properties of

space of three dimensions. Neither the space now at my
disposal, nor my knowledge of the subject, allow me to

attempt here to teach this calculus; but in the following

sketch I hope to give the reader some idea what quaternions

are, and how they may be used in geometrical enquiries

;

referring him for further information to Sir W. R. Hamilton's

papers "On Symbolical Geometry" in the Cambridge and

Dublin Mathematical Journal, to his "Lectures," and to his

forthcoming " Elements of Quaternions."

Vectors. In Algebraie Geometry though the symbols x, y, z,

&c. are used each with reference to a line measured in a

certain assigned direction, yet in the equations employed these

symbols denote merely the magnitudes of the lines which they

represent ; and the equations only express that certain arith-

metical operations are to be performed on the numbers which

express the ratios of each of the lines x, y, z to the linear

unit. Thus, if we form the sum x + y + z of three known

lines, the result is a line of determinate length but of no

assigned direction. In the quaternion calculus a symbol de-

noting a line must always express direction as well as length

;

and if for instance we form the sum x + y + z, it is necessary

to assign the direction as well as the length of the line which

is the result. In this calculus then the signs + and - are

used not with reference to numerical addition or subtraction,
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but with reference to direction (as we proceed to explain),

and denote geometrical, not algebraical, addition and sub-

traction.

2. Let the line or vector AB be understood to denote the

operation of proceeding from the point A to the point B;
then BG in like manner would denote the operation of pro-

ceeding from B to C. The sign -I- may naturally be employed

to denote the consecutive performance of these two operations

:

thus AB + BC would denote that we proceed first from

A to B, and then from B to C; and since the result is

the same as if we had gone direct from A to G, we have

AB+ BG= AG. The sum of two vectors then is the diagonal

of the parallelogram of which these lines are adjacent sides.

If AB and BG were portions of the same right line, then

their sum would be the ordinary algebraic sum of the two

lines ; and it is easy to see by successive addition that if a

denote any vector, and m any arithmetical multiplier, ma
denotes a vector coincident in direction with that represented

by a, and in length bearing to it the ratio mil. Two vectors

are said to be equal if one can be moved without rotation

so as to coincide with the other: that is to say, two equal

lengths measured on parallel lines are said to be equal. By
the help of this convention we can interpret and verify the

equation a + b = b + a. Let the vector a be represented by

either of the equal lines AE, EC,
and b by either of the equal lines

BE, EB; then if we take a first

we have a -f b = AB, but if we com-

mence with b we have b + a = DC;
and these results are equal since

AB and DC are equal and parallel,

terpretation of the equation that

(a + h) + c= a+(b + c).

Thus we see that the sign •+ when geometrically interpreted

as here proposed^ conforms to the ordinary rules of algebraic

addition, viz., to the commutative law a + b = b + a, and the

associative law (a + b) + c = a + (b + c).
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3. Denoting, as before, by AB the operation of going

from A to B, - AB naturally denotes the reversing of this

operation, viz., that of going from B to A, so that AB + BA = 0.

It can easily be deduced hence that if a + b = c, a = c — b.

Since the addition of lines according to the method just ex-

plained corresponds exactly to the composition of mechanical

forces acting on a point, we can prove, as in Mechanics, that

any line may be resolved into the sum of three lines whose

directions are those of three given rectangular axes. If now
unit lines measured along the axes of x, y, z respectively be

denoted by i, j, k; and if the numerical ratios which the

lengths of the co-ordinates of any point P bear to the unit line

be denoted, as in algebraic geometry, by x, y, 2, then in this

calculus these co-ordinates will be denoted by ix, jy, kz re-

spectively, and the vector from the origin to P will be denoted

by ix+jy + kz. And since any vector is equal to a parallel

one through the origin, there is no vector which may not be

expressed in theform ix +jy + kz.

If a, /3 be any two co-initial vectors it is easy to see that

-= is a vector drawn from the same origin to the point

where the line joining their extremities is cut in the ratio I : m,

and that -^ denotes a vector terminating in the
I + m + n

plane through the extremities of a, j3, 7. If a and /3 be both

of unit length, fa + mj3 makes with a and /3 angles whose

sines are in the ratio l:m. These principles may be used to

establish geometrical theorems. Thus ^ (a + /3 + 7 + 8) is the

vector to the centre of gravity of the tetrahedron formed by

the extremities of a, /3, 7, 8 ; from which form inferences may

be deduced as in Ex., p. 6.

4. Quaternions. We have now shown how lines considered

with respect to their direction as well as to their magnitude

may be added and subtracted, and we come next to speak of

multiplication and division. It is not obvious what sense we

are to attach to the product of two lines, but it is natural

to interpret the quotient -= as denoting the operation necessary

HH
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to change the line /3 into the line a, so that -^ /3 = a. If the

vectors a and /? be portions of the same line, it is evident that

the quotient is a numerical constant, or, as Sir W. R. Hamilton

calls it, a scalar; but, when this js not the case, in order to

change /3 into a we have not only suitably to alter its length,

but also to turn it through a certain angle in a certain plane.

Now we have seen that a vector is reducible to the sum of

three distinct terms, and we might have foreseen this, because

in order to determine a vector we must know three things,

viz., its length, and its direction-cosines, equivalent to two

more conditions. But to determine a geometrical quotient four

things are necessary, viz., the numerical ratio of the lengths

of the two lines compared, the angle through which one must

be turned in order to coincide wilh the other, and the direction-

cosines of the plane of that angle, equivalent to two more

conditions. We shall presently show how to express any such

quotient as the sum of four irreducible terms: it is thence

called a quaternion. It is agreed on that the four elements

just mentioned shall be sufficient to determine such a quotient

as we are considering: that is to say, that two quotients are

said to be equal 75 = -5 , first, if the lengths of the lines be

proportional, a : /3 :: 7 : S ; secondly, if the angle between a and

/3 be equal to that between 7 and B ; and thirdly, if all four

lines be parallel to the same plane. In other words the

geometrical ratio of two lines is considered unchanged, not

only if both be increased or diminished in the same proportion,

but also if they be turned round in their plane, their mutual

inclination being unaltered.

5. Two geometrical fractions having a common denominator

are added by adding their numerators : that is to say, we

have -s + -0 = —s— as in common algebra. We can thus000
reduce any such fraction to one, the two lines in which are at

light angles to each other. For if the fraction be, 7 divided

by S, we can resolve 7 into the sum of two lines a + /S,
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one of them in the direction of S (in fact the projection

of 7 on 8), and the other perpendicular to it. Now since a
is supposed to be in the same direction as 8, their ratio is

a mere number or scalar, while the ratio of /3 to 8 is that of
two rectangular lines. Thus then we can reduce every qua-
ternion to the form S+ V, the sum of a scalar part and a
vector part, the latter part being so called because we shall

presently see that the ratio of two rectangular lines can be
adequately represented by a vector perpendicular to their plane.

A quaternion may be resolved in another way ; viz. into a

numerical factor multiplied by the ratio of two equal lines. We
have obviously = . - = -

; for if we first turn 7 into /3 and

then /3 into a, the result is evidently the turning 7 into a. If

now /3 be supposed to be a line equal to 7, and in the direction

of a, the ratio of a to /? is a mere number; and the ratio a

to 7 is resolved into the product of this number into the ratio

of the equal lines /3 and 7. Sir W. R. Hamilton calls this the

resolution of a quaternion into the product of a tensor and

a versor : the tensor being the number expressing in what

ratio the line 7 is to be increased or diminished in order to be

made equal to /3, and the versor expressing through what angle

it is to be turned.

Thus suppose that the symbol I denotes the operation of

turning a line round through a right angle in a plane per-

pendicular to the vector i : [in order to fix the ideas we may
agree that the direction of the rotation shall be that of the

hands of a watch as we look along i:] then ml denotes the

operation of turning the line round as before, and at the same

time altering the length in the ratio in: I.

Thus then if the denominator of a fraction be a line of

unit length, and its numerator of length Z; if the angle be-

tween them be 0, and the unit vector perpendicular to their

plane be p, we may first resolve I into the portions I cos 0, I sin

measured in the direction of the denominator and perpendicular

to it, and if V denote the operation of turning through a

right angle round the axis p, without change of length, the

given fraction is resolved into the parts I cos + I sin 0, V.

HH2
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If the position of the numerator and denominator had been

interchanged, it is easy to see that the operation of turning

through the same angle in the opposite direction would have

been expressed I cos 6 — I sin 9. V.

6. If p, a, 8 be three vectors such that p — a. + B, and if

V, A, B represent rectangular rotations perpendicular to these

vectors as above explained, then V=A -t B. For (see fig.,

p. 389) let p=OS, ol=OT, B=T8, and let OP, OQ, QP
be equal and perpendicular to these lines, then if OR be a line

perpendicular to the plane of the paper equal in length to OS,

we have ~= V,^ = A, %?=B, therefore V=A+B.
Uti UK OH

It follows then that the symbols of rectangular rotation

may be resolved in precisely the same way as the vectors in

Art. 3 ; and, therefore, that if I, J, K denote rotations without

change of length round the three axes respectively: then a

similar rotation round an axis p, making with these the angles

a, B, 7, may be resolved into the sum I cosa + </ cos/3 +K cosy.

And in like manner the fraction partially resolved in the last

article may be completely resolved into the sum

I cos# + I sin0 (7cosa + J cos ft +K cosy)

.

We see then that the most general expression for a geo-

metrical fraction is of the form a + bl+cJ-i- dK, where

a, b, c, d are numerical constants. It is because it can thus

be reduced to the sum of four terms that it is called a

quaternion.

7. Multiplication of fractions, as already intimated, denotes

the successive performance of the operations represented by the

ol B
factors. Thus 75 . — denotes that we first perform the operation

of turning 7 into 8, and then that of turning B into a, the

result being the same as if we turned 7 into a. To multiply

any two fractions -a-j., it is only necessary to turn k round

in its plane until its numerator coincide with the intersection
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of the planes of the two fractions : and -= until its denominator
J

. p
coincide with the same line, when the multiplication is per-

formed as before.

It at once appears hence that when we multiply two qua-

ternions, the order of the factors is not indifferent. Thus, let

A, B, C, D represent four points

on a sphere of which is the centre.

Then if we first turn OD to OE
through an angle b, and then OE to

OG through an angle a, the result is

the operation of turning OD to 00. Jl~ &
But if we had commenced with the operation of turning through

the angle a, which is that of turning OA to OE, and then

OE to OB through the angle b, the result is the operation

of turning OA to OB. Now though the arc AB is equal to

CD, the plane of AB is generally different from that of CD,

a +u e a a «.
0G 0E

i *
0B 0E

and therefore the product -^=, . -^-j? is not equal to -jyE< • 70 >

which is the product of two equal factors taken in opposite order.

If the arcs a and b be each 90°, then indeed the plane of AB
will be the same as that of CD, but the direction of the rotations

in the two products will be opposite. If then we multiply to-

gether two rectangular quaternions A, B, (that is, such that the

rotation is through a right angle) we see from Art. 5 that

if A.B be of the form I cos 6 + I sin 0. V, then B.A will be of the

form I cos# - 1 smO.V. Two quaternions thus related are said

to be conjugate quaternions: that is, when one is of the form

scalar + vector : and the other, the same scalar — the same vector.

It follows as a particular case of the last, that when 6 = 90°,

the product of two rectangular quaternions whose planes are at

right angles to each other, gives A.B= — B.A. As this is a

fundamental theorem we shall presently prove it independently.

8. It is seen without difficulty that the multiplication of

quaternions is a distributive operation: viz., that the product

of the quaternions ( ^— -J
- is the sum of the
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several products ^ - , ^ -
, &c. : and that the same thing is

r A /t A, .(J,

true if the order of multiplication be reversed. Hence then

if we have two quaternions,* each expressed in the form

[a + U+cJ+dK) [a' + VI+cJ+d'K),

the product is the sum of the sixteen term3 got by combining

each of the first four terms with each of the second four, care

however being taken to attend to the order of the multiplication.

Let us then examine the meaning of the terms II, IJ, &c,

which occur in such a product. Now if we remember that

I denotes a rectangular rotation round the axis of x as axis,

and that the effect of such a rotation would be to change a

line in the direction of the axis of y to that of z, and one in

the direction of z into the negative direction of y, we can

write down the equations Ij=k, Ik=-j. In like manner,

Jk = i, Ji= — k; Ki—j, Kj= — i. Let us now consider the

effect of two of these operations performed consecutively. If

we first operate on j with 7, and then again with I on the

result k, we get Pj= -j, or P = — 1. In like manner J2 = — 1,

2T* = — 1, and since it is evidently true, no matter what line

be taken for the axis of rotation, that the effect of twice turning

round a right angle is to reverse the position of the line operated

on ; it follows that the square of every rectangular quaternion

may be said to be — 1.

Again we have seen that Ij=k, Jk = i; hence Jlj—i; but

Kj= — i ; hence JI= — K. In like manner, from the equa-

tions Ji= — k, Ik = —j, Ki=j, we conclude IJ=K. Hence

IJ= K=-JI. In like manner JK=I=-KJ; KI= J= - IK.

