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PREFACE.

THESE Tracts were written at different times between 1796

and 1858. The first was inserted in the '

Philosophical

Transactions,' with two other Papers on Light omitted in this

collection. These three belong to the years 1794, 5, 6, and 7,

when the author was a student at the University under Pro-

fessors Playfair and Robison. He could have wished to

insert an exercise which he gave in while at the class of the

former in 1794, which Mr. Playfair was in the habit of show-

ing, as having had the good fortune to hit upon the Binomial

Theorem, but only by induction, as its author said in answer

to the Professor's question, by what means he had arrived at it.

He made inquiry some years ago, and found that the Pro-

fessor's papers had not been preserved. But he cannot pass

over this reminiscence of the University, nor a circumstance

which upon the Professor's expression of an opinion respect-

ing his pupil's good fortune, at once fixed his inclination for

mathematical studies.
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The Third Tract was believed to be required for elucidating

D'Alembert's extension of the Integral Calculus, there being

no distinct account anywhere of the history of that important

step, nor indeed any very clear statement of its nature and

limits.

The Eleventh and Twelfth Tracts may possibly prove use-

ful to students of the Principia ; at all events, they give the

analytical treatment of the fundamental truths in the system

andled by Newton synthetically and with extreme concise-

ness, and therefore elliptically.

The Fourth Tract, on the Greek Geometry, it is hoped may

have a tendency to encourage the study of the Ancient Analysis

in conjunction with the modern, from which it is too often

severed. The authority of M. Chasles is referred to in

Note II. to this Tract, in favour of close attention to the

Ancient Analysis. That he is far from undervaluing the

modem is manifest ; indeed, his work on the Higher Geometry

sufficiently proves this ; and he occupies the chair of Pro-

fessor of that science, the first appointed since its establishment

an inestimable benefit bestowed upon mathematical science

by the government of France. Let us hope that this our

University will receive the same benefit from the government

of our own country ; a hope which may appear well grounded

when we recollect that of its three most important members,

one has been representative of Cambridge and pupil of
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Stewart, another an alumnus of this University and pupil of

Playfair, and a third our present Lord Bector, selected, not

from any connexion whatever with our body, but as a testi-

mony to his talents and learning.

No alteration has been made in any of these Tracts in

preparing them for this work, except changing the fluxional

for the differential notation. But the author has very carefully

gone through all the analytical processes, in order to make

sure that no error or oversight had occurred in investigations

conducted at different times and in various circumstances.

Hardly any were found, except typographical ones in former

publications.
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INTKODUCTOBY EEMAEKS.

IT is not correct it is the very reverse of the truth to

represent the practical applications of science as the only real,

and, as it were, tangible profit derived from scientific dis-

coveries or philosophical pursuits in general. There cannot

be a greater oversight or greater confusion of ideas than that

in which such a notion has its origin. It is near akin tc

the fallacy which represents profitable or productive labour

as only that kind of labour by which some substantial or

material thing is produced or fashioned. -The labour which
of all others most benefits a community, the superior order of

labour which governs, defends, and improves a state, is by
this fallacy excluded from the title of productive, merely

because, instead of bestowing additional value on one mass or

parcel of a nation's capital, it gives additional value to the

whole of its property, and gives it that quality of security

without which all other value would be worthless. So they
who deny the importance of mere scientific contemplation,
and exclude from the uses of science the pure and real pleasure
of discovering, and of learning, and of surveying its truths,

forget how many of the enjoyments derived from what are

called the practical applications of the sciences, resolve them-

selves into gratifications of a merely contemplative kind. Thus,

the steam engine is confessed to be the most useful application
of machinery and of chemistry to the arts. Would it not be

so if steam navigation were its only result, and if no one used
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a steam-boat but for excursions of curiosity or of amusement ?

Would it not be so if steam-engines had never been used but

in the fine arts ? So a microscope is a useful practical appli-

cation of optical science as well as a telescope and a tele-

scope would be so, although it were only used in examining
distant views for our amusement, or in showing us the real

figures of the planets, and were of no use in navigation or in

war. The mere pleasure, then, of tracing relations, and of

contemplating general laws in the material, the moral, and the

political world, is the direct and legitimate value of science ;

and all scientific truths are important for, this reason, whether

they ever lend any aid to the common arts of life or no. In

like manner the mental gratification afforded by the scientific

contemplations of Natural Eeligion are of great value, inde-

pendent of their much higher virtue in elevating the mind,

mending the heart, and improving the life, towards which

important object, indeed, all contemplations of science more

or less directly tend, and in this higher sense all the pleasures
of science are justly considered as its Practical Uses.

If it be a pleasure to gratify curiosity, to know what we were

ignorant of, to have our feelings of wonder called forth, how

pure a delight of this very kind does Natural Science hold out

to its students ! Eecollect some of the extraordinary dis-

coveries of Mechanical Philosophy. How wonderful are the

laws that regulate the motions of fluids ! Is there anything
in all the idle books of tales and horrors more truly astonish-

ing than the fact, that a few pounds of water may, by mere

pressure, without any machineiy by merely being placed in

a particular way, produce an irresistible force ? What can

be more strange, than that an ounce weight should balance

hundreds of pounds, by the intervention of a few bars of

thin iron ? Observe the extraoi'dinary truths which Optical
Science discloses. Can anything surprise us more, than to

find that the colour of white is a mixture of all others that

red, and blue, and green, and all the rest, merely by being
blended in certain proportions, form what we had fancied

rather to be no colour at all, than all colours together?
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Chemistry is not behind in its wonders. That the diamond
should be made of the same material with coal

;
that water

should be chiefly composed of an inflammable substance ; that

acids should be, for the most part, formed of different kinds of

air, and that one of those acids, whose strength can dissolve

almost any of the metals, should consist of the self-same in-

gredients with the common air we breathe
;
that salts should

be of a metallic nature, and composed, in great part, of

metals, fluid like quicksilver, but lighter than water, and

which, without any heating, take fire upon being exposed to

the air, and by burning, form the substance so abounding in

saltpetre and in the ashes of burnt wood : these, surely, are

things to excite the wonder of any reflecting mind nay, of

any one but little accustomed to reflect. And yet these are

trifling when compared to the prodigies which Astronomy
opens to our view : the enormous masses of the heavenly
bodies

; their immense distances ; their countless numbers,
and their motions, whose swiftness mocks the uttermost efforts

of the imagination.
Akin to this pleasure of contemplating new and extraordi-

nary truths, is the gratification of a more Jearned curiosity,

by tracing resemblances and relations between things, which,
to common apprehension, seem widely different. Mathemati-

cal science to thinking minds affords this pleasure in a high

degree. It is agreeable to know that the three angles of

every triangle, whatever be its size, howsoever its sides may
be inclined to each other, are always, of necessity, when
taken together, the same in amount : that any regular kind of

figure whatever, upon the one side of a right-angled triangle,
is ecnial to the two figures of the same kind upon the two

other sides, whatever be the size of the triangle : that the

properties of an oval curve are extremely similar to those of a

curve which appears the least like it of any, consisting of two

branches of infinite extent, with their backs turned to each

other. To trace such unexpected resemblances is, indeed, the

object of all philosophy; and experimental science, in par-

ticular, is occupied with such investigations, giving us general
B 2



4 INTRODUCTORY REMARKS.

views, and enabling us to explain the appearances of nature,

that is, to show how one appearance is connected with

another. But we are now considering only the gratification

derived from learning these things. It is surely a satisfaction,

for instance, to know that the same thing, or motion, or what-

ever it is, which causes the sensation of heat, causes also

fluidity, and expands bodies in all directions
;

that electricity,

the light which is seen on the back of a cat when slightly

rubbed on a frosty evening, is the very same matter with the

lightning of the clouds
;

that plants breathe like ourselves,

but differently by day and by night; that the air which

burns in our lamps enables a balloon to mount, and causes

the globules of the dust of plants to rise, float through the air,

and continue their race in a word, is the immediate cause of

vegetation. Nothing can at first view appear less like, or

less likely to be caused by the same thing, than the processes
of burning and of breathing, the rust of metals and burning,
an acid and rust, the influence of a plant on the air it

grows in by night, and of an animal on the same air at any
time, nay, and of a body burning in that air ;

and yet all these

are the same operation. It is an undeniable fact, that the

very same thing which makes the fire burn, makes metals

rust, forms acids, and enables plants and animals to breathe
;

that these operations, so unlike to common eyes, when
examined by the light of science are the same, the rusting
of metals, the formation of acids, the burning of inflam-

mable bodies, the breathing of animals, and the growth of

plants by night. To know this is a positive gratification. Is

it not pleasing to find the same substance in various situations

extremely unlike each other
; to meet with fixed air as the

produce of burning, of breathing, and of vegetation ; to find

that it is the choke-damp of mines, the bad air in the grotto
at Naples, the cause of death in neglected brewers' vats, and
of the brisk and acid flavour of Seltzer and other mineral

springs ? Nothing can be less like than the working of a

vast steam-engine, of the old construction, and the crawling
of a fly upon the window. Yet we find that these two opera-
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tions are performed by the same means, the weight of the

atmosphere, and that a sea-horse climbs the ice-hills by no
other power. Can anything be more strange to contemplate ?

Is there in all the fairy tales that ever were fancied anything
more calculated to arrest the attention and to occupy and
to gratify the mind, than this most unexpected resemblance

between things so unlike to the eyes of ordinary beholders ?

A\ hat more pleasing occupation than to see uncovered and
bared before our eyes the very instrument and the process by
which Nature works ? Then we raise our views to the struc-

ture of the heavens ; and are again gratified with tracing accu-

rate but most unexpected resemblances. Is it not in the highest

degree interesting to find, that the power which keeps this earth

in its shape, and in its path, wheeling upon its axis and round

the sun, extends over all the other worlds that compose the

universe, and gives to each its proper place and motion ;
that

this same power keeps the moon in her path round our earth,

and our earth in its path round the sun, and each planet in

its path ; that the same power causes the tides upon our

globe, and the peculiar form of the globe itself; and that,

after all, it is the same power which makes a stone fall to the

ground ? To learn these things, and to reflect upon them,

occupies the faculties, fills the mind, and produces certain as

well as pure gratification.

But if the knowledge of the doctrines unfolded by science

is pleasing, so is the being able to trace the steps by which

those doctrines are investigated, and their truth demon-

strated : indeed you cannot be said, in any sense of the word,

to have learnt them, or to know them, if you have not so

studied them as to perceive how they are proved. Without

this you never can expect to remember them long, or to

understand them accurately ;
and that would of itself be

reason enough for examining closely the grounds they rest

on. But there is the highest gratification of all, in being able

to see distinctly those grounds, so as to be satisfied that a be-

lief in the doctrines is well founded. Hence to follow a

demonstration of a great mathematical truth to perceive
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how clearly and how inevitably one step succeeds another,

and how the whole steps lead to the conclusion to observe

how certainly and unerringly the reasoning goes on from

things perfectly self-evident, and by the smallest addition at

each step, every one being as easily taken after the one before

as the first step of all was, and yet the result being something
not only far from self-evident, but so general and strange, that

you can hardly believe it to be true, and are only convinced

of it by going over the whole reasoning this operation of the

understanding, to those who so exercise themselves, always
affords the highest delight. The contemplation of experi-
mental inquiries, and the examination of reasoning founded

upon the facts which our experiments and observations dis-

close, is another fruitful source of enjoyment, and no other

means can be devised for either imprinting the results upon
our memory, or enabling us really to enjoy the whole pleasures
of science. They who found the study of some branches dry
and tedious at the first, have generally become more and more
interested as they went on ; each difficulty overcome gives an
additional relish to the pursuit, and makes us feel, as it were,
that we have by our work and labour established a right of

property in the subject.



I.

GENERAL THEOREMS, CHIEFLY PORISMS, IN THE
HIGHER GEOMETRY.*

THE following are a few propositions that have occurred to

me in the course of a considerable degree of attention which I

have happened to bestow on that interesting, though difficult

branch of speculative mathematics, the higher geometry.
They are all in some degree connected; the greater part
refer to the conic hyperbola, as related to a variety of other

curves. Almost the whole are of that kind called porisms,
whose nature and origin is now well known; and, if that

mathematician to whom we owe the first distinct and popular
account of this formerly mysterious, but most interesting

subject,! should chance to peruse these pages, he will find in

them additional proofs of the accuracy which characterizes

his inquiry into the discovery of this singularly-beautiful

species of proposition.

Though each of the truths which I have here enunciated is

of a very general and extensive nature, yet they are all dis-

covered by the application of certain principles or properties
still more general ;

and are thus only cases of propositions
still more extensive. Into a detail of these I cannot at

present enter : they compose a system of general methods, by
which the discovery of propositions is effected with certainty

and ease; and they are, very probabl}% in the doctrine of

curve lines, what the ancients appear to have prized so nmch
in plain geometry ; though unfortunately all that remains to

* From Phil. Trans., 1798, part ii.

t See Mr. Playfair's Paper in vol. iii. of the 'Edinburgh Transactions.'
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us of that treasure is the knowledge of its high value. I

have not added the demonstrations, which are all purely

geometrical, granting the methods of tangents and quadra-
tures : I have given an example in the abridged synthesis of

what I consider as one of the most intricate. It is un-

necessary to apologise any further for the conciseness of this

tract. Let it be remembered, that were each proposition
followed by its analysis and composition, and the corollaries,

scholia, limitations, and problems, immediately suggested by
it, without any trouble on the reader's part, the whole would
form a large volume, in the style of the ancient geometers ;

containing the investigation of a series of connected truths,

in one branch of the mathematics, all arising from varying
the combinations of certain data enumerated in a general
enunciation.*

As a collection of curious general truths, of a nature, so

far as I know, hitherto unknown, I am persuaded that this

paper, with all its defects, may not be unacceptable to those

who feel pleasure in contemplating the varied and beautiful

relations between abstract quantities, the wonderful and ex-

tensive analogies which every step of our progress in the

higher parts of geometry opens to our view.

PROP. 1. Porism. Fig. 10. A conic hyperbola being

given, a point may be found, such, that every straight line

drawn from it to the curve, shall cut,

p 10 \M i*1 a given ratio, that part of a straight
**"

line passing through a given point which

is intercepted between a point in the

curve not given, but which may be found,

and the ordinate to the point where the

first-mentioned line meets the curve. Let

x be the point to be found, N A the line passing through the

given point N, and M any point whatever in the curve ; join

x M, and draw the ordinate M p
; then AC is to c p in a given

ratio.

* See the celebrated account of ancient geometrical works, in the

seventh book of Pappus.
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Carol This property suggests a very simple and accurate

method of describing a conic hyperbola, and then finding its

centre, asymptotes, and axes ; or, any of these being given, of

finding the curve and the remaining paris.

PROP. 2. Porism. A conic hyperbola being given, a point

may be found, such, that if from it there be drawn straight
lines to all the intersections of the given curve, with an

infinite number of parabolas, or hyperbolas, of any given
order whatever, lying between straight lines, of which one

passes through a given point, and the other may be found ;

the straight lines so drawn, from the point found, shall be

tangents to the parabolas, or hyperbolas. This is in fact two

propositions ;
there being a construction for the case of para-

bolas, and another for that of hyperbolas.
PROP. 3. Porism. If, through any point whatever of a

given ellipse, a straight line be drawn parallel to the con-

jugate axis, and cutting the ellipse in another point ;
and if

at the first point a perpendicular be drawn to the parallel ;
a

point may be found, such, that if from it there be drawn

straight lines, to the innumerable intersections of the ellipse

with all the parabolas of orders not given, but which may be

found, lying between the lines drawn at right angles to each

other, the lines so drawn from the point found, shall be

normals to the parabolas at their intersections with the

ellipse.

PROP. 4. Porism. A conic hyperbola being given, if through

any point of it a straight line be drawn parallel to the trans-

verse axis, and cutting the opposite hyperbolas, a point may
be found, such, that if from it there be drawn straight lines,

to the innumerable intersections of the given curve with all

the hyperbolas of orders to be found, lying between straight

lines which may be found, the straight lines so drawn shall

be normals to the hyperbolas at the points of section.

Scholium. The last two propositions give an instance of the

many curious and elegant analogies between the hyperbola
and ellipse ; failing however when, by equating the axes, we

change the ellipse into a circle.
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PROP. 5. Local Theorem. Fig. 11. If from a given point A,

a straight line DE move parallel to itself, and another cs,

from a given point c, move along with

it round c
;
and a point i move along A B,

from H, the middle point of A B, with a

velocity equal to half the velocity of D E
;

then, if A P be always taken a third pro-

portional to A s and B c, and through p,

with asymptotes D' E' and A B, a conic

hyperbola be described ; also with focus I

and axis A B, a conic parabola be de-

scribed ; then the radius vector from c to M, the intersection of

the two curves, moving round c, shall describe a given ellipse.

PROP. 6. Theorem. A common logarithmic being given,
and a point without it, a parabola, hyperbola, and ellipse may
be described, which shall intersect the logarithmic and each

other in the same points ; the parabola shall cut the logarith-

mic orthogonally ;
and if straight lines be drawn from the

given point to the common intersections of the four curves,

these lines shall be normals to the logarithmic.
PROP. 7. Porism. Two points in a circle being given, but

not in one diameter, another circle may be described, such,

that if from any point of it to the given points straight lines

be drawn, and a line touching the given circle, the tangent
shall be a mean proportional between the lines so inflected.

Or, more generally, the square of the tangent shall have a

given ratio to the rectangle under the inflected lines.

PROP. 8. Porism. Fig. 12. Two straight lines AB, AP,
not parallel, being given in position, a conic

parabola MN may be found, such, that if,

from any point of it M, a perpendicular M p

be drawn to the one of the given lines

nearest the curve, and this perpendicular be

produced till it meets the other line in B ;

and if from B a line be drawn to a given

point c ; then M p shall have to P B together
with c B, a given ratio.

Kg.12.

'
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Scholium. This is a case of a more general enunciation,
which gives rise to an infinite variety of the most curious

porisms.
PROP. 9. Porism. Fig. 13. A conic hyperbola being given,

a point may be found, from which if straight lines be drawn
to the intersections of the given curve

lg.13.

(E Js

5^
i/F-

i

\ _~

7

with innumerable parabolas, or hyper- B

bolas, of any given order whatever lying
between perpendiculars which meet in

a given point, the lines so drawn shall

cut, in a given ratio, all the areas of the

parabolas or hyperbolas contained by the /

peripheries and co-ordinates to points of *
it, found by the innumerable intersections of another conic

hyperbola, which may be found. This comprehends evidently
two propositions ; one for the case of parabolas, the other for

that of hyperbolas. In the former it is thus expressed with

a figure. Let E M be the given hyperbola ;
B A, A c, the per-

pendiculars meeting in a given point A : a point x may be

found, such, that if x M be drawn to any intersection M of E M
with any parabola A M N, of any given order whatever, and

lying between A B and A c, x M shall cut, in a given ratio, the

area A M N p, contained by A M N and A p, P N, co-ordinates to

the conic hyperbola F N, which is to be found
; thus, the

area ARM shall be to the area R M N P in a given ratio.

PROP. 1 0. Porism. A conic hyperbola being given, a point

may be found, such, that if from it there be drawn straight

lines, to the innumerable intersections of the given curve

with all the straight lines drawn through a given point in

one of the given asymptotes, the first-mentioned lines shall

cut, in a given ratio, the areas of all the triangles whose

bases and altitudes are the co-ordinates to a second conic

hyperbola, which may be found, at the points where it cuts

the lines drawn from the given point.
PROP. 11. Porism. A conic hyperbola being given, a

straight line may be found, such, that if another move along

it in a given angle, and pass through the intersections of the
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curve with all the parabolas, or hyperbolas, of any given
order whatever, lying between straight lines to be found, the

moving line shall cut, in a given ratio, the areas of the curves

described, contained by the peripheries and co-ordinates to

another conic hyperbola, that may be found, at the points

where this cuts the curves described.

PROP. 12. Porism. A conic hypei'bola being given, a

straight line may be found, along which if another move in a

given angle, and pass through any point whatever of the

hyperbola, and if this point of section be joined with another

that may be found, the moving line shall cut, in a given

ratio, the triangles whose bases and altitudes are the co-

ordinates to a conic hyperbola, which may be found, at the

points where it meets the lines drawn from the point found.

Scholium. I proceed to give one or two examples, wherein

areas are cut in a given ratio, not by straight lines, but by
curves.

PROP. 13. Porism. Fig. 14. A conic hyperbola being

given, if through any of its innumerable intersections with

all the parabolas of any order, lying
between straight lines, of which one is

an asymptote, and the other may be

found ; an hyperbola of any order be

described, except the conic, from a given

origin in the given asymptote perpen-
K dicular to the axis of the parabolas, the

hyperbola thus described shall cut, in a given ratio, an area,

of the parabolas, which may be always found.

If from G, as origin, in A B, one of L M'S asymptotes, there

be described an hyperbola i c', of any order whatever, except
the first, and passing through M, a point where L M cuts any
of the parabolas A M, of any order whatever, drawn from A a

point to be found, and lying between A B and AC, an area A CD

may he always found (that is, for every case of A M and i c'),

which shall be constantly cut by I c', in the given ratio of M : x
;

that is, the area AMN:NMDC::M:N. I omit the analysis,
which leads to the following construction and composition.
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Canstr. Let m + n be the order of the parabolas, and

p + q that of the hyperbolas. Find
<j>
a 4th proportional to

m + n? q
_ p and m + 2/i

;
divide G B in A, so that A R : A G : :

2 : j9 -f. ;
then find v a 4th proportional to M + N, <j> + Pi an(i

q p, and y a 4th proportional to q, A G, and q p ; and,

lastly, 6 a 4th proportional to the parameter* of L M, TT and M.

7/1 I W M 1 ^
If, with a parameter equal to x Q of the

m + 2 M

rectangle r . A x, and between the asymptotes A B, A c, a conic

hyperbola be described, it shall cut the parabola in a point,

the co-ordinates to which contain an area that shall be cut by
ic' in the ratio of M : N.

Demonstration. Because AG is divided in R, so that AR :

A G : : q : p -+- <j>,
and that : m + n : : q p : m + 2n, A R is

AG X q

(m + 11) x (q p} ^ ,

equal to n + *-*
; and, because L M is a conic

TO -4- 2n

hyperbola, the rectangle M s . R s, or M s . A p, or A p .

(M r + A R) is equal to the parameter, or constant space,

therefore this parameter is equal to A p x
(
M P + p 4-

AG . q

(m + M) . (g
-

m + 2/t

Again, the space A c D is equal to r- of the rectangle

A c . c D, since A D is a parabola of the order m + n; but by
m -4- n f M + N \

construction A c . c D is equal to- ot -- . r . AN
;

m+2;i \ M )

therefore, A c D = Q---
. r . A N, of which 6 : parameterM

of L M : : TT : M, and TT : *i + ~s ::
<j> + p : q p ; therefore 6 =

Par.LM X (M + x) /(m+jOx (7^) \. ^o T
M (q p)

S
*

i. e., the constant rectangle or space to which A p . s M is equal.
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Par. L M x (M + N)AG : q p', consequently ACD = ^-r multi-
M (q p)

plied by ( -f-
- + p } and diminished by -

\ m + 2n ) M

q . A G . Par. L M x (M + N)
X A N x 5 therefore, transposing

- X
q p M X (q p)

Y. , M + N
+ p I is equal to A c D -4 X A N xm + 2w 1 M

q-p
; and par. L M will be equal to

/ M + N o . A G\ M
ACD H X AN X = X

\ M q-p J q -

^3~P
\m + 2n

M

M+N X (q P) X ACD + AN X AG

Now it was before demonstrated, that the parameter of LM

q . AG

is equal to AP x (MP+ O +
'

;. ).
This is

\ m + 2n J

M + N
therefore equal to

~~m~+n

M . N

X (qp) XACD + (7.ANXAG

x (q-

(vfl \ 77 i \( \ (1
-

7) t 7W"

multiplying both by ~k + P-> we ^ave "
r J m + 2n M + N

X (q p) X ACD + g-.AN x AG = APX(MPX (p +

. AQ\

M +

m + 2n

From these equals take q . AG x AN, and there remains

- X (q p) X ACD equal to AP x P M X (
-
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M
^

+ q . AG x (A P AN) ; or, dividing by q p,

/ m + n \ i' P \ qXACD = APX r- + -)XF*H X AG X
\m -f 2nJ \q p/ q p

m + n ,

(AP AN). Now, - x AP x PM is equal to the area
m -\- 2n

P
APM; therefore the area APM together with x AP . PM,

q -p
q n

and - XAG x (A P AN), or APM with - x AP . P M
q-p q-p
q q

X A G X (A N A P), Or A P M -j X A P . P M
q p q p

X rect. P T, is equal to - x A c D. Now i c' is an
q p M + N

P
hyperbola of the order p + q; therefore its area is - x

p q
P

rect. G H . M H. But q is greater than n therefore is

p-q
p X GH . HM

,

negative, and is the area M H K c : and the area
q-p

39

NTKC' is equal to - x GT X TN: therefore MNTH is equal
q-p

39

to (MHKC' NTKC'), or to x (GH . MH GT . TX).
q p

From these equals take the common rectangle A T, and there

P tf

remains the area M P N, equal to - - x A p x M P

q-p q-p
X PT; which was before demonstrated to be, together with

APM, equal to . A c D. Therefore M P N, together with
M + H

APM, that is, the area AMN, is equal to . ACD; con-
M+N

sequently AMN : ACD :: M:M + N; and (dividendo) AMN:
N M D c : : M : N. An area has therefore been found, which the

hyperbola ic' always cuts in a given ratio. Therefore, a

conic hyperbola being given, &c. Q. E. D.
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Scholium. This proposition points out, in a very striking

manner, the connexion between all parabolas and hyperbolas,
and their common connexion with the conic hyperbola. The
demonstration here given is much abridged ; and, to avoid

circumlocution, algebraic symbols, and even ideas, have been

introduced : but by attending to the several steps, any one

will easily perceive that it may be translated into geometrical

language, and conducted on purely geometrical principles, if

any numbers be substituted for m, n, p, and q; or if these

letters be made representatives of lines, and if conciseness be

less rigidly studied,

PROP. 14. Theorem. A common logarithmic being given ;

if from a given point, as origin, a parabola, or hyperbola, of

any order whatever be described, cutting in a given ratio a

given area of the logarithmic ;
the point where this curve

meets the logarithmic is always situated in a conic hyperbola,
which may be found.

