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ABSTRACT

A branch and bound technique is used to derive an algorithm for

computing the alpha-width of any matrix of zeros and ones. Through

computation of the 1-width of over 200 matrices of various dimensions,

it is found that less than 20 minutes of computation time on the

Control Data l60i; digital computer is required to complete the compu-

tation for most matrices. Applications of the algorithm to integer

programming and to various targeting problems are described. Exten-

sions are suggested for computing the minimal cost alpha-width, and

for computing a minimal C-cover.
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1. A Targeting Problem .

Consider the following rather specialized targeting problems a

communications network is given (Fig. 1), in which stations can

communicate directly only with those stations to which they are con-

nected by a link. Of course, this would be the case with any kind

of land line network, but it is possible also, in the case of UHF

radio communications, micro-wave relay systems, and even signal light.

We ask this questions what is the minimum number of stations that

must be destroyed so that the network is totally disrupted;, that is,

so that no pair of surviving stations can communicate?

The answer is given in Figure 2; in which those stations targeted

have been crossed out. It is perhaps surprising to note that the

station most central to the network; the one directly connected to

the greatest number of stations, is not targeted. In fact, if this

station were included in the target list, we should be forced to

target the four indicated targets anyway, and thus we would have been

forced away from the optimal solution.

Let us note, parenthetically, that no claim is made that our

targeting policy is the best one. It is quite probably valid, and

indeed optimal, if the purpose of the attack is, for example, the

total (and temporary) disruption of an enemy's warning system for

the protection of a second strike to follow immediately. But assume

that the network is a railroad system. It is quite possible that a

policy of bombing junctions, switching yards, and accessible rail

lines would have little lasting effect on the effectiveness of the

transportation system because of the ready availability of repair
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equipment and personnel. For example, in the interdiction of the

French railroads prior to the invasion of Normandy in World War II j

our bombing of marshalling yards and other junctions caused little

disruption of rail traffic, although it did strain the repair capa-

bilities of the rail system severely. On the other hand, when

bridges over the Seine, Oise, and Meuse Rivers were added to the

target list, results were spectacular. On 26 May, all routes over

the Seine north of Paris were closed to rail traffic and remained

closed for the next thirty days. By contrast, marshalling yards

could be repaired in one or two days. (See pp 2 17-230 j and

especially p 228 of [6]).

No matter, this simple problem will serve to illustrate the

very general algorithm to be described in section 3| without re=

quiring that cumbersome set-up procedures be learned before getting

down to 1 work.

The solution to this targeting problem was obtained without

difficulty after the initial error of trying to include the central

station (number 3) in the target list, merely by inspection of the

network layout. It is unfortunate that so few communications net-

works of nine stations and eight connecting links are of interest

in a problem of this type. Clearly, if a network of interesting

size were examined (let us say on the order of 15 stations and 35

connecting links), the solution by inspection would be quite diffi-

cult. Where, then, are we to look for a method of attack on this

problem?

It is well known from the theory of graphs, that every graph

may be represented by an incidence matrix of zeros and ones| in fact





by any of several incidence matrices depending upon the purpose for

the representation. [1]. For the purpose of this paper we will use

the following terminology from graph theory? a node of a graph is

the junction of two or more links of the graph (synonym: vertex );

an arc is a link between two nodes, and in this paper will be con-

sidered to be without direction. We define the node-arc incidence

matrix, A, of a graph, by construction as follows? List the nodes

of the graph horizontally and the arcs vertically so that they are

labels of columns and rows of the matrix, respectively. If the j

node is a terminal point of the i arc, set a^. 1. Otherwise,

set a,. * 0. The node-arc incidence matrix of the communications

network of Figure 1 is displayed in Figure 3.

The targeting problem restated in graph theoretic terms is?

Find the minimum number of nodes so that each arc of the graph has

at least one of the nodes as a terminal. Since we already know the

answer to this simple problem, it would be well to examine this

solution applied to the node-arc incidence matrix. We construct a

new matrix from the incidence matrix by including only those columns

labelled with one of the nodes in the solution set. This matrix is

displayed in Figure ii. It contains the same number of rows as the

original matrix, but has only four columns. We note that whereas

there were two "l'^s in each of the rows of the incidence matrix

(one for each terminal of each arc)j there is only one "1" in the

sub-matrix.

A little reflection upon the above observation leads to a third

formulation of the targeting problems given the node-arc incidence

matrix of the communications network, find the smallest subset of
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columns of the matrix with the property that each row is represented

by at least one "1" in this subset of columns. But this smallest

subset of columns is precisely what Fulkerson and Jtyser call a

minimal set of representatives for the (0,1) matrix, A| and the

cardinality of this set is called the "width" of A. [1*]. The problem

may be generalized? we require that each row of the matrix be

represented by at least alpha "l"'s (where alpha is a positive integer)

We shall use the terminology "minimal o-set of representatives for

the (0,1) matrix, A"j and "o-width of A". This terminology is due

also to Fulkerson and Ryser. [III.

Thus the simple targeting problem may be solved by finding the

1-width of the node-arc incidence matrix of the communications network.

It is the purpose of this paper to present an algorithm for finding

the a-width of any (0,1) matrix j and for specifying at least one

minimal a-set of representatives for that matrix. Since we already

have solved one problem of this type, we shall use this communications

network and its associated incidence matrix for illustrative purposes

throughout the balance of this paper.

We now state the general problem which we desire to solves given

a finite set, X, and a class, Y, of k non-empty subsets of X (but not

necessarily the class of all non-empty subsets of X), find a sub-

class, Z, of Y, with the property that if x e X, then x is a member

of at least a of the members of Z. This is a quite general problem,

as will be shown in later sections of this paper. Any problem which

can be formulated in the terms specified in this paragraph is capable

of being solved by the algorithm to be presented. The incidence

matrix for this abstract problem is constructed by listing members of

6





X vertically and subsets of X horizontally. Then we place a "1"

in the i row and j column if the i member of X is a member

of the j subset of X.

2. The Class, lf(R,S) .

Let A denote the (0,1) matrix of size m by nj that is, A is a

matrix with m rows and n columns, each of whose elements is either

zero or one. Let the sum of all of the elements of the i row be

denoted by rjj and the sum of all of the elements in the j column

be denoted by s.. That iss

(1) \ a
£ j

* r
{

(i-1, ..., m)
<—> j-i

Em a = s. (j«l, 2, ...,
i-1 J J

n)

,m , , n

We note that y r
i y syL^ iml L^ ^i J

T
We call the column vector, (r., r«, ..., r ) = R, the row sum vector;

and the row vector, (s,, s^, •••<> s ) « S, the column sum vector. We

denote by ^(R,S) the class of all (0,1) matrices of size m by n with

row sum vector, and column sum vector, R and S, respectively.

From the class, ^(R^), many very interesting combinatorial

results may be obtained. An excellent survey of this material may be

found in Ryser.[10]. We will be concerned primarily with a parameter,

e , or £(<*), of the class, which is defined as the greatest lower

bound on the a-width of any matrix in ^[(R,S). That is, t is the

a-width of the matrix in >l/(R,S) which has the smallest a-width of any

matrix in the class.





Although not of concern until a later section, it will be of

interest to determine under what conditions the class, ^|(R,S) is non-

empty. Let <5 „ (1, 1, . .., 1, 1, 0, 0, . .., 0) be an n=dimensional

vector with the first r. components equal to one, and the remaining

n - rj components equal to zero. We then define a matrix of the form,

m

called the maximal matrix with row sum vector, R. It has column sum
- - — - ^ro _ n —

vector, S (si, s p , ..., s ). Now since ) r
{ ) s.; for R

_ * n ^i«l *- j«l J

fixed, S is unique, by definition of the <$ and the class ^/(R,S),

by a simple contradiction argument, has only one memberi namely, A.

Let Q « (qp q2 j •••> q^) and Q* « (q», q|, . .., q*) be any two

k-dimensional vectors whose components are non-negative integers. We

say that Q is majorized by Q*, denoted Q -^ Q#, provided that with sub-

scripts renumbered so that q, ^ q« ~%_ •»• = q. | and qfr ^ q& > ... ^ q*,

the following statements are true:

(3)

(h)

q
x

+ q2
+ ... + q. =q» + q| + ... q» ( j-1,2, . . . ,k-l)

q, + q + . . . + q, « q* + q# + . . . + q*H
l

M
2

M
k

M
l

M
2 k

We say that Q is normalized if q 1
> q- > ... ^ q . These two definitions

now enable us to give conditions under which |2i(R,S) is non-empty.

Theorem 2.1

Let R (r,, r_, ..., r ), and S - (s , s
? , ..., s ) be two

normalized vectors whose components are non-negative integers, and
r—i m ,—, n

such that
in r 1 u

1-1
j=i .

Let A be the maximal matrix of size m

by n, with row sum vector, R, and column sum vector S (s , s , ...,s )





Then a necessary and sufficient condition that %((R,S) be non-empty

is that S -< S.

