Circular

OF THE

Bureau of Standards

S. W. STRATTON, DIRECTOR

No. 43
JEWELERS' AND SILVERSMITHS' WEIGHTS AND MEASURES
(2d Edition)

A revised and enlarged edition of Bureau of Standards
Circular No. 43 (1st edition), issued November 1, 1913

PRICE, 10 CENTS
Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

WASHINGTON
 GOVERNMENT PRINTING OFFICE

N

DEPARTMENT OF COMMERCE

Circular

OF THE

Bureau of Standards

S. W. STRATTON, DIRECTOR

No. 43

JEWELERS' AND SILVERSMITHS' WEIGHTS AND MEASURES

(2d Edition)

A revised and enlarged edition of Bureau of Standards Circular No. 43 (1st edition), issued November 1, 1913 entitled "The Metric Carat"

PRICE, 10 CENTS
Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

WASHINGTON
GOVERNMENT PRINTING OFFICE

SATU0gi0

2वSACMAT2 प0 UAGЯU

Cen oh

JEWELERS' AND SILVERSMITHS' WEIGHTS AND MEASURES ${ }^{1}$

CONTENTS

Page
I. Introduction 6

1. Adoption of the new metric carat. 6
2. Proposed adoption of the metric system 6
II. The metric system. 7
I. Description. 7
(a) Legal status. 7
(b) General outline 7
(c) Fundamental relationships. 9
(d) Spelling and abbreviations of units. 10
(e) Special ways to use the tables. 10
3. Definitions of units. II
(a) Length II
(b) Area II
(c) Volume 12
(d) Capacity. 13
(e) Mass 14
4. Length conversion tables 15
Table 1.-Inches into millimeters (values, i to 9 ; see also Table 6, p. 16); millimeters into inches (values, i to 9; see also Table 7, p. 18). 15
Table 2.-Inches into centimeters; centimeters into inches. 15
Table 3.-Feet into meters; meters into feet 15
Table 4.-Yards into meters; meters into yards. 15
Table 5.-Decimal and metric equivalents of common (binary) fractions of an inch 15
Table 6.-Inches into millimeters (values, 0.000 to 0.999 , and 1 to 20 ; see also Table $\mathrm{I}, \mathrm{p} .15$) 16
Table 7.-Millimeters into inches (values, 0.00 to 9.99 ; see also Table $\mathrm{I}, \mathrm{p} .15$). 18
5. Tables of area 20
Table 8.-Square inches into square centimeters; square centimeters into square inches. 20
Table 9.-Square feet into square meters; square meters into square feet 20
Table 10.-Square yards into square meters; square meters into square yards. 20
6. Tables of volume. 20
Table 11.-Cubic inches into cubic centimeters; cubic centimeters into cubic inches. 20
Table 12.-Cubic feet into cubic meters; cubic meters into cubic feet 20
Table 13.-Cubic yards into cubic meters; cubic meters into cubic yards. 20
Table 14.-Cubic inches into liters; liters into cubic inches. 20
Table 15.-Cubic feet into liters; liters into cubic feet 20

[^0]II. The Metric System-Continued. Page
6. Tables of capacity 21
Table 16.-Minims into milliliters; milliliters into minims. 21
Table 17.-U. S. fluid drams into milliliters: milliliters into U. S. fluid drams 21
Table 18.-Fractions of fluid drams and fluid ounces into milliliters 21
Table 19.-U. S. fluid ounces into milliliters. $2 I$
Table 20.-Milliliters into U. S. fluid ounces 21
Table 2I.-U. S. liquid pints into liters; liters into U. S. liquid pints 21
Table 22.-U. S. liquid quarts into liters; liters into U. S. - liquid quarts. 21
Table 23.-U. S. gallons into liters; liters into U. S. gallons. 21
Table 24.-British Impeial gallons into liters; liters iinto British Imperial gallons 21
Table 25-U. S. gallons into British Imperial gallons; British Imperial gallons into U. S. gallons. 21
7. Tables of mass (weight) 22
Table 26.-Grains into grams (values, I to 9; see also Table 32, p. 23); grams into grains (values, I to 9; see also Table 33, p. 23). 22
Table 27.-Pennyweights into grams (values, I to 9; see also Table 34, p. 24); grams into pennyweights (values, I to 9; see also Table 35, p. 24). 22
Table 28.-Troy ounces into grams (values, I to 9 ; see also Table 36, p. 25); grams into troy ounces (values, I to 9; see also Table 37, p. 25) 22
Table 29.-Avoirdupois ounces into grams 22
Table 30.-Avoirdupois pounds into kilograms (values, I to 9 ; see also Table 38, p. 26); kilograms into avoirdupois pounds (values, I to 9 ; see also Table 39, p. 26) 22
Table 3r.-Short tons into metric tons; metric tons into short tons 22
Table 32.-Grains into grams (values, o to roo). 23
Table 33.-Grams into grains (values, o to 100) 23
Table 34.-Pennyweights into grams (values, 0.00 to 1.00 ; also o to 100) 24
Table 35.-Grams into pennyweights (values, 0 to 100) 24
Table 36.-Troy ounces into grams (values, 0.00 to r .00 ; also - to 100). 25
Table 37.-Grams into troy ounces (values, 0 to 100) 25
Table 38.-Avoirdupois pounds into kilograms (values, o to 100) 26
Table 39.-Kilograms into avoirdupois pounds (values, o to 10) 26
III. The metric carat 27
r. Definition 27
2. Conversion tables 27
Table 40.-Fractions of old carat into new metric carat. 28
Table 4I.-Old carats into new metric carats 29
Page
IV. Gages (wire and drill). 29

1. Existing practice in gaging materials. 29
2. Wire gages. 30
(a) American wire gage 30
(b) Steel wire gage. 30
(c) Stubs' steel wire gage 30
(d) Birmingham wire gage 31
(e) Standard wire gage 31
(f) Old English or London gage. 31
3. Twist drill and steel wire gages. 31
4. Tables of gage sizes (inches and millimeters). 32
Table 42.-Douzième caliper 3^{2}
Table 43.-Tabular comparison of wire gages. 33
Table 44.-Equivalents of lettered sizes, for drills and Stubs' steel wire gage 34
Table 45.-Numbered sizes, I to 60 , for drills and Stubs' steel wire gage 34
Table 46.-Numbered sizes, 60 to 80 , for drills and Stubs' steel wire gage 35
Table 47.-Index to numbered sizes, 60 to 80, drills, etc 35
V. Watch glasses. 35
5. Gage sizes for watch glasses. 35
6. Reasons for adoption of metric gage sizes. 36
7. Specimen labels 36
8. Influence of watchcase design. 37
9. Conversion tables 37
Table 48.-Diameter of watch glasses; conversion of Lignes (16ths) into tenth-millimeters. 37
Table 49.-Height of watch glasses 37
VI. Sizes of watches 38
Table 50.-Watch sizes. 38
VII. Ring sizes 39
10. Original standard. 39
11. Introduction of errors. 39
12. Many similar standards. 39
13. Confusion also in use of gage. 40
14. Outline of the problem. 40
VIII. Miscellaneous tables. 41
Table 5I.-Decimal equivalents of gold karats 41
Table 52.-Densities of various metals. 41
Table 53.-Melting points of various metals. 41
Table 54.-Conversion of centigrade temperatures (C) into Fahren- heit temperatures (F). 42
Table 55--Conversion of Fahrenheit temperatures (F) into centi- grade temperatures (C). 42
I. Approximate temperatures by color 43
Index 45

I. INTRODUCTION

1. ADOPTION OF THE NEW METRIC CARAT

The carat weights in use previous to July 1, 1913, in different countries had differed greatly, scarcely any two of the important countries having the same standard. Even within the United States there was not agreement in the standard used, the various makers of weights using slightly different standards. This led to considerable confusion in the weighing of gems, and was the more serious because of the great value of the article.

Beginning July 1, 1913, the international metric carat of 200 milligrams as the unit of weight for diamonds and other precious stones was put into commercial use in the United States by practically all the dealers in gems and precious stones through the efforts of a committee representing all the principal firms handling gems. On the same date the Treasury Department of the United States Government also began the use of this unit in the customs service for the levying of import duties on precious stones, and the Bureau of Standards recognized this unit for purposes of certification of all carat weights submitted to the Bureau for test.

The movement for the adoption of a uniform, decimally divided standard was a decided step forward and therefore has met with success. The new metric carat of 200 milligrams is universally used in the United States and has been officially adopted by Belgium, Bulgaria, Denmark, England, France, Germany, Holland, Italy, Japan, Norway, Portugal, Roumania, Spain, Sweden, and Switzerland. The Bureau of Standards in I9I3 prepared tables for converting "old" carats to new metric carats, and vice versa, and published them as Circular No. 43. These tables were of great aid at the time to the transition from the old unit of about 205.3 milligrams and binary fractions to the new unit and decimal fractions.

2. PROPOSED ADOPTION OF THE METRIC SYSTEM

The inconvenience and inefficient use of the present system of pennyweights and grains as opposed to the benefits derived from the use of the new metric decimally divided carat has become so pronounced that the Bureau was invited to prepare a practical working outline of the metric system that would suit the needs of the jewelry trade and allied industries. The purpose of this is to make it easily possible for jewelers and silversmiths to substitute the gram for the dual unit of pennyweights and grains ${ }^{2}$ and also to use the metric system in all of their work.

[^1]The Bureau therefore is publishing this circular giving tables of the relations between the customary units and the corresponding ones of the metric system. There is also given information that is of interest to other branches of the jewelry trade, such as the comparative table for the diameters corresponding to the sizes of watches.

With this edition, the material on the metric carat has been revised, and, because of the large amount of new material which has been added to the publication, the title has been changed.

II. THE METRIC SYSTEM

1. DESCRIPTION

(a) LEGAL STATUS

The metric system was rendered legal for all transactions in the United States by an act of Congress, approved July 28, 1866, and is now legal or obligatory in all commercial countries. Many industries in the United States are using it. In Europe, and also in many other parts of the world, more measurements are made in metric terms than in any other system. The metric system must be understood by those who deal intelligently with their customers in the metric countries.

(b) GENERAL OUTLINE

The meter for measuring length, the liter for measuring capacity, and the gram for weight form the basis of the metric system. These units, together with the multiples and subdivisions given in the following table, ${ }^{3}$ are sufficient for practical purposes and are recognized in all countries.

[^2]

FIG. 1.-Relative values of the centimeter and the inch.
Slight changes in the paper due to humidity will alter the absolute but not the relative

Complete metric tables are formed by combining the words "meter," "LITER," and "GRAM" with the six numerical prefixes as in the following tables:

The metric unit of length for jewelers and silversmiths is the millimeter, or one-thousandth of a meter; the millimeter is the size of the smallest space shown in Fig. 1. It is also very nearly the diameter of a No. 18 wire of American (Brown \& Sharpe) wire gage. For very small values of length, such as the thickness of the plating on an electroplated article, it is convenient to use the " micron," which is one-thousandth of a millimeter. The smallest subdivision on the head of a micrometer with a millimeter screw usually is o.or millimeter, or 10 microns. In working material to a given dimension within a quarter of a thousandth of an inch, the accuracy obtained is 6 microns. An inch equals almost exactly 25.4 millimeters.

The liter is the standard unit of capacity and is divided into a thousand equal parts called milliliters. For ordinary purposes, the liter ${ }^{4}$ is equivalent to a

[^3]cubic measure io centimeters on each edge, or 1000 cubic centimeters. A liter is a trifle larger than a U. S. liquid quart.

The gram is the unit of mass (or weight); 1000 grams make a kilogram. The kilogram is exactly the mass of a liter of water when at the temperature of $4^{\circ} \mathrm{C}\left(39.2^{\circ} \mathrm{F}\right)$. The gram is frequently subdivided into 1000 parts called milligrams. For a small article (less than I gram) the weight usually is expressed in milligrams. A piece of platinum wire one-half inch long and American (B. \& S.) wire gage No. 30 weighs about 14 milligrams; if of copper wire it weighs about 6 milligrams. A one-half carat diamond weighs exactly 100 milligrams. For large weighings, or in expressing the sum of several weighings, it is convenient to use the gram even up to about 10 ooo grams, or io kilograms, thus avoiding the change from one unit to another. In the metric system a quantity is always expressed in terms of only one unit. The gram equals about 15.4 grains, and the kilogram is about 2.2 avoirdupois pounds.

A change to a larger or smaller metric measure of length, area, volume, capacity, or weight is effected by merely multiplying or dividing by 10 or a multiple of 10 . This enables those who use the metric system to make accurate mental and written calculations with a rapidity which would otherwise be impossible.
(c) FUNDAMENTAL RELATIONSHIPS

The tables in this circular have been prepared to aid in changing values from one system of weights and measures to another. The U. S. units are referred to except when otherwise indicated. The tables have been based upon the following equivalents:

39.37 United States inches	$=1$ meter
I United States gallon	$=23 \mathrm{I}$ cubic inches
I liter	$=1000.027$ cubic centimeters
I United States avoirdupois pound	$=0.4535924277$ kilogram

The values in most of the tables have been expressed with the accuracy usually required at the bench. In some cases, however, many figures are given for use in connection with precise work. Equivalents, such as those in the tables given on pages $15,20,21$, and 22 , should be used only to the required degree of accuracy. For example, in Table 2, page 15, it is stated that 4 inches are equal to 10.16002 centimeters. This may be rounded off, giving 4 inches equal to ro.2 centimeters, or, if less accuracy is desired, the approximate value of to centimeters may be used.
$16340^{\circ}-21-2$
(d) SPELLING AND ABBREVIATION OF UNITS

The spelling of the names of metric units is that given in the law of July 28, 1866, legalizing the metric system in the United States.