Scholium. This proposition is, properly speaking, neither a

porism, a theorem, nor a problem. It is not a theorem, be-

cause something is left to be found, or, as Pappus expresses

it, there is a deficiency in the hypothesis : neither is it a

porisrn; for the theorem, from which the deficiency dis-

tinguishes it, is not local.

PROP. ',15. Porism. Fig. 15. A conic hyperbola being

given ;
two points may be found, from which if straight lines

IYtf.1.5.
^6 iRflected, to the innumerable intersec-

tions of the given curve with parabolas or

hyperbolas, of any given order whatever,
described between given straight lines ;

and if co-ordinaces be drawn to the inter-

sections of these curves with another conic hyperbola, which

may be found ; the lines inflected shall always cut off areas

that have to one another a given ratio, from the areas con-

tained by the co-ordinates. Let x and Y be the points found
;

H D the given hyperbola, F E the one to be found
;
A D c one of

the curves lying between A B and A G, intersecting H D and F E
;

join x D, YD; then the area AYD:xDCBina given ratio.
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PROP. 1C. Porism. Fig. 16. If between two straight lines

making a right angle, an infinite number of parabolas of any
order whatever be described ; a conic

parabola may be drawn, such, that if

tangents be drawn to it at its intersec-

tions with the given curves, these tan- - ^ /&
B

gents shall always cut, in a given

ratio, the areas contained by the given curves, the curve

found, and the axis of the given curves. Let AMN be one of

the given parabolas ;
D M o the parabola found, and T M its

tangent at M : ATM shall have to T M R a given ratio.

PROP. 1 7. Porism. A parabola of any order being given :

two straight lines may be found, between which if innu-

merable hyperbolas of any order be described ;
the areas cut

off by the hyperbolas and the given parabola at their inter-

sections, shall be divided, in a given ratio, by the tangents
to the given curve at the intersections ; and conversely, if

the hyperbolas be given, a parabola may be found, &c.

PROP. 18. Porism. A parabola of any order (m + ) being

given, another of an order (m -f- In) may be found, such, that

the rectangle under its ordinate and a given line, shall have

always a given ratio to the area (of the given curve) whose

abscissa bears to that of the curve found a given ratio.

Example. Let m = 1, n =
1, and let the given ratios be

those of equality ; the proposition is this : a conic parabola

being given, a semi-cubic one may be found, such, that the

rectangle under its ordinate and a given line, shall be always

equal to the area of the given conic parabola, at equal
abscissas.

Scholium. A similar general proposition may be enunciated

and exemplified, with respect to hyperbolas ;
and as these are

only cases of a proposition applying to all curves whatever, I

shall take this opportunity of introducing a very simple, and
I think perfectly conclusive demonstration, of the 28th

lemma, "
Principia," Book i.,

" that no oval can be squared."
It is well known, that the demonstration which Sir Isaac

Newton gives of this lemma is not a little intricate; and,
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whether from this difficulty, or from some real imperfection,
or from a very natural wish not to believe that the most

celebrated desideratum in geometry must for ever remain a

desideratum, certain it is, that many have been inclined to

call in question the conclusiveness of that proof.
Let AMC be any curve whatever (fig. 17), and D a given

line ; take in a & a part a p, having to A p a given ratio, and

erect a perpendicular pm, such, that

the rectangle pm . D shall have to

the area A p M a given ratio ;
it is

evident that m will describe a curve

a me, which can never cut the axis,

unless in a. Now because p m is pro-
APM

portional to
,
or to APM, pm will

always increase ad infinitum, if AMC is infinite ;
but if AMC

stops or returns into itself, that is, if it is an oval, p m is a

maximum at 6, the point of a b corresponding to B in A B
;

consequently the curve a me stops short, and is irrational.

Therefore pm, its ordinate, has not a finite relation to ap, its

abscissa ;
but ap has a given ratio to A p

; therefore p m has

not a finite relation to A p, and A p M has a given ratio to pm ;

therefore it has not a finite relation to A P, that is, A p M cannot

be found in finite terms of AP, or is incommensurate with

A P
;
therefore the curve A M B cannot be squared. Xow A M B

is any oval
;
therefore no oval can be squared. By an argu-

ment of precisely the same kind, it may be proved, that the

rectification, also, of every oval is impossible. Therefore,

&c. Q. E. D.

I shall subjoin three problems, that occurred during the

consideration of the foregoing propositions. The first is an

example of the application of the porisms to the solution of

problems. The second gives, besides, a new method of re-

solving one of the most celebrated ever proposed, Kepler's

problem ; and the last exhibits a curve before unknown, at

least to me, as possessing the singular property of a constant

tangent.



IN THE HIGHER GEOMETRY. 19

PROP. 19. Problem. Fig. 18. A common logarithmic being

given ; to describe a conic hyperbola, such, that if from its

intersection with the givencurve

a straight line be drawn to a

given point, it shall cut a given
area of the logarithmic in a

given ratio. The analysis leads

to this construction. Let BME
be the logarithmic, G its modula;
A B the ordinate at its origin A

;

let c be the given point ;
A x o B

the given area
;
M : x the given ratio : draw B Q parallel to A N

;

find D a 4th proportional to M, the rectangle BQ . OQ, and
M + x. From A D cut off a part A L, equal to A c together with

twice G
; at L make L H perpendicular to A D, and between the

asymptotes A L, H L, with a parameter, or constant rectangle,
twice (D + 2 . A B . G) describe a conic hyperbola ;

it is the

curve required.
PROP. 20. Problem. Fig. 19. To draw, through the focus

of a given ellipse, a straight line that shall cut the area of

the ellipse in a given ratio. Const.

Let A B be the transverse axis, E F

the semi-conjugate ; E, of conse-

quence, the centre
;

c and L the foci.

On A B describe a semicircle. Divide

the quadrant AK in o in the given
ratio of M to x, in which the area is

to be cut, and describe the cycloid
G M R, such, that the ordinate P M may be always a 4th propor-
tional to the arc o Q, the rectangle A B x 2 F E, and the line c L ;

this cycloid shall cut the ellipse in M, so that, if M c be joined,

the area ACM shall be to c M B : : M : x.

Demonstr. Let A p = x, P M =
y, A c =

c, A B = a, and 2 E F

= b
; then, by the nature of the cycloid G M R, P M : o Q :

M
2 F E x AB : c L, and Q o = A o AQ=by const. x

M -f- X

(A K A Q) ; also, CL = AB 2AC, since A c = L B. There-

c 2

Fxg-.i9 .
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fore, p M :
- x AK AQ :: ABX 2EF : A B 2 A c ;M + N

M '

or y :
- x arq 90 arc vers. sin. x : : a b : a 2 c ;M + N

therefore y (a 2 c) or + y (2 c a)
= a 6 x (

- -X arc
\M -\- N

. 90 arc v. s. x
J,

and by transposition ab x arc . v. s. x

+ y (2c a) = - -x arc 90. To these equals add 2yM -j- N

(x x) = 0, and multiply by 1
;
then will a b x arc v. s.

a b arc 90, ofwhi

ab x arc v. s. x

x + (2 x a) y 2 y (x c)
=- x a b arc 90, ofwhich

,, .,,
the 4th parts are also equal; therefore

(2 x a) y y . . ab M
---- - (x - c) = x- X arc 90. Now be-

4 2 4 M + N

IT 9 b* , _ b
cause A F B is an ellipse, y ^ x (a x x

),
ana y = -

a a

. f a b x arc v. s. x 2 x a
V (a x or); therefore----

-\
---- x

- V (ax x*} - | (x - c)
= x- X arc 90. Mul-

a 2 ^ 4 M + N

tiply both numerator and denominator of the first and last

, ,, & as 2 x a b
terms by a

;
then will - X -7- X arc v. s. x -\

-- X -
a 4 4 a

?/ & (Z^ M
*/ (ax a?) ?-(x c) = -X-rX -- X arc 90. Now

Z a 4 M -|- N

the differential of an arc whose versed sine is x and radius
,

2t

ft fjt
nn __

is equal to . ,
-

, which is also the differential of the
2 sj (ax or)

x b /a8

arc whose sine is V~ and radius unity; therefore- x I X arc
a a V 4
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y 2 T* -_, n \ &i A

sin V -
-j x J (ax X*}] ?-(x c) is equal to -

d 4 J a

X 7 X - X arc 90
; and, by the quadrature of the circle,

a8 x 2 x a
X arc SID., v -I : X J (a x Xs

), is the area
4 (2 4

whose abscissa is x ; consequently the semicircle's area is

X arc 90. But the areas of ellipses are to the corresponding
areas of the circles described on their transverse axes, as the

T / g

conjugate to the transverse
;
therefore - X ( X arc sin.

a \ 4

J | X V (fl ^ Xs
) ]

is the area whose abscissa is
a 4 '

J
x, of a semi-ellipse, whose axes are a and b ; and consequently
b a*
- X -7- X arc 90 is the area of the semi-ellipse. Therefore
a 4

I/ TVf

the area A p M ^ (x c) is equal to of A M F B. But
2 M -|- N

- (x c)
= ~ x (A p A c)

= ~ X P c, is the triangle

c P M
; consequently, A p M c p M, or ACM, is equal to

M -f- N

X Ay . B; and ACM : AMFB :: M : M + N; or (dividendo)
ACM : c M F B : : M : N

; and the area of the ellipse is cut in

a given ratio by the line drawn through the focus. Q. E. D.

Of this s-. luti it maybe remarked, that it does not assume
as a postulate the description of the cycloid ;

but gives a

simple construction of that curve, flowing from a curious

property, by which it is related to a given circle. This

cycloid, too, gives, by its intersection with the ellipse, the

point required, directly, and not by a subsequent construc-

tion, as Sir Isaac Newton's does. I was induced to give the

demonstration, from a conviction that it is a good instance of

the superiority of modern over ancient analysis ; and in itself

perhaps no inelegant specimen of algebraic demonstration.
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PROP. 21. Problem. Fig. 20. To find the curve whose

tangent is always of the same magnitude.

Analysis. Let MN be the curve

required, A B the given axis, s M a

tangent at any point M, and let a
? be the given magnitude ; then,

SM.g. = SP . q . + PM . q . = a2
;

77^ fi "i (1 3u

or
> #

2 + -^. '- = a*; and T-i =

; therefore, dx = x V 2
V
2

- In order to integrate
y y

dy
this equation, divide V a2 y* into its two parts,

7

y dy
and

;
to find the integral of the former,

a*dy

a*dy a*dy

therefore the integral of is a x hyp. log.

part>

~y y
,

V a8 - 2

s a2
y
2

; therefore the integral of the aggregate
-

7

aa _ i - a x h. 1.
a or
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yV a* w* 4- a x h. 1.
j

7 > a nnal equation to the
' a -*~ V * _

y*

curve as required. Q. E. i.

I shall throw together, in a few corollaries, the most re-

markable things that have occurred to me concerning this

curve.*

Corol. 1. The subtangent of this curve is V (
2

?/

2

)-

Cord. 2. In order to draw a tangent to it, from a given

point without it ; from this point as pole, with radiiis equal
to a, arid the curve's axis as directrix, describe a concoid of

Nicomedes: to its intersections with the given curve draw

straight lines from the given point; these will touch the

curve.

Corol. 3. This curve may be described, organically, by

drawing one end of a given flexible line or thread along a

straight line, while the other end is urged by a weight to-

wards the same straight line. It is consequently the curve of

traction to a straight line.

Corol. 4. In order to describe this curve from its equation ;

change the one given above, by transferring the axes of its

co-ordinates: it becomes (y being = I>'M and x = AP'), y =

QC

>J (a* x?) -4- a x h. 1. r ; which may be used
+ v (* x*)

with ease, by changing the hyberbolic into the tabxilar

logarithm. Thus, then, the common logarithmic has its sub-

tangent constant; the conic parabola, its subnormal; the

circle, its normal ; and the curve which I have described in

this proposition, its tangent.f

* There are other properties of this curve noted in Tract V. of this

volume.

t This Tract was printed in Phil. Trans, for 1798, part 2. The fluxional

notation lias alone been altered to the differential. The schol., p. 17, is

subject to doubt from the leminscata and other similar curves. See Note I.

at end of this volume. The subject of Porisms is treated of in Note II.
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II.

KEPLER'S PROBLEM.

KEPLER was led, after the discovery of the law which bears

his name, to the celebrated problem . which also bears it.

Having proved that the squares of the periodic times are as

the cubes of the distances, he wished to discover a method of

finding the true place of a planet at a given time one of the

most important and general problems in astronomy. By a

short and easy process of reasoning, he reduced this question
to the solution of a transcendental problem ;

to draw from a

given eccentric point, in the transverse of an ellipse (or the

diameter of a circle) a straight line, which shall cut the area

of the curve in a given ratio
; or, in the language of astro-

nomers,
" from the given mean anomaly, to find the anomaly

of the eccentric."

This most important problem is evidently transcendental ;

for, in the first place, the curve in question is not quadrable
in algebraic terms ; and, in the next place, admitting that it

were, the solution cannot be obtained in finite terms. As the

general question, for all trajectories, is of vast importance ;

and as the paper of Mr. Ivory, in the '

Edinburgh Trans-

actions,' contains a most successful application of the utmost

resources of algebraic skill to the most important case of it,

I shall premise a few remarks upon the problem, when
enunciated in different cases.

Let D2 be the given area of any curve, whch is the tra-

jectory of a planet or other body, or which is to be cut in the
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given ratio of m to n. Let x and y, as usual, be the abscissa

and ordinate, and c the eccentricity of the given point, through
which the radius vector is to be drawn, if the equation is taken

from the centre
; or, if it is taken from the vertex, let c be

the distance of the given point from that vertex, as the focal

distance in the case of the planets or comets (supposing the

comets to revolve round the sun in parabolas or eccentric

ellipses, having the sun in the focus), then, it may easily be

found, that the following differential equation 2
J* y d x + y

(c x) =
,
if resolved for the case of any given curve,m + n

gives a solution of the problem for that curve. Instead of

fydx, there must be substituted the general expression for

the area found by integration ; and y must then be expressed

through the whole equation in terms of x, or x in terms of y :

There will result an equation to x, or to y, which, when re-

solved, gives a solution of the problem.

Now, it is manifest, that one or both of two difficulties or

impossibilities may occur in this investigation of the value

of x. It may be impossible to exhibit f y d x in finite terms ;

and it may be impossible, even after finding "T y d x, to resolve

the equation that results from substituting the value of f y d x
in the general equation above given. Thus, if the given
curve is not quadrable, the equation can never be resolved ;

but, although the curve is quadrable, it does not follow that

the equatit .1 can be r~solved.

In the case of the circle and ellipse, both these difficulties

must of course occur The value of f y dx in the circle being
nd x

J dx V a x x3
,
and in the ellipse

-
/J ax a? (where

a and b are the transverse and conjugate), neither of which

differentials can be integrated in finite terms, the general

equations become indefinite or unintegrable.
The lemniscata (a curve of the fourth order) is quadrable in

algebraic terms : but the resolution of our general equation

cannot, in this case, be performed in finite terms
;

it leads to
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an equation of the sixth order, very complicated and difficult.*

But, if the given point is in the centre or punctum duplex of

the curve, the equation is a cubic one, wanting the second

term, and of course, easily resolved.

It often happens, too, that the problem may be resolved.

in genei'al, for a curve ; but that, in one particular part of

the axis, the solution becomes impossible. As this is rather

a singular circumstance, we shall attend a little more minutely
to it.

Let it be required to resolve the problem for the case of

comets, supposing those bodies to move in parobolic orbits.

The general equation for x becomes x*/x-\-3c\fx = r x
fj ft

mD2-
: a cubic wanting the second term, and easily resolved.

m + n

But, in certain cases, viz., when c, the distance of the given

point from the vertex, is less than 3 D x A*/-, -,

-
rs the

'V 4 a (m + nf
problem cannot be resolved; for, in this case, the cube of

one-third of the co-efficient of x is less than the square of half

the last term, which is the well-known irreducible case of

* The equation is of the following form, a being the lemniscata's semi-

diameter :

(l
-

a) a?
5

I

)-'J 12m
~ a } -

+ 3 a4 - 9c2 a2 (1 + 2 - 2

+ 6ca4
(l

- a)x

a cubocubic having all its terms (a-
6 + A a;

5 + B x* + C a;
3 + D x* + E x +

F =
0), in which A, C, and E vanish when the centre of motion (or of the

radii vectores) is in the punctum duplex, and then the equation to x is Xs -(-

B x* + Dx2 + F = 0, reducible to the cubic z3 + A z -f <f>
= 0. So that

(A
is less than [-?-)

the irreducible case of Cardan's rule.
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Cardan's rule. In this case, therefore, the problem of the

comet is reduced to infinite series, or to the arithmetic of

sines. If the given point is in the vertex of the curve, that

is, in the perihelion, the problem is always resolvable, being
reduced to the simple extraction of a cube root ; and this is

the case of comets which fall into the sun.

The resolvable case of the lemniscata is in the same circum-

stances, as may easily be seen by inspecting its equation.
In substituting for

J* y d x, its value in our general equation,
we may either give it in terms of x, that is, of the abscissa ;

or in terms of x y, that is, of the circumscribing rectangle ;

and neglect any further substitution. Thence arises a dif-

ferent and more elegant solution of the problem, by the inter-

section of curve lines ;
for we obtain an equation to a new

curve, which cuts the former in the point required. Thus,

by such a process in the case of the comet, we obtain the

6mD2

equation y = --
^
-- - to a conic hyperbola. For

(m + n) (x + 3 c)

brevity's sake, put- = d>
2
, the equation becomes y =

m -f- n

3 <i>
2-

: Therefore, taking a point on the axis at the distance

of 3 c beyond the given vertex (or perihelion), erect a per-

pendicular, and between the two lines, as asymptotes,
describe the hyperbola y x = 3 $

2
,
it will cut the given tra-

jectory in the point required: If the given point is in the

perihelion, then the perpendicular must be raised at the

vertex of the parabola.

The solution here given by a locus, is evidently general,
and has no impossible case. But there are some instances

in which such solutions, although perhaps the only practi-

cable ones, are nevertheless attended with an impossible case.

Let us take that of the lemniscata. Instead of the irresoluble

equation of the sixth order, we obtain, by the last-mentioned

(3 <f
- 2 a2

) x
method, a cubic equation ot this form, y = --_

/ -
;

3 c x x* 2 a?
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to a curve of the third order, called, if I rightly remember,

by Sir Isaac Newton, in his " Enumeratio Linearum Tertii

Ordinis" a parabolism of the hyperbola. Now, although this is

extremely simple, in comparison of the complex equation

given by the direct method first mentioned, it has manifestly

/2
one impossible case, viz., when $ is equal to ax ^ / -, or

when the given area is to two-thirds of the square of the

diameter of the curve, as m -f- n to m : In this case, no para-
bolism of the hyperbola can be drawn, which will intersect

the given curve in the point required ; and this is an impos-

sibility affecting every possible value of c
; that is, every

position of the given point, in this particular magnitude of

the given area. But this circumstance makes no difference

on the resolution of the problem by the direct method. Thus,
when the eccentricity vanishes, or the given point is in the

punctum duplex, the solution is derived from a cubic equation

/2
equally resolvable when < a A / - as when <b is either <V 3

/2
or >
The method of resolving this interesting problem by loci,

is the source of an immense variety of the most curious pro-

positions concerning the properties and mutual relations of

curve lines ; and, more especially, leads us to the discovery
of various porisms, which we otherwise should never have

found out. In order to generalize and extend these, it is

necessary that, instead of considering merely the case of

Kepler's problem, where an area is cut by a straight line,

we should consider also the far more difficult problem of

cutting the area of one curve by another curve, in a given
ratio ;

and then the problem may be extended to the section,

not of one curvilinear area, but of an infinite number of areas,

contained between two given lines, or of the areas of all the

curves of a particular kind which can be drawn between

those given lines. It is easy to perceive, that the same
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resolution before adverted to, will not apply to those more

complicated problems. But the reader will find a variety

of examples of this species of proposition in the ' Philoso-

phical Transactions of the Eoyal Society of London for 1798,'

which were investigated chiefly in the manner above de-

scribed.* It is evident that the application of such problems
to physics does not proceed so far ; for we have never yet
discovered an example of a central force acting in a curvi-

linear direction.

The solutions now described, of Kepler's problem, and of

severalj problems of a more general sort, are of a theoretical

nature. They exhibit the mode of expressing by curve lines,

or imaginary relations of known quantities, the relation

required of the quantities given ; they rather vary the diffi-

culty, or simplify the relation, than remove the impediments
to practical measurement. If it be required to exhibit the

anomaly of the eccentric, we may indeed adopt the solution

given by Sir Isaac Newton (Principia, lib. i. prop. 31, and

Schol.), or that hinted at by Kepler himself. The Newtonian

solution proceeds upon the description of a cycloid, and an

easy construction, by which the point required is found in

the intersection of a straight line with the given trajectory.

In the tract referred to, a solution is given more directly, by
the intersection of a species of a cycloid of easy description,

with the given curves, without any subsequent construction.

But these solutions, though more pleasing and beautiful in

theory, are useless, when it is required to exhibit a value

of the abscissa corresponding to the anomaly of the eccentric,

or its supplement, in such a manner that a comparison may
be made of this line with some known measure of length. It

becomes necessary, in this case, to find a numerical value of

the quantity in question. Now, this can only be done by a

series ;
and the two great objects in finding such a series are,

first, to give one which may be regulated by a simple law ;

and, secondly, to give one which may converge rapidly : so

* The Paper is given in this volume : it is the First Tract.
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that its denominators rapidly increasing, the quantities may
soon become so small, as not to deserve attention in our com-

putations.

The approximation given by Mr. Ivory in his paper in the
'

Edinburgh Transactions,'* deserves the first place among
those of which we are in possession, whether we consider its

simplicity, universality, or accuracy. The series is of easy

management, applies to the most eccentric orbits, as well as

to those approaching nearer to the circle, and to all degrees
of eccentricity in the given point, the centre of forces. It

has the benefit, too, of a most rapid convergence.
He first gives a very simple and elegant geometrical method

of approximation, by an application of the rectangular case

of the general problem de inclinationibus of the ancient geo-
meters. But as this is by no means satisfactory to the

practical calculator (for reasons before assigned), he proceeds
next to the algebraic solution.

He begins with investigating the series for the eccentric

anomaly when the mean anomaly is a right angle. It con-

verges quickly, and the terms err alternately, by defect and

excess, the difference growing continually less and less.

He then proceeds to the investigation of a similar series,

found in the same manner, for the other cases of the mean

anomaly. I should in vain attempt to give the reader a

more minute idea of this solution, without a detail as full

as the paper now before us, and shall only note an erratum

that has crept into the twelfth article. After putting tan. A
sin-ft . A

= e x cos. m x sec. 45, he infers that sin. = tan.

2

X 45; it should be sin. ~ = tan. x sin. 45.
2i 2i

He next gives two examples of the application of his

method to geometric problems, concerning the circle. The

one, is to bisect a given semicircular area by a chord from a

* Vol. v. p. 111. 1802.
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given point in the circumference. The results of the series

which he gives for the eccentric anomaly are as follows :

Eccent. anom. = 47 4' (first value, and less than the truth),

,,
= 47 40' 14" (second value, and greater than

the truth).

,,
= 47 39' 12" (third value, and less than the

truth).

From this example, may be perceived the excellence of the

method
; for, whereas the first two terms differ by nearly 36',

the second and third differ only by 1' 2" ; or, in other words,

while, by the two first trials, we come to a space of above

half a degree, in some part of which the point required is to

be found
; by the second and third trials, we obtain a space

of about the sixtieth part of a degree, in some" part of which

lies the result. By the third term of the series, then, we
obtain a solution not more than 31" distant from the truth,

and this in circumstances the least favourable.

The other example is a solution of the problem
" to draw

from a point in the circumference two chords which shall

trisect the circular area." Here the

Eccent. anom. = 30 33' (first value less).

= 304 4' 11" (second greater).

Euler's solution (Analysis, Inf. XI. 22) differs litte more
than 30" from this solution, given by Mr. Ivory's second term.

This specimen will sufficiently show the superior excel-

lency of Mr. Ivory's method. Former analysts have only
resolved the case within the eccentricity is small : his solu

tion extends to comets as well as planets. For the planets,
his rules apply with peculiar accuracy and ease ;

and his series

converges with extreme rapidity ; so much so, that we may
consider the approximation of one term sufficient for practice.

He has given a table of the values of the errors (or differences)
for the different planets computed in this way. He adds an

exemplification for the famous comet of 1682, supposed to be

the same which reappeared in 1759. His first approximation
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for the anomaly of the eccentric, reckoned from the aphelion

(16 days 4 hours and 44' from its perihelial passage), ^
is

173 51', and too small. The second approximation is

173 54' 36", exceeding the real eccentric anomaly from the

perihelion by only a few seconds.

The application of the author's last correction, deduced

from the comparison of the parabolic and elliptic trajectories,

to the finding of the heliocentric place, and also the helio-

centric distance (or radius vector of the cometic orbit), con-

cludes this paper. I have been the more gratified by a

perusal of this last branch of Mr. Ivory's inquiry, because

the speculations had formerly occurred to me in a similar

form. The introduction of the parabola, which admits of

quadrature, and of definite solution, so far as regards Kepler's

problem, has always appeared to me the surest method of

rectifying the computations of the heliocentric places and

distances of comets, or of their perihelial eccentric anomalies

and radii vectores, during the small perihelial part of their

trajectories which we are permitted to contemplate. In that

part, the eccentric ellipse and the parabola nearly coincide ;

and, after all, we are not perfectly certain that those singular
bodies do not move in orbits strictly parabolic.*

* This Paper appeared in the Second Number of the 'Edinburgh
Review,' January, 1803.



III.

DYNAMICAL PRINCIPLE. CALCULUS OF PARTIAL

DIFFERENCES. PROBLEM OF THREE BODIES.

THE pleasures of a purely scientific life have often been

described ; and tbey have been celebrated with veiy heartfelt

envy by those whose vocations precluded or interrupted such

enjoyments, as well as commended by those whose more

fortunate lot gave them the experience of what they praised ;

but it may be doubted, if such representations can ever apply
to any pursuits so justly as to the study of the mathematics.