If now we compare the equations Ij= k, IJ=K, &c, we

shall find that the equations which represent the effect of the

operations J, J, K on the lines i, J}
k, are exactly the same

in form as those which denote the effects of the successive

performance of these operations. Now since in the practice

of this calculus we are concerned with the laws according to

* It is also true, though it is not to be taken for granted, that when we take

the continued product of three quaternions (qq') q" = q (q'q").
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which the symbols combine with each other rather than with

their interpretation, it is found unnecessary to keep up the

distinction of notation between I, '/, K; i, j, k. Whatever
propositions are true of the symbols in the one sense, are

equally true in the other, and, by interpreting some vectors

as lines and others as rotations, we can give a variety of

significations to the same equation all of which will be equally

true. We shall then understand i to denote at pleasure either

a unit line measured along the direction of the axis of x, or

a rotation through a right angle round that axis. In like

manner a rectangular rotation round any unit vector a is re-

presented by the letter a as already stated in Art. 5. We
shall write the general form of a quaternion a + bi+cj+ dk;

and we shall combine these symbols according to the laws

s;

2
=_/* = 7c* = — 1 ; ij= k = —ji

;
jk = i= —hj ; hi=j= — ih.

In forming the continued product of a number of factors

the order must be carefully attend, to, except that if a scalar

or number is one of the factors, its order is indifferent, and

it may be brought to the left hand as a multiplier of the whole.

Thus, if a, j3, 7 be any three unit vectors, or rectangular qua-

ternions, and if we multiply /3y by a/3, the result a/3
2
<y is — ay,

since /S* = — 1.

Ex. I. To form the square of the unit vector i cosa+/ cosfS + k cosy. By
actual multiplication, we get

i? coazo +j2 cos2/3 + h1 cos2y + {jk + hj) cos/3 cosy + (hi + ih) cosy cos a

+ (
l)'+y») COSH C03/3,

which, in virtue of the relations connecting i,j, h, reduces to

— (cossa + cos2/3 + cos2y), or to — 1,

as ought to be the case. If the vector be not of unit length the square of ix +jy + fe

is, in like manner, — (x2 + y
1 + z2), or is the negative square of the iength of the line

which the vector represents. We may express this by saying that the square of any

vector is the negative square of the tensor of that vector.

Ex. 2. To find the product of two unit vectors

(i cos a +j cos/3 + h cosy), (»' cos a' +/ cos/3' + k cosy').

Ans. — (cosa cos a' + cos/3 cos/3' + cosy cosy') + t (cos/3 cosy' — cosy cos/3')

+ / (cosy cos a' - C03a cosy') + h (cos a cos/3' — cos/3 cos a').

If 6 be the angle between the two vectors ; a", /3", y" the direction-cosines

of a perpendicular to their plane, the product may be written

— cosO + sinO (i cosa" +j cos/3" + k cosy").

(This agrees with Art. 5). If the vectors were respectively of lengths !; I', this

product would evidently be multiplied by IV.
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If the product had been taken in different order the scalar part of the product

would still be — cos 0, but the vector part would change sign. Hence, if we denote

by S and V the operation of taking the scalar and vector part of a quaternion, we
have S(a/3) = S(J3a) = cos 6, V{a/3) = - Vifia). And again, we have a/3 + pa = 2S (ap).

If the two vectors be at right angles the scalar part of the product evidently

vanishes. Hence the condition that two vectors a, p, may be at right angles is

S(ap) - 0.

Thus then if p be a variable vector passing through the origin, and a a fixed vector,

the equation S (pa) =0 may be taken as the equation of the plane through the

origin perpendicular to a, since p is evidently limited to that plane.

Let it be required to find the equation of any other plane. Let the perpendicular

from the origin on that plane be denoted in length and direction by a, and let the

radius veotor to any point of the plane be p, then p — a is the vector joining the

extremity of this radius vector to the foot of the perpendicular, and since this line is,

by hypothesis, to be perpendicular to u, the equation required is S (/> — a) a =
or S(pa) = a2

. But a2 is a scalar, and we may therefore divide by it under the sign S,

and write the equation in the form s(-\ — l. This equation may also be inferred

from what was stated in a previous article, viz., that the scalar part of the above

fraction denotes the projection of the line p on the line a, divided by a.

In like manner the equation S [
— ] = 1, which expresses that the projection of

the fixed line a on the direction p is in length equal to p, obviously represents the

sphere described on the vector a as diameter.

Again, the equation Sl-j S [ ~
J

= 1, in the first place represents a cone, because

if it is satisfied for any value of p, it will also be satisfied for the value mp, where

m is any scalar. Secondly it passes through the intersection of S- = 1, S- = 1

:

a p
it is therefore the cone whose base is the circle represented by the two equations

just written.

Ex. 3. To find the product of two quaternions. We have only to multiply out

a + bi + cj + dk, a' + b'i + c'j + d'k. We may form a clearer conception of the result

by separating the scalar and vector parts, and writing the two quaternions S + V,

S' + V, when the product is SS' + SV + S'V+ VV. Now if it be required to find

the scalar part of the product (since SV" and S'V are mere vectors), it is SS' + S (VV),

or the scalar of the product is the product of the scalars + the scalar part of the

product of the vectors.

Thus let a, /3, y be three radii veotores of a sphere ; then it is an identical equation

a ay
that - = - 3 . Now if a, b, c be the sides of the spherical triangle formed by the

extremities of these vectors
; cos a, cos b, cose are the scalars of the three quaternions,

and the scalar part of the product of the vectors on the right-hand side of the equation

is the product of their tensors sin a, sin b, into the cosine of the angle between them,

thus we have the fundamental formula of spherical trigonometry

cose = cosfl cos& + sina sinfi cosC.

9. We can, in like manner, form the product of three

vectors. It is found, without difficulty, by actual multipli-

cation, that if ix+jy+kz, ix' \jy +hz\ ix" +jy" + kz" be the
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three vectors, the scalar part of the product is the determinant

whose three rows are x, y, z; x, y', z ; x", y", z". Hence if

a
> 0> 7 oe the three vectors, the condition that they should lie

in one plane is 8 (afiy) =0 (Note, p. 19).

This is also evident from the consideration that if 8 (aBy) — 0,

then a/37 ig a pure vector, but a/3y = a.S(/3y) + aV(/3y) ; there-

fore a.V{By) is a pure vector, or a is perpendicular to V(/3y)
y

and therefore is in the plane of and 7. Q.e.d.

Thus we can find the equation of the plane passing through

the extremity of three vectors a, 0, 7. By hypothesis, the

lines joining the extremity of any variable vector terminating

in the plane, with the extremities of the assumed vectors, lie

in the plane. We have, therefore, 8[p — a) (p — 0) (p — 7) = 0.

In expanding this we may omit such terms as Sp^y, because

p* is a scalar, and p*y a mere vector whose scalar is nothing.

The expanded product is then

8 (p@y + a/37 + a@p) = 8&fty,

and the vector perpendicular to the plane is

V[a - 7) (0 - 7) = 7(07 + 7a + a/3).

Eeturning to the product of the three vectors, it is also

found by actual multiplication, that

V (o#y) = aS[8y) - S (7a) + yS (aft,

an equation of great use.

In connection with this, the following identical equation may
be given,

88 (a/87) = aS (8yS) + 8S (yaS) + yS (a0S),

as also that, the vector part of the product VaSVyS may be

written in either of the forms

aS (^78) + 88 (yaS) or - yS (a/38) + 8S (afiy).

In fact, Fa/3 denotes a line perpendicular to a and ; the

vector now required must therefore lie in the plane, both of

a and 0, and of 7 and 8.

10. As an example of the method of applying this calculus

to a geometrical problem, we shall investigate the problem to

find the equation of the surface generated by a line resting

on three directing lines. In the first place we may follow a
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process proceeding after the analogy of the co-ordinate methods.

It is seen immediately by substituting = [la + ma!) for a in

the equation of a plane through three points, that the equation

of the plane through the extremity of the vector just written,

and through a fixed line, e.g., through the extremities of the

vectors /3, 7, is of the form IA + mB = 0, where A denotes

the plane through ot/67, and B that through a'/ty. If then

we join any assumed point on the vector a— a' to the other two

lines we get the equation of two planes in the form IA-+ mB—Q,
IA' -t mB' = 0, from which, eliminating I, m, we get the locus

in the form AB = BA'.

Otherwise thus, we are to express the condition that, if we
join by planes any assumed point on the locus to the three

lines, the joining planes have a line common. The vectors

perpendicular to these planes will then be co-planar. Let

then the first line be parallel to the line a, and pass through

the extremity of a vector a' ; then the vector perpendicular

to the plane through this line being perpendicular to a and

to a' — p is Va [a! — p), and the required equation is

S{V*(a , -p).V/3(P-p).Vy{r/-p)}=0
i

which is reduced and expanded by the last article.

11. We give one more example to shew how infinitesimals

are introduced into this calculus. The equation of any sphere

is p
2 = -c'\

Now let the line joining the extremity of p to an indefinitely

near point be dp, then the next consecutive radius vector is

p + dp, and we have

(p +dpf =-c2

,

or expanding and neglecting the square of dp,

pdp + dp . p = 0,

or &{P' dp) = 0,

which indicates that the radius p is perpendicular to the tangent

line dp.
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Very much more must be said if it were intended to give

any complete account of this Calculus, as, for example, the

method of finding the equations of tangents and normals, lines

of curvature, geodesies; &c. Bat enough has been said to

dispose the reader to give credit to the assertion that there

is no geometrical problem to which it may not be applied

;

that it is very rich in transformations; and that its processes

though constantly following the analogies of the co-ordinate

methods, are by no means slavishly dependent on that system.
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APPENDIX II.

ON SYSTEMS OF ORTHOGONAL SURFACES.*

It might be thought, from Dupin's theorem, that being

given a series of surfaces, involving a parameter, it would be

always possible to determine two other systems, each containing

a parameter, and cutting the surfaces of the given system at

right angles, and along their lines of curvature. This, how-

ever, i3 not the case. In order that a given family of surfaces,

with a parameter, may form one of a triple orthogonal system,

an equation, or equations, of condition must be satisfied.

M. Serret arrives at the conclusion (see Liouville, Vol. xn.,

p. 241) that in order that the equation F{x, y, z) = oc, where

a is a parameter, may be one of a triple orthogonal sj'stem,

the function must satisfy two partial differential equations of

the sixth order. We give Serret's investigation of the par-

ticular case where the given function is the sum of three

functions of x, y, s respectively.

Let an equation then be given of the form

X+Y+Z=a (1).

It is required to determine the condition, to which these

functions must be subject, in order that the surfaces (1) may
have a pair of conjugate orthogonal systems. Suppose that

are these systems, and it is evident by the- conditions of the

problem that we have (X', Y\ Z' being the first derived

functions of JT, F, Z)

* For the following appendix, on a subject which I had omitted in the preceding

treatise, I am almost entirely indebted to a manuscript note kindly placed at my
disposal by the Bev. W. Roberts, as well as to his papers published in the Comptes
Rendus.
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„, dp v,d(3 „ d/3

dx dy dz

x>p +rp +*p=o (2).
dx dy dz

d/3dy d/3 dy d/3 dy_
dx dx dy dy dz dz

Proceeding to integrate the first two of these equations by

the ordinary methods of partial differential equations, we find

that /3 and 7 are functions of u and v, where

_ rdx [dy _ [dx [dz
U
-JX'~JY"

V
-]X'~JZ'-

Consequently the third of equations (2) becomes

(d^,d^\(Zy dy\ X^dpdy X^dpdy_
\du

+
dv) \du

+
dv)

+ Y ri du du
+ Zn dv dv "" { h

Now u and v being functions of «, «/, e, we may regard

y and z as functions of u, v, and x. Hence x enters (3) as

an indeterminate parameter, and the quantities /3 and 7 must

satisfy not only (3) but also the derivatives of (3) obtained by

differentiating it on the supposition that x alone is variable.

Differentiating (3) with respect to x on this hypothesis, and

remembering that

dy_T dz_Z_
dx~ Z" dx~ X">

we find,

X" - Y" d£ dy X"-Z" dp dy

Yri du du
+

Z'2 dv dv~ '

X", F", Z" being the second derived functions of X, Y, Z.

Differentiating once more, and denoting the third derived

functions by X'", Y", Z", we get

X'X" - T T" - 2 Y" {X" - Y") d]3 dy

Y" du du

XX'" - Z'Z" - 1Z" {X" - Z") dp dy_
+

Z* 'dv dv~

Hence at once results the equation of condition sought, namely,

XX'"
(
Y" - Z") + Y' Y'" {Z" - X") + Z'Z" [X" - Y")

+ 2 (X" - Y")
(
Y" - Z") [Z" - X") = 0.
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This relation expresses the condition that a family of sur-

faces, of the particular form represented by equation (1), should

form one of a triple orthogonal system. It was first given

by M. Bouquet, Liouville, Vol. xi., p. 446, but the above proof

has been taken from M. Serret's memoir.