— ,—.n ,—,n _ __,u
Proof j Assume S/^ S. Since \ Si » ) s. \ r,it

must be that s/lS because equation (3), above, is violated, that is,

for some k, it must be the case that s. + s« + • . . + s > s + s

+ ... + s. . But then A is not maximal, since the first k columns of

A contain more "l ,ft s than the first k columns of A. The hypothesis

is that A is maximal, so we have arrived at a contradiction, thus

demonstrating the necessity of the theorem.

To show sufficiency! we shall construct a matrix, A e ^<((R,S)

from the maxtrix A. This construction is due to Ryser. [9] . The

construction will proceed by shifting ones in the i row of A to

other positions in the same row. We note again, that R, S, and S are

all normalized, and that S^S. If s,< s., rearrange the ones in the

rows of A so that only s, ones remain in the first column. We may do

this unless s. > s. (j~2, ..., n) , in which case, s, + s
?

+ . . . +

s„ > n«s, > s, + s rt + ... + s « s, + ... + s ; an absurdity. We
n 1 — 12 nl n' J

continue by induction. Suppose that the first t columns of A have

been rearranged. The matrix thus far constructed has the form,

A« -[b
1
b
2

. . . b
t

b
t+1

. . . b
n
j

where there are s. ones in the j column of A 1 (j 1, ..., t).

We now construct the (t+1) column. Let the number of ones in

the j column be s\ (j « t+1, . .., n). We may construct A 1 without

loss of generality such that, s' . 2 ... 5 s . Now it is possibleJ
t+1 — ^ n "^

that either s. + . < sj + ., or that st+ . > s£+ i. We consider each case

in turns





Case Is st+1 < s[+1

Remove ones from the (t+1) column, placing them in other

columns to the right. If sufficiently many ones may be removed by this

procedure, the column of A is constructed, and we are finished. Sup-

pose therefore, that there remain, d ones in column t+1, so that

st+ £ < d SsL^. Let the matrix at this stage be denoted by Ce
r

].

Now if d > Sf + i, then for every er ^+ i • lj we must have e . « 1

(j t+2,..., n) . Hence st4.^ ... sn must at least equal d»(n-t).

But st+ ^
< d; s. +p ^ st+l

< d » etc., so that

st+1
+ ... + sn

< (n-t)'d ^ st+1 + ... + s

an absurdity.

Case lis st+i
> S£>1 •

Insert ones in the (t+l)
s column from columns to the right. If

sufficiently many ones can be inserted, we are finished. We therefore

assume that sufficiently many ones cannot be inserted by this procedure;

in fact, we assume that column t+1 contains only d ones such that

s! + i = d < st+ i . Again, let the matrix at this stage of construction

be denoted by [ers ]. Then if e
r t+ ^ 0, it must be the case that

er j »0 (j « t+1, ..., n) . Now suppose that e . « 1 for some j ^ t+2.

Then either e ^ « 1 for all k ^ t+1, or else, for some kf t, e . 0.

Consider the case in which e , - 0. Since s^ r! s^+ ^
> d, there must

exist e . * 1, and e
t+

, - 0. We interchange e . and e . j and also

interchange e ^ and e ^.+1* This increases the value of d by one

without changing the value of any column sum for columns to the left

of column t+1. Suppose we make all such interchanges and still,

d < st+ ^. This situation includes the case mentioned above, that

e k « 1 for all k ± t+1. It is no longer possible to shift ones from

columns t+2, ..., nj into columns 1, ..., t+1. This must mean that

10





either all of the ones for a given row are in columns to the left of

column t+2j or that all of elements of a given row to the left of

column t+2 are equal to one. In either case, it must be that,

s^ + ... + s^ + d s. + ... + s. + s^+ i

But then, since S -*\ S,

s^ + ... + s.
+

. ^ s. + ... + s
t+ ^ ( = s^ + ... + s. + d)

whence st+ i ^ dj contrary to the assumption. QED

We now consider an extension of the concept of a-width. Let

C (c-, ..., c ) be an m-dimensional vector of non-negative integers.

We wish to find the smallest subset of columns of A e W(R,S) such

that the i row of A is represented by at least Cj ones in this sub-

set of columns. Such a subset of columns will be called a minimal C-

cover for A, and we shall denote its cardinality by e(C), called the

C-width of A. Clearly, if C « (a, ..., a), then e(c) - e(a). We

define e(C) to be the greatest lower bound on the C-width of any

matrix in %(R,S). e(C) can be estimated by p(C) as follows?

ZP
r-iJl

s . % ) c .

.

j»l J ^ i=i
l

We shall use this formula in the algorithm to be presented in section

three. Note that if C •» (a, . . . , a) J then p(C) the smallest integer

P

such that \ s . §? m - a

3. Derivation of the Algorithm .

We shall now describe our algorithm for finding the a~width of a

(0,1) matrix. The branch and bound technique was suggested to me by

D. R. Fulkerson of the RAND Corporation, Santa Monica, California, and

is patterned after the branch and bound solution to the travelling

salesman problem designed by Little, et alii. [7]

11





We have several techniques for estimating e( a) (which we shall

henceforth call the a-width of the class, *5U(R,S)). One such tech-

nique is described in the preceding section, in which we compute the

parameter, P. Now a given (0,1) matrix of size m by n, is a member of

a class, ^(R,S). We can partition the class, %l(R,S) into two sub-

classes, one consisting of those matrices which have a selected column,

say column p, as a member of a minimal a-set; and the other consisting

of those matrices for which column p is not a member of any minimal

a-set for the matrix.

We thus have two sub-classes, each of which has no more members

than the original class, and we know that the original matrix must be

in one, and only one of the sub-classes. Consider the sub-class whose

matrices have column p as a member of a minimal a-set. We may use

this information to reduce the dimensions of all the matrices in the

class as follows: if a * 1, then every row which has a one in column

p is adequately represented by column p, and needs not be considered

subsequently. If a ^ 1, we still may note that these same rows are

represented once by column p, and thus need be represented only a- 1

more times subsequently. Furthermore, we have made a "decision"

about column p, namely that it is included in a minimal a-set of all

matrices in this sub-class. We may thus reduce the dimensions of all

matrices of the sub-class by one column, and (if a» 1) by a number of

rows. If a / lj we will keep track of those rows which yet need

only a - l representatives. Hence we have for this class a vector,

C, whose components are either a, or a - 1.

We may also reduce the dimensions of the matrices in the other

sub-class by one column, for we have made a "decision" for this sub-class

12





namely, that no a-set contains column p, for any matrix of the sub-class.

Hence every row of the matrices of this sub-class needs to be subsequent-

ly represented a times, regardless of the value of a.

Now let us estimate e for each of the two sub-classes. It is clear

that these two numbers are both estimates of the a-width of the original

matrix. We may actually improve the estimate for the first sub-class

discussed, by adding one to the estimate of e for the sub-class. This

is to account for the inclusion of column p in any a-set for any matrix

in this sub-class. Now, it is certain that the smaller of these two

numbers is not greater than the a-width of the original matrix.

Let us examine the sub-class corresponding to the smaller of the

two estimates. We may partition this sub-class into two sub-classes,

and so forth, until finally, some sub-class will be so small as to

contain a unique matrix whose C-width we can determine by inspection.

Part of such a continuing procedure is represented by the tree struc-

ture of Figure 5.

Now at any point in the procedure, the set of junctions (Fig. 5)

which have no lines leading toward another junction represent a

partition of the class to which the original matrix belongs into two

or more sub-classes. By an obvious extension of the above discussion,

the smallest of the several estimates for the c-width of the original

matrix is not larger than the a-width of the original matrix. We

may then fqcus our attention on the sub-class corresponding to this

smallest estimate, branching out from the corresponding junction until

one of the earlier estimates of e is smaller than any of the most

recently constructed estimates. Now let us set up a formal algorithm

based upon the preceding discussion.

13
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Let the (0,1) matrix, A e i24(R,S), be given, with dimensions

m by n. A matrix is said to be normalized when both its row sum and

column sum vectors are normalized, and when the elements of the matrix

have been rearranged so as to fit the new row and column sum vectors.

Clearly, we lose no generality by considering only normalized matrices.

Therefore, throughout the remainder of this paper, we assume that all

matrices and sub-matrices have been normalized as part of the operation

of constructing them.

Notation will, of necessity, become rather cumbersome, and for

that reason, we now present such notation as we shall need in this

section. There will be certain preliminary steps which serve to de-

crease the amount of work required in the main part of the algorithm,

and since these preliminary steps are not always applicable, we shall

assume that the given matrix, A z j&[(R,S), is the one with which we

shall enter the main part of the algorithm.