In other branches of science the student is dependent upon
many circumstances over which he has little control. He
must often rely on the reports of others for his facts

;
he must

frequently commit to their agency much of his inquiries ;
his

research may lead him to depend upon climate, or weather,

or the qualities of matter, which he must take as he finds it
;

where all other things are auspicious, he may be without the

means of making experiments, of placing nature in circum-

stances by which he would extort her secrets
;
add to all this

the necessarily imperfect nature of inductive evidence, which

always leaves it doubtful if one generalisation of facts shall

not be afterwards superseded by another, as exceptions arise

to the rule first discovered. But the geometrician relies

entirely on himself; he is absolute master of his materials;

his whole investigations are conducted at his own good

pleasure, and under his own absolute and undivided control.

He seeks the aid of no assistant, requires the use of no

apparatus, hardly wants any books ; and with the fullest

reliance on the perfect instruments of his operations, and on

the altogether certain nature of his resxilts, he is quite
assured that the truths which he has found out, though they

D
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may lay the foundation of further discovery, can never by
possibility be disproved, nor his reasonings upon them

shaken, by all the progress that the science can make to the

very end of time.

The life of the Geometrician, then, may well be supposed
an uninterrupted calm

;
and the gratification which he de-

rives from his researches is of a pure and also of a lively

kind, whether he contemplates the truths discovered by
others, with the demonstrative evidence on which they rest,

or carries the science further, and himself adds to the number
of the interesting truths before known. He may be often

stopped in his researches by the difficulties that beset his

path ; he may be frustrated in his attempts to discover

relations depending on complicated data which he cannot

unravel or reconcile ;
but his study is wholly independent of

accident
;
his reliance is on his own powers ; doubt and con-

testation and uncertainty he never can know
;
a stranger to

all controversy, above all mystery, he possesses his mind in

unruffled peace ; bound by no authority, regardless of all con-

sequences as of all opposition, he is entire master of his con-

clusions as of his operations ;
and feels even perfectly

indifferent to the acceptance or rejection of his doctrines,

because he confidently looks forward to their universal and

immediate admission the moment they are comprehended.
It is to be further borne in mind, that from the labours of

the Geometrician are derived the most important assistance to

the researches of other philosophers, and to the perfection of the

most iiseful arts. This consideration resolves itself into two :

one is the pleasure of contemplation, and consequently is an

addition to the gratificatien of exactly the same kind, derived

immediately from the contemplation of pure mathematical

truth
; much, indeed, of the mixed mathematics is also purely

mathematical investigation, built upon premises derived from

induction. The other gratification is of a wholly different

description ;
it is connected merely with the promotion of

arts subservient to the ordinary enjoyments of life. This is

nly a secondary and mixed use of science to the philosopher ;
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the main pleasure bestowed by it is the gratification which, by
a law of our nature, we derive from contemplating scientific

truth, when indulging in the general views which it gives,

marking the unexpected relations of things seemingly un-

connected, tracing the resemblance, perhaps identity, of

things the most unlike, noting the diversity of those appa-

rently similar. This is the true and primary object of

scientific investigation. This it is which gives the pleasure
of science to the mind. The secular benefits, so to speak, the

practical uses derived from it, are wholly independent of this,

and are only an incidental, adventitious, secondary advantage.

(See Introductory Eemarks to this volume.)
It is an illustration of the happiness derived from mathe-

matical studies, that they possess two qualities in the highest

degree, not perhaps unconnected with one another. They
occupy the attention, entirely abstracting it from all other con-

siderations ; and they produce a calm agreeable temper of mind.

Their abstracting and absorbing power is very remarkable,
and is known to all geometricians. Every one has found

how much more swiftly time passes when spent in such

investigations, than in any other occupation either of the

senses or even of the mind. Sir Isaac Newton is related to

have very frequently forgotten the season of meals, and left

his food awaiting for hours his arrival from his study. A
story is told of his being entirely shut up and disappearing,
as it were eclipsed, and then shining forth grasping the great
torch which he carried through the study of the heavens ; he

had invented the Fluxional Calculus. I know not if there be

any foundation for the anecdote ; but that he continually
remained engaged with his researches through the night is

certain, and that he then took no keep of time is undeniable.

It does not require the same depth of understanding to expe-
rience the effects of such pursuits in producing complete
abstraction ; every geometrician is aware of them in his own
case. The sun goes down unperceived, and the night wanes

afterwards till he again rises upon our labours.

They who have experienced an incurable wound in some
D 2
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prodigious mental affliction, have confessed, that nothing but

mathematical researches could withdraw their attention from

iheir situation. Instances are well known of a habit of

drinking being cured by the like means
;
an inveterate taste

for play has, within my own observation, been found to give

way before the revival of an early love of analytical studies.

This is possibly a cause of the other tendency which has

been mentioned, the calming of the mind. Simson (the restorer

of the Greek geometry) tells us how he would fly from the con-

flicts of metaphysical and theological science, to that of neces-

sary truth, and how in those calm, retreats he ever " found

himself refreshed with rest." Greater tranquillity is possessed

by none than by geometricians. Even under severe privations
this is observed. The greatest of them all, certainly the

greatest after Newton, was an example. Euler lost his sight
after a long expectation of this calamity, which he bore with

perfectly equal mind
; both in the dreadful prospect and the

actual bereavement, his temper continued as cheerful as

before ; his mind, fertile in resources of every kind, supplied
the want of sight by ingenious mechanical devices, and by a

memory more powerful even than before.* He furnishes an

* My late learned and esteemed friend, Mr. Gough, of Kendal, was

another example of studies being pursued under the same severe depriva-
tion but he had never known the advantages of sight, having lost his

eyes when an infant, and never had any distinct recollection of light. He
was an accomplished mathematician of the old school, and what is more

singular, a most skilful botanist. His prodigious memory resembled

Euler's, and the exquisite acuteness of his smell and touch supplied in a

great measure the want of sight. He would describe surfaces as covered

with undulations which to others appeared smooth and even polished.

His ready sagacity in naming any plant submitted to his examination was

truly wonderful. I had not only the pleasure of his acquaintance, but I

have many particulars respecting his rare endowments, from another

eminent mathematician, who unites the learning of the older with that of

the modern school, my learned friend and neighbour, Mr. Slee, of Tirrel.

A detailed account of Mr. Gough's case, by Mr. Slee and Professor Whewell

(a pupil of his), would be most curious and instructive. Euler's memory
was such, that he could repeat the vEnoid, noting the words that begin and

end each page. Mr. Gough also was an excellent classical scholar.
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instance to another purpose. Thoughtless and superficial

observers have charged this science with a tendency to render

the feelings obtuse. Any pursuit of a very engrossing or

absorbing kind may produce this temporary effect
; and it has

been supposed that men occasionally abstracted from other

contemplations, are particularly dull of temper. But no one

ever had more warm or kindly feelings than Euler, whose

chief delight was in the cheerful society of his grandchildren,
to his last hour

;
and whose chief relaxation from his severer

studies was found in teaching these little ones.

It has been alleged, and certainly has been somewhat found

by experience to be true, that the habit of contemplating

necessary truth, and the familiarity with the demonstrative

evidence on which it rests, has a tendency to unfit the mind
for accurately weighing the inferior kind of proof which we
can alone obtain in the other sciences. Once finding that

the certainty to which the geometrician is accustomed cannot

be attained, he is apt either to reject all testimony, or to become
credulous by confounding different degrees of evidence, re-

garding them all as nearly equal from their immeasurable

inferiority to his own species of proof much as great sove-

reigns confound together various ranks of common persons,
on whom they look down as all belonging to a different

species from their own. In this observation there is, no

doubt, much of truth
;
but we must be careful not to extend its

scope too far, so as that it should admit of no exceptions.
D'Alembert affords one of the most remarkable of these

;
as

far as physical science went, Laplace afforded another ; in

several other branches he was, perhaps, no exception to the

rule.

Whatever of peace and comfort he enjoyed, D'Alembert

owed to geometry, and confessed his obligations. Whatever
he suffered from vexation of any sort, he could fairly charge

upon the temporary interruption of his mathematical pursuits.

Both portions of his history, therefore, enforce the doctrine

which I have laid down.

His ' Traite de Dynamique
'

at once placed him in the
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highest rank of geometricians. The theory is deduced with

perfect precision, and with as great clearness and simplicity
as the subject allows, from a principle which he first laid

down and explained, though it be deducible from the equality
of action and re-action, a physical rather than a mathematical

truth, and derived from universal induction, not from abstract

reasoning a priori.

The Principle is this
(' Dyn.' part 2, chap. i.).

If there

are several bodies acting on each other, as by being connected

through inflexible rods, or by mutual attraction, or in any
other way that may be conceived

; suppose an external force

is impressed upon those bodies, they will move not in the

direction of that force as they would were they all uncon-

nected and free, but in another direction
;

then the force

acting on the bodies may be decomposed into two, one acting
in the direction which they actually take, or moving the

bodies without at all interfering with their mutual action, the

other in such direction as that the forces destroy each other

and are wholly extinguished ; being such, that if none other

had been impressed upon the system, it would have remained

at rest.* This principle reduces all the problems of dynamics
to- statical problems, and is of great fertility, as well as of

admirable service in both assisting our investigations and

simplifying them. It is, indeed, deducible from the simplest

principles, and especially from the equality of action and re-

action ;
but though any one might naturally enough have

thus hit upon it, how vast a distance lies between the mere

principle and its application to such problems, for example, as

to find the locus or velocity of a body sliding or moving

*
Lagrange's statement of the principle is the most concise, but I ques-

tion if it is the clearest, of all that have been given.
" If there be im-

pressed upon several bodies, motions which they are compelled to change

by their mutual actions, we may regard these motions as composed of the

motions which the bodies will actually have, and of other motions which

are destroyed ; from whence it follows, that the bodies, if animated by
those motions only, must be in equilibrio." (' M6c. An.' vol. i. p. 239,

Ed. 1811.) It is not easy to give a general statement of the principle,

and I am by no means wedded to the one given in the text. (See Note in.)



CALCULUS OF PAETIAL DIFFERENCES. 39

freely along a revolving rod, at the extremity of which, rod a

fixed body moves round in a given plane a locus which the

calculus founded on the Principle shows to be in certain cases

the logarithmic spiral.*

No one can doubt that -the Principle of D'Alembert was in-

volved in many of the solutions of dynamical problems before

given. But then each solution rested on its own grounds, and
these varied with the different cases

;
their demonstrations

were not traced to and connected with one fundamental prin-

ciple. He alone and first established this connection, and ex-

tended the Principle over the whole field of dynamical inquiry.
The ' Traite

'

contains, further (part 1, chap, ii.),
a new

demonstration of the parallelogram of forces. The reason of

the author's preference of this over the common demonstration

is not at all satisfactory. His proof consists in supposing the

body to move on a plane sliding in two grooves parallel to

one side of the parallelogram, and at the same time carried

along in the direction of the other side. This is not one

whit more strict and rigorous than the ordinary supposition
of the body moving along a ruler parallel to one side, while

the ruler at the same time moves along a line parallel to the

other side. Indeed I should rather prefer this demonstration

to D'Alembert's.

The ' Traite de Dynamique
'

appeared in 1743 ;
and in the

following year its fundamental principle was applied by the

author to the important and difficult subject of the equili-

brium and motion of fluids, the portion of the '

Principia
'

which its illustrious author had left in the least perfect state.

Pressed by the difficulty of the inquiry, which is one of the

most important in Hydrodynamics, the motion of a fluid through
an orifice in a given vessel, and despairing of the data afford-

ydxz
* The general equation is d-y - -

(-
-

;
---.. in which y is

a2 A a2 + D y
2

the distance of the moving body D from the fixed point, or the length of

the rod, at the end of which is the body A, describing an arch of a circle,

and x that arch. The velocity of D is likewise found in terms of the

same quantity.
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ing the means of a strict and direct solution, Newton had

recourse to assumptions marked by the most refined ingenuity,
but admitted to be gratuitous and to be unauthorised by the

facts. The celebrated Cataract is of this description. He
supposes (' Principia,' lib. ii. prop* 36), that a body of ice

shaped like the vessel, comes in contact with the upper
surface of the liquid and melts immediately on touching it, so

as to keep the level of the fluid always the same, and that a

cataract is thus formed, of which the upper surface is that of

the fluid, and the lower that of the orifice. His first investi-

gation assumed the issuing column to be cylindrical, but he
afterwards found that the lateral pressure and motion gave it

the form of a truncated cone which he called a vein
;
and his

correction of the former result was a matter of much con-

troversy among mathematicians. Daniel Bernoulli at first

maintained it to be erroneous against Riccati and others ; but

he afterwards acquiesced in Newton's view. He, however,

always resisted the hypothesis of the cataract, as indeed did

most other inquirers. Newton's assumptions, in other parts
of this very difficult inquiry, have been deemed liable to the

same objections ; as where he leaves the purely speculative

hypothesis of perfectly uncompressed and distinct particles,

and treats of the interior and minute portions of fluids, as

similar to those which we know. (Lib. ii. prop. 37, 38, 39.)
It must, however, be admitted, as D'Alembert has observed

(' Encyc.' v. 889, and ' Resistance des Fluides,' xvii.) that
" those who attacked the Newtonian theory on this subject
had no greater success than its illustrious author

; some

having, after resorting to hypotheses which the experiments
refuted, abandoned their doctrines as equally unsatisfactory,

and others confessing their systems groundless, and substi-

uting calculations for principles."

Such was the state of the science when D'Alembert happily

applied his Dynamical principle to the pressure and motion of

fluids, and found that it served excellently for a guide, both

in regard to non-elastic and elastic fluids. In fact, the par-

ticles of these being related to one another by a cohesion
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which prevents them not from obeying an external impulse, it

is manifest that the principle may be applied. Thus, if a

fluid contained in a vessel of any shape be conceived divided

into layers perpendicular to the direction of its motion, and if

v represent generally the velocity of the layers of fluid at any
instant, and d v the small increment of that velocity, which

may be either positive or negative, and will be different for

the different layers, v + dv will express the velocity of each

layer as it takes the place of that immediately below it
;
then

if a velocity + dv alone were communicated to each layer, the

fluid would remain at rest.
(' Traite de Fluides,' liv. ii.

chap. 1, theor. 2). Thus the velocity of each part of the

layer being taken in the vertical direction is the same, and

this velocity being that of the whole layer itself, must be

inversely as its horizontal section, in order that its motion

may not interfere with that of the other layers, and may not

disturb the equilibrium. This, then, is precisely the general

dynamical principle already explained applied to the motion

of fluids, and it is impossible to deny that the author is thus

enabled to demonstrate directly many propositions which had

never before been satisfactorily investigated. It is equally
undeniable that much remained after all his efforts incapable
of a complete solution, partly owing to the inherent difficul-

ties of the subject from our ignorance of the internal structure

and motions of fluids, and partly owing to the imperfect state

in which all our progress in analytical science still has left us,

the differential equations to which our inquiries lead having,
in very many cases, been found to resist all the resources of

the integral calculus.

This remark applies with still greater force to his next

work. In 1752, he published his Essay on a new theoiy of

the Eesistance of Fluids. The great merit of this admirable

work is that it makes no assumption, save one to which none

can object, because it is involved in every view which can

well be taken of the nature of a fluid
; namely, that it is a

body composed of very minute particles, separate from each

other, and capable of free motions in all directions. He



42 DYNAMICAL PBINCIPLE.

applies the general dynamical principle to the consideration

of resistance in all its views and relations, and he applies the

calculus to the solution of the various problems with infinite

skill. It is in this work that he makes the most use of that

refinement in the integral calculus of which we shall pre-

sently have occasion to speak more at large, as having first

been applied by D'Alembert to physical investigation, if it

was not his own invention. But the interval between 1744

and 1752 was not passed without other important contribu-

tions to physical and analytical science. In 1746, he gave his

Memoir on the general theory of Winds, which was crowned

by the Royal Academy of Berlin. The foundation of this

able and interesting inquiry is the influence of the sun and
moon upon the atmosphere, the aerial tides, as it were, which
the gravitation towards these bodies produces; for he dis-

misses all other causes of aerial currents as too little depend-

ing upon any definite operation, or too much depending upon
various circumstances that furnish no precise data, to be

capable of analytical investigation. The Memoir consists of

three parts. In the first he calculates the oscillations caused

by the two heavenly bodies supposing them at rest, or the

earth at rest in respect of them. In the second, he investigates
their operation on the supposition of their motion. In the

third, he endeavours to trace the effects produced upon the

oscillations by terrestrial objects. The paper is closed with

ramarks upon the effects of temperature. The whole inquiry
is conducted with reference to the general dynamical prin-

ciple which he had so happily applied to the equilibrium and

pressure of fluids, in his first work upon that difficult subject.
In treating of Hydrodynamics, D'Alembert had found the

ordinary calculus insufficient, and was under the necessity of

making an important addition to its processes and its powers,

already so much extended by the great improvements which

Euler had introduced. This was rendered still more neces-

sary when, in 1746, he came to treat of the winds, and in the

following year when he handled the very difficult subject of

the vibration of cords, hitherto most imperfectly investigated
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by mathematicians.* In all these inquiries the differential

equations which resulted from a geometrical examination of

the conditions of any problem, proved to be of so difficult

integration that they appeared to set at defiance the utmost

resources of the calculus. When a close and rigorous inspec-
tion showed no daylight, when experiments of substitution

and transformation failed, the only resource which seemed to

remain was finding factors which might, by multiplying
each side of the equation, complete the differential, and
so make it integrable either entirely, or by circular arches,

or by logarithms, or by series. D'Alembert, in all pro-

bability, drew his new method of treating the subject from

the consideration that, in the process of differentiation we

successively assume one quantity only to be variable and
the rest constant, and we differentiate with reference to that

one variable
;
so that x dy + y d x is the differential of x y,

a rectangle, and x y d z -\- xzdy + yzdx the differential of

x y z, a parallelepiped, and so of second differences, d? z being

(when z = xm )
= (m

2

in) xm ~ s dx* + m xm ~ l
d'

2
x. He pro-

bably conceived from hence that by reversing the operation
and partially integrating, that is, integrating as if one only
of the variables were such, and the others were constant, he

might succeed in going a certain length, and then discover

the residue by supposing an unknown function of the variable

which had been assumed constant, to be added, and after-

*
Taylor (' Methodus Incrementorum

')
had solved the problem of the

vibrating cord's movement, but upon three assumptions that it departs

very little from the axis or from a straight line, that all its points come to

the axis at the same moment, and that it is of a uniform thickness in ite

whole length. D'Alembert's solution only requires the last and the first

supposition, rejecting the second. The first, indeed, is near the truth,

and it is absolutely necessary to render the problem soluble at all. The
third has been rejected by both Euler and Daniel Bernoulli, in several

cases investigated by them. D'Alembert's solution led to an equation of

partial differences of this form (-^-f )
= o2

(-=-?) in which t is the time
\dt2 / \dx2

/

of the vibration, x and y the co-ordinates of the curve formed by the

vibration.



44 DYNAMICAL PRINCIPLE.

wards ascertaining that function by attending to the other

conditions of the question. This method is called that of

partial differences. Lacroix justly observes that it would be

more correct to say partial differentials ; and a necessary part of

it consisted of the equations of conditions, which other geometri-
cians unfolded more fully than the inventor of the calculus

himself; that is to say, statements of the relation which must
subsist between the variables or rather the differentials of

these variables, in order that there may be a possibility of

finding the integral by the method of partial differences. It

appears that Fontaine, a geometrician of the greatest genius,

gave the earliest intimation on this important subject ;
for

the function of one or both variables which is multiplied by
d x being called M, and that function of one or both which is

multiplied by d y being called N, the canon or criterion of

integrability is that

dy dx
and we certainly find this clearly given in a paper of Fon-
taine's read before the Academy, 19th November, 1738. It is

the third theorem of that paper. Clairaut laid down the

same rule in a Memoir which he presented in 1739 ; but he
admits in that Memoir his having seen Fontaine's paper. He
expounds the subject more largely in his far fuller and far

abler paper of 1740 ; and there he says that Fontaine showed
his theorem to the Academy the day this second paper of

Clairaut's was read erroneously, for Fontaine had shown it

in November, 1738 ; and had said that it was then new at

Paris, and was sent from thence to Euler and Bernoulli. The

probability is, that Clairaut had discovered it independent of

Fontaine, as Euler certainly had done
;

and both of them
handled it much more successfully than Fontaine. D'Alem-

bert, in his demonstrations, 1769, of the theorems on the

integral calculus, given by him without any demonstration in

the volume for 1767, and in the scholium to the twenty-first

theorem, affirms distinctly that he had communicated to

Clairaut a portion of the demonstration, forming a corollary
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to the proposition, and from which he says that Clairaut

derived his equation of condition to differentials involving
three variables. It is possible ; but as this never was men-

tioned in Clairaut's lifetime, although there existed a sharp

controversy between these two great men on other matters,

and especially as the equation of conditions respecting two

variables might very easily have led to the train of reasoning

by which this extension of the criterion was found ont, the

probability is, that Clairaut's discovery was in all respects his

own.

The extreme importance of this criterion to the method of

partial differences, only invented, or at least applied, some

years later, is obvious. Take a simple case in a differential

equation of the first order,

dz =. (2axy y^dx + (ax* 3xy*)dy,
where M = 2axy y

a
,
N = ax9

3xy*.

For the criterion -^- = 2 ax 3 if.

dy

dx

which shows that the equation Mdor + Ndyis a complete

differential, and may be integrated. Thus integrate (a x
z 3 x ?/

2

)

d y ,
as if x were constant, and add X (a function of x, or a

constant), as necessary to complete the integral, and we

have ax*y xy
3 + X = Z

;

now differentiate, supposing y constant, and we have

dz dX- = (2a^-,3 ) +_
(because of the criterion)

= laxy y
3

,

J -*T

consequently
- =

o, and X = C, a constant.

Accordingly, z = ax^y - xy
3 + C ;
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and so it is, for differentiating in the ordinary way, x and y

being both variable, we have

dz = 2axydx + ax*dy 3xy*dy y
3 dx

= (2axy y
a

~)dx + (ax* 3xy^dy ;

which was the equation given to be integrated.

To take another instance in which -
,
the differential co-

dx
efficient of the quantity added is not = o or X constant. Let

dz = y* dx -\- 3 x* dx + 2 xy dy,

in which, by inspection, the solution is easy
z = xy* -f- x

a
-|- C.

Here M = y + 3 x\ N = 2 xy,

and = 2y = -
.

ay dx
So z = xy* + X, and differentiating with respect to x,

dz c?X
= f + = w2 + 3a;

8
.

^;r rfa;

Hence X = x3 + C,

and 2 = a??/
8 + x3 + C,

the integral of the equation proposed.
It must, however, be observed of the criterion, that an equa-

tion may be integrable which does not answer the condition

dy dx
'

It may be possible to separate the variables and obtain

X d x = Y d y, as by transformation ;
or to find a factor,

which, multiplying the equation, shall render it integrable,

by bringing it within that condition. The latter process is

the most hopeful ; and it is generally affirmed that such a

factor, F, may always be found for every equation of the first

order involving only two variables. However, this is onl}'

true in theory : we cannot resolve the general equation by
any such means ; for that gives us

F.f ^W.1I_M^,\dy dx J dx dy
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an expression as impossible to disentangle, it may safely be

asserted, as any for the resolution of which its aid might be

wanted. It is only in a few instances of the values of these

functions (M and N) that we can succeed in finding F. It is

quite unaccountable * that Clairaut should, in reference to

his equation, which is substantially the same with the above,

describe it as " d'une grande utilite, pour trouver
p.

"
(that

isF).
It is here to be observed, that not only Fontaine had,

apparently, first of all the geometricians, given the criterion

of integrability, but he had also given the notation which

was afterwards adopted for the calculus of Partial Differences.

being a function of two variables, x and y, he makes -
d X

stand for the differential coefficient of y when x only varies,

and - for the same differential coefficient when y only
dy

varies. Hence he takes ~ x dx, not, as in the ordinarydx
notation it would be, =

city,
the complete differential of

(f>
;

whereas that differential would, in this solution, be

dq> dtp-1- x dx + -/- X dy.dx dy

Thus, if = xy*, its complete dif.
d(j>

= 2yxdy + y*dx, but

df = y .

dx

It is quite clear, therefore, that Fontaine gave the notation of

this calculus.

But D'Alembert had been anticipated in the method itself,

as well as in the notation or algorithm ; for Euler, in a paper
entitled

'

Investigatio functionum ex data differentialium con-

ditione,' dated 1734,t integrated an equation of partial differ-

* Mem. de 1'Acad. 1740, p. 299. I find my surprise shared by a very

learned mathematician to whom I had mentioned it, Prof. Heaviside.

f Petersburg!! Memoirs,' vol. vii. That Euler, in the Memoir pub-
lished in 1734, solved an equation of Partial Differences is quite incon-
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ences
;
and he had afterwards forgotten his own new calculus,

so entirely as to believe that it was first applied by D'Aleru-

bert in 1744. So great were the intellectual riches of the first

of analysts, that he could thus afford to throw away the inven-

tion of a new and most powerful calculus ! A germ of the

same method is plainly to be traced in Nicolas Bernoulli's

paper* in the ' Acta Eruditorum '

for 1720, on Orthogonal

Trajectories.

While mentioning Fontaine's great and original genius for

analytical investigations, we must not overlook his having

apparently come very near the Calculus of Variations. In a

testable, though he laid down no general method ; which, indeed,

D'Alembert himself never did, nor any geometrician before the publication

of Euler's third vol. of the '
Institutions of the Integral and Differential

Calculus.' The problem, as given in the ' Mem. Acad. Petersb.' vol. vii.

was this : We have the equation dz ~Pdx + Qda, z being a function

of x and a ; and the problem is to find the most general value of P and Q,

which will satisfy the equation. Q = Fz + PK, F being a function of a,

and R a function of a and x, Euler seeks for the factor which will make
d x + E d a integrable. Call this factor S, and make

and make f F d a = log. B.

He finds for the values required

P = BS/':T, Q = -

joda
and from thence he deduces

+ z^? and
.

consequently z - B/ : T.

It is thus clear, that Euler had, in or before 1734, integrated an equa-
tion of Partial Differences ; and it must further be remarked, that

D'Alembert, in his paper on the Winds, the first application of the cal-

culus, quotes Euler's paper of 1734. D'Alembert always differed with

Euler respecting the extent to which this calculus can be applied, hold-

ing, contrary to Euler's opinion, that it does not include irregular and

discontinuous arbitrary functions. 1

*
See, too, the paper in John Bernoulli's Works, vol. ii. p. 442, where

he investigates the transformation of the differential equation dx = Pdy
(P being a function of a, x, and y} into one, in which a also is variable.