Even when the equations of condition are satisfied by an

assumed equation it does not seem easy to determine the two

conjugate systems. Thus M. Bouquet observed that the con-

dition just found is satisfied when the given system is of the

form x
m
y
n
z'' = a, but he gave no clue to the discovery of the

conjugate systems. This lacuna has been completely supplied

by M. Serret, who has shown much ingenuity and analytical

power in deducing the equations of the conjugate systems, when

the equation of condition is satisfied. The actual results are,

however, of a rather complicated character. We must con-

tent ourselves with referring the reader to his memoir, only

mentioning the simplest case obtained by him, and which

there is no difficulty in verifying a posteriori. He has shown

that the three equations,

x '

represent a triple system of conjugate orthogonal surfaces. The
surfaces (a) are hyperbolic paraboloids. The system (/3) is

composed of the closed portions, and the system (7) of the

infinite sheets, of the surfaces of the fourth order,

(« _ yy - 2/3
2
(s

2 +f + 2x>) + /3
4 = o.

M. Serret has observed that it follows at once from what has

been stated above, that in a hyperbolic paraboloid, of which

the principal parabolas are equal, the sum or difference of the

distances of every point of the same line of curvature from

two fixed generatrices is constant.

Mr. W. Boberts, expressing in elliptic co-ordinates the

condition that two surfaces should cut orthogonally, has sought

for systems orthogonal to 1+M+N= a, where L, M, N are

functions of the three elliptic co-ordinates respectively. He
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has thus added some systems of orthogonal surfaces to those

previously known [Comptes Bendus, September 23, 1861). Of
these perhaps the most interesting, geometrically, is that whose
equation in elliptic co-ordinates is nv = a.\, and for which
he has given the following construction. Let a fixed point

in the line of one of the axes of a system of confocal ellipsoids

be made the vertex of a series of cones circumscribed to them.

The locus of the curves of contact will be a determinate

surface, and if we suppose the vertex of the cones to move
along the axis, we obtain a family of surfaces involving a

parameter. Two other systems are obtained by taking points

situated on the other axes as vertices of circumscribing cones.

The surfaces belonging to these three systems will intersect,

two by two, at right angles.

It may be readily shown that the lines of curvature of the

above mentioned surfaces (which are of the third order) are

circles, whose planes are perpendicular to the principal planes

of the ellipsoids. Let A, B, be two fixed points, taken re-

spectively upon two of the axes of the confocal system. To
these points two surfaces intersecting at right angles will corre-

spond. And the curve of their intersection will be the locus

of points M on the confocal ellipsoids, the tangent planes at

which pass through the line AB. Let P be the point where

the normal to one of the ellipsoids at M meets the principal

plane containing the line AB, and because P is the pole of

AB in reference to the focal conic in this plane, P is a given

point. Hence the locus of M, or a line of curvature, is a

circle in a plane perpendicular to the principal plane con-

taining AB.
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APPENDIX III.

CLEBSCH'S CALCULATION OF THE SURFACE S.»

1. In this appendix we give the calculation referred to

p. 441, by which the equation is determined of a surface

which meets a given surface at the points of contact of lines

which meet it in four consecutive points. It was proved,

Art. 510, that in order to obtain this equation it is necessary

to eliminate between the equation of an arbitrary plane, and

the functions A 27', Aa
0", AS

C'. We perform this elimination

by solving for the co-ordinates of the two points of intersection

of the arbitrary plane, the tangent plane AC7
7

, and the polar

quadric A 2V ; substituting these co-ordinates successively in

A3
£7', and multiplying the results together. I write with

M. Clebsch, the four co-ordinates of the point of contact

x
t , x

s, x
3 , x

t ; the running co-ordinates ?/,, y2 , ys , yt ; the

differential coefficients «,, m
2 , m

9 , m
4 ; the second and third

differential coefficients being denoted in like manner by sub-

indices, as m
]2 , w123

. Through each of the lines of intersection

of A V\ A 2
TJ\ we can draw a plane, so that by suitably

determining t
i:

t^ t
s , t

t
we can, in an infinity of ways, form

an equation identically satisfied

A*&+ {tlVl + tj/t + t^y
3
+ tj

4 ) A IT

= [pjfi + PUT, +A& + AK.) fajfi + IJf, + 2Jf, + M<)iA)-

We shall suppose this transformation effected; but it is not

necessary for us to determine the actual values of <„ &c,
for it will be found that these quantities will disappear from

the result. Let the arbitrary plane be c
1yl

-f c^/
2
+ c

3ys
+ c„y

4,

then it is evident that the co-ordinates of the intersections of

* See Note, p. 441.
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the arbitrary plane, the tangent plane u^+u^ + u^ +u^
and A2

Z7', are the four determinants of the two systems

C
l)

C» C
3)

C
4



482 clebsch's calculation of the surface 8.

2. Let us write

F= (2alCApt)
(2Z>,c

2
w

3?4),
G = ( S&.e.u.jpJ (Sa.c.u.jJ

.

The eliminant is F* + G3 = Q, or (F+ Gf - 3FG (F+ G) = 0.

We shall separately examine F+ 6r, and FG, in order to get

rid of p and q. If the determinants in F were so far ex-

panded as to separate the p and q which they contain, we

should have

F= (mj), + m
2p2

+ m
3ps

+ miPi)
{n^ + n

2q2
+ ?i

sqs
+ n

tq4),

G = [nlPi + niPi + n
sps

+ niPi)
(m.g-, 4 mA + m

sq3
+ m^),

where, .for example, m
i

is the determinant Sa^Wg, and n
t

is

SJjCjMj. If then i, j be any two subindices the coefficient of

m
t
rij in F+G is (Piqj+Pjqi)- And we may write

F+G = SSot^ (_p,2/ + M.O;

where both * and j are to be given every value from 1 to 4.

But, by comparing coefficients in equation A, we have

whence f+ # = 222«i.w,w
li;

- + SSwyjj (^ + £«.).

Now it is plain that if for every term of the form p^j+pjqi
we substitute £«,- + tjun the result is the same as if in F and

G we everywhere altered p and <? into f and u. But if in

the determinants Sa^w,^, S&^w,^ we alter # into m, the

determinants would vanish as having two columns the same.

The latter set of terms therefore in F+G disappears, and we
have $ (F+ G) = '2'2m

i
n
j
u

ij
.

Now if we remember what is meant by m,., tij this double

sum may be written in the form of a determinant

M
,,>
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of the last three rows and columns it is of the first degree in

«,„ &c., and the coefficient of any term uu is

-{2a.fa
u^b

]

c
i
u
t
+S,a

1
c
iu^bfs

u} or - (»!,«< + wy?,).

In the determinant just written the matrix of the Hessian

is bordered vertically with a, c, u; and horizontally with 5, c, u.

As we shall have frequently occasion to use determinants of

this kind we shall find it convenient to denote them by an

abbreviation, and shall write the result that we have just

arrived at,

\6, c, uj

3. The quantity FG is transformed in like manner. It

is evidently the product of

Ki>.

+

m,pt
+ msp3 +v4) Ksi

+

mA

+

m& + ™a)>
and (niPi + n,p

% + n
3p3

+ n
4p4) faj, + nA + n

sq3
+ »A).

Now if the first line be multiplied out, and for every term

( V\i* +i,
a2'i)

we substitute its value derived from equation -4,

it appears, as before, that the terms including t vanish, and it

becomes SSm,^, which, as before, is equivalent to
(

' '
)

,

where the notation indicates the determinant formed by border-

ing the matrix of the Hessian both vertically and horizontally

with a, c, m» The second line is transformed in like manner

:

and we thus find that (F+ Gf - 3FG (F+ G) = transforms

into

/a, c, u\ r /a, c, wy _ 3
/a, c, u

\b, c, u) \ \i>, c, u) . \«, c, uj \bj c, u,

It remains to complete the expansion of this symbolical ex-

pression; and to throw it into such a form that we may be

able to divide out c,a5, + cje
t + c^ + c

t
xv We shall for short-

ness write a, Z>, «, instead of a,*, + a
2
£C

2
+ a

a
x
B + a^, \x

t
+ &c,

cp
i
+ &c.

4. On inspection of the determinant, p. 482, which we have

called W °'

J
? it appears that, since

unx, + u
lt
x

t
+ u

ls
x, + u,^ = (« - 1) w,, &c,

1 12

b
i
e
i
U\^

.
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this determinant may be reduced by multiplying the first four

columns by £c
l5
x# x

s , xt)
and subtracting their sum from the

last column multiplied by (« -1), and similarly for the rows;

when it becomes



clebsch's calculation of the surface S. 485

5. We proceed now to expand and substitute for each term

«i°aa8>
&c- tne corresponding differential coefficient. Then, in

the first place, it is evident that

a3= n (n - 1) (n - 2) u = ; d\ = (n - 1) (« - 2) wu &c.

Hence a* Q) = (
M - 1)(« - 2) Q') .

But the last determinant is reduced as in many similar

cases, by subtracting the first four columns multiplied re-

spectively by sb
1?

sb
s , «3 , a;

4
from the fifth column, and so causing

it to vanish except the last row. Thus we have

a' £)=-(«- 2) ifc.

Again, f ) is (seeLessonsonHigherAlgebra, p. 124)=—2 -5— ama„-

We have therefore

Lastly, it is necessary to calculate a (
) ( ,) • Now if Umn

denote the minor obtained from the matrix of the Hessian by

erasing the line and column which contains umn ; it is easy to see

that a{~\ Qj=-(»-2)SCrv
C^M„no/Z„ where the numbers

m
i
niVi 1 are eaca to receive in turn all the values 1, 2, 3, 4.

But, see Lessons on Signer Algebra^ Art. 28,

rdUmUU=TJU„a -B-
J vq

mp nq mn P? J*. *

mn

Substituting this, and remembering that 2 Umnumn = &H, we have

•0GH-»)*Q-
Making then these substitutions we have

{•©-Q}{'0--0 +'0}

3(3 + 4(.-,)w(3-(.-.)wQ.
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But attending to the meaning of the symbols d
x ,
&c, we see

that d or dp
x
+ d^ + d

s
x

a
+ d

i
x

i
vanishes identically. If then

we substitute in the equation which we are reducing the values

just obtained it becomes divisible by c
s

, and is then brought

to the form

6. To simplify this further we put for d its value when it

becomes

Now this is exactly the form reduced in the last article, ex-

cept that we have b instead of a, and a in place of d. We
can then write down

<)H<)v-2><x:h«-^«(:)}.
while the remaining part of the equation becomes

<:)KX) +4 <»- 2>m:)-<»- 2M:)-
But (Art. 5 J the last term in both these can be reduced to

12 (»— 2fHs
c(

J.
Subtracting then, the factor c

3
divides out

again, and we have the final result cleared of irrelevant factors,

expressed in the symbolical form

fi\ f. fb\" fb\ (a\0*0-© = 0.
a J

7. It remains to shew how to express this result in the

ordinary notation. " In the first place we may transform it by

the identity (see Art. 76, and Lessons on Higher Algebra, Art. 28)

whereby the equation becomes
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Now (

J

f

J

I

J

expresses the eovariant which we have before

called 0. For giving to Umn the same meaning as before, the sym-
bolical expression expanded, may be written 2Umn JJnUr,umrufl!i1

where each of the suffixes is to receive every value from 1

to 4. But the diiferential coefficient of H with respect to x
r

can easily be seen to be 2U u ,., so that is 2 IT, -= ,— ,

which is, in another notation what we have called 0, p. 436.

The eovariant 8 is then reduced to the form © — 4i?l>, where

W \a, b)
<i>=r)r:)=2umnuM>Ap u

n

where TJpg n denotes a second minor formed by erasing two

rows and two columns from the matrix of the Hessian, a form

scarcely so convenient for calculation as that in which I had

written the equation, Philosophical Transactions, 1860, p. 239.

For surfaces of the third degree Clebsch has observed that <£

reduces, as was mentioned before, to 2UH. where JET de-
t i mn Tiini inn

notes a second differential coefficient of H.

8. To find the points on a surface where a line can be drawn

to meet in five consecutive points, we have to form the

condition that the intersection of A U\ A'' U', and an arbitrary

plane should satisfy Al
U', as well as A*W. M. Clebsch has

applied to A4
?7' the same symbolical method of elimination

which has been here applied to AS V. He has succeeded in

dividing out the factor c
6 from this result : but in the final

form which he has found, and for which I refer to his memoir,

there remain c symbols in the second degree, and the result

being of the degree 14n — 30 in the variables, all that can be

concluded from it is that through the points which I have

called /3, (p. 443) an infinity of surfaces can be drawn of the

degree 14w — 30. We can say therefore that the number of

such points does not exceed n(lln- 24) (14m — 30).