The procedure in the algorithm is basically broken into two

partsj (1) selecting a column for inspection and deriving the two

sub-classes corresponding to the inclusion in, and the exclusion from

the a-set of the selected column (the "branch" portion) 5 and (2)

estimating e from each sub-class and choosing among all estimates, the

smallest for the next iteration (the "bound" portion). We shall

carry out the "bound" portion of the procedure by calculating p for

each of the sub-classes and adding to p, the number of columns pre-

viously included in the a-set on the current branch. Eventually we

shall obtain a sub-class of matrices, one of whose dimensions is zero,

and is thus, empty. Clearly, e for this sub-class is zero. We can

make a test for completion at this point. If the test fails, we

1$





continue the algorithm along some other branch. It can be seen that

we shall derive an even number of different sub-matrices of A before

we reach termination. We shall subscript these sub-matrices in the

order in which they are derived. Associated with each of the sub-

matrices, of course, will be a row sum vector, a column sum vector, an

estimate of the C-width of the class to which the sub-matrix belongs,

and an estimate of the a-width of A based upon the condition that it

can be obtained by continuing along the branch from which we derived

the present sub-matrix. Note that since we may discontinue considera-

tion of one branch at any time, and return to a previously discontinued

branch; the subscripts of the matrices which we shall derive at any

point of the procedure bear no relation to the subscript of the matrix

from which the derivation follows. This point will be made again

during our step by step description of the algorithm.

Now, we subscript every parameter associated with a particular

sub-matrix with the same sub-script as its associated sub-matrix. We

shall also require a "label" for each sub-matrix, and the typical

label will be of the form "a,b,c,d,. . .". This label gives us the

information that for each particular sub-matrix, every column of A

which is present in the label has been branched upon| and those columns

which appear unbarred are assumed to be included in the a-set, whereas

those which appear with a bar over them are assumed to be excluded

from the a-set. Thus, the a,b,c,d in the example label above represent

positive integers which are the column numbers of the original A matrix.

One further convention to which we shall adhere; an even sub-script

is taken to mean that the latest column upon which we branched is

considered to be included in the a-set associated with the sub-matrix,

16





and thus this column number will appear unbarred in the associated

label. On the other hand, an odd subscript is taken to mean that the

latest column branched upon is considered to be excluded from the a-set

associated with the sub-matrix, and thus this column number will appear

in the associated label with a bar over it. The described notation is

summarized be lows

A e jJLj((R , S ) has dimensions m by n .

R_ - (r ., r , ..., r ) .

P P 1 p2 pm_

o__. K \S i* S«» 0009 S 7 ©

P pi* p2* pry

m
P
P

r—1 rv ^—1 vi

the minimum k such that ) s . %. ) c .

^j.lPJ ^i.iP 1

e
1 « D + the number of columns unbarred in the label of A .

P P P

It is obvious that much information must be recorded for each of

several matrices. Although a structure similar to that of Figure 5

could be used, we suggest the format of Figure 6. This figure shows

a typical matrix A and all of the required information associated

with this matrix. It will be convenient to suppress zero elements of

the matrix. Note that we list the subscripts of the columns of the

original matrix along the top, and directly below that, the order of

subscripts for the derived matrix, A . The order of subscripts for
p

the rows of A is listed along the left side of the matrix, and R and

S are listed along the right side and the bottom, respectively. At

some convenient point we list p , e* , and the label associated withF
P p

the matrix.

In section four, we solve the targeting problem of section one

using this algorithm. The reader may desire to read section four
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concurrently with the description of the algorithm which follows.

3.1 Preliminary Steps .

PI. If r < a; the a-width does not exist. We terminate, or else
m '

decide to look for an a-width in which a is a smaller integer than

that which the original problem specified.

P2. If r > aj go directly to step SI, in the main part of the

algorithm.

1 10 1 2 5 < column subscripts

2 3 k S R
P

1 1 1 1 l h

2 1 1 1 3

3 1 1 1 3

h 1 l 2 p 2
P

5 1 1

6 1 l i . 5
Ep

Sn ; 1 3 3 3 2 — —
P

"11,7,6,8,9"

Figure 6

P3. If r r ,m m-1
r « a, for some k, (0 =k^m-l)j
m-k

then it is evident that each "1" in any of these k+1 rows must belong

to a column in the minimal a- set of representatives for A. Therefore,

in each such row, say the i , for each j such that a.o » 1, record

that the j column is in the minimal a-set and delete the j column

from the matrix. Let C » (a, ..., a) be an m-=dimensional vector. For

each k such that a^. » 1 subtract one from the k component of C.
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When this has been done for all columns, j, deleted from the matrix,

delete any row, i, for which c, = 0. Finally, recompute new row sum

and column sum vectors, normalize the new matrix, and proceed to

step SI in the main portion of the algorithm. Now the set of columns

that has been deleted in this preliminary step will not again be ex-

plicitly mentioned. The reader is cautioned to remember to add

these columns to the a-set computed in the next section in order to

arrive at the true a~width of the matrix, A.

3.2 The Branch and Bound Algorithm.

51. We are given A e %l(R 3S) which has been normalized. If C was

not computed in step P3, let C (a, ..., a). Cross out column one of A,

We shall branch on this column because it is the column with the largest

column sum. This is an entirely arbitrary decision. We could branch

on any column whatsoever, but it seems reasonable that the one with the

largest column sum would be likely to be included in the a-set. A

counterexample is easy to construct. In any case, it is now necessary

to decide whether or not to include this column in the a-set.

52. Let us denote the matrix, A by [<S 6 „ . „ 6 ]„ Construct

A.(» [^p ^ ... 6 ]) and label it "1". We examine the consequences of

excluding column one from the a-set. A, is of size m, by n, (=n-l),

and A, e 5U(RpS,). Our decision means that we still must locate c.

representatives for each row, but that we may not use any of the " l"'s

in the excluded column of A. Calculate p, by equation (2-5) > and

since no columns are unbarred in the label, let e' * p .

S3* We next examine the consequences of including column one

in the a-set. Construct A« by deleting column one from A, forming a
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temporary R vector, and deleting every row for which the component-

wise difference of R and R
?

is greater than or equal to the corres-

ponding component of C. That is, if r. - r_ . ^ c.; delete row i.

Clearly this can happen at this step only if c. 1. We have now

reduced A by one column and perhaps some number of rows. This re-

duced matrix, when normalized is called Ap, and we now form the

permanent vectors, Rp and Sp. We label this sub=matrix ?
n
l
n

. p is

calculated by equation (2-5) , and since column one is unbarred in the

associated label, e' » p„ + 1.
2 2

Slu We must now decide along which branch it will be most

profitable to continue. We make the decision by choosing the sub-

matrix associated with min [ej, el] . If e! « e
1

, the choice is

arbitrary. When using the algorithm for hand computation, the best

choice is probably that matrix with the greatest number of unbarred

columns in the associated label, that is, in this case, A . Having

made this decision, we set min [el, e'] °°, so that the same

branch will not be chosen again at a later stage. We proceed to step

S£. All succeeding steps in the algorithm will be described in

general terms.

S£. In the preceeding step, we decided to proceed using matrix

A,, say, with associated label, "p,q,r,s,t,u"j a particular one of the

k matrices thus far constructed (k % L) . Since A, has been normalized,

the first column has the largest column sum. We therefore select

this column as the next branch point. Let us say that this column

corresponds to the v column of A.

S6. Denoting A, by ["YijVp* •••> 5
Lm J» we construct the next

sub-matrix, Aj^ (^U^* ^U' '"> 5
Lm ^ J thus ^ indin9 tne sub-matrix
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corresponding to a decision to exclude column one of A. (column v

of A) from the a~set. A^+ ^ is of size m. . by n.
+1 , and A^+ ,

57. Noting that columns p, q, and s of A have been included up

to this stage, we form a vector of row sums of included columns, which

we shall call RS. That is, referring back to. the A matrix, we compute

for each row, the number of ones in columns p, q, and s. Obviously,

for this particular label, the sum cannot exceed three. Now we

compute a test vector, RT. Let the i component of RT be the maximum

of zero and c. - rs* (the i component of RS) . The vector, RT, gives

us the number of ones yet to be included in each row of the matrix,

by some subsequent choice of columns. Since both RS and RT are

vectors which are required only at this branch, and will thence be

discarded, there is no need to subscript them.

58. Returning to our decision to exclude column one of A*, we

examine each component of Rk+ ]i» If any component of R. is less

than its corresponding component of RT, it is infeasible to exclude

this column. We set e' * », but retain the label of A, which is,

in this case, wp,q,r,s,t,u,v". We then proceed to the next step.

If, on the other hand, we determine that the label represents a

feasible set of columns, that is, no component of R. . is less than

its corresponding component of RT , we compute p . by equation (2-5)

using the vector RT in place of C. Since there are three unbarred

columns in this typical label, we set e* * p, + . + 3.

59. We now construct matrix A, +p with label "pjqjrjSjtjUjV"

.

This matrix corresponds to the decision to include column v of A in

the a~set. We delete column one of A^. For every row which had a
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"1" column one of A, , we subtract one from the appropriate component

of RT. If this component now is zero, we delete the corresponding

row of At . When the procedure is completed, we have the matrix A^o*

We compute Rr,.^ and
^k+2>

and f* na lty> c l+? vn * cn e^als p^4-2 * h

in this case. If, however, either dimension of the matrix becomes

zero at this step, we proceed to step Sll, as it is possible that

this represents termination. p i..pj °f course, is computed using the

vector RT instead of C.