1 Cousin lias mentioned the anticipation of Euler. '

Astronomic, Disc. Prelim."
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paper read at the Academy, 17th February, 1734, we find a

passage that certainly looks towards that calculus, and shows

that he used a new algorithm as requisite for conducting his

operation:
" J'ai ete oblige," he says,

" de faire varier les

memes lignes en deux manieres differentes. II a fallu de-

signer leurs variations differemment." "
J'ai marque les unes

commes les geometres Anglais par des fluxions (points) ;

les autres par des differences (d x) a notre maniere ; de sorte

qu'ici d x ne sera pas la meme chose que x, d arque x" (p. 18).
" II pent y avoir," he afterwards adds,

" des problemes qui

dependroient de cette methode fluxio-differentielle."

Nothing that has now been said can, in any manner, detract

from the renown justly acquired by D'Alembert and Lagrange
as the first who fully expounded the two great additions to the

Differential Calculus first applied them systematically to the

investigation of physical as well as mathematical questions,
and therefore may truly be said to have first taught the use

of them as instruments of research to geometricians.*
In the year 1746 the Academy of France proposed, as the

subject of its annual prize essay for 1748, the disturbances

produced by Jupiter and Saturn mutually on each other's

orbits. Euler's Memoir gained the prize ; and it contains the

solution of the famous Problem of the Three Bodies namely,
to find the path which one of those bodies describes round

another when all three attract each other with forces varying

inversely as the squares of their distances, their velocities

and masses being given, and their directions in the tangents
of their orbits.t This, which applies to the case of the

Moon, would be resolved were we in possession of the

solution for the case of Jupiter and Saturn, which, instead of

* There was nothing in the observation of Fontaine that can be tertned

an anticipation of Lagrange, though D'Alembert, unknown to himself,

had certainly been anticipated by Euler.

t The problem of the Three Bodies, properly speaking, is more general ;

but, in common parlance, it is confined to the particular case of gravita-

tion, and indeed of the sun, earth, and moon, as three bodies attracting

each other by the law of gravitation, and one of which is incomparably

larger than the other two.

E
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revolving round each other, revolve round the third body.
Euler's investigation did not appear quite satisfactory ; and

in 1750 the same subject was announced for 1752, when he

again carried oif the prize by a paper exhausting the subject,

and affording such an approximation to the solution as the

utmost resources of the integral calculus can give. But
while we admit, because its illustrious author himself ad-

mitted, the justice of the Academy's views respecting his first

solution, we must never forget the extraordinary genius dis-

played in it. He did not communicate the whole, or even

the more essential portion of his investigation ;
but he after-

wards gave it in a paper to the Berlin Academy in 1747, and

in another to the Petersburg!! Academy in 1750, the first of

these containing our earliest view of the variation of arbitrary
constants in differential equations, and the development of

the radical which expresses the relative disturbance between

two planets in a series of sines and cosines of angles multiples
of the elongation, a series so artistry framed that every three

consecutive terms are related together in such a manner as to

give the whole series from a determination of the first two

terms. Clairaut appears to have turned his attention to the

same problem some time before Euler. In 1743, he gave a

Memoir on the Moon's Orbit, according to the Newtonian

theory of gravitation, and it appears in the volume for that

year ; but this paper must be admitted to have been a some-

what slight performance for so consummate a geometrician.
It rather evaded the difficulties of the problem than sur-

mounted by encountering them ; for he assumed the orbit of

the moon to differ imperceptibly from a circle ; and his

differential equation could not have been integrated without

this supposition. Now, the only assumptions which had been

conceived permissible were the incomparably greater mass of

one body than those of the two others,* the nearly equal

* In truth, the mass of the sun being 355,000 times that of the earth,

and that of the earth being between sixty-eight and sixty-nine times that

of the moon, the mass of the sun is twenty-five millions of times greater

than that of the moon.
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distance of that body from each of the two others, and the

almost elliptical path of the one whose orbit was sought,

leaving its deviation from that path alone to be sought after.

Accordingly, the paper of 1743 did not satisfy its illustrious

author, who, in 1747, produced another worthy of the subject
and of himself. This was read 15th November, 1747, but

part of it had been read in August. He asserts positively in

a note (Mem.' 1745, p. 335), that though Euler's first paper
had been sent in the same year, he had never seen it till after

his solution was obtained ; therefore, Lalande had no right to

state in his note to the very bad edition of Montucla which
he published, that Fontaine always said that Clairaut was
enabled to obtain his solution by the paper of Euler (vol. iv.

p. 66).

At the time that Clairaut was engaged in this investigation,

D'Alembert, unknown to him, was working upon the same

subject. Their papers were presented on the same day, and
Clairaut's solution was unknown to D'Alembert ;

but so

neither could D'Alembert's solution have been known to

Clairaut, because the paper is general on the problem, anc.

the section applicable to the moon's orbit was added after the

rest was first read, and was never read at all to the Academy,
Nothing, therefore, can be more clear than that neither of

these great geometricians borrowed from the other, or from

Euler. It is just possible that Euler in his complete solution

of 1752 might have had the advantage of their previous ones

but as it clearly flowed from his earlier paper, there is nc

doubt also of his entire originality. Nevertheless, when
D'Alembert's name became mixed up with the party proceed-

ings among the literary and fashionable circles of Paris, there

were not wanting those who insisted that the whole fame oi

this great inquiry belonged to Clairaut
; and it is painful to

reflect on the needless uneasiness which such insinuations

gave to D'Alembert.

Thus, in investigating this famous "Problem of the Three

Bodies," all the three geometricians, without communicating
E 2
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together, took the same general course in the field, like three

navigators of consummate skill and most practised experience

tracing the pathless ocean, unseen by one another, and each

trusting to his seamanship, his astronomical observations, and
his time-keeper, and all of them steering separately the same
course. They were each led to three equations, which nearly
resembled those obtained by the other two. Of the three

equations the most important is

^ + + T^r-~ =
o,

in which u is the reciprocal of the projection on the plane of

the ecliptic of the moon's distance from the earth, v the

moon's longitude with respect to the centre of gravity of the

earth and moon, P and T the resultants respectively of all

the forces acting on the moon parallel and perpendicular to

-, and parallel to the plane of the ecliptic, h an arbitrary con-

stant. P and T being complicated functions of the longitudes
of the sun and moon, as well as of the eccentricities of their

orbits have to be developed for the further solution of the

problem.

Now, it is a truly remarkable circumstance that the conclusion

at which all these great men separately arrived was afterwards

found to be erroneous. They made the revolving motion of the

moon's apogee (or the revolution which the most distant part
of her orbit makes in a certain time) half as much as the

observations show it to be ; and in a revolution of the moon,
1 30' 43", instead of 3 2' 32" the observations giving about,

nine years for the period, which the revolution really takes,

instead of eighteen. Clairaut first stated this apparent failure

of the IS ewtonian theory, and as he had taken pains to make
the investigation

" avec toute 1'exactituclc qu'elle demandoit
"
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('Mem.' 1745, p. 336), he was with great reluctance driven

to conclude that the doctrine of gravitation failed to account

for the progression of the apogee or revolution of the lunar

orbit; and if so, as Euler justly observed (Prix., torn, vii.,
' Eecherches sur Jupiter et Saturne,' p. 4), we must have

been entitled to call in question the operation of the same

principle on all the other parts of the planetary system.
Clairaut even went so far as to propose, in consequence of the

supposed error, a modification of the law of gravitation ; and

that we should, instead of considering it as in the proportion

of
, (d being the distance,) regard it as proportional partly

to
,

the inverse square, and partly to
,
the inverse

(Jj (A

fourth power of the distance. But this suggestion was far

from giving satisfaction even to those who admitted the

failure of the theory. A controversy arose between this great

geometrician and a very unworthy antagonist, Buffon, who on

vague, metaphysical, and even declamatory grounds, persisted
in showing his ignorance of analysis, and his obstinate

vanity ; nor, though he was by accident quite right, could

any one give him the least credit for his good fortune.

Clairaut answered him, and afterwards rejoined to his reply,

with a courtesy which betokened entire civility and even

respect for the person, with an infinitely low estimation of

either his weight or his strength quantities truly evanescent.

At length it occurred to him that the process should be

repeated, a course which he certainly must have taken at

first had he not naturally enough been misled by the singular
coincidence of both Euler and D'Alembert *

having arrived

at the same conclusion with himself. He found that he

ought to have repeated his investigation of the differential

equation to the radius, after obtaining, by a first investiga-

* Euler had stated it incidentally, as regarded the lunar apogee, in liia

prize memoir, in 1746, on Jupiter and Saturn, but he mentioned it more

fully in a letter to Clairaut. (' Me'm.' 1745, p. 353, note.)
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tion, the value of the third term above given in that equa-
tion

, .-. 5 (as above given.)
ua

(h* + &c. N

This omission he now supplied, and he found that the

result, when applied to the case, made the progression of the

moon's apogee twice as quick as the former operation had

given it, or nine years, agreeing with the actual observation.

He deposited, in July, 1746, with the secretary of the

Academy, as well as with Sir Martin Folkes, president of

the Royal Society, a sealed paper containing the heads of his

analysis, but delayed the publication of it until he should

complete the whole to his satisfaction : a most praiseworthy

caution, after the error that had been committed in the first

instance. He announced, however, the result, and its con-

firming the Newtonian theory, in May of the same year ; and

added, that his reasoning was purely geometrical, and had no

reference to vague topics, giving, at the same time, a con-

clusive exposition of Buffon's ignorance in his hot attack,

which showed him to be wholly incapable of appreciating any

part of the argument. In May, 1752, the Memoir itself was

given to the Academy, and it appears in the volume for 1748.

It is entitled,
" De 1'Orbite de la Lune, en ne negligeant pas

les quarres des quantites de meme ordre avec les forces per-
turbatrices ;" which has misled many in their conception of

the cause to which the error must be ascribed. But in the

volume for 1748, p. 433, he leaves no doubt on that cause
; for

he states that having originally taken the radius vector r,

k
(the reciprocal of u in our former equation,) =

,

1 cos. m v

k
he now takes fully that reciprocal M or = 1 e cos. m v

r

2v /2 \ /2 \
+ 8 cos. y cos. m }v + d cos. f- m }v 4 cos.

n \ n J \ n J



CALCULUS OF PARTIAL DIFFERENCES. 55

/ 2 \
2 m

} v, terras obtained by the first or trial integration,
V /
which he had fully explained in his first Memoir to be the

more correct mode of proceeding (' Mem.' 1745, p. 352) ;

and the consequence of this is to give the multiplier, on

which depends the progression of the apogee, a different

value from what it was found to have in the former process.

It is never to be forgotten that the original investigation was

accurate as far as it went ; but by further extending the

approximation a more correct value of m was obtained, in

consequence of which the expression for the motion of the

apogee became double that which had been calculated before.

It should be observed, in closing the subject of the Problem

of Three Bodies, that Euler no sooner heard of Clairaut's final

discovery, than he confirmed it by his own investigation of

the subject, as did D'Alembert. But in the meantime, Mat-

thew Stewart had undertaken to assail this question by the

mere help of the ancient geometry, and had marvellously suc-

ceeded in reconciling the Newtonian theory with observation.

Father \Yalmisley, a young English priest of the Benedictine

order, also gave an analytical solution of the difficulty in

1749.

The other great problem, the investigation of which occu-

pied D'Alembert, was the Precession of the equinoxes and the

Nutation of the earth's axis, according to the theory of gravi-

tation. Sir Isaac Newton, in the xxxix. prop, of the third

book, had given an indirect solution of the Problem concern-

ing the Precession ; the Nutation had only been by his un-

rivalled sagacity conjectured a priori, and was proved by the

observations of Bradley. The solution of the Precession had

not proved satisfactory; and objections were taken to the

hypotheses on which it rested, that the accumulation of matter

at the equator might be regarded as a belt of moons, that its

movement might be reckoned in the proportion of its mass to

that of the earth, and that the proportion of the terrestrial

axes is that of 229 to 230 ; that the earth is homogeneous, and

that the action of the sun and moon ad mare movendum, are as
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one to four and a half nearly, and in the same ratio ad equi-

noctia movenda. Certainly the three last suppositions have

since Newton's time been displaced by more accurate observa-

tions ; the axes being found, to be as 298 to 299, the earth not

homogeneous, and the actions of the sun and moon on the

tides more nearly as one to three. But it has often been

observed, and truly observed, that when D'Alembert came to

discuss the subject, it would have been more becoming in him
to assign his reasons for denying the other hypothesis on

which the Newtonian investigation i-ests, than simply to have

pronounced it groundless. However, it is certain that he

first gave a direct and satisfactory solution of this great

problem ; and that he investigated the Nutation with perfect

success, showing it to be such that if it subsisted alone (i.e., if

there were no precessional motion) the pole of the equinoctial

would describe among the stars a minute ellipse, having its

longer axis about 18" and its shorter about 13", the longer

being directed towards the pole of the ecliptic, and the shorter

of course at right angles to it. He also discovered in his

investigations that the Precession is itself subject to a varia-

tion, being in a revolution of the nodes, sometimes accelerated,

sometimes retarded, according to a law which he discovered,

giving the equation of correction. It was in 1749 that he

gave this admirable investigation ;
and in 1755 he followed it

up with another first attempted by him, namely, the variation

which might occur to the former results, if the earth, instead

of being a sphere oblate at the poles, were an elliptic spheroid,
whose axes were different. He added an investigation of the

Precession on the supposition of the form being any other

curve approaching the circle. This is an investigation of as

great difficulty perhaps as ever engaged the attention of

analysts. It remains to add that Euler, in 1750, entered on

the same inquiries concerning Precession and Nutation ; and
with his wonted candour, he declared that he had read

D'Alembert's memoir before he began the investigation.*

* This Tract is from ' Lives of the Philosophers 'Life of D'Alembert.



IV.

GREEK GEOMETRY. ANCIENT ANALYSIS. PORISMS.

THE wonderful progress that lias been made in the pure
mathematics since the application of algebra to geometry,

begun by Vieta in the sixteenth, completed by Des Cartes

in the seventeenth century, and especially the still more

marvellous extension of analytical science by Newton and

his followers, since the invention of the Calculus, has, for

the last hundred years and more, cast into the shade the

methods of investigation which preceded those now in such

general use, and so well adapted to afford facilities unknown
while mathematicians only possessed a less perfect instrument

of investigation. It is nevertheless to be observed that the

older method possessed qualities of extraordinary value. It

enabled us to investigate some kinds of propositions to which

algebraic reasoning is little applicable ;
it always had an

elegance peculiarly its own
;

it exhibited at each step the

course which the reasoning followed, instead of concealing
that course till the result came out

;
it exercised the faculties

more severely, because it was less mechanical than the opera-
tions of the analyst. That it afforded evidence of a higher

character, more rigorous in its nature than that on which

algebraic reasoning rests, cannot with any correctness be

affirmed
;
both are equally strict : indeed, if each be mathe-

matical in its nature, and consist of a series of identical pro-

positions arising one out of another, neither can be less perfect

than the other, for of certainty there can be no degrees.

Nevertheless it must be a matter of regret and here the

great master and author of modern mathematics has joined
in expressing it that so much less attention is now paid to
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the Ancient Geometry than its beauty and clearness deserve
;

and if he could justly make this complaint a century and

a half ago, when the old method had but recently, and only
in part, fallen into neglect and disuse, how much more are

such regrets natural in our day, when the very name of the

Ancient Analysis has almost ceased to be known, and the

beauties of the Greek Geometry are entirely veiled from the

mathematician's eyes ! It becomes, for this reason, necessary
that the life of Simson, the great restorer of that geometry,
should be prefaced by some remarks upon the nature of the

science, in order that, in giving an account of his works, we

may say his discoveries, it may not appear that we are record-

ing the services of a great man to some science different from

the mathematical.

The analysis of the Greek geometers was a method of

investigation of peculiar elegance, and of no inconsiderable

power. It consisted in supposing the thing as already done,

the problem solved, or the truth of the theorem established ;

and from thence it reasoned until something was found, some

point reached, by pursuing steps each one of which led to the

next, and by only assuming things which were already

known, having been ascertained by former discoveries. The

thing thus found, the point reached, was the discovery of

something which could by known methods be performed, or of

something which, if not self-evident, was already by former

discovery proved to be true ; and in the one case a construc-

tion was thus found by which the problem was solved, in the

other a proof was obtained that the theorem was true, because

in both cases the ultimate point had been reached by strictly

legitimate reasoning, from the assumption that the problem
had been solved, or the assumption that the theorem was true.

Thus, if it were required from a given point in a straight line

given by position, to draw a straight line which should be cut

by a given circle in segments, whose rectangle was equal to

that of the segments of the diameter perpendicular to the

given line the thing is supposed to be done; and the

equality of the rectangle gives a proportion between the
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segments of the two lines, such that, joining the point sup-

posed to be found, but not found, with the extremity of the

diameter, the angle of that line with the line sought but not

found, is shown by similar triangles to be a right angle,

i.e., the angle in a semircircle. Therefore the point through
which the line must be drawn is the point at which the

perpendicular cuts the given circle. Then, suppose the point

given through which the line is to be drawn, if we find that

the curve in which the other points are situate is a circle, we
have a local theorem, affirming that, if lines be drawn through
any point to a line perpendicular to the diameter, the

rectangle made by the segments of all the lines cutting the

perpendicular is constant ; and this theorem would be demon-
strated by supposing the thing true, and thus reasoning till

we find that the angle in a semicircle is a right angle, a

known truth. Lastly, suppose we change the hypothesis, and

leave out the position of the point as given, and inquire after

the point in the given straight line from which a line being
drawn through a point to be found in the circle, the segments
will contain a rectangle equal to the rectangle under the

perpendicular segments we find that one point answers this

condition, but also that the problem becomes indeterminate :

for every line drawn through that point to every point in the

given straight line has segments, whose rectangle is equal to

that under the segments of the perpendicular. The enuncia-

tion of this truth, of this possibility of finding such a point in

the circle, is a Porism. The Greek geometers of the more
modern school, or lower age, defined a Porism to be a pro-

position differing from a local theorem by a defect or defalca-

tion in the hypothesis ; and accordingly we find that this

porism is derived from the local theorem formerly given, by
leaving out part of the hypothesis. But we shall afterwards

have occasion to observe that this is an illogical and imperfect

definition, not coextensive with the thing defined
;
the above

proposition, however, answers every definition of a Porism.

The demonstration of the theorem or of the construction

obtained by investigation in this manner of proceeding, is
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called synthesis, or composition, in opposition to the analysis, or

the process of investigation : and it is frequently said that

Plato imported the whole system in the visits which he
made like Thales of Miletus and Pythagoras, to study under

the Egyptian geometers, and afterwards to converse with

Theodoras at Gyrene, and the Pythagorean School in Italy.

But it can hardly be supposed that all the preceding

geometers had worked their problems and theorems at

random
; that Thales and Pythagoras with their disciples, a

century and a half before Plato, and Hippocrates, half a

century before his time, had no knowledge of the analytical

method, and pursued no systematic plan in their researches,

devoted as their age was to geometrical studies. Plato may
have improved and further systematised the method, as he

was no doubt deeply impressed with the paramount import-
ance of geometry, and even inscribed upon the gates of the

Lyceum a prohibition against any one entering who was

ignorant of it. The same spirit of exaggeration which ascribes

to him the analytical method, has also given rise to the

notion that he was the discoverer of the Conic Sections ;
a

notion which is without any truth and without the least pro-

bability.

Of the works written by the Greek geometers some have

come down to us
;
some of the most valuable, as the ' Ele-

ments '

and ' Data '
of Euclid, and the ' Conies

'

of Apollonius.
Others are lost; but, happily, Pappus, a mathematician of

some merit, who flourished in the Alexandrian school about

the end of the fourth century, has left a valuable account of

the geometrical writings of the elder Greeks. His work is

of a miscellaneous nature, as its name,
' Mathematical Collec-

tions,' implies ; and excepting a few passages, it has never

been published in the original Greek. Commandini, of Ur-

bino, made a translation of the whole six books then dis-

covered ;
the first has never been found, but half the second

being in the Savilian library at Oxford, was translated by
Wallis a centuiy later. Commandini's translation, with his

learned commentary, was not printed before his death, but
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the Duke of Urbino (Francesco Maria) caused it to be pub-
lished in 1588, at Pisa, and a second edition was published at

Venice the next year : a fact most honourable to that learned

and accomplished age, when we recollect how many years
Newton's immortal work was published before it reached a

second edition, and that in the seventeenth and eighteenth
centuries.

The two first books of Pappus appear to have been purely

arithmetical, so that their loss is little to be lamented. The

eighth is on mechanics, and the other five are geometrical.
The most interesting portion is the seventh

;
the introduction

of which, addressed to his son as a guide of his geometrical

studies, contains a full enumeration of the works written by
the Greek geometers, and an account of the particular subjects
which each treated, in some instances giving a summary of

the propositions themselves with more or less obscurity, but

always with great brevity. Among them was a work which
excited great interest, and for a long time baffled the conjec-
tures of mathematicians, Euclid's three books of ' Porisms :'

of these we shall afterwards have occasion to speak more

fully. His ' Loci ad Superficiem,' apparently treating of

curves of double curvature, is another, the loss of which was

greatly lamented, the more because Pappus has given no
account of its contents. This he had done in the case of the

'Loci Plani' of :Apollonius. Euclid's four books on conic

sections are also lost ; but of Apollonius's eight books on the

same subject, the most important of the whole series, the
' Elements '

excepted, four were preserved, and three more

were discovered in the seventeenth century. His Inclinations,

his Tactions or Tangencies, his Sections of Space and of

Eatio, and his Determinate Section, however curious, are of

less importance ; all of them are lost.

For many years Commandini's publication of the ' Collec-

tions
' and his commentary did not lead to any attempt at

restoring the lost works from the general account given by

Pappus. Albert Girard, in 1634, informs us in a note to an

edition of Stevinus, that he had restored Euclid's 'Porisms,' a
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thing eminently unlikely, as he never published any part of

his restoration, and it was not found after his decease. In

1637, Fermat restored the ' Loci Plani
'

of Apollonius, but in

a manner so little according to the ancient analysis, that we
cannot be said to approach by means of his labours the lost

book on this subject. In 1615, De la Hire, a lover and a

successful cultivator of the ancient method, published his

Conic Sections, but synthetically treated
; he added after-

wards other works on epicycloids and conchoids, treated on

the analytical plan. L'Hopital, at the end of the seventeenth

century, published an excellent treatise on Conies, but purely

algebraical. At the beginning of the eighteenth century,
Viviani and Grandi applied themselves to the ancient

geometry; and the former gave a conjectural restoration

(Divinatio) of Aristaeus's ' Loci Solidi,' the curves of the

second or Conic order. But all these attempts were exceed-

ingly unsuccessful, and the world was left in the dark, for the

most part, on the highly interesting subject of the Greek

Geometry. We shall presently see that both Fermat and

Halley, its most successful students, had made but an incon-

siderable progress in the most difficult branches.

How entirely the academicians of France were either care-

less of those matters, or ignorant, or both, appears by the
'

Encyclopedic ;' the mathematical department of which was
under no less a geometrician than D'Alembert. The definition

there given of analysis, makes it synonymous with algebra :

and yet mention is made of the ancient writers on analysis,
and of the introduction to the seventh book of Pappus, with

only this remark, that those authors differ much from the

modern analysts. But the article ' Arithmetic
'

(vol. i. p. 677),
demonstrates this ignorance completely ; and that Pappus's
celebrated introduction had been referred to by one who
never read it. We there find it said, that Plato is supposed to

have invented the ancient analysis; that Euclid, Apollonius,
and others, including Pappus himself, studied it, but that we
are quite ignorant of what it was: only that it is by some

conceived to have resembled our algebra, or else Archimedes
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could never have made his great geometrical discoveries. It

is, certainly, quite incredible that such a name as D'Alembert's

should be found affixed to this statement, which the mere

reading of any one page of Pappus's books must have shown
to bewholly erroneous; and our wonder is the greater, inasmuch

as Simson's admirable restoration of Apollonius's
' Loci Plani

'

had been published five years before the '

Encyclopedie
'

ap-

peared.

Again, in the '

Encyclopedie,' the word Analysis, as mean-

ing the Greek method, and not algebra, is not even to be

found. Nor do the words synthesis, or composition, inclina-

tions, tactions or tangencies, occur at all
;
and though Porism.s

are mentioned, it is only to show the same ignorance of the

subject ; for that word is said to be synonymous with
'

lemma,' because it is sometimes used by Pappus in the sense

of subsidiary proposition.* When Clairault wrote his in-

estimable work on curves of double curvature, he made no

reference whatever to Euclid's ' Loci ad Snperficiem ;' much
less did he handle the subject after the same manner

;
he

deals, indeed, with matters beyond the reach of the Greek

Geometry.
Such was the state of this science when Eobert Simson

first applied to it his genius, equally vigorous and undaunted,
with the taste which he had early imbibed for the beauty, the

simplicity, and the closeness of the ancient analysis.