The following principles of abbreviation have been adopted by the Bureau in conformity with international agreement.
r. The period is omitted after the abbreviations of the metric units, while it is used after those of the customary system.
2. The same abbreviation is used for both singular and plural.
3. Unless all of the text is printed in capital letters, only small letters are used for abbreviations (except in the case of A. for acre, where the use of the capital letter is general).
4. The exponents " 2 " and " 3 " following abbreviations of units of length, are used to signify area and volume, respectively, in the case of the metric units instead of the longer prefixes "sq." and "cu." In conformity with this principle the abbreviation for cubic centimeter is " cm^{3} " in preference to any other usual practice.

(e) SPECIAL WAYS TO USE THE TABLES

When the tables do not give the equivalent of any desired quantity directly and completely, the equivalent can usually be obtained without the necessity of making a multiplication. This is done by using quantities from different parts of the same table or from several tables, making a shift of decimal points if necessary, and merely adding the results. For example:

1. Convert 27.3 millimeters into inches. (Refer to Table 1, p. 15.)

$$
\begin{aligned}
& 2 \mathrm{~mm}=0.07874 \text { inch, hence } 20.0 \mathrm{~mm}=0.7874 \text { inch } \\
& 7.0 \mathrm{~mm}=.2755 \text { inch } \\
& 3 \mathrm{~mm}=.118 \mathrm{Ir} \text { inch, hence } \begin{aligned}
.3 \mathrm{~mm} & =.018 \mathrm{r} \text { inch } \\
27.3 \mathrm{~mm} & =1.0748 \text { inches }
\end{aligned}
\end{aligned}
$$

2. Convert 1.0748 inches into millimeters. (Refer to Table 1 , p. 15.)

3. Convert 253 pennyweights I 3.5 grains into grams.

$$
\begin{aligned}
200 \text { pennyweights (Table 34, p. 24) } & =311.035 \mathrm{~g} \\
53 \text { pennyweights (Table 34, p. 24) } & =82.424 \mathrm{~g} \\
\text { I3 grains (Table } 32, \text { p. 23) } & =.842 \mathrm{~g} \\
5 \text { grains }=0.324 \mathrm{~g}, \text { hence } 0.5 \text { grain } & =.032 \mathrm{~g} \\
253 \text { pennyweights } I_{3} .5 \text { grains } & =394.333 \mathrm{~g}
\end{aligned}
$$

2. DEFINITIONS OF UNITS

Fundamental Units

(a) LENGTH

A METER (m) is a unit of length equivalent to the distance between the defining lines on the international prototype meter at the International Bureau of Weights and Measures when this standard is at the temperature of melting ice ($0^{\circ} \mathrm{C}$).
A Yard (yd.) is a unit of length equivalent to $\frac{3600}{3937}$ of a meter.

Multiples and Submultiples

I kilometer $(\mathrm{km})=1000$ meters.
I hectometer $(\mathrm{hm})=100$ meters.
I dekameter $(\mathrm{dkm})=10$ meters.
I decimeter $(\mathrm{dm})=0.1$ meter.
I centimeter $(\mathrm{cm})=0.01$ meter.
I millimeter $(\mathrm{mm})=0.001$ meter $=0.1$ centimeter.
I micron $(\mu)=0.000001$ meter $=0.001$ millimeter.
I millimicron $(\mathrm{m} \mu)=0.00000000$ I meter $=0.001$ micron.
I foot (ft.) $=1 / 3$ yard $=\frac{1200}{3937}$ meter.
I inch (in.) $=\frac{1}{36}$ yard $=\frac{1}{12}$ foot $=\frac{100}{3937}$ meter.
I link (li.) $=0.22$ yard $=7.92$ inches.
$1 \operatorname{rod}(\mathrm{rd})=.51 / 2$ yards $=161 / 2$ feet.
I chain (ch.) $=22$ yards $=100$ links $=66$ feet $=4$ rods.
1 furlong (fur.) $=220$ yards $=40$ rods $=10$ chains.
I statute mile (mi.) $=1760$ yards $=5280$ feet $=320$ rods.
r hand $=4$ inches.
I point (printers') $=\frac{1}{\frac{1}{2}}$ inch (approximately).
I point (silversmiths') $=\frac{1}{4000}$ inch.
I mil $=0.00$ inch .
1 fathom $=6$ feet.
I $\operatorname{span}=9$ inches $=1 / 8$ fathom.
I sea mile
I geographical mile statute miles $=1853.249$ meters.
(b) AREA

Fundamental Units

A SQUARE METER $\left(\mathrm{m}^{2}\right)$ is a unit of area equivalent to the area of a square the sides of which are 1 meter.

A SQUARE Yard (sq. yd.) is a unit of area equivalent to the area of a square the sides of which are I yard.

Multiples and Submultiples

I square kilometer $\left(\mathrm{km}^{2}\right)=1000000$ square meters.
I hectare (ha), or square hectometer $\left(\mathrm{hm}^{2}\right)=10000$ square meters.
I are (a), or square dekameter $\left(\mathrm{dkm}^{2}\right)=100$ square meters.
I centare (ca) $=1$ square meter.
I square decimeter $\left(\mathrm{dm}^{2}\right)=0.01$ square meter.
I square centimeter $\left(\mathrm{cm}^{2}\right)=0.000$ s square meter.
I square millimeter $\left(\mathrm{mm}^{2}\right)=0.00000$ I square meter $=0.01$ square centimeter.
I square foot (sq. ft.) $=\frac{1}{5}$ square yard.
I square inch (sq. in.) $=\frac{1}{1296}$ square yard $=\frac{1}{194}$ square foot.
I square link (sq. li.) $=0.0484$ square yard $=62.7264$ square inches.
I square rod (sq. rd.) $=30.25$ square yards $=272.25$ square feet $=625$, square links.
I square chain (sq. ch.) $=484$ square yards $=16$ square rods $=100000$ square links.
I acre (A.) $=4840$ square y ards $=160$ square rods $=10$ square chains.
I square mile (sq. mi.) $=3097600$ square yards $=640$ acres.

Fundamental Units

(c) VOLUME

A CUBIC METER (m^{3}) is a unit of volume equivalent to a cube the edges of which are I meter.
A cubrc yard (cu. yd.) is a unit of volume equivalent to a cube the edges of which are I yard.

Multiples and Submultiples

I cubic kilometer $\left(\mathrm{km}^{3}\right)=1000000000$ cubic meters.
I cubic hectometer $\left(\mathrm{hm}^{3}\right)=1000000$ cubic meters.
I cubic dekameter $\left(\mathrm{dkm}^{3}\right)=1000$ cubic meters.
I stere (s) $=\mathrm{I}$ cubic meter.
I cubic decimeter $\left(\mathrm{dm}^{3}\right)=0.00$ cubic meter.
1 cubic centimeter $\left(\mathrm{cm}^{3}\right)=0.00000$ I cubic meter $=0.001$ cubic decimeter.
I cubic millimeter $\left(\mathrm{mm}^{3}\right)=0.00000000$ I cubic meter $=0.00$ I cubic centimeter.
I cubic foot (cu. ft.) $=\frac{1}{27}$ cubic yard.
I cubic inch (cu. in.) $=\frac{16}{46656}$ cubic yard $=\frac{1}{1728}$ cubic foot.
I board foot $=144$ cubic inches $=\frac{1}{12}$ cubic foot.
1 cord $(c d)=$.128 cubic feet.
(d) CAPACITY

Fundamental Units

A LITER (1) is a unit of capacity equivalent to the volume occupied by the mass of I kilogram of pure water at its maximum density (at a temperature of $4^{\circ} \mathrm{C}$, practically) and under the standard atmospheric pressure (of 760 mm). It is equivalent in volume to 1.000027 cubic decimeters.
A gallon (gal.) is a unit of capacity equivalent to the volume of 231 cubic inches. It is used for the measurement of liquid commodities only.
A bushel (bu.) is a unit of capacity equivalent to the volume of 2150.42 cubic inches. It is used in the measurement of dry commodities only. ${ }^{5}$

Multiples and Submultiples

I hectoliter $(\mathrm{hl})=100$ liters.
I dekaliter $(\mathrm{dkl})=10$ liters.
I deciliter $(\mathrm{dl})=0.1$ liter.
I centiliter (cl) $=0.0$ I liter.
I milliliter $(\mathrm{ml})=0.00$ I liter $=1.000027$ cubic centimeters.
I liquid quart (liq. qt.) $=1 / 4$ gallon $=57.75$ cubic inches.
I liquid pint (liq. pt.) $=1 / 8$ gallon $=1 / 2$ liquid quart $=28.875$ cubic inches.
1 gill $($ gi. $)=\frac{1}{32}$ gallon $=1 / 4$ liquid pint $=7.21875$ cubic inches.
I fluid ounce (fl.oz.) $=\frac{1}{128}$ gallon $=\frac{1}{16}$ liquid pint.
I fluid dram (fl. dr.) $=1 / 8$ fluid ounce $=\frac{1}{28}$ liquid pint.
I minim (min. or η) $=\frac{1}{80}$ fluid $d r a m=\frac{1}{480}$ fluid ounce.
1 firkin $=9$ gallons.
1 peck (pk.) $=1 / 4$ bushel $=537.605$ cubic inches.
I dry quart (dry qt.) $=\frac{1}{32}$ bushel $=1 / 8$ peck $=67.200625$ cubic inches.
I dry pint (dry pt.) $=\frac{1}{64}$ bushel $=1 / 2$ dry quart $=33.6003125$ cubic inches.
I barrel (for fruit, vegetables, and other dry commodities) ${ }^{8}=7056$ cubic inches $=105$ dry quarts.

[^4]
Fundamental Units

A kilogram (kg) is a unit of mass equivalent to the mass of the international prototype kilogram at the International Bureau of Weights and Measures.
An avoirdupois pound (lb . av.) is a unit of mass equivalent to 0.4535924277 kilogram.
A Gram (g) is a unit of mass equivalent to one-thousandth of the mass of the international prototype kilogram at the International Bureau of Weights and Measures.
A Troy pound (lb. t.) is a unit of mass equivalent to $\frac{5760}{\frac{5}{000}}$ of that of the avoirdupois pound.

Multiples and Submultiples

I metric ton $(\mathrm{t})=1000$ kilograms.
I hectogram (hg) $=100$ grams $=0.1$ kilogram.
I dekagram (dkg) $=10$ grams $=0.0$. kilogram.
I decigram (dg) $=0.1$ gram.
I centigram (cg) $=0.01$ gram.
1 milligram (mg) $=0.001$ gram.
I avoirdupois ounce (oz. av.) $=\frac{1}{16}$ avoirdupois pound.
I avoirdupois dram (dr. av.) $=\frac{1}{256}$ avoirdupois pound $=$ $\frac{1}{16}$ avoirdupois ounce.

1. grain (gr.) $=\frac{10}{1000}$ avoirdupois pound $=\frac{10}{4 \frac{1}{375}}$ avoirdupois ounce $=\frac{1}{5160}$ troy pound.
I apothecaries' pound (lb. ap.) $=$ I troy pound $=\frac{5780}{8000}$ avoirdupois pound.
I apothecaries' or troy ounce (oz. ap., or $\mathfrak{3}$, or oz. t.) $=\frac{1}{12}$ troy pound $=\frac{480}{7000}$ avoirdupois pound $=480$ grains.
I apothecaries' $\operatorname{dram}\left(\right.$ dr. ap. or 3) $=\frac{1}{96}$ apothecaries' pound $=$ $1 / 8$ apothecaries' ounce $=60$ grains.
I pennyweight (dwt. $)=\frac{1}{20}$ troy ounce $=24$ grains.
I apothecaries' scruple (s. ap. or $Э$) $=1 / 3$ apothecaries' dram $=20$ grains.
1 metric carat $(c)=200$ milligrams $=0.2$ gram.
I short hundredweight (sh. cwt.) $=100$ avoirdupois pounds.
I long hundredweight ($1 . \mathrm{cwt}$.) $=112$ avoirdupois pounds.
I short ton $=2000$ avoirdupois pounds.
I long ton $=2240$ avoirdupois pounds.