510. Let P be the k+2 dimensional vector whose components are

the e!. We find the minimum component of P, choosing arbitrarily

in case of a tie, and use this component's corresponding matrix for

our next path. Although an arbitrary choice in case of a tie will lead

to solution, there are two techniques for choosing between branches

that will probably shorten the algorithm somewhat. These are, either

to stay with the current branch in case of a tie in which the current

branch is involved| or to take the branch which has the largest number

of unbarred columns in its label. The second method is probably the

best, but in the computer algorithm we shall use neither technique!

branching instead on the matrix with the smallest sub-script because

of programming simplicity. Let us say we have chosen matrix A. for

our branching matrix. We set e 1 « °°, and return to step S£, con-

tinuing the algorithm.

511. Since A. +2 is of zero dimension! Pj^ s Oo Then e» is

equal to the number of columns that are unbarred in the label of

A.k+2* Now if £' > e! for any i < k+2, we have not necessarily

found a solution, so we return to step S10, after duly recording the

proper values for all of the parameters associated with this sub-=matrix,
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Of course, it is now meaningless to consider row sum and column sum

vectors. This is a minor point, since the only purpose of these vec-

tors is in computing p, and in deriving subsequent matrices. It is

clear, though, that if we at a later time choose to branch upon this

matrix of zero dimension, it is because we have found that it is after

all, an optimal solution to our problem.

If, on the other hand, e? + 2 — G ' f°r a^ * = ^+2, the unbarred

columns in the label of Aj^p constitute a minimal a»set of representa-

tives for A, and the cardinality of this set of columns is the a-

width of A. Thus we have arrived at a termination point of the

algorithm. In the next sub-section, we shall prove that the algorithm

does find a minimal a~set of representatives, and that it terminates

in a finite number of steps.

3.3 Proof that a Solution is Reached .

We need to show that the algorithm does find a minimal a-set of

representatives even though many possible combinations of columns

have not been considered. It is first necessary, though, to show

conditions under which the a-width exists. We have already stated, in

step PI, that if a < r , the a~width does not exist. We now prove a

necessary and sufficient condition for the existence of the more

general C-cover of A:

Theorem 3.1 .

The matrix, A, has a C-width for every vector, C, whose components,

Cj are bounded above by r,.

Proofs By hypothesis, c. !E r^| hence A, itself, is a C-cover for

every admissible vector, C. For a fixed C, the collection of all
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C-covers is thus non-empty, and clearly is finite. Then the collec-

tion has a minimal member., and the cardinality of this minimal mem-

ber is the C-width of A.

QED

Corollary ;

The matrix, A, has an a-width, e(a), for each integer a in the

interval, 1 — a fE r .

We shall now demonstrate that the branch and bound technique

of section 3.2 will find the minimal C-cover of A in a finite number

of iterations. We shall further show, that the branch and bound

technique is independent of the technique for computing a bound on

e, under some rather simple restrictions. We shall callT(C), the

C-width of the class, ^2J[(R,S). Now e (C) is clearly a function of

the dimensions of the matrices in the class. Let P*(C) be an esti-

mate of e(C) such that p-*(C) 2 e(C), and such that for the class M t

one of whose dimensions is zero, p-*(0) • e(0) » Oj where is the m

dimensional zero vector. We insist in what follows that the esti-

mating technique for computing p#(C) be applied consistently. The

parameter, P, described in section two satisfies the above require-

ments on P*(C)

.

Let A be a given matrix and estimate e(C) by p#(C). Then the

C-width of A is not less than p#(C). Now construct matrices Ai and

Ap as in steps S6 and S9 of section 3.2 using any column of A, say

column t, instead of that column whose sum is the largest. Estimate

e(Cj) for each of the sub-matrices thus constructed by p*(C|), and

P"2(C2) respectively. Then the C^-width of A, is not lesL than p*(C,),
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and the Cp-width of A„ is not less than P^(C ). The vectors, C,

have components equal to the number of »»l
w »s yet necessary to rep-

resent the i row of A. For example, if the i component of C

were 2 and the selected column contained a one in its i place, then

the i component of C, would be 2| but the i component of C_ would

be 1. Now since column t of A must be either included in, or excluded

from the minimal C-cover of A, the C-width of A is not less than

min [p-*(C,), p-&(C )+ll. We need no longer consider p-*(C) as an

estimate of the C-width of A. Clearly then, if we repeat this esti-

mating process, using A^ or A
?
as a new given matrix according to

whether p*(C ) or p*(C )+l is the smaller, we may compute two

additional estimates of the C-width of A. Eventually (after a finite

number of such estimates have been made), we shall construct a matrix,

one of whose dimensions is zero. In that case, P'^i/Cp, ) " 0> an(*

the C-width of A cannot be less than the cardinality of the set of

columns slated for inclusion in the C-cover of A. This set of columns

is, in fact, a C-cover, and if the cardinality of this set is less

than or equal to all of the other computed estimates of the C-width

of A, then it is a minimal C-cover, since we required that any esti-

mate be bounded above by e(C)

.

We refer the reader once again to the scheme illustrated in

Figure £<, If each branch of this tree were to be taken to its termi-

nation (at worst, the point at which each column of A had been tested

either for inclusion or exclusion), each such terminal could be

represented by an n-tuple as follows? let the i component be one

if the i column had been included on this branch, and let it be

zero otherwise. There are 2 unique n-tuples, hence at most 2
n
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corresponding terminals, each attainable in a finite number of steps.

Hence the algorithm must terminate in a finite number of steps.

h. Manual Computation with the Algorithm.

Let us return to the targeting problem described in section one,

and solve this problem to illustrate the use of the branch and bound

algorithm. We reproduce the matrix of Figure 3, as Figure 7 for

ready reference. Zeros have been suppressed, and we have appended the

components of R and S to the right and bottom of the matrix, respectively,

Figure 8 depicts the normalized matrix, A. We have appended the original

column subscripts above the matrix.

In this example, « Ij and it should be noted that in general,

increasing «, significantly increases the complexity of the manual

algorithm, because of short-cuts used in deciding which rows may be

deleted. These short-cuts are not available for a > 1. The RT vector

need not be constructed, since its components could only be zero or

one, and such a simple vector can be handled by inspection. However,

the short-cuts cannot be conveniently programmed, so the computer

version of the algorithm can handle differing a's with almost equal

facility.

123156789 RAll 2

B 1 1 2

C 1 1 2

D 11 2

E 112
F 1 12
G 1 12
H 112

Figure 7
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3 2 h 7 8 1 5 6 9

1 2 3 h 5 6 7 8 9 R

A 1 2

B 1 I 2

C 1 1 2

D 1 1 2

E 1 1 2

F 1 1 2

G 1 1 2

H 1 1 2

S h 2 2 2 2 1 1 1 1

Figure 8

We show, in Figures 9 and 10, the matrices A. and A
? , respectively,

derived from A as follows? We delete column 1 from A and since this

column corresponds to column 3 of the original matrix, we label A,,

"3". Naturally, we have normalized both R, and S,. Now locate each

row of A which has a "1" in the first column. Delete this row, delete

column 1, and we now have A
? > after normalizing R« and S

?
. This

criterion for deleting rows is a simplification of computing RT, which

is the short-cut mentioned at the beginning of this section. The

rows deleted in the example are rows B, C, G, and F. We label Ap>

"3".

For the matrix, A , p. » h, since ) sij mi « 8. Similarly,
L^4 i-1

for A., P h, since ) s9 i m? « h. Hence e! p h°,

2 d ^—»i-l l l
and

e£ - P^ + 1 « 5-
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Min [e'j e»$ ^ e» so we choose to branch on matrix A.. We

set e' » °°. Column 1 of A, corresponds to column 2 of the incidence

matrix, and is the column which has the largest column sum.

2 14 7 8 1 5 6 912315678 R

A 1 1 2

D 1 1 2El 12
H 1 12
B 1 1

C 1 1

F 1 1

G 1 1

S
x
22221 111

Sub-matrix, A^, "3" p « Jj. e» h

Figure 9

2 U 7 8 1 5 6 9

1 2 3 It 5 6 7 8
2

A 1 1 2

D 1 1 2

E

H

1

1

1

1

2

2

S
2

l 1 1 1 1 1 1 1

Sub=•matrix, t\. r\ o
HTM

M
2

lu
2

5

Figure 10
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We delete column one of A and thus have matrix A , which we

label "3,2". This submiatrix is shown in Figure 11, below. Since

row B of A. has row sum zero in A^, and since there are no included

columns in the label, this represents an infeasible set of column

exclusions. Therefore, without further consideration, we set e* « ».

ll 7 8 1 5 6 9

1 2 3 h 5 6 7 R
3

D 1 l 2

E 1 1 2

H 1 1 2

A 1 1

C 1 1

F 1 1

G 1 1

S„ 2 2 2 1 l 1 1

Sub-matrix A^. "3,2"

Figure 11

Next, we delete each row of A which has a "1" in the first

column, namely, rows A and B| and we delete the first column of A..

This gives us matrix Ai , depicted on the next page in Figure 12. Of

course, the label for A. is "3,2". Now ) si £
«= m, » 6j so p. - 3,

i*l

and ej P. + 1 = k» Note that the sum of column h of A. goes to zero

in A. , so we may delete it.

Now min [e !
, e f

, e', e,
!

