
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2008-06

An analysis of related software cycles among

organizations, people and the software industry

Adams, Brady.

Monterey California. Naval Postgraduate School

http://hdl.handle.net/10945/4105

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN ANALYSIS OF RELATED SOFTWARE CYCLES AMONG
ORGANIZATIONS, PEOPLE AND THE SOFTWARE

INDUSTRY

by

Robert Moore
Brady Adams

June 2008

 Thesis Advisor: Glenn Cook
 Second Reader: Thomas Housel

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

June 2008
3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE An Analysis of Related Software Cycles Among
Organizations, People and the Software Industry

6. AUTHOR(S) LT Robert Moore, CPT Brady Adams

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

There is a need to understand cycles associated with software upgrades as they effect people,
organizations and the software industry. This thesis intends to explore the moderating factors of these
three distinct and disjointed cycles and propose courses of action towards mitigating various issues and
problems inherent in the software upgrade process.

This thesis will acknowledge that three related but disjointed cycles are common in many software
upgrade ventures in today’s organizations:

a. End-user characteristics in adapting to new software
b. Organizational ability to adopt new software
c. The software industry’s motivation and processes in introducing new software

Realizing the importance of these related cycles involves developing an understanding of several aspects
we research in this study. First, awareness in understanding why users adopt new software and the
demographic factors involved, such as gender, age and experience are considered. Second, we present
how organizations integrate new software by exploring factors such as cost, time, reliability and benefit
analysis. Last, we provide evidence supporting motivating forces and factors behind software introduction
rates within the software industry. These important aspects together culminate in cyclical phenomenon
managers and executives need to be aware of, as implementing new software upgrades have become an
inevitable undertaking in most of today’s organizations.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS Software implementation, Software cycles, Software in the DoD

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ANALYSIS OF RELATED SOFTWARE CYCLES AMONG ORGANIZATIONS,
PEOPLE AND THE SOFTWARE INDUSTRY

Robert W. Moore

Lieutenant, United States Navy
B.S., Troy State University, 1999

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS AND TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Brady Adams

Captain, United States Army
B.S., Excelsior College, 2005

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS AND TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: LT Robert W. Moore

CPT Brady Adams

Approved by: Mr. Glenn R. Cook
Thesis Advisor

Dr. Thomas J. Housel
Second Reader

Dr. Dan Boger
Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

There is a need to understand cycles associated with software upgrades

as they affect people, organizations and the software industry. This thesis

intends to explore the moderating factors of these three distinct and disjointed

cycles and propose courses of action towards mitigating various issues and

problems inherent in the software upgrade process.

This thesis will acknowledge that three related but disjointed cycles are

common in many software upgrade ventures in today’s organizations:

d. End-user characteristics in adapting to new software

e. Organizational ability to adopt new software

f. The software industry’s motivation and processes in introducing new

software

Realizing the importance of these related cycles involves developing an

understanding of several aspects we research in this study. First, awareness in

understanding why users adopt new software and the demographic factors

involved, such as gender, age and experience are considered. Second, we

present how organizations integrate new software by exploring factors such as

cost, time, reliability and benefit analysis. Last, we provide evidence supporting

motivating forces and factors behind software introduction rates within the

software industry. These important aspects together culminate in cyclical

phenomenon managers and executives need to be aware of, as implementing

new software upgrades have become an inevitable undertaking in most of

today’s organizations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. BACKGROUND ... 1

1. Known Upgrade Problems.. 5
2. Importance of Upgrade Issues ... 8

II. METHODOLOGY.. 11
A. QUALITATIVE APPROACH .. 11
B. RESEARCH DESIGN... 12
C. CONCEPTUAL DESIGN.. 13

1. Description of the Diagram... 14

III. USERS, ORGANIZATIONS AND SOFTWARE INDUSTRY 15
A. USER ADAPTATION CYCLES ... 15

1. Exploring the UTAUT Model ... 15
a. Performance Expectancy ... 19
b. Effort Expectancy.. 21
c. Social Influence... 22
d. Facilitating Conditions ... 24

2. Exploring a Revised UTAUT Model 26
a. Training.. 28
b. Shared Belief ... 29
c. Communication... 29

B. ORGANIZATION ADOPTION CYCLES .. 31
1. Critical Software Upgrade Questions 32

a. Motivating Forces ... 34
b. Contingency Forces.. 36
c. Decision... 36
d. Impacts .. 36
e. Corrective Actions .. 36
f. Planned Strategies.. 37

2. Software Implementation .. 37
3. Case Study on Windows Vista Implementation 42

a. Future Preparedness .. 44
C. SOFTWARE INDUSTRY DEVELOPMENT CYCLES........................ 45

1. Vendor Benefits from Improving Development Times 47
2. Money, Time and Quality... 47
3. Lessons for the Software Industry....................................... 50

a. Lessons for Practice... 51
b. Lessons for Cycle Time Theory................................. 53

IV. CONCLUSIONS AND RECOMMENDATIONS... 57
A. ANALYSIS AND RECOMMENDATIONS .. 57
B. TIMING AND FLEXIBILITY.. 62

 viii

C. STARTING POINT IN USING THIS RESEARCH METHOD.............. 63
D. FUTURE DIRECTIONS CONCERNING THE USER CYCLE 66
E. FUTURE DIRECTIONS CONCERNING THE SOFTWARE

INDUSTRY CYCLE.. 67
F. FUTURE DIRECTIONS CONCERNING THE ORGANIZATION

CYCLE ... 67

LIST OF REFERENCES.. 69

INITIAL DISTRIBUTION LIST ... 73

 ix

LIST OF FIGURES

Figure 1. Windows Software Cycle From Windows History
http://www.microsoft.com/windows/WinHistoryProGraphic.mspx
Last accessed May 2008.. 4

Figure 2. Software Upgrade Cycle... 13
Figure 3. UTAUT Research Model From (Venkatesh, V. et al. 2003)................ 18
Figure 4. Seymour et al. Adjusted UTAUT Research Model From (Seymour,

L. et al. 2007) ... 28
Figure 5. Induced Model From (Khoo 2005).. 33
Figure 6. Reasoned Innovation Model From (Swanson and Wang 2005) 38
Figure 7. Components Requiring Upgrades within the 50% not meeting

requirements. From (Williams 2006).. 43
Figure 8. Percentage increases in system requirements, 2000-2006 From

(Microsoft) .. 44
Figure 9. Spending on Software Design, Development and Testing Tools

From (Carmel, E. 1995).. 51
Figure 10. Self-Reported Trade Offs for Successful Product Development

From (Carmel, E. 1995).. 53
Figure 11. Software Upgrade Cycle with Corresponding Driving Forces............. 58

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Key data characteristics From (Venkatesh, V. et al. 2003)................ 16
Table 2. Performance expectancy: Root Constructs, Definitions, and Scales

From (Venkatesh, V. et al. 2003).. 20
Table 3. Effort Expectancy: Root Constructs, Definitions and Scales From

(Venkatesh, V. et al. 2003) ... 22
Table 4. Social Influence: Root Constructs, Definitions and Scales From

(Venkatesh, V. et al. 2003) ... 24
Table 5. Facilitating Conditions: Root Constructs, Definitions and Scales

From (Venkatesh, V. et al. 2003).. 25
Table 6. Key Factors From (Swanson and Wang 2005)................................... 39
Table 7. Models A-H From (Swanson and Wang 2005) 41
Table 8. Actions and Benefits for Windows Vista Deployment From

(Williams 2006)... 45
Table 9. PDMA survey on shrinking cycles in product development From

(Sims, D. 1997) .. 46
Table 10. Advantages and Disadvantages of the User Adaptation Cycle 59
Table 11. Advantages and Disadvantages within the Organization Adoption

Cycle .. 60
Table 12. Advantages and Disadvantages within the Software Industry’s

Introduction Cycle... 61
Table 13. Software Industry’s Cycle and Proposed Considerations and

Actions.. 64
Table 14. Organization Cycle and Proposed Considerations and Actions 65
Table 15. User Cycle and Proposed Considerations and Actions 66

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

We are extremely fortunate and thankful to have access to all the

resources and professional expertise here at the Naval Postgraduate School.

One person who stands out from the crowd, however, is Glenn Cook. We have

had the privilege of being his students for several challenging courses throughout

our time at NPS and we’ve come to learn, experience and grow from his

knowledge and expertise. During one of Glenn’s class lectures, he introduced

the topic of this thesis and its related but disjointed cycles were discussed. He

made us keenly aware that this phenomenon needed particular attention and

research because thus far, the cycles had not been adequately studied in unison.

He was right, we found many studies focused on user adaptation, organizational

adoption or industry cycles as if they were separate and not related in significant

ways. Our interest grew from what started as a 15-minute class discussion into

the work and research culminating in this thesis.

We thank you Glenn, for sparking our interest, guiding us in our research and

challenging us to take our thoughts into areas understudied and unknown.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

Fifteen years ago most people didn’t use software in their daily lives.

Affordable computing didn’t exist, and for those few people who did use

computers as part of their daily routine, did so from expensive terminals

operating proprietary software and hardware configurations, which usually

required extensive training and ongoing support (Platt 2007).

That has changed completely. Almost overnight, in societal terms,

cheaper hardware, software and networked computers have paved a path for the

information superhighway. People use computers to pay creditors on-line using

high speed internet access, send pictures, post web sites, stream video, chat,

and a myriad of other processes. The modern business uses computers and

software as a tool for gaining an edge over their competitors by bringing products

and services to their customers in more convenient and timely ways. An

explosion of information, data, resources and trade has been made possible

through the globally interconnected world we know today.

Many people today find themselves using technology whether they want to

or not. Computers and software present endless opportunities for the wide

variety of users including the entrepreneur, CEO’s, artists and young gamers

everywhere. On the other hand, some users find themselves getting bogged

down in the never-ending barrage of new technology implementations in their

workplace. For example, many of these people might realize that their

organization’s new software may provide an advantage over their competitor, or

may simply provide a new aspect of convenience for their customers. All too

often, however, changing to new software may be anything but advantageous or

convenient for those involved in the software implementation and adoption. In

fact, as technology and affordability of computer systems increase and become

more popular for people and their organizations, the associated software choices

2

too become more plentiful and complex. People trying to keep up with new

advances in software might be a little overwhelmed when faced with new and

improved user interfaces because it takes time to learn and adapt to the new way

of doing business. In the workplace, people are expected to use many different

kinds of software to carry out business as usual. In large organizations hundreds

of software applications and packages are used to manage products, services

and human resources and as time passes, new iterations and upgrades to these

applications become available. Software manufacturers push their new software

products based on speed, capabilities, ease of use and any number of other

qualities that support their claims of a better version than the last one, and in

many cases their claims are true. After all, this is the fundamental expectation of

what we call “upgrades”.

We’ve come to understand that new software upgrades are supposed to

make life easier in the workplace. A new upgrade might enable us to get work

done safer, faster, and easier or in some way provide better aesthetics, which is

perceived to be more professional. In any case, what we want to believe is that

upgrading software will improve the business process, increase competitive

advantage and provide better customer service. Unfortunately, it’s not as simple

as just purchasing, installing an upgrade and receiving immediate improvements.

“We live our lives in a sea of software, but most users have no idea how

software is developed or why it works the way it does. We only know that we

don’t like it very much.” (Platt 2007). In addition, most users don’t know how to

use software to it’s full potential. In many cases, software manufacturers release

their software products for sale knowing significant flaws and bugs exist but in

many cases, tight deadlines, budgets constraints or confidence their new

software will sell anyway, entices premature releases. The release of buggy

software only creates more frustration and delays for the end user contributing to

resistance of future software changes in the workplace. By and large, users tend

to develop their own cycle when implementing new software, but moderating

factors often include training, ones resistance to the change, and the amount of

time it takes him or her to become comfortable and productive with the software.

3

Adopting new software within organizations has cycles as well, although

for different reasons than end user cycles. An organization’s motives for

changing, or not changing, to new software vary from such things as necessity,

opportunity and affordability. For instance, an organization may upgrade to new

software because not doing so would interfere with its user’s ability to accomplish

important business functions. Additionally, an organization might adopt new

software to capitalize on an opportunity, which may lead to an advantage over its

competitors. Sometimes organizations simply change to new software because

they have the money to spend on what they perceive as a new and improved

version. No matter the reason, organizations have cycles in adopting new

software, and those cycles may be quite different from the user’s cycle.