3. LENGTH CONVERSION TABLES

a See also extended Tables 6 and 7 .
TABLE 5.-Decimal and Metric Equivalents of Common (Binary) Fractions of an Inch

Fractions of inch		Equivalent in millimeters	Fractions of inch		Equivalent in millimeters
Eighths and quarters	Decimal		Sixty-fourths	Decimal	
1/8	$\begin{array}{r} 0.125 \\ .250 \\ .375 \\ .500 \end{array}$	3. 175	1	0.015625	0.397
1/4		6. 350	3	. 046875	1.191
$3 / 8$		9. 525	5	078125	1. 984
1/2		12. 700	7	.109375 .140625	2. 778
5/8	$\begin{aligned} & .625 \\ & .750 \\ & .875 \end{aligned}$	$\begin{aligned} & 15.875 \\ & \text { 19. } 050 \\ & 22.225 \end{aligned}$	1113151719	$\begin{aligned} & .171875 \\ & .203125 \\ & .234375 \\ & .265625 \\ & .296875 \end{aligned}$	$\begin{aligned} & 4.366 \\ & 5.159 \\ & 5.953 \\ & 6.747 \\ & \mathbf{7 . 5 4 1} \end{aligned}$
$3 / 4$					
7/8					
Sisteenths:					
1 3	$\begin{aligned} & .0625 \\ & .1875 \\ & .3125 \\ & .4375 \end{aligned}$	1.588 4.763	21	. 328125	
5		7.983 7.938	2325		
7		11.113		.359375 .390625	9. 128 9.922
				.421875 .453125	$\begin{aligned} & 10.716 \\ & 11.509 \end{aligned}$
11	. .6875	17. 14.48			12.303
13	. 8125	$\begin{aligned} & 20.638 \\ & 23.813 \end{aligned}$	31	. 484375	
15	. 9375		33 35	. 51546875	13. 097
Thirty-seconds:			3739	. 578125	14.684
					15.478
1	. 03125	.7942.381	41	. 640625	16. 27217.066
3	. 09375		4345	. 671875	
5	. 15625	3. 969			17.859
7	. 21875	5. 356	45	. 734375	18.653
		8.731			
11	. 34375			796875	20.241
13	. 40625	10.319	51 53 55	. 828125	21.03421.828
15	. 46875	11. 906	5557	. 890625	
17	. 53125	13.9415.081			22.622
19	. 59375				$\begin{aligned} & 23.416 \\ & 24.209 \\ & 25.003 \end{aligned}$
21	. 65625	16.669	61	. 953125	
25 27	. 7843725	19. 2444 21.			
29 31	. 90625	23.019			
31	. 96875	24. 606			

Abstract

 N゙ざざざば

}
앤

 ${ }^{\circ}$

に
볌

4. TABLES OF AREA

TABLE 8	TABLE 9	TABLE 10
SquareinchesSquare centi- meters	Square feet $\begin{aligned} & \text { Square } \\ & \text { meters }\end{aligned}$	Square Square yards meters
1 $\mathbf{1}$ $\mathbf{3}$ $=$	$1=0.0929$ $2=8.1858$ $3=.2787$ $4=.3716$	$\begin{array}{ll}1 & =0.836 \\ \mathbf{3} & =1.672 \\ 4 & =2.508 \\ 4 & =3.345\end{array}$
$\begin{array}{ll}5 & =32.258 \\ 6 & =38.710 \\ 7 & =45.161 \\ 8 & =51.613 \\ 9 & =58.065\end{array}$	$5=.4645$ $\mathbf{6}=.5574$ $7=.6503$ $8=.7432$ $\mathbf{9}=.8361$	$\begin{array}{ll}\mathbf{5} & =4.181 \\ \mathbf{6} & =5.017 \\ \mathbf{8} & =5.853 \\ \mathbf{8} & =6.689 \\ \mathbf{9} & =7.525\end{array}$
$\begin{array}{r} 0.1550=\mathbf{1} \\ .3100= \\ \mathbf{2} \\ .4650= \\ .6200= \end{array}$	$\begin{aligned} & 10.764=1 \\ & 21.52= \\ & 32.29 \\ & 32.29= \\ & 43.055=4 \end{aligned}$	$\begin{array}{ll} 1.196= & 1 \\ 2.392= & 2 \\ 3.58= & 3 \\ 4.784= & 4 \end{array}$
$.7750=$ $\mathbf{5}$.9300 $\mathbf{6}$ 1.0850 7 1.2400 8 1.3950 $\mathbf{8}$	$\begin{aligned} & 53.819=\mathbf{5} \\ & 64.58=\mathbf{6} \\ & \text { 75. } 847= \\ & 88.11= \\ & \mathbf{8} \\ & 96.875= \\ & \mathbf{8} \end{aligned}$	$\begin{aligned} 5.980 & = \\ 7.176= & 6 \\ 8.372= & 7 \\ 9.568= & 8 \\ 10.764 & =9\end{aligned}$

5. TABLES OF VOLUME

TABLE 11	TABLE 12	TABLE 13	- TABLE 14	TABLE 15
$\begin{array}{cc} \text { Cubic } & \begin{array}{c} \text { Cubic } \\ \text { centi- } \\ \text { inches } \\ \text { meters } \end{array} \end{array}$	$\underset{\text { feet }}{\text { Cubic }} \underset{\text { meters }}{\text { Cubic }}$	$\underset{\text { yards }}{\text { Cubic }} \quad$Cubic meters	Cubic inches	$\underset{\text { feet }}{\text { Cubic }}$ Liters
$\mathbf{1}=16.387$ $\mathbf{2}=32.774$ $\mathbf{3}=49.161$ $\mathbf{4}=65.549$		$\begin{array}{ll}1 & =0.7646 \\ 2 & =1.5291 \\ 3 & =2.2937 \\ 4 & =3.0582\end{array}$	$1=0.0164$ 2 3 $\mathbf{3}=.0328$ $4=.0692$	$\begin{aligned} & \mathbf{1}=28.316 \\ & \mathbf{2}=56.633 \\ & \mathbf{3}=84.949 \\ & \mathbf{4}=113.265 \end{aligned}$
$5=81.936$ $\mathbf{6}=98833$ $7=114.710$ 8 $\mathbf{8}=131.097$ 	$\mathbf{5}=.1416$ $\mathbf{6}=.1599$ $\mathbf{8}=.1982$ $\mathbf{8}=.2655$ $\mathbf{9}=.2549$	$\begin{array}{ll}\mathbf{5} & =3.8228 \\ \mathbf{6} & =4.8874 \\ 7 & =5.3519 \\ 8 & =6.1165 \\ \mathbf{9} & =6.8810\end{array}$	$5=.0819$ $\mathbf{6}=. .983$ $7=.1147$ $8=.1311$ $\mathbf{9}=.1475$	$\begin{array}{ll} \mathbf{5} & =141.581 \\ \mathbf{6} & =169.898 \\ 7 & =198.214 \\ \mathbf{8} & =226.530 \\ \mathbf{9} & =254.846 \end{array}$
$\begin{aligned} 0.0610= & 1 \\ .120= & 2 \\ .1831= & 3 \\ .2441= & 4 \end{aligned}$	$\begin{array}{r} 35.314= \\ 70.629= \\ 105 \\ 105.943= \\ 141.258= \end{array}$	$1.3079=$ $\mathbf{1}$ 2. $6159=$ $\mathbf{2}$ $3.9238=$ $\mathbf{3}$ $5.2318=$ 4	$\begin{aligned} 61.03= & \mathbf{1} \\ 122.05= & 2 \\ 183.08= & 3 \\ 244.10= & 4 \end{aligned}$	$\begin{array}{r} 0.03532=1 \\ .0063= \\ .10595=3 \\ .14126=4 \end{array}$
$.3051=$ 5 $.3661=$ 6 $.4272=$ 7 $.5482=$ 8 $.5492=$	$\begin{array}{ll}176.572= & 5 \\ 211.887 & \mathbf{6} \\ 247.201= & 7 \\ 282.516= & 8 \\ 317.830= & \mathbf{9}\end{array}$	$\begin{array}{rr}6.5397= & \mathbf{5} \\ 7847= & \mathbf{6} \\ 9.1556= & 7 \\ 10.4635= \\ 11.7715= & \mathbf{9}\end{array}$	$305.13=$ $\mathbf{5}$ $366.15=$ $\mathbf{6}$ $427.18=$ $\mathbf{7}$ $488.20=$ $\mathbf{8}$ $549.23=$ $\mathbf{9}$	$.17658=$ $\mathbf{5}$ $.21189=$ $\mathbf{6}$ $.24721=$ 7 $.28252=$ 8 $.31784=$ $\mathbf{9}$

6. TABLES OF CAPACITY

TABLE 16	TABLE 17	TABLE 18	TABLE 19	TABLE 20
Minims $\begin{aligned} & \text { Milll- } \\ & \text { liters }\end{aligned}$	$\begin{array}{cc} \text { U.S. } \\ \text { fluid } \\ \text { drams } \end{array} \text { Milll- }$	U. S. U.S. Millifluld fluid liters drams ounce	U.S. $\begin{gathered}\text { fuid } \\ \text { ounces }\end{gathered}$	$\begin{array}{cc} \text { U.S. } \\ \text { fludd } \\ \text { ounces } \end{array} \quad \text { Milil- } \text { liters }$
$1=0.062$ $\mathbf{z}=.123$ $\mathbf{4}=.185$ $\mathbf{4}=.246$	$1-3.70$ $\mathbf{2}=7.39$ $\mathbf{4}=11.09$ $4=14.79$		$1=29.57$ $\mathbf{1}=59.15$ $3=8.72$ $4=118.29$	$\begin{array}{cc} 0.0338= & 1 \\ .067= & 2 \\ .1014= & 3 \\ .1353= & 4 \end{array}$
$\mathbf{5}=.308$ $\mathbf{6}=.370$ $7=.431$ $\mathbf{9}=.493$ $\mathbf{9}=.554$	$\begin{array}{ll}\mathbf{5} & =18.48 \\ \mathbf{6} & =22.18 \\ 7 & =25.88 \\ 8 & =29.57 \\ \mathbf{9} & =33.27\end{array}$		$\begin{array}{ll}5 & =147.86 \\ 6 & =177 \\ 7 & \text { 207. } \\ 8 & =201 \\ 8 & =236.58 \\ 9 & =266.16\end{array}$	$.1691=$ 5 $.2029=$ 6 $.2367=$ 7 $.2705=$ 8 $.3043=$ 9
$16.23=$ $32.46=$ 489 $64.92=$ $\mathbf{3}$ $\mathbf{3}$ $\mathbf{4}$	$\begin{array}{rrr}0.271= & 1 \\ .541= & 2 \\ 1.812= & 3 \\ 1.082= & 4\end{array}$	$5=8 / 818.48$ $51 / 2=18=20.33$ $6=18$ $61 / 2=22.18$ 1024.03	$\begin{array}{ll}10 & =295.73 \\ 11 & =325.30 \\ 12 & =354.87 \\ 13 & =384.45\end{array}$	$.3381=$ 10 $.6763=$ 20 $1.0144=$ 30 $1.3526=$ $\mathbf{4 0}$
$81.16=$ 5 $97.39=$ 6 $113.62=$ 7 $129.85=$ 8 $146.08=$ 9	$\begin{array}{ll}1.353= & 5 \\ 1.623= & 6 \\ 1.894= & 7 \\ 2.164= & 8 \\ 2.435= & 9\end{array}$	$\begin{aligned} & 7=7 / 8=25.88 \\ & 71 / 2=18=7.72 \\ & 8^{1 / 2}=18.57 \end{aligned}$	$\begin{array}{ll}14 & =414.02 \\ 15 & =443.59 \\ 16 & =473.17\end{array}$	$1.6907=$ 50 $2.0289=$ 60 $2.3670=$ 70 $2.7052=$ 80 $3.0433=$ 90
TABLE 21	TABLE 22	TABLE 23	TABLE 24	TABLE 25
$\underset{\substack{\text { U. Siquid } \\ \text { pints }}}{\text { Liters }}$	U. S. liquid quarts	$\underset{\text { gallons }}{\text { U.S. }}$ Liters	British Imperial Liters gallons	U. S. Britigh Imperial gailons gsilons
$\begin{aligned} & 1 \\ & \mathbf{1}\end{aligned}=0.47381{ }^{2}=.946$	$\begin{array}{ll}\mathbf{1} & =0.946 \\ \mathbf{2} & =1.893 \\ \mathbf{3} & =2.839 \\ 4 & =3.785\end{array}$		$1=4.546$ $\mathbf{2}=9.092$ $\mathbf{3}=13.638$ 4	$\begin{array}{ll} \mathbf{1} & =0.8327 \\ \mathbf{2} & =1.6564 \\ \mathbf{3} & =2.490 \\ \mathbf{4} & =3.3307 \end{array}$
$\begin{array}{ll}5 & -2.366 \\ 6 & =2.839 \\ 7 & =3.312 \\ 8 & =3.785 \\ \mathbf{9} & =4.258\end{array}$	$\begin{array}{ll}\mathbf{5} & =4.732 \\ \mathbf{6} & =5.678 \\ 7 & =6.624 \\ \mathbf{8} & =7.571 \\ \mathbf{9} & =8.517\end{array}$	$\begin{array}{ll}\mathbf{5} & =18.927 \\ \mathbf{6} & =22.712 \\ 7 & =26.497 \\ 8 & =30.283 \\ \mathbf{9} & =34.068\end{array}$	$\begin{array}{ll} 5 & =22.730 \\ \mathbf{6} & =27.276 \\ 7 & =31.822 \\ 8 & =36.368 \\ \mathbf{9} & =40.914 \end{array}$	$\begin{array}{ll} 5 & =4.1634 \\ \mathbf{6} & =4.9961 \\ 7 & =5.8287 \\ 8 & =6.6614 \\ \mathbf{9} & =7.4941 \end{array}$
$\begin{aligned} & 2.113=1 \\ & 4.227=2 \\ & 6.340=3 \\ & 8.454=4 \end{aligned}$	$\begin{aligned} & 1.057=1 \\ & 2.113= \\ & 3.1 \\ & 3.120= \\ & 4.227= \end{aligned}$	$\begin{aligned} 0.2642= & \mathbf{1} \\ .5284= & 2 \\ .792= & 3 \\ 1.0567= & 4 \end{aligned}$	$\begin{array}{r} 0.2200=1 \\ .440= \\ .6599= \\ .8799=4 \end{array}$	$\begin{aligned} & \text { 1. } 2009=1 \\ & \text { 2. } 4019=7 \\ & 3.602= \\ & 4.8038=4 \\ & 4 . \end{aligned}$
$\begin{aligned} & 10.567= \\ & 12.681= \\ & 14.794= \\ & 16.907= \\ & 19.021= \end{aligned}$	$\begin{array}{ll} 5.284= & 5 \\ 6.340= & 6 \\ 7.397= & 7 \\ 8.454= & 8 \\ 9.510= & 9 \end{array}$	$1.3209=$ 5 $1.5851=$ 6 1. $8492=$ 7 2. $1134=$ 8 $2.3776=$ 9	$1.0999=5$ $1.3199=$ $1.5398=$ $1.7598=8$ $1.9798=9$	$6.0047=$ 5 $7.2057=$ 6 $8.4066=$ 7 $9.6075=$ 8 $10.8085=$ 9

