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ABSTRACTION IN THE INTEL iAPX-432

PROTOTYPE SYSTEMS IMPLEMENTATION LANGUAGE

B. J. MacLennan

Computer Science Department

Nava' ?ostg)*aduate School

Monterey. CA 93940

1. INTRODUCTION

This report describes the abstraction mechanism of a prototype systems implemen-

cauon languages cor Intel's iAPX-432 microprocessor. The Language was designed in

1977 Bill Brown and myself (at lutei) and was implemented in Simula in 1978 and 1979.

Litel has kindly declared this work non-proprietary, so its publication is now possible

[3rown63]. The introduction to the iarguage specification [PSIL78] describes the

project's goals:

1. "To provide an adequate :ool for programming the [iAPX-432].

2. "To provide experience in ".he implementation of languages and systems for the

[iAPX-432].

3. "To provide a first cut at addressing the philosophical language design issues asso-

ciated with concurrency, modularity, and protection

"The prototype language is explicitly designed as a learning tool to establish the real

requirements for meeting the above goals."

Although the prototype language is now five years old, I think that it has a number of

unique characteristics that justify its description- Full exploitation of the 432's facili-

ties places many demands on a language intended for systems implementation The

432 is a capability-based machine, with hardware-enforced typing of 'large' objects,

dynamically instantiated domains (i.e., packages), hardware-enforced information hid-
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ing (seals), and hardware-supported, software-defined access-rights (trademarks). The

prototype language's support for these facilities is described below. The 432 also pro-

vides a very dynamic, message-based model of concurrent execution: prototype

Language facilities to support this model are described in a companion, report

[MacL83].

The rest of this report essentially reproduces Section 3.1 and Chapter 4 of the proto-

type language specification [PSIL78]. To piace this material in context it should be

sufficient to know that the prototype language is an extensible data-abstraction

Language in the tradition of Alphard. CLU and MESA. However, to meet the require-

ments of the 432, it is generally mere dynamic than these languages.

2. VALUES AND OBJECTS

Natural languages distinguish between common nouns and proper nouns. Proper

nouna (or names) denote specific entities that axist (presumably). Common nouns

denote concepts or abstractions, i.e., classes of entities, or classes of classes, etc.

Abstractions and entities are comparec and contrasted below.

Both entities and abstractions have attributes. For instance, if Caesar' is a name

for a specific entity, we can speak of various attributes of this entity, such as the age of

Caesar or the father of Caesar. Similarly, if the word z refers to the complex number

i+2i (which is an abstraction), then we can speak of various attributes of this abstrac-

tion, such as the real part of z, or the imaginary part of z.

Abstractions and entities can be contrasted as follows. Entities are things that

exist; as such, they can come into existence or go out of existence. They have attri-

butes that can be changed in time without altering the basic identity of the entity

That is. an entity remains that same entity even though any or all of its attributes may

have been changed This includes the 'internal attributes,' or state, of the entity.

Since entities have an identity which is distinct from the attributes possessed at any

given point in time, it is possible that there can be two entities which have the same
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attributes, yet are different entities. Such entities are called different vnstxnces of

each other.

The concept of existence is not applicable to abstractions. Abstractions are time-

less, i.e., it is meaningless to speak of them coming into existence or going out of

existence. Since an abstraction is completely defined by its attributes-

, changing its

attributes causes it to be a different abstraction In this sense abstractions are

unmodiflable. (It is, of course, possible to redefine the name of an abstraction. For

instance, the word 'pi' might be redefined to refer to the abstraction 17, but this

alteration does not alter that number which is the ratio of a circle's circumference to

its diameter.) The fact that an abstraction is completely determined by its attributes

also implies that the concepts of identity and instance are ncc applicable to abstrac-

tions.

