
Next Generation Content
Loading and Routing

Adam Baso, Jon Robson, Joaquin Hernandez, Gabriel Wicke, Sam Smith

https://phabricator.wikimedia.org/T114542

https://phabricator.wikimedia.org/T111588

https://phabricator.wikimedia.org/T106099

https://commons.wikimedia.org/wiki/File:Paradigm.pdf

https://phabricator.wikimedia.org/T114542
https://phabricator.wikimedia.org/T114542
https://phabricator.wikimedia.org/T111588
https://phabricator.wikimedia.org/T111588
https://phabricator.wikimedia.org/T106099
https://phabricator.wikimedia.org/T106099
https://commons.wikimedia.org/wiki/File:Paradigm.pdf
https://commons.wikimedia.org/wiki/File:Paradigm.pdf

80 minutes

1. Intro, Q2 R&D backdrop

2. Performance

3. API Driven Frontend

4. Composition

5. Discussion (20 minutes)

Agenda

“Imagine a world in which every single person on the planet is given free access

to the sum of all human knowledge. That's what we're doing.”

“Imagine a world in which every single person on the planet is given free access

to the sum of all human knowledge. That's what we're doing.”

The current state
● Slow connections

● Logged in users

● Complexity

● Developer productivity

Caching layers vs. customizations
● Customize experience on user, connection, form factor

● Core issue: Implementing customizations on the server fragments caches

● Client-side, API-driven frontend can avoid most of these issues.

○ Separate shared content to high perf endpoints

○ Connection and form factor adjustments can be done at the client

Performance

Slow connections common, LTE not coming immediately

http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf

http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf

62% of mobile content accessed over 2G across the world [1]

 91.7% of the world lives within 2G coverage

48.7% of the world lives within 3G coverage

[1] http://goo.gl/VADE5l

http://goo.gl/VADE5l

First paint
How long a user looks at a blank screen

Not the experience we built
Google Web Light solves this problem [1]

We can do better.

[1] https://googleweblight.com/?lite_url=https://en.m.wikipedia.org/wiki/Barack_Obama

https://googleweblight.com/?lite_url=https://en.m.wikipedia.org/wiki/Barack_Obama

https://reading-web-research.wmflabs.org/Barack Obama

http://www.youtube.com/watch?v=99fh5kA_GJo
https://reading-web-research.wmflabs.org/wiki/Barack_Obama
https://reading-web-research.wmflabs.org/wiki/Barack_Obama

Barack Obama - a sense of the possibilities...

Now: First paint in 52.7s, 974 KB, fully loaded in 262.1s

After: First paint in 16.6s, 201kb, fully loaded* in 66s

http://www.webpagetest.org/result/151221_JV_13R8/

http://www.webpagetest.org/result/151221_T0_13QC/

69% decrease in first paint

*not the most fair comparison.. definition of fully loaded changed.

http://www.webpagetest.org/result/151221_JV_13R8/
http://www.webpagetest.org/result/151221_JV_13R8/
http://www.webpagetest.org/result/151221_T0_13QC/
http://www.webpagetest.org/result/151221_T0_13QC/

Problem 1: Render blocking CSS
● CSS is a smaller issue but still an issue.

○ The page will not be visible until CSS is.

○ In mobile we aggressively reduce the payload

● Can improve 2nd load for multi-page readers

○ In the demo we use Service Worker to cache CSS for the first load.

○ This doesn’t help the first load however.

● Inlining certain styles might help.

○ Removes http request, increases HTML size

○ Can’t leverage cache for inlined styles.

Problem 2: Images
● Images slow down loading of stylesheets

● srcset evil for 2G connections

○ Browsers do not take into account your connection speed

● Various solutions to this problem that could be

implemented now [1]

[1] https://phabricator.wikimedia.org/T119797

Removing images

A reader of the Barack Obama page could see it 19% quicker with

66% fewer bytes. if it didn’t have any images.

https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.

28browser_loading_time.29

https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29
https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29
https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29

Problem 3: HTML Size
● References and navboxes contribute to the majority of the

page HTML. [1]

● The better an article gets the less likely a 2G connection

gets to see it.

Barack Obama

Doctor WhoSyrian Civil War

Brazil

[1] http://chimeces.com/loot-content-analysis/

http://chimeces.com/loot-content-analysis/

References and navboxes and bytes (oh my!)
A reader of the Barack Obama page without navboxes

and references sees it 55% quicker with

33% fewer bytes.[1]

At time of writing Barack Obama a reader sees the page

in 61.176s and downloads 970 KB [2]

[1]https://www.mediawiki.

org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#

Webpagetest_report_.28browser_loading_time.29

[2]http://www.webpagetest.org/result/151222_5M_1537/

https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29
https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29
https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29
https://www.mediawiki.org/wiki/Reading/Web/Projects/A_frontend_powered_by_Parsoid/HTML_content_research#Webpagetest_report_.28browser_loading_time.29
http://www.webpagetest.org/result/151222_5M_1537/

People do not read all the article on mobile
We collected some data against users with

collapsed sections and without collapsed sections.