7. TABLES OF MASS (WEIGHT)

TABLE 26	TABLE 27	TABLE 28
Grains ${ }^{\text {c }}$ Grams ${ }^{\text {a }}$	Penny- ${ }_{\text {weights }}$ b Grams ${ }^{\text {b }}$,	Troy ounces c Grams c
$\begin{aligned} & \mathbf{1}=0.06480 \\ & 2=.12960 \\ & 3=.19440 \\ & 4=.25920 \end{aligned}$	$\begin{aligned} & \mathbf{1}=1.55517 \\ & \mathbf{2}=3.11035 \\ & \mathbf{3}=4.66552 \\ & \mathbf{4}=6.22070 \end{aligned}$	$\begin{aligned} & \mathbf{1}=31.10338 \\ & \mathbf{2}=62.20696 \\ & \mathbf{3}=93.31044 \\ & \mathbf{4}=124.41392 \end{aligned}$
$\begin{aligned} & \mathbf{5}=.32399 \\ & \mathbf{6}=.38879 \\ & \mathbf{7}=.45359 \\ & \mathbf{9}=.5839 \\ & =.58319 \end{aligned}$	$\begin{aligned} & \mathbf{5}=7.77587 \\ & \mathbf{6}=9.33104 \\ & 7=10.88622 \\ & \mathbf{8}=12.44139 \\ & \mathbf{9}=13.99657 \end{aligned}$	$\begin{array}{ll} \mathbf{5} & =155.51740 \\ \mathbf{6} & =186.62088 \\ \mathbf{7} & =217.72437 \\ \mathbf{8} & =248.82785 \\ \mathbf{9} & =279.93133 \end{array}$
$15.4324=$ $\mathbf{1}$ $30.8647=$ 2 $46.2971=$ $\mathbf{3}$ $61.7294=$ $\mathbf{4}$	$\begin{aligned} & 0.64301=1 \\ & 1.28603= \\ & 1.9204= \\ & 2.57206= \\ & 2 . \end{aligned}$	$\begin{aligned} 0.03215= & 1 \\ .06430= & 2 \\ .09645= & 3 \\ .12860= & 4 \end{aligned}$
$\begin{array}{rl}77.1618= & \mathbf{5} \\ 99.591= & 6 \\ 108.025= & 7 \\ 1223.489 & \mathbf{8} \\ 138.8912 & =9\end{array}$	$\begin{array}{ll}\text { 3. } 21507= & 5 \\ \text { 3. } 58809= & 6 \\ \text { 4. } 5110= & 7 \\ \text { 5. } 14412= & 8 \\ \text { 5. } 78713= & 9\end{array}$	$.16075=5$ $.1929=6$ $.22506=$ $.2572=8$ $.28936=9$

a See also extended Tables 32 and 33.
b See also extended Tables 34 and 35.
c See aiso extended Tables 36 and 37 .

${ }^{a}$ See also extended Tables 38 and 39.

MASS-GRAINS AND GRAMS

TABLE 32 c				TABLE 33[1 gram=15.4323564 grains]				
Grains	Grams	Grains	Grams	Grams	Grains	Grams	Grains	
0	0.000	55 3.564 56 3.629 57 3.694 58 3.758 59 3.823		$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$		$\begin{aligned} & 55 \\ & 56 \end{aligned}$	848.78	
1	. 065			15.43				
2	. 130			30. 86	$\begin{aligned} & 56 \\ & 57 \end{aligned}$	879.64		
3	. 194			46. 30	58	895.08		
4	. 324			61.73	59	910.51		
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$. 324	$\begin{array}{ll}60 & 3.888 \\ 61 & 3.953\end{array}$				77.1692.59	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & 925.94 \\ & 941.37 \end{aligned}$
	. 389							
	. 454	$62 \quad 4.018$			6 7 8	108.03	62	941.37
	. 518	63	4.082		8	123.46	$\begin{aligned} & 63 \\ & 64 \end{aligned}$	972.24
10	. 648	65	4.212	$10 \quad 154.32$		65	1003.10	
11	. 713	66	4.277	11	169.76	66 67	1018. 54	
12	. 778	$67 \quad 4.342$		12	185.19	67	1033.97	
13	. 842	68	4.406		$13 \quad 200.62$		1049.40	
14	. 907	$69 \quad 4.471$		$14 \quad 216.05$		68 69	1064.83	
15	. 972	70	4.536	15	231. 49		1080. 26	
16	1.037		4.601	16	246.92	70	1095. 70	
17	1.102	72	4. 666	17	262.35	72	1111.13	
18	1.166	73	4.795	18	277.78	73	1126.56	
19	1. 231	74		19	293.21	74	1141.99	
2021222324	1.296	$\begin{aligned} & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \end{aligned}$	4.860 4.925 4.990 5.054 5.119	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 308.65 \\ & 324.08 \\ & 339.51 \\ & 354.94 \\ & 370.38 \end{aligned}$	$\begin{aligned} & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & 1157.43 \\ & 1172.86 \\ & 1188.29 \\ & 1203.72 \\ & 1219.16 \end{aligned}$	
	1. 361							
	1. 426							
	1. 490							
	1.555							
2526272829	1. 620	$\begin{aligned} & 80 \\ & 81 \\ & 82 \\ & 83 \\ & 84 \end{aligned}$	5.184 5. 249 5.314 5. 378 5.443	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 385.81 \\ & 401.24 \\ & 416.67 \\ & 432.11 \\ & 447.54 \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \\ & 82 \\ & 83 \\ & 84 \end{aligned}$	$\begin{aligned} & 1234.59 \\ & 1250.02 \\ & 1265.45 \\ & 1289.89 \\ & 1296.32 \end{aligned}$	
	1.685							
	1.750							
	1.814							
	1.879							
3031323334	1.944	$\begin{aligned} & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \end{aligned}$	5.508 5.573 5.638 5. 702 5. 767	$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	$\begin{aligned} & 462.97 \\ & 478.40 \\ & 493.84 \\ & 509.27 \\ & 524.70 \end{aligned}$	$\begin{aligned} & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \end{aligned}$	$\begin{aligned} & 1311.75 \\ & 1327.18 \end{aligned}$	
	2.009							
	2.074						1342.62	
	2. 138						1358.05	
	2. 203						1373.48	
35	2. 268	9091	5.832	35	540.13	90	1388.91	
36	2.333		5.8975.962	3637	$\begin{aligned} & 555.56 \\ & 571.00 \end{aligned}$		$\begin{aligned} & 1404.34 \\ & 1419.78 \end{aligned}$	
37	2. 398	92				92		
38	2. 462	93	6. 826	38 39	$\begin{aligned} & 586.43 \\ & 601.86 \end{aligned}$	$\begin{aligned} & 93 \\ & 94 \end{aligned}$	$\begin{aligned} & 1435.21 \\ & 1450.64 \end{aligned}$	
39	2.527	94	6.091	39				
40	2.592	$\begin{aligned} & 95 \\ & 96 \\ & 97 \\ & 98 \\ & 99 \end{aligned}$	6.156 6.221 6. 285 6. 350 6.415	$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \end{aligned}$	617.29 632.73 648.16 663.59 679.02	$\begin{aligned} & 95 \\ & 96 \\ & 97 \\ & 98 \\ & 99 \end{aligned}$	$\begin{aligned} & 1466.07 \\ & 1481.51 \\ & 1496.94 \\ & 151.37 \\ & 1527.80 \end{aligned}$	
41	2.657							
42	2.722							
43	2. 786							
44	2.851							
45	2.916	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	6.48012.96019.44025.92032.399	4546474849	$\begin{aligned} & 694.46 \\ & 709.89 \\ & 725.32 \\ & 740.75 \\ & 756.19 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 1543.24 \\ & 3086.47 \\ & 4629.71 \\ & 6172.94 \\ & 7716.18 \end{aligned}$	
46	2.981							
47	3.046							
48	3. 110							
49	3.175							
50	3.240	$\begin{array}{r} 600 \\ 700 \\ 800 \\ 900 \\ 1000 \end{array}$	$\begin{aligned} & 38.879 \\ & 45.359 \\ & 51.839 \\ & 58.319 \\ & 64.799 \end{aligned}$	$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & 771.62 \\ & 787.05 \\ & 802.48 \\ & 817.91 \\ & 833.35 \end{aligned}$	$\begin{array}{r} 600 \\ 700 \\ 800 \\ 900 \\ 1000 \end{array}$	$\begin{array}{r} 9259.41 \\ 10802.65 \\ 12345.89 \\ 13889.12 \\ 15432.36 \end{array}$	
51	3. 305							
52	3. 370							
53	3. 434							
54	3.499							

MASS-PENNYWEIGHTS AND GRAMS

[1 pennyweight $=1.55517404$ grams]								TABLE 35 0.64301485 pennyweight]			
Pennyweight	Gram	Pennyweight	Grams	Penn weig	Grams	Pennyweights	Grams	Grams	Pennyweights	Grams	Pennyweights
0.00	0.000	0.55	0.855	0	0. 000	55 56	85.535	0	0.000	55	35.366
. 01	. 016	.56 .57	.871 .886	$\frac{1}{2}$	1. 3.110	56 57	87.090 88.645	1	1. 6438	56 57	36.009
. 03	. 047	. 58	. 902	3	4. 666	58	90.200	3	1.929	58	37. 295
. 04	. 062	. 59	. 918	4	6.221	59	91.755	4	2. 572	59	37.938
. 05	. 078	. 60	. 933	5	7.776	60	93.310	5	3. 215	60	38.581
. 06	. 093	. 61	. 949	6	9. 331	61	94.866		3. 858	61	39. 224
. 07	. 109	. 62	. 964	7	10. 886	62	96.421	7	4. 501	62	39. 867
. 08	. 124	. 63	. 980	8	12. 441	63	97.976	8	5. 144	63	40.510
. 09	. 140	. 64		9	13. 997	64	99.531	9	5. 787	64	41.153
. 10	. 156	. 65	1. 011	10	15.552	65	101.086	10	6.430	65	41.796
. 11	. 171	. 66	1. 026	11	17.107	66	102. 641	11	7.073	66	42.439
. 12	. 187	. 67	1. 042	12	18. 662	67	104. 197	12	7.716	67	43. 082
.13	. 202	. 68	1. 058	13	20.217	68	105. 752	13	8.359	68	43.725
. 14	. 218	. 69	1.073	14	21.772	69	107.307	14	9.002	69	44.368
. 15	. 233	. 70	1. 089	15	23.328	70	108.862	15	9.645	70	45. 011
. 16	. 249	. 71	1. 104	16	24.883	71	110.417	16	10. 288	71	45. 654
. 17	. 264	. 72	1. 120	17	26.438	72	111.973	17	10. 931	72	46. 297
. 18	. 280	. 73	1. 135	18	27.993	73	113.528	18	11.574	73	46.940
. 19	. 295	. 74	1. 151	19	29.548	74	115.083	19	12. 217	74	47.583
. 20	. 311	. 75	1. 166	20	31. 103	75	116.638	20	12. 860	75	48. 226
. 21	. 327	. 76	1. 182	21	32. 659	76	118. 193	21	13. 503	76	48. 869
. 22	. 342	. 77	1. 197	22	34. 214	77	119. 748	22	14. 146	77	49. 512
.23	. 358	. 78	1. 213	23	35.769	78	121. 304	23	14.789	78	50.155
. 24	. 373	. 79	1.229	24	37.324	79	122.859	24	15. 432	79	50.798
. 25	. 389	. 80	1. 244	25	38.879	80	124.414	25	16.075	80	51.441
. 26	. 404	. 81	1. 260	26	40.435	81	125. 969	26	16. 718	81	52.084
. 27	. 420	. 82	1. 275	27	41.990	82	127.524	27	17.361	82	52.727
. 28	. 435	. 83	1. 291	28	43. 545	83	129.079	28	18. 004	83	53.370
. 29	. 451	. 84	1. 306	29	45. 100	84	130.635	29	18.647	84	54.013
. 30	. 467	. 85	1. 322	30	46.655	85	132. 190	30	19. 290	85	54.656
. 31	. 482	. 86	1. 337	31	48. 210	86	133. 745	31	19. 933	86	55. 299
. 32	. 498	. 87	1. 353	32	49. 766	87	135. 300	32	20.576	87	55. 942
. 33	. 513	. 88	1. 369	33	51.321	88	136. 855	33	21.219	88	56. 585
. 34	. 529	. 89	1. 384	34	52.876	89	138.410	34	21.863	89	57.228
		. 90		35						90	57.871
. 36	. 560	. 91	1. 415	36	55.986	91	141.521	36	23. 149	91	58.514
. 37	. 575	. 92	1. 431	37	57.541	92	143. 076	37	23. 792	92	59.157
. 38	. 591	. 93	1.446	38	59.097	93	144. 631	38	24. 435	93	59.800
. 39	. 607	. 94	1. 462	39	60.652	94	146. 186	39	25.078	94	60.443
. 40	. 622	. 95	1. 477	40	62. 207	95	147.742	40	25.721	95	61.086
. 41	. 638	. 96	1. 493	41	63.762	96	149. 297	41	26. 364	96	61.729
. 42	. 653	. 97	1. 509	42	65.317	97	150. 852	42	27.007	97	62.372
. 43	. 669	. 98	1. 524	43	66.872	98	152. 407	43	27.650	98	63.015
. 44	. 684	. 99	1.540	44	68.428	99	153. 962	44	28. 293	99	63.658
. 45	. 700	1.00	1.555	45	69.983	100	155. 517	45	28.936	100	64. 301
. 46	. 715			46	71.538	200	311. 035	46	29.579	200	128. 603
. 47	. 731			47	73.093	300	466. 552	47	30. 222	300	192.904
. 48	. 746			48	74.648	400	622. 070	48	30. 865	400	257.206
. 49	. 762	1/8	0.194	49	76. 204	500	777.587	49	31. 508	500	321.507
. 50	. 778	1/4	. 388	50	77.759	600	933. 104	50	32. 151	600	385.809
. 51	. 793	1/2	. 778	51	79. 314	700	1088. 622	51	32. 794	700	450.110
. 52	. 809	5/8	. 972	52	ع0. 869	800	1244. 139	52	33. 437	800	514.412
. 53	. 824	$3 / 4$	1. 166	53	82. 424	900	1399.657	53	34. 080	900	578.713
. 54	. 840	1/8	1.361	54	83.979	1000	1555.174	54	34.723	1000	643.015