Like natural languages, the prototype language distinguishes betw sen eutiti2s,< which

it calls objects, and abstractions, which it calls values. The prc^r?urjr:er generally

deals with values (such as numbers or characters), except where updating;, state infor-

mation or sharing are involved, in which cases objects are required. The naming of

objects and values is discussed in Section 3.

a SPECIFICATIONS AND BINDINGS

As was discussed in Section 2, the prototype language la capable o? iescribing both

values (abstractions) and objects (entities). To facilitate such description, values and

objects can be denoted by words (or names). These correspond to the common and

proper nouns of natural languages. This chapter describes how these words are

defined, a process called binding. Values can also be described by 'denotations.' which

are self-defining names for values. For example. '2' is a denotation for 2; it does not

have to be explicitly defined. This chapter discusses the denotations for non-primitive

values.
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It tias been shown that both objects and values have attributes. These attributes are

usually named, but can be denoted by indexes, as is the case with arrays. (Ultimately

all names are considered attribute names, since the names of variables, procedures,

etc., are attributes of the environment.) This chapter discusses the ways in which

names are associated with values and objects ('binding'), the ways in which one can

restrict the class of values or objects to which a name will later be bound

('specification'), the ways of specifying classes of values and objects ('types'), the way3

in which values can be constructed from more primitive values and objects ('compo-

site' values), and the rules governing the context in which names are known ('scoping').

specification bind-mode spec.

SpilC.
t
nflme

J WoegefcxTTji—s™—spec

specification
bii\dxng: \bind—mode bound -part

label —binding

fruid—mode: j'^T^jIfif volatility .

volatility:
const]
l var J

'

sp: specification ; .

ba . binding , .

figure 1. Specification and Binding Syntax

Specification

:

varx: real
proc fac(n: int) -> int

Bvndxng:
var x: real = 0;

pi = 3.14159;

proc fac(n int) -> int is

if n=0 then return 1

;

else return n*fac(n-l);

end if:

endfac;

Figure 2. Specification and Binding Examples

The concept of a binding is of central importance in the prototype language. A bind-



ing is the formalization of the natural-language process of defining a word or name. In

this process a common noun is associated with a particular concept, or a proper name

is associated with a particular entity. In the same way a binding associates a name

with a particular value or object (the language does not distinguish between common

nouns and proper names). The name is said to be botmd to the value of object. For

instance,

const pi: real = 3. 1 4-1 59;

binds the name 'pi' to the value denoted '3.14159.' The binding can be paraphrased "pi

is defined to be the real number 3.14159." The wcrd const means that this definition is

constant, or permanent, within the scope of the definition

It is often useful to have a name that at various limes can refer to different

members of a class of values or objects. An example of such a variable' binding is:

var x: real = 3 14159;

This could be paraphrased "x currently stands frr Jie real number 3.14159." The bind-

ing is variable because the name 'x' can be rebound to ar other value of the same type

(i.e.. real) anywhere within the scope of 'x. Thi3 s accomplished with an assignment

operation Formally, variables are just changeibie attributes of a. form object (Section

5) representing the current environment. As a matter of convenience, the type can be

omitted when it can be deduced from the bound value. Also, const is assumed if it is

omitted.

For the following discussion an understanding of Algol scope rules will suffice. It will

usually be the case, as in Algol, that the current environment of known names is com-

posed of those defined in the current (local) program unit together with those con-

tamed in outer (non-local) program units. In Algol, if the current program unit defines

a name that already is defined in the non-Local environment, then the new name super-

sedes the old. Such implicit redefinition is illegal in the prototype language, since it is

a frequent source of errors. An name can be redefined in an inner scope, but the
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programmer must make his intention explicit, by writing redefine. For example:

let tot x: real:

let redefine vnr x: int = 1;

end:

In the prototype language, all bindings established within a given scope are inter-

preted to be mutually recursive. This means that the bodies on the right of the bind-

ings 'see' the names on the left. This allows simply recursive functions to be defined in

the obvious way, e.g.,

proc fac(nint) = (n=0 => 1
|
n*fac(n-l));

This rule also allows sets of mutually recursive procedures to be denned, e.g.,

proof a ... g ...

procg = ... f ...

Sometimes is is useful to redefine a name in terms of its previous (more global) mean-

ing. For this purpose the mutually recursive interpretation can be suppressed by writ-

ing nonrec. This means that the right-hand-side of the binding will 'see' only the non-

local environment. For instance, it if were desired to redefine 'Sin' so that it worked in

terms of radians rather than degrees, this could be done by:

nonrec proc 3in(the ta:real) = 5in(theta/180*pi);

A binding defines the name on the left to be the current value or object described by

the expression on its right. Thus, the binding const w = Sam. car.weight;' can be para-

phrased "define w to be the current weight of Sam's car." The fact that the car's

weight may later change will not effect the value of w. Occasionally it is desirable to

introduce a name to stand for an attribute's value at all times. Thus, it might be desir-

able to define 'cw' to mean the weight of Sam's car, at any time. This can be done with



the binding;:

Name cw = Sam. car. weight.