9. The surface S touches the surface H along a certain

curve. Since the equation 8 is of the form - 4.3<t> = 0,

it is sufficient to prove that touches H. But since © is got
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by bordering the matrix of the Hessian with the differentials

of the Hessian, © = is equivalent to the symbolical expression

f
J

= 0. But, by an identical equation already made use of,

we have

fc, H\ _ (H\

Kc, H) ~ \H)

where c is arbitrary. Hence touches H along its inter-

section with the surface of the degree In— 15, (
1. It is

proved then that 8 touches H, and that through the curve of

contact an infinity of surfaces can pass of the degree In — 15.

We have made use, p. 450, of the theorem that the curves

US and UH touch each other.

" '•--'''H:)-(f)'
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APPENDIX IV.

ON THE ORDER OF SYSTEMS OF EQUATIONS.

1. We have showed, p. 271, how to determine the cha-

racteristics of a curve given as the intersection of two surfaces

;

but it has been remarked (p. 247) that there are many curves

which cannot be so represented. There is no algebraic curve,

however, which may not be represented by means of the equations

of a system of surfaces ; because (Art. 325) by taking m large

enough we can always find a number of surfaces of the mtb
degree

each of which shall entirely contain the curve. But any two

surfaces of the system will not define the curve, for their

intersection will in general consist of the curve in question

and an extraneous curve besides ; so that the curve is usually

not the complete intersection of any two, but only that part

of the intersection which is common to all the rest. The

object of this appendix is to show how, when a system of

equations is given denoting surfaces which pass through a

common curve, the characteristics of that curve can be de-

termined.

In like manner if we are given r points in space, we can

always, by taking m large enough, determine a number of

surfaces of the m™ degree which shall pass through the given

points. But ordinarily the intersection of three such surfaces

will consist of the given points and extraneous points besides

;

and we cannot define the given points except by a system of

more than three equations, the given points being the only

ones which satisfy all the equations. Conversely, it is the

object of this appendix, when such a system of equations is

given, to ascertain the number of points which satisfy all.
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2. The simplest illustration of this is to take four planes

a -f Xoc, b + X/3, c + Xy, d + \S ; where a, a, &c. represent planes,

and X is an indeterminate coefficient; then if we form the

condition that these four planes should meet in a point, this

condition is known to be of the fourth degree in X. It follows

that four values of X can be found for which these equations

will represent planes meeting in a point. And obviously the

four points so found must satisfy any of the six equations

(such as a/3 = ba), which are got by eliminating X between any

pair of the given equations. Yet these all represent surfaces

of the second degree, any three of which intersect in eight

points. It follows then that the system of equations

z, b, c, d

= 0,a, 0, y, 8,

denotes a system of surfaces having four points in common;

but that any three surfaces of the system intersect not only

in these four points but in four extraneous points. In general

then, suppose we are given »* + 3 equations involving r para-

meters, it is evident that by elimination of the variables we
get a sufficient number of equations to determine systems of

values of the parameters for which the equations will denote

surfaces having a point in common. It is evident also that

such points must satisfy the equations got by eliminating the

parameters between any r + 1 of the given equations. And
yet any three of these latter equations will denote surfaces

intersecting not only in these points common to all but in

certain extraneous points besides.

3. In like manner if we had been given the three planes

a + Xa, b + X/3, c + Xy, it is obvious that we may give to X
an infinity of values, to every one of which corresponds a

point which is the intersection of the three corresponding planes.

It is obvious also that the locus of all these points must be

a curve common to all the surfaces a/3 — ba, by- c/3, ca. — ay.

But it was proved, p. 263, that though any two of these

surfaces intersect in a curve of the fourth degree, there is

only a cubic common to all three. And in general if we are
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given r + 2 equations, involving r parameters, an infinity of
systems of values of these parameters can be determined for
which the equations will denote surfaces having a point in
common. The locus of these points will be a curve, which
will be common to all the surfaces got by eliminating the
parameters between any r+1 of the equations. Yet any two
such surfaces will intersect not only in this curve but in an
extraneous curve. Let us suppose then that we have r +

1

equations, involving r parameters in the first degree. The
elimination of these gives rise to a system of determinants

a, b, c,

a, V , c',

= 0,

where the number of horizontal rows is supposed to be r, and
vertical r + 1. We propose to determine the characteristics of

the curve which is common to the surfaces represented by all

these determinants.*

4. Let us commence with the simplest case a, b, c

a, b , c

We suppose the functions a, b, &c. to be of any degree, but

we suppose the degrees df the corresponding functions in either

the same row or the same column to be equi-different ; so that

for example ab' and a'b will be of the same degree. Let X, fi, v

;

X', ft', v' be the degrees of these functions, and such that

X H- /*' = X' + p, &c. ; then the two determinants of the system

ab' — a'b, ac — a'c, representing surfaces of the degrees re-

spectively X + fi', X' + v, intersect in a curve whose degree is

(X + fi) (X' + v). But these surfaces evidently have common the

curve of intersection of a, a' which does not lie on the surface

represented by the third determinant of the system, be — b'c.

The order then of the curve common to all three is

(X + /*') (X' + v) - XX' = Xv + X>' + fi'v.

* The first paper treating of the class of problems considered in this appendix

was by Mr. Cayley (Cambridge and Dublin Mathematical Journal, iv. 134) ; where

he shows that when a, b, a', V, &c. are of the first degree in the variables eliminated,

the order of the system is %r (r + 1). I extended his method and applied it to

the other problems here treated of, Quarterly Journal, I. 246.
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Take next the system with three rows and four columns,

b, b', b'\ V"

Let us write at full length the determinants obtained by the

omission of the third and fourth columns, viz.

a (be — b'c) + b" (ca — c'a) + c" (ab' — a'b)
;

a" (be - b'c) + b'" (ca - c'a) + c" (ab' - a'b).

Then these obviously represent surfaces of the degrees

X + /j,' + v", X + ij! + v"\ which have common the curve common

to the three surfaces be — b'c, ca — ca, ab' — a'b, whose order

has been just determined. And since this curve does not lie

on the surfaces represented by the other determinants of the

system under consideration, the curve common to all four is

of the order (X + //.' -f v") [X + // + v") — (Xv + X'/j,' + fi'v).

Having thus determined the order of a system with three

rows and four columns, we can, in like manner, thence derive

the order of a system with four rows and five columns. Pro-

ceeding thus step by step I arrive by induction at a general

formula which I establish by shewing that if it is true for a

system with h rows, it is true for a system with k+ 1.

5. The formula at which I arrive may be written most

simply and generally as follows : Let the orders of the several

functions be represented by the letters which denote them,

a + a, b + a, c + a, «?+ a, &c.

a + /3, b + /3, c + /3, d+/3, &c.

a + 7, b + y, c -+ 7, d + 7, &c.

&c

let p denote the sum of the quantities a, /3, 7, &c, and q denote

the sum of their products in pairs ; and let P and Q denote the

corresponding sums for the quantities a, b, c, &c. ; then I say

that the order of the system is Q+pP+p' — q. For if we
consider the two determinants obtained by omitting the first and

second columns alternately, these will be of the orders^ + P—a,
p + P—b, and the surfaces have common the curve represented
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by the system obtained by omitting the first two columns.

I am about to prove, that if the formula just given holds for that

lower system, it holds for the given system. Since, however, in

the lower system the number of rows is greater than the number
of columns, we must, in order to apply the formula, write the

rows as columns and the columns as rows; and thus the new
P and Q will be the old p and q. The new p will evidently be

P-a — b; and the new q which is the sum of the products in

pairs of c, d, &c. can easily be seen to be

Q - {a + b) P4 a' + ab + b\

Hence by the formula, the order of the lower system is

P*-Q-P{a + b)->rab+p{P-a-b) + q.

Subtracting this number from the product [p + P— a) {p + P— b)

we obtain, as we ought, Q+p/P+p* — q. Since then the

formula we have given is true, as can easily be verified, for

the case of two rows and three columns, it is true generally.

In applying it we generally have either a or a — 0. When
all the rows are of the same order we have a, /3, &c. all = 0,

and therefore p, q both = 0, and the order of the system is Q.

6. Next let it be required to find the order of the develop-

able generated ^by the curve considered in the last article.

As before, commencing with the simplest case, I was led by

induction to a general formula, which I verify by showing

that it is true for a system with h rows, if true for a system

with k—l. Let B be the sum of the products in threes of

the quantities a, b, &c. (Art. 5) ; and r the corresponding sum

for the quantities a, /3, 7, &c. ; then I say that the order of

the developable in question is

p=(p*-q+pP+Q){P+2p-2)-q(p+P) + B + r.

It was proved (p. 274) that the ranks of two systems which

together make up the intersection of two surfaces, are connected

by the relation

p — p'=(m — m')(p, + v-2).

Now we have just seen that the intersection of two surfaces

whose degrees are p,=p + P-a, v=p + P-b, is made up of
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the curve whose degree is m —p* — q +pP+ Q, and of the curve

of lower order whose degree is m'=P'i — Q+pP+q—p'(p+P)+q\
where we have written p = a + b, q' = ab. Now to find by the

formula of this article, assumed true, the rank of the lower

system, we are to write for the new B, the old r ; and for the

new r, R-p'Q + [p
n - q) P- (p'" - Zp'q). We have then,

after a little reduction,

p'=(P*+pP+q)(2P+p-'Z)-Q(ZP+'2p-2)+R+r-p'{P+p){ZP+p-2)

+ 2p'
( Q - q) + (P+p) p" + 2q' (P+p - 1) -p'q.

To this value of p add (m — m'){/j, + v-2); that is to say,

{f - P° -t- 2 (Q - q) +p' {P+p) - q'} (2p + 2P- 2 - p'),

and the result is the value already given for p. As then the

formula can easily be verified for the case of two rows, it is

generally true.

7. Let us next consider a system such as

a, b, c, d, e, /
b\ d\ e, f

tt 7 tf n 7tr ii pit
a , b

.
, c , d , e

, /
til 7 /// lit Till III Pill

a , b , c , d , e ,f
where the number of columns exceeds the number of rows

by two, and let us examine how many points are common

to all the surfaces represented by the determinants of the

system. Now any three surfaces (ad'e'f"'), (bd'e'f'"), (cd'e"/
1

")

have common the curve

d, d', d", d'"

and if «i, n, p be the degrees of the surfaces, (i and p the

degree and rank of the curve, then (see p. 283) the surfaces

will intersect in points not on this curve, in number

mnp — /J.(m + n + p — 2) + p.

Now if we represent the orders of the several functions in

the same way as in Art. 5, it is easy to see that the degrees of

the three surfaces are P+p —b—c, P+p — c — a, P+p — a—b;
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so that if we -write a + b + c = p', hc + ca + ah = q, abc = r, we
are to substitute for mnp,

(P+pf - 2p* (P+p)* + (P+p) (p'> + J)
- (p'q' - r')

;

and for m + n + p - 2, 3P+ 3p - 2 - 2p'. The order and rank

of the curve, fi and p, are found from the formulae of Arts. 5

and 6, by writing for P, Q and R
; p, q and r ; and for p, q, r

respectively,

P-F, Q ~ p'P+p'* - q, B-p'Q + [p- - q') P-
(F

's - 2p'q'+ r').

We find thus, as in Arts. 5, 6,

p = P*-Q +pP+ q -p' (P+_p) + q',

p=(P*+pP+q)(2P+p-2)-Q(3P+2p-2)+R+r-p'(P-+p)(3P-±p-2)

+¥ ( Q - 2) + (P+P)f + 2-Z '
{P+p - 1) -p'i - r.

Add then to the value of p just found, the values given for

rnnp — /j,[m + n +p — 2), and we find the required result, viz.

R + pQ+[p!! -q)P+p3 -2pq + r.

If the several rows are of the same degrees, that is if a, /3, &c.

all = 0, then the number of points represented by the system

is R.

The correspondence of this result with that of Art. 5, may
be made more manifest by writing the symmetric function

a' + a/3+ /3
2 + &c, pz , and a

3 + a
2
/3 + a/3

2 + /3
3 + &c.,p

3 ; then the

result of Art. 5 is Q+pP+p
2 , and of this article R-\-p Q+p^P+p

s ;

and we are led to expect that the order of a system where

the columns exceed the rows by three, will be found to be

S+pR Jrp
i Q Jrp

!i

P+p
i , a result however which I have not

taken the trouble to verify.

8. It may be deduced hence that the surface represented

by any symmetrical determinant has a determinate number of

double points. Let the sum, sum of products in pairs, and

sum of products in threes of the degrees of the leading terms

a , a
as , a

33, &c. be P, Q, R, then the number of such double

points is \ (PQ — R).

We have the identical equation (Lessons on Higher Algebra,

(Ex. 1, p. 26) AuAm - [A^Y = CA, where An means the

minor obtained by erasing from the given determinant the
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line and column containing a
1)5

A is the determinant itself,

and G is the second minor obtained by erasing the two lines

and columns which contain a, , a
22

. Now it is evident that

the surface represented by AnA22
— (A^f has as double points

the intersections of An , A^ Au ; and the degrees of these

being respectively P—a, P-b, P—^(a + b), the number of

double points is the product of these three numbers. Let the

sum, and sum of product of pairs, of the terms exclusive of a

and b, be denoted byy, g", then the product

(P-a)(P-b){P-i(a + b)}

is \ {PQ +p" Q + {p'° - q") P +1r -fq"}.