MASS--TROY OUNCES AND GRAMS

[1 troy ounce $=31.1034808$ grams]								TABLE 37[1 gram $=0.03215074$ troy ounce]			
$\begin{aligned} & \text { Troy } \\ & \text { ounce } \end{aligned}$	Grams	Troy ounce	Grams	Troy ounces	Grams	Troy ounces	Srams	Grams	$\begin{gathered} \text { Troy } \\ \text { ounces } \end{gathered}$	Grams	$\begin{gathered} \text { Troy } \\ \text { ounces } \end{gathered}$
0.00	0.000	0.55	17.107	0	0.000	55	1710. 691	0	0.0000	55	1.7683
. 01	. 311	. 56	17.418	1	31. 103	56	1741. 795	1	. 0322	56	1.8004
. 02	. 622	. 57	17. 729	2	62. 207	57	1772.898	2	0643	57	1.8326
. 03	. 933	. 58	18. 040	3	93.310	58	1804. 002	3	. 0965	58	1. 8647
. 04	1. 244	. 59	18. 351	4	124.414	59	1835.105		1286	59	1. 8969
. 05	1. 555	. 60	18.662	5	155. 517	60	1866. 209	5	. 1608	60	1. 9290
. 06	1. 866	. 61	18.973	7	186. 621	61	1897. 312	6	. 1929	61	1. 9612
. 07	2. 177	. 62	19. 284	7	217. 724	62	1928. 416	7	. 2251	62	1. 9933
. 08	2. 488	. 63	19. 595	8	248. 828	63	1959. 519	8	. 2572	63	2. 0255
. 09	2. 799	. 64	19.906	9	279.931	64	1990.623	9	. 2894	64	2.0576
. 10	3. 110	. 65	20.217	10	311.035	65	2021. 726	10	. 3215	65	2.0898
. 11	3. 421	. 66	20.528	11	342.138	66	2052. 830	11	. 3537	66	2. 1219
.12	3. 732	. 67	20.839	12	373. 242	67	2083. 933	12	. 3858	67	2. 1541
. 13	4. 043	. 68	21.150	13	404. 345	68	2115. 037	13	. 4180	68	2.1863
. 14	4. 354	. 69	21.461	14	435.449	69	2146.140	14	. 4501	69	2. 2184
. 15	4. 666	. 70	21.772	15	466.552	70	2177. 244	15	. 4823	70	2. 2506
. 16	4.977	. 71	22. 083	16	497.656	71	2208. 347	16	. 5144	71	2. 2827
. 17	5. 288	. 72	22. 395	17	528.759	72	2239. 451	17	. 5466	72	2. 3149
. 18	5. 599	. 73	22. 706	18	559.863	73	2270.554	18	. 5787	73	2. 3470
. 19	5.910	. 74	23. 017	19	590.966	74	2301.658	19	. 6109	74	2. 3792
. 20	6. 221	. 75	23. 328	20	622.070	75	2332. 761	20	. 6430	75	2.4113
. 21	6. 532	. 76	23. 639	21	653.173	76	2363.865	21	. 6752	76	2.4435
. 22	6.843	. 77	23. 950	22	684.277	77	2394. 968	22	. 7073	77	2. 4756
. 23	7. 154	. 78	24. 261	23	715. 380	78	2426. 071	23	. 7395	78	2. 5078
. 24	7.465	. 79	24.572	24	746. 484	79	2457.175	24	. 7716	79	2. 5399
. 25	7.776	. 80	24.883	25	777.587	80	2488. 278	25	. 8038	80	2. 5721
. 26	8. 087	. 81	25. 194	26	808. 690	81	2519. 382	26	. 8359	81	2. 6042
. 27	8. 398	. 82	25. 505	27	839. 794	82	2550.485	27	. 8681	82	2. 6364
. 28	8.709	. 83	25. 816	28	870.897	83	2581.589	28	. 9002	83	2. 6685
. 29	9.020	. 84	26.127	29	902.001	84	2612. 692	29	. 9324	84	2. 7007
. 30	9.331	. 85	26. 438	30	933. 104	85	2643.796	30	. 9645	85	2. 7328
. 31	9.642	. 86	26. 749	31	964. 208	86	2674. 899	31	. 9967	86	2. 7650
. 32	9. 953	. 87	27.060	32	995.311	87	2706. 003	32	1. 0288	87	2. 7971
. 33	10. 264	. 88	27.371	33	1026. 415	88	2737.106	33	1. 0610	88	2. 8293
. 34	10.575	. 89	27.682	34	1057.518	89	2768.210	34	1. 0931	89	2. 8614
. 35	10. 886	. 90	27.993	35	1088. 622	90	2799. 313	35	1.1253	90	2.8936
. 36	11.197	. 91	28. 304	36	1119. 725	91	2830.417	36	1. 1574	91	2.9257
. 37	11. 508	. 92	28.615	37	1150.829	92	2861.520	37	1. 1896	92	2. 9579
. 38	11.819	. 93	28.926	38	1181.932	93	2892.624	38	1. 2217	93	2. 9900
. 39	12.130	. 94	29.237	39	1213.036	94	2923.727	39	1. 2539	94	3. 0222
. 40	12.441	. 95	29.548	40	1244. 139	95	2954.831	40	1. 2860	95	3. 0543
. 41	12.752	. 96	29.859	41	1275. 243	96	2985.934	41	1.3182	96	3. 0865
. 42	13. 063	. 97	30.170	42	1306. 346	97	3017. 038	42	1.3503	97	3. 1186
. 43	13. 374	. 98	30.481	43	1337. 450	98	3048.141	43	1.3825	98	3. 1508
. 44	13.686	. 99	30.792	44	1368. 553	99	3079.245	44	1.4146	99	3. 1829
. 45	13. 997	1.00	31.103	45	1399. 657	100	3110. 348	45	1. 4468	100	3. 2151
. 46	14. 308			46	1430.760	200	6220.696	46	1. 4789	200	6.4301
. 47	14. 619			47	1461. 864	300	9331.044	47	1.5111	300	9. 6452
. 48	14.930			48	1492. 967	400	12441. 392	48	1.5432	400	12. 8603
. 49	15.241			49	1524. 071	500	15551.740	49	1. 5754	500	16. 0754
. 50	15. 552			50	1555.174	600	18662. 088	50	1. 6075	600	19. 2904
. 51	15. 863			51	1586. 278	700	21772.437	51	1. 6397	700	22. 5055
. 52	16. 174			52	1617. 381	800	24882. 785	52	1. 6718	800	25.7206
. 53	16. 485			53	1648. 484	900	27993. 133	53	1. 7040	900	28.9357
. 54	16. 796			54	1679.588	1000	31103. 481	54	1.7361	1000	32. 1507

MASS-POUNDS AND KILOGRAMS

${ }^{a}$ For the conversion of avoirdupois ounces to grams see Table 29.

III. THE METRIC CARAT

1. DEFINITION

The carat which had been in use prior to July i, 1913, in the United States, while varying, has been nearer the value 205.3 mg than any other. This value has therefore been taken in making up the tables of equivalents given in this circular. The old carat has usually been subdivided on the binary system, the smallest subdivision used being usually one sixty-fourth of the carat. The equivalents in fractions of a carat in these tables are, therefore, given in sixty-fourths. One of the improvements introduced with the new carat of exactly 200 mg is the subdivision of it on the decimal system. The fractions of the new carat in these tables are accordingly given to hundredths of a carat.

2. CONVERSION TABLES

Tables 40 and 41 are for the conversion of quantities in the old unit to the equivalent weight in terms of the new metric carat. Table 40 is used for the conversion of fractions of a carat, while Table 4 I gives the equivalent of each unit or whole carat from I to roo of the old system in terms of new metric carats and hundredths of a carat. If it is desired to convert whole carats and fractions of a carat of the old unit to the new, the two tables can be used in combination; that is, by adding the quantities obtained from each, thus: Suppose it is desired to obtain the equivalent of $28 \frac{85}{64}$ old carats in terms of the metric carats:

$$
\begin{aligned}
& \text { From Table } 40 . . \frac{45}{64} \text { old carats }=0.72 \text { metric carats } \\
& \text { From Table } 41 . .28 \text { old carats }=28.74 \text { metric carats } \\
& \text { Adding. } \ldots 28 \frac{45}{45} \text { old carats }=29.46 \text { metric carats. }
\end{aligned}
$$

Or, if it is desired to convert a larger quantity involving several hundred or thousand carats, one uses the equivalents in the last column of Table 4 I for each hundred and thousand of the old carats up to ten hundred and ten thousand-thus, to convert $3225 \frac{3}{3}$ old carats to metric carats:

From Table 40.		$\frac{3}{4}$ old carats $=$	0. 77 metric carats
From Table 41. .	25	old carats =	25.66 metric carats
	200	old carats -	205.30 metric carats
	3000	old carats $=$	079. 50 metric carats

TABLE 40.-Equivalents of Fractions of the Old Carat Weight in New Decimal Metric Carats
[Computed on the basis of 1 old carat $=205.3 \mathrm{mg} ; 1$ new metric carat $=200 \mathrm{mg}$]

TABLE 41.-Equivalents of the Old Carats in New Decimal Metric Carats
[Computed on the basis of 1 old carat $=205.3 \mathrm{mg} ; 1$ new metric carat $=200 \mathrm{mg}$]

Old carats	New metric carats								
1	1.03	26	26. 69	51	52.35	76	78.01	200	205.30
2	2.05	27	27.72	52	53.38	77	79. 04	300	307. 95
3	3.08	28	28.74	53	54. 40	78	80.07	400	410.60
4	4.11	29	29.77	54	55. 43	- 79	81.09	500	513. 25
5	5.13	30	30.80	55	56.46	80	82.12	600	615.90
6	6.16	31	31.82	56	57.48	81	83. 15	700	718.55
7	7.19	32	32. 85	57	58. 51	82	84. 17	800	821.20
8	8. 21	33	33.87	58	59.54	83	85. 20	900	923.85
9	9.24	34	34. 90	59	60.56	84	86. 23	1000	1026. 50
10	10. 26	35	35.93	60	61.59	85	87.25	2000	2053.00
11	11. 29	36	36.95	61	62.62	86	88. 28	3000	3079. 50
12	12. 32	37	37.98	62	63.64	87	89. 31	4000	4106. 00
13	13.34	38	39.01	63	64.67	88	90.33	5000	5132.50
14	14. 37	39	40.03	64	65. 70	89	91.36	6000	6159.00
15	15.40	40	41.06	65	66.72	90	92.38	7000	7185.50
16	16.42	41	42.09	66	67.75	91	93.41	8000	8212.00
17	17.45	42	43.11	67	68. 78	92	94. 44	9000	9238. 50
18	18. 48	43	44.14	68	69.80	93	95. 46	10000	10265.00
19	19.50	44	45. 17	69	70.83	94	96. 49		
20	20.53	45	46.19	70	71.86	95	97.52		
	21.56				72.88	96			
22	22. 58	47	48.25	72	73. 91	97	99.57		
23	23. 61	48	49. 27	73	74. 93	98	100.60		
24	24. 64	49	50.30	74	75. 96	99	101.62		
25	25. 66	50	51.32	75	76.99	100	102. 65		

IV. GAGES ${ }^{7}$ (WIRE AND DRILL)
 1. EXISTING PRACTICE IN GAGING MATERIALS

The sizes of materials were for many years indicated in commercial practice almost entirely by gage numbers. This practice was accompanied by considerable confusion because numerous gages were in use. In general, gage sizes are used much less now than formerly. ${ }^{8}$

In so far as wire gages are now in use in the United States, the practice has been practically limited to the use of two gages. For iron plates, there is only one gage-viz, the "U.S. standard." For drills there are two, with an additional one for drill rod and steel wire. Finally, there are some special gages, including several music wire gages.

The trend of practice in the gaging of materials is increasingly toward the direct specification of the dimensions in decimal fractions of an inch or millimeter without the use of gage numbers. Numerous engineering societies have gone on record as in favor of the direct use of diameters. This is similar to the practice in Germany, France, and Italy, where sizes are specified directly by the diameter in millimeters.

[^5]
2. WIRE GAGES ${ }^{\circ}$

Among the wire gages that have survived, two are used extensively in this country, viz, the "American wire gage" (Brown \& Sharpe) and the "Steel wire gage" (variously called the "Washburn \& Moen," " Roebling," and "American Steel \& Wire Co.'s'"). Three other gages are still used to some extent, viz, the "Stubs' steel wire gage," the " Birmingham wire gage" (Stubs), and the "Old English wire gage" (London). In England one wire gage has been made legal and is in use generally, viz, the "Standard wire gage." The diameters corresponding to the gage number of five of the general wire gages mentioned are given in both inches and in millimeters in Table 43.
(a) Amerlcan wire gage

The American wire gage is frequently called the "Brown \& Sharpe gage." Its sizes are not utterly arbitrary and the differences between successive diameters are more regular than those of other gages. It is the only wire gage now in use whose successive sizes are determined by a mathematical law. The law of geometrical progression on which the gage is based is that the ratio of any diameter to the next smaller is a constant number (1.1229322). It is derived from the fundamental definition of the gage, which is that size No. 4^{-0} shall be 0.4600 inch in diameter, size No. 36 shall be o.0050 inch in diameter, and 38 intermediary sizes or diameters shall be formed by geometrical progression.