Software manufacturers also have cycles and producing and selling new

software as quickly as possible for the sake of profit seems to be the name of the

game in many cases. In fact, new technologies are introduced to the market at a

pace that makes it difficult for organizations and their users to keep up with. The

software industry’s strategies rely heavily on reducing their product’s time to

market. Often times, quality and proper documentation take a back seat to

product diversity and approaching release deadlines (Carmel, E. 1995).

Upgrades in software are inevitable and with more and more businesses

adapting to computing technology in daily operations, new software has become

an essential part of an organization’s IT portfolio. According to a report by IDC,

America’s applications software market was $54.8 billion in 2005 and is projected

to increase to $76.5 billion by 2010 (IDC 2006). Today, many organizations

upgrade by purchasing and implementing packaged software. This is

commercial software that is available for sale off the shelf, like MS Windows

operating systems, office suites and so on. There are many kinds of software

packages, ranging from end user applications to database management systems

to telecommunication protocols. Additionally, outsourcing IT is becoming more

and more popular as well as implementing Enterprise Resource Planning (ERP)

solutions. Outsourcing and ERP solution are aimed at hiring outside organization

to manage IT lifecycles, support, and upgrades.

4

As software companies respond to business demands and add new

features to make software perform better, new versions of software are being

released into the market in frequent succession (Paine 2000). In fact, between

the years 1995 and 2001, Microsoft launched 6 Desktop operating systems as

shown in Figure 1.

Figure 1. Windows Software Cycle
From Windows History

http://www.microsoft.com/windows/WinHistoryProGraphic.mspx Last
accessed May 2008.

To managers everywhere, it is a constant question of whether the current

version of software is “obsolete,” or outdated, and warrants an upgrade. The

decision to upgrade is often times not in the hands of the end user or the

organization.

5

Unless they are licensed to have total code autonomy, an upgrade can be just a

matter of timing (Paine 2000). The question then becomes: when should they

upgrade?

So how do managers within organizations determine if it’s time to

upgrade? If managers felt for example, that Windows XP is still sufficient for their

current needs, should they migrate to the latest version – Windows Vista? What

are the factors that influence their decision? What implications does it have for

their organization in terms of business operating procedures, policies and

doctrine? Will the manufacturer still support the older version of software that the

business is running now? These are some of the questions that organizations

ask every time a new version of software package emerges from the market.

Deciding how and when to upgrade are not the only problems facing IS

management, however, upgrades usually carry unexpected consequences as will

be addressed later in the organization adoption cycle.

1. Known Upgrade Problems

People often associate upgrades with better quality. Organizations

usually upgrade to the latest version of software to attain efficiency and improved

functionality that the current software lacks (Paine 2000). Most people would

assume that simply updating or upgrading their software means they would reap

the benefits of more useful features and functions, which presumably increases

users’ productivity. Ideally, a software upgrade will fix existing bugs and enhance

operability. Unfortunately, many software upgrades have many problems upon

first execution because they rarely work properly or as initially intended in the

beginning. Sometimes this is due to legacy software incompatibility buggy

software, or lack of knowledge.

A 2002 study commissioned by the National Institute of Standards and

Technology found software bugs cost the U.S. economy about $59.5 billion

annually. The same study found that improving testing could have mitigated

more than a third of that cost –about $22.2 billion.

6

Although upgrades don’t cause headaches for everyone everyday, routine

upgrades often cause unexpected problems. Currently many people and

organizations are upgrading to the Windows Vista (WV), an operating system

created by Microsoft as an upgrade to Windows XP. Windows Vista was

released in several stages; on November 30, 2006 it was released to business

customers, computer hardware and software manufactures, and to the rest of the

world on January 30, 2007. What people are finding is that Vista’s Aero interface

requires a specific set of video capability including: a DirectX 9 (or better) 3D

graphics processor that supports 32 bits per pixel, and Pixel Shader 2.0. It must

also be offered with a WDDM (Windows Vista Display Driver Model) driver.

Additionally, the following hardware recommendations are common for a Vista

upgrade: Intel (or comparable AMD) 1.8GHz (minimum) Pentium 4 CPU, 2GB of

RAM, 80GB hard drive (60GB if you're clean installing) and a DVD drive. What

this means for some people and organizations with outdated equipment is that a

simple upgrade either won’t work properly on their existing machines or they are

faced with upgrading their hardware along with the software. Many think an

upgrade is just a simple task of installing the next version of software, overlaying

new code over old code, upgrading to new software can lead to many problems

(Paine 2000).

As mentioned on the previous page, one of the problems inherent in

packaged software is that known bugs haven’t been ironed out before release. It

has been found that one out of seven software firms deliver code without

adequate prior testing (Minasi and Garde 1999). Another cause for upgrade

problems is vendors’, and their modifications of previous design logic. This often

times renders the new version incompatible with the old. For example, the file

format has been changed in the new Microsoft Office 2007 suite from previous

versions. For older versions of Office to read the new 2007 file format, you must

install the Microsoft Office Compatibility Pack for 2007 Office Word, Excel and

PowerPoint file formats.

Frequent upgrades can be frustrating and troublesome to programmers,

users and administrators when the upgrade produces or results in down-time, or

7

complications. For administrators, many man-hours are spent on correcting the

faulty code or other quality user interface problems that come with an upgrade.

Most organizations have spent at least some portion of their IT budget on test

bed equipment, which simulates their live environment in some way. From

exposing upgrades, patches and service packs to the test bed, IT professionals

can catch bugs before they launch the new products in the real environment.

Organizations that choose not to spend resources on testing, or can’t afford to

spend limited resources on testing facilities and equipment, assume great risk.

Sometimes this risk is at the expense of their users and the users’ productivity

levels. For the unlucky, the upgrade version that was supposed to bring

improvements inevitably slows down productivity when the software doesn’t work

properly after installation.

These problems in upgrading software can have a profound effect on the

cycles associated with the new changes people and organizations are willing to

make. Software is expensive especially where large organizations are

concerned. Managers are therefore reluctant to purchase software if it’s going to

cause them problems from the start, if it’s not compatible with older versions of

the same software, or if they need to purchase new hardware to accommodate

upgrades. For example, the British Educational Communications and

Technology Agency (BECTA), responsible for advising British schools and

colleges on their IT use, conducted a report on Microsoft Vista and Office 2007.

Their results concluded that British schools should not make the upgrade (Becta

2008). The BECTA report recommended that British schools should not

introduce the software piecemeal alongside other versions of Windows, or

upgrade older machines.

“We have not had sight of any evidence to support the argument that the

costs of upgrading to Vista in educational establishment would be offset by

appropriate benefit,” it said.

About Office 2007 it remarked, “There remains no compelling case for

deployment.”

8

BECTA warned schools that do choose to upgrade to Office 2007 should

avoid Microsoft’s OOXML (Office Open XML) document format because of

concerns about compatibility between different applications, even though

interoperability is one of the benefits Microsoft claims for the format.

We assume that reports like BECTA’s affect people’s motivation and

organizational time intervals associated with software upgrade cycles and we

intend to shed some light on why we think this is true in the next few chapters.

2. Importance of Upgrade Issues

Now, we will show why this area is worthy of further study. First, it is

unknown how carefully organizations are paying attention to software upgrade

problems. Until the problems are identified and studied it seems that no viable

action will emerge toward solving the issues. Second, software upgrades are a

continuous problem because once software is installed; users and organizations

will very likely want an upgrade eventually unless it is completely abandoned.

Third, the actual impacts of software upgrades are largely unknown. Anecdotal

evidence suggests that the upgrade process is problematic, however, to date, we

have been unsuccessful in finding evidence that attempts to fully understand the

problems. Fourth, it is unknown how organizational cycles of upgrades are

coping with the problems or preparing them for the next upgrade. Fifth, If the

phenomenon of software upgrade cycles can be understood, then better

strategies can be developed which might help users adapt easier, organizations

adopt more effectively and software manufacturers to develop and deploy more

efficiently.

Overall, this is an area that in our opinion has largely escaped academic

attention. Most investigations of the problems described above are gathered

from trade journals while no empirical research has been found that researches

these issues. Traditionally, academic research has focused primarily on studies

related to information systems implementation (Lucas, Walton et al. 1988; Thong,

9

Yap et al. 1996) and no studies were found to have concentrated solely on

software upgrade cycles among people, organizations and the software industry.

One possible reason for this lack of academic attention could be that it has

been overlooked as a trivial problem. If the software already exists and an

upgrade is merely providing subtle changes, then user acceptance or technology

fit may not be as big of an issue. These kinds of upgrades may not incur as

much business process change or adaptation time as completely new software

suite integration would. Still, as the problems presented in the previous chapters

indicate, unanticipated problems do occur when new software is installed.

Implementing new software upgrades warrant further research. The

objective of this study is to investigate the cyclical phenomenon associated with

new software upgrades from three standpoints: people’s ability to adapt to new

software, organizations ability to adopt and install new software, and the software

industry’s desires to introduce new software. These aspects will be compared to

understand and identify possible benefits and value among re-occurring cycles in

software implementation within organizations.

The following research questions are posed to investigate these

phenomena.

1. Primary: How are the organizational, personal and software

industry’s development and adoption cycles related?

2. Secondary 1: How might synchronization of cycles benefit adoption

of software?

3. Secondary 2: Is technology, with respect to advances in software,

moving at a pace that is too fast for large organizations like the

DoD to keep up with?

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

II. METHODOLOGY

A. QUALITATIVE APPROACH

To investigate the research questions, a qualitative approach was deemed

most appropriate. First, unlike some phenomena that can be simulated and

studied in a laboratory environment, software upgrades and how they affect

users, organizations and the software industry cannot be studied in a similar

environment. The phenomenon our research is based upon can be studied in

organizations where software upgrades were implemented, where people

adapted to upgrades and where the software industry was able to introduce

upgrades. According to Denzin and Lincoln (1998),

“Qualitative research is multi-method in focus, involving an interpretive,

naturalistic approach to its subject matter. This means that qualitative

researchers study things in their natural settings, attempting to make sense of, or

interpret, phenomena in terms of the meanings people bring to them.”

Qualitative research also has four characteristics according to Lee, Mitchel

et al. (1999) It occurs in a natural setting, it derives data from the perspective of

participants, it can be flexibly changed to accommodate the demands the

research situation, and last, it does not have standard instrumentation, which

makes notions of control, reliability and validity difficult to obtain.

The objective of this research is to study software upgrades where they

occur from three perspectives:

The organizational perspective: Where software upgrade adoption cycles

are disjointed from user cycles and software production cycles.

The user perspective: Where software upgrade adaptation cycles are

disjointed from their organization’s cycle as well as software production cycles.

12

The software industry’s perspective: Where production cycles are

disjointed from average organizational and user cycles.

Additional areas of interest will be researched in an attempt to provide at

least partial answers our secondary research questions mentioned in the last

chapter. It is assumed that as technology allows software to progress and be

produced in faster cycles, and that organizations and their users are less likely to

be capable of making use of these rapidly evolving software benefits.

Additionally, we believe that as these cycles increase in speed and complexity,

those who are unable or incapable of evolving with new software trends will be

more likely to lose vital competitive advantages.

B. RESEARCH DESIGN

From a research standpoint, our design is simplistic which allows for a

loose structure. A research design that is tight in structure is usually

characteristic of one that also has many pre-determined guidelines.

Consequently, our first question was to ask our selves how tight the preliminary

design should be and how much planning should go into it.

Some factors are important in trying to answer this question. First, it

depends on the nature of the research involved: whether the research is

exploring and understudied phenomenon, to induce a social theory, to confirm

well-defined constructs, or to investigate a hypothesis. Traditionally, a loose

structure in research design is usually common with exploratory, inductive

research whereas a tightly structured research design is usually synonymous

with confirmatory, theory testing type of research. Miles and Huberman (1994)

claim:

Much qualitative research lies between these two extremes.
Something is known conceptually about the phenomena, but not
enough to house a theory. The researcher has an idea of the parts
of the phenomenon that are not well understood and knows where
to look for these things – in which settings, among which actors.
And the researcher usually has some initial ideas about how to
gather the information. At the outset, then, we usually have at least

13

a rudimentary conceptual framework, a set of general research
questions, some notion about sampling, and some initial data-
gathering devices. (p. 17)

C. CONCEPTUAL DESIGN

“A conceptual framework explains, either graphically or in narrative form,

the main things to be studied” (Miles and Huberman 1994). The “main things”

mentioned here refer to the key elements of the research being conducted and

the relationships among them. In this case, our conceptual framework does not

represent a theoretical model awaiting confirmation. Instead, it is a map of those

elements that are to be explored in this study. The preliminary conceptual

framework is presented in Figure 2 below.