These are then double points on the complex system OA;
and are therefore either double points on C, double points on

A, or points of intersection of C and A. Now if we erase

from the matrix the first two rows, all the determinants of

the remaining system (of which C is one) have common a

number of points, which can be calculated by the formula of

the last article, by writing %(c + a), %(c + b), &c, |-(c?+ a),

\{d+ 5), &c, for the degrees of the rows. The result is

J (B +p" Q + {f* - q") P + (p"° - 2p"q" + r").

But the points whose number has been just found are points

at which AuJ A22 , An touch, and they each count for four

among the intersections of these surfaces. Subtracting then

four times the number just found from the total number of

intersections, we get

x
{pY-r" + PQ-B),

whence we learn that if the number of double points on the

surface represented by the symmetrical determinant G is

\{pq— r"), that of those on the surface A is \{PQ — B),

and the first theorem being established in the simplest case

the other is generally true.

9. There is still another question which may be proposed

concerning the curves, Art. 4. Let there be four surfaces

whose degrees are X„ X
2 , X3 , X4 , and whose coefficients contain

any new variable in the degrees /i„ /tt
2 , p3} fi^ then the elimi-
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nant of these four equations contains the new variable in the
degree W (a*,\ + /*A) +W (/*A

+

a*A)-

Now W, \
3\ are the orders of the curve of intersection

of the first and second, and third and fourth surfaces re-

spectively
; and if we call /&,\2 + /*a\, fis\ + fj,t\ the weights

of the same curves, we can assert that the weight of the con-

dition that two curves may intersect is the sum of the products

of the weight of each curve by the order of the other. Now
we have seen what is the order of the curve denoted by a

system of determinants, such as Art. 4 ; it remains to enquire

what is the weight of the same system. It is easy to see

that when a curve breaks up into two simpler curves the

weight of the complex curve is equal to the sum of the weights

of its components. We may therefore proceed as in Art. 4,

and the following is the result : Let the functions contain the

new variable in the degrees a + a, V + a', c + a, &c., a + B',

b' + B', &c, then the formula for the weight is derived from

that for the order by performing on the latter the operation*

a -7- + V -jt 4 &c. + a' -=- + B' -77s + &c. This applies to the
da do da dp rr

results both of Art. 5 and Art. 7. Thus the former becomes

S {ah') +pF +p'P+ 22 (aa) + 2 (a/3'),

which may also be written

[P+p) (P'f/) + 2 (aa') - 2 {aa').

10. We propose next to investigate the order and weight

of the system of conditions that the two equations

at + If-1 + cf

-

2 + &c. = 0, a'f + h'f-
1 + c't

n-2 + &c. = 0,

may have two common roots. It is evident that in order that

this should be the case, two conditions must be fulfilled; and

if t be a parameter, and a, S, &c. functions of the co-ordinates,

these conditions will represent a curve in space. But in point

of fact, we obtain not two, but a system of conditions, no two

of which suffice to define the given curve. These conditions

* Mr. Cayley has given this simple form of stating my result.

KK



498 ON THE OEDEE OF SYSTEMS OP EQUATIONS.

are [Lessons on Higher Algebra, Art. 33) the determinants of

the system

a, h, c, ..

where the first line is repeated n — 1 times, and the second

m — 1 times ; there are m + n -2 rows, and m + n — 1 columns.

The problem is then a particular case of that considered, Art. 4.

We suppose the degrees of the functions introduced to be

equi-different : that is to say, if the degrees of a, a be X, ytt, we
suppose those of b, b' to be X + a, /j, + a ; of c, c to be X + 2a,

/u. + 2a, &c. We may write the formula of Art. 5 in the some-

what more convenient form Q+pP+ | (p
2 + s

2),
where s

2
is the

sum of the squares of a, /3, &c. To apply it to the present

case we may take for the quantities a, b, c, &c. 0, a, 2a, &c.

;

and for the quantities a, /?, 7, &c. of Art. 5, X, X — a, X — 2a, &c.

P is then the sum of m + n — 2 terms of the series a, 2a, 3a, &c,

and is therefore, if we write m + , (&-!)(&- 2)

1.2
a. In the

same case Q is the sum of products in pairs of these quantities,

and is therefore

=
(&-3)(fe-2)(ft-l)(3&-4) ,

1.2.3.4 * '

Again p is the sum of n — 1 terms of the series X, X — a, X — 2a,

&c, and of in — 1 terms of the series fi, fx, — a, /a — 2a, &c.

We have then

j> =
(
n _ l) X + (m - 1) /a - \a. \{n - 1) [n - 2) + (m - 1) (m - 2)}.

In like manner s
2

is the sum of the squares of the same quan-

tities, and is

(«-l)X2
-(- (ra-l)

/
u,
2 -Xa(«-l)(n

f(« -1)(«- 2) (2n- 3)
+ «'

1.2.3
+

2) - /ia.[m—l) [m- 2)

[m - 1) [m - 2) (2m - 3)

1.2.3
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Collecting all the terms, the order of the required system is

found to be

hn{n-l)X%^m {rn-l)
l
ju
i+[m-\){n-\)'K

l
jL+\n{n-l){2m-l)\a.

4 ^m(m— 1) (2n — l)fia. + lmn (m - 1) [n — 1) a".

If the eliminant of the equations

at
m + bf'-

1 + &c. = 0, df + &c. = 0,

represent a surface, the curve here considered is a double curve

on that surface.

If all the functions a, &, &c. are of the first degree, the

surface generated is a ruled surface ; and writing X — /jl = 1

and a = in the preceding formula, we find that the order

of the double curve is $[m + n— 1) [m + n — 2).

If the two equations considered are of the same degree,

that is to say, if m = «, we may write X + fA=p, X/j. = £, and

the same formula gives for the degree of the double curve

\n [n — 1) (p + no) {p + (n - 1) a} — (n — 1) q.

If the order in which the un-eliminated variables occur in any

term be denoted by the accented letters corresponding to those

which express their degrees in the variables to be eliminated,

then (Art. 9) the formula for the weight of the system is obtained

from that for the order, by performing on it the operation

V -5T- + u -r- + a! -r- . In other words, the weight is

aX d/j, da.

n(n-l) XX' + m(m-l) fifi' 4 (m~l)(n-l) (X/t' + X»
+ \n [n - 1) (2»z - 1) (Xa! + X'a) + \m (m - 1) (2re - 1) (/ml' + //a)

+ mn (m - 1) [n — 1) aa'.

11. We can in like manner determine the order of the

system of conditions that the equations at
m + &c, at + &c.

may have three common roots. When geometrically inter-

preted these conditions represent triple points on the surface

represented by the eliminant of the two equations. The con-

ditions are represented by a system of determinants, the matrix

for which is formed as in the last article, save that the line

o, b, c is repeated n - 2 times, and the line a, b', c, m — 2

times ; and the matrix consists of m + n — 2 columns and

K K2
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to + n — 4 rows. The order of the system is calculated from

Art. 7, and is found to be

n (n — l)(»i— 2)^_ mini— l)(ra-2) , , , ,., .. . ....
K

1-2_3
-*•' + V

^11 V+i(«-l)(»-2)(«-2)XV

+ |(to-1) (m -2) (m-2)V2 + £(»i-1)»i(m-1) (»i-2)X,
2
a

+ -^(«-l)w(w2—l)(»i-2)
/

u,
2a+|(»n-2)(«-2){w(n-l)+ w(»2— ^JX/ita

+ {£w [n - 1) (w - 2) to (to - 2) + -J-n [n - 1) (n - 2)} a
2\

+ {-|to (to - 1) (to - 2) n [n - 2) + -J
n (to - 1) (to - 2)} a

8
/*

+ \m (to - 1) (to - 2) n (n - 1) (n - 2) a
3
.

In the case where the surface is a ruled surface, putting a = 0,

\ = /jl = 1, we get for the number of triple points

(to -f n — 2) (to + n — 3) (to + w — 4)

UU
The order of the developable generated by the double curve

(Art. 10) is calculated in like manner by the formula of Art. 6,

but the number so found must be reduced by four times the

number of triple points just found, which are also triple points

on that curve. Thus in the case of the ruled surface the rank

of the double curve is 2 (m + n — 2) (m + n — 3).

The weight of the system, found by the same process as

before, is

|K(n-l)(ii- 2) \*\' + \m (to - 1) (to - 2) /*>'

+ (w-l)(n-2)(TO-2)(X,^'+i^V)+(»»-l)(w-2)(w-2)(X^
/
u,'+^i!

\')

+ (to - 1) n (n - 1) (n - 2) (Xk'a. -f JA.V)

-I- (n — 1) to (to — 1) (to — 2) (fifia + $fi?a.')

+ 2 (
m ~ 2) (

n ~ 2) {2tow — to — n) (X/i'a + \'/j,a + \/j,a!)

+ {\n (n - 1) (n - 2) to (to - 2) + £« (« - 1) (n - 2)} (a
2
X/ 4 2aa'X)

+ {£m (to - 1) (to - 2) m (m - 2) + \m (to - 1) (to - 2)} (a
8
/*' + 2aa»

+ Ito (to — 1) (to — 2) n [n — 1) (« — 2) a*a'.

12. The next system we discuss is that formed by the

system of conditions that the three equations

at' + It1 + &c. = 0, a't
m + b't"-

1 + &c. = 0, a"f + h"f* + &c. =

may have a common factor. The system may be expressed
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by the three equations obtained by eliminating t in turn be-

tween every pair of these equations, a system equivalent to

two conditions. The order of the system may be found by
eliminating from the equations, x, y which enter implicitly

into a, 6, c, when the order of the resulting equation in t

determines the order of the system.

Let us suppose that a, a, a
1
' are homogeneous functions in

x
) Vi z

i
°f the degrees X, /a, v respectively, that b, b\ b" are

of the degrees X — 1, /* — 1, v — 1, &c. ; then if we take the

reciprocal of t for the linear unit, the equations denote surfaces

of the X1

, fi"
1

) v
tb

degrees on each of which the point xyz is a

multiple point of the orders X — I, fi — m, v - re, respectively.

The number of their other points of intersection is therefore

X/jlv — (X — I) [fi — m) [v — «),

or lfA.v + mvX + nXfjj — Xmn — (inl— vim + linn.

But this is evidently the same as the order of the equation

obtained by eliminating x, y, between the equations. If the

order of 5, &', c, c', &c. had been X + a, /jl + a, X + 2a, ft + 2a,

&c. ; then the order of the system would have been

lfx,v + mvX + nX/j, + <x (mnX 4- nlfi + Irnv) 4- Irnntx*.

The weight, as in similar cases, is

I {/Jiv + /iV) +m (vX' + v'X) + n (X/a + X'/m) + rnn (aV + a'X)

+ nl (oi/j,' + a'/i) -f Im [av + a!v) + Zlmnaa.'.

13. It is a particular case of the preceding to find the

order and weight of the system of conditions that an equation

af + bf~
1 + &c. may have three equal roots; because these

conditions are found by expressing that the three second diffe-

rential equations may have a common factor. Writing in the

preceding for I, m, and n, n — 2 ; for ji, X + a ; and for v, X + 2a,

we find for the order of the system

3 (n - 2) X {X + no.) + n (re - 1) (re - 2) a'.

and in like manner for its weight

6 (re - 2) XX' + 3re (re - 2) (a'X + aX') + 2re (re - 1) (re - 2) aa'.
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Again, to find the order and weight of the system of con-

ditions that the same equation may have two distinct pairs of

equal roots; we form first, by Art. 10, the order and weight

of the system of conditions that the two first differentials

at"'
1 + &c, bf'1 + &c. may have two common factors. We

subtract then the order and weight of the system found in the

first part of this article. The result is that the order is

2 (n - 2) (re - 3) X (X + na) + \n (re - 1) (re - 2) (re - 3) a
2

,

and the weight is

4 (n - 2) (re - 3) XX' + 2w (re - 2) (re - 3) (a'X + aX')

4 re (re - 1) (re - 2) (re - 3) aa'.

The formulas of this article are those which we have used,

p. 442. We there suppose a = — 1 and a! = 1.

14. We come now to the problem of finding the order of

the system of conditions that three curves should have two

common points. The method followed is the same as that

given by Mr. Cayley for eliminating between three homoge-

neous equations in three variables, and which we have explained

[Lessons on Higher Algebra, chap. vi.). Let the three equa-

tions be of the degrees Z, ni, re. Multiply the first by all the

terms a/"
+"~3

, j/as"""
-4

, &c. of an equation of the degree in + n — 3,

the second in like manner by all the terms of an equation of

the degree n + l—3, and the third by all the terms of an

equation of the degree I +m — 3. We have thus in all

\ (m+re-1) (m+re- 2)+4(re+Z-l) (n+ l-2)+i(l+m-l)(l+m-2),

equations of the degree l + m + n— 3 ; from which we are to

eliminate the ^ [l+ m + n- 1) (Z + m + m-2) terms xl+m^z,&c.