40% of sessions on mobile devices opened a

section

https://phabricator.wikimedia.org/T118041

… so why give them all of it?

Summary

● HTML size is the major problem for 2G connections

○ Bandwidth consumption and first render

● Images contribute to the problem of first paint on large articles

What happens if we use RESTBASE for our content?
https://future-wikipedia.wmflabs.org/wiki/Barack_Obama VS

http://en.m.wikipedia.org/wiki/Barack_Obama

https://future-wikipedia.wmflabs.org/wiki/Barack_Obama
https://future-wikipedia.wmflabs.org/wiki/Barack_Obama
http://en.m.wikipedia.org/wiki/Barack_Obama
http://en.m.wikipedia.org/wiki/Barack_Obama
http://www.youtube.com/watch?v=Lg_mZtSEHMo

Results:

Before: First paint in 52.7s, 974 KB, fully loaded in 262.1s

After: First paint in 15.5s, 231kb, fully loaded* in 62.3s

http://www.webpagetest.org/result/151221_3C_13QK/

http://www.webpagetest.org/result/151221_T0_13QC/

*not the most fair comparison.. definition of fully loaded changed.

http://www.webpagetest.org/result/151221_3C_13QK/
http://www.webpagetest.org/result/151221_3C_13QK/
http://www.webpagetest.org/result/151221_T0_13QC/
http://www.webpagetest.org/result/151221_T0_13QC/

API Driven Frontend
Implementation Options

Fundamental questions
● No-JS support.

● Cold load & no-JS (weak JS) performance.

● SEO: Can we guarantee continued search engine

findability?

Two main options
1. Single page application (case study)

2. Regular navigation with ServiceWorker composition.

Case study
Wikipedia as a web application
http://reading-web-research.wmflabs.org/wiki/Wikipedia

http://reading-web-research.wmflabs.org/wiki/Wikipedia
http://reading-web-research.wmflabs.org/wiki/Wikipedia

Focus areas
● Slow & unreliable networks

○ Performance

○ Better client experience

● HTML only version

● Better UI development & prototyping

Approach
● API server: transforms Parsoid content and leverages

RESTbase caching.

● UI server that renders the web application server side.

● Lazy loaded thick web client

○ Navigation: pushstate history

○ Content caching: localStorage, IndexedDB

○ Caching assets & images: Service Workers

Architecture

http://chimeces.com/loot-ui/docs/architecture.html

http://chimeces.com/loot-ui/docs/architecture.html
http://chimeces.com/loot-ui/docs/architecture.html

Architecture

Architecture

Scope
Fundamental reading experience:

● Reading an article & images.

● Navigating to other articles

● Searching for articles

Article loading
● First payload serves only lead section

● Automatically loads rest of content

● Extremely fast perceived

performance

● Get’s useful info to user ASAP

● Flexibility on what to aggregate and

serve on first visit + delayed

Pros
● Time to full content gets longer than

sending it in one take

● 2 network requests

Cons

Lazy loading images
Images are not loaded by default.

Lazy loaded as the user scrolls through the article.

● Avoids blocking other assets when

loading.

● Less data usage. Image not seen is

image that doesn’t consume data.

Pros
● HTML only (no-JS) doesn’t load

 (instead links to images)

○ Could be loaded if wanted (<noscript>)

Cons

Chrome & assets caching
● Leverage Service Workers

● Application shell and static assets are cached in the background

● We open an LRU cache for images

● Following visits to site serve instantly HTML chrome, JS and CSS

● JS loads content via API request (only request to server)

Benefits the most to recurrent visitors and power users

Support: Chrome 40+, FF 44, Opera, IE Edge

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://jakearchibald.github.io/isserviceworkerready/
https://jakearchibald.github.io/isserviceworkerready/

Chrome & assets caching

● Instant loading of chrome and assets

on subsequent visits

● Website works offline. Available

without internet connection

● Background updates of application

assets

Pros
● First visit will trigger background

requests for assets (network load)

○ HTTP caching may avoid downloading

same assets twice

Cons

Content caching
● Cache content in browser DB (IndexedDB)

● Used to improve perceived performance and offline usage

● Cache article content, and other API fetched resources

● When visualizing, use Cache-First strategy

● Issue background requests for fresh content

Content caching

● Excellent perceived performance

○ Instant loading of already visited articles

while background request fetches new

content

● Offline reading of articles & other

resources on the web

● Leaner requests to server (only

content, no chrome/assets)

Pros
● Need a strategy for updating content

in-front of user

○ Auto update (may seem weird if changes are

big)

○ Ask user if show new content (intrusive)

● Needs DB content management

strategy

○ Clean LRU content?