He was appointed professor in 1711, and taught with ex-

traordinary success ; but his genius was bent to the diligent

investigation of truth, in the science of which he was so great
a master. The ancient geometry, that of the Greeks of which
I have spoken, early fixed his attention and occupied his

mind by its extraordinary elegance, by the lucid clearness

with which its investigations are conducted, by the exercise

which it affords to the reasoning faculties, and above all, by
the absolute rigour of its demonstrations. He never under-

valued modern analysis ; it is a great mistake to represent

* Euclid uses the word Corollary in his Elements. See Note II.
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him as either disliking its process, or insensible to its vast

importance for the solution of questions which the Greek

analysis is wholly incapable of reaching. But he considered

it as only to be used in its proper sphere ;
and that sphere he

held to exclude whatever of geometrical investigation can be,

with convenience and elegance, carried on by purely geo-
metrical methods. The application of algebra to geometry, it

would be ridiculous to suppose that either he or his celebrated

pupil Matthew Stewart disliked or undervalued. That appli-
cation forms the most valuable service which modern analysis
has rendered to science. But they did object, and most reason-

ably and consistently, to the introduction of algebraic reason-

ing wherever the investigation could, though less easily, yet
far more satisfactorily, be performed geometrically. They
saw, too, that in many instances the algebraic solution leads

to constructions of the most complex, clumsy, unmanageable
kind, and therefore must be, in all these instances, reckoned

more difficult, and even more prolix than the geometrical,
from the former being confined to the expression of all the

relations of space and position, by magnitudes, by quantity
and number (even after the arithmetic of sines had been

introduced), while the latter could avail itself of circles and

angles directly. They would have equally objected to carry-

ing geometrical reasoning into the fields peculiarly appro-

priate to modern analysis ; and if one of them, Stewart, did

endeavour to investigate by the ancient geometry physical

problems supposed to be placed beyond its reach as the

sun's distance, in which he failed, and Kepler's problem, in

which he marvellously succeeded, that of dividing the

elliptical area in a given ratio by a sti-aight lino drawn from

one focus this is to be taken only as an homage to the

undervalued potency of the Greek analysis, or at most, as a

feat of geometrical force, and by no means as an indication of

any wish to substitute so imperfect, however beautiful, an

instmment, for the more powerful, though more ordinary one

of the calculus which " alone can work great marvels." At
the same time, and with all the necessary confession of the
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merits of the modern method, it is certain that those geo-
metricians would have regarded the course taken by some of

its votaries in more recent times as exceptionable, whether

with a view to clearness or to good taste : a course to the full

as objectionable as woiild be the banishing of algebraical and

substituting of geometrical symbols in the investigations of

the higher geometry. La Place's great work, the '

Mecanique
Celeste,' and La Grange's

'

Mecanique Analytique,' have

treated of the whole science of dynamics and of physical

astronomy, comprehending all the doctrine of trajectories,

dealing with geometrical ideas throughout, and ideas so

purely geometrical that the algebraic symbols, as far as

their works are concerned, have no possible meaning apart
from lines, angles, surfaces

;
and yet in their whole compass

they have not one single diagram of any kind. Surely,
ds3

TV___ _____

we may ask if -%-*/ dx* -f- dy*, T A7y\ can possibly
ay dara[-T~" \ ,7 ~

bear any other meaning than the tangent and the radius of

curvature of a curve line : that is, a straight line touching a

curve, and a circle whose curvature is that of another curve

where they meet
; any meaning, at least, which can make it

material that they should ever be seen on the page of the

analyst. These expressions are utterly without sense, except
in reference to geometrical considerations

; for although x

and y are so general that they express any numbers, any lines,

nay, any ideas, any rewards or punishments, any thoughts of

the mind, it is manifest that the square of the differential of a

thought, or the differential of the differential of a reward or

punishment, has no meaning ; and so of everything else but

of the very tangent or the osculating circle's radius : conse-

quently the generality of the symbols is wholly useless ;
the

particular case of two lines being the only thing to which

0r
U\
dm)
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the expressions can possibly be meant to apply. Why, then,
all geometrical symbols should be so carefully avoided when
we are really treating of geometrical examples and geometrical

ideas, and of these alone, seems hard to understand.

As the exclusive lovers of modern analysis have frequently
and very erroneously suspected the ancients of possessing
some such instrument, and concealing the use of it by giving
their demonstrations synthetically after reaching their con-

clusions analytically, so some lovers of ancient analysis have

supposed that Sir Isaac Newton obtained his solutions by
algebraic investigations, and then covered them with a

synthetic dress. Among others, Dr. Simson leant to this

opinion respecting the '

Principia.' He used to say that he

knew this from Halley, by whose urgent advice Sir Isaac

was induced to adopt the synthetic form of demonstration,

after having discovered the truths analytically. Machin is

known to have held the same language; he said that the
'

Principia
' was algebra in disguise. Assuredly, the pro-

bability of this is far greater than that of the ancients having

possessed and kept secret the analytical process of modern

times. In the preface to his ' Loci Plani,' Dr. Simson fully

refutes this notion respecting the ancients : a notion which,

among others, no less a writer than Wallis had strongly

maintained.*

That he did not undervalue algebra and the calculus to

*
Algebra Prsef.

" Hanc Grsecos olim habuisse non est quod clubite-

mus ;
scd studio celatam, nee temere propalandam. Ejus effectus (utut

clam celatse) satis conspicui apud Archimedem, Apollonium, aliosque." It

is strange that any one of ordinary reflection should have overlooked the

utter impossibility of all the geometricians in ancient times keeping the

secret of an art which must, if it existed, have been universally known in

the mathematical schools, and at a time when every man of the least

learning, or even of the most ordinary education, was taught geometry.

Montucla touches on this subject, but not with his wonted accuracy,

(1. 166). Indeed, he seems here to confound ancient witli modern analysis,

although no one has more accurately described and illustrated the ancient

method, (I. 164, 275). He adopts the erroneous notion of Plato having

discovered this method ; but he does not fall into the other error of ascrib-

ing to Jiim
the discovery of Conic Sections, (ib. 168).
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which it has given rise, appears from, many circumstances

among others, from, what has already been stated ; it appears
also from this, that in many of his manuscripts there are

found algebraical formulas for propositions which he had

investigated geometrically. Maclaurin consulted him on the

preparation of his admirable work, the 'Fluxions,' and re-

ceived from him copious suggestions and assistance. Indeed,

he adopted from him the celebrated demonstration of the

fluxion (or differential) of a rectangle.* But Simson's whole

mind, when left to its natural bent, was given to the beauties

of the Greek Geometry ; and he had not been many months

settled in his academical situation when he began to follow

the advice which Halley had given him, as both calculated,

he said, to promote his own reputation, and to confer a lasting

benefit upon the science cultivated by them both with an

equal devotion. It is even certain that the obscure and most

difficult subject of Porisms very early occupied his thoughts,
and was the field of his researches, though to the end of his

life he never had made such progress in the investigation as

satisfied himself. Before 1715, three years after he began his

course of teaching, he was deeply engaged in this inquiry ;

but he only regarded it as one branch of the great and dark

subject which Halley had recommended to his care. After he

had completely examined, corrected, and published, with most

important additions, the Conies of Apollonius, which happily
remain entire, but which, as we have seen, had been most

inelegantly and indeed algebraically given by De la Hire,

L'Hopital, and others, to restore the lost books was his great

desire, and formed the grand achievement which he set

before his eyes.

We have already shown how scanty the light was by which
his steps in this path must be guided. The introduction to

the Seventh book of Pappus contained the whole that had

reached our times to let us know the contents of the lost

works. Some of the summaries which that valuable discourse

* Book i. chap. ii. prop. 3.

F 2
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contains are sufficiently explicit, as those of the Loci Plani

and the Determinate Section. Accordingly, former geo-
metricians had succeeded in restoring the Loci Plani, or those

propositions which treat of loci to the circle and rectilinear

figures. They had, indeed, proceeded in a very unsatisfactory
manner. Schooten, a Dutch mathematician of great industry
and no taste, had given purely algebraic solutions and demon-

strations. Fermat, one of the greatest mathematicians of the

seventeenth century, had proceeded more according to the

geometrical rules of the ancients
;
but he had kept to general

solutions, and neither he nor Schooten had given the different

cases, according as the data in each proposition were varied ;

so that their works were nearly useless in the solution of

problems, the great purpose of Apollonius, as of all the

authors of the TO-KOQ avaXvoptvov the thirty-three ancient

books. As for the analysis, it was given by neither, unless,

indeed, Schooten's algebra is to be so termed. Fermat's de-

monstrations were all synthetical. His treatise, though
written as early as 1629, was only published among his col-

lected works in 1670. Schooten's was published among his
' Exercitationes Mathematics '

in 1657. Of the field thus

left open, Dr. Simson took possession, and he most successfully
cultivated every corner of it. Nothing is left without the

most full discussion ; all the cases of each proposition are

thoroughly investigated. Many new truths of great import-
ance are added to those which had been unfolded by the

Greek philosopher. The whole is given with the perfect

precision and the pure elegance of the ancient analysis ; and

the universal assent of the scientific world has even confessed

that there is every reason to consider the restored work as

greatly superior to the lost original.

The history of this excellent treatise shows in a striking
manner the cautious and modest nature of its author. He
had completed it in 1738 ; but, unsatisfied with it, he kept it

by him for eight years. He could not bring himself to think

that he had given the "
ipsissimre propositiones of Apollonius

in the very order and spirit of the original work." Pie was
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then persuaded to let the book appear, and it was published
in 1746. His former scruples and alarms recurred ; he

stopped the publication ;
he bought up the copies that had

been sold ; he kept them three years longer by him
;
and it

was only in 1749 that the work really appeared. Thus had a

geometrician complied with the rule prescribed by Horace for

those who have no standard by which to estimate with exact-

ness the merit of their writings.
In the meantime he had extended his researches into other

parts of the subject. Among the rest he had restored and

greatly extended the work on Determinate Section, or the

various propositions respecting the properties of the squares
and rectangles of segments of lines passing through given

points. There is no doubt that the prolixity, however

elegant, with which the ancients treated this subject, is

somewhat out of proportion to its importance ;
and as it is

peculiarly adapted to the algebraical method, presenting,

indeed, little difficulty, to the analyst, the loss of the Per-

gsean treatise is the less to be deplored, and its restoration

was the less to be desired. Apollonius had even thought it

expedient to give a double set of solutions ; one by straight

lines, the other by semicircles. Dr. Simson's restoration is

most full, certainly, and contains many and large additions of

his own. It fills above three hundred quarto pages. His

predecessors had been Snellius, whose attempt, published in

1608, was universally allowed to be a failure
;
and Anderson,

a professor of Aberdeen, whose work, in 1612, was much
better, but confined to a small part only of the subject.

About the time that Dr. Simson finally published the Loci

Plani, he began his great labour of giving a correct and full

edition of the Elements. The manner in which this has been

accomplished by him is well known. The utmost care was

bestowed on the revision of the text
;
no pains were spared in

collating editions ; all commentaries were consulted ;
and the

elegance and perfect method of the original has been so

admirably preserved, that no rival has ever yet risen up to

dispute with Simson's Euclid the possession of the schools.
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The time bestowed on this useful work was no less than nine

years, It only was published in 1758. To the second

edition, in 1762, he added a similarly correct edition of the

Data, comprising several very valuable original propositions
of his own, of Mr. Stewart, and of Lord Stanhope, together
with two excellent problems to illustrate the use of the Data

in solutions.

We tb-Tis find Dr. Simson employed in these various works
which he successively gave to the world, elaborated with

infinite care, and of which the fame and the use will remain
as long as the mathematics are cultivated

;
some of them

delighting students who pursue the science for the mere

speculative love of contemplating abstract truths, and the

gratification of following the rigorous proofs peculiar to that

science; some for the instruction of men in the elements,

which are to form the foundation of their practical applica-
tions of geometry. But all the while his mind never could

be wholly weaned from the speculation which had in his

earliest days riveted his attention by its curious and sin-

gular nature, and fired his youthful ambition by its diffi-

culty, and its having vanquished all his predecessors in

their efforts to master it. We have seen that as early
as 1715 at the latest, probably much earlier, the obscure

subject of Porisms had engaged his thoughts ; and soon after,

his mind was so entirely absorbed by it that he could apply to

no other investigation. The extreme imperfection of the text

of Pappus ; the dubious nature of his description ; his rejection
of the definition which appeared intelligible ;

his substituting

nothing in its place except an account so general that it

really conveyed no precise information; the hiatus in the

account which he subjoins of Euclid's three books, so that

even with the help of the lemmas related to these propositions
of the lost work, no clear or steady light could be descried to

guide the inquirer for the first porism of the first book alone

remained entire, the general porism being given wholly trun-

cated (mancum et imperfectum) all seemed to present ob-

.stacles wholly insurmountable ; and after various attempts for
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years he was fain to conclude with Halley that the mystery

belonged to the number of those which can never be pene-
trated. He lost his rest in the anxiety of this inquiry ; sleep

forsook his couch
;
his appetite was gone ; his health was

wholly shaken
; he was compelled to give over the pursuit ;

he was "obliged," he says, "to resolve steadily that he never

more should touch the subject, and as often as it came upon
him he drove it away from his thoughts."

*

It happened, however, about the month of April, 1722,

that while walking on the banks of the Clyde with some

friends, he had fallen behind the company; and musing

alone, the rejected topic foxmd access to his thoughts. After

some time a sudden light broke in upon him ;
it seemed at

length as if he could descry something of a path, slippery,

tangled, interrupted, but still practicable, and leading at least

in the direction towards the object of his research. He

eagerly drew a figure on the stump of a neighbouring tree

with a piece of chalk ; he felt assured that he had now the

means of solving the great problem ;
and although he after-

wards tells us that he then had not a sufficiently clear notion

of the subject (eo tempore Porismatum naturam non satis com-

pertani habebam),f yet he accomplished enough to make him
communicate a paper upon the discovery to the Eoyal Society,
the first work he ever published (Phil. Trans, for 1723). He
was wont in after life to show the spot on which the tree,

long since decayed, had stood. If peradventure it had been

preserved, the frequent lover of Greek Geometry would have

been seen making his pilgrimage to a spot consecrated by
such touching recollections. The graphic pen of Montucla,
which gave such interest to the story of the first observa-

tion of the transit of Venus by Horrox in Lancashire, and

to the Torricellian experiment, J is alone wanting to clothe

this passage in colours as vivid and as unfading.

* " Firmiter animum induxi hsec nunquam in posterum investigare.

Unde quoties menti occurrebant, toties eas arcebam." (Op. Rel. 320.

Praef. ad Porismata.)

t Op. Kel. 320. J Hist, de Math. vol. i.
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This great geometrician continued at all the intervals of his

other labours intently to investigate the subject on which he
thus first threw a steady light.

His first care upon having made this discovery was to

extend the particular propositions until he had obtained the

general one. A note among his memoranda appears to have
been made, according to his custom, of marking the date at

which he succeeded in any of his investigations.*
" Hodie hfec

de porismatis inveni, E. S., 23 April, 1722." Another note,

27th April, 1722, shows that he had then obtained the general

proposition; he afterwards communicated this to Maclaurin

when he passed through Glasgow on his way to France ; and

he, on his return, communicated to Dr. Simson without demon-
stration a proposition concerning conies derived from what he
had shown him a proposition which led his friend to insert

some important investigations in his Conic Sections. In 1723

the publication of his paper took place in the '

Philosophical
Transactions ;' it is extremely short, and does not appear to

contain all that the author had communicated ;
for we find this

sentence inserted before the last portion of the paper :

" His

adjecit clarrissimus professor propositiones duas sequentes
libri primi Porismatum Euclidis, a se quoque restitutas."

The paper contains the first general proposition and its ten

cases, and then the second with its cases. No general descrip-
tion or definition is given of Porisms

;
and it is plain that

his mind was not then finally made up on this obscure subject,

although he had obtained a clear view of it generally.
At what time his knowledge of the whole became matured

we are not informed ; but we know that his own nature was

* In one there is this note upon the solution of a problem of tactions,
" Feb 9, 1734 : Post horam primam ante meridiem ;" and much later

in life we find the same particularity in marking the time of discovery.

His birthday was October 14, and having solved a problem on that day

1764, he says 14 Qctobr. 1764.

14 Octobr. 1687.
Deo Opt. Max. bemgmssimo Servaton

Laus et gloria. 77 (scil. Anno ^Etatis.)
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nice and difficult on the subject of his own works
; that he

never was satisfied with what he had accomplished ;
and he

probably went on making constant additions and improve-
ments to his work. Often urged to publish, he as constantly
refused

; indeed, he would say that he had done nothing, or

next to nothing, which was in a state to appear before the

world
;
and moreover, he very early began to apprehend a

decay of his faculties, from observing his recollection of

recent things to fail, as is very usual with all men ;
for as

early as 1751, we find him giving this as a reason for de-

clining to undertake a work on Lord Stanhope's recommenda-

tion, when he was only in his sixty-fifth year. Thus, though
he at first used to say he had nothing ready for publication,
he afterwards added, that he was too old to complete his

work satisfactorily. In his earlier days he used occasionally
to affect a kind of odd mystery on the subject, and when one

of his pupils (Dr. Traill) submitted to him some propositions,
which he regarded as porisms, Dr. Simson would neither

admit nor deny that they were such, but said with some

pleasantry,
"
They are propositions." One of them, however,

he has given in his work as a porism, and with a compliment-

ary reference to its ingenious and learned author.

Thus his life wore away without completing this great

work, at least without putting it in such a condition as satis-

fied himself. It was left among his MSS., and by the judi-

cious munificence of a noble geometrician, the liberal friend

of scientific men, as well as a successful cultivator of

science, Earl Stanhope,* it was, after his death, published,
with his restoration of Apollonius' treatise De Sectione deter-

minata, a short paper on Logarithms, and another on the

Method of Limits geometrically demonstrated, the whole

forming a very handsome quarto volume
;

of which the

Porisms occupy nearly one-half, or 277 pages.
This work is certainly the master-piece of its distinguished

*
Great-grandfather of the present Earl, whose father also was a

successful cultivator of natural science, mechanical especially.
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author. The extreme difficulty of the subject was increased

by the corruptions of the text that remains in the only

passage of the Greek geometers which has reached us,

the only few sentences in which any mention whatever is

made of Porisms. This passage is contained in the preface
or introduction to the Seventh book of Pappus, which we
have already had occasion to cite. But this was by far the

least of the difficulties which met the inquirer after the

hidden treasure, the restorer of lost science, though Albert

Girard thought or said, in 1635, that he had restored the

Porisms of Euclid. As we have seen, no trace of his labours

is left
;
and it seems extremely unlikely that he should have

really performed such a feat and given no proofs of it.

Halley, the most learned and able of Dr. Simson's pre-

decessors, had tried the subject, and tried it in vain. He thus

records his failure :

" Hactenus Porismatum descriptio nee

mihi intellecta nee lectori profutura." These are his words,
in a preface to a translation which he published of Pappus's
Seventh book, much superior in execution to that of Comman-
dini. But this eminent geometrician was much more honest

than, some, and much more safe and free from mistake than

others who touched upon the subject that occupied all

students of the ancient analysis. He was far from pretending,
like Girardus, to have discovered that of which all were in

quest. But neither did he blunder like Pemberton, whom we
find, the very year of Simson's first publication, actually

saying in his paper on theKainbow "For the greater brevity
I shall deliver them (his propositions) in the form of porisms,

as, in my opinion, the ancients called all propositions treated

by analysis only" (Philosophical Transactions, 1723, p. 148);
and, truth to say, his investigation is not very like ancient

analysis either. The notion of D'Alembert, somewhat later, has

been alluded to already ;
he imagined porism to be synonymous

with lemma, misled by an equivocal use of the word in some

passages of ancient authors, if indeed he had ever studied any
of the writers on the Greek Geometry, which, from what I

have stated before, seems exceedingly doubtful. But the
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most extraordinary, and indeed inexcusable ignorance of the

subject is to be seen in some who, long after Simson's paper
had been published, were still in the dark

;
and though that

paper did not fully explain the matter, it yet ought to have

prevented sxich errors as these fell into. Thus Castillon, in

1761, showed that he conceived porisms to be merely the

constructions of Euclid's Data. If this were so, there might
have been some truth in his boast of having solved all the

Porisms of Euclid ; and he might have been able to perform
his promise of soon publishing a restoration of those lost

books.

It is remarkable enough that before Halley's attempts and

their failure, candidly acknowledged by himself, Fermat had

made a far nearer approach to a solution of the difficulty

than any other of Simson's predecessors. That great geo-

metrician, after fully admitting the difficulty of the subject,
and asserting

*
that, in modern times, porisms were known

hardly even by name, announces somewhat too confidently,
if not somewhat vaingloriously, that the light had at length
dawned upon him,f and that he should soon give a full

restoration of the whole three lost books of Euclid. Now the

light had but broke in by a small chink, as a mere faint

glimmering, and this restoration was quite impossible, inas-

much as there remained no account of what those books con-

tained, excepting a very small portion obscurely mentioned in

the preface of Pappus, and the lemmas given in the course of

the Seventh book, and given as subservient to the resolution

of porismatic questions. Nevertheless, Fermat gave a demon-

stration of five propositions,
" in order," he says,

" to show
what a porism is, and to what purposes it is subservient."

These propositions are, indeed, porisms, though their several

* " Intentata ac velut disperata Porismatum Euclidsca doctrina. Geo-

metrici (aevi recentioris) ncc vel de nomine cognoverunt, aut quod esset

solunimodo sunt suspicati." (Var. Opera, p. 166.)

t "Nobis in tenebris dudum csecutientibus tandem se (Natura Poris-

matum) clara ad videndum obtulit, et pura per noctem luce refulsit."

(Epist. ib.)
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enunciations are not given in the true porismatic form. Thus,
in the most remarkable of them, the fifth, he gives the con-

struction as part of the enunciation. So far, however, a con-

siderable step was made ; but when he comes to show in what
manner he discovered the nature of his porisms, and how he

defines them, it is plain that he is entirely misled by the

erroneous definition justly censured in the passage of Pappus
already referred to. He tells us that his propositions answer
the definition ; he adds that it reveals the whole nature of

porisms ; he says that by no other account but the one con-

tained in the definition, could we ever have arrived at a

knowledge of the hidden value
;

* and he shows how, in his

fifth proposition, the porism flows from a locus, or rather he

confounds porisms with loci, saying porisms generally are

loci, and so he treats his own fifth proposition as a locus
; and

yet the locus to a circle which he states as that from which
his proposition flows has no connexion with it, according to

Dr. Simson's just remark
(' Opera Eeliqua,' p. 345). That the

definition on which he relies is truly imperfect, appears from

this : there could be no algebraical porism, were every porism
connected with a local theorem. But an abundant variety of

geometrical porisms can be referred to, which have no possible
connexion with loci. Thus, it has never been denied that

most of the Propositions in the Higher Geometry, which I

investigated in 1797, were porisms, yet many of them were

wholly unconnected with loci ;
as that affirming the possibility

of describing an hyperbola which should cut in a given ratio

all the areas of the parabolas lying between given straight
lines.f Here the locus has nothing to do with the solution,

as if the proposition were a kind of a local theorem : it is only
the line dividing the curvilineal areas, and it divides innu-

merable such areas. Professor Playfair, who had thoroughly

investigated the whole subject, never in considering this

proposition doubted for a moment its being most strictly a

porism.
* Var. Op. p. 118.

t Phil. Trans. 1798, p. 111. Tract I. of this volume.
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Therefore, although Fermat must be allowed to have made
a considerable step, he was unacquainted with the true nature

of the porism ;
and instead of making good his boast that he

could restore the lost books, he never even attempted to

restore the investigation of the first proposition, the only one

that remains entire. A better proof can hardly be given of

the difficulty of the whole subject.*

Indeed it must be confessed that Pappus's account of it,

our only source of knowledge, is exceedingly obscure, all but

the panegyric which in a somewhat tantalizing manner, he

pronounces upon it.
"
Collectio," says he,

" curiosissima

multarum reruin spectantium ad resolutionem difficiliorum et

generaliorum problemattim
"

(lib. vii. Proem). His definition

already cited is, as he himself admits, very inaccurate ;

because the connexion with a locus is not necessary to the

porisniatic nature, although it will very often exist, inasmuch

as each point in the curve having the same relation to certain

lines, its description will, in most cases, furnish the solution

of a problem, whence a porism may be deduced. Nor does

Pappus, while admitting the inaccuracy of the definition, give
us one of his own. Perhaps we may accurately enough define

a porism to be the enunciation of the possibility of finding
that case in which a determinate problem becomes indeter-

minate, and admits of an infinity of solutions, all of which are

given by the statement of the case.

For it appears essential to the nature of a porism that it

should have some connexion with an indeterminate problem
and its solution. I apprehend that the poristic case is always
one in which the data become such that a transition is made
from the determinate to the indeterminate, from the problem

* The respect clue to the great name of Fermat, a venerable magistrate
and most able geometrician, is not to be questioned. He was, indeed, one

of the first mathematicians of the age in which he flourished, along with

the Kobervals, the Harriots, the Descartes. How near lie approached the

differential calculus is well known. His correspondence with Roberval,

Gassendi, Pascal, and others, occupies ninety folio pages of his posthumous
works, and contains many most ingenious, original, and profound observa-

tions on various branches of science.
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being capable of one or two solutions, to its being capable of

an infinite number. Thus it would be no porism to affirm

that an ellipse being given, two lines may be found at right

angles to each other, cutting the curve, and being in a pro-

portion to each other which may be found : the two lines are

the perpendiculars at the centre, and are of course the two

axes of the ellipse ;
and though this enunciation is in the

outward form of a porism, the proposition is no more a porism
than any ordinary problem ;

as that a circle being given, a

a point may be found from whence all the lines drawn to the

circumference are equal, which is merely the finding of the

centre. But suppose there be given the problem to inflect

two lines from two given points to the circumference of an

ellipse, the sum of which lines shall be equal to a given line,

the solution will give four lines, two on each side of the

transverse axis. But in one case there will be innumerable

lines which answer the conditions, namely, when the two

points are in the axis, and so situated that the distance of each

of them from the farthest extremity of the axis is equal to the

given line, the points being the foci of the ellipse. It is,

then, a porism to affirm that an ellipse being given, two points

may be found such that if from them be inflected lines to any
point whatever of the curve, their sum shall be equal to a

straight line which may be found
;
and so of the Cassinian

curve, in which the rectangle under the inflected lines is

given. In like manner if it be sought in an ellipse to inflect

from two given points in a given straight line, two lines to a

point in the curve, so that the tangent to that point shall,

with the two points and the ordinate, cut the given line in

harmonical ratio
; this, which is only capable of one solution

in ordinary cases, becomes capable of an infinite number when
the two points are in the axis, and when the ellipse cuts it ;

for in that case every tangent that can be drawn, and every
ordinate, cut the given line harmonically with the curve

itself.*

* The ellipse has this curious property, which I do not find noticed by
Maclaurin in his Latin Treatise on Curve Lines appended to the Algebra,
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Dr. Sinison's definition is such that it connects itself with

an indeterminate case of some problem solved ;
but it is

defective, in appearance rather than in reality, from seeming
to confine itself to one class of porisms. This appearance
arises from using the word "

given
"

(data or datuni) in two
different senses, both as describing the hypothesis and as

affirming the possibility of finding the construction so as to

answer the conditions. This double use of the word, indeed,

runs through the book, and though purely classical, is yet

very inconvenient
; for it would be much more distinct to

make one class of things those which are assuredly data, and
the other, things which may be found. Nevertheless, as his

definition makes all the innumerable things not given have the

same relation to those which are given, this should seem to be

a limitation of the definition not necessary to the poristic

nature. Pappus's definition, or rather that which he says the

ancients gave, and which is not exposed to the objection
taken by him to the modern one, is really no definition at all

;

it is only that a porism is something between a theorem and
a problem, and in which, instead of anything being proposed
to be done, or to be proved, something jis proposed to be

investigated. This is erroneous, and contrary to the rules of

and dealing a good deal with Harmonical proportions. If from any point
whatever out of the ellipse there be drawn a straight line in any direction

whatever cutting the ellipse, the line is cut harmonically by the tangent,
the ordinate, and the chords of the two arcs Intercepted between the point
of contact of the tangent and the axis. The tangent, sine, and chords are

always an harmonical pencil, and consequently cut in the Harmonical

ratio all lines drawn in all directions, from the given point. This applies
to all ellipses upon the same axis, (all having the same subtangent,) and
of course to the circle. The ellipse, therefore, might be called the Har-

monical Curve, did not another of the 12th order rather merit tliat name,
which has its axis divided harmonically by the tangent, the normal,

the ordinate, and a given point in the axis. Its differential equation is

2dy + dx2 = - :

, which is reducible, and its integral is an equation

of the 12th order. There is also another Harmonical Curve, a transcen-

dental one, in which chords vibrate isochronously.
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logic from its generality ; it is, as the lawyers say, void for

uncertainty. The modern one objected to by Pappus is not

uncertain ; it is quite accurate as far as it goes ; but it is too

confined, and errs against the rules of logic by not being
coextensive with the thing proposed to be defined.