Figure 2. Software Upgrade Cycle

14

1. Description of the Diagram

There are four circles in Figure 2, Organization, Users, Software Industry

and Software Upgrade Cycle. The large circle in the middle of the diagram

represents the main topic (Software Upgrade Cycle) of our study and the smaller

circles encompassing it represent the basis of our research in examining the

main topic. Each smaller circle is labeled, on its outer edge, with the name of the

cycle associated with the area it focuses on. For example, the User circle is an

area of proposed study and it is labeled with Adaptation Cycle, which represents

the problem or issue that we assume effects the user in the most meaningful

way.

Here, our ideas are represented in the form of circles with arrows because we

want to display our interpretation that software upgrade cycles are a process model

rather than a causal model. The smaller circles are also touching the larger circle,

which is intended to represent the idea that organizations, users and the software

industry are very much linked to the software upgrade cycle process. We suspect

also that the internal and external influences that drive the organizations, users and

software industry, also drive the software upgrade cycle. From this idea, we can

“see” the smaller circles grinding away at the larger circle and spinning it. This

alludes to the fact that as the cycles of the organizations, users and software

industry increase in speed, so will the entire software upgrade cycle process speed

up.

As one can imagine, the circles spinning in an orderly or “gear-driven”

fashion, it is important to recognize that we don’t believe this process is actually

orderly. These cycles are in fact disjointed and act separately as internal and

external forces affect them. Our figure was purposely drawn with circles instead of

gears to highlight the fact that slippage occurs and the circles can spin at very

different speeds in comparison with the other circles. This represents the idea that,

for instance, the software industry cycle may be churning at a faster speed than the

organization cycle. This simply indicates that the rate at which software is being

introduced is outpacing the rate at which an organization is able to adopt that

software.

15

III. USERS, ORGANIZATIONS AND SOFTWARE INDUSTRY

A. USER ADAPTATION CYCLES

Recent research focusing on users’ adaptation to new technology is

predominantly studied using two commonly used theories, the Unified Theory of

Acceptance and Use of Technology (UTAUT) and the Technology Acceptance

Model (TAM). We will first describe these two theories and reveal assumptions

predicated on strong behavioral intentions, usage behaviors, perceived

usefulness and perceived ease of use. We will then reference the UTAUT in

attempting to explain adaptation behaviors of users in organizations through

exploring two case studies. The Technology Acceptance Model has been a

popular method in researching and realizing the importance of end-user

acceptance, a key success factor of Enterprise Resource Planning (ERP)

implementations. Criticism against applying the TAM to examine ERP

acceptance is that the use of an ERP is mandatory for an organizations end

users, while an implicit assumption of TAM is that users of the information

systems have some level of choice with regard to the extent that they use the

technology. For this reason, we will focus on using case studies that use the

UTAUT model instead of the TAM. Researchers have found that using TAM to

evaluate acceptance of new technology provides limited explanation of end-

users’ behavior, attitudes and perceptions towards the system and that the

results of studies based on the TAM may provide misleading recommendations

for organizations (Brown et al. 2002).

1. Exploring the UTAUT Model

The first case study we will focus on is called “User Acceptance of

Information Technology: Toward a Unified View” by Venkatesh, Morris, Davis, B.,

and Davis, F. This case study reviews and consolidates constructs and

extensions from eight prominent models of usage behavior to formulate the

16

Unified Theory of Acceptance and Use of Technology model. The study used

data from four organizations over a six-month period, among individuals being

introduced to a new technology in the workplace. Samples were gathered for

heterogeneity across technologies, organizations, industries, business functions

and nature of use (voluntary vs. mandatory). The approach used by Venkatesh

et al. in gathering and validating data was consistent with prior training and

individual acceptance research where individual reactions to a new technology

were studied (e.g., Davis et al. 1989; Olfman and Manviwalla 1994; Venkatesh

and Davis 2000). The methodology for acquiring the data came from a pre-

tested questionnaire containing items measuring constructs from the eight

models at three different points in time: post-training, one month after

implementation, and three months after implementation. Table 1 summarizes the

key characteristics of the organizational settings.

Table 1. Key data characteristics
From (Venkatesh, V. et al. 2003)

17

In using UTAUT and TAM, we expect to be able to shed further light on

how and why users in an organization adapt to new software. The case studies

will confirm that the theories provide a useful tool for managers needing to

assess the likelihood of success for new technology introductions and help them

understand the drivers of acceptance within their organizations. This ultimately

gives managers an advantage towards proactively designing interventions

(including training, marketing, etc.) targeted at populations of users that may be

less inclined to adopt and use new systems.

First, it is important to understand the principles of the theories described

above in order to provide a foundation in understanding users’ adaptation of new

software. We will begin by exploring the Unified Theory of Acceptance and Use

of Technology. The UTAUT aims to explain user intentions to use an Information

Systems (IS) and subsequent usage behavior. The theory holds that four key

constructs (performance expectancy, effort expectancy, social influence, and

facilitating conditions) are direct determinants of usage intention and behavior

(Venkatesh et al., 2003). Gender, age, experience, and voluntariness of use are

posited to mediate the impact of the four key constructs on usage intention and

behavior (Venkatesh et. al., 2003). The theory was developed through a review

and consolidation of the constructs of eight models that earlier research had

employed to explain IS usage behavior (theory of reasoned action, technology

acceptance model, motivational model, theory of planned behavior, a combined

theory of planned behavior/technology acceptance model, model of PC

utilization, innovation diffusion theory, and social cognitive theory). Subsequent

validation of UTAUT in similar studies found it to account for 70% of the variance

in usage intention (Venkatesh et. al., 2003).

Of the eight models listed above, Venkatesh et al., theorizes that four of

the constructs play a significant role as direct determinants of user acceptance

behavior. These are performance expectancy, effort expectancy, social influence

and facilitating conditions. Each of the determinants is impacted by the role of

their key moderators, which are gender, age, voluntariness and experience.

Exploring these determinants and their key moderators reveal theoretical

18

justification in explaining the phenomena about how and why users in an

organization adapt to new software. Figure 3 shows the Venkatesh et al.

research model, which depicts the four determinants and their four key

moderators. Note that the model shows these constructs as directly influencing a

user’s behavioral intention and use behavior.

Figure 3. UTAUT Research Model
From (Venkatesh, V. et al. 2003)

The four key constructs (performance expectancy, effort expectancy,

social influence and facilitating conditions) according to Vanketesh et al., are

used to explain significant direct determinants of user acceptance and usage

behavior. In the remainder of this section we define each of the determinants,

specify the role of the key moderators (gender, age, voluntariness, and

experience), and provide the theoretical justification relating to user adaptations

to new software and subsequent usage behavior.

19

a. Performance Expectancy

Performance expectancy is defined as the degree to which an

individual believes that using the system will help him or her to attain gains in job

performance. The performance expectancy construct was found to be the

strongest predictor of intention and remained a significant indicator at all points of

measurement in both voluntary and mandatory settings within the Venkatesh et

al. case study. Five constructs pertaining to performance expectancy were

consolidated from the eight previously mentioned models, they are:

• perceived usefulness

• extrinsic motivation

• job-fit

• relative advantage

• outcome expectation

Table 2 describes each of these root constructs and describes the

scales used for the study. Within each scale is a list of items that correspond to

perceptions on the performance expectancy realized by each individual user.

These items are of particular interest as they relate to explanations regarding

usage behavior and intent to use the new technology.

20

Performance Expectancy: Root Constructs, Definitions and Scales
Perceived Usefulness The degree to which a person

believes that using a particular
system would enhance his or her
job performance

1. Using the systems in my job would enable me to
accomplish tasks more quickly.

2. Using the system would improve my job
performance.

3. Using the system in my job would increase my
productivity.

4. Using the system would enhance my effectiveness
on the job

5. Using the system would make it easier to do my
job

6. I would find the system useful in my job.
Extrinsic Motivation The perception that users will want

to perform an activity because it is
perceived to be instrumental in
achieving valued outcomes that are
distinct from the activity itself, such
as improved job performance, pay,
or promotions

 Extrinsic motivation is operationalized using the same
items as perceived usefulness (items 1 through 6
above)

Job-fit How the capabilities of a system
enhance an individual’s job
performance

1. Use of the system will have no effect on the
performance of my job.

2. Use of the system can decrease the time needed
for my important job responsibilities

3. Use of the system can significantly increase the
quality of output on my job

4. Use of the system can increase the effectiveness
of performing job tasks

5. Use can increase the quantity of output for the
same amount of effort

6. Considering al tasks, the general extent to which
use of the system could assist on the job.
(different scale used for this item)

Relative advantage The degree to which using an
innovation is perceived as being
better than using its precursor

1. Using the system enables me to accomplish tasks
more quickly

2. Using the system improves the quality of the work
I do.

3. Using the system makes it easier to do my job
4. Using the system enhances my effectiveness on

the job
5. Using the system increases my productivity

Outcome expectations Outcome expectations relate to the
consequences of the behavior

If I use the system…
1. I will increase my effectiveness on the job
2. I will spend less time on routine job tasks
3. I will increase the quality of output of my job
4. I will increase the quantity of output for the same

amount of work
5. My coworkers will perceive me as competent
6. I will increase my chances of obtaining a

promotion
7. I will increase my chances of getting a raise

Table 2. Performance expectancy: Root Constructs, Definitions, and Scales
From (Venkatesh, V. et al. 2003)

Venkatesh et al., expected that from a theoretical standpoint, the

relationship between performance expectancy and intention are moderated by

gender and age. Research on gender differences have indicated that men tend

to be more task oriented than women (Minton and Schneider 1980) and,

therefore, performance expectancies, which mainly focus on task

accomplishment, are likely to be especially prominent to men. Similar to gender,

21

age is theorized to play a moderating role (Venkatesh et al. 2003). Previous

research on job related attitudes suggest that younger workers may place more

importance on extrinsic rewards (Hall and Mansfield 1995). It is also important to

note that studies of gender differences can be misleading without reference to

age. A good example points towards the traditional societal gender roles where

job related factors may change significantly (e.g., become supplanted by family-

oriented responsibilities) for working women between the time that they enter the

labor force and the time they reach child-rearing years. Thus, we surmise that

gender and age both influence performance expectancy such that the effect

tends to be stronger for men and particularly for younger women.

b. Effort Expectancy

Effort expectancy is defined as the degree of ease associated with

the use of the system. The effort expectancy construct is significant in both

voluntary and mandatory usage contexts but tends to become less significant

over periods of extended and sustained usage. Venkatesh et al. concludes that

the influence of effort expectancy on behavioral intention is moderated by

gender, age and experience, such that the effect is stronger for women,

particularly younger women, and particularly at early stages of experience. Table

3 describes each of these root constructs and describes the scales used for the

study. Within each scale is a list of items that correspond to perceptions on the

effort expectancy realized by each individual user. These items are of particular

interest as they relate to explanations regarding usage behavior and intent to use

the new technology.

22

Effort Expectancy: Root Constructs, Definitions and Scales
Percieved Ease of Use The degree to which a person

believes that using a system would
be free of effort

1. Learning to operate the system would be easy
for me.

2. I would find it easy to get the system to do what I
want it to do.

3. My interaction with the system would be clear
and understandable

4. I would find the system to be flexible to interact
with

5. It would be easy for me to become skillful at
using the system

6. I would find the system easy to use
Complexity The degree to which a system is

perceived as relatively difficult to
understand and use

1. Using the system takes too much time from my
normal duties.

2. Working with the system is so complicated, it is
difficult to understand what is going on

3. Using the system involves too much time doing
mechanical operations (e.g., data input)

4. It takes too long to learn how to use the system
to make it worth the effort

Ease of Use The degree to which using an
innovation is perceived as being
difficult to use

1. My interaction with the system is clear and
understandable

2. I believe that it is easy to get the system to do
what I want it to do.

3. Overall, I believe that the system is easy to use.
4. Learning to operate the system is easy for me.

Table 3. Effort Expectancy: Root Constructs, Definitions and Scales
From (Venkatesh, V. et al. 2003)

Effort expectancy has been found to be more salient for women

than for men (Venkatesh and Mooris 2000) and (Bem and Allen 1974). Similar to

performance expectancy, gender differences are commonly driven by gender

roles. Increased age has been found to be associated with difficulty in

processing complex stimuli and allocating attention to information on the job,

both of which may be necessary when using software systems (Plude and Hoyer

1985).

c. Social Influence

Social influence is defined as the degree to which an individual

perceives that important others believe he or she should use the new system.