But as it has been shewn, in the place referred to, the equations

we use are not independent but are connected by

i(Z-l)(Z-2) + *[m-l)(m-2) + £(n-l)(»-2)

relations. Subtracting then the number of relations, the number

of independent equations is found to be one less than the number

of quantities to be eliminated ; and we have a matrix in which

the number of columns is one more than the number of rows,

the case considered in Art. 4 of this Appendix. But, as was
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shewn, [Lessons on Higher Algebra, Art. 58) when we are given
a number of equations connected by relations, the determinants
formed by taking a sufficient number of the equations, require

to be reduced by dividing out extraneous factors, these factors

being determinants formed with the coefficients of the equations

of relation. If then in the present case we took a sufficient

number of the equations and determined the order by the rule

of Art. 5 of this Appendix, our result would require to be re-

duced by a number which we proceed to determine.

15. Let us commence with the simplest case where we have

h equations in h variables, the equations being connected by a

single relation. To fix the ideas we write down the system

with three rows
a,
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we are thus led to the same result whatever be the omitted

row. Thus

£+P(a + /3) + a
2
+/3

1! + a/3-\"(P4a + /3 + 7)

= Q + P{/3 + j) + /3
2

+ 7
2 + /37 -X(P+a + /3 + 7),

since the orders X — X" = <y — a.

And our result may be written in a symmetrical form if we
write A for the common value of X + a, A/ + /3, X" + y, when

it becomes

Q + P{a + /3 + 7) + a
s
+/3

2+ 7
2
-f /37 + ya + a/3-A (P-f a + /3+ 7),

or Q +^ + y'! _
2,_^(p+^).

16. And generally, if there be any number of relation

columns, I have been led by a similar process to the following

result : Let the terms in the relation columns be X, X', X", &c.

yu., /a', fi", &c. v, v\ v", &c, ; then since we must have

X + a = X' + /S', &c, /i + a = /a' + /3', &c., v + a = v + /3', &c.

Let A, P, C denote the common values of these sums, and let

P', Q' denote the sum and sums of products in pairs of the

quantities A, P, C ; then the order of the system is

Q+Pp+f-q-P (P +J> ) + Q.

This result may be stated as follows, in a way which leads

us at once to foresee the answer to some other questions that

may be proposed as to the order of systems of these equations.

In the case we are considering, the entire number of columns,

counting the relation columns, is one more than the number

of rows; and the order of the system is that given by the

rule of Art. 5, if we give a negative sign to the orders in the

relation columns. In like manner, when the number of columns,

counting the relation columns, is equal to the number of rows,

the system by Mr. Cayley's theorem, represents a determinant

whose order is that which we should obtain by calculating

the order of the entire system considered as a determinant,

the orders in the relation columns being taken negatively. And
so no doubt if the entire number of columns exceeded the

number of rows by two, the order of the system would be found

by the same modification from the rule of Art. 7.
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1 7. Let us now apply the rule just arrived at to the problem

proposed in Art. 14. We suppose that in the equations of

the three curves the coefficients of the highest powers of x,

viz. a;
!

, x
m
7
xn are of the orders X, fi, v ; those of x''

1

^, «Ma

are of the orders X + a, X + a', and so on, the orders of the

coefficients increasing by a for every power of y, and by a!

for every power of s. Then the terms in the first column

consist first of
J (m + n — 1) {m+ n — 2) terms whose orders are

X ; X - a, X — a' ; X — 2a, X — a — a', X - 2a', &c. ; secondly, of

\{n\l — 1) {n + l — 2) terms whose orders are /x, /u. — a, /t — a',

&c, and thirdly of £(Z+m — 1) (l +m- 2) similar terms in v.

These may be taken for the numbers a, /3, 7, &c. of Art. 5.

The numhjers a, h, c, &c. of that article are 0, a, a' : 2a, a + a',

2a', &c, there being in all |(Z + m + n - 1) (Z+ m + n — 2) such

terms. Lastly, the numbers A, B, G, &c. of the last article are

found to consist of \{l — 1) (I— 2) terms, /t+v, /i+v -a, /u+v— a';

together with |(w — 1) (m — 2) and ^ (n — 1) (n— 2) correspond-

ing terms in v + X and X + /*. In calculating I have found it

convenient to throw the formula of the last article into the shape

where s
2
denotes the sum of the squares of the terms a, b, c, &c.

Also if 4> (X) = AT + M* + Cf + DI + E, it is convenient to take

notice that

<j>(l+m+n)+<f>(T)+(p(m)^(j)(n)-^(l^m)-<j)(m+ n)-<f>(n+T}

= YlAlmn (I + m + n) + &Bl<mn + .EL

I have thus arrived at the result, that the order of the system is

\ mn {ran - 1) X2 + \nl {nl - 1) /*
s + \lm {hi - 1) v

a

+ {{nl- 1) (&»-!)-! (Z- 1) (Z - 2)} /*v

+ {(Zm - 1) (mm - 1) - i (m- 1) (m - 2) j>X

4- {(nZ-1) (Hm-l)-i(n-l)(n-2)}X/*

+ mrih [Imn - Z+ 1 - \ (m + n)} (a. + a)

+ nl/J. [Imn - m + 1 - | (« + Z)} (a + a')

+ Zmv {?»«« - « + 1 - § (Z + m) (a + a')

+ £Zmn(Z»m-Z-m-w+2)(a''
!+0 + £Zw2n(2Z?rtn-Z-m-ft+l)aa'.
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If the order of all the terms in the first equation be X, in

the second /i, in the third v, we have only to make a and a! =
in the preceding formula. In this case supposing X = fi = v= 1,

and l = m = n, the order becomes \n [n — 1) (ri
2 + n — 1).

18. The preceding formulae enable us to determine the order

(B) in the coefficients that a curve should have two double

points, and the order
(
G) that it should have a cusp. In either

of these cases, the three polar curves Z7„ Ua U
s
have two

common points, either distinct or coincident. Writing then

n — 1 for n in the last formulas, we have

2(5+(7) = 9(ji-1) (n-2) (V-m-1).

But either from a formula, given note p. 179, or from p. 417,

we can infer

2B+ 3 C= 3 (n - l)
2
{3 (n - If - 1} - Sn [n - 1)

= 3 (»- 1) (« - 2) (3rc
2 - 3« + 1).

Hence we have

(7= 12 (n - 1) (w - 2), B= f (n - 1) (n - 2) (Sw
2 - 3m - 1).

Mr. Cayley had arrived at these numbers by a different process

in a Memoir communicated to the Cambridge Philosophical

Society, but not yet published.
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APPENDIX V.

ON THE PROPERTIES OF SYSTEMS OP SURFACES.

1. In this appendix we shall give a brief account of methods

by which M. Chasles has investigated properties of systems

of plane curves (Comptes Rendus, 1864, t. lviii.), and which

have been applied to surfaces by M. De Jonquieres. It is

simpler to illustrate the method, by first giving as specimens a

few of M. Chasles's theorems for plane curves.

Let us suppose that we are given one less than the number
of conditions necessary to determine a curve of the n" order,

then the curves satisfying these conditions form the system

whose properties have been studied by M. Chasles. The curve

would be completely determined, if in addition a point on the

curve or if one of its tangents were given. Let the number

of solutions of the problem in these two cases be /* and v ; that

is to say, let it be supposed that /j, curves of the system pass

through any given point, and that v of them touch any given

line: then these two numbers are called the characteristics of

the system.

(1) The locus of the poles of a fixed line, with respect to the

curves of the system, is a curve of the degree v. For every

point of the locus which lies on the line itself is the point of

contact of a curve of the system touching the line. There can,

by hypothesis, only be v such points. Since then the locus is

one which meets a given line in v points, it is a curve of the

V
th

order. As a particular case of this theorem, we can deter-

mine the order of the locus of centres of conies satisfying any

four conditions.

(2) Reciprocally, the envelope of the polars of a fixed point,

with respect to the curves of the system, is a curve whose class is p.
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(3) The locus of the points of contact of tangents drawnfrom

a fixed "point to all the curves of the system, is a curve of the

degree /j. + v. Consider any line drawn through the fixed point

;

its v points of contact with curves of the system are points on

the locus ; and the fixed point itself is a multiple point, being a

point on the locus for each of the ft curves passing through the

point. No other points of the locus can lie on the line ; and the

locus is therefore a curve of the degree ft+v.

2. If there be on a right line two series of mutually corte-

sponding points; such, that to any point of the first system corre-

spond m points of the second, and that to any point of the second

correspond n points of the first, then there will be m + n points of

either system which coincide with points corresponding to them in

the other. This theorem is proved in the case where m = n = 1

,

[Conies, Arts. 331, 340); and the proof in general is the same

as that given in the place referred to. Let. x, x be the dis-

tances measured from any fixed origin of two mutually corre-

sponding points, then since if x is given there may be m values

of x, and if x is given there may be n values of x, these

distances must be connected by a relation of the mth
degree in x'

and of the n"
1

in x, as for instance (ax'
m+ bx""'

1 + &c.) x"+ &c. = 0.

If then we put x = x', we obtain an equation of the degree

m + n to determine the a: of a point which coincides with its

conjugate. The following example shows the use that may be

made of this principle.

(4) The locus of a point whose polar with regard to a fixed
curve of the m degree, coincides with its polar with respect to a

curve of the given system, is a curve of the degree ft [m — 1) + v.

Take any right line, let A and a be two points on it, such that

the polar of A with respect to the fixed curve is the same as the

polar of a with regard to one of the curves of the system

;

then the problem is to determine in how many cases A can

coincide with a. Now first if A be given, its polar with respect

to the fixed curve is also given ; the locus of the poles of this

line with respect to curves of the system is a curve, which, by

theorem (1), meets the assumed line in v points. There are

therefore v positions of a corresponding to any position of A.
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On the other hand if a be given, its'polars with respect to curves

of the system, by theorem (2), envelope a curve of the //" class.

But the polars of the points on a right line, with respect to

a curve of the mtb
degree, envelope a curve of the [m — I)'" class.

The two curves then may have p (m - 1) common tangents

;

and these may accordingly be fi (m — 1) points A corresponding

to any point a. There will therefore be on any right line

A4 [m — 1) + v points A coinciding with a ; and this will there-

fore be the degree of the locus of such coincident points. The
points where this locus meets the fixed curve, will be points

of contact of that curve with curves of the system. The number
therefore of curves of the system which can touch a fixed curve

of degree m is fim (m - 1) + vm ; or more generally /in -f vm,

where n is the class of the curve.

3. Now, in like manner, let it be supposed that we are given

one less than the number of conditions necessary to determine

a surface of the n
,b

order ; the surfaces satisfying these conditions

form a system whose characteristics are /i, v, p ; where fi is

the number of surfaces of the system which can be drawn

through any point, v is the number which can touch any plane,

and p the number which can touch any line. It is obvious that

the sections of the system of surfaces by any plane form a

system of curves whose characteristics are /i, p ; and the tangent

cones drawn from any point form a system whose characteristics

are p, v. Several of the following theorems answer to theorems

already proved for curves.

(1) The locus of the poles of a fixed plane with regard to

surfaces of the system, is a curve of double curvature of the order v.

The locus is a curve, since the plane itself can only be met by

the locus in a finite number of points, v. Taking the plane at

infinity, we find as a particular case of the above, the locus of

the centre of a quadric satisfying eight conditions. Thus when

eight points are given, the locus is a curve of the third order

:

when eight planes, it is a right line.

(2) The envelope of the polar planes of a fixed point, with

regard to all the surfaces of the system, is a developable of the

class /i.
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(3) The locus ofthepoles with regard to surfaces ofthe system, of
all the planes which pass through a fixed right line, is a surface of

the degree p. There are evidently p, and only p points of the

locus, which lie on the assumed line. The theorem may other-

wise be stated thus ; understanding by the polar curve of a

line with respect to a surface, the curve common to the first

polars of all the points of the line ; then, the polar curves of a

fixed line with regard to all the surfaces of the system lie on a

surface of the degree p.

(4) Reciprocally, The polar planes of all the points of a line,

with respect to surfaces of the system, envelope a surface of the

class p.

(5) The locus of the points of contact of lines drawnfrom a

fixed point to surfaces of the system, is a surface of the order

fi + p, having the fixed point as a multiple point of order p.

This is proved as for curves. The problem may otherwise be

stated, " To find the locus of a point such that the tangent

plane at that point to one of the surfaces of the system which

pass through it, shall pass through a fixed point." Hence

we may infer the locus of points where a given plane is cut

orthogonally by surfaces of the system. It is the curve in

which the plane is cut by the locus surface p + p, answering to

the point at infinity on a perpendicular to the given plane.

(6) The locus ofpoints of contact, with surfaces of the system,

of planes passing through a fixed line, is a curve of the order

v + p meeting the fixed line in p points. This also may be stated

as the locus of points, the tangent planes at which to surfaces of

the system passing through it, contain a given line.