This is an example of a 'name definition.' After this definition 'cV can be used any-

where "Sam. car.weight' could have been used. For example, the weight of the car can

be changec by 'cw .= 4015;'.

A specification js essentially a binding without an initial value. It is used to restrict

the set o;' values to which the name will be later bound (say by extension).

Specifications usually occur in class-denotations (section 4). Examples of

specifications will be found throughout this report.

class —den,
record —type —dan

~ime -d£7i J union -type -den
type a*7i. emon -type —den

procedural —type —den
• iny [x ientifier ]

*

'.lass -den: doss [genus] Sp* end [class] .

?enus : type with .

record -type -den: i*ecord 3d* end [record]

union —type —den : union Sp * end union] .

snum —type -den: enum f
7ta
7

l

f..l»,„ ' \ r •9r
{ name ,

. ..)

Figure 3. Syntax of Types

4. TYPES

The concept of a type in the prototype language is very similar to a Pascal type or

an Algol SB mode. The differences will be discussed later. The type denotations (type-

den) are the primitives which, with the type operators, are used to construct type-

expressions. Throughout this document, the non-terminal type is used to denote such

a type-expression. As m Pascal and Algol 68 a type denotes a set of values or objects

that share certain attributes and operators. The specific sets are described below.

Perhaps the most familiar type denotation is the record-type denotation A record

(n-tupl, structure) denotes a unordered heterogeneous data structure. See the exam-
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record —type —den

:

record re: real; im; real; end

union —type —den:
union In:infc RLreal; end

eraim —type —dan:
enum /masc, femn, neutj

enum (violet, indigo, blue, green,
yellow, orange, red)

class —den :

class proc more -> Boolean;
proc reset;

proc next -> char;

end

Figure 4. Examples of Types

pie in Figure 4. Records in the prototype language provide facilities now quite com-

mon, such, as initial (default) values for fields and position-independent initialization of

fields. These facilities are justified and described in [MacL75], Chapter (5.

Since there are no 'references' in the prototype language, records can be directly

recursive in definition. For example, the following is a definition ci LISP-style lists:

cell = union atom: string;

nonnull: list;

null: H;

end:

list = record car: cell, cdr: cell; end;

If L is of type cell, then we can discriminate its variants by expressions like L is atom'

or by a variant case statement (see [Hoare73]).

In natural languages, a class (concept, abstraction) is defined by stating the genus

to which the members of the class belong and the attributes, attribute ranges or attri-

bute values that distinguish the members of the class from the other members of the

genus. This method of definition is captured by the class construct in the prototype

language. Readers acquainted with the Simula or Smalltalk class should be on familiar



ground. Consider the class binding

n = cI&kr g wilii d end:

The class being defined is 'n,' the genus is g and the differentia are d. The binding can

be paraphrased "define 'n' to be the ciass cf ail g such that d." The effect of the

definition is to attach a name to all values or cbjects which are in the genus and 3atisfy

the differentia (which are specifications). Each specification associates a set of possi-

ble values with an attribute name. If the attribute already exists as an attribute of the

genus, then the respecification must b« compatible with the old specification i.e., the

new set of values must be compatible with (Ls., be a subset of) the old set. An attri-

bute is required to have a particular value by specifying a singleton set of vaiue.

An example may clarify these ideas. Suppose class 'animal' had already been

defined. The following additional classes are dunned:

bird = class animal with wingspan iot; end;

parrot = class bird with

color: enmn Jgreen, blue, grey, b "own, mixedj;

name: 3tring:

end

green_parrot = class parrot with

color: Jgreeni;

end;

iarge_parrot = class parrot with

wmgspan:
J
50 to 1000{;

end;

These bindings define a hierarchy of abstractions, each being a refinement of a

preceeding abstraction Thus, a 'bird' is defined to be any animal with a wing span, a
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parrot is defined to be a bird with one of the specified colors and a name, a green par-

rot is defined to be a parrot with color green, and a large parrot is defined to be a par-

ret with a wtngspan greater than 50 cm.

A more useful class than parrots is defined by the binding:

file = class

proc reset;

proc more -> Boolean;

proc next -> char;

proc put (c:char);

end file;

This defines a 'file' to be any object or value that has 'reset.' 'more' 'next' and 'put'

attributes as specified. A procedure to copy one file to another could be defined:

proc copy (fl:flle. (• to *) f2:file) is

fl. reset;

while fl.more repeat

f2.put (fl.next);

end;

end copy;

This procedure will work on any values or objects that have the specified attributes.