(b) Steel wire gage

The "Steel wire gage" ${ }^{10}$ with a number of its sizes expressed only to the nearest thousandth of an inch, has been known as the Roebling gage. It was originally established about the year 1830, and was named after the Washburn \& Moen Manufacturing Co. This company was later merged into the American Steel \& Wire Co., which continued the use of the Washburn \& Moen gage for steel wire, giving it the name "American Steel \& Wire Co.'s gage."
(c) Stubs' steel wire gage

The Stubs' steel wire gage has a somewhat limited use for tool steel wire and drill rods. This gage should not be confused with the Birmingham wire gage, which is sometimes known as Stubs'

[^6]iron wire gage. The diameters of its sizes are very nearly identical with the diameters of the corresponding sizes of drill gages, as is shown in Tables 45, 46, and 47.
(d) BIRMINGHAM WIRE GAGE

Of the various wire gages which have remained in use but are now nearly obsolete, the one most frequently mentioned is the Birmingham. Its steps are quite irregular. Some of the later gages were based on the Birmingham, and by the repeated copying of old specifications its use has persisted to some extent, both in England and the United States. In the past this gage held certain departmental sanction in the United States Government, but this sanction was removed in 1914.
(e) STANDARD WIRE GAGE

The "Standard wire gage," otherwise known as the new British standard, the English legal standard, or the Imperial wire gage, is the legal standard of Great Britain for all wires, as fixed by order in Council, August 23, 1883. It was constructed by improving the Birmingham wire gage.
(f) OLD ENGLISH OR LONDON GAGE

The Old English or London gage, the sizes of which differ very little from those of the Birmingham gage, has had considerable use in the past for brass and copper wires, and is now used to some extent in the drawing of brass wire for weaving. It is nearly obsolete.

3. TWIST DRILL AND STEEL WIRE GAGES

The confusion in the use of gages for twist drills, drill rod, and steel wire is a constant source of trouble. The differences between the diameters of the corresponding sizes of the various gages are very small, generally being less than 0.002 inch. In this field also, the manufacturers (of drills) are encouraging the direct use of diameters in place of specifying sizes by gage numbers. At the present time there are three gages in extensive use in this field. These are (1) the Stubs' steel wire gage, (2) the drill gage used by the Standard Tool Co., and (3) the drill gage used by various other leading manufacturers of twist drills. This latter gage is referred to in the tables which follow as "various manufacturers" but in other publications it is sometimes referred to as "manufacturers' standard."

All of these gages have 26 lettered sizes and 80 numbered sizes. The lettered sizes of all three gages are identical. (See Table 44.) For the numbered sizes, the Stubs' steel wire gage does not agree with either of the drill gages. For Nos. I to 60 (Table 45) the gage of the Standard Tool Co. agrees with the corresponding sizes
of the gage used by various other manufacturers; for sizes Nos. 6I to 80 (Tables 46 and 47) there are numerous, but small, differences. The Standard Tool Co. gage sizes were the original, which, for sizes 61 to 80 , were changed by certain manufacturers. The old size numbers and diameters were retained by the Standard Tool Co., which, in turn, began to manufacture drills of the new diameters as determined by the modified gage numbers of the other manufacturers, but assigned them gage sizes by inserting so-called halfsizes into their own gage. The relationships between the diameters and the various gage sizes are shown in Table 47.
4. TABLES OF GAGE SIZES (INCHES AND MILLIMETERS)

TABLE 42.-Douzième Caliper a
[Equivalent of each graduation on douzième spring caliper.a 1 douzième $=1 / 12$ ligne; 1 ligne $=2.2559 \mathrm{~mm}$]

Douzièmes	Inch.	mm	Douzièmes	Inch	mm
1.	0.0074	0.188	37.	0.2738	6.956
2.	. 0148	. 376	38.	. 2812	7.144
	. 0222	. 564		. 2886	7.332
4.	. 0296	. 752	40.	. 2960	7.520
	. 0370	. 940	41.	. 3035	7.708
	. 0444	1.128	42.	. 3109	7.896
	. 0518	1.316	43.	. 3183	8.084
8.	. 0592	1.504		. 3257	8. 272
9.	. 0666		45.	. 3331	8.460
10.	. 0740	1.880	46.	. 3405	8.648
11.	. 0814	2.068	$4{ }^{47}$. 3479	8. 836
1 ligne $=12$.	. 0888	2. 256	4 lignes=48.	. 3553	9.024
13.	. 0962	2.444	49.	. 3627	9.212
14.	. 1036	2.632	50.	. 3701	9.400
15.	. 1110	2.820		. 3775	9.588
16.	. 1184	3.008	52.	. 3849	9.776
17.	. 1258	3. 196	53.	. 3923	9.964
18.	. 1332	3. 384	54.	. 3997	10.152
19.					
21	. 1480	3.760	56.	. 4145	10.528
21.	. 1554	3.948		. 4219	10.716
22.	. 1628	4.136	58.	.4293	10.904
23.	. 1702	4.324	59.	.4367	11.092
$2 \mathrm{lignes}=24$.	. 1776	4.512	5 lignes=60.	. 4441	11.280
25.	. 1850	4.700	61.	. 4515	11.467
26.	. 1924	4. 888	62	. 4589	11.655
	. 1998	5.076	63.	. 4663	11.843
					12.031
29.	$.2146$	5.452	65	.4811	12. 219
30.	. 2220	5.640	66.	. 4885	12.407
31.	. 2294	5.828		. 4959	
32.	. 2368	6. 016	68.	.5033	12.783
33.	. 2442	6.204		. 5107	12.971
34.	. 2516	6. 392	70.	. 5181	13.159
35.	. 2590	6.580		. 5255	13.347
3 lignes $=36$.	. 2664	6.768	6 lignes $=72$. 5329	13.535

[^7]TABLE 43.-Tabular Comparison of Wire Gages

Gage No.	American wire gage (Brown \& Sharpe)		Steel wire gage a		$\begin{aligned} & \text { Birmingham } \\ & \text { wire gage } \\ & \text { (Stubs') } \end{aligned}$		Stubs' steel wire gage		$\begin{aligned} & \text { (British) } \\ & \text { Standard wire } \\ & \text { gage } \end{aligned}$	
	Inch	mmb	Inch	mm	Inch	mm	Inch	mm	Inch	mm
$7-0$			0.4900	12. 45					0. 500	12. 70
6-0.			. 4615	11.72					. 464	11. 79
5-0.			. 4305	10.93					. 432	10.97
40.	0. 4600	11.68	. 3938	10.00	0.454	11.53			. 400	10.16
3-0.	. 4096	10.40	. 3625	9.21	. 425	10.80			. 372	9. 45
2-0.	. 3648	9. 27	. 3310	8. 41	. 380	9.65			. 348	8.84
	. 3249	8. 25	. 3065	7.79	. 340	8.64			. 324	8. 23
1.	. 2893	7.35	. 2830	7.19	. 300	7.62	0.227	5.77	. 300	7.62
2	. 2576	6. 54	. 2625	6.67	. 284	7.21	. 219	5.56	. 276	7.01
3.	. 2224	5. 83	. 2437	6. 19	. 259	6. 58	. 212	5. 38	. 252	6. 40
4.	. 2043	5.19	. 2253	5. 72	. 238	6. 05	. 207	5.26	. 232	5.89
5.	. 1819	4. 621	. 2070	5. 26	. 220	5. 59	. 204	5.18	212	5. 38
6	. 1620	4. 115	. 1920	4. 88	. 203	5.16	. 201	5.11	. 192	4.88
7.	. 1443	3. 665	. 1770	4. 50	. 180	4. 57	. 199	5.05	. 176	4.47
8	. 1285	3. 264	. 1620	4.11	. 165	4. 19	. 197	5.00	. 160	4.06
	. 1144	2. 906	. 1483	3. 77	. 148	3. 76	. 194	4.93	. 144	3. 66
10.	. 1019	2. 588	. 1350	3.43	. 134	3. 40	. 191	4. 85	. 128	3. 25
11.	. 0907	2. 305	. 1205	3.06	. 120	3. 05	. 188	4.78	. 116	2. 95
12.	. 0808	2. 053	. 1055	2. 68	. 109	2. 77	. 185	4.70	. 104	2. 64
13.	. 0720	1. 828	. 0915	2.32	. 095	2.41	. 182	4.62	. 092	2.34
	. 0641	1.628	. 0800	2. 03	. 083	2.11	. 180	4.57	. 080	2. 03
15.	. 0571	1. 450	. 0720	1. 829	. 072	1.83	. 178	4.52	. 072	1.83
16.	. 0508	1. 291	. 0625	1. 588	. 065	1. 65	. 175	4.45	. 065	1.63
17.	. 0453	1. 150	. 0540	1. 372	. 058	1. 47	. 172	4.37	. 056	1.42
18.	. 0403	1. 024	. 0475	1. 207	. 049	1. 24	. 168	4.27	. 048	1.22
	. 0359	. 912	. 0410	1. 041	. 042	1.07	. 164	4.17	. 040	1.02
20.	. 0320	. 812	. 0348	. 884	. 035	. 889	. 161	4.09	. 036	. 91
21.	. 0285	. 723	. 0317	. 805	. 032	. 813	. 157	3. 99	. 032	. 81
22.	. 0253	. 644	. 0286	. 726	. 028	. 711	. 155	3. 94	. 028	. 71
23.	. 0226	. 573	. 0258	. 655	. 025	. 635	. 153	3. 89	. 024	. 61
24.	. 0201	. 511	. 0230	. 584	. 022	. 559	. 151	3. 84	. 022	. 56
25.	. 0179	. 455	. 0204	. 518	. 020	. 508	. 148	3. 76	. 020	. 51
26.	. 0159	. 405	. 0181	. 460	. 018	. 457	. 146	3.71	. 018	. 46
27.	. 0142	. 361	. 0173	. 439	. 016	. 406	. 143	3. 63	. 0164	. 417
28.	. 0126	. 321	. 0162	. 411	. 014	. 356	. 139	3. 53	. 0148	. 376
29.	. 0113	. 286	. 0150	. 381	. 013	. 330	. 134	3. 40	. 0136	. 345
30.	. 0100	. 255	. 0140	. 356	. 012	. 305	. 127	3. 23	. 0124	. 315
31.	. 0089	. 227	. 0132	. 335	. 010	. 254	. 120	3.05	. 0116	. 295
32.	. 0080	. 202	. 0128	. 325	. 009	. 229	. 115	2.92	. 0108	. 274
33.	. 0071	. 180	. 0118	- 300	. 008	. 203	. 112	2. 84	. 0100	- 254
	. 0063	. 160	. 0104	. 264	. 007	. 178	. 110	2.79	. 0092	. 234
35.	. 0056	. 143	. 0095	. 241	. 005	. 127	. 108	2.74	. 0084	. 213
36.	. 0050	. 127	. 0090	. 229	. 004	. 102	. 106	2.69	. 0076	. 193
37.	. 0045	. 113	. 0085	. 216			. 103	2.62	. 0068	. 173
38.	. 0040	. 101	. 0080	. 203			. 101	2.57 2.51	. 0060	. 152
39.	. 0035	. 090	. 0075	. 191			. 099	2.51	. 0052	. 132
40.	. 0031	. 080	. 0070	. 178			. 097	2.46	. 0048	. 122
41.	. 0028	. 071	. 0066	. 168			. 095	2.41	. 0044	. 112
42.	. 0025	. 063	. 0062	. 157			. 092	2. 34	. 0040	. 102
43.	. 0022	. 056	. 0060	. 152			. 088	2. 24	. 0036	. 091
	. 0020	. 050	. 0058	. 147			. 085	2.16	. 0032	. 081
45.	. 0018	. 045	. 0055	.140 .132			.081 .079	2. 06	.0028 .0024	
46.	. 0016	.040 .035	.0052 .0050	. 132			. 079	2.01 1.96	.0024 .0020	. 0651
48.	. 0014	. 035	. 0050	. 127			. 077	1.96 1.91	. .0016	. 041
49.	. 0011	. 028	. 0046	. 117			. 072	1. 83	. 0012	. 030
50.	. 0010	. 025	. 0044	. 112			. 069	1.75	. 0010	. 025

[^8]TABLE 44.-Equivalents of Lettered Sizes for Drills and Stubs' Steel Wire Gage

Letter	Size of letter		Letter	Size of letter		Letter	Slze of letter	
	Inch	mm		Inch	mm		Inch	mm
\underline{Z}	0.413	10.49	P	0.323	8. 20	F	0.257	6.53
Y	. 404	10. 26	O	. 316	8.03	E	. 250	6. 35
X	. 397	10.08	N	. 302	7.67	D	. 246	6. 25
W	. 386	9.80	M	. 295	7.49	C	. 242	6. 15
V....	. 377	9.58		. 290	7.37		. 238	6. 05 5. 94
U.	. 368	9.35	K.	. 281	7.14			
T.	. 358	9.09	J.	. 277	7.04			
S.	. 348	8.84	I.	. 272	6.91			
R	. 339	8.61	H.	. 266	6.76			
Q...........	. 332	8.43	G.	. 261	6.63			