The difficulty of the subject has been sufficiently shown
from the extreme conciseness and the many omissions, the

almost studied obscurity, of the only account of it which
remains ; and to this must certainly be added the corruption
of the Greek text. The success which attended Dr. Simson's

labours in restoring the lost work, as far as that was possible,

and, at any rate, in giving a full elucidation of the nature of

porisms, now, for the first time, disclosed to mathematicians,

is, on account of those great difficulties by which his pre-

decessors had been baffled, the more to be admired. But
there is one thing yet more justly a matter of wonder, when
we contrast his proceedings with theirs. The greater part of

his life, a life exclusively devoted to mathematical study, had

been passed in these researches. He had very early become

possessed of the whole mystery, from other eyes so long con-

cealed. He had obtained a number of the most curious solu-

tions of problems connected with porisms, and was constantly

adding to his store of porisms and of lemmas subservient to

their investigation. For many years before his death, his

work had attained, certainly the form, if not the size, in

which we now possess it. Yet he never could so far satisfy

himself with what has abundantly satisfied every one else, as

to make it public, and he left it unpublished among his papers
when he died. Nothing can be more unlike those who freely

boasted of having discovered the secret, and promised to

restore the whole of Euclid's lost books. It is as certain that

the secret was never revealed to them as it is that neither

they nor any man could restore the books. But how speedily
would the Castillons, the Girards, even the Ferrnats, have

given their works to the world had they become possessed of

such a treasure as Dr. Simson had found ! Yet though ready
for the press, and with its preface composed, and its title
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given in minute particularity, he never could think that he

had so far elaborated and finished it as to warrant him in

finally resolving on its publication.

There needs no panegyric of this most admirable perform-
ance. Its great merit is best estimated by the view which
has been taken of the extraordinary difficulties overcome by it.

The difficulty of some investigations the singular beauty of

the propositions, a beauty peculiar to the porisrn from the

wonderfully general relations which it discloses the sim-

plicity of the combinations the perfect elegance of the

demonstrations render this a treatise in which the lovers of

geometrical science must ever find the purest delight.

Beside the general discussions in the preface, and in a long
and valuable scholium after the sixth proposition, and an

example of algebraical porisms, Dr. Simsoii has given in all

ninety-one propositions. Of these, four are problems, ten are

loci, forty-three are theorems, and the remaining thirty-four
are porisms, including four suggested by Matthew Stewart,
and the five of Fermat improved and generalized ; there are,

besides, four lemmas and one porism suggested by Dr. Traill,

when studying under the professor. There may thus be

said to be in all ninety-eight propositions. The four lemmas
are propositions ancillary to the author's own investigations ;

for many of his theorems are the lemmas preserved by Pappus
as ancillary to the porisms of Euclid.

In all these investigations the strictness of the Greek

geometry is preserved almost to an excess ; and there cannot

well be given a more remarkable illustration of its extreme

rigour than the very outset of this great work presents. The

porissm is, that a point may be found in any given circle

through which all the lines drawn cutting its circumference

and meeting a given straight line shall have their segments
within and without the circle in the same ratio. This,

though a beautiful proposition, is one very easily demonstrated,

and is, indeed, a corollary to some of those in the ' Elements.'

But Dr. Simson prefixes a lemma : that the line drawn to the

right angle of a triangle from the middle point of the
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hypotenuse, is equal to half that hypotenuse. Now this

follows, if the segment containing the right angle be a

semicircle, and it might be thought that this should be

assumed only as a manifest corollary from the proposition,
or. as the plain converse of the proposition, that the angle in

a semicircle is a right angle, but rather as identical with that

proposition ;
for if we say the semicircle is a right-angled

segment, we also say that the right-angled segment is a semi-

circle. But then it might be supposed that two semicircles

could stand on one base
; or, which is the same thing, that

two perpendiculars could be drawn from one point to the

same line
;
and as these propositions had not been in the

elements (though the one follows from the definition of the

circle, and the other from the theorem that the three angles
of a triangle are equal to two right angles), and as it might
be supposed that two or more circles, like two or more

ellipses, might be drawn on the same axis, therefore the

lemma is demonstrated by a construction into which the

centre does not enter. Again, in applying this lemma to the

porism (the proportion of the segments given by similar

triangles), a right angle is drawn at the point of the circum-

ference, to which a line is drawn from the extremity of a

perpendicular to the given line ; and this, though it proves
that perpendicular to pass through the centre, unless two
semicircles could stand on the same diameter, is not held

sufficient ; but the analysis is continued by help of the lemma
to show that the perpendicular to the given line passes

through the centre of the given circle, and that therefore the

point is found. It is probable that the author began his

work with a simple case, and gave it a peculiarly rigorous

investigation in order to explain, as he immediately after

does clearly in the scholium already referred to, the nature of

the porism, and to illustrate the erroneous definitions of later

times (reortpiKoi) of which Pappus complains as illogical.

Of porisms, examples have been now given both in plain

geometry, in solid, and in the higher : that is, in their con-

nexion both with straight lines and circles, with conic sec-
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tions, and with curves of the third and higher orders. Of an

algebraical porisin it is easy to give examples from problems

becoming indeterminate ;
but these propositions may likewise

arise from a change in the conditions of determinate problems.

Thus, if we seek for a number, such that its multiple by the

sum of two quantities shall be equal to its multiple by
the difference of these quantities, together with twice its

multiple by a third given quantity, we have the equation

(a+b*) x = (a V) x+2 c x and 26 x = 2 c x \ in which it is evident

that if c = b, any number whatever will answer the conditions,

and thus we have this porism : Two numbers being given a

third may be found, such that the multiple of any number
whatever by the sum of the given numbers, shall be equal to

its multiple by their differences, together with half its multi-

ple by the number to be found. That number is in the ratio

of 4 : 3 to the lesser given number.

There are many porisms also in dynamics. One relates to

the centre of gravity which is the porismatic case of a

problem. The porism may be thus enunciated : Any number

of points being given, a point may be found such, that if any

straight line whatever be drawn through at, the sum of the

perpendiculars to it from the points on one side will be equal
to the sum of the perpendiculars from the points on the other

side. That point is consequently the centre of gravity : for

the system is in equilibrium by the proposition. Another is

famous in the history of the mixed mathematics. Sir Isaac

Newton, by a train of most profound and ingenious investiga-

tion, reduced the problem of finding a comet's place from

three observations (a problem of such difficulty, that he says
of it,

" hocce problema longe difficilimum omnimodo aggres-

sus,"*) to the drawing a straight line through four lines

given by position, and which shall be cut by them in three

segments having given ratios to each other. Now his solution

of this problem, the corollary to the twenty-seventh lemma of

the first book, has a porismatic case, that is, a case in which

*
Principia, lib. iii. prop. xli.

G 2
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any line that can be drawn through the given lines will be

cut by them in the same proportions, like the lines drawn

through three harmonicals in the porisin already given of the

harmonical curve. To this Newton had not adverted, nor to

the unfortunate circumstance that the case of comets is

actually the case in which the problem thus becomes capable
of an infinite number of solutions. The error was only dis-

covered after 1739, when it was found that the comet of that

year was thrown on the wrong side of the sun by the

Newtonian method. This enormous discrepancy of the theory
with observation, led to a full consideration of the subject,
and to a discovery of the porismatic case.*

* The remarkable circumstance of the case of the comet's motion, for

which Sir I. Newton's solution was intended, proving to be the porismatic
case of the construction, has been .mentioned in the text. It has been

sometimes considered as singular, that this did not occur to himself, the

more especially as he evidently had observed two cases in which the

problem became indeterminate namely, when the lines were parallel, and

when they all met in one point, for he excepts those cases in express terms

(Prin. lib. 1. Lem. xxvii.). It may be observed, that such oversights could

very rarely happen to the ancient geometers, because they most carefully
examined each variation in the data, and so gave to their solutions such

a fulness as exhausted the subject.

The commentators on the Principia (Le Seur and Jacquier) make no

mention of the omission. The circumstance of the porismatic c:i

not discovered till ten years after their publication, when F. Boscovic-h

found it out, in 1749. But it is very extraordinary that Montucla appears*

to have been unaware of the matter, although the first edition of his work
did not appear till 1758. Nor is the least reference made to it in the

second edition, which was published the year he died (1799). Then- art-

other omissions in both editions, and also in the continuation. He appears
well to have understood the ancient method, and to have read and

examined some of the most celebrated works upon it. He had given due

praise to Simson in his first edition ; and to Lord Stanhope, who sent him
the '

Opera Eeliqua ;' and we find in the second edition a full note upon
the subject, ii. 277. In the continuation iii. 11, and seq., we have

further indications of the attention which he had bestowed upon the

ancient geometry ; but it is remarkable that though Matthew Stewart's

Tracts, published in 1761, were known to him, he was wholly unac-

quainted with the '

Propositiones Geometricse,' which appeared soon after,

unl with the General Theorems which had been published fifteen years
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before. Nor does be appear to have even seen Professor Playfair's admi-

rable paper upon Porisms in the Edinburgh Transactions, 1794, the war

having probably impeded the intercourse of the two countries. Had he

seen this, he must have been brought acquainted \vith the history of the

porism relating to the comet's place, for it is there fully given.
It must be added, that Montucla's mathematical pursuits had for many

years been interrupted by the duties of the places which he held under

the government, until the Eevolution (Pref. Ill); and although the loss

of those employments restored him to his studies, it is probable that he

rather applied himself to the continuation of the History, the bringing it

down from the period to which the first volume extended, than to supply
omissions in those volumes, considerable as are the additions which he

made to them.

The third and fourth volumes were not published till after his death,

which happened when only a third part of the former had been printed.

Lalande undertook the revision of the rest, and how great soever liis

merits may have been as a practical astronomer, as an author, and a

teacher of astronomy, he had none of the mathematical acquirements
which could fit him. for superintending the publication of Moutucla's

work. He had some assistance from a very eminent mathematician,

Lacroix, and the notes given by him are, as might be expected, excellent.

But we are not distinctly informed of the additions, if any, which he made
to the text, while there appears considerable reason to suppose that

Lalande sometimes interfered with it. Certain it is, that many things
would have been suppressed, and others added, had Montucla survived to

finish the work of correcting and publishing. There is no reason to

think that the eminent analyst referred to (Lacroix), would have supplied
Montucla's omissions regarding the poristic case in the Principia, or

regarding the writers on the ancient analysis ; for on this subject he was

much better informed, in all probability, than Lacroix, and the omission

in the Principia comes less within the scope of modern than ancient

geometry.*

* This tract is taken from ' Lives of Philosophers,' Life of Simson.



V.

SUE CERTAINS PARADOXES REELS OU SUPPOSES, PRIN-

CIPALEMENT DANS LE CALCUL INTEGRAL.

des paradoxes, dont 1'existence a et6 frequemment

supposee, est d'une grande importance, parce que si la supposi-
tion a ete sans fondement, la doctrine est delivree de la charge

d'inconseqiience ;
et si les difficultes ne re9oivent point de

solution satisfaisante, nous pouvons nous assurer que Ton est

arrive a quelque verite nouvelle, ou a quelque limitation im-

portante des propositions generalement admises. On trouvera

pourtant que ce chapitre (qui pourra etre appele Geometria

paradoxos'), examine a fond, contient moins d'articles que Ton
n'aurait d'abord soup9onne.

II j a peu de geometres, si ce n'est Euler, qui aient plus
contribue de suggestions dans ce genre que 1'illustre d'Alem-

bert. et Ton se propose d'en considerer quelques-unes, une
surtout qui parait avoir beaucoup engage son attention, vu

qu'apres 1'avoir discutee dans un Memoire assez connu (Memoires
de Berlin, 1747), il y revient dans ses Opuscules (vol. IV, Me-
moire XXIII). Cependant c'est une chose incontestable qu'il

ne traite pas le sujet avec son exactitude accoutumee, parais-

sant plus desireux de decouvrir des paradoxes que de les

expliquer ou de les resoudre. Plus d'une fois, en considerant

une certaine courbe, il dit, "Voila le calcul en defaut." Ce

que noxis trouverons tout a 1'heure n'etre point dans une des

matieres mentionnees, et dont, dans 1'autre, sa solution ne

satisfait aucunement, si meme elle n'est pas mauifelitement

erronee. La courbe pourtant dont il parle merite bien d'etre

pleinemeut examinee, et, dans ses rapports de dynamique, elle
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parait offrir plus d'un paradoxe qui avait echappe a ce grand

geometi'e, parce qu'il ne 1'avait pas considered mecaniquement.

L'equation generale de la courbe est

_ 2_ _2

y + # 3 = a a
;

en prenant a =
1, comme le prend d'Alembert,

= (1 -

II prend comme 1'origine A ;
A P =

a?, P N = y, AC = 1, nous

dorine

ainsi Fare egale

f Vrf/ + rf*
2 =

( dx (1
-

x)
"^ = -

| (1
-

ar)T + |

(
la constante etant = -

)
;
mais il suppose que 1'integrale est

V ^/
3 r-
2 [l

~

et faisant 1 x = C P, il tire

et conclut que parce que lorsque C P = 0, Fare AE = -, ainsi
2i

CP etant negatif et (- CF)
2 = + C P2

,
A HE' devrait etre

egal a A N, ce qui evidemment ne peut pas etre ; car

et ainsi, clit-il,
" Le calcul est en defaut."
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Mais tout vient de ce que Ton a pris 1'equation de C, et que

pourtant on a pris A pour 1'origine des x. Si nous prenons A
comme 1'origine des x et de 1'equation, nous avons

(y \ *i

~\ O" * / *
-L ct J ,

par consequent

3*3et ainsi

et

en supposant avec d'Alembert que C P' = C P. Mais quand
meme nous prenons C pour 1'origine et faisons C P positif et

C P' negatif, si C P = x et PM =
y, nous trouvons

EE + A R,
c'est-a-dire

AEE> AAN.
Cela parait clair et manifesto, si nous prenons 1'origine qui

est beaucoup plus commode que 1'autre pour 1'investigation des

proprietes de la courbe. L'equation etant

4 . -I 4 . ( \ -{pvj-
y* + x y = a 6 et y = \a

3 x )*,

soit A le centre de la courbe :

AB = AE = a;

et prenez les valeurs positives de x entre A et E, les negatives
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entre A et B. Le paradoxe suppose est que A P etaiit egal a

A P', on trouve 1'arc EM egal a 1'arc E M', parce que A P2

= + AP2
. Or, voyons quel est 1'arc lorsque A est 1'origine ;

alors

( II /IO __\U

par consequent 1'arc egale

X

C
,

- x + 3 i 4
, c.dx--

;

--' = -a* x- + C,

3 I 2

et vu que 1'arc = 0, lorsque x 0, C =
0, et - a? x* repre-

g
sente 1'arc. Au point E, ou lorsque x =

a, 1'arc = -
a, au

A

point P', mettant

on a 1'arc

M' a = - a

et M A egal aussi a -
a, a cause de 1'egalite de

et

EM'a = ^a =BMa,
ft

et enfin

EaB = 2 .EM' a.

Ainsi nous avons

q

tandis que E M' a n'est que
- a. Par consequent,2

EM'aM >EM'a,
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comme il doit 1'etre, et le paradoxe cesse. Aiusi il parait

manifeste que prenant a = 1, comme le fait d'Alembert dans

1'equation de la courbe,*

M'a = Ma = M'a = Ma = EM'a = BMa =
,

2i o A

EaB = 3, Em'aM = ~,
o

le defaut du calcul n'existe pas.

Si pourtant on pretend encore que la branche BM ou que
la section entiere BMa est negative malgr 1'incontestable

(_.C\
2 f J_\ 2

-|- x~6) et
v^

x *
) >

alors nous avons un argument
de la raeme espece que celui que soutient d'Alembert comme

preuve d'un autre paradoxe allegue dans le VHP volume des

Opuscules (Mem. LVIII). II trouve

difficile a comprendre comment pre-

V^T_ y
nant A par Forigine des x au cercle

L AM C B, diametre A C = a, la valeur

radicale de AM etant = + */ a x, la

negative sera AB lorsque AM est

la positive, et non pas AM' dans le

sens directement contraire a A M, et apres avoir demontre que

cette negative ne peut pas etre A P, il conclut que \f a x

est AM aussi bien que + V x. Mais il parait veritablemeiit

que tout ce raisonnement est fonde sur erreur, et que bien

qu'il ne peut pas exister un AM' parce qu'il n'y a point de

cercle au-dela de A, plus qu'il ne peut y avoir de A P ; toute-

fois, que AM represente *Jax autant que -f */acc, et que

regarder A B comme ^ ax est une erreur. Efiectivement

A B est trouve, comme Test A M, par

V AP 2 + PB 2 ou V
et quoique, lorsque 1'on prend le diametre pour 1'axe A B =

AM (d'ou vient 1'erreur), si toute autre ligne est prise pour

* On voit que la lettre a dans la figure n'a aucun rapport avec cette

lettre dans liquation.
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1'axe, AM et A B sont parfaitement inegaux, comme aM < a B
si a IT C est 1'axe. Cependant si le paradoxe existait du tout,

il s'appliquerait autant au cas de

aM=
qu'au cas de

AM =

Sa valeur negative ne serait pas, selon d'Alembert, dans la

direction a b, tout directement opposee a a M, niais dans la di-

rection a B.

On peut faire remarquer en passant que cette discussion

suggere une propriete de la parabole conique dans son rapport
avec le cercle, et fait voir que cette propriete n'appartient qu'a

une branche de la courbe

AM - V^Tet PM' = AM,
si M' est dans la parabole dont le para-
metre egale A C = a. Et ce rapport des

deux courbes continue jusqu'a ce que x

(de la parabole)
= a, c'est-a-dire jusqu'a

C' ou y = a = C C'. Ici done nous avons

la valeur negative de A M' et de P M' ;

P F = P M', et ils sont directement op-

poses. Mais AM r

et A P', comme AM et

A m, ne sont pas directement opposes ;
chacun d'eux doit etre

trouve par un precede separe, et 1'un n'est pas le negatif

de 1'autre, *Jax-\-x* est la valeur de tous les deux.

On voit aussi dans cette propriete de la parabole son rapport
avec 1'hyperbole, comrne de la parabole avec le cercle, a cette

difference pres que ce rapport s'etend par tout le cours des

deux courbes, au lieu que le rapport de la parabole avec le cercle

est borne a la portion dont 1'abscisse n'excede pas le parametre.
On doit de plus faire observer que meme a 1'epoque bien ante-

rieure de 1'Encyclopedie (1754), d'Alembert avait eu des

opinions particulieres sur les quantises negatives (voir 1'article

Courbes), et sa controverse avec Euler sur les logarithmes des

quantites negatives est assez connue.
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Maintenant on peut faire reinarquer que quand meme nous

pourrions conceder 1'existence du paradoxe que d'Alembert

suppose sur la courbe
. *. 2

?/
3
4. x* = a?,

la solution qu'il donne n'est aucunement admissible. L'un des

defauts du calcul, dit-il, peut etre explique par la supposition

que la branche C B (Fig. 2) est situee au-dela de B, comme B D,

par quoi, dit-il, il y aurait continuation de la branche B,
coinme s'il croyait qu'il n'y eut aucune continuation en B C.

Mais contre cette supposition s'elevent deux objections deci-

sives. Premierement, 1'equation donne aux y entre A et B des

valeurs egales et opposees des deux cotes du A B, au point B,

y = 0, et au-dela de B, comme par B d, portion de 1'axe qui

repond a B D, y ne peut pas exister, vu que x = > a, et

que le radical devient *J ! Mais secondement, il n'y a

pas possibilite qu'une courbe algebrique comme Test celle-ci

s'arrete tout court, ce que, par cette supposition, elle devrait

faire au point D, tandis que la difficulte qui principalement
fait recourir a 1'hypothese, la discontinuation supposee de la

branche a B au point B n'est reellement, excepte que la courbe

a un point de rebroussement (ou une cuspide) au point B.

Si le celebre geometre eut examine la courbe entiere * au lieu

de se borner a une de ses portions, il aurait trouv6 qu'elle est

uue ligne a E C B, a quatre cuspides, en rentrante en elle-meme ;

et il aurait certainement abandonne sa theorie et aussi sa

supposition du paradoxe et du defaut du calcul. Mais c'est

certain aussi qu'il aurait trouve d'autres paradoxes que 1'on

doit infiniment regretter qu'il n'ait pas examines, et dont la

solution ou 1'explication parait assez difficile, pour ne pas dire

impossible. Us ont rapport avec les recherches de dynamique
* Nul doute qu'il domie la figure de la courbe entiere dans la planche ;

mais il ne parle du tout que des deux branches E a, a B, et sa notion que
la courbe s'arrete tout court k B avait la meme application a la branche
E a qui devait etre cense'e s'arreter tout court au point a

;
et il ne propose

pas que cette branche E a soit continued de 1'autre cote de 1'axe C a.

Aiusi il parait certain qu'il n'avait pas forme les deux branches E C, B C,

et il se peut que la figure fut trace'e apres qu'il eut fini sa description.
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plutot qu'avec 1'analyse pure, et nous nous proposons de les

considerer d'abord, et de finir avec quelques autres matieres

toucliant la courbe, independantes de celles renfermees dans la

discussion de dynamique.

Supposons maintenaut qu'un corps ou une particule fosse

une revolution dans cette courbe comme orbite, le centre de la

courbe etant celui de la force centripete. Cette force etant

r

proportionnelle a (r = rayon vecteur
;
P = perpeu-2P 3 .R

diculaire sur la tangente ; R rayon de courbure), Ton a la

sous-tanente

PT -

la tangente

et

dy

P = A O =

MT = (

A T . PM
MT

et

E = 3 . a* ^ (a
l _

j.1)
i = 3 p.

par consequent, la force centrale/est proportiounelle a,

6 a
4 4/2 2\^
x~* (a

3 - x*)

(
^ ,_

telle est 1'expression de la force en fonction de ia distance
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Cette force est repulsive par toute 1'orbite, car P et E etant

des cotes opposes de 1'axe doivent avoir des signes differents,

r
et ainsi 1'expression doit etre toujours negative. Mais

l! . Ji

voici un resultat de 1'equation. La force devient infinie

lorsque x = 0, c'est-a-dire au point a de 1'orbite, et aussi lors-

que x = a, c'est-a-dire au point B de 1'orbite, et elle est iufinie

aux deux autres points E et C.

Si 1'on fait le cuspide (point double) C le centre de force au

lieu de A, on trouve 1'expression de la force (niettant a =
1)

comme

,*

[a iTa i
'

f 2\ 2" 2 / 2\^" / 2\T
1 - (l

- X*) - X* (l - X*) J (\ - X*)

et ici comme dans 1'autre cas, la valeur de la force est infinie

pour les deux valeurs de x, x = 1 et x = 0, et qui est assez

remarquable ;
elle devient infinie au point B dans la portion de

1'orbite C B ou la force est attractive aussi bien que dans la

portion aB ou elle est repulsive, ou dans toutes les quatre
branches lorsque C, au lieu de A, est le centre de force. Meme
resultat si 1'on prend comme centre de force les points E et B.

Ainsi il est manifeste que dans tous les cas la valeur de la

force devient infinie lorsque le mobile arrive a Fun des points
de rebroussement.

Avant de discuter ce resultat, il sera bon de faire observer

que la meme chose arrive dans le cas des autres orbites, et que
toutes les difficultes que 1'on eprouve dans la courbe dont

nous sommes occupes se recontrent dans ces autres trajectoires.

Par exemple dans la lemniscate

y = x (1
- *)*

dont la sous-tangente est

x(l -X*) 2x-.3x3

_ (2-4x4 -3xY
"1 2~^~'

:
" ~

2 XA 3 x
(2 + 4 a?* - 5*)*
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m (2^-3) (2 -a*
x (2

- 3 xs

2
par consequent, / est infini soit que x =

0, soit que x =
* O

Mais 1'analogie avec notre courbe parait plus complete si Ton

prend le centre de force a 1'une des extremites de 1'axe
;
car

alors le mobile tournant dans 1'orbite passe par le milieu de

1'axe, d'un cote a 1'autre de cet axe, et a ce point la force est

iufinie. Meme chose dans la ligne que Newton appelle Para-

bola nodata (Enumeratio Lin. tertii ordinis, IV. 13). II n'en

donne pas 1'equation, mais on peut la deduire de 1'equation

generale ; elle est

y = x (a x) %

2 x (a a?)ma nous donne pour la sous-tangente
'2a-'3x

i
(4 ax 5a?

s

) (a x)*,. . .

pour la perpendiculaire

j_

rayon de courbure -
[(2 a - 3 a?)* + 4 (a

-
a?)]

2

2ar

et r etant egal a x tj a -f- 1 a?, nous avons

2 (a + 1 - a;)*
f s

a? (4 a 5 a:)
3

(a a?)"

La lemniscate a, comme on sait, la figure d'un huit de chiffre.