For instance, they might be disk or tape files or arrays or sequences of characters in

memory.

Sometimes the only attributes two or more types 3hare is the fact that they partici-

pate in a collection of operations or relations. To allow this the prototype language

provides for the denotation of types which are the discriminated union of other types.

(See the preceding definition of 'cell.')
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form-den; form [extension] form-body end [form] .

extension: exp with.

form-body: \ [public] Bd \ .

Figure 5. Syntax of Forms

5. FORMS

Forms provide a mechanism for directly constructing values by defining their attri-

butes in terms of other values and objects. A form is a collection of bindings, which

comprise the attributes of the value. The attributes may be procedural, data, t^e, or

other values or objects. Unlike classes, the attributes of a form are divided into two

groups, the private attributes and the public attributes. The public attributes are

signified by the word public proceeding the bindings. These attributes can be made

visible outside the form through the witt statement (described later). The names and

types of the public attributes determine i.he type of the form.

An object can be constructed -according to a form by preceeding the iorm with obj.

This is the primary mechanism "or directly constructing objects from other values and

objects. Examples will be seen beicw.

One common use of form values is tc define libraries' of related procedures, con-

stants and types. For instance, a library for complex arithmetic could be defined as in

Figure 7. When such a library has been defined it can be used as follows:

"with CompAnth do

letvarz: complex.

let var a, b, c: complex;

if z = i then z:= a * b / c; end:

end;
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farm
public var x: real.

public var y real:

public proc rho = (x2 + y2)t(l/2);

public proc theta = arctan(y/x);

end

Figure 8. Example of Form

Since a library is just a set of bindings between names and objects or values, and as

such has no 'memory' (i.e., state information) it is appropriate that it be defined as a

form value (as opposed to a form object). An example of a structure which does have

memory, and thus should be implemented as a form-object, is a stack. A particular

message stack, 'Msgstk' can be defined by a binding such as that in Figure 3 (the

fwiqueiice operations are built in and the type message is assumed to have been

defined). It is now possible to push messages onto and pop messages off of Msgstk:

let var m.n: message;

Msgstk.push (m);

if not Msgstk. empty then n := Msgstk. pop; end;

The combined powers of classes and forms provide a very useful facility, namely, the

ability to have multiple implementations of a single abstract type. As an example, the

abstract type 'message stack' will be defined. One form will use the sequence imple-

mentation used in the previous example, the other will use finite arrays. The abstract

concept of a message stack is defined by the following class:

message_stack = mstk object

where mstk = class

proc push (m: message);

proc pop -> message;

proc empty -> Boolean;

end;
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CompArith = form
public complex = record re: real; im: real; end;

public const i = complex (0.1);

public proc 6 (x: complex) + (y: complex) =

complex (x.re + y.re, x.im + yim);
public proc 6 (x: complex) - (y: complex) =

complex (x.re - y.re, xim - yim);
public proc 7 (x: complex) * (y complex) =

complex (x.re * y.re - x.im * yim.
xre * y.im + x.im • y.re);

end form;

Figure 7. Form for Complex Arithmetic

A procedure ' seq_mstack' (for 'sequeue e_Lype' message stack) 13 now defined which

returns a new sequence-based stack object. The actual definition of these objects is

the same as Msgstk, see Figure 9.

An alternative implementation of 'message stack 13 provided by the procedure

'arr_mstack' (for 'array-type' message stack) which returns a ne* arny-based stack

object of a given size. See Figure 10. Note that a form-returning procedure has been

used to get the effect of 'generic' forms; unlike in Ada, a separate generic mechanism

is not required in the prototype Language. Note also that arr_m?tack'i: have an addi-

tional attribute, 'full' which inquires whether the stack is full. Thi^ attribute makes no

sense for "seq-mstack's since they are unbounded in size. Regru*dless of this extra

attribute, both 'seq mstack's and 'arr_mstack's are of type message_3tack.' This is

because they both satisfy the definition of message__stack,' Le., they have the required

attributes with the given specifications.