Each construct associated with social influence contains the explicit or implicit

notion that the individual’s behavior is influenced by the way in which they

believe others will view them as a result of having used the technology. Social

influence in technology acceptance decisions is complex and subject to a wide

range of contingent influences. Intention to use and behavior studies show that

23

none of the social influence constructs are significant in voluntary contexts; however,

each becomes significant when use of a system is mandatory. Venkatesh et al.

concludes that in mandatory settings, social influence appears to be important only

in the early stages of individual experience with the technology, but its role erodes

over time and eventually becomes nonsignificant with sustained usage. Social

influence has an impact on individual behavior through three mechanisms:

compliance, internalization, and identification. The compliance mechanism causes

an individual to simply alter his or her intention in response to social pressure (i.e.,

the individual intends to comply with the social influence). Internalization and

identification relate to altering an individuals belief structure and/or cause an

individual to respond to potential social status gains. Prior research suggests that

individuals are more likely to comply with others’ expectations when those referent

others have the ability to reward the desired behavior or punish nonbehavior

(Warshaw 1980). Technology acceptance studies indicate that reliance on others’

opinions is also significant only in mandatory settings and particularly in the early

stages of experience, when an individual’s opinion may be relatively ill-informed or

premature (Venkatesh and Davis 2000). Venkatesh et al., theorizes that women

tend to be more sensitive to others’ opinions and therefore find social influence to be

more salient when forming an intention to use new technology. Additionally, older

workers have been found to be more likely to place increased salience on social

influences, with the effect declining as more experience is gained. Thus, the

influence of social influence on behavioral intention is moderated by gender, age,

voluntariness and experience, such that the effect will be stronger in women,

particularly older women, and particularly in mandatory settings in the earlier stages

of experience.

Table 4 describes each of the root constructs associated with social

influence and describes the scales used for the study. Within each scale is a list of

items that correspond to perceptions on the effort expectancy realized by each

individual user. These items are of particular interest as they relate to explanations

regarding usage behavior and intent to use the new technology.

24

Social Influence: Root Constructs, Definitions and Scales
Subjective Norm The person’s perception that most people

who are important to him think he/she
should or should not perform the behavior
in question

1. People who influence my behavior think
that I should use the system

2. People who are important to me think that
I should use the system

Social Factors The individual’s internalization of the
reference group’s subjective culture, and
specific interpersonal agreements that the
individual has made with others, in specific
social situations

1. I use the system because of the
proportion of coworkers who use the
system

2. The senior management of this business
has been helpful in the use of the system

3. My supervisor is very supportive of the
use of the system for my job

4. In general, the organization has
supported the use of the system

Image The degree to which use of an innovation is
perceived to enhance one’s image or status
in one’s social system

1. People in my organization who use the
system have more prestige than those
who do not

2. People in my organization who use the
system have a high profile

3. Having the system is a status symbol in
my organization

Table 4. Social Influence: Root Constructs, Definitions and Scales
From (Venkatesh, V. et al. 2003)

d. Facilitating Conditions

Facilitating conditions are defined as the degree to which an

individual believes that an organizational and technical infrastructure exists to

support the use of a system. The concept is characterized by three different

constructs: perceived behavioral control, facilitating conditions and compatibility.

Each of these concepts includes aspects of the technological and/or

organizational environment that are designed to remove barriers to use. Table 5

describes each of the root constructs associated with facilitating conditions and

describes the scales used for the study. Within each scale is a list of items that

correspond to perceptions on the effort expectancy realized by each individual

user. These items are of particular interest as they relate to explanations

regarding usage behavior and intent to use the new technology.

25

Facilitating Conditions: Root Constructs, Definitions and Scales
Perceived Behavioral Control Reflects perceptions of internal and

external constraints on behavior and
encompasses self-efficacy, resource
facilitating conditions, and technology
facilitating conditions

1. I have control over using the system
2. I have the resources necessary to use

the system
3. I have the knowledge necessary to use

the system
4. Given the resources, opportunities and

knowledge it takes to use the system, it
would be easy for me to use the system

5. The system is not compatible with other
systems I use

Facilitating Conditions Objective factors in the environment that
observers agree make an act easy to do,
including the provision of computer
support

1. Guidance was available to me in the
selection of the system

2. Specialized instruction concerning the
system was available to me

3. A specific person (or group) is available
for assistance with the system
difficulties

Compatibility The degree to which an innovation is
perceived as being consistent with
existing values, needs, and experiences
of potential adopters

1. Using the system is compatible with all
aspects of my work

2. I think that using the system fits well
with the way I like to work

3. Using the system fits into my work style

Table 5. Facilitating Conditions: Root Constructs, Definitions and Scales
From (Venkatesh, V. et al. 2003)

Perceived behavioral control is significant in both voluntary and

mandatory settings especially immediately after training is conducted on a new

system but tends to become non-significant by at least 1 month after

implementation. Facilitating conditions have been found not to have a significant

influence on behavioral intention but do seem to have a direct influence on usage

beyond factors explained by behavioral intentions alone. Facilitating conditions

are also modeled as a direct antecedent of usage (i.e. not fully mediated by

intention). In fact, the effect is generally expected to increase with experience as

users of the new technology find different avenues for help and support

throughout the organization. Studies in organizational psychology have found

that older workers attach more importance to receiving help and assistance on

the job (Hall and Mansfield 1995). Thus, Venkatesh et al. concludes, when

moderated by experience and age, facilitating conditions have a significant

influence on usage behavior. This effect becomes stronger for older workers,

particularly with increasing experience.

From a theoretical perspective, UTAUT provides a refined view of

how the determinants and usage behavior evolve over time. It is important to

note that most of the key relationships of the model are moderated. Age has

26

received very little attention in the study of technology acceptance research

literature, yet numerous recent studies like UTAUT show that age moderates all

of the key relationships. Gender, which has received more recent attention, is

also a key moderating influence, however, it appears to work in concert with age.

As more studies in sociology and psychology appear in an IT context, it is

apparent that as the younger population of our workforce matures, gender

differences, in how each perceives information technology may disappear. This

is a hopeful sign and suggests that gender differences in the use of information

technology may be transitory, especially concerning the younger generation of

workers raised and educated in today’s digital age.

2. Exploring a Revised UTAUT Model

As discussed earlier in this section, we intend to use a second case study

wherein UTAUT is used to explain users’ acceptance of new technology. In End-

Users’ Acceptance of Enterprise Resource Planning Systems: An Investigation of

Antecedents by Symour, L., Makanya, W., and Berrange, S., this phenomenon is

further studied based on user acceptance of an ERP implementation at the

University of Cape Town, South Africa. Symour et al., propose a research model

that is an adjustment to the UTAUT and contains the dependant variable

Symbolic Adoption that has been shown to better indicate end-user acceptance

of mandatory technologies by Nah, Tan and Teh (2004). The research model

was validated using a 2006 survey of users of the PeopleSoft Student

Administration System at the University of Cape Town. The PeopleSoft system

is mainly used for the maintenance of access to student related data and for

student processes such as registration and graduation.

Before we discuss the research methodology, data analysis and results of

the study, it is important to briefly introduce the concept of implementing an ERP.

Enterprise Resource Planning systems are made up of a suite of integrated

software applications designed to support a business’ core functions. ERP

systems help organizations reduce operating expenses and are intended to

improve business process management through the integration of business

27

functions and information. Despite the advantages an ERP solution may provide,

research finds that their adoption is often problematic. Approximately 50% of all

ERP implementations fail to meet the adopting organizations’ expectations

(Jasperson, Carter and Zmud 2005). End user resistance is one of the main

contributing factors that lead to the failure of an ERP adoption and it has been

found that user acceptance of a system is highly dependant on attitude towards

the information system, their overall acceptance of the system, and the level of

intended usage of the system. Examining these factors is therefore important for

organizations that intend to or are installing ERP systems.

Like the study conducted by Venkatesh et al., the Seymour et al. study

used the UTAUT model with a few adjustments. The behavioral intention factor

and the use behavior factor used in UTAUT were replaced with the symbolic

adoption factor since it was viewed to provide a more suitable measure of end-

users’ acceptance from an ERP perspective. To date the UTAUT model, in a

strict sense, has not been used in validating an ERP implementation. Symbolic

adoption, first hypothesized by Rawstorne et al. (1998), is used as an improved

dependant variable and correlation between symbolic adoption and perceived

ease of use. Symbolic adoption can be described as an end-user’s “mental

acceptance of a new system (Nah et al. 2004). It is further suggested that end-

users in a mandatory setting undergo symbolic adoption before actual system

acceptance takes place. In a mandatory setting, end-users will demonstrate

differences in symbolic adoption, which can be further investigated to evaluate

and explain their acceptance levels of ERP systems. Figure 4 below represents

the research model used by Symour et al. and can be compared to the

Venkatesh et al. UTAUT model. Note that training, project communication and

shared belief are used as facilitating conditions effecting symbolic adoption,

where in the UTAUT model, facilitating conditions effect use behavior.

28

Figure 4. Seymour et al. Adjusted UTAUT Research Model
From (Seymour, L. et al. 2007)

Training, project communication and shared belief are now briefly described

below to shed further light on the Symour et al. facilitating conditions

methodology.

a. Training

Training has been identified as an important factor for implementing

ERP systems and focuses generally on training length, timing and thoroughness.

It is important to train users on a new ERP system because of the proven

positive influence on end-user acceptance of the system. Training gives end-

users time to adjust to the change that will occur and allows them to gain first

hand experience and explore the usefulness of the system. Brown et al. (2002)

noted how training increases the self-efficacy of end-users of ERP systems

because they understand better how the system may improve their job functions.

29

b. Shared Belief

Shared belief is defined as the end-users’ belief that the ERP

system will have an overall positive effect on the organization. End users

belonging to different functional areas of an organization make use of ERP

systems when they believe those systems are going to help them integrate the

organizations different business functions. The caveat is that all end-users of the

ERP system must therefore believe that the ERP system will benefit the

organization before it is accepted. Prior research in end-user acceptance of an

ERP system indicates that if all end-users have a shared belief and an

understanding of why the system is being implemented, including how it would

benefit the organization and improve their work environment, the system will be

more readily accepted.

c. Communication

An important factor in increasing user acceptance of an ERP

implementation is early and effective communication with end-users. It is

important for organizations to clearly justify the system’s benefits to establish a

shared belief among the end-users that the system will provide better

functionality within the organization. Doing this has been shown to curb end-user

resistance and facilitate acceptance of an ERP (Oliver, D., Whymark, G., and

Rohm, C. 2005). End-users who feel they are included in the decision to adopt

an ERP system from the beginning, are more likely to accept it because

communication provides information about the system and allows users to

provide feedback on issues they may have. Thus, resistance to the new system

is detected early and measures can be taken to counteract and correct aspects,

which may negatively impact the implementation effort.

Results from the Seymour et al. study correlate with the Venkatesh

et al. study in that the UTAUT model could validate relationships among end user

acceptance of a new system. In the Seymour et al. study, the independent

variables accounted for 79% of the total variation in the dependant variable,

30

symbolic adoption, for older respondents. This percentage went down to 56% for

the total group and further down to 39% for the younger respondents (where age

>35 years old). In support of the literature, positive linear correlation was found

between performance expectancy; effort expectancy; project communication;

training and shared belief, and the dependant variable symbolic adoption.

Together, as stated above, the models relationships accounted for 56% of the

variation in symbolic adoption. While this is a good result, it also indicates that

there are other variables not tested within this study which impact symbolic

adoption. This study shows that similar supporting relationships exist between

slightly different UTAUT models. Below is a list of the correlating relationships

found in the Seymour et al. study. Notice the similarities of the relationships

described in the Venkatesh et al. study.

1. The relationship between effort expectancy and symbolic
adoption is influenced by age, such that the effect will be
stronger for younger respondents.

2. The relationship between performance expectancy and

symbolic adoption is influenced by age, such that the effect
will be stronger for younger respondents.

It was determined that age is a significant moderating factor

between effort expectancy and usage of the system but that age was not a

significant moderating factor between performance expectancy and system use.