La parabola nodata se compose d'un ovale et deux branches

infinies, sans asymptotes.
II y a deux difficultes qui principalement se presentent dans

cette discussion. La premiere est la transition du corps mobile

de 1'une des branches de notre courbe a 1'autre, une discon-

tinuite complete existant a ce que Ton a souvent pretendu.
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La seconde difficulte est la valeur infinie de 1'expression pour
la force a certains points de 1'orbite. Sur la premiere de ces

difficultes, et en partie sur la seconde aussi, la consideration

de la parabola nodata et des courbes de cette forme parait

repandre de la lumiere. Car si Ton prend pour centre de

force un point de 1'axe, A', hors de 1'ovale, la force repulsive fera

passer le mobile de a par B, m (Fig. 6)

jusqu'au point A ou cette force devient

attractive ; et en changeant de position
de 1'un des cotes de 1'axe a 1'autre, le

corps passe par A, ou la force devient

infinie. Or on peut supposer que la

ligne A B, 1'axe de 1'ovale, decroit inde-

finiment jusqu'a ce qu'elle s'evanouit
;

et alors, comme 1'a

remarque jNTewton lui-meme, 1'ovale devient une cuspide (point
de rebroussement). Ainsi cela pourra arriver dans le cas

de chacune des quatre cuspides de notre courbe. Toutes.

ont pu etre des ovales dont les axes s'etaient evanouis ; niais

a 1'instant d'evanouissement de 1'axe, et lorsque 1'ovale fut

presque eteint et reduit aux dimensions les plus petites, pour
ne pas dire infinitesimales, le corps avait ete pousse par la

force d'abord repulsive, puis a 1'extremite de 1'axe de Fin-ale

attractive, et la valeur infinie de la force avait existe an

point A reuni au point B apres, 1'extinction de cette force

ayant ete infinie a tous ces deux points avant 1'extinction de

1'ovale.

Sur la seconde difficulte, il y a un exemple plus familier dans

le cas du cercle, lorsqu'il est 1'orbite d'un mobile, et que le

centre de force est dans la circonference ; car alors cette force

devient infinie
( 1'expression etant - au lieu de

)
au pas-

V r
5

/* /

sage du corps par le centre : ou r =
; mais a 1'autre extremite

du diametre elle ne Test pas comme elle est dans la parabola
nodata.

Un ami tres-savant dans la geometric avait pense que

1'explication de 1'infini au passage du corps de 1'un a 1'autre

cote de 1'axe se trouve dans ce que la force fiuie ne peut
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aucunement le faire passer d'une branche de la courbe, et qu'il

doit's'eloigiier a 1'infini, plutot que de prendre 1'autre brancbe ;

mais 1'exemple de la lemniscate parait repousser cette notion,

aussi bieii que celui de la parabola nodata, et meme du cercle ; car

dans tons ces cas, le corps continue son mouvement sans aucune

interruption en passant par le point ou la force devient infinie.

L'analogie des forces qui agissent en raison inverse de la

distance vient nous frapper dans cette discussion. On peut

pourtant remarquer que lorsque la gravitation est supposee

d'agir avec une force infinie, vu que la distance n'existe plus, il

est question du centre du globe, ou toute la masse est supposee

reunie, et aussi il y a toujours le rayon du globe entre le corps

qui gravite et le centre de force. Que devrait-on dire de la

force magnetique, soit que cette force est, comme 1'a supposee

Newton, 1'inverse cube de la distance, soit 1'inverse carre

comme 1'on pense aujourd'hui ? Dans 1'un ou 1'autre cas au

point de contact la force devient infinie, et pourtant les pheno-
meues nenous declarent aucune force infiuie. Meme remarque

peut se - faire sur toute force ou influence quelconque venant

d'un centre et propagee a la circonference, de force ou d'in-

fluence. Peut-etre faut-il admettre la theorie de Boscowich,

qui suppose une force repulsive plus pres des corps, et croissant

en raison inverse de la distance, et ainsi contrebalan9ant ou

remplacant la force d'attraction ; et les speculations sur I'im-

possibilite d'un contact complet out du rapport avec la propo-
sition de 1'infini, en tant que 1'on pourrait deduire cette irn-

possibilite de la non-existence dans la nature d'une force

distrayante (divellante).

Mais il y a une plus grande difBculte que celle que nous

avons considered dans 1'expression de 1'infini. Les cas que
nous venons de considerer ont rapport avec des points de

1'orbite, la ou elle passe d'un cote de 1'axe a 1'autre et que la

tangente devient nulle ou infinie. Mais que dire d'une valeur

infinie aux autres points, comme dans la lemniscate au point

/~2 4
ou x = A / a, et dans la parabola nodata. a oc = - a ? Ce-

v^ o o

n
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pendant ce n'est pas a ces valeurs de x que les courbes sont le

plus eloignees de 1'axe et que leurs taugentes sont infinies ; au

contraire, c'est Ja ou x = - a dans la lemniscate, ou au milieu
Z

2
de 1'axe de 1'ovale, et la ou x = - a dans la parabola nodata. Si

o

Ton n'etait pas assure que le precede pour obtenir la valeur de

la force centrale est de toute exactitude, par la conformite de

ses resultats aux lois les plus connues de dynamique, par-
ticulierement a la raison inverse de la distance des foyers des

sections coniques, on serait tente de soup9onner quelque para-

logisme en observant le resultat des memes precedes dans le

cas que 1'on vieiit de traiter. Pourtant, au lieu de dire para-
doxe avec 1'illustre geometre dont nous avons ose tant parler,

il vaut mieux de souponner quelque erreur dans 1'application
des precedes du calcul, quelque confusion telle que Ton peut

remarquer dans ses raisonnements, confusion, c'est-a-dire des

valeurs algebriques et geometriques, a ce qui regarde le signe

negatif, et ainsi cela sera non pas le calcul en defaut, mais

ceux qui 1'appliquent.
Les proprietes generates et. geometriques de la courbe qui

nous a occupe d'un autre point de vue, sont assez curieuses

pour meriter une discussion plus suivie.

1. Ce qui nous frappe d'abord, c'est 1'exception que parait

ajouter cette courbe aux autres exceptions au celebre lemma

(XXVIII) de Newton, portant qu'aucun ovale n'est susceptible

ni de quadrature ni de rectification. D'Alembert a note sa

rectification, qui ne peut pas etre douteuse, vu que

^

*/ dy*

dont 1'integrale est

et vu que x = 0, 1'arc =
;
ainsi C = 0. Mais la quadrature

aussi est possible ; car
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I ydx = dcc\a 3 x j
)*,

on (si nous mettons x = z3

)

= r 3z*dz

(a* - z*)*
et 1'aire

,
F 1

3

/^ , /a?y 7 # 1
3 a* x/ - sirr 1 + ( -+^-^

+C;

et C = si Ton prend 1'aire depuis A a; et 1'aire entiere AaB,
g

x etant =
a, est II . a2

.

32

On dira peut-etre que lorsque Newton a enonce 1'impossi-

bilite, il s'est servi de 1'expression figura ovalis, et qu'il a pu
vouloir se borner aux courbes d'une courbure continue, comme
le cercle et 1'ellipse. Pourtant 1'opinion universelle porte

qu'il avait regard a toute courbe rentrant en elle-meme ; et cette

opinion est appuyee par la consideration qu'en donnant les cas

d'exception a son proposition, il se borne aux cas des courbes

qui ont un arc infini avec leur ovale. Mais aussi il est certain

que la demonstration de sa proposition s'applique aux courbes

telles que celle qui nous occupe a present. Car on peut

prendre le centre pour le pivot sur lequel tourne la regie qui
est supposee. Encore on n'a jamais pretendu que la lemnis-

cate fut exclue de la proposition, toute carrable qu'elle soit,

quoique non rectifiable.

2. La courbe est une epicyclo'ide engendree par le roulement

d'un cercle dont le diametre est un quart du diametre du cercle

exterieur. Si le rayon de ce cercle =
a, 1'equation de la courbe

etant

le rayon du cercle roulant est -.

+ x* = a

-.

H 2
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2 o

3. Si Ton deerit une ellipse sur 1'axe de la courbe y* + xl

2

= a 3
",
et que la sornme des axes de 1'ellipse

= a, elle touchera

la courbe.

4. La courbe a quelque ressemblance avec la developpee de

1'ellipse ; mais elle ne Test pas ; car 1'^quation de cette deve-

loppee differe de notre equation. Elle est

y* 4- a * x* = (I
- a2

)*,

les axes de 1'ellipse etant 1 et a. Mon savant ami M. Routh a

examine la question, n'ayant doute que notre equation ne soit

celle de quelque developpee; et il trouve que dans un cas

S- S JL 2

y* + a 3 x* = a 3 est la developpee d'une ellipse, notamment
de celle dont 1'equation est

t

a? 1
tr -J = .

a2 (1
- a2

)
2

Lorsque a > 1 ou < 1
,
la courbe est la deVeloppee de quelque

ellipse. Mais dans les cas qu'elle ne le soit pas, elle est fre-

quemment la developpee d'un ovale de quelque espece differente

de 1'ellipse. Lorsque a = 1, le precede manque completement,
et Ton ne peut avoir aucune developpee. Dans plusieurs
livres elementaires, on remarque la developp^e de 1'ellipse

represented sous la forme de notre courbe ; mais elle est com-

pletement differente dans le fond.

5. La perpendiculaire a la tangente du centre de la courbe
1 / 8\ I I

(a etant = 1) est oc \1 <s*)* et le rayon de courbure 3 . x*

(l-a?0
l

- AinsiB = 3P.

6. Si la tangente est prolongee jusqu'a ce qu'elle rencontre

les axes perpendiculaires de la courbe, cette tangente ainsi

prolongee est toujours egale a 1'axe, c'est-a-dire a a.

7. De cette propriety de la tangente prolongee constante,

resultent des consequences assez remarquables. Entre autres

on peut noter celle-ci : Si un point est pouss^ sur une ligne

donnee entre deux perpendiculaires, avec une vitesse uniforme,

tandis que cette ligne est poussee sur 1'une des deux perpendi-
culaires avec une vitesse inversement proportionnelle a la dis-
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lance de son entremite de la perpendiculaire, le point mouvant
t 4 "' ' 1

decrit la courbe y
a + a?

3
-f a 3

, les axes etant chacun = a.

Soit E N" la ligne, M le point, A B un des axes. Si le mouve-

ment de M sur E N est uniforme, et que N est pousse avec la

velocite
-r-^p,

M decrit la courbe. Encore prenez D pour le

centre instantane de rotation de E IS"
;

la perpendiculaire D M,
de D sur E N, coupe E IS" en M, qui est dans la courbe ;

le

mouvement de rotation de la ligne etait combine avec le mouve-

ment en ligne directe du point.* Si le point M reste sans

mouvement sur E N, tandis que EN est poussee sur A B et

A C, M decrit une ellipse, que devient un cercle si M est an

milieu de E N.
8. La propriete de la tangente prolonged constante mene

naturellement a la comparaison de notre courbe avec une autre

que j'avais decrite il y a soixante ans dans les Phil. Trans.

(1798, part. II), comme ayant une tangente constante, et par

consequent la sous-tangentef
f~j /y ._

/ 2 i

a etant la longueur de la tangente. L'equation differentielle

y

nous donne pour integrate

* Cette proposition s'est presentee k mou illustre confrere M. Chasles,

qui a eu la bonte de me la communiquer.
t Voir Art. 1 de ce volume.
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Et la courbe est de la formule (fig. 8) CMw, ayant une

cuspide a C, et etant convexe a Faxe A B ; notre courbe aux

quatre cuspides est C m N, ayant la tangente prolongee S T
constante, = A C = AB ; tandis que la logarithmique C M n a

la tangente MB = A C, et a = A C.

L'arc de celle-ci S = a . log. y + C, et corame C . M n
y

= y et x7 -
0, C = 1'aire = *J .ydx = sdy*/ a* y*, ainsi la

courbe a ce rapport avec le cercle, que
8M m' etant un cercle

dont le rayon = B M = a, 1'aire de la courbe, A CM P est

egale a 1'aire du cercle PM b B.

Ce rapport avec le cercle n'existe par dans 1'autre courbe

C m N ; non plus que cette autre propriete de la logarithmique,

qui la lie avec la tractrice de la ligne droite.*

* This tract is the Mem. read June 1857, before the National Institute.

The volume of Mem. is not yet published, but only the Compte Eendu.
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VI.

ARCHITECTURE OF CELLS OF BEES.*

QUOIQUE peu de sujets aient occupe davantage les naturalistes

de tous les siecles, et rneme les geometres depuis le temps
d'Aristote et de Pappus, que 1'abeille, ses habitudes, et son

architecture, on ne peut pas nier qu'avec un grand progres et

des verites importantes, des erreurs ne se soient glissees assez

remarquables pour meriter une explication. Aussi est-il certain

qu'un peu d'attention suffit pour dissiper les erreurs que la

negligence ou les prejuges out fait naitre chez les geometres

egalement, et chez les naturalistes, tandis que tous les deux

s'etant arretes tout court ont manque faire des observations

interessantes qui se presentent en relevant les erreurs. De ces

erreurs 1'une est entomologique, 1'autre geometrique. L'avance-

ment de nos connaissances sur ce sujet est d'un interet, et

meme d'une importance sous plus d'un point de vue, qui justifie

quelques details.

I. Dans les transactions de la Societe Wernerienne (vol. II,

p. 260), le Dr. Barclay, celebre anatomiste d'Edimbourg, a

annonce une decouverte que les naturalistes ont cite 1'un

apres 1'autre, comme constatee sans en examiner les preuves ;

ou peut-etre trompes par les memes appareuces qui avaient

egare M. le docteur. Jl se peut qu'ils furent disposes de

1'accepter d'autant plus que nous devons a un autre anatomiste,

un grand physiologiste (le celebre J. Hunter), la plus im-

* This tract is the memoir read May, 1858, before the National Institute,
" Recherches Analytiques ct Expdrimentales." The volume of Mem. has

not yet been published, but only the Compte Rendu.
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portante des decouvertes en cette branche de science. La

proposition dont il s'agit porte que chaque alveole, taut pour
ses parois hexagones que pour son fond ou base pyramidale, est

double, de maniere qu'elle est separee et independante des

alveoles qui 1'entourent, et formee d'elle-meme ; que ses parois
de cire sont attaches aux parois des autres alveoles par une
substance agglutinante ; et que si cette substance est detruite,

chaque alveole peut etre entierement separee des autres. Le
Dr. Barclay pretend aussi que les alveoles des guepes sont

doubles, et que leur substance agglutinante est plus facilement

detruite que ne Test celle des alveoles d'abeilles.

II parait presque impossible de croire a cette structure apres
les observations des naturalistes, surtout de Eeaumur et de

Iluber, sur la maniere dont 1'abeille travaille. Elle ne peut pas
s'insinuer entre les deux plaques de cire pour les polir ;

car

elles sont parfaitement et egalement polies. La substance

agglutinante n'existe pas dans la cire. Mais avant tout, 1'in-

spection des gateaux de cire prouve que si les alveoles n'ont

jamais servi pour faire eclore des oeufs, et pour 1'education des

vers et des chrysalides, on ne voit aucune trace de parois
doubles. Celles dans lesquelles les larves ont ete transformers

en chrysalides presentent 1'apparence qui a egare le Dr. B.
;

et 1'on remarque que son Memoire etait accompagne d'un

gateau de cire vieille, dont les alveoles avaient entretenu

plusieurs successions d'insectes. Mais venons aux phenonemes
de plus pres.

Un gateau fut choisi dont une portion n'avait jamais servi ni

pour amasser, ni pour engendrer, et dont 1'autre portion avait

re9u une seule couvee. La premiere portion etait parfaitement
blanche ;

la seconde avait une legere teinte jaunatre, ou une
nuance brune tres-legere ; et dans plusieurs endroits, on voyait
de ces raies rouges, observees par Huber, et qu'il prouve etre

uue matiere vegetale cueillie des arbres, et surtout du peuplier.

Le gateau avait ete fait au mois d'a&ut, et fut pris quatre
semaines plus tard. Etant plonge dans 1'alcohol, peu ou point
de changement fut produit avant que 1'alcohol fut echauffe ;

et alors la cire s'est fondue tout de suite ; la partie blanche fut
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entierement dissoute, sans qu'aucune trace des alveoles restat ;

et la partie jaunatre ne se fondit pas entierement. De cette

partie il decoula de la cire fondue, mais le gateau gardait sa

forme et ses dimensions a peu pres, bien que la chaleur con-

tinuat. Lorsque 1'alcohol bouillait, cette portion du gateau
dans laquelle les abeilles avaient ete produites se separait en

morceaux. mais ilfallait remuer pour aider la separation, et pour
faire fondre toute la cire. Lorsqu'un gateau plus vieux, et qui

egalement avait produit des abeilles, fut mis dans 1'alcohol

moins bouillant, la separation et la fonte de la cire deman-

derent plus de temps ;
mais enfin en le remuant toute la cire se

foudait, excepter cette petite portion que 1'alcohol ne prencl pas,

et qui restait dans la forme de petites globules ; mais toutes les

alveoles sont restees dans leur forme, chacune separee des autres,

et pas une seule ne fut composee de cire, mais toutes de sole, de

cette soie, c'est-a-dire, que forme le ver avant sa transmutation

en nymplie ou chrysalide, et dont il tapisse 1'interieure de 1'alveole

de cire. Avec de 1'eau bouillante on peut operer de meme,
mais plus lentement. Avec 1'esprit de terebinthe, la fonte de

la cire est tres-rapide, seulement on ne peut pas voir par cette

forme de 1'experience dans quelle partie ^&G 1'alveole la cire

existe. L'acide sulfurique peut faire precipiter ou fondre la

cire sans la dissoudre autrement qu'en tres-petite quantite, et

les alveoles restent. L'experience fut repetee avec un gateau
dans lequel plusieurs couvees avaient ete produites. Les al-

veoles furent moins larges, leurs parois plus epaisses, et leur

couleur, une nuance brune foncee, ca et la presque noire.

Maintenant, examiuons les alveoles separees par ce procede.
Chacune fut formee d'un prisme hexagone termine par tin

pyramide de trois rhombes t^gaux ; en un mot, chacune fut

exactement a la matiere pres une alveole comme celles de cire ;

mais formee de materiaux entierement difierents. Les parois
et la base furent composes d'une pellicule extremement mince

et semi-transparente qui ressemblait a la feuille de battant d'or,

mais absolument sans ride. Les plus vieilles garderent la forme

plus exactement ; de sorte que leurs angles et leurs plans furent

aussi bien defmies que le sont ceux de cire dans le gateau neuf.
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Mais ce n'etait point la une seule pellicule, comme celles qui
n'avaient servi qu'a un seul ver ou insecte ; au contraire, ces

alveoles avaient plus d'une pellicule, 1'une du dedans de 1'autre ;

et ces pellicules pouvaient etre separees au nombre de cinq ou

six, toutes provenantes de la meme alveole, et toutes gardant les

formes hexagones et rhomboidales
;
mais la sixieme avait des

rhombes beaucoup moins marques ;
et s'il fut jusqu'a une

neuvieme ou dixieine, la base devenait plutot spherique que

pyramidale, et etait tres-peu profonde. Les parois hexagones
de toutes les alveoles gardaient cette forme ; seulement les

derniers (c'est-a-dire les interieurs) avaient un plus petit
diametre. Dans les angles il y avait un peu de la matiere

rouge, mais beaucoup plus dans le fond, ou partie pyramidale.
Cette base dans les alveoles internes paraissait presque rem-

plie de rouge. La bouche de 1'hexagone a toujours un bord

compose principalement de cette matiere.

J'ai trouve impossible de dissoudre, ou de quelque maniere

que ce fut d'affecter la pellicule, soit en la macerant dans

1'alcohol, dans 1'esprit de terebinthe, ou de tout autre reactif,

meme bouillant, excepter que la matiere rouge apres une longue
maceration etait depositee, et donnait un teint jaunatre a la

liqueur.

L'exactitude avec laquelle la pellicule tapisse la cire de

1'alveole est tres-remarquable. II n'y a pas le moindre ride,

ni intervalle. Tout est couvert, et avec une pellicule de la

meme epaisseur partout, exceptez que la matiere rouge aux

angles fait varier un peu 1'epaisseur de la pellicule a ces angles.

Tout 1'interieur de 1'alveole forme un tapis uni, sans aucune

couture, et sans aucun ciment. Car apres avoir soup9onne que
la matiere rouge aux angles pourrait servir de ciment, cette

notion a ete de suite contredite par 1'inspection de ces parties

angulaires qui n'avaient jamais eu de couche de rouge, et de

celles dont la matiere rouge avait ete grattee et enlevee. Aussi

j'ai trouve que la matiere rouge etait exactement sur les memes

portions de la pellicule. Car en decoupant uri hexagone conte-

nant plusieurs pellicules, de maniere a etendre tous les six cotes

(comme a la figure 1), onvoyait que cette matiere etait repartie
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daris toutes ces pellicules de la meme fa9on. La fig. 2 fait voir

la distribution dans les angles de la base
;
et la il n'y a pas de

Fig. 1. Fig. 2.

difference entre les pellicules successives par rapport a cette

matiere, excepter que, etant retrecie dans celles qui sont le plus

eloignees de la cire, la matiere rouge occupe une plus graude

proportion, et la partie sans rouge une plus petite, la somme
totale du rouge etant le meme dans toutes les pellicules.

Une

pellicule de la meme substance, aussi transparente mais bien

plus epaisse, tapisse 1'alveole de la reine abeille. La matiere

rouge est plus egalement repandue sur sa surface en nuages et

raies, vu qu'il n'y a point d'angles qu'elle doit doubler. La

pellicule de cette alveole royale prend la forme de la cire ;
mais

ce qui est tres-remarquable, c'est qu'elle .n'est pas toujours sur

1'interieur de la cire. Quelquefois elle est enfermee dans la

cire, dont une couche est meme plus epaisse que les parois de

cire, et j'en ai examine qui avait une epaisseur beaucoup plus

grande. On peut constater que dans les alveoles ordinaires, la

cire n'est pas platree sur la pellicule. On a examine de pres
les plus vieux gateaux ; et jarnais 1'on n'a trouve un seul ex-

emple de pellicule entre deux couches de cire, excepte dans

1'alveole royale. Aussi on a vu clairement qiie dans les plus
vieux gateaux, qui donnent plus de neuf ou dix suites de pelli-

cules dans les alveoles ordinaires, 1'alveole de la reiue seule

n'avait qu'une pellicule.

La maniere de former ces pellicules et de tapisser 1'alveole me-

rite beaucoup plus d'attention qu'elle n'a jusqu'a present re9ue.

L'opinion generale parait etre qu'elles sont fabriquees en tissue.

M. Daubenton (Eucyclop. 1751, vol. I, p. 21) decrit le precede
de tisser comme opere en mettant des fils tres-fins et tres-pres,

1'un de 1'autre, qui se croisent. Huber semble etre de cette
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opinion, et que lever tapisse a la fois qu'il forme la toile, et non

pas qu'il fait la toile d'abord et puis 1'applique aux parois. II

parait presque impossible de croire que la toile est faite par cette

operation en meme temps qu'elle est appliquee. Car la largeur
de 1'alveole varie des le commencement de la partie pyramidale
a chaque point, et bien que le ver n'eut a tisser qu'autour de la

meme circonference et sans avoir le moindre aide pour le regler,

cependant il devrait faire la toile si exactement adaptee a la cir-

conference, qu'en 1'appliquant il n'y en aurait ni de trop, ni de

trop peu, et sans aucune ride. C'est certain qu'une telle opera-
tion surpasse infiniment tout ce que fait jamais 1'insecte parfait.

Avec toutes les resources de notre science et de notre meca-

nique, on peut affirmer hardiment qu'il nous serait impossible
de tisser un sac de toile de largeur variante a tous les points,
et pourtant si exacte dans ses proportions qu'etant decoupe ou

fendu, il tapisserait les murs sans la moindre ride, et sans aucune

intervalle.* La difficulte est moins grande si le ver tapisse au

moment d'appliquer, et qu'a chaque instant il place la toile qu'il

vient de fabriquer. Mais c'est plus probable qu'il n'y a pas de

tissage du tout. Certainement la plus puissante loupe ne fait

voir aucune filature. Apparemnient une matiere glutineuse est

repandue par le ver sur les parois ; et toute difficile que soit

cette operation aussi, elle 1'est beaucoup moindre que 1'autre,

vu que le ver a les parois pour le guider. II n'est pas douteux

pourtant que le resultat soit extraordinaire ; car non-seulement

il y a une egale epaisseur par toute la pelh'cule, mais le ver en

* J'ai mesure et calcule la difference de la surface des trois portions du

tuyau de 1'alveole. La partie pyramidale, la partie voisine, composes
d'une portion de la pyramide et d'une partie de 1'hexagone, et la partie

de 1'hexagone seule. En supposant toutes les trois portions de la meme
hauteur, les surfaces sont comme 3-03, 5*05, et 4-04 (lignes carrees)

respectivernent. Aiusi en filant le tissu le ver devrait tisser exactement

dans ces proportions ; et en filant les deux premieres parties il devrait

changer a chaque instant la vitesse de son travail, vu que le contour, ou

circonference de la surface ne reste par la meme, mais change a chaque

instant, et que le ver devrait tisser en suivant cette circonfe'rence. Cette

circonference varie depuis le fond pyramidale de zero a douze lignes sui

la surface ci-dessus notee.
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faisant le contour pour platrer, doit s'arreter exactement au

point d'ou il est parti, vu qu'il n'y a pas le moindre vestige de

la jonction des deux cotes
; pas la plus petite difference d'epais-

seur.

II parait presque certain que la pellicule est douee de

differentes qualites, selon qu'elle est nouvellement faite ou le

contraire. On expliquerait difficilement le phenomene des vers

la fabriquant toujours avant de devenir chrysalides. Car le

premier ver avait deja tapisse la cire ; et s'il n'avait besoin que
de se proteger lui-meme, ou sa chrysalide de la cire, le second

ver qui naitrait dans la meme alveole serait protege par la

meme pellicule ; et ainsi des neuf ou dix autres successeurs ; et

pourtant tous doivent faire une pellicule chacun, meine en
diminuant 1'espace, et a la fin. presque la remplissant. II ne

nous est aucunement perrnis de dire que voici une des meprises

que fait 1'instiuct quelquefois, parce que ces meprises sont

toujours accidentelles ; par example, lorsque la mouche trompee

par 1'odeur d'un fleur et croyant que c'est de la charogue, y
pond ses osufs. Mais chez les abeilles c'est une meprise con-

tinuelle et reguliere, s'il en est une ; car elles preferent

toujours deposer les oeufs dans une alveole bu une couvee a ete

elevee, et ou par consequent il y a une ou plusieurs pellicules

de laissees aussi parfaites que pourraient etre une pellicule

nouvellement faite. L'instinct de 1'insecte etant surtout

d'economiser des materiaux et du travail, il le porte d'abord a

preferer le vieux gateau pour ne pas faire des alveoles de la cire

vierge ; mais comment alors le meme instinct ne le porterait-il

pas a profiter des pellicules qu'il trouve dans les alveoles?