The following program fragment declares several stacks using these procedures

(including Msgstk) and declares a '3tack variable.' CurrentStack. which at various

times will refer to either sequence or array based stacks.
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Msgstk = obj form
ar st: message sequence = [];

public proc push (m: message) is

st := [m] + st; end;

public proc pop -> message is

let top = st. first;

st := st.final;

return top;

end;

public proc empty = (st = []);

end form;

figure 8. A Message Stack Form-Object

let Msgstk - seq mstack;

alsoAnsstk = arr_mstack (50);

also var CurrentStack: message_stack;

CurrentStack := Msgstk;

CurrentStack := arr_mstack (100); % A new array stack

If CurrentStack has full then

If not CurrentStack.full then

CurrentStack. push (m);

end:

end;

The last statement uses the has operation to determine if the stack now referred to by

CurrentStack has a 'full' attribute.

The extension part of a form allows one form to be created which is an extension of

another form. That is. a new form can be created by adding or respecifying attributes

of an existing form, which is similar to the Simula and Smalltalk subclass mechanisms.

It is here illustrated by an example adapted from the DEC-10 Simula manual. Consider

a form that manipulates vectors (Figure 11). Note that the procedure 'norm' is not

bound, it is only specified, even though it is used in the 'normalize' procedure. A
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proc seg m stack =

obj form
Tar st: message sequence = [];

public proc push, (m message) is

st :=• [m] + st; end:

public proc pop is

let top = st.flrst;

st := ; st-Anal;

return top;

end
public proc empty = (st=[]);

end fo nm:

Figure !). Sequence-type Message Stacks

specific n^rm procedure can be bound In an extension of 'row.' To continue the exam-

pie, two extensions of 'row,' with different 'norm' procedures, are defined; see Figure

12. Thus 'rowl.normalize;' will normalize its array using the first norm' and

roT*2.norriali2;e;' will normalize its array using the second norm.'

& C7EEJCTE COMPOSITION

The attribute composition operators allow the manipulation of the attributes of

valuss <vid objects. The expression

x excluding {id\, id 2 , ... id*)

i3 :he 3ame object or value as x, except that the attributes id lt idz id^ are no

locger avcolabie; they have essentially been made private. For instance, if it were

desired to pass SymTab to a procedure P in such a way that P could not enter anything

into SymTab, then an approapriate invocation would be:

P(SymTab excluding (enter) );

Sometimes it is easier to 3tate the attributes that are to be kept than to state those

that are to be deleted. This the purpose of the including operator. The expression:

x including (id,, id z , . idn)

is the same object or value as x, except that all attributes other than id lt id z , ..., id^

are no longer available; i.e.. the only public attributes are id
x , id z% .... id^. For

instance, if center is a two-dimensional position (with both Cartesian and polar

-15-



proc arr,.jnstack (size: int) =
obj form

var st: message array [ 1 to size} ;

Tar t: £0 to size} = 0;

public proc push (nr message) is

if full then error: end:
t :=t + 1;

st[t] := m;
end:

public proc pop -> message is

if empty then error: end;

t := t- 1;

return st[t + 1];

end:

public proc empty = (t = 0);

public proc full = (t = size);

end form;

figure 10. Array-type Message Stacks

coordinates), then a strictly polar version of the value is:

center including (rho, theta)

The last attribute composition operator i3 merge. If x and y are objects or values,

thenx merge y is a value with all of the attributes of bothx and y. More precisely, for

every attribute of either lory, there is an attribute in x merge y with the same name

as that attribute in x or y. Of course, x merge y is defined only if the identifiers for

the attributes of x and y are disjoint. The merge operator is usually used in conjunc-

tion with the with statement. For example, if Math_Lib and ?Iot_Lib are two forms con-

taining libraries of procedures, then all the attributes of both can be made available

by:

with Math Lib merge Plot_Lib do

end with:

If the only procedures needed from Math_Lib are Sin and Cos, then the following would

be better:

with Plotiib

merge Math-Lib Including (Sin. Cos) do

16-



row = obj form
public var A: reel array;

public proc norm -> real,

public proc normalize is

let tot t=norm;
if t <> then

t: = 1/t;

for name ai in A repeat
ai : = ai * t;

end:

end
end normalize:

end form;

Figure 11. Form Object to Manipulate vectors

end with:

7. TRADEHABKS AND SEALS

7.1 Trademarks

As discussed in section 4. a set of named (or numbered) attributes and the set of

values or objects to which they may be bound determine a class. In that section the

class file was defined:

file = class

proc reset;

proc more -> Boolean:

proc next -> char;

proc put (c: char);

end class:

This defines a 'file' to be any object or value with attributes 'reset,' 'more,' 'next' and

'put' of the types specified. This is a powerful and flexible facility. It allows the

definition of procedures such as Copy (defined m Section 4) that copies any file' to any

other 'file.' There may be many implementations of files, e.g., disk-flies, character

sequences, and character generators, as long as they define the stated attributes.