] e? c h> Hence we choose to branch next on
1 2 3 li h

matrix A. . We set e.' « °°, and choose column one of A. for examination.
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b 7 8 5 6 9

1 2 3 li 5 6 %
D I 1 2

E

H

1

1

i

1

2

2

C 1 1

F 1 1

G 1 1

s, 2 2 2 1 l 1

It

Sub-matrix A, . "3,2" p, 3 ef - k

Figure 12

Deleting this column, which corresponds to column h of the

original matrix, produces A^, with label "3,2,h". This sub^matrix is

reproduced in Figure 13> below. Note that the sum of row C of At has

gone to zero in A^.

7 8 5 6 9

1 2 3 fc 5 R
5

E 1 1 2

H 1 i 2

F 1 1

G 1 1

D 1 1

S
5

Subnjiatr:

2

Lx A^.

2

?»3

F

1

,2,li»

igure

1

13

i

oo
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This means that the label represents an infeasible combination of

columns, and we therefore set ei - °° without further consideration of

this sub-matrix.

Now we derive sub-matrix A/- by deleting rows D and C from A. ,

since each of these rows has a "1" in column one of A. . We also delete

column one of Ai and give this sub-matrix the label, "3,2,1;". The

matrix is presented in Figure lit below. Since ) s, . « m, - h,
£-> i-i

6l 6

we have that 0,-2, and e* - h, since there are two unbarred columns

in the label for A,. Clearly eJ » min [e\ ] (i-1,..., 6)j so we choose

to continue along this branch. Thus A^ will be our next branching

matrix.

7 8 6 9

1 2 3 h \
E 1 1 2

H 1 1 2

F 1 1

G 1 1

S
6

2 2 1 1

i-matrix A/-. "3,2,14" P'6
'- 2 "6

FIjgure Ik

We derive sub-matrix A„ from A, (see Figure 15) by deleting

column one of A,, corresponding to column 7 of the incidence matrix.

This sub-matrix has label, "3,2,li,7". Once again we run into the

situation of a row sum going to zero, so this sub-matrix, too, repre-

sents an infeasible combination of columns. Therefore, we set e» = °°
,

7

and proceed.
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8 6 9

1 2 3 R
7

H 1 1 2

G 1 1

E 1 1

S
7

2 1 1

"3, 2, h, 7" f 1 ts oo

7

Figure 15

By the deletion of rows E and F from Ax, we arrive at sub-matrix

Ao, which also has column one of A, deleted. This two by two matrix

is displayed in Figure 16, below. The label is "3,2, U, 7", and we

note that sg i
e mo a 2| therefore, Pr, 1, and since there are three

unbarred columns in the label, e' k» Note also that the column
o

sum of column 6 of the original matrix has gone to zero, so we delete

that column also. We see that el min [e!] (i e lj • • . , 8), so we

branch on matrix Aq. We remember to set e' » , and choose column one

of An for examination. This column corresponds to column 8 of the

original matrix.

8 9

1 2 R
8

H 1 1 2

G 1 1

S„ 2 1

Sub-matrix A
g

»3,2,Ii,7" P

Figure 16
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Deletion of column one of A- gives us a one by one sub-matrix
o

which has label n3, 2,1^,7, 8". This matrix represents an infeasible

combination of columns since row G has vanished. Thus we set

el - », and proceed.

We see immediately that we have reached termination, since the

matrix A is of zero dimension and has label "3,2,1*, 7, 8" . This

means that e* h and that e' min [e'] (i*5 !, ..., 10).

The 1-width of the incidence matrix is h, and a minimal 1-set of

representatives for the incidence matrix is the set of columns, (2,li,

7,8). These, of course, would be the station numbers that were to be

targeted in our original problem.

£. Computation of e (°Q .

We notice that for the very simple problem presented in section

four, ten matrices had to be written down. The writer has observed

that in hand computation, one matrix can be used for deriving only

two or three sub-matrices before the paper becomes impossible to read.

Even a small matrix requires a considerable amount of time to write

down, especially when normalization cannot be done in one's head. In

the computer version, due to limited storage space it is necessary

to recompute a matrix each time it must be used, so even at high

digital computer speeds, it would be desirable to reduce as far as

possible the number of matrices that had to be examined.

Unfortunately, for the computation by hand, little can be done

to simplify the problem, but in the case of the computer algorithm, it

is possible to compute e( a) exactly at little expense in time. Un-

fortunately, this computation will be useful only when a« 1; and
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hence, when the components of the RT vector of section three can be

only zero or one. But this case is the one which is of greatest

interest, and it is thus very worthwhile to study this computation.

There are at least two derivations possible. One, which is

entirely combinatorial in nature, gives considerable insight into

the class, ^/(R,S), at the expense of being quite lengthy and not

very intuitive. The interested reader is referred to Fulkerson and

Ryser. [h]»

We shall use a network derivation which is considerably shorter

and more intuitive. The procedure for as 1 is outlined in [2]. It

should be noted that the formula was first derived using network con-

siderations. We require the following theorem in the network deriva-

tion to follows

Theorem £.1 .

Let A e ^L/(R,S) have a-width, e(a). Then there is at least one

matrix, A , in ^/(R,S) such that the first e columns of A constitute

a minimal a-set of representatives for A
£

.

Proofs Consider any matrix, A e ^/(R,S) with a-width, e(a).

Let E# be that subset of the columns of A consisting only of the members

of the minimal a-set of representatives. If E* is the first e(a)

columns of A, then A « A
£

. Therefore we assume that column p is the

leftmost column of A not in E#. Now locate column k such that column

k is the rightmost column of A in E*.

Let Rj, « ( rEi? 9 "3 rp ) De the vector of row sums of E*. Now

if r_.. « a and there is no a. » for which a. 1, (i*l, .... m)

,

Ei lp ik

we may replace column k by column p in E#, and the new columns of E*

are a minimal a-set of representatives. Suppose therefore, that we

have for some i, r_. » a , a, and a.. » 1. We call a,, a critical'Ei ip ik ik
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one of E*. Then since s > s. , there must be an a » 1 for whichp- k jp

a.. « 0. (j/l). Further, for each critical one in column k, there

is a distinct one in column p with a corresponding zero in column k.

We perform interchanges on such critical ones, the typical interchange

resulting in a. 1; a,, *» Oj a. =01 and a » 1. We may nowa ip ' ik jp
'

jk
J

replace column k by column p in E* and the new columns of E-* form a

minimal a-set of representatives.

Clearly this construction is possible for each column to the left

of column e, which is not in E*. Hence the construction yields

5.1 A Supply-Demand Network .

In this section we shall consider directed networks. Let N

represent the set of nodes of a network and Q. represent the set of arcs.

We denote an arc between x and y, members of Nj by the ordered pair,

(x,y) and assert that the notation implies the arc is directed from x

to y, and is not the same arc as the one denoted (y,x). We associate

with each arc in ($ } a non-negative function c(x,y) called a capacity

function, and a non-negative function f(x,y) called a flow function.

We associate with some nodes in N a non-negative function a(x) which

may be thought of as a supply of some commodity available at node x,

and we associate with some other nodes in N, a non-negative function

b(y) which may be thought of as a demand for some commodity by node y.

We make use of the following shorthand notation. Let S, T, be

subsets of N, and let x,y be elements of N. Then by c(S,x) we mean

£ c(s,x), and similarly for f(S,x). Also, by c(S,T) we mean

E . £_ c(s,t), and similarly for f(S,T). Analagous shorthand will

be used for the functions, a and b.
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Now let us assume we have a class of matrices, y|(R,S) . We

devise a network for this class as follows? Let there be n nodes

denoted bj, . . . , b ; with demand function, b(b.) » s„, the j

component of S. Let there be m nodes denoted a., . .», a | with supply-

function a(a.) r,, the i component of R. Let B « b.; A * a,.

Let (apbs) s (H for all i, j. Let c(a.,b.) 1 for all i,j. This

network has an arc capacity of one for each of the m»n elements of a

matrix, A e ^U(R,S) . The commodity available at the nodes of A, and

required by the nodes of B is, of course, "l^s to distribute among

these m»n elements of the associated class of matrices. We construct

a flow in the network satisfying the following constraints?

(6) f(x,N) - f(N,x)c a(x) x E A

(7) f(N,x) - f(x,N) = b(x) x e B

(8) ^f(x,y)^ c(x,y) (x,y) e Q,

Clearly this construction is possible. For R 2,2,2,2) and

S «(3,3 3 2) such a network has been constructed in Figure 17. The

number by each arc is the value of the flow function for that arc.

Now let us construct the corresponding matrix (Figure 18). If

f(aj,bs) « 1, let ajs s 1$ if f(a*,b.) « 0, let ajs 0. This matrix,

A, is- in the class, ^4(R,S). Furthermore, each unique feasible flow

corresponds to a unique matrix, A e ^g[(R,S), and conversely.