(7) The locus of a point such that its polar plane with regard

to a given surface of degree ra, and the tangent plane at that point

to one of the surfaces of the system passing through it intersect in a

line which meets a fixed right line is a surface of the degree

tn/i + p. The locus evidently meets the fixed line in the p
points where it touches the surfaces of the system, and in the m
points where it meets the fixed surface, these last being multiple

points on the locus of the order p.

(8) If in the preceding case the line ofintersection is to lie in a
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given plane, the locus will be a curve of the order m (m—1
) fi+mp+v.

The v points where the fixed plane is touched by surfaces of

the system are points on the locus ; and also the points where
the section of the fixed surface by the fixed plane is touched by
the sections of the surfaces of the system. But (Art. 2) the

number of these last points is fim (m — 1) + mp.

The locus just considered meets the fixed surface in

m {m (m - 1) fi + mp -f v} points. But it is plain that these must

either be the fim (m — 1) + mp points just mentioned ; or else

points where surfaces of the system touch the fixed surface.

Subtracting then from the total number, the number just

written, we find that

—

(9) The number of surfaces of the system which touch a

fixed surface is fim [m — l)
2 + pin (m — 1 ) + vm ; or more generally

if n be the clas3 of the surface, and r the order of the tangent

cone from any point, the number is /in + rp + vm.

We can hence determine the number of surfaces of the form

\U+/iV which can touch a given surface. For if U and V
are of the degree m, these surfaces form a system for which

/t=l, v = 3(m— l)
z

, p = 2(m— 1). If then n be the degree

of the touched surface, the value is

n[n- If + 2n [n - 1) (m - 1) + 3« [m - If,

the same value as that given, p. 439. This conclusion may
otherwise be arrived at by the following process.

4. If there be two systems of mutually corresponding points in

a plane, such that to any point of the first system correspond m of

the second, that to any point of the second correspond n of the first,

and that any right line contains r pairs of corresponding points ;

then the number ofpoints of either system which coincide with points

corresponding to them is m-\-n + r. Let us suppose that the co-

ordinates of two corresponding points xy, x'y, are connected by

a relation of the degrees /i, /*' in xy, x'y' respectively ; and

by another relation of the degrees v, v ; then if x'y be given,

there are evidently fiv values of xy, hence n = pv. In like

manner m = /i'v. If we eliminate x, y, between the two equa-

tions, and an arbitrary equation ax + by + c = 0, we obtain a result
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of the degree fiv + fi'v in x'y ; showing that if one point describe

a right line, the other will describe a curve of the degree

/iv + ytt'v, which will of course intersect the right line in the

same number of points, hence r — p.v + /jfv. But if we suppose

x and y' respectively equal to x and y, we have (/«, + //) (v + v)

values of x and y ; a number obviously equal to tn + n + r.

5. Let us proceed now, as in theorem (4) for curves, to inves-

tigate the nature of the locus of points, whose polar planes with

respect to surfaces of the system coincide with their polars

with respect to a fixed surface ; and let us examine how many

points of this locus can lie in an assumed plane. Let there be

two points A and a in the plane, such that the polar plane of A
with respect to the fixed surface coincides with the polar

plane of a with respect to surfaces of the system. Now first if

A be given, its polar plane with regard to the fixed surface is

given : and the poles of that plane with respect to surfaces of

the system lie, by theorem (1), on a curve of the order v. This

curve will meet the assumed plane in the points a which corre-

spond to A
y
whose number therefore is v. On the other hand if

a be given, its polar planes with respect to surfaces of the system

envelope, by theorem (2), a developable whose class is p,; but

the polar planes of the points of the given plane with regard

to the fixed surface envelope a surface whose class is (to — 1)'' ;*

this surface and the developable have common p, (m — l)
z tangent

planes, which will be the number of points A corresponding to

a. Lastly, let A describe a right line, then its polar planes with

respect to the fixed surface envelope a developable of the class

to — 1; but with respect to the fixed surface, by theorem (3),

envelope a surface of the class p. There may therefore be

p (m—1) planes whose poles on either hypothesis lie on the

assumed line. Hence, by Art. 4, the number of points A, which

coincide with points a is p, (m — l)
2 + p (to — 1) + v. The locus

then of points whose polar planes with respect to the system,

and with respect to a fixed surface coincide, will be a curve of

* It was mentioned (p. 417) that if the equation of a plane contain two
parameters in the degree n, its envelope will be of the class n2.
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the degree just written, and which will meet the fixed surface

m the points where it can be touched by surfaces of the

system.

6. We add a few more theorems given by De Jonquieres.

(10) The locus of a point such that the line joining it to a

fixed point, and the tangent plane at it to one of the surfaces of the

system which pass through it, meet the plane of a juiced curve in a
point and line which are pole andpolar with respect to that curve,

is a curve of the degree ftm [m — 1). + pm + v. This is proved as

theorem (8). Let the fixed curve be the imaginary circle at

infinity ; and the theorem becomes, the locus of the feet of the

normals drawn from a fixed point to the surfaces of the system is

a curve of the degree 2p + 2p + v.

(11) If there be a system of curves, whose characteristics are

fij, v, the locus of a point such that its polar with regard to a

fixed curve of degree m, and the tangent at it to one of the

curves of the system which pas3 through it, cut a given finite

line harmonically, is a curve whose degree is m/j, + v. Consider

in how many points the given line meets the locus, and evidently

its v points of contact with curves of the system are points on

the locus. But, reasoning as in Art. 3, we find that there will

be m points on the line, whose polars with respect to the fixed

curve divide the given line harmonically. And since these are

points on the locus for each of the /j, curves which pass through

them ; the degree of the locus is m/j, + v. Taking for the finite

line the line joining the two imaginary circular points at infinity,

it follows that there are m (m/n + v) curves of the system which

cut a given curve orthogonally. De Jonquieres finds that in

like manner the locus of a point such that its polar plane with

regard to a fixed surface, and the tangent plane at that point to

one of the surfaces of the system meet the plane of a fixed

conic in two lines conjugate with respect to the conic, is a surface

of the order in/j, + p. And consequently that a surface of this

order meets the fixed surface in points where it is cut orthogo-

nally by surfaces of the system.

(12) If from each of two fixed points Q, Q' tangents be

drawn to a system of curves of the w"
1

class, the locus of the
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intersections of the tangents of one system with those of the

other is a curve of the order v (2w — ] ). For consider any curve

touching the line QQ\ then one point of the locus will be the

point of contact, and n — 1 of the others will coincide with each

of the points Q, Q. And since there may be v such curves, each

of the points Q, Q', is a multiple point of the order (n — 1) v,

and the line QQ' meets the locus in v(2w — 1) points. Let the

points QQ be the two circular points at infinity, and it follows

that the locus of foci of curves of the system is a curve of

degree v (2k — 1). If we investigate, in like manner, the locus of

the intersection of cones drawn to a system of surfaces from two

fixed points QQ', it is evident from what has been said, that any

plane through QQ meets the locus in a curve whose order is

p (2n — 1 )
; but the line QQ' is a multiple line of degree p,

being common to both cones in every case where the line

QQ' touches a surface of the system. The order of the locus

therefore is 2np ; and accordingly, Ap is the order of the locus

of foci of sections of a system of quadries by planes parallel to

a fixed plane.*

* Chasles has given the theorem that if there be a system of conies whose

characteristics are p., y, then 2y — p. conies of the system reduce to a pair of lines,

and 2/i — j/ to a pah- of points. It immediately follows hence, as Cremona has

remarked, that if there be a system of quadries, whose characteristics are ft, v, p,

of which a- reduce to cones and <r' to plane conies, then considering the section

of the system by any plane, we have v = 2p — p., <r' = 2p. — p, and reciprocally

a = 1v — p. These theorems however are obviously subject to modifications if it

can ever happen that a surface of the system can reduce to a pair of planes or

a pah: of points. Thus in the simple case of the system through sis points and

touching two planes, the ten pairs of planes through the six points are to be

regarded as surfaces of the system, since a pair of planes is a quadric which touches

every plane. For the same reason the problem to describe a quadric through six

points to touch three planes does not, as might be thought, admit of 27, but only

of 17, solutions, the ten pairs of planes counting among the apparent solutions.
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On right lines on a cubic, 422.
On involution of six lines, 426.
On differential equation of ruled

surfaces, 441.

On the order of systems of equations,
491, 497.

His method of eliminating between
three equations in three variables,
502.

Centres, surface of, of a quadric, 143.
Its reciprocal, 144.

Its equation formed, 151.
Its sections by principal planes, 152.

402.
'

Its cuspidal lines, 403.
Extension of the problem by Clebsch.

399.
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Centres, surface of, of any surface, 238.

When has double lines, 239.

Of a developable, 299.

Characteristic, of envelopes, 254.

Their differential equations, 366.

Of curves which together make up
intersection of two surfaces, how
connected, 273.

Chasles, on foci and confocal quadrics,

101, <fcc. 120.

On focal lines of tangent cones to a

quadric, 126.

On the axes of these tangent cones, 129.

On finding the axes of a quadric, 131.

On lines joining corresponding ver-

tices of conjugate tetrahedra, 180.

On theorems analogous to Pascal's

theorem, 181.

On sphero-conics, 183.

On curves of third order, 262.

On curves of fourth order, 279.

On enumeration of developables, 280.

On curves traced on hyperboloids, 305.

On geodesies of ellipsoids, 315, &c.

On ruled surfaces, 372.

On involution of six lines, 426.

On Bystems of surfaces, 507, 514.

Circular sections of a quadric, 65.

The problem considered geometri-

cally, 98.

Sum or difference of angles made by
any plane depends on axes of section,

192.

Clairaut, on name " curves of double cur-

vature," 304.

Clebsch, on double lines of surface of

centres, 240.

On characteristic number of a curve,

281.

On condition that four consecutive

points of a curve should he in a

plane, 291.

On surface of centres, and normals
from any point to a quadric, 399, &c.

On reduction of a cubic to its ca-

nonical form, 417.

On intersection of tangent plane and
polar with respect to Hessian, 427.

On surface passing through 27 lines

of a cubic, 436.

Its equation calculated, 480.

On doubly inflexional tangents, 441.

On number of points at which two
doubly inflexional tangents can be
drawn, 444.

Combescure, on lines of curvature of

wave surface, 393.

Condition, that a plane or line should

touch a quadric, 47.

That a tetrahedron self-conjugate

with respect to one quadric may be
inscribed in another, 146.

That two quadrics should touch, 147.

That a tetrahedron may be inscribed

in one quadric having two pairs of

opposite edges on another, 152.

Condition, that three asymptotic lines

or planes should be rectangular,

155.

That line should pass through in-

tersection of two quadrics, 162.

That equation in quadriplanar co-

ordinates should represent a sphere,

171.

That section of quadric should be a
parabola or equilateral hyperbola,
172.

That four points of intersection of

three quadrics should lie in same
plane, 177.

How many necessary to determine a
surface, 201.

_ That four consecutive points of a
curve should he in a plane, 292.

That five lines may have a common
transversal, 426.

That two surfaces should touch, 437.

Cone, equation of a, with given vertex
and resting on a given curve, 83.

Properties of, 183, &c. 343.

Equation of right cone, 195.

Confocal quadrics, general form of equa-
tion, 165.

Their properties derived from those
of surfaces inscribed in a common
developable, 167.

Conicoids, 34.

Conjugate tangents, 206.

Contact, of two surfaces a double point on
their intersection, 148, 248.

Of lines or planes with surfaces, 440.

Contravariants of systems of quadrics, 158.

Corresponding points on confocals, 134.

Cremona, on section of a surface by its

tangent plane, 202.

On curves of third order, 262, &c.
On curves of fourth order, 279.

On developables of fifth order, 281.

On cubical ruled surfaces, 415.

On Steiner's surface of the fourth
order, 416.

On systems of quadrics, 514.

Cubics twisted, 263, &c.
Curvature of quadrics, 140.

Of surfaces in general, 219.

Lines of curvature, 142.

Their property, if plane, 243.

The same for two orthogonal sur-

faces, 237.

Their differential equation integrated,

235.

Lines of curvature of wave surface,

398.

Second curvature of curves, 297.

Geodesic curvature, 307.

Gauss's theory of curvature, 329.

Cuspidal edge, of developables, 129, 238,

254.

Its differential equation, 369.

Cyclic planes of cone, 188.

Cylinders, limiting case of cones, 246.

Their differential equation, 342.
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De Jonqu&res, on systems of surfaces, 507.
Developable defined, 72.

Circumscribing two quadrics, 160.
Generated by tangent lines of their
common curve, 162.

How these developablea meet the
quadric, 163.

Imaginary, which touches a system
of confocals, 165.

Generated by normals along a line of
curvature, 237.

General theory of, 249.
Of same degree, as developable gene-

rated by reciprocal curve, 258.
Planar and multiplanar, 280.

Polar, of curves, its singularities, 303.
Differential equation of, 363.
Which touches along parabolic curve,

its degree and singularities, 439, 449.

Which touches a surface along a
given curve, 439.

Generated by a line meeting two
given curves, 440.

By a line meeting a given curve
twice, 460.