TABLE 45.-Numbered Sizes, 1 to 60, for Drills and Stubs' Steel Wire Gage

[^9]TABLE 46.-Numbered Sizes, 60 to 80, for Drills and Stubs' Steel Wire Gage

Gage No.	Stubs' steel wire gage		Standard Tool Co. drill gage		Various manufacturers	
	Inch	mm	Inch	mm	Inch	mm
60.	0.039	0.991	0.0400	1.016	0.0400	1. 016
601			. 0390	. 991		
61.	. 038	. 965	. 0380	. 965	. 0390	. 991
	.037 .036	. 940	. 0370	. 9414	. 0380	. 965
	. 035	. 989	. 0350	. 914	. 0360	. 914
65.	. 033	. 838	. 0330	. 838	. 0350	. 889
66.	. 032	. 813	. 0320	. 813	. 0330	. 838
67.	. 031	. 787	. 0310	. 787	. 0320	. 813
68	. 030	. 762	. 0300	. 762	. 0310	. 787
681			. 02925	. 743		
69	. 029	. 737	. 0290	. 737	. 02925	. 743
691			. 0280	. 711		
70.	. 027	. 686	. 0270	. 686	. 0280	. 711
71	. 026	. 660	. 0260	. 660	. 0260	. 660
$711 / 2$. 0250	. 635		
72	. 024	. 610	. 0240	. 610	. 0250	. 635
	. 023	. 584	. 0230	. 584	. 0240	. 610
731			. 0225	. 572		
74.	. 022	. 559	. 02220	. 559	. 0225	. 572
741			. 0210	. 533		
75.	. 020	. 508	. 0200	. 508	. 0210	. 533
76	. 018	. 457	. 0180	. 457	. 0200	. 508
77.	. 016	. 406	. 0160	. 406	. 0180	. 457
78	. 015	. 381	. 0150	. 381	. 0160	. 406
781			. 0145	. 368		
79	. 014	. 356	. 0140	. 356	. 0145	. 368
791 80.	. 013	. 330	.0135 .0130	.343 .330	. 0135	343
	-013	. 30		. 33	. 013	. 34

TABLE 47.-Index to Numbered Sizes, 60 to 80, for Drills and Stubs' Steel Wire Gage

V. WATCH GLASSES

1. GAGE SIZES FOR WATCH GLASSES

The systems upon which the gaging of watch glasses is based are in need of revision. Most manufacturers and dealers are labeling their glasses with several sets of numbers, each set indi-
cating the diameter according to some system of gaging, most of which are based upon some subdivision of the ligne. ${ }^{11}$ The most common of these units based upon the ligne is frequently referred to as "sixteenths," because in this system the fraction over an integral number of lignes is expressed in sixteenths. Some of these labels include systems of gaging which are practically, if not entirely, obsolete. On the other hand, several manufacturers use the metric system, the unit for diameters being the tenthmillimeter.

2. REASONS FOR ADOPTION OF METRIC GAGE SIZES

The metric system of gaging is recommended for use in preference to the ligne and its division into sixteenths, for the following reasons:
(a) The step, or change in diameter, between consecutive sizes in the tenth-millimeter system is less than the corresponding steps for glasses gaged by lignes and "sixteenths," thereby making it possible to secure a better fit in placing a glass into a watchcase.
(b) Many watch glasses are manufactured in metric sizes and are sold in ligne sizes to satisfy the habits of the retail trade in the United States. On the continent of Europe metric sizes are used.
(c) The ligne as a unit of length is obsolete except in a few industries, and among them it is falling into disuse; the millimeter is universal in most commercial countries.

3. SPECIMEN LABELS

In Fig. 2 there are shown two sample labels of watch glasses

Frg. 2.-Speci-
men watch glass labels giving the diameters in tenth-millimeters and in $\left(10 \frac{2 / 18}{6}\right.$ lignes (frequently spoken of as sixteenths); the last number given on each of these labels indicates by gage number the free height under the center of the glass to the plane formed by the circumference or rim. (See Table 49, p. 37). The basis by which the height of a watch glass is gaged is that a flat glass is gage No. ro, and that for each unit distance of 0.4 millimeter in height, the gage number decreases by unity.

This system of labeling is recommended by the Bureau of Standards as the most satisfactory for the present, at least so long as the ligne sizes are used in appreciable quantities. The manufacturers would prefer that metric sizes be used exclusively, but it depends largely upon the retail establishments to simplify existing conditions.

[^10]
4. INFLUENCE OF WATCHCASE DESIGN

The number of sizes of watch glasses which it is necessary for retail establishments to carry in stock is almost appalling. In the table of diameters given below (Table 48), there are 272 sizes shown, which apply to each of the various models. The Bureau desires to suggest that the number of necessary sizes can be eventually reduced about 50 per cent if watchcase manufacturers would confine themselves to the manufacture of cases requiring only glasses whose sizes are an integral number of millimeters; to provide for odd sizes resulting from inaccurate workmanship, there would be supplied about two tenth-millimeter sizes below and above each integral or whole millimeter size.

5. CONVERSION TABLES

Table 48 is a conversion table for the reduction of diameters expressed in lignes into tenth-millimeter sizes. Table 49 gives the height of glasses in both millimeters and inches.

TABLE 48.-Diameter of Watch Glasses-Conversion of Lignes (16ths) into Tenth-millimeters
[1 ligne $=2.2559 \mathrm{~mm}$]

Size	$\frac{0}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{4}{16}$	$\frac{5}{16}$	$\stackrel{6}{16}$	$\frac{7}{16}$	$\frac{8}{16}$	$\frac{9}{16}$	$\frac{10}{16}$	$\frac{11}{16}$	$\frac{12}{16}$	$\frac{13}{16}$	$\frac{14}{16}$	$\frac{15}{16}$
6.	135	137	138	140	141	142	144	145	147	148	149	151	152	154	155	157
7.	158	159	161	162	164	165	166	168	169	171	172	173	175	176	178	179
8	180	182	183	185	186	188	189	190	192	193	195	196	197	199	200	202
9	203	204	206	207	209	210	211	213	214	216	217	219	220	221	223	224
10.	226	227	228	230	231	233	234	235	237	238	240	241	243	244	245	247
11.	248	250	251	252	254	255	257	258	259	261	262	264	265	266	268	269
12.	271	272	274	275	276	278	279	281	282	283	285	286	288	289	290	292
13	293	295	296	297	299	300	302	303	305	306	307	309	310	312	313	314
14	316	317	319	320	321	323	324	326	327	329	330	331	333	334	336	337
15	338	340	341	343	344	345	347	348	350	351	352	354	355	357	358	360
16	361	362	364	365	367	368	369	371	372	374	375	376	378	379	381	382
17.	384	385	386	388	389	391	392	393	395	396	398	399	400	402	403	405
18.	406	407	409	410	412	413	415	416	417	419	420	422	423	424	426	427
19.	429	430	431	433	434	436	437	438	440	441	443	444	446	447	448	450
20.	451	453	454	455	457	458	460	461	462	464	465	467	468	470	471	472
21	474	475	477	478	479	481	482	484	485	486	488	489	491	492	493	495
22.	496	498	499	501	502	503	505	506	508	509	510	512	513	515	516	517

TABLE 49.-Height of Watch Glasses

Gage No.	Height		Gage No.	Height	
	mm	Inch		mm	Inch
10.	0.0	0.000		2.4	0. 094
9.	. 8	. 0161		2.8 3.2 3	. 126
	1.2	. 047	1............	3. 6	. 142
	1.6 2.0	. 063	0...........	4.0	. 157

VI. SIZES OF WATCHES

Watch sizes are based upon the diameter of the pillar plate. Watch movements made on the continent of Europe have their diameters expressed either in millimeters or in lignes, the former method being somewhat uncommon. A watch movement made in the United States has its diameter expressed in terms of a certain "Size No." The diameter of the 0 -size watch is I $5 / 30$ ths of an inch; the size number increases for each 3oth of an inch. The diameter of a 12 -size watch movement is therefore $47 / 30$ ths of an inch (1.567 inches, or 39.79 millimeters).

From the third column of Table 50 it is seen that an 18 -ligne watch equals almost exactly a 13 -size and that a 15 -ligne equals very closely a 5 -size. In connection with the most common sizes it is well to note that the diameter of a 16 -size watch is nearest to 19 lignes, 12 -size to 18 lignes, and o-size to 13 lignes.

TABLE 50.-Watch Sizes
[Based upon the diameter of pillar plate. 1 ligne $=2.2559$ millimeters; 1 inch $=25.40005$ millimeters, Size No. $=$ Number of thirtieths (30th's) of an inch in excess of 35 thirtieths ($35 / 30$) of an inch]

VII. RING SIZES

1. ORIGINAL STANDARD

The gages for finger rings that are in use in the United States are almost universally of the cone type, and are designated by two trade names. One is "F. E. Allen's"; the other is "U. S. Standard." Apparently the principle of a metal cone with graduations from i to 13 or o to 13 is the same on the two gages, the only apparent difference between the two being in the shape of the wooden handles. All attempts to find any printed statement as to what the dimensions of the various sizes are supposed to be, have been unsuccessful. The earliest known patent on the conical ring gage was obtained by F. E. Allen on February 3, 1874, U. S. Patent No. 146974. In this patent there is described quite accurately the conical gage with sizes i to 13 , and quarter sizes, as is used to-day; there is also described the auxiliary scale on the side for showing the circumference for each of the various sizes. The dimensions of the sizes are not stated.

2. INTRODUCTION OF ERRORS

From the accurate description of the present gage in Allen's patent, it may be presumed, perhaps erroneously although probably correctly, that the scale of sizes now in use was well known and in use at that time. There probably also is little doubt but that the present gage sizes have descended from those in use at that time, but by what steps and intermediary process it is impossible to state. Differences in the sizes have likely been introduced by the adoption of a common commercial copy as a pattern or standard. In fact, a standard was once obtained in this manner. A manufacturing company in 1917 wrote to the Bureau of Standards stating that they had been making these gages for nearly 25 years and that "our standard was probably obtained from a commercial Allen ring gage and there appears to be considerable variations in the ring gages on the market."

3. MANY SIMILAR STANDARDS

While there apparently is only one standard in use in the United States, in reality, because of the lack of specific dimensions and because of the errors introduced by the adoption of a common commercial article as a pattern, there are many, although similar, standards. One establishment recently purchased a considerable number of platinum blank rings from a certain well-known and highly advertised manufacturer. The ring blanks as delivered
tested out about one-quarter size smaller than the size ordered, and as can be readily understood, there is no means of recourse even though there had been a desire on the part of the purchaser to obtain it. From the gages examined in a few retail establishments in the same city, there were discovered differences corresponding to about a third of a size. Continued search in other cities may be expected to disclose much larger differences. Letters from one important manufacturer of ring gages state that the diameters they use corresponding to sizes 1 and 13 are 0.485 and 0.877 inch, respectively; from another, they are 0.491 and 0.877 inch, respectively. On the other hand, measurements obtained during one afternoon for gages in use in retail houses in one locality gave a range of values for size I from 0.480 to 0.49 I inch, and for size 13 from 0.870 to 0.878 inch.

4. CONFUSION ALSO IN USE OF GAGE

Not only is there confusion in the ring sizes and standards but confusion also exists in the method of use of the gages. Some companies bring the top of the ring to the mark on the gage, others use the middle of the ring, while still others use the lower edge of the ring. These differences in the method of use are equivalent for broad rings to an appreciable part of a size, and serve to increase the differences between the various standards. The differences between the various gages for any one size are somewhat small in comparison with the latitude permissible in the retail trade, but for the jobbers and manufacturers it seems desirable, however, that the diameter used for each of the various sizes and the method of use of the gage should be identical.

5. OUTLINE OF THE PROBLEM

The figures given in the preceding paragraphs show approximately the dimensions of the gages in use as compared with those of the standards of two ring gage manufacturers. The Bureau of Standards intends to take up this problem by obtaining more complete information as to the dimensions of gages in different parts of the country, and with the cooperation of those fundamentally interested in this problem, it hopes to be able to select some values which best represent the average dimensions of existing standards.