Support was also found for the following three moderating relationships:

1. The relationship between shared belief and symbolic
adoption is influenced by age, such that the effect will be
greater for older workers.

2. The relationship between project communication and

symbolic adoption is influenced by age, such that the effect
will be greater for older workers

3. The relationship between training and symbolic adoption is

influenced by age, such that the effect will be greater for older
workers.

31

The findings of both the Venkatesh et al. study and the Seymour et

al. study have high correlating relationships with respect to age. Gender was

unable to be used as a moderating variable in the Seymour et al. study because

there were only 3 male respondents in the data sample. Additionally the

Seymour et al. study was not conducted as a longitudinal study and therefore

levels of acceptance could not be validated at different points in the

implementation. These two points limited the scope of the study, however, it is

abundantly clear that the UTAUT model does validate the use of the four key

constructs (Performance Expectancy, Effort Expectancy, Social Influence and

Facilitating Conditions) and their moderators (Gender, Age, Experience and

Voluntariness of Use) despite slight variance in use of the model in the case of

Semour et al.

Both studies point to the fact that further research in this area is

critical in developing a better understanding on user acceptance of new

technology. The findings in both studies indicate the relevance to future

researchers and leaders within organizations intending to implement new

systems. It is arguable among practitioners today, that getting end-users to use

a new system correctly may be much harder and more important than actually

implementing the system itself because the success of a system is generally

measured on how well the system is used by end-users.

B. ORGANIZATION ADOPTION CYCLES

According to Moore’s Law, the number of transistors on a chip will double

every two years (Moore 1965). Moore’s law can really be thought of as a

forecast, revealing the continuous evolution, change and improvements in

information systems technology. Constant changes can be overwhelming within

a business organization attempting to maintain a competitive edge in an ever-

expanding marketplace. An organization’s motives for adopting or not adopting

new technologies vary from such things as necessity, opportunity and

affordability. Worth mentioning is the fact that there are great many other

motivating factors which moderate an organizations motives to adopt new

32

technology. For instance, an organization may upgrade to new software

because not doing so would interfere with its user’s ability to accomplish key

business processes. Additionally, an organization might adopt new software to

capitalize on an opportunity that may lead to an advantage over its competitors.

Sometimes organizations simply change to new software because of growing IT

budgets coupled with perceived benefits in new and improved product versions.

Another significant factor that entices organizations to upgrade old software is

software manufacturer support and the licensing of their software products.

Regardless of the reasons for change, upgrades in technology and in particular,

software, are to be expected.

Furthermore, in order for a business to survive in today’s fast paced

corporate environment, their value chain will inevitably incorporate some sort of

computing technology in daily operations. In fact, technology is embedded in

every value activity in a firm, and technological change can affect competition

through its impact on virtually any activity (Porter, M. 1985). These aspects have

been thoroughly studied and documented and are in part, a motivating factor

behind new software adoption practices essential in every organization.

With the understanding that software will continue to change and improve,

business managers struggle with the question of whether the current version of

software is obsolete or outdated, and warrants an upgrade. The rest of this

section will outline some of the critical questions that a manager must ask to

determine if an organization needs to adopt new software, followed by some

possible coping strategies when the choice has been made to do so.

1. Critical Software Upgrade Questions

How do managers within organizations determine if it’s time to upgrade?

If managers felt that Windows XP for example, was still sufficient to satisfy their

current business needs, should the organization still consider changing to the

latest version of Windows Vista anyway? What are the factors, which might

influence their decision? What implications does it have for their organization in

33

terms of the realignment of business operating procedures, processes, policies

and doctrine? How much longer will the manufacturer continue to support the

older version of software that the business is currently running and how does this

timeframe fit within the organizations schedule and operations? These are some

of the questions that organizations ask every time a new version of software

package emerges from the market. But, deciding if and when to upgrade are not

the only problems facing Information Systems (IS) management. They also have

to be concerned with unexpected consequences that may occur due to the

upgrade. Figure 5 below helps to identify key factors that can influence a

software upgrade.

Figure 5. Induced Model
From (Khoo 2005)

34

According to Khoo, M., Huoi the six components in this model are;

Motivating Forces, Decisions, Contingency Forces, Planned Strategies, Impacts

and Corrective Actions. These components help to identify some of the key

factors that drive software upgrades within an organization.

a. Motivating Forces

Motivating Forces can be broken down into two main categories:

Internal Requirements, and External Dependency on Software Vendors. The

Internal Requirements consist of:

• Company Policy

Organizations should develop a policy on software upgrades

that helps to provide a step-by-step process to guide owners,

managers, and stakeholders on what when and how to upgrade.

It should govern what type of software should be adapted, when

it is necessary, and guide the IT manager on choice of vendor

and support required from the vendor. In addition it should

provide some guidance on acceptable risks, investment price,

and limitations for the total cost of ownership.

• Manager’s Philosophy

Every business has an internal structure designed to

compliment the business process. In this model the manger is

considered the decision maker. If he believes Information

Technology is the key to success then he will push to upgrade

the business software every time a new product is released to

market. This may lead to a discontinuity between the user and

organizational cycles. Referring to the user adaption cycle

section; getting end-users to use a new system correctly may be

much harder and more important than actually implementing the

system itself because the success of a system is generally

35

measured on how well the system is used by end-users. There

are many other factors that the manager must consider before

making the decision to upgrade.

• Business Needs.

This is the most significant factor when considering internal

requirements. This is where the balance between

organizational functionality, business process and users’ ability

to adapt to software upgrades can be analyzed and possibly

synchronized.

The External Dependencies consist of:

• Software Functionality

The possible benefit that the improved functionality of the new

software offers plays a significant role in the decision process.

However, when making this decision a manager must consider

organizational resources, and the current organization’s

process. This is where software vendors try to influence

organizations by reducing the time it takes to release newer

versions of software packages and marketing the upgrades that

they have to offer. Organizations do not have the time to train,

adapt and see return on investment before they are supposed to

upgrade again. This can cause discontinuity between the

Organization Cycle and the Software Development Cycle

because software vendors continue to improve their ability to

produce software at a faster rate, resulting in an organization’s

inability to keep up.

• Technical Support

Vendors will continue to improve their software packages and

release updated versions. This gives vendors a tremendous

influence over the organizations upgrade decision cycle.

36

b. Contingency Forces

Contingency forces are not as defined in this model, however, they

play a key role in the decision process. Internal resources play a significant role

in an organizations decision to upgrade. The availability of internal resources

may not be the deciding factor on the decision to upgrade, however, the lack of

internal resources can be the deciding factor in the upgrade decision (Khoo,

2005). This implies that the motivating forces and internal resources act together

to determine an organization’s decision to upgrade.

c. Decision

The two arrows drawn from the Motivating Forces and Contingency

Forces to the decision component indicates that the decision to upgrade is the

outcome of the interaction between contingency forces and motivating forces.

The arrow pointing from the decision component to impacts, indicates that the

decision to upgrade will have a positive or a negative effect on the stake holders

(Khoo 2005). In addition, this will effect the users adaptation cycle, the business

process, and ultimately the business capital.

d. Impacts

The impact component will cause a positive outcome, negative

outcome or a combination of both. Every decision to upgrade will incur cost,

however, the hope is that this cost will provide a return on investment and

additional benefits. Impacts are difficult to assess, however, a software upgrade

can be assessed through the implementation process, changes in packaged

software, and other circumstantial impacts. (Khoo 2005).

e. Corrective Actions

Corrective actions can be thought of as a coping strategy. This

type of action is a reactive method devised to cope with the negative impacts that

a software upgrade has already caused. An arrow drawn from impacts to

37

corrective actions indicates the reactive nature of this component. Additionally, a

negative sign indicates that the corrective action is the response to the negative

impact that the software upgrade has caused. An additional arrow is drawn from

corrective actions back to impacts to show the changes that have been made to

counter the problem. One last arrow has been drawn using a dotted line to

indicate some of the formalization of the corrective actions that should be used

as part of the planned strategy for the next upgrade (Khoo 2005).

f. Planned Strategies

This strategy is for the sole purpose of reducing the negative

impacts that a software upgrade may cause. It has several subcategories that

play a role in mitigating negative software upgrade impacts. It has an arrow

indicating a moderating relationship that is drawn from the planned strategy to

the line connecting decisions and impacts (Khoo 2005).

These business needs and requirements are part of what

influences the decision to upgrade. “It is the fact of the organization’s

dependence on the environment that makes the external constraint and control of

organizational behavior both possible and almost inevitable” (Pfeffer and Salanik,

1978).

2. Software Implementation

As vendors become more efficient at developing, marketing and

distributing their product, organizations need to become more efficient at

deciding why to upgrade, knowing how to upgrade and knowing when to

upgrade. Whether it is packaged software, Enterprise Resource Planning (ERP)

software, Service as a Systems (SaaS) software, or another type, these three

questions are important for the successful integration of an organizational

upgrade. Burton Swanson and Ping Wang from the UCLA Anderson School of

Management, conducted an analysis of 118 firms and identified that a business’s

coordination is closely identified as a know-why factor, and management

understanding and vendor support as a know-how factor. These factors were

38

identified as vitally important to the success of organizational implementation of

ERP software. The following are some further explanations and findings that

relate to this paper. Figure 6 summarizes the success model according to

Swanson and Pang.

Figure 6. Reasoned Innovation Model
From (Swanson and Wang 2005)

Specifications: (i) A firm’s innovation reasoning will be composed
principally of know-why (for adoption) and know-how (for
implementation). Its know-how reasoning will be informed by its
know-why. (ii) A firm’s overall success with an innovation will
depend substantially upon the know-why and know-how it brings to
the undertaking. Assumptions: (i) Contextual variables will be
reflected in a firm’s innovation reasoning (and actions). (ii) Afirm’s
know-when (for its actions) will be implied by its know-why and
know-how (Swanson and Wang 2005).

39

Swanson and Pang collected their data using a multi-year mail in survey.

They found that the 118 companies were of different sizes with a median of 5000

employees and quartile range of 1550-15000 employees. They also found that

their Information Systems (IS) staff varied in a similar manner, with a median of

140 information specialists and the quartile range of 32-400 specialists. After a

complete analysis of the responses collected by the 118 companies they

developed some key factors that are relevant to Know-why, Know-how, and

success. Then they listed several indicators for each of the factors. The

indicators are the answers to some of the questions in the questionnaire. The

three factors related to Know-why are characteristics that show an adoption

rational. The four factors related to Know-how are characteristics that show an

organizational software adaption structure. A description of these factors and

their indicators are listed inTable 6 below.

Table 6. Key Factors
From (Swanson and Wang 2005)

40

In order to explore the validity of their proposed mode,l they developed

eight Structural Equation Models (SEM) using various combinations of the factors

and their related indicators. The Models were labeled A-H. Swanson and Wang

proposed that by comparing the relative fit for their multiple models they could

show a logical progression using different factors on the same data. In addition,

this would support specifications of theoretical models for future confirmatory

studies. The models were constructed using a different combination of factors

for the Know-why, Know-how, and success based on the limitations imposed by

the questionnaire results and the 16 variable data shown in Table 6. “For

instance, Model C consists of one Know-why factor (business coordination) and

its indicators (Items 2 and 46), one Know-how factor (management

understanding) and its indicators (Items 35 and 39), and the success factor and

its indicators (Items 24, 33, and 55)” (Swanson and Wang 2005, p 24). After

constructing the eight models they put each through a series of statistical tests.

This mathematical analysis is outside the scope of this paper, however, the

results are not. Table7 summarizes the standardized estimation results and

goodness-of-fit for these models. Note: R2 for success shows that Model C has

the most variance (59%). R2 is the root-mean-square error of approximation

(RMSEA), for more information on RMSEA, see Hu, L.-t. and Bentler, P.M.

(1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis:

Conventional criteria versus new alternatives, Structural Equation Modeling 6(1):

1–55.

41

Table 7. Models A-H
From (Swanson and Wang 2005)

Swanson and Pang found that while all models proved to be beneficial in

understanding software implementation, it was Model C that was best suited for

explaining what factors are most important to implementation success. See

Figure 7 for results on Model C. “Model C is our best model by both model-fit

and R2 criteria It is composed of the business coordination know-why factor and

the management understanding know-how factor, both of which are significant in

explaining implementation success” (Swanson and Pang 2005, p 27). In addition

they found that the business coordination, vendor support, and management

understanding factors play a significant role in the success of the software

upgrade process.