There is. of course, no guarantee that the attributes of a particular file implement the
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rowl = obj form row with
public proc norm is

let var t real = 0;

for ai in A repeat
t := t + ai;

end
return 1 1 .5;

end norm;
end form;

row2 = obj form row with
public proc norm is

let var s: real = 0;

let var t: real;

for ai in A repeat
t := aba ai;

if L>3 then s:=t; end
end

returns;
end norm;

end form;

figure 12. Extensions of Row

functions implied by their English names; it is only required that the types match. This

is sometimes unsatisfactory. In particular there will be circumstances in which a file

(for example) is required which has been formally or informally verified to satisfy cer-

tain properties. For instance, we would expect that writing a file, resetting it, and then

reading it would produce the original data. Since the prototype language includes no

direct support for verification, some other means must be provided for this protection.

This is the trademark. It is essentially the same as the transparent seal described in

[Morris73].

Anyone can construct 'files.' The danger is that, although they must satisfy the

class definition, the files may be defective in 3ome subtle way (e.g., are write-only) or

are otherwise unacceptable. In the real world the consumer can protect himself by

obtaining his files from a 'reliable source,' i.e., a source that he is confident will provide

him with an acceptable 'file.' In the real world there are two ways a consumer can

ensure that a given 'file' comes from this reliable source:

1. Request it directly form the reliable source.
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Syntax.
aitr —BXpTBStfion : oitr —term merge

attr-twmrprtmo^fSSSffiS <«")
It

Examples.
Math_Lib merge PIot.T.ib

SymTab excluding (enter)

center including (rho, theta)

figure 13. Syntax of Attribute Composition

2. Require that it bear the 'trademark' of the reliable source.

Case (1) is straight-forward and requires no further discussion The trademark wh.ch

an object or value bears is an attribute, just is, for instance that objects'? or value's

color. The difference is that the generation and attaching of trademarks is strictly

controlled. In the real world this is a function of the government (since a trademark i3

private property); in a computer system it is administered by the programming

language and enforced by the operating- system and hardware.

In the prototype language, trademarks are declared only in forms add classes. Such

a declaration takes the form;

trademark Acme;

which declares the trademark 'Acme. This has two effects: within the form in which

the declaration appears, an expression such as x qua Acme returns a /ersion of x with

the trademark Acme. Outside of the form of declaration the trademark's name car. be

seen (like other publics of the form), but not used for applying trademarks. An expres-

sion 3uch as

if y is Acme then ...

will determine whether y has the Acme trademark. A file bearing the Acme trademark

is denoted by 'Acme k file,' using k, the type-intersection operator. Thus, if it were

desired that Copy only work on Acme flies, its procedure head could be written

proc Copy ( fl: Acme k file, f2: Acme k file) is ...
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Syntax.
Label —binding : Label—variety id—list .

label -variety :

[

tra^3ark

Examples.
trademark standard;

seal atom, null;

Figure 14. Syntax for Trademarks and Seals

Of course it is possible to nave more than one trademark on a value or object, or to use

the same trademark on several classes of values or objects. (Acme may also make

very fine stacks!)

The example in Figure 15. -which allows the use of both degrees and radians, is a

non-traditional use of trademarks (i.e., units;. Note that we have also overloaded the

assignment operation; this defines coercions between radians and degrees.

DoubleTrig = form
trademark deg:

trademark rad;

pi = 3.14159 2653589;
public type degrees = deg & real;

public type radians = rad & real;

public const r*ight_angie = 90 qua degrees;
public nonrec proc Sin (Theta: degrees) = Sin (Theta);

public nonrec proc Sin (Theta: radians) = Sin (Theta * pi/ 150);

public proc (nameThetal: radians) := (Theta2: degrees) is

Thetal := (Theta2 • pi/ 180) qua rad;

end;

public proc (name Thetai: degrees) := (Thetal: radians) is

Thetal := (Theta2 * 180/pi) qua deg;

end;

public proc (Thetal: degrees) + (Theta2: degrees) =
((Thetal + Theta2) \ 360) qua deg;

end;

Figure 15. Implementing Units with Trademarks

These declarations allow the use of angles measured in either radians or degrees.