VIII. MISCELLANEOUS TABLES

TABLE 51.-Decimal Equivalents of Gold Karats a
[The number of karats indicates the number of 24 ths of pure gold in an alloy]

Number of karata	Pure gold	Number of karata	Pure gold
1 K	Fineness 0.0417	13 K	$\begin{aligned} & \text { Fineness } \\ & 0.5417 \end{aligned}$
2 K	. 0833	14 K .	. .5833
$3 \mathrm{4K}$.	. 1250	15 K.	. 6250
5 K	- 2083	17 K	. 66087
6 K	. 2500	18 K	. 7500
7 K	. 2917	19 K	. 7917
8 K	. 3333	20 K	. 8333
9 K	. 3750	21 K	. 8750
10 K .	. 4167	22 K	. 9167
${ }_{12}^{11} \mathrm{~K}$ K.	.4583 .5000	23 K	.9583 1.0000
12 K .	. 5000	24 K	1.0000

[^11]TABLE 52.-Densities a of Various Metals

Metal	Density	Metal	Density
Aluminum	$\begin{gathered} \mathrm{g} / \mathrm{cm}^{2} \\ 2.70 \end{gathered}$	Manganese	$\mathrm{g} / \mathrm{cm}^{3}$ 7.42
Antimony .	6. 618	Nickel.....	8.75
Bismuth..	9. 781	Osmlum	22.5
Cadmium.	8. 648	Palladium	12. 16
Chromium	6.92	Platinum.	21.37
Cobalt.	8.71	Rhodium.	12. 44
Copper	8.89	Silver	10. 48
Gold. .	19.33	Tantalum	16. 6
Iridium	22. 42	Tin	7.29
Iron.	7.86	Tungsten	18.8
Lead.	11.342	Zinc..	7. 10

a The values in this table are taken from "Smithsonian Physical Tables," γ th revised edition, D. ino.
TABLE 53.-Melting Points a of Various Metals b

Metal	Melting point	Melting point	Metal	Melting point	Melting point
Mercury	$\begin{gathered} { }^{\circ} \mathbf{C} \\ -38.87 \end{gathered}$	$\begin{gathered} \bullet \mathbf{F} \\ -37.97 \end{gathered}$	Manganese.	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Tin..	+231.9	+449.4	Nickel..	1452	2646
Bismuth	271	520	Cobalt	1480	2696
Cadmium	$320.9{ }^{\circ}$	609.6	Iron.	1530	2786
Lead.	327.4	621.3	Palladum	1550	2822
Zinc.	419.4	786.9	Chromium	1615	2939
Antimony	630.0	1166.0	Platinum.	1755	3191
Aluminum	658.7	1217.7	Rhodium.	1950	3542
Radium.	700	1292	Iridlum.	2350(?)	4260
Silver	960.5	1760.9	Osmium	2700(?)	4890
Gold	1063.0	1945. 5	Tantalum	2900	5250
Copper.	1083.0	1981.4	Tungsten	3400	6152

[^12]TABLE 54.- Conversion of Centigrade Temperatures (C) into Fahrenheit
Temperatures (F)
[Temperature Fahrenheit $=9 / 5$ temperature centigrade +32]

${ }^{\circ} \mathrm{C}$	${ }^{\bullet} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	- \mathbf{C}	${ }^{\circ} \mathrm{F}$
-40	-40	60	140	200	392
-35	-31	65	149	300	572
-30	- 22	70	158	400	752
-25	- 13	75	167	500	932
-20	- 4	80	176	600	1112
-15	+ 5	85	185	700	1292
-10	14	90	194	800	1472
-5	23	95	203	900	1652
Zero	32	100	212	1000	1832
$+5$	41	105	221	1100	2012
10	50	110	230	1200	2192
15	59	115	239	1300	2372
20	68	120	248	1400	2552
25	77	125	257	1500	273i.
30	86	130	266	1600	2912
35	95	135	275	1700	3092
40	104	140	284	1800	3272
45	113	145	293	1900	3452
50	122	150	302	2000	3632
55	131	155	311	2500	4532

TABLE 55.-Conversion of Fahrenheit Temperatures (F) into Centigrade Temperatures (C)
[Temperature centigrade $=5 / 9$ (temperature Fahrenheit -32)]

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$						
-40	-40.0	60	15.6	165	73.9	500	260.0
-35	-37. 2	65	18.3	170	76.7	600	315.6
-30	-34.4	70	21.1	175	79.4	700	371.1
-25	-31.7	75	23.9	180	82.2	800	426.7
-20	-28.9	80	26. 7	185	85.0	900	482.2
-15	-26.1	85	29.4	190	87.8	1000	537.8
-10	-23.3	90	32. 2	195	90.6	1100	593.3
-5	-20.6	95	35.0	200	93.3	1200	648.9
Zero	-17.8	100	37. 8	205	96.1	1300	704.4
+ 5	-15.0	105	40.6	210	98.9	1400	760.0
10	-12.2	110	43.3	212	100.0	1500	815.6
15	- 9.4	115	46.1	215	101.7	1600	871.1
20	-6.7	120	48.9	220	104.4	1700	926.7
25	-3.9	125	51.7	225	107.2	1800	982.2
30	-1.1	130	54.4	230	110.0	1900	1037.8
32	Zero	135	57.2	235	112. 8	2000	1093.3
35	$+1.7$	140	60.0	240	115. 6	2500	1371.1
40	4.4	145	62.8	245	118.3	3000	1648.9
45	7.2	150	65.6	250	121.1	3500	1926.7
50	10.0	155	68.3	300	148.9	4000	2204.4
55	12.8	160	71.1	400	204.4	4500	2482.2

Fig. 3.-Temperature and color of hot body

INDEX

[For analytical outline see "Contents," p. 3.]

	Page.
Abbreviations........................... 11, 12, 13, 14	Douzième caliper......................... 32
principles............................. 10	Dram, apothecaries'....................... I_{4}
Acre.................................... 12	avoirdupois.
American Steel and Wire Co.'s wire gage.... 30,33	fluid.
American wire gage....................... 8, 80,33	Drill gages.
Apothecaries' units (see also under the name of each unit) \qquad	Dry units of capacity (see also under the name of each unit)
Are...................................... 12	
Area, units................................. 1 Ir	
tables................................ 20	Fathom.
Avoirdupois units of mass (see also under the	Finger rings, sizes
name of each unit).................... 14, 22	Firkin.
Barrel (for dry commodities)................ 13	Fluid units (see also under the name of each unit).
Birmingham wire gage...................... 31, 33	Foot.
Board foot.................................. 12	beard
(British) Standard wire gage 31,33	cubic.
Brown \& Sharpe wire gage. 8, 30,33	squa
Bushel..................................... ェ3 $^{\text {a }}$	Fractions, common (binary), of inch, conver-
	ion into millimeters.....................
units.	Fundamental relationships of metric system.
Carat, metric...................... 6, 14, 27, 28, 29	
metric, new, adoption.	Gages (see also Wire gages; Drill gages; and
old, in use in United States previous to	Plategage)
Centa	Gallon, British imperial.
Centi-(prefix)........................... 8	United States . 9, 13, 21
Centigrade temperatures................... 42,43	
Centigram................................. I_{4}	Gold karat (fineness of gold)................ 4 M
Centiliter................................. 13^{13}	Grain.............................. 9, 10, 14, 22, 23
Centimeter............................. 7, 11, 15	Gram.......................... 9, 10, 14, 22, 23, 24, 25
Centimeter and inch, chart showing relative values of	Hand.
	Hectare.
Centimeter, cubic 9, x , 20 square	Hecto- (prefix)
Chain	Hectogram
	Hectoliter
Color, approximate temperatures by use.... 43	Hectomet
Contents, table.	
Cord.................................... 12	Hot body, approximate temperature, by use
Cubic measure, units (see also under the name	of color................................. ${ }^{43}$
of each unit). \qquad $12,20$	Hundredweight
Deci- (prefix)	Imperial wire gage.
Decigram.............................. 14	Inch............................ 9, 10, 11, 15, 16, 18
Deciliter.................................. 13^{1}	cubic
Decimeter................................ in	square..................................... 12, 12, 20
cubic.	Introdu
square................................... 12	Karats, gold, decimal equivalents.
Deka- (prefix)	Kilo- (prefix).
Dekagram.................................. 1_{4}	Kilogram.......................... 7, 9, 14, 22, 26
Dekaliter.................................... s_{3}	Kilometer.................................. 7 , І
De	cubic.................................. 12
cubic.	square.................................. 12 $^{\text {a }}$
Densities of metals......................... 4x	
Douzième	Length conversion tables......... 15, 16, 17, 18, 19

Page.	Page.
Length, units of............................ in	Point. 11 Ix, 16, 32
Ligne................................ 32, 36, 37, 3^{8}	Pound, apothecaries'........................ 14
Link..................................... II $^{\text {a }}$	
square................................. 12	troy
Liquid units (see also under the name of each unit) \qquad	Quart, dry . 13
Liter............................ $7,8,9,13,20,21$	
Liter, distinction between, and 1000 cubic centimeters.	Rings, finger, sizes.......................... 39
	Rod..
"Manufacturers' standard" drill gage..... 31,34, 35	square
Mass (weight).................. 9, 14, 22, 23, 24, 25, 26 tables.	Roebling wire gage. 30, 33
units................................... 14	Scruple, a pothecaries'...................... 14
Melting points of metals. 4 .	Sizes of watches........................ 3^{8}
Metal, density........................... 4 4	Span.....
melting points.	Spelling of metric units.
Meter................................. $7,9,11,15$	Square (see also under the name of each unit)
cubic................................... 12,20	
square.................................. 11,20	Standard Tool Co.'s drill gage. 3x, 34,35
Metric carat. See Carat, metric.	Standard wire gage......................... 31,33
Metric system.	Steel wire gage. 30,33
fundamental rela	Stere.
general outline	Stubs' steel wire gage.............. 30, 31, 33, 34,35
legal status.	Stubs' wire gage............................ 33
units of................................ ix	Subdivisions of metric units
use in medical work of War Department...	Tables, use 9, 10, 27
Metric ton. See Ton, metric.	
Metric units, subdivisions.	Temperatures by color of hot body........... ${ }^{43}$
Micron. \qquad 8, 11, 19	Ton, long................................. 14
Mil..	metric
Mile, geographical. ir	Troy, ounce
nautical (sea)........................... ix	Troy, ounce. 14, 22, 25
square.................................. 12	Use of tables............................. 9, 10, 27
statute............................... is	United States standard plate gage.......... 29
Milli- (prefix)............................... 8	
Milligram......................... 7, 9, 14, 27, 28, 29	"Various manufacturers' ${ }^{\text {d }}$ drill gage..... 31,34,35
Milliliter............................... 7, 8, 13, 21	Volume, tables. ${ }^{20}$
Millimeter....................... 7, 8, x0, 12, 15, 88	unit
cubic	
square.................................. 12	Washburn \& Moen wire gage. 30,33
Millimicron................................ 1 I	Watch glasses, gage sizes. 35,37
Minim.................................. 13, 21	
	Watchcase design, influence upon sizes of ${ }^{\text {a }}$
	Watchcase design, influence upon sizes of
Ounce, apothecaries'...................... 14	watch glasses........................... ${ }^{36}$
avoirdupois............................. 14,22	Watches, size............................ 3^{8}
fluid..................................... 13, 25	Weight, tables (see also Mass)...... 22, 23, 24, 25, 26
troy.................................. $14,22,25$	units
	Wire gages. 29, 30
Peck..................................... 13	tabular comparison........................ 33
Pennyweight. $10,14,22,24$	
Pint, dry.................................. 13	Yard..................................... 11, 15
liquid. $13,2 \mathrm{x}$	cubi
Plate gage, United States standard......... 29	

偪

[^0]: ${ }^{1}$ Prepared by A. F. Beal, Associate Physicist, Bureau of Standards.

[^1]: ${ }^{2}$ It is desirable to note in this connection that all medical prescriptions of the U. S. Army must be expressed in metric units, not in grains.

[^2]: ${ }^{3}$ Additional units, multiples, and subdivisions, which may be needed occasionally, are given later under "Definitions of Units," pp. 11 to 14.
 Tables giving the interrelation of units of measurement may be found in Bureau Circular No. 47 .

[^3]: ${ }^{4}$ There is a minute distinction between the liter and 1000 cubic centimeters which is used only in work of extreme precision. See "Fundamental Relationship," page 9.

[^4]: ${ }^{5}$ The above bushel is the so-called stricken or struck bushel. Many dry commodities are sold by heaped bushel, which is generally specified in the State laws to be the usual stricken bushel measure "duly heaped in the form of a cone as high as the article will admit" or "heaped as high as may be without special effort or design." The heaped bushel was originally intended to be 25 per cent greater than the stricken bushel.
 ${ }^{6}$ As fixed by United States statute, approved Mar. 4, 1915.

[^5]: 7 This information about gages was gathered from the statements on the subject in the catalogues of manufacturers and in scientific literature, including B. S. Circular No. 31.
 ${ }^{8}$ In an article written in 1887 (S.S. Wheeler, Elec. World, 10, p. $254 ; 1887$), over 30 gages were described, 19 of which were wire gages.

[^6]: ${ }^{2}$ For a more complete discussion of wire gages, see B. S. Circular No. 3r, Copper Wire Tables.
 ${ }^{10}$ The name "Steel wire gage" was suggested by the Bureau of Standards in its correspondence with various companies, and it met with practically unanimous approval. It was necessary to decide upon a name for this gage, and the three names which have been used for it in the past were all open to the objection that they were the names of particular companies. These companies have accepted the new name. The abbreviation of the name of the gage should be "Stl. W. G.," to distinguish it from "S. W. G.," the abbreviation for the (British) Standard wire gage. When it is necessary to distinguish the name of this gage from others which may be used for steel wire-e. g., the (British) Standard wire gage-it may be called the United States steel wire gage.

[^7]: a This caliper must not be confused with the tenth-millimeter spring caliper, which is similar in appearance to the douzième caliper. For the graduation equivalents of the gage, or caliper, referred to by the various names of screw, point, or dial gage, using the values of "points" as used by silversmiths, or quarter-thousandths of an inch, see the first column of Table 6.

[^8]: a The Steel wire gage is the same gage which has been known by the various names: "Washburn \& Moen," "Roebling," and "American Steel \& Wire Co's." Its abbreviation should be written "St to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard wire gage.

 The millimeter diameters given for the American wire gage were obtained by multiplying by 25.40005 the mathematically correct values in inches before the latter were rounded off in the fourth decimal place as shown in the second column of the table.

[^9]: a For sizes 1 to 60 the dimensions for both drill gages-Standard Tool and "various manufacturers"are identical, but differ from the Stubs' steel wire gage.

[^10]: ${ }^{11}$ The origin of the ligne is from the old, now practically obsolete, French toise (fathom) as follows: 12 lignes $=1$ pouce, 12 pouce $=1$ pied, 6 pied $=1$ toise. The relation between the toise and meter is 1 toise $=1.949090$ meters. (Guillaume, "Unités et Etalons," page 64.)

[^11]: ${ }^{a}$ The spelling "karat" is in general use among jewelers to designate the gold karat (fineness of gold) and is consistent with the accepted abbreviation for this term, " K "; also, it affords a distinctive term as compared with "carat," which, abbreviated by "c" designates a unit of weight used in measuring precious stones.

[^12]: a At high temperatures some of the values are somewhat uncertain. Temperatures centigrade are rounded off, and the exact Fahrenheit equivalents are usually given.
 b This table is taken from B. S. Circular No. 35, 4th edition (revision of Dec. 1, 1919), which gives the melting points for all of the elements.