These findings provide insight on some of the key factors necessary for an

organization to be successful at software implementation.

42

3. Case Study on Windows Vista Implementation

Dean Williams, a consultant for Softchoice Corporation conducted a study

designed to determine if organizations were prepared to implement the software

upgrade to Windows Vista (WV). The data from this study is an inventory

collected from 112,113 desktops in 472 North American organizations. The

organizations include companies from industry sectors in finance, healthcare,

technology, education and manufacturing. The data was collected between June

1st and October 1st of 2006. Williams found that over half of todays organizations

did not have the hardware needed to adopt the minimum requirements for WV,

and over 94% of the organizations did not have the hardware needed to meet

WV premium package. Within these groups, he found that the majority only

required minor upgrades, such as upgrading storage space or RAM, however,

the rest were in need of major upgrades, such as graphics cards, and new

processors. The necessary upgrade results can be found in Figure 7 below. He

attributed this to several factors:

• WV required a substantial increase in hardware resources

• Many organizations had a hardware lifecycle that was in excess of
five years.

• A lack of easy access to the PC inventory information needed to
implement an effective life cycle management.

43

Figure 7. Components Requiring Upgrades within the 50% not meeting
requirements. From (Williams 2006)

This study also indicated that from the release of Windows XP to the time of the

study the PCs CPU speed had increased approximately 215 percent in five

years, but the requirements for WV needed an increase of approximately 243

percent. Figure 8 shows a comparison in the system requirements needed for

the last four Microsoft operating system releases.

44

Figure 8. Percentage increases in system requirements, 2000-2006
From (Microsoft)

a. Future Preparedness

The Williams study found that 27 percent of the organizations

planned to wait one to two years before upgrading to WV. Another 33 percent

planned to wait six months to one year before upgrading. This indicates that

organizations do consider the software lifecycle. As organizations plan to

upgrade to WV their PC lifecycle and current state is key to a smooth transition to

WV. Swanson developed some recommendations which might be beneficial in

planning the upgrade to Windows Vista. These recommendations can be seen

on Table 8.

45

Table 8. Actions and Benefits for Windows Vista Deployment
From (Williams 2006)

While organizations tend to focus on upgrade implementation

factors and lifecycle aspects of new software, the Williams case study shows that

hardware lifecycle and purchasing decisions for that hardware are significantly

related to a successful software upgrade.

C. SOFTWARE INDUSTRY DEVELOPMENT CYCLES

Software vendors, both large and small, often produce and market their

products faster than organizations and users can adapt to them. This trend is

evident to software industry observers and practitioners alike. Reducing the time

to market is a top priority for most software vendors as they try to take advantage

of benefits such as extended market life, increased market share and greater

freedom in pricing. Many companies try to gain competitive advantage by

exploiting these benefits in the marketplace by shortening their development

cycles and rushing their products to market, however, studies have shown that

this practice can lead to undesirable consequences. The trade offs for pushing

46

software to market and reducing production cycle times leads to buggy software

products, aberrant development practices and increased strain on software

engineers (Sims 1997).

Table 8 below shows the evident shrinking cycles times according to a

Product Development and Management Association (PDMA) survey of about 200

U.S. companies in a variety of industries.

Type of new product 1990 average
development time

1995 average
development time

Breakthrough products 49 months 42 months

New product lines 35 months 29 months

Major product revisions 22 months 18 months

Minor product revisions 10 months 8 months

Table 9. PDMA survey on shrinking cycles in product development
From (Sims, D. 1997)

The shrinking cycle times displayed in Table 6 are from figures between

1990 and 1995, and reflect that decreasing time to market trends are not a new

occurrence. Today, some observers claim that the Internet has added to the

reduction of time to market methods because it has made it easier for vendors to

distribute beta versions of products for testing. Although this theory is plausible

and no studies were found to refute this theory, some suggest that it’s not the

proliferation in use of the Internet that has contributed to faster production

development of software, but the market itself and today’s global economy is to

blame. Organizations and businesses worldwide are in a constant search for a

competitive advantage and more often, management personnel are focusing on

software and new technologies to expand the gap between their companies and

the competition. Thus, reducing the time to market is more than just a goal for

most vendors in the computer software industry; it has become the focus for

survival in a highly competitive market.

47

1. Vendor Benefits from Improving Development Times

There is no doubt that one of the most important considerations in

commercial software development is that of meeting projected market release

deadlines (Collier, K. and Collofello, J. 1995). The benefits reaped from

improving software development times are many, but the most obvious benefit is

the fact that the earlier the software is released the more time the product is

given to generate sales and revenue. The introduction of software on the market

sooner does not mean that it becomes obsolete any faster. Research in software

cycle time development suggests that the time of obsolescence remains fixed

regardless of the time of introduction. Additionally, studies indicate that switching

software has a high cost because users of software tend to become loyal to their

software products. This is mainly due to the high costs and learning times

associated with switching to new applications. Another benefit lies in the fact that

shorter development cycles can also increase market share. For example, the

first product to market, which provides a new capability or new function, will

initially hold 100% of the market share. This, together with the high switching

costs, will increase a vendors ability to obtain and retain a large market share.

Still, another benefit is the likelihood of higher profit margins. When a vendor

speeds up development cycles, costs are likely to decrease. Additionally,

shortening a products time to market allows for greater freedom in pricing. Earlier

release of contract software usually means an increased chance in obtaining

contracts earlier than their competitors and, together with lower development

costs, may provide a greater profit margin. Last, shortening software cycle times

allows engineers to start later in the development process, which allows them to

take full advantage of any technological advances that constantly occur in

today’s fast paced technical environment.

2. Money, Time and Quality

As eluded to in the paragraph above, software vendors have the

opportunity to save money, increase profit margins and take advantage of ever

48

evolving technologies from increasing development cycle times, however,

tradeoffs usually occur at the expense of quality and product performance.

Software companies must make trade-offs to deliver products in a hurry. Money,

time and quality are the main factors being juggled by vendors and eventually,

one factor is relaxed at the expense of another. (Carmel 1995). In many cases

today, developers may knowingly deliver buggy products in order to meet time to

market and cost constraints. Recent studies suggest that time to market is the

overriding concern for all managers and have shown that marketing managers

are more concerned about features and platform diversity than about quality. For

example, companies often inadequately document projects and inadequately

staff quality assurance teams (Barr, A. and Tessler, S. 1996). Bar and Tessler

also note that workers in quality assurance are often assigned a lower status

than other members of project teams, giving them less influence over the

development process and in some cases aren’t even given enough time to test

products before they go to market. Bar and Tessler’s survey of eleven firms

within the relational database management systems (RDBMS) and call center

management segments of the software industry found that:

1. In both segments, (RDBMS and call center software), features,

quality and cost were consistently traded off to achieve time to

market.

2. No dominant software development methodology was identified.

Only 50% of their respondents described any formal methodology.

Most were developed in house.

3. A majority of teams allowed features to be added or dropped very

late in the development process, even after beta testing.

4. Product decisions in more than half the firms were dominated by

Engineering. Less then 20% of the respondents made decisions

based on consensus between Engineering and Marketing.

5. Code re-use, from prior versions (91%), other company code

(54%), and commercial products (27%) was very common.

49

6. Project level budgeting and cost tracking were low-priority activities.

Head count was the only budget control mentioned.

7. Major differences in perception exist between the Marketing

Product Manager and his or her counterpart in Engineering about

such issues as how the requirements for the release were

formulated, tradeoffs, the nature and source of development

problems, etc.

8. Project teams were organized in a variety of ways. Functions like

Quality Assurance and Release/Project Management could be

located in several different departments and at different levels

within the department, and even documentation and Tech Support

held a variety of organization chart positions.

The results of the survey indicate that time to market is the key driver for a

variety of software vendors, even at the expense of quality, managerial practice

and employee considerations. Software industry executives often claim that the

extremely rapid rate of change in their technologies and markets force them to

make conscious tradeoffs among cost, quality and features in the course of their

software development. Marketing managers, for example, conclude features and

platform diversity to be the essential drivers contributing to competitive

advantage. Consequently, tradeoffs between money, time and quality are having

significant impacts on organizations and users of new software. As mentioned in

section 1, a 2002 study commissioned by the National Institute of Standards and

Technology found software bugs cost the U.S. economy about $59.5 billion

annually. The same study found that simply by improving testing through Quality

Assurance could have mitigated more than a third of that cost –about $22.2

billion.

Not only is money being potentially wasted because of the tradeoff

situation, as described earlier in this chapter, user acceptance and resistance to

adoption present further problems for organizational software upgrades as well.

50

These factors all contribute to the notion that disjointed cycles among users,

organizations and the software industry are ever present in today’s fast paced

environment.

3. Lessons for the Software Industry

As stated earlier, time to market is a fundamental competitive strategy in

the software industry. It’s safe to assume that today’s software vendors face

increasingly intense competition due to the proliferation of personal computer

technology. However, software product development managers appear to be less

concerned with, or even aware of, cycle time than they are with other competitive

variables (Carmel, E. 1995). In a study conducted by Erran Carmel, 15 small to

medium sized software package developers were found to be generally unaware

of cycle time reduction as a management concept. He concluded that software

development companies tend to focus on rapid development and deadlines and

found that during peak periods of activity, 87% of the developers in core teams

worked more than 56 hours per week and 47% worked more than 71 hours per

week. These findings add to the speculation that developers are susceptible to

becoming stressed-out and unhappier with shrinking cycle development time,

which may end up having adverse effects on their products, such as quality and

buggy software. This problem suggests that in order to remain competitive,

software developers need to determine how they can better integrate quality

assurance activities into their development process while reducing cycle time. In

the survey he conducted on 15 software development firms, Carmel found that

only 2 out of the 15 companies used process models or risk analysis techniques

and that most could not articulate even an end-of-cycle tradeoff scheme that

would represent an elementary type of risk analysis. Similarly, he found that they

devoted scant resources to automated tools and relied heavily on software reuse

and incremental innovation. Figure 8 below represents how much money the

firms spent on automated tools. More than half the companies, for which there

was data, spent less than 1000 dollars per year per developer on outside

software tools.

51

Figure 9. Spending on Software Design, Development and Testing Tools
From (Carmel, E. 1995)

Although these companies reported that they made use of other sources

to attain software tools, such as freeware, shareware, and trial versions of other

vendors’ software, the use of automated tools still appears low (Carmel, E.

1995).

In light of Carmel’s findings on cycle time awareness, tradeoffs and cycle

time reduction variables, he describes 5 lessons useful to software vendors in

practice and theory. These 5 lessons are important to our study because they

reveal vital steps software vendors can implement which can lead to reductions

in cycle times and help users and organizations effectively and efficiently adopt

new software.

a. Lessons for Practice

Lesson 1: The Core Team is a Key Success Factor. Carmel’s study

indicated that in almost all companies, the respondents pointed to team related

factors as a key to their success and a key to their ability to develop software

rapidly. Apparent was the fact that software companies consider a highly

52

effective, organic, entrepreneurial, organizational structure to be a key success

factor in reducing cycle times. For example, if a company’s cycle time was

considered to be “good” (fast, approaching optimum), it was mostly contributable

to the organizational variables listed above. If their cycle time was considered to

be “inadequate”, the companies attributed it to the lack of organizational

management variables. The sample firms surveyed in the Carmel study

encompassed firms that were, by and large, young companies where their

organizational team structures formed organically. A well functioning organic

team is the strongest type of team (Hofstrand, D. 2007). It displays synergy - the

results produced by the team are greater than the sum produced by each

individual team member. Synergy occurs because the team uses the strengths of

each member while minimizing the weaknesses of each. The organic team is

often used in situations where all of the team members know how to carry out the

responsibilities of each of the team members, but inherently important in this

structure is the need to have an intimate knowledge of the other team members.

Our findings suggest it is quite apparent that within larger software firms, organic

team structures need to be fostered and nourished to replicate the desirable

entrepreneurial spirit usually found in smaller software development teams.