Then let us ask this question; under what conditions can we

construct a flow so that f(aj,T)^a for each i, and for T « {b. , ...,

b }? This flow would correspond to distributing at least a ones

from each a* to the nodes corresponding to the first e columns of a

matrix in ^{(R,S) . If we can locate the smallest £ for which this

flow is feasible s we shall have found e. See Theorem 5«1.
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Since Em ^—, n

r. = ) s ; ; for the demands to be satisfied at
i-1

x ^j-1 J

each b., the supply at the nodes of A must be totally exhausted for a

feasible flow. Consider the network of Figure 19, with four sink

nodes (those with positive demand functions), and three source nodes

(those with positive supply functions). Let us construct for each

e S n; a network as follows? Let B be the first £ nodes of B. Let— e

(x,y)e GL for x e A and y e B . Now construct m new nodes

(a!, .... a') and let the set of these nodes be called A 1
. Let

1' m

(a.,a'.)e Q, for each i =m. Let (x,y)e Q, for x e A' and y eB^B

(the relative complement of B with respect to B). Let the following

be true:

a(a.) « r. i * 1, .... m

b(b.) <= s. J * 1, .... n

c(a.,b ) - c(a!,b ) i i, ..., m
j '

k
J - 1, -.., e

k »?+1 , . . . , n

c(a.,a') « r. - a i « 1. .... m
i' i i ' '

The construction corresponding to the network of Figure 19 for

£ = 2 is shown in Figure 20 on the preceding page. Numbers above

each arc are the capacities of the arc. What we have done is this?

since the capacity of each (a., a!) is a units less than the supply at

a., at least a units of supply must be distributed to the nodes of B .

We call a flow feasible if and only if constraints (6), (7), and (8)f

are satisfied and if

(9) f(x,N) - f(N,x) - x e A«

is also satisfied. Clearly, the smallest e for which a feasible flow

exists in this type of network is £(<*)•
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Theorem £.2 .

The constraints

(6) f(x,N) - f(N,x) 5 a(x) x e A

(7) f(N,x) - f (x,N) % b(x) x e B

(8) 5f(x,y)5 C (x,y) (x,y)e Q,

(9) f(x,N) - f(N,x) - x e A»

where a(x) ^0, b(x) % 0; are feasible if and only if,

(10) b(B H X) - a(A fl X) 5: c(X,X)

holds for every partition of N into subsets X and X (- N^X).

This is the well known supply-demand theorem due to Gale. A

proof may be found in [2l.

We apply ( 10) to our network (in general) and observe that for

partitions of the forms

1' ml e 1 e f+1' ' n

X * {a
e-t-l>

••' , a
m ; b

E+l*
••• , b

f }

where e and f are integer parameters satisfying

OfEefrmi e = f = n

(10) is of the forms

(11) s ., + ... + s- 5 (r . - a) + ... + (r -a) + e«(f - e)
e+i i — e+i m

The validity of the inequality is obvious except possibly for the

term, e»(f - e). This term is merely the number of a* in X, times the

number of bs in Xj and is the total capacity of all arcs connecting

these two sets of nodes.

Theorem 5»3 «

The constraints, (6), (7), (8), and (9) of Theorem £.2 are feasible

for a network of the type of Figure 20, and for fixed e, if and only if

(11) holds for all permissible values of e and f.
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The proof of this theorem consists of looking at all subsets of

nodes not of the form on the preceding page, and verifying that Theorem

£.2 is valid for these subsets if it is valid for the subsets of the

above form. Since the proof is not very interesting, and rather

lengthy, it is omitted.

Theorem 5>«3 assures us that we need not test all subsets of nodes

with (10) in order to assure ourselves that we have a feasible flow.

Now let us multiply (11) by minus one| and rearrange terms? We arrive

at?

(12) r
e+1

+ ... + rm - (s
£ + 1

+ ... + s
f

) + e*(f- e ) = a«(m-e)

We thus have the condition that e is the smallest integer for which

(12) is satisfied for all integer values of e and f in the ranges?

^e ^ m e±f = n

Now the left side of (12) is the class invariant which Fulkerson

and Ryser call N(e,e,f). [h}> For ease of computation we define a

function, Q(e,e,f) s N(e,e,f) - a • (m - e) . e is the smallest e for

which

(13) Q(e,e,f)^0 ± e % m$ e =f % n

We take first differences with respect to e, e and f| and derive the

following recursion formulas?

(Ill) Q(e+l,e,f) - Q(e,e,f) + s e+1 - e

(15) Q(e,e+l,f) - 0(e,e,f) + f + a - e - r^

(16) Q(se,f+1) - Q(e,e,f) + e - sf+1

Since we know that P is a lower bound on the a-wldth of any

A e ^J(R,S) we may take e - p, and compute an m+1 by n-e array

making liberal use of (15) and (L6). If one of the numbers is negative,

we increment e by one using (111), and compute the m+1 by n~e array
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for this new value of e. When an array is found which contains no

negative members, we have found e.

Now, as we mentioned before, we do not advise this procedure for

hand computation, and it cannot be used for a greater than one, but

the case a - 1 is the most important case by far, as will be seen in

section seven, and a digital computer is admirably suited to perform

these simple arithmetic computations. In the next section we shall

discuss the computer program in which the above formula was usedj

and the results obtained with a large number of matrices.

6. The Algorithm Program .

We present a procedural flow chart for the branch and bound algorithm

in Figure 21. As much as possible of the procedure is described in

abbreviated, but intuitive language. Where variable names are neces-

sary they are either the names given to the same variables used in

Sections 3.1 and 3.2, or they are defined on the flow chart itself near

the point at which they are first used. Variable names are used that are

in reasonable agreement with the corresponding names used in the computer

program.

The algorithm was programmed for the Control Data 160U computer

using FORTRAN 63 source language, and CODAP 1 assembly language. The

assembled program is included in this paper as Appendix I. There are

several features of the program which deserve discussion.

Since we are dealing with matrices composed of zeros and ones,

storage space can be conserved by letting a single bit represent an

element of the matrix. Then we may use logical operations to manipulate

the matrix. Normally this would require writing the entire program at
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the assembly language level" but we avoid this by taking advantage of

a capability of FORTRAN 63 which permits the programmer to define his

own type of arithmetic

The CDC 16024. word size is ii8 bits. We chose to write the program

to accept matrices up to dimensions llUi by II4I1. We store a single row

of the matrix in three consecutive computer words 5 hence an entire

matrix requires only JU32 words of storage. The first word of row i

contains elements a., through asiol the second word contains a.iQ

through a. Q /-| and the third word contains a.
Q7

through a.jn .

We define, according to the rules of FORTRAN 63, a TYPE LOGICS

arithmetic in which an elemental word consists of three consecutive

words of memory. We call such an elemental word a TYPE LOGICS word.

Thus, one LOGIC!? word is equivalent to one entire row of a matrix, or

other variable which needs to be three computer words in length. For

instance, we shall require several masks with which to derive the various

sub-^matrices, and each such mask must consist of three computer words.

We shall need to take logical sums and products, to complement

words, to clear words of ones in certain bit positions! and we shall

require a method of generating a 1 in any of the II4.I4. bit positions of

a LOGIC!? word. We define, through the subroutine, Q1QMATH, the symbol

"+" to mean logical sumj; the symbol "*" to mean logical product! the

th
symbol "-" with two arguments to mean "set the i bit of the first

f h
argument to zero if the i bit of the second argument is one"| and

the symbol "='" with one argument to mean "complement the argument".

We also define "ARGUMENT /j" to mean "set the j
th bit of the argument

to one, and all ether bits to zero, counting from the leftmost bit

position of the argument".
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The only requirement we have for generating the sub-matrices of

the given matrix is that we must be able to compute the corresponding

row sums and column sums for use in estimating e. We may compute the

row and column sums in the computer program without deriving each of

the sub-matrices through the use of suitable masks. We require two

such masks; one is a mask of columns upon which the program has already

branched; and the other is a mask of columns chosen for inclusion

in the minimal a-set at the current branch. In each case, a 1 in the

i bit position of a mask indicates that column i is a member of the

set of columns which the mask represents.

Almost all arguments used in the various subroutines are stored

in COMMON. This decreases the computation time at the expense of re-

quiring difficult to follow indexing of the parameters. Most such

parameters are stored in an array, TDATA. This array is really three

consecutive arrays of parameters associated respectively with the

matrices At , ^2^ anc* ^?k+1 °^ Fi9ure 2l. The correspondence between

TDATA and the mnemonic variable names may be found in the EQUIVALENCE

statement near the beginning of the program.

The masks and bound of all matrices must be retained in storage,

but other parameters, (row sums, column sums, dimensions, etc.) are

recomputed each time they are required. If a random access storage

device (such as a magnetic disc) is available a savings of computation

time would result from the storage of these parameters.

Up to 2000 sets of parameters can be retained in core storage

simultaneously. When this limit is reached, the section of the program

from statements 192 to 193 searches for any sets of parameters no longer

required, discards them and compresses the remaining parameters into the
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front of the storage area. This effectively increases storage space

up to the point at which there are 2000 current branches of the algorithm,

(Current branches are those branches for which the corresponding esti-

mate of e is less than "infinity".)

Sample output is shown in Figure 22. This matrix can be recognized

as the incidence matrix of the communications network discussed in

Section one. Note that the matrix is printed in octal format which

must be converted by hand to the proper (0,1) form. Each digit of the

output represents three elements of the matrixj for example, the digit

"£" represents the three elements "1, 0, 1".