○ App upgrade - DB migrations / clean up

Cons

Pros
● Parsoid + Restbase allow content

transformation

○ New content loading strategies to

improve experience and speed

● Client side application + Service Worker gives

the best & fastest experience possible

recurrent visits

● Rendering on the server running the client

web app

○ Less complexity & More shared code (server-client)

Cons
● New architecture, semi-

incompatible with the

MediaWiki frontend

○ Recreating what is already done

○ Loss of ecosystem

○ Unable to replicate what doesn’t

have an API (like native apps)

○ Could use web-app approach

losing server side rendering

(needs node.js)

Summary

Summary Pros
● Development happiness

○ Clean UI architecture

■ Explicit centralized state management

■ Declarative views

■ Isolated component & styles

○ Faster development speed

○ Really fast UI tests (run on node.js w/ jsdom)

● Can deliver standalone web app from static server

○ Easier prototyping (impl+deploy+share)

○ Easier UX research w/ real application

● Can deploy to other platforms than pure browser

○ Electron & Cordova

Needs
● Parsoid content

○ Structured content for parsing and massaging

○ More semantic representation of important content (navboxes, references,

etc)

○ Leaner output for faster load time

● Restbase

○ Efficient composition/aggregation services (leveraging HTTP caching)

○ Cache strategy for scale

● Effort on duplicating existing features

Answers to fundamental questions
● No-JS support?

○ Varnish cacheable HTML only server rendered version

■ Using same code as the client side app

■ Completely usable

● Cold load & no-JS (weak JS) performance?

○ See above. App works while assets load as html-only

● SEO

○ Since HTML only is able to access all content, spiders too

Alternative: ServiceWorker composition

ServiceWorker composition
● Regular navigation, no single-page app.

● ServiceWorker is installed on first load &

intercepts requests to specific URLs on

subsequent accesses.

● Composes a streaming response based on

stored content & API requests:

○ Header

■ styles

○ content

■ components

○ Footer

■ user tools

■ interwikis

■ page tools

First load / No-JS
● Without JS / ServiceWorker, requests just hit

Varnish.

● Varnish response is a fully cached, light-

weight HTML version of page.

○ Contains all essential information, so does not break

SEO.

○ Inline styles for quick rendering on 2G.

○ Omits non-essential below-fold content: Navboxes,

possibly references.

● If JS is enabled & network performance is

sufficient, optional content like navboxes is

loaded after main content is ready (DOM).

Authenticated No-JS
● Authenticated no-JS requests hit node.js

service running the client-side

ServiceWorker code via node-serviceworker.

● Streaming responses for low time to first

byte.

Page components
● Goal: Clearly mark up elements for dynamic composition,

and define a metadata spec for aggregation.

● Examples: <mw-infobox>, <mw-navbox>, <mw-references>,

<figure>, <mw-interwikis>, <mw-usertools>

● Idea: Build on web components.

● Focus on performance, especially for server-side processing.

Composition performance

● elematch order of magnitude more

efficient than libxml DOM

● Varnish cache hit order of

magnitude faster than node service

using streaming elematch processing

Page component APIs
● Need cacheable APIs for the retrieval of individual

components.

● Goal: Identify shared patterns & reuse markup to API

mapping.

● Define a metadata spec for components to enable

dependency tracking and aggregation

○ Links, images, categories, used templates

○ Cache policy

○ Page properties

ServiceWorker composition vs. single-page app
● Pros

○ Can be introduced as a progressive enhancement, targeting only specific views.

○ Can be compatible with existing gadgets and user scripts.

○ No need for explicit history management, in-page routing & potential for state leakage.

○ Efficient byte stream processing, no DOM.

● Cons

○ Requires ServiceWorker support (~47%).

○ ServiceWorker ecosystem new & not as mature.

Summary
Goal: Leverage the modern web platform for

● better performance, and

● more flexibility, using well-known technologies.

Two main approaches:

● Single-page application

● ServiceWorker composition

Considerations
● How to handle language variants?

● Should we expose a fuller desktop rendering?

● Replace mobile / desktop skins with a single, adaptive

frontend?

● Can we simplify skinning with this approach?

● Can we package easily for <pick your hosting provider>?

○ https://github.com/wikimedia/mediawiki-containers

https://github.com/wikimedia/mediawiki-containers
https://github.com/wikimedia/mediawiki-containers

How can we support this?
● Separate vital content and load stuff via the client when needed

● (Session T112987 @ 11:30AM - infoboxes/navboxes)

● Stop thinking of articles as monolithic chunks of text

(Session T114072 @ 15:40 - <section> tags)

● Rethink references

● Rethink image loading strategies

● Educate our editors/devs (2G Tuesdays?) http://www.cnet.com/news/facebook-

goes-slooow-with-2g-tuesdays/

Breakout

Okay, here’s what we heard.

Live typing what we heard!

FIN