Lesson 2: Quality Issues Significantly Affect Cycle Time and Merit

More Managerial Attention. Carmel notes that the software product category has

inherent quality problems and he argues that there is no other product category

in which products are routinely released with so many defects. Testing is

identified as one of the largest components in quality assurance and is also one

of the most difficult tasks in software development category. This is because any

software program can have an infinite number of logic branches and testing

every logic branch is too monumental of a task, taking up valuable time and

resources. Although no evidence suggests that quality assurance activities

shorten or lengthen cycle time, it is evident that a quality control regime involved

in the process implies that if things are done right early, vendors can decrease

expensive error correction late in the development cycle. Today, software

packages are released with long lists of known defects and bugs, however, it is

53

still not clear in today’s market, whether the market would wait for near zero

defect software products. Zero defect products may also be rejected by the

market because of the high cost associated with high quality assurance

standards. Thus, appropriate risk analysis techniques need to be developed and

studied to manage these tradeoffs correctly. Carmel suggests that as the

software industry matures and users become more demanding with regards to

quality, more attention needs to be given to quality assurance and near defect-

free software. Further studies in this field are needed to identify the effects this

will have on time to market, but as of now, observers in this field agree that

unless active steps are taken to integrate quality assurance into the development

process, near zero-defect strategies will have an adverse impact on a product’s

time to market.

b. Lessons for Cycle Time Theory

Lesson 3: Trade-off Research Needs to Include Quality. Carmel

describes the tradeoff concept as one in which “units” of quality are decreased to

allow additional “units” of features within a given time period. Table 9 shows 5 of

the 15 firms’ responses to the statement: Given 100 possible total points, allocate

the points to the 5 items, weighted by importance to success. The 5 items being

Cycle Time, Features, Quality/Defects, Cost of Development, and Product

Pricing.

Figure 10. Self-Reported Trade Offs for Successful Product Development
From (Carmel, E. 1995)

54

The figure shows how software development companies view the items cycle

time and features as much more important to overall product success than

quality and defects. Tradeoff results depicted in Figure 6 and earlier discussions

on software defects show that software managers trade units of quality for other

product goals whether explicitly or implicitly. Further research in this field needs

to be conducted but it is important to note that tradeoffs in product innovation can

be understood within the framework of risk analysis techniques. Understanding

the principals and practices of risk analysis in software development can help

developers understand the consequences of tradeoffs more thoroughly.

Additional research on cycle times should focus on the examination of the

relationships between managers’ tradeoff preferences, the deliberate actions

they take and cycle time outcomes.

Lesson 4: Distinctions Between Cycle Time Awareness Levels

Affect Cycle Time Reduction Behavior. Carmel found that software development

firms’ actions and processes are driven by what is termed as a desire for rapid

development, rather than deliberate action driven by overall cycle time

considerations. This distinction was made to differentiate pre-cycle and early-

cycle developmental approaches from reactive, late-cycle approaches. Because

cycle time research is concerned with strategies for cycle time reduction rather

than other coincidental factors, it must examine the awareness of cycle time

reduction as various strategies and actions are applied. This methodology is

necessary to help facilitate understanding which strategies work and which ones

just happen to be present. That is to say, we need to understand which specific

actions managers take to reduce cycle time, rather than to achieve other goals

such as better design, lower cost, etc. This in-depth kind of research will allow for

greater understanding of the variables that have a true impact on cycle time

reduction.

Lesson 5: Software Versions Are Tied to Market Rhythms that May

Lessen Pressures for Cycle Time Reduction. Software package versions create

both positive and negative effects on cycle time reduction. The positive effect is

that software versions are typically advanced in incremental innovation. New

55

versions encompass incremental changes thus contributing more easily to

quicker cycle times. The negative effect in the version concept is manifested

through an entrapment into the software market rhythm. Most of the software

industry releases new version every 12 to 24 months. This is viewed by the bulk

of personal computer software users to be common managerial strategy in this

industry. Carmel notes that the structural dynamics of the market rhythm are

such that customers have an ambivalent approach to adopting new versions. On

one hand, they desire the latest features offered by the new version, but on the

other hand, they realize that the upgrade involves at least some investment of

time or other resources like training budgets. For this reason, few customers

choose to upgrade to new versions too frequently. Consequently, both customers

and vendors tend to slip into the market rhythm, which cycles at 12 to 24 months.

This phenomenon requires future studies relating industry specific market

rhythms when examining and comparing cycle times. Establishing bench mark

cycle times within various software companies and organizations will shed further

light on which improvements can be compared.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

IV. CONCLUSIONS AND RECOMMENDATIONS

A. ANALYSIS AND RECOMMENDATIONS

The software industry is in the midst of a dramatic revolution according to

2006 software industry report conducted by McKinsey & Co. and the Sand Hill

Group. The implications of this revolution are increased innovation, new business

models, technology discontinuities, and global capability shifts. The report

indicates that the software industry is experiencing an increased flow of internal

and external capital and substantial innovation as well as increased private

equity investments and expected increases towards IT budgets in the coming

years. In fact, software budget growth is expected to gain 5% between 2006 and

2008, from 30% to 35% (Berryman et al. 2006). Taken together, these factors

and changes will have profound implications for software providers, organizations

and users.

This chapter will focus on identifying possible recommendations for

software executives, managers and leaders where inevitable cyclic

discontinuities exist between their organizations, users and the software industry.

In taking into consideration the various advantages and disadvantages within

user cycles, organization cycles, and the software industry’s cycles, we intend to

shed further light on what IT managers can learn, expect and take action on.

First, it is important to list and describe those attributes, which are

considered to be advantages and disadvantages with respect to software cycles.

In Figure 2 of Chapter II, we introduce the conceptual framework of the Software

Upgrade Cycle. Below is an extension of the same figure with corresponding

driving forces associated with the cycles of users, organizations and the software

industry.

58

Figure 11. Software Upgrade Cycle with Corresponding Driving Forces

As described in the preceding chapters, driving forces within

organizational adoption cycles, user adaptation cycles and introduction cycles

within the software industry influence the software upgrade cycle phenomenon.

To better delineate these moderators, which effect each cycle, we introduce the

advantages and disadvantages inherent among the driving forces. The tables

presented on the following pages describe attributes which positively and

negatively effect the software adoption cycle as a whole and therefore should be

of vital importance from the perspective of executives, managers and leaders

within the IT industry. The first table delineates advantages and disadvantages of

the user adaptation cycle.

59

Advantages and Disadvantages of the User Adaptation Cycle

 Advantage Disadvantage

Performance
Expectancy

Men and younger women believe
use of the system may allow
increased productivity,
effectiveness, ease of use and
faster accomplishment rates.
Rewards and benefits from using
the system may be perceived to
be higher among this group.

Job related factors become less
significant for working women
between the time they enter the
labor force and the time they
reach child-rearing years. This
group may be less inclined to
initially perceive the rewards and
benefits of a new system as
advantageous.

Effort
Expectancy

Women, particularly younger
women in the early stages of
experience may perceive use of
the system to be free of effort,
easy to understand and easy to
use or interact with. Women may
initially be more accepting of the
new system as a result.

Men and older women may be
less inclined to initially accept the
change to a new system.
Perceptions may lead them to
believe the degree of ease and
flexibility associated with learning
the system may be difficult.

Social
Influences

Women, especially older women
and older workers in general are
more sensitive to others’ opinions
and place increased salience on
social influence. This group may
be more voluntary in acceptance
and initial use of a new system.

Younger workers and workers in
later stages of experience may
place less salience on social
pressures and influences. This
group may be less inclined to
accept use of a system based on
others’ expectations even when
those referent others have the
ability to reward the desired
behavior or punish non-behavior

Facilitating
Conditions

Older workers, particularly those
with more experience attach more
importance to receiving help and
assistance. This group perceives
given the resources, guidance,
opportunities and knowledge it
takes to use the system, the
system would be easy to use and
compatible with aspects of their
work.

Younger workers with less
experience may place less
importance on receiving help and
assistance with a new system
within their organization.

Table 10. Advantages and Disadvantages of the User Adaptation Cycle

The second table delineates advantages and disadvantages within the

software industry’s introduction cycle.

60

Advantages and Disadvantages within the Organization Adoption Cycle

 Advantages Disadvantages

Life Cycle Management

- Replaces old outdated
legacy systems
- Improves user interface and
increase user satisfaction
May increase productivity

- Compatibility complications
with legacy software or
systems often cause projects
to go over budget and exceed
expected project completion
dates.
- May decrease productivity in
initial stages of implementation

Upgrade/Implementation
Predictability

- Improved cost analysis
- Improved functionality
- Improved perception of
reliability

- Adoption of poorly tested
software or poorly QA tested
software requires rework, bug
fixes and patches or further
upgrades
- Unpredictable software often
leads to dissatisfied user
experiences

Business Process

- Standardization of business
process
- May help to implement
change and enhance
competitive edge

- Become incompatible with
some customers who still have
legacy systems.

Social, Internal and
External Influences

- Improve customer relations
and customer service
- Improve employee job
satisfaction
- Portray a successful
business image with the most
up to date software.

- Bad press or negative public
perceptions about an
organization’s IT systems may
effect stocks, sales
- Pressures to contribute more
assets to IT may take away
assets from other aspects of
an organization

Planning/Implementation
Strategies

- Facilitates improved testing
- Establishes good foundations
in IT policy
- Provided experience in
implementation approaches
- Enhances learning
- Helps to mitigate negative
impacts caused by software
upgrades

- Takes time
- Untested strategies may
require rework in production
phases
- Lends to tradeoffs if project
deadlines can’t be achieved.

Table 11. Advantages and Disadvantages within the Organization Adoption
Cycle

The third table delineates advantages and disadvantages within the

software industry’s introduction cycle.

61

Advantages and Disadvantages within the Software Industry’s Introduction
Cycle

 Advantages Disadvantages

Time to Market Practices

- Get products to market
before competitors
- Release a greater amount
of products in the same
amount of time
- Avoid criticism in the
media about not having up-
to-date products
- Deliver products before
customers can change their
requirements

- Buggy products
- Inadequate product
documentation
- Reliance on aberrant
development practices
- Increased strain on
engineers
- Customer aggravation
about systems changing
before they can be fully
deployed

Trade Offs

- Cycle time reduction
- Cost of development may
decrease

- Dropped features
- Quality decreases and
defects increase
- Product support may
decrease
- Lends to increased
patches and upgrades later
in cycle

Sales, Revenue, Market
Share Strategies

- Allow product pricing to be
flexible
- Tested strategies may
support competitive
advantage
- Saving money on
development allows for
larger budgets in other
business areas such as
marketing

Decreased budgets, time
constraints adds pressure
to development teams and
lends to tradeoffs
Lends to increased product
revision cycles
Untested strategies may
decrease competitive
advantage

Development Teams

- Cross functional team
structure leads to better
cooperation, faster
decisions, shared
responsibilities
- Small teams have positive
effect on intra-team
communication
- Success is determined by
application specific
experience of team
members

- Dispersed or non co-
located teams have
difficulties communicating
- Inexperienced team
members may cost in time,
money and rework required

Table 12. Advantages and Disadvantages within the Software Industry’s
Introduction Cycle

62

B. TIMING AND FLEXIBILITY

As this study suggests, many factors effect the timing associated with

users, organizations and the software industry such as software life-cycle trends,

environmental factors, market rhythm, budgets, management practices, policies

and models, just to name a few. Most software companies release new major

versions of their products every 12 to 24 months and minor revisions every 6 to

12 months, while upgrades and service patches can be introduced in a matter of

days (Carmel, E. 1995 and Sims, D. 1997). Although more research needs to be

completed in user acceptance timing, the Venkatesh et al. and Seymour et al.

studies indicate that the majority of users, despite usage intent fluctuations, can

adapt to major revisions or completely new versions of a single software

application within 12 months. More complex software packages including

Software as a Service (SaaS) packages and business solutions software

packages, such as those products produced by SAP, PeopleSoft, IBM and

Oracle, may take longer than 12 months for an organization’s users to adapt to

successfully. Integrating these more complex solutions or multiple software

packages simultaneously can present organizations with myriad obstacles in the

areas of user adaptation and organizational implementation. From an executive

or managerial perspective, these obstacles need to be understood, anticipated

and managed appropriately. The three tables we have presented in this section

are relevant in that they identify both moderators and advantages and

disadvantages managers can use towards a software integration plan. Both large

and small organizations alike should be able to correlate and use at least some,

if not all, of the aspects outlined in this section’s tables in IT implementation

processes. Admittedly, every organization will be different in size, managerial

dynamics, policy processes, employee composition and other factors. But in

some way, every organization will use some type of technology infrastructure and

it is for this reason, the following tables will prove beneficial. As organizations

decide to upgrade and integrate technological aspects within their various

processes, our suggestions represented in the tables will allow management to

focus on how their users will adjust to the adaptation and implementation

63

strategies employed. Our suggestions and recommendations concerning the

various software vendors they rely on will give managers a better idea about

when implementing new software might be appropriate and advantageous in

terms of competitive advantage perspectives. Finally, our suggestions and

recommendations presented in the organization table will provide managers with

reasonable explanations as to why their organization should consider new

software implementations and integrations.