Generated by curve of intersection
Of two given surfaces, 271.

Enveloping two given surfaces, 440.
Theory of their reciprocals, 459.

Dickson, on geodesies, 306, 309.
Diguet, on the proof of a theorem of

Gauss's, 336.

Discriminant, of a quadric, 40.

Of a surface in general, 215.

Of discriminants, 179.

Double, points on surfaces, 208, 416.
Points, apparent, on intersection of

two surfaces, 272.

Contact of principal spheres, 230.

Tangent lines, how many pass through
a point, 211,213.

Tangent planes, locus of their points

of contact, 449.
Curves on developables, 260.

on surface of centres, 239, 404.
on ruled surfaces, 377.

Generators on ruled surfaces, 382.

Inflexional tangents, 441.

Dupin, on indicatrix and elliptic &c.
points, 204.

On conjugate tangents, 206.

On orthogonal surfaces, 235.

Elasticity, surface of, 408.

Elliptic co-ordinates, 135, 317, 393.

Envelope of a plane containing one para-
meter, 250.

Entering rationally, 259.

Of a plane containing two para-

meters, 252.

Entering rationally, 417, 461.

General theory of, 357.

Equilateral hyperboloids, 156.

Euler's theorems on curvature of surfaces,

221.

Evolutes of curves, 301, 303.

Families of surfaces, 839, Ac.

Faure, extension of his theorem on self-

conjugate triangles, 147.

Ferrers, his proof of a theorem of Chasles',

181.

Feuerbach's theorem, on circles touching
sides of a triangle, 197.

Focal conies of quadrics, 103, &c.

Their tangential equation in general,

168.

Focal lines of cones, 107.

Foci, of plane section of a quadric, co-

ordinates of, 173.

Fourier, on polar developable of curves, 300.

Frenet, on curves of double curvature, 304.
Fresnel, on wave surface, 387.

On surface of elasticity, 408.

Frost and Wolstenholme's treatise on Solid
Geometry, 34.

Gauss's theorems on geodesies, 306.

On curvature of surfaces, 329, 337.

Geodesies, their fundamental property, 240.

Their differential equation, 305.

On ellipsoid, 312, &c.
Curvature, 307.

Polar co-ordinates, 320.

Graves, his translation of Chasles on
sphero-conics, 183.

His theorem on arcs of sphero-
conics, 193.

His proof of Joachimsthal's theorem,
309.

Gregory's solid geometry, 202, 234.

Gudermann on spherical co-ordinates, 184.

Hamilton, Sir Wm. E., his method of
generating quadrics, 84.

His theorem that umbilics lie in threes
on eight lines, 98. -~

On circles which touch three great
circles, 199.

On lines of curvature at umbilics, 232.

On curves of double curvature, 305.

On nodal points of wave surface, 391.
On quaternions, 463.

Hart, his extension of Feuerbach's theo-
rem, 197.

His proof of Joachimsthal's theorem,
311.

On geodesies, 323, 327.

Helix and Helicoid, 287, 300, 346.

Hesse, on the construction of a quadric
through nine points, 97.

His theorem as to the vertices of two
self-conjugate tetrahedra, 146.

On osculating plane of curves, 290.

On integration of equation of geodesic
on ellipsoid, 319.

Hessian of a surface, 217.

Touched by every right line on the
surface, 218.

Has double points, 420.

Of a developable, 364.

Of a cubic, 418.

Of a ruled surface, 462.
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Hirst on Pedal surfaces, 405.
On inverse surfaces, 406.

Homographic series of points; surface
generated by line joining corre-

sponding points on two lines, or
enveloped by plane joining corre-

sponding points on three, "266.

Imaginary circle at infinity, its equation,

156, 168, 194.

Indicatrix, 204.

Inextensible surfaces, 338.

Inflexion linear on curves, 259.

On quartics, 278.

Inflexional tangents of surfaces, 203.

How many pass through a point,

213.

How many tangents to a given curve
on a surface are inflexional, 439.

Doubly inflexional tangents, 441.
Intersection of two surfaces, its singu-

larities, 270.

Of three surfaces, common curve equi-

valent to how many points, 283.

Invariants and covariants, of quadrics,

145, &a.
Of a cone and quadric, 157.

Of sections of quadrics, 172.

Of a system of three quadrics, 177.

Of circles on a sphere, 195.

Of a cubic, 429.

Inverse surfaces, 406.

Involution of tangent and normal planes
to a ruled surface, 373.

Of six lines, 426.

Ivory's theorem on distance between cor-

responding points of confocals, 137.

Jacobi on focal lines to tangent cones of

quadrics, 126.

His mode of generating quadrics, 137.

Integrates equation of geodesies on an
ellipsoid, 319.

Jacobian, of four quadrics, 174, 176.

Of four surfaces, 437.

Jellett, on inextensible surfaces, 338.

Joachimsthal, his method of finding inter-

section of a line with a surface,

45, 209.

His theorem on plane lines of curva-
ture, 243.

On curves of the third order, 265.

On geodesies of an ellipsoid, 308.

Eiimmer on double lines of surfaces of

centres, 240.

On Steiner's surface of fourth order,

416.

Lacroix's contributions to the theory of

curves of double curvature, 305.

Lancret's theorem, 241.

On curves of double curvature, 301.

Legendre, on area of surface of ellipsoid,

318.

Level, lines of, 328.

Liouville, his calculation of radius of
geodesic curvature, 307.

His mode of writing equation of geo-
desies of an ellipsoid, 313.

On elliptic co-ordinates, 317.

Lloyd, on conical refraction, 391.

Locus, of intersection of three rectangular
tangent lines to a quadric, 82,

133, 165.

Of three rectangular tangent planes,

60, 165.

If the planes each touch one of three
confocals, 129.

Of points on quadric whose normals
meet a fixed normal, 83, 231.

Of centres of quadrics satisfying eight

conditions, 94, 509.

Of pole of plane with regard to -a

series of confocals, 120.

Of vertices of right cones circum-
scribing a quadric, 133.

Of intersection of rectangular gene-
rators of a hyperboloid, 133.

Of points of contact of parallel tan-
gent planes to confocals, 139.

Of centres of spheres circumscribing
self-conjugate tetrahedron, 147.

Of foci of central sections of a quadric,

173.

Of foci of sections parallel to a given
line, 173.

Of vertices of cones through six

points, 174.

Of intersection of rectangular tangents
to a sphero-conic, 193.

Of points of contact of double tangent
planes to a surface, 449.

Mac Cullagh, on foci and confocal sur-

faces, 101.

On modular property of foci, 110.

On bifocal chords, 131.

On apsidal surfaces and wave sur-

face, 390, 391.

Meunier's theorem, 140, 223, 233, 307.
Used to prove fundamental property,

of geodesies, 241.

Mbbius on intersection of cones and
spheres, 200.

On twisted cubics, 262.
Modular property of foci, 111.

Monge, on lines of curvature, 232.

On envelopes, 253.

On polar lines of curves, 293.

On evolutes, 301.

On curves of double curvature, 305.
On families of surfaces, 360—370.

Moutard, on condition that surfaces should
touch, 437, 439.

Normal, to a surface, 211.

To a curve, 286.

To confocals through given line gene-
rate paraboloid, 128.

To any ruled surface along a gene-
rator, 373.
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formal, extension of notion of, 399,
To a quadric, Clebsch on, 399.

Irder of condition that three surfaces
should have a common line, 383.

Of systems of equations, 489.
Irthogonal surfaces, Dupin's theorem

on, 236.
On systems of, 476.

)sculating plane, 286, 289.
Sphere of a curve, 303.
Eight cone of a curve, 298.

'ainvin on foci of sections of a quadric, 173.
'arabolic points defined, 204.

Tangent planes at, count double, 207.
Polar quadrics of, are cones, 216.

'araboloid, its equation reduced, 57.
'arallel to a quadric, 148.

'edal surfaces, 405.
'erpendicularity, generalization of this

relation, 169.

Condition for two circles on a sphere,

187.

'lucker's relations between singularities

of plane curves, 285. 'V. S ~j

'olars, of points on a surface, 210. *

Developable of a curve, 293, 303.

ro-Hessians, 364.

'rojections, of lines of curvature on planes
of circular sections, 136.

'uiseux on curves of double curvature, 298.

On the proof of Gauss's theorem, 336.

:uadrics, 34.

Touching four planes or going through
four points, 154.

uadriplanar Co-ordinates, 169.

Conditions general, equation may re-

present a sphere, 171.

uartic curves, two families of, 274.

uaternions, 463.

uintics, species of, 280.

adii of curvature, principal, their lengths,

224, 243.

Of any normal section, 226, 245.

Of a curve of double curvature, 294.

eciprocal, surfaces, 85.

Cones, their sections, 84, 87.

Of double points on surfaces, 208.

Of a surface, its degree, 214.

Of ruled surface, of same degree, 87,

258, 461.

General theory of, 450.

How affected by double and multiple

lines, 413, 458.

ectilineal generation of a quadric, 69.

ectifying developable of curves, 298.

evolution, surface of, conditions quadric

should be, 79.

This problem considered geometri-

cally, 98.

Beciprocal of quadric, when a, 111.

Generated by revolution of right

line, 82.

Eevolution, surfaces of, differential equa-

tion of family, 346.

Riemann's theorem for plane curves, 281.

Eight lines on a cubic, 28, 422.

On a surface touch the Hessian, 218.

Roberts, M., his theorems on geodesies on
an ellipsoid, 312, 314, 323.

On differential equation of cuspidal

edge of enveloping developable,

369.

Roberts, W., on geodesies of an ellipsoid,

327.

On equation of wave surface in elliptic

co-ordinates, 393.

On pedal surfaces, 405.

On negative pedals, 408.

On orthogonal surfaces, 476.

Routh, on curves of double curvature, 299.

Ruled surfaces, 72, 372, &c, 461.

Their differential equation, 356.

Their reciprocals of same degree,

87, 378.

Generated by a line meeting three

directing curves, 378.

By a line meeting a curve three

times, 381.

Their double generators, 382.

Saint Tenant, on curves, 286, 304.

Schafli, on reduction of degree of reci-

procal by nodal points, 416.

On right lines on a cubic, 425.

Analysis of different species of cubics,

426.

Schroter, on curves of the third order, 262.

On Steiner's quartic surface, 416.

Schwarz, on developables, 280.

Serret, on orthogonal surfaces, 476.

Slope, line of greatest, 328.

Sphere circumscribing tetrahedron, its

radius, 33.

Its equation, 170.

Inscribed in a tetrahedron, 170, 195.

Cutting four spheres at right angles,

174.

Principal spheres, have stationary

contact, 223.

Spherical curvature, line of, 228.

Sphero-conics, 185.

Stationary contact, 149.

Principal spheres, have stationary

contact, 150, 223.

Tangent planes to a surface, 207.

How many pass through a point, 217.

Steiner on quartic surface cut by every
tangent plane in two conies, 416.

On cubical surfaces, 417, 420, 421.

Striction, lines of, 374.

Sylvester, on canonical form of a cubic,

417, 420.

On involution of six lines, 426.

Systems of quadrics through a common
curve, 93.

Inscribed in a common developable, 94.

Of surfaces whose equations include

one indeterminate, 507.
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Tact-invariant of three quadrics, 177.

Of any two, or three surfaces, 437.
Tangent cone to a quadric, its equation,

46, 123.

To any surface, its singularities, 214.

Tangential equation, of quadric, 47, 91.

Of imaginary circle at infinity, 156, 168,

Of a curve in space, 156.

Of a sphere, 169.

Of the surface of centres of a quad-
ric, 144.

Terquem, on circles touching three lines,

197.

Tetrahedron, intersection of lines joining
middle points of sides, 6, 465.

Volume of, formed by four points on
four planes, 21, 22.

Properties of, 31.

Self-conjugate with regard to a quad-
ric, 99, 146.

Lines joining corresponding vertices

of two conjugates, how connected,

179.

Thomson's proof of Dupin's theorem, 235.

Tinseau's contributions to the theory of

curves of double curvature, 305.

Todhunter, on confocal quadrics, 120.

Torsion, angle of, 296.

Tortolini, on pedal surfaces, 405.

Townsend, on quadric through nine points,

97.

On foci of quadrics, 110,

On Jacobi's mode of generating quad-
rics, 128.

Triple tangent lines to a surface, 443.

Planes an ordinary singularity of sur-

faces, 203.

Their numberMn general, 454,

Tubular surfaces, 365.

Umbilics of quadric denned, 68.

Their co-ordinates, 116.

Lie in threes on right lines, 98.

Section of enveloping quadric by tan-

gent plane at, 99.

Conditions for, 227, 245.

Their number in general, 229.

Three lines cf curvature pass through,

232.

TJmbilicar foci, 105.

Wallis's cono-cuneus, 346.

Wave surface, 387.

Weierstrass, on integration of equation of

geodesies, 319.

On Steiner's quartic, 416.

Williamson, on proof of Gauss's theorem,

334.

THE END.

W. Metcalfe, Printer, Green Street, Cambridge.