Mais au lieu de cela le ver prodigue son materiel et son travail

a faire une pellicule neuve pour lui-meme et pour sa chrysalide.

Un instinct qui manque aussi souvent qu'il reussit ne peut
aucunement etre compare a ces meprises ou fautes accidentelles.

Ainsi il parait impossible de douter que la pellicule fraicbe

nouvellement faite possede quelque qualite necessaire pour
1'entretien de la chrysalide.

Ceux que les alveoles de soie des abeilles avaient egare

jusqu'a croire que les parois de cire sont doubles, sout tombes
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dans la meme erreur a propos de la structure des guepes. Us
font observer meme que la duplication est plus facile a voir

dans le gateau guepe que dans le gateau abeille, a cause disent-

ils que la matiere agglutinante est moins adherente. J'ai

soigneusement examine ces structures, et il n'y a pas le

moindre doute que 1'alveole brune, faite de la limaille de bois,

est doublee d'un papier blanc, tres-fin, soit file, soit platrtS ; et

on peut le separer facilement lorsqu'il reste humide, mais

aussi quoique plus difficilement si on ne peut jamais fendre le

parois de maniere a en faire deux de memes materiaux. Si on

le tranche ou feude au milieu, on trouve d'uu cote une plaque

brune, de 1'autre une plaque brune d'un cote et blanche de

1'autre, nommement le cote double du papier blanc. La guepe
etant beaucoup moins econome des materiaux de sa construc-

tion que 1'abeille, vu qu'ils sont plus facile a trouver que n'est la

cire a produire, n'ecouomise que 1'espace et le travail en formant

1'alveole brune. Les parois done peuvent etre construites par
le melange de la limaille de bois agglutinee avec quelque liquide

savetee par 1'iusecte lui-meme. Mais la pellicule blanche est

evidemment une secretion entierement, soit par le ver en

devenant chrysalide, soit par la guepe elle-meme avant de

pondre 1'oeuf qui produit le ver. Ce papier est tres-fin ; il est

demi-transparent, et on a trouve qu'il est capable de recevoir

1'encre sans barbouiller, comme s'il eut ete colle ou lave

expres. On sait combien les guepes ont anticipe depuis vingt

siecles nos fabricants de papier ; mais pour papier blanc et lave,

je ne 1'avais jamais entendu dire.

II. Les erreurs qu'on vient de marquer, et qui ont conduit en

les exposant a des nouvelles observations sur 1'economie de

1'insecte, ont ete soutenues, et en partie anticipees par des

autres erreurs dont 1'origine fut le desir de chasser les doctrines

etablies depuis bien longtemps sur la merveilleuse operation

de 1'instinct de 1'insecte. Plusieurs philosophes ont pretendu

demontrer, les uns que 1'abeille n'est pas la veritable architecte

des alveoles qui sont produites, disent-ils machinalement par

les proprietes et les mouvements de la matiere ; les autres que
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1'insecte aurait pu travailler bien plus artistement. Ces erreurs,

qui proviennent de geometric mal entendue, autant que de

negligence dans les observations sur 1'insecte, bieu examinees

nous conduisent a la conclusion, non pas seulement qu'il n'y
a aucun fondement pour les objections elevees, mais quc les

operations de 1'iusect sont encore plus etounantes que Ton

avait ci-devant suppose.
La theorie de Buffon parait la plus insoutenable, pour ne pas

dire la plus absurde, egarement ; et ceux qui se rappellent le

controverse qu'il avait, rnalheureusement pour sa reputation,

engage contre Clairaut, verront encore une preuve que le

grand liistoriographe des animaux aurait bien fait de ne toucher

jamais le domaine du geometre. Ayant cru percevoir des

bexagones dans les boules de savoii (ce qui n'est qu'une illusion

optique occasionnee par les lignes de contour qui se croisent,

sans qu'il y ait un seul bexagone de forme), il suppose que la

cire etant d'abord disposee en cylindres, ces cylindres par leur

pression mutuelle s'applatissent et fornient des tuyaux hexa-

gones. Mais pour ne rien dire sur 1'omission totale d'ex-

plication de la base pyramidale, meme la tbeorie ne prouve
aucunement la formation hexagone, vu qu'aucun cylindre n'a

jamais existe, Huber ayant prouve que 1'abeille travaille d'une

toute autre maniere
;

et puis si Ton suppose toute la cire

formee en cyliudres, la pression manque qui est le fondement

de I'hypothese. Supposons meme que la gravite de la partie

superieure du gateau la fait presser sur la partie inferieure, les

alveoles seront dans toutes les parties de grandeur differente, con-

trairement aux pbenomenes ;
et qu'arriverait-il si le gateau fut

forme borizontale et non pas verticale ? Alors point de pression;
et pourtant les alveoles dans ce cas-la ont exactement la meme

figure. On ne doit pas s'etonner que Daubenton, dans son

admirable article dans 1'Encyclopedie cite plus haut, ne fasse

aucune mention de la tbeorie de son maitre et patron, avec qui
il n'avait pas encore a cette epoque eu les difierends qui seuls

ont terni la memoire de BufFon, pour son traitement de cet

eminent savant et admirable homme. Mais une erreur d'une

autre espece a ete commise par des auteurs, tous de quelque
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reputation comme geometres, et dont 1'un fut ineme assez

distingue, des auteurs bien au-dessus de Buffon dans les sciences

se"veres. Nous commencons par celui du plus grand merite, et

qui jusqu'a present a ete cense d'avoir raison, son erreur ayant
ete rejetee sur les observations supposees defectueuses d'un

autre et tres-celebre pliilosophe.

Le grand pas qu'avaient fait les connaissances sur 1'archi-

tecture de 1'abeille depuis les observations de Pappus sur la

forme hexagone, etait 1'examination de la base ; et le fameux

Maraldi avait trouve que pour que ces bases s'accomraodassent

sans perdre de 1'espace, elles devaient etre toutes rhomboidales,

formees de trois rhombes egaux. Puis il a mesure les angles
de ces rhombes

;
et il trouva que 1'un etait de 109 28', 1'autre

de 70 32'.* La raison de cette proportion a echappe a ce

geometre distingue et naturaliste encore plus eminent. Mais

plus tard Reaumur, avec sa sagacite si conuue, a soup9onne que
la proportion observee par son predecesseur devait etre celle

qui donnait dans la construction de 1'alveole le minimum de

travail et de materiel ; et il proposait a M. Koenig (digne eleve

des Bernoullis) le probleme de determiner les angles du rhombe

qui couperont le prism e hexagone de maniere a former la figure

composee d'une pyramide, et des portions triangulaires du

hexagone, avec le minimum de surface. M. Koenig, ne sachant

pas la mesure de Maraldi, ni rneme la conjecture de Reaumur,
donna sa solution, et faisait les angles de 109 26' et 70 34'.

Xiorsqu'il a appris la th6orie de Reaumur et la mesure de

Maraldi, il croyait comme Reaumur et tous ceux a qui il avait

fait part de ses conjectures, que 1'abeille approche de pres mais

pas exactement de la solution du probleme du maxima et

minima. Mais le fait est que 1'abeille a raison. et que ce fut

M. Koenig qui etait tombe en erreur.

M'etant assure que les angles sont ceux qu'a mesure Maraldi,
et que Koenig etait tombe dans 1'erreur par les tables de sinus

* Maraldi donne les angles comme 70 et 110 dans une partie de son

memoire, mais a ce qu'il semble approximativement ; car plus tard il

donne 70 32', et 109 28' exactement : il parait s'etre trompe' par avoir

regarde le premier passage plus que le second.
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on des logaritlimes, il m'a para a propos de conduire 1'investi-

gation par chercher la longueur des cotes des rhombes, ou des

autres ligues qui y ont rapport ;
ce qui aurait le grand avantage

d'eviter les erreurs en calculant les angles. Car non-seulement il

est beaucoup plus facile de mesurer uue petite ligne qu'un petit

angle, niais il est evident que si la mesure des angles est exacte,

la perpendiculaire d'un des angles des rhombes sur le cote oppose

c'est-a-dire, la largeur du rliombe doit etre egale au cote de

1'hexagone ;
et ainsi la mesure que seule il fallait faire, serait

de constater 1'^galite ou 1'inegalite de ces deux lignes droites.

Nons pourrons resoudre le probleme en cberchant ou la

valeur de la perpendiculaire Gr Gr
v = y , ou la valeur du cote du

G

H
Fig. 3.

rhombe AD = x, qui donnera la surface du rliombe avec

celle du trapeze 2.EFZD c'est-a-dire la surface entiere

GrEFHA, le tiers de la surface de 1'alveole, un minimum.

Prenons x pour le variable independant, et Les rectangles

O Z, P Z etant donnes et invariables, il faut chercher la valeur

de x qui donne la somme du rhombe, des triangles APD,
E O D un minimum. Soit P D = S, le cote de 1'hexagone ; par

/q O

la propriete de cette figure, A E = V3 . S, et A B = -
.

Partant BD = ^4^"- 3S*, et le triangle ADB -
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et le rhombe

S J!K* S2

par consequent le triangle APD = - --
,
et la surface

2t

In Q

du rhombe avec celle des triangles APD, E D =
a

2 V3". S.rfa?
V4 a? - 3 S4 + S V* - Ss

,
dont le differentiel,

+ - doit = pour trouver le minimum, et cela nous donne

x = ^-^=AD. Mais le rhombeAD E G aussi = G Gv

x AD;
2V2

rhombe - V4^'-3S 3 S*

par consequent U G- =
\ T>

" = * * ' " o ~o~eT
= k'

.A. JJ 4 5? o ib

Ainsi le minimum est lorsque la perpendiculaire G- GT, ou la

largeur des rhombes, est egale au cote de 1'hexagone. Mais

pour trouver les angles du rhombe, il faut considerer que les

deux triangles E D, S E D sont rectaugulaires, et comme
S D = D, les angles DEO, DES sont egaux ; ainsi prenant
D E pour rayon, nous avons E O pour le cosinus de E D

;

q C Q
et comme ED =

-, et OE = r , Tangle OED est

2 V2 2 V2
celui dont le cosinus est \ du rayon. Si celui-ci est 1,000,000,

celui-la est 333,000; et dans la table de sinus naturels, le

nombre le plus proche de 333,333 est 333,258, qui repond a

Tangle 70 32'. Ainsi c'est Tangle aigu du rhombe, et

Tobtus est par consequent 109 28'. Effectivement Tegalite

des angles OED, que fait le rhombe avec le cote" du prisme

hexagone, est Tangle de 120, que font les rhombes par leur

inclinaison Tun a Tautre, determine tout le reste, y compris
les angles du rhombe DES=DEO, etDS = DO, suffit

a tout determiner ; et la comparaison des deux lignes D S,
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D est tout ce qu'il faut sans mesurer ni meine calculer des

angles, exceptez que Ton a celui de 1'hexagone.*
Cherchons maintenant par un precede sernblable, les propor-

tions des lignes et des angles, qui nous donuent un autre

minimum, celui des angles dihedraux de 1'alveole. Ceci est tres-

important ; car ces angles sont la partie de la structure qui de-

mande le travail le plus difficile, et qui exige aussi la plus graiide

consomraation de cire. Les parois sont plus epais aux angles parce

que la solidite depend plus des angles que des autres parties des

parois. Or, la longuer de Tangle dihedrale de toute 1'alveole est

= 3 AH + 3 D Z + 6 A D + 3 AG, ou 3AH + 3 DZ+9 AD ;

on a done a differencier 9 x + 3 (AH V^1*

S*). Ainsi

X (J IT

Sdx = 0, nous donne la valeur de x, cote du
V^2 - S*

O
Qj

rhombe = -
,
comnie dans le probleme pour la surface. Aiusi

\ 2t

c'est la meme proportion des cotes et des angles qui donne le

minimum de ce travail si fin et si dispendieux de cire, c'est-a-dire

la fabrication des angles, qui donne aussi le minimum des surfaces.

Les geometres ont emis deux opinions opposees sur la dif-

ference entre le resultat de Koenig et la mesure de Maraldi.

L'une est celle du justement celebre Maclaurin,f qui avait

resolu le probleme par la geometric elementaire sans recourir

au calcul
; et trouvant les deux angles a quelques secoiides

* Le rapport merite attention du rhombe avec le triangle rectangulaire,
bien connu des geometres, dont les carre's des cotes sont dans la proportion
de 1, 2, et 3. Aussi le rhombe a un rapport remarquable avec la courbe

Agnesieme (La Versiera, ou Lutin), dont la Signora Agnesi a donne une

construction tres-elegante dans son ouvrage (' Instit. Analit.,' vol. I, p. 381) :

./3S 4*2 - 3S2
.,son equation est Y = x -

^5,
d ou 1 on voit qu elle doit etre liee

avec le rhombe. Effectivement si le circle generateur de la courbe est de'crit

sur 1'un des diametres du rhombe, avec un rayon du quart de ce diametre,
et la courbe a pour asymptote la tangente du circle, les ordonnes ont une

proportion donuee aux cosinus de Tangle obtus, 109 28', ou aux sinus do

Tangle aigu, 70 32'.

t Trans. Phil, de Londres, 1742-3, p. 569.

i 2
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pres le meme qu'a donne Maraldi, il a impute 1'erreur de

Koenig aux tables de sinus dont il s'etait servi. Mais ayant

remarque que Maraldi parle approximativement de 70 et 110

dans un passage de son memoire, Maclaurin impute la diversite

aun accident ou a la difficulte de mesurer ces petites quantites.

L'autre opinion, ou plutot doute, est du P. Boscowich, qui,

penchant a ci'oire que la mesure des angles sur une si petite

echelle fut trop difficile pour etre exacte, soupyonne Maraldi

d'avoir commence par calculer ou decliner leur grandeur d'une

supposition qu'il eut faite de Tangle d'inclinaison des rhombes,

120, et d'avoir fini par donner sa supposition comme le re-

sultat de son mesurage. Cette opinion a ete adoptee tres-

facilement par M. Castillon de Berlin et M. L'Huiller de G-eneve,

dans leurs memoires (Mem. de Berlin, 1781) ; et ils croient

1'avoir confirmee par certaines mesures qu'ils donnent. Or, il

n'est pas permis d'accuser Maraldi d'avoir donne comme le

resultat de son mesurage, ce qui n'etait qu'une conjecture,
d'autant moins que n'ayant aucunement considere la question
d'un minimum, il ne pouvait pas avoir un prejuge pour une

theorie favorite. Puis, a ce qui concerne les mesures de

M. Castillon, elles ne valent rien, n'etant que deux a ce qui

regarde la question disputed, et dont 1'une plutot soutient le

calcul de Maraldi, ne faisaut pas une difference plus de celle

entre 4-144 et 4*168, qui n'est eiFectivement rien.

Mais ces deux geometres ont souleve d'autres difficultes sur

la structure des alveoles. Ils ont revoqu en doute le but

principal de la construction, en niant que c'est pour economiser

les materiaux et le travail, et pretendent que si c'etait la

1'objet, une epargne bien plus considerable aurait pu etre

gagnee en adoptant ce qu'ils appellant le minimum ndnimorum.

Ils afferment que 1'economie actuelle ne passe pas -^ de la cire,

et qu'avec une autre proportion de la profondeur a la largeur
de 1'alveole, 1'epargne aurait ete beaucoup plus grande. Mais
il est certain qu'ils se trompent sur tous les deux points.

1. II n'est pas vrai de dire que 1'epargne est d'un -
T ,

a moins

que Ton impute dans la comparaison toute la cire des parois ;

cette comparaison tourne uniquement sur la difference entre la
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base rhomboidale et le prisme hexagone. La cire des parois
ne pent pas entrer dans le calcul. S'il fut question entre deux

especes de toiture d'une maison de bois de sapin, de determiner

laquelle ferait le plus d'economic de bois, on ne mettrait jamais
en ligne de compte les murs, pour savoir si 1'economie serait

d'un cinquieme de toute la depense. Cela ferait le calcul rouler

sur la hauteur du batiment. De fait 1'economie de cire et de

travail est d'un au lieu du T1

T . Mais ce qui fait plus inexacte

et meme absurde 1'importation des parois dans le calcul, c'est la

difference marquee qui existe de 1'epaisseur de differentes

parties de 1'alveole. Le fond, la partie pyramidale est bien plus

epaisse que les parois. J'ai tres-souvent pese des morceaux

d'eteudue egale des rhombes et triangles, et des parois .adja-

centes
;
et j'ai trouve que ceux-la avaient un poids de trois a deux

en comparaison de ceux-ci. II j a plus de variation entre les

gateaux en ce qui regard la difference d'epaisseur qu'il n'y en

a eu ce qui regarde 1'epaisseur des rhombes, mais si on est sur

que la difference existe c'est assez pour detruire le calcul de

M. L'Huiller. Si la proportion est de trois a deux, Fepargne
monte au sur la partie la plus epaisse, et par consequent a

-5*5-
au lieu de -JT sur la totalite, en emportant meme, centre

toute exactitude, les parois dans le calcul.

2. La question du minimum minimorum, dont M. L'Huiller

cite un cas, depend d'un probleme, dont il n'a pas donne une

solution generale. II s'agit de trouver la proportion de la

hauteur a la largeur de 1'alveole qui fasse la plus petite surface

possible avec un contenu donne. Soit S = cote de 1'hexagone ;

MS = D S = perpendiculaire sur le cot6 oppose du rhombe
d'un de ces angles ; y = A H, cote vertical du prisme ;

2A
A = contenu de 1'alveole. Partant, nous avons y = -

;

o \ o . o

rhombe =
; les triangles APD, DOE =- ==

la surface d'un tiers de 1'alveole = S2
( =: -

} + 2 S y
V 2V3-7n2 /
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Q.3ro - V4w'-3\
,

4A
= S2-

)
+ -

;
et en differencial et

2 A/3 m2

/ 4 A Vs-m8 \
egalant a zero on aura iS = (

-
__ 1,

et
^ - 2 - ^

(3 m - A/4m
2

par consequent S : y :: 2 \/3 m2
: 3 m ^/4 m

4
3. C'est

le resultat generale pour toutes les constructions ; et dans le

cas du minimum, quand D S = D O, ou m = 1, on a la propor-
tion de S : y i : ^2 : 1. Done la construction de 1'alveole sur

ce principe donnerait la largeur et la profondeur comme \/3 : 1,

ou comme 2 \/2 : 1 pour les deux largeurs de 1'alveole. 11 j
a une omission remarquable et fatale au resultat dans le calcul

de M. L'Huiller, sur le cas particulier de m = l. Mais avant

d'en parler, il faut faire observer que la construction qui ferait

1'alveole presque trois fois plus large qu'elle n'est haute, ou

profonde, serait entierement incompatible avec chacun des

objets auxquels 1'alveole doit servir. Par exemple, quoiqu'il

serait possible d'y mettre les oeufs, les vers ne pourraient pas
etre eleves, ni meme exister. Encore la provision pour les

insectes, et le miel iui-meme, ne pourrait etre amasse et garde

qu'en tres-petite quantite. M. L'Huiller convient qu'il faut

faire le sacrifice de 1'epargne qu'il pretend resulterait de cette

nouvelle construction, dont il ne nie pas que les inconveniants

plus que contrebalancent Vavantage qu'il suppose de 1'epargne.

Mais rien ne peut etre plus contraire a tout principe que la

conclusion qu'il deduit, que parce que, pour cette raison, 1'eco-

nomie de materiel est soumise aux objets principaux de toute

la construction, cette economic n'eritre pas de tout dans le

plan et dans 1'operation. Cette balance entre dans toutes les

questions de maximum et mimimum appliques aux operations
naturelles. Mais meme, en geometric nous avons la meme
chose. S'il est question de trouver la proportion des deux

cotes d'un rectangle, qui contenant une etendue donnee de

surface, aurait ses cotes les plus courts, on sait que les cotes

doivent etre egaux. Mais personne ne dirait que la largeur de

la figure n'entrat pas du tout dans notre consideration, quoique
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le but principal fut de determiner la largeur, et qu'a ce but on
avait sacrifie la largeur.

Mais jusqu'ici nous avons regarde le raisonnement de M.
L'Huiller corame si sa solution du probleme du minimum

minimorum eut etc exacte
;
au contraire, il n'a pas meme pose

la veritable question. II a fait omission d'une partie de la

surface, meme tres-importante, la plaque hexagone qui bouche

ou ferrne le tuyau ; omission difficile a expliquer, excepte en

croyant qu'il fut egare par la question qu'avait soumis a Koenig,
M. Reaumur. Mais dans cette question, la plaque hexagone
ne pouvait pas entrer

;
etant construite, son expression aurait

disparu de 1'equation differentielle, dont s'est servi Koenig
pour la solution. C'est tout autre chose dans la question du mi-

nimum minimorum qui fait la comparaison entre toutes les alveoles.

La plaque hexagone est une partie aussi essentielle que toutes

les autres, au moins dans ces alveoles qui gardent les provisions
et le miel ; probablement aussi dans celles qui entretiennent les

vers, et qui sout 1'habitation des chrysalides. Les vers surtout

sont toujours couverts. Quand meme il fut constate que la

necessite de la couverture ou bouchon n'existe pas dans les

alveoles qui servent a 1'entretieu des chrysalides, comme elle

est de toute necessite dans les autres ; il faudrait avoir deux

especes d'alveoles ; et ainsi la solution du probleme ne serait

bonne que pour cette espece qui n'eut point de bouchon.

Mais tout porte a croire qu'il n'y a qu'une espece ; car toute

alveole est employee indifteremment a toutes les operations, et

a tous les besoins de 1'insecte.

Voyons done quelle devait etre la solution du probleme.
Elle est la meme que celle qu'on a donne plus haut jusqu'a un
certain point ;

et puis a Fexpression differentielle il faut ajouter
Q ^Q C<2

la valeur de la plaque hexagone = . Le resultat est

de nous donner la proportion de S : y : : 2 */3 m* : 3 m

^4 m* 3 + -v/3 V3 m2

pour toutes les proportions
des lignes et angles ; et dans le cas de I'abeille actuelle ou
m = 1, le minimum minimorum est, lorsque le cote de 1'hexagone
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est a la largeur du prisme dans la proportion de 2 ;'i \t 2

+ V 3 = on de 2-82 a 3-14 a peu pres. Cette forme n'est

pas aussi incompatible que celle qui resulte de 1'autre solu-

tion, vu que la largeur de 1'alveole, quoique plus grande

que sa profondeur, ne 1'excede pas dans la meme proportion.
Pourtant la forme ne pourrait jamais convenir aux usages
et aux necessites de 1'insecte ; et meme il n'y aurait pas
une economic de materiaux et de travail. Au contraire, on

trouve en faisant la comparaison que le montant de surface

dans une alveole ainsi construite est a celui d'une alveole de

la construction actuellement pratiquee, dans la proportion de

Say, de 1-387 a 5, et de 56, 52 a 49, 64. Ainsi il y a

perte et non pas gain par la proportion du mimimum minimorum.

Cette perte est de -y ou a peu pres sur une seule alveole ;

mais sur le gateau entier elle est assez grande. Mais ce n'est

pas la la seule omission qu'ont font dans leurs conseils a

1'abeille les Academiciens de Berlin. S'ils avaient fait atten-

tion a la difference en fait de travail aussi bien que de

materiaux, de la fabrication des angles, ils auraient trouvtJ

qu'il y a non-seulement comme on vient de faire voir un
minimum en comparant les alveoles de la meme profondeur,
mais qu'il y a aussi un minimum a ce qui regarde la sur-

face. La meme espece d'investigation qui nous a conduit

a 1'un fait voir aussi 1'autre. Si la comparaison est in-

stituee entre les alveoles du meme contour on trouve la

proportion du cote a la largeur du prisme qui donne la plus

grande epargne d'angles, dans le cas de m =1 (largeur du

rhombe = cote de 1'hexagone) est celle de 1 : ^2 + 1. II

y a le meme resultat si au lieu de la Hmite par la supposition
du contenu donne, on prenne la surface du cote du prisme

hexagone comme donne limite qui n'est pas possible par
la solution de 1'autre probleme de minimum minimorum pour
la surface.* La longueur des angles dihedraux est 28, 92.

Dans 1'alveole construite selon la proportion de2aV2 + V3
* II va sans dire qu'une limite est absolument necessaire ; sans cela le

plus court prisme serait celui qui ferait la plus grande e'pargne de surface

et d'angles dihedraux.
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(minimum minimorum de surface) la longueur est 47, 76 ; et dans

1'alveole actuelle (1387 : 5) 48 : 05. Ainsi il y a epargne

d'angle dihedral dans ces deux cas en comparaison avec

1'alveole actuelle, surtout dans celle de 1 : V 2 + 1. Mais les

objections qu'on a pleinement indiquees font impossible de

faire des alveoles de cette forme. La construction ne serait

pas si hors de proportion de la largeur a la hauteur que celle

qu'ont propose les academiciens de Berlin, de largeur a peu

pres trois fois plus grande que la hauteur
;

et elle n'aurait

pas cause une augmentation de surface. Mais pourtant elle

aurait ete en contradiction avec le but principal d'elever les

insectes et de garder les provisions et le miel.

On ne peut pas douter de 1'importance de tout ce qui de-

montre que les abeilles ont resolu le probleme, et que leur

architecture est plus exacte sous tous les rapports qu'aucune
autre que Ton pourrait imaginer, si 1'on reflechit que c'est le

chef-d'oeuvre de toutes les operations instinctives. II est

impossible de dire comme Virgile quand il a chante les mceurs

de 1'abeille,
" In tenui labor

"
sans ajouter

" at tennis non gloria."

Car il n'est pas permis de penser avec Descartes* que les

animaux sont des machines. Au contraire, 1'hypothese, ou

plutot la doctrine Newtonienne f parait plus fondee que
ce qu'on appelle instinct est 1'action constante de Dieu ; et que
ces speculations tendent a sa gloire, au moins a 1'explication

et a rillustration raisonnee de ses ceuvres et ses desseins. J

* '
Tract, de Methode,' 36. Mais voir ses Lettres ; Epist., pars I,

ch. 27.

t
'

Optics,' lib. iii. ; Qu. 31.
'

Principia,' lib. iii.
'
Sch. Gen.'

J M. L'Huiller parait etre peu instruit sur 1'histoire de ce fameux

probleme. II dit (p. 280) que la solution du Pere Boscowich est d'accord

avec celle de Maclaurin. 'Phil. Trans.,' 1743. Mais c'est certain qu'il

n'a jamais vu le me'moire de Maclaurin
; car il affirme que tous ceux qu'il

nomme, y compris le Pere