Short, but descriptive comments separate major sections of the

program listing by tasks, and introduce each of the subroutines. The

various CDC l60ij instruction manuals and programming manuals may be

consulted for further information.

The program is not very efficient in its present forms many pro-

gramming conveniences such as the use of TYPE LOGIC!? arithmetic, and

the use of subroutines, makes writing of the program simpler at the

expense of generating many otherwise unnecessary instructions. As a

first step toward improving the efficiency, the author recommends

elimination of TYPE LOGICS arithmetic, substituting in its place,

C0DAP1 subroutines to perform the necessary substitute operations, and

using direct calls to these subroutines in place of the operations

symbols. In addition, it is recommended that all present subroutines

written in FORTRAN 63 be incorporated into the main program. Program

space is not critical in a computer the size of the CDC l6oU, and by

writing the subroutines as part of the main program, advantage may be

taken of task specialization. For instance, subroutine R0WSUM computes
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the sum of all M rows of the matrix each time it is called. It takes

as much time to compute a row sum which is zero as one which is not|

but we have information which could be used to specialize the routine

so that it skips over rows whose sum is zero.

A still better technique would be to write the entire program

at the assembly language levels especially if the user intends to

use the program for more than the solution of a few matrices.

6.1 Results of Usi ng PROGRAM WIDTH.

If a matrix has a-width, e, and we were to attempt to find the

a-width by looking at all possible sets of a columns,, then all possible

sets of a + 1 columns., and so forth up to all possible sets of e - 1

columns and finally some sets of £ columns , we should have to look at

X sets of columns for

d7) e!"
1

(b)* x = xsC u)
We should have to look at this number of sets of columns using the

branch and bound algorithm also, if all of the estimates of e which were

current turned out to be equal. It is conceivable that this could

happen for some problem 5 hence we must take ( 17) as an upper bound

on the number of branches which must be investigated by the program.

Now the branch and bound algorithm is not the most efficient way to

search subsets of columns., so we are quite interested in determining

just how far below the upper bound we can stay by branching and bounding.

Since we cannot express any theory to demonstrate the efficiency

of the algorithm^, the only choice open to us was to solve many problems

of varying sizes in hopes that trends could be established. It is for

this reason that subroutines RANDOM and RANDGEN were added to the pro-

gram. These two subroutines generate matrices of any size up to IU4.
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by liiU- A uniform random number generator is used to generate three

consecutive random numbers which represent one row of a matrix of Ihh

columns. If a matrix of N columns is desired (N < lUO bit positions

N + 1, ..., li4.I1. of the three word element are set to zero. The number

of ones remaining in the three words is computed and compared to a user

supplied argument, NONES. If NONES is less than the remaining ones in

the three word element, another set of three words is generated, the

appropriate bit positions cleared to zero, and then the logical product

of the two elements is taken. This procedure is repeated until NONES

is greater than or equal to the number of ones remaining in the three

word element. Thus NONES represents the maximum permissible row sum

of any row in the matrix. The three word element is then assigned as

a row of the matrix, and the procedure is repeated until an entire

matrix has been generated. We are thus reasonably sure of a random

distribution of ones throughout the matrix, and we have some control

over the density of ones in the matrix. Matrices of any dimension are

generated in no more than a few seconds.

Our original plan was to generate and solve five matrices of each

of 112 sets of dimensions for the matrix. It was felt that such a set

of matrices would be a statistically significant sample from which

computation time could be functionally related to such parameters as

matrix dimensions. Unfortunately, time has prevented the completion

of this scheme. Hence all remarks that follow in this section are with-

out statistical significance.

We have been able to generate and solve over 200 matrices of vary-

ing dimensions for their 1-width j one being by far the most important
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value for <*• Dimensions of matrices generated were from the 8 by 9

problem of section one to matrices of dimensions llili by 25, and 35 by

100. Some relatively square matrices of size 50 by ty? are included.

As is to be expected, computation time varies directly vith number of

branches considered when matrix dimensions are held constant. Let us

therefore make some remarks about the number of branches considered

by the program in solving these matrices.

It is clear that the number of branches is a function of the

number of columns and of the actual 1-width of the matrix. Not quite

so obvious is that the number is a function of the number of rows in

the matrix. However the fluctuations apparent in the number of branches

is very wide. For instance, for one matrix 260 branches were taken

while for another, 1536 were taken. Both matrices were of dimensions

35 by 35 > and had a 1-width of seven. It is apparent that other

factors must be involved. One such factor is the distribution of ones

in the matrix. One matrix, a Steiner triple system [5], which is a

matrix which among other properties has all row sums equal and all

column sums equal; required investigation of 1216 branches before com-

puting the 1-width as nine. Yet this matrix had only 35 rows and

15 columns. The symmetry of the matrix made it difficult to weed out

unprofitable branches. Another matrix of dimensions 50 by h5 exceeded

the capacity of the program storage after 2181* branches. In every

case, however, the number of branches were below the upper limit given

by (17). Values seldom exceeded 600 for any of the matrices.

Of more practical interest is the time required for computation.

The CDC l60h has an effective cycle time of Ii.8 y sec. The longest
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time required to solve any problem was 36 minutes, although there were

problems which had not been solved when the program was stopped by the

operator after about [£ minutes. The matrix which required 36 minutes

was of dimensions 50 by h% and had a 1-width of six. The relationship

between branches and computation time is rather interesting. Matrices

of dimensions 125 by 25 required a little over one second per branch

whereas matrices of dimensions 25 by 120 required between two and three

seconds per branch. This seems to verify that advantage could be gained

by eliminating the LOGICS arithmetic in favor of more efficient methods,

since the amount of L0G1C5 arithmetic required increases with number of

columns.

Computation time was graphed on semi-log paper versus 1) number

of columns, 2) number of rows, and 3) 1-width of the matrix. Figure 23

is a graph of time versus number of columns for matrices of 2$ and 35

rows. Figure 2k is of time versus number of rows for matrices of 25

and 35 columns., and Figure 25 is of time versus l~width for matrices

of dimensions 20 by 20.

From these graphs , It seems reasonable to conclude an exponential

increase in computation time versus both number of rows and number of

columns. Wo hypothesis is made about the parameters of the function.

Our method of generating matrices degrades the validity of Figure 25.

In order to create matrices of high l-w£dth 5 we can only lower the den-

sity of ones in the matrix. This, in turn, increases the likelihood

of rows of sum one? which results in an artificial simplification of the

problem. This Is apparent especially in the case of the matrices of

1-widths nine and ten in Figure 25.
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The validity and usefulness of the algorithm has been established

by the above results. Most computation times were under 20 minutes,

and it is felt that computation times could be reduced more than 2*~>%

by cleaning up the program and doing without the programming convenience

of TYPE LOGICS arithmetic.

7. Applications and Extensions.

In this final section we consider applications of the branch and

bound algorithm to solution of real-world problems, and certain famous

problems of the mathematical puzzle category. We shall also propose

certain extensions of the algorithm as presented in section three, which

enlarge the class of problems which may be solved. Certain of the

problems may, indeed, be more easily solved by other methods, but they

are presented here to illustrate the variety of problems which may be

formulated in terms of finding the C-width of a (0,1) matrix.

7.1 The Eight Queens Problem .

A famous mathematical puzzle is the following? place the maximum

number of queens on a chess board so that no two may attack each other.

We construct a graph of 6U nodes, one for each square on the chessboard.

Connect two nodes if a queen may move from one node to the other. The

minimal 1-set of the node-arc incidence matrix is a minimal set of

nodes that touch all arcs of the graph. Now since this matrix has row

sums which are all equal to two, the sub-matrix consisting of all columns

not in the minimal 1-set has row sums of at most one. Hence in the

graph corresponding to this sub-matrix,, there is no connection between

any of the nodes. Thus the complement of the minimal 1-set of nodes
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represents square at which the maximum number of queens may be placed

so that no two may attack each other. This problem is a special case

of a class of problems which also includes the targeting problem of

Section one. We next present a description of this general class of

problem.

7.2 The Connecting Nodes Problem.

Find the fewest number of nodes that touch all arcs in a graph.

Here the rows of the incidence matrix are arcs of the graph, and the

columns are nodes. The 1-width of the incidence matrix is the solution

to the problem. In addition to the targeting problem of Section one,

another problem of this type is the following?

Given a communications system of some type (let us say a system

of highways connecting towns), what is the minimum number of arcs (high-

ways) which must be kept safe from attack (natural disaster, etc.) so

that no node is isolated? In order to solve this problem, we construct

an incidence matrix as follows? list the arcs as columns and the nodes

as rows. Let a. . » 1 if the i node is a terminal of the 5 arc.
ij

Then the 1-width of this matrix is the solution to the problem.