C. STARTING POINT IN USING THIS RESEARCH METHOD

Inevitably, executives and managers will ask these few and seemingly

simple questions, which permeate not only the IS field but the manufacturing,

marketing, sales, supply and human resource fields as well: What do I

want/need, what can I afford and what or how can I integrate quickly. This

section will focus on these questions as a starting basis while applying the

software upgrade cycle and corresponding driving forces presented in this paper,

as a tool to prepare practitioners and managers for a software upgrade. The

following tables will outline the moderators and driving forces of each cycle

(software industry, user, organization) and then present proposed considerations

and actions to be explored. The proposed solutions are not all encompassing as

there are too many influencing factors which may affect each particular upgrade;

however, these are common considerations and actions that should be

thoroughly explored when deciding to implement major and minor software

upgrades. First, we introduce those considerations and actions to be explored

from the software industry perspective.

64

Software Industry Proposed Considerations and Actions

Time to Market Practices

Trade-offs

Sales, Revenue, Market Share
Strategies

Development Teams

- Explore the reasons why a software
manufacturer or vendor has released their
product and under what circumstances. When
was their last major revision or upgrade and
how often do they introduce patches or
revisions? These questions relate to the
software company’s business practices and
strategies.
- Explore, if feasible, what trade-offs were
made prior to release. Explore the company’s
development process and team dynamics
(size, pressures, incentives, experience).
- Try to ascertain the company’s incentives in
product release timing and make any
correlation to sales and market share
strategies. Are these correlations consistent
with their prior major/minor releases?
- Assess the company’s reliability as it pertains
to Quality Assurance and product support.
- Explore any other organization’s prior
implementation of the software and make note
of important lessons learned or compatibility
issues.

Table 13. Software Industry’s Cycle and Proposed Considerations and
Actions

The next table presents those considerations and actions, which should

be explored from the organization perspective. Again, these considerations do

not encompass all aspects that should be studied, but merely represent a subset

of common hurdles and influencing factors of which executives and managers

should be fully aware of.

65

Organization Proposed Considerations and Actions

Life Cycle Management

Upgrade/Implementation
Predictability

Business Process

Social/Internal/External
Influences

Planning/Implementation
Strategies

- Assess where your organization is with
respect to the life cycle of your present
software systems and determine if and what
kind of upgrades are feasible (major revision,
minor revisions, patches) Are those revisions
compatible with the current architecture?
- Assess how predictable the proposed
upgrade is with respect to Quality Assurance
and testing initiatives conducted by the
vendor/manufacturer?
- Explore your organization’s business and
implementation processes and policies. Does
your organization have a codified process and
how effective was it in previous
implementations?
- Become familiar with the reasons why your
organization is considering upgrading and
determine if influencing factors align with
current business goals. Is it feasible according
to cost, time and benefits gained?
- Assess your organizations capacity to
effectively plan and implement new software.
Is there a current strategy your organization
uses or can adopt from elsewhere?

Table 14. Organization Cycle and Proposed Considerations and Actions

The last table presents those considerations and actions, which should be

explored from the user perspective. Each organization’s users can represent a

unique mixture of experience, gender and age and also may comprise as many

as a hundred thousand to as little as a dozen users. This diversity can lead to

conflicting adaptation consequences, nevertheless, each executive or manager

must decide on appropriate implementation strategies, adapt to changes and

mitigate problems as best they can. The below recommendation should prove

valuable to a great many managers as they consider the composition of users

within their organization.

66

User Proposed Considerations and Actions

Performance Expectancy

Effort Expectancy

Social Influence

Facilitating Conditions

- Determine the experience, age and gender
composition of your organization. Explore the
factors of performance expectancy and effort
expectancy as they relate to specific gender
and age attributes. Does your organization
comprise a majority of men or women and how
does this effect how they interpret ease of use
and effort required?
- Determine the amount of users who may be
more susceptible to social influence and
develop training and implementation strategies
that work in unison with this factor (i.e. Mentor
programs)
- Assess the conditions that may improve or
place more importance on receiving help and
assistance from others in the organization.
Take steps towards improving the facilitating
conditions that may be weak in areas (i.e.
encourage younger workers to ask questions
and seek help from more experienced workers.

Table 15. User Cycle and Proposed Considerations and Actions

D. FUTURE DIRECTIONS CONCERNING THE USER CYCLE

Venkatesh et al. concluded that the Unified Theory of Acceptance and

Use of Technology (UTAUT) theory explains as much as 70 percent of the

variance in intention to use new software. It is possible, however, that we could

very well be approaching the practical limits of our ability to explain individual

acceptance and usage decisions in organizations. Future research therefore

should focus on identifying additional constructs and moderators that can add to

the prediction of intention and use behavior over and above what is already

understood. The theories used in this paper facilitate the advancement of

individual acceptance research by unifying several theoretical perspectives

presented by Venkatesh et al. and Seymour et al. Common in this literature is the

incorporation of four moderators to account for the dynamic influences including

organizational contexts, user experience and demographic characteristics.

Further research focusing on these and other factors can shed further light on

67

this phenomenon and add to the proliferation of competing explanatory models,

which intend to explain individual acceptance of information technology.

E. FUTURE DIRECTIONS CONCERNING THE SOFTWARE INDUSTRY
CYCLE

It is apparent that cycle time reduction will continue to be a primary goal of

competitive software development organizations for the foreseeable future, yet it

is questionable whether or not a significant reduction in cycle time can be

achieved at a low cost, with minimal impact on software quality and performance

(Collier and Collofello 1995). It is therefore imperative for practitioners to gain a

better understanding of what leads the software industry to the reduction of cycle

time. A number of future research directions should be focused in the direction of

trade off factors. This important aspect should be further explored, especially with

respect to the role of quality assurance as well as the covariance of cycle time

awareness with cycle time outcomes. In general, the software industry needs to

explore ways to increase quality assurance objectives while decreasing cycle

time. Other industry efforts need focus in establishing cycle time benchmarks,

software reuse strategies and other organizational and use of experience

techniques.

F. FUTURE DIRECTIONS CONCERNING THE ORGANIZATION CYCLE

When innovating with IT, organizations have arguably given less attention

to the lasting quality of their strategic know-why reasoning discussed in chapter

3, than they have to the metrics of the investment moment (Swanson and Wang

2005). Comparative organizational case studies and innovation case studies

focused on how and why organizations adopt new technologies are required to

further understand their strategic reasons. Our findings suggest that further

studies should examine in depth how organizations go about comprehending,

adopting, implementing and assimilating an IT innovation. Swanson and Wang

recommend that studies in this field should focus on the know-how as it effects

implementation and assimilation and the know-why as it effects adoption, as well

68

as the interplay between both forms of knowledge. Other case studies might

examine how this know-why and know-how contrast according to both

organizations and their various innovations.

69

LIST OF REFERENCES

Barr, A. and Tessler, S. (1997) A Pilot Survey of Software Product Management.
Stanford Computer Industry Project: SCIP Software Industry Study.

Bem, D.J., and Allen, A. (1974) On Predicting Some of the People Some of the
Time: The Search for Cross-Situational Consistencies in behavior.
Psychological Review (81:6) pp. 506-520.

Berryman, K., Jones, J., Manyika, J., Rangaswani, M. (2006) Software 2006
Industry Report conducted by McKinsey & Company, Inc. and the Sand
Hill Group. Resource available at:
http://www.sandhill.com/conferences/sw2006_materials/SW2006_Industry
_Report.pdf. Last accessed June 2008

Brown, S.A., Massey, A.P., Montoya-Weiss, M.M. and Burkman, J.R., (2002). Do
I really have to? User Acceptance of Mandated Technology. European
Journal of Information Systems, (11:4) pp. 283-295.

Carmel, E. (1995). Cycle Time in Packaged Software Firms. Journal of Product
Innovation Management. (12) pp. 110-123.

Collier, K. and Collofello, J. (1995) Issues in Software Cycle Time Reduction.
Conference Proceedings of the 1995 IEEE Fourteenth Annual
International Phoenix Conference on Computers and Communications.
pp. 302-309.

Hofstrand, D. (2007) Designing Family Business Teams. Ag Decision Maker. C4-
73. http://www.extension.iastate.edu/AgDM/wholefarm/pdf/c4-73.pdf. Last
accessed June 2008

Hall, D., and Mansfield, R. (1995) Relationships of Age and Seniority with Career
Variables of Engineers and Scientists. Journal of Applied Psychology
(60:2) pp. 201-210.

Jasperson, J., Carter, P.E. and Zmud, R.W. (2005). Conceptualization of Post-
Adoptive Behaviors Associated with Information Technology Enabled
Work Systems. MIS Quarterly (29:3) pp. 525-567.

Khoo, M., Huoi (2005). Up. Diss. Upgrading Packaged Software: An Exploratory
Study of Decisions, Impacts, and Coping Strategies from the Perspectives
of Stakeholders, 2005. Atlanta: Georgia State University, 2005.

Lucas, H. C., E. J. Walton, et al. (1988). "Implementing Packaged Software." MIS
Quarterly12(4): 537-549.

70

Minton, H.L., and Schnieder, F.W. (1980) Differential Psychology. Waveland
Press, Prospect Heights, IL.

Moore, G. (1965) Cramming more Components Onto Integrated Circuits.
Electronics, Volume 38, Number 8.

Nah, F.F., Tan, X., and Teh, S.H., (2004) An Empirical Investigation on End-
Users’ Acceptance of Enterprise Systems. Information Resource
Management Journal, (17:3) pp. 32-53.

Oliver, D., Whymark, G., and Rohm, C. (2005) Researching ERP Adoption: An
Internet-Based Grounded Theory Approach. Online Information Resource
Management Journal (17:3) pp. 32-53.

Paine, M. (2000). Making Software Upgrades A First-Class Experience. Health
Management. 21: 22-23.

Pfeffer, J. and G. R. Salancik (1978). The External Control of Organizations A
Resource Dependence Perspective. New York, Harper & Row, Publishers.

Platt, D. (2007). Why Software Sucks. Boston, MA: Pearson Education Inc. 2-3

Plude, D., and Hoyer, W. (1985) Attention and Performance: Identifying and
Localizing Age Deficits. Aging and Human Performance, N. Charnes (ed.),
John Wiley & Sons, New York. Pp. 47-99.

Porter, M. (1985). Technology and Competitive Advantage. Journal of Business
Strategy (5:3) pp. 60.

Seymour, L., Makanya, W., Berrange, S. (2007) End-Users’ Acceptance of
Enterprise Resource Planning Systems: An Investigation of Antecedents.
Proceedings of the 6th Annual ISOnEworld Conference, April 11-13, 2007,
Las Vegas, NV. Resource can be found at: http://www.information-
quarterly.org/ISOWProc/2007ISOWCD/PDFs/26.pdf. Last accessed June
2008

Sims, D (1997) Vendors Struggle with Costs, Befits of Shringking Cycle Times.
Computer 1997 Annual Index. (30:12) pp. 70-84.

Swanson, B. and Wang, P. (2005). Knowing why and how to innovate with
packaged business software: Journal of Information Technology. 20, 20-
31

71

Venkatesh, V., Morris, M., Davis, G., Davis, F. (2003). User Acceptance of
Information Technology: Toward A Unified View. MIS Quarterly (27:3) pp.
425-478.

Venkatesh, V., and Morris, M.G. (2000) Why Don’t Men Ever Stop to Ask For
Direction? Gender, Social Influence, and Their Role in Technology
Acceptance and Usage Behavior. MIS Quarterly (24:1) pp. 115-139.

Warshaw, P.R. (1980) A New Model for Predicting Behavioral Intentions: An
Alternative to Fishbein. Journal of Marketing Research (17:2) pp. 153-172.

Williams, D. (2006). Lack of Vista Readiness Pushes PC Lifecycle Management
to the Forefront. Softchoice Corporation.

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Mr. Glenn Cook
Naval Post Graduate School
Monterey, California

4. Dr. Thomas Housel
Naval Post Graduate School
Monterey, California