Further, they ensure that the appropriate Sin routine is used for each unit.

7.2 Seals

The main purpose of a trademark is the protection of the user of a value or object.
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This is accomplished by unforgeably identifying the source of a value or object to its

potential users (which users may include the object's or value's creators). A related

construct is the seal, which can loosely be described as a trademarked box [Morris73].

That is. the object's or value's originator is unambiguously identified as with a trade-

mark, but ail other attributes of the value or object are hidden outside of the form in

which it is declared. That is. the object or value appears atomic outside the form in

which the seal is declared. Inside this form the seal acts just like a trademark, i.e., all

the attributes are visible. For example, the form in Figure 16 provides a collection of

procedures for creating and manipulating 'particle' values. Outside the form, parti-

cles' are atomic.

Particle_Lib = form
seal particle;

part = record
spin: < + l. -1J;

charge: $-3 to 3$;

strangeness: j+1, 0, -1{;

charm: [-1, 0, -t-lj;

end;

public u_quark = part (-1. -2. 0. 0) qua particle;

public d_quark = part (-1. -2. 0, 0) qua particle;

public s_quark = part (-1, -1, +1, 0) qua particle;

public c_quark = part (-1. +2, 0. -1) qua particle;

public proc charge (p: particle Sc part) -> real = p. charge/3;
public proton = part (+1, +3, 0. 0) qua particle;

public proc (p: particle k. part) - (q: particle 4 part)
= part (p. spin + q.spin,

p.charge - q. charge
p. strangeness - q.strangeness.

p.charm - q.charm) qua particle;

end form;

Figure 16. Example of Seals

It will then be possible to write statements such as:

with Particle_Lib do

if proton = u_quark + u. quark - d_quark then ...

The quantum numbers' (such as spin and charge) are hidden outside the form except
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where explicitly made available (as is done with charge, above).

In summary, it can be seen that seals provide another level of security beyond

trademarks. Seals, like trademarks, guarantee that only the owner of the seal can

create the sealed objects or values. Seals enforce the further restriction that only the

owner of the seal can inspect the attributes of the sealed objects or values.

a TisiBaznr. oinebshep and extension

The prototype language distinguishes between the scope of a variable and the visibil-

ity of a variable. The scope of a binding is determined by the type of the binding and

the static nesting of program components. Generally, a binding can be 3cen only

within its scope, although there are circumstances in which it is visible outside its

3cope. For instance, the with construct provides access to the publics of a form; in

other words, with makes the publics visible throughout the body of the with.

The environment in which a binding is made is defined to be the owner of that bind-

ing, and any object or value created in that environment is likewise owned by that

environment. The owner of bindings, objects and values has special privileges not pos-

sessed by other environments to which the names, values and objects may be visible.

These special privileges are. however, inherited by any environments m the scope of

the bindings.

The above named privileges hinge around the ability to see the private bindings of a

form. In particular, in the scope of a form creation the private bindings will be accessi-

ble just like the publics. This is especially important to the extension operation, since

an extension to a form will 'see' the private bindings of that form only if the extension

is made in the environment of the form's creation An example may clarify these

ideas. Recall the definition of 'seq_m stack' (sequence-based message stacks) in sec-

tion 5. Assume that this is a public binding in some form F. Further, assume that

someone not in environment F wants to extend seq_mstacks with a new operation,

'pushall.' such that
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S.pushail [XI. X2. .... Xh]

will push ail of XI, X2 Xn onto 5. The with construct must be used to make the

name seq^nstack visible. The form denotation is then used to perioral the extension

Note, however, that since only the publics are visible in the extension only they can be

used to impiemerr.ent 'pushalT (Figure 17).

with F do
let prjc mult i_seq.m stack =

obi form 5 en m stack with
public proc pushall (ms: message sequence) is

for ni in ms repeat
push m;
end/or

end pushall;

end form;

end with:

Figure 17. Extending a Form

If, however the e ictension were made in the owning enironmeni , F, then the private

bindings of the seq_mstack would be available, thus permitting a simpler implementa-

tion-

proc muiti_3eq.xnstack =

cbj form seci_mstack with

public proc pushall (ms: message sequence) is

3t := St + ms;

end pushall;

end form;

In this case pushall is implemented by directly manipulating the private data-

structure, St.
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