7.3 Simplification of Logical Functions .

We present this problem to show the range of interpretations which

may be made from the concept of a-width. The reader is cautioned,

however, that the incidence matrix required for using the branch and

bound algorithm to solve this problem is likely to become prohibitively

large.
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Given a truth table for a proposition letter formula, F, in r

proposition letters, p , . .., p j find a disjunctive normal form for

F which has the fewest number of terms. If we let "&" represent the

conjunction operator! "+" represent the disjunction operator! and a

be the negation of a, then the disjunctive normal form for a proposi-

tion letter formula is of the forms

(pj & p2
) + (p

l
& p

3
& p^) + (p

3
& p^) + ...

where the p. are proposition letters. The expressions enclosed within

parentheses are called terms. The problem is of interest in switching

circuits and in the logical design of digital computers.

For columns of the incidence matrix take all terms having one

of the forms s q.j q. & q«! ...j q & ... & q ; where q. is either p ,

or its negationj and such that the term takes the value "true" only

if F does also for all values of the p. not explicitly present in the

term. For example, if p. & p. is a term of F in three proposition

letters, p^ p
?

, p ; then both FCp^p^p ) and F^, p , p ) must be

true if p & p is true. We next construct a row of the incidence

matrix for each "true" entry of F in the truth table. Place a one in

the column corresponding to the assignment of values to p , ,.., p

which makes up the entry in the truth table corresponding to the "true"

entry of F. Then place ones in all other columns which are also true

for this assignment of values to the p.. Thus if p, & p? & p makes

F true, a row of the matrix would have a one under this column label

as well as under p, & p \ p & p and so forth.

As an example, consider the truth table of Figure 26. The columns

of the matrix would be labelled "p
1

& p2
»! "p & p "! "p

2 & P3*!
f,

P
1&P2&P3"

"p
1
& p2

& p 3
"! "p. & p2

& p"! "p, & p2
& p ". The four rows would

have ones in columns labelled as follows?
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p
l

P
2

P
3

F

f f f f

f f t f

f t f t

f t t f

t f f t

t f t L

t t f t

t t t f

Figure 26

Row 1: p2
& p 5 p

x
& p

?
& P

3

Row 2s p
x
& p2 i p

L
& Vy V

l
& P

2
& P

3

Row 3s p x
& ?

2
J Pj_ & V

2
& P

Row Is p
L

& p| p
2

& p
3

J p
x

& p
2

& p

Clearly, p? & p and p. & p? are a minimal 1-set of representatives

for the matrix, and F (p^ & p ) + (p & p ) is a minimal disjunctive

normal form.

7.1; The Minimal C-cover Problem.

It would be quite simple to extend the computer program to solve

the minimal C-width problem. Essentially all that would be necessary-

is input revision to accept the vector, C, and the initial setting of

the vector, RT to C. Of course, e could not be calculated, but would

have to be estimated using exactly the same subroutine which is presently

used for the situation, a > 1„ For an entirely different algorithm for

solving the minimal C-cover problem (and hence also the a-width problem)

see [8]. The minimal C-cover extension is of interest primarily as a

first step to a more involved and more useful extension.
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7.5 A Minimal Cost C-cover.

One of the more obvious deficiencies of the solution to the

targeting problem of section one is that when only one 1-set is computed,

that particular set might Include a target very heavily fortified

whereas one not as heavily fortified might have been a member of another

minimal a~set. One approach to remedy this deficiency would be to

compute all minimal a-setsj and indeed the approach will be mentioned

subsequently. However,, It is also possible that for some variety of

reasons , It would be preferable even to destroy more than the minimum

number of targets. The term, preferable, indicates that there might

be a utility function or cost function associated with the problem.

The extension of the algorithm so that it may handle costs

associated with the columns is perhaps the most interesting extension

that we shall discuss. The author believes that this extension might

result in a decrease in the computation time required. The belief is

based upon the observation that the lower bounds calculated in the pre-

sent program are relatively close to each other. Thus there is entirely

too much switching away from one branch, to another,, and then back to

the original branch. With a wide difference among the column costs,

however, the differences among the various estimates of the C~wldth

of the original matrix should be equally wide. This will serve to

reduce the unnecessary switching from branch to branch. That is, it

is more likely that when a branch is dropped by the algorithm, it is

because that branch has become unprofitable.

Suppose we assign to each column of the matrix a . cost, which need

not be integral, and may be positive, negative, or zero. We would

then be Interested in finding a C-cover (or an a -set) which has
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minimum cost associated with it. Of course, such a C-cover might

not be a minimal C-cover as defined previously.

The modification to the computer program would be surprisingly

simple. The cost vector would be read in, and let us assume stored in

COMMON. Now the "infinity" for unfeasible column combinations must be

increased to some arbitrarily large number. An estimate of e(C) would

be calculated for each sub-matrix using the same subroutine as present-

ly used for a > 1. From subroutine BOUND, however, the program

would enter a new subroutine, such as subroutine COST presented in

Figure 27. In this subroutine, a cost for the p just computed would

be estimated. The estimate would be optomistic in the sense that the

cost for the columns would be the sum of the smallest cost components

not already used on this branch. For example, consider a cost vector,

(1,2,3). Assume that, on the current branch, column one has been

either included or excluded, and that we have computed p « 1. Then

the cost for the sub-matrix would be estimated as twoj and the esti-

mate of the cost for the minimal C-cover would be two plus the cost of

column one, if column one had been included, or two, if column one

had been excluded.

Finally, either in the same subroutine, or in the main program, the

cost of the set of currently included columns would be computed and

stored in place of the argument, VCOL(l) of the current program. Also,

VEPSILON(I) of the current program would be replaced by the sum of

VCOL(I) and the cost estimate just computed in subroutine COST, as

described in the above paragraph.

The reader is reminded that the subroutine COST of Figure 27

has not been checked out and that the remarks in this section about

decreasing total computation time represent merely the author 1 $

intuition and are not based upon observations.
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SUBROUTINE COST (EPSILON, I)

COMMON/BLOCKH/CCOST ( Ihh) /BLOCKB/lDATA( 176 1)

EQUIVALENCE (MASKC , IMASK(3)

)

TYPE LOGIC5 (3) MASKC, BIT
DIMENSIONS TEMP(llili)

DO 5 j - 1, 3

5 IMASK(J) IDATA((587*(I-l))+582+J)
N - IDATA((587*(I-l))+3)
BIT - BIT * MASKC
IF (BXT.EQ.O) 1,0, 20

10 K - K * 1

TEMP(K) - CCOST(J)
IF (TEMP(K).LT.TEST) 1^, 20

15 TEST - TEMP(K)
Kl K
L - EPSILON

20 CONTINUE
IF (K.LT.L) 25, 30

25 EPSILON - l.E+20
RETURN

30 EPSILON - TEST
J s 1

35 J s J -s- l

TEST1 « TEMP(I)
DO h$ M =* 2 5 K
IF (TEMP( K) .GE .TEST .AND „TEMP(M) .LT .TEST 1.AND .Kl.NE.M) hO, 1*5

hO TEST1 « TEMP(M)
h% CONTINUE

EPSILON - EPSILON •* TEST1
TEST « TEST!
IF (J.EQ.L) 50, 35

$0 RETURN
END

Figure 27
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Once both of the above extensions have been programmed we may use

the algorithm to solve a large variety of problems which are a sub-

class of the set of integer programming problems.

7.6 An Integer Program with a (0,1) Constraint Matrix .

We merely point out in this section, a formulation of a problem

whfch the extended algorithm can solve. Given the system of linear

inequalities*
,n

b, i s l, 2, ...,m) a. ,-x. ^

where a., is either zero or one; find values for each x„ such that x.
!J J j

is either zero or one, which minimizes?
,n

Xj.

Here the c. are costs, and the b. are the components of what has pre-

viously been called the C vector.

7.7 Constraints on Combinations of Columns .

Suppose that upon any of the problems which may be solved by

extensions of the algorithm, we impose constraints of the following

type? if column a is included in the C-cover, then column b must be

excluded.

We could write a relatively short subroutine to handle this type

of constraint. It would be necessary to put the constraints in a con-

venient form, say for each constraint construct a mask of zeros except

in the bit positions corresponding to columns which cannot be included

together. For example, let there be five columns and assume two

constraints? that columns one and two cannot be included together, and

that columns three and five cannot be included together .Then the two

masks would be;
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11000 and 00101.

We put these constraints into the program in some convenient fashion

(probably by the same system used for putting the A matrix in the

current program)? and write a subroutine to compute the logical pro-

duct of each constraint with the mask of included columns. If there

are no ones in the product for any constraint, the subroutine must set

a "current" cost vector equal to the input cost vector. If there are

two or more ones in any single product, the subroutine must indicate

that an infeasible column selection has been made. Finally, for each

constraint with exactly one "1" in the product, set the "current"

cost of every "1" in the constraint to " infinity"! except of course,

the "1" representing the current column inclusion. We use the

"current" cost vector in computing bounds instead of the input cost

vector.

7.8 Finding All Minimal C-covers of the Matrix .

It is possible to simplify the search for minimal C~covers once

the first one has been located. The same algorithm applies except that

we have information to rule out as infeasible , any set of columns

which yields an estimate of e(C) larger than the computed C-width.

Although the simplification would contribute to a substantial savings

in computation time for each additional minimal C=cover<, it is believed

that for most problems the search for all minimal C-covers would re-

quire more computation time than the results would warrant.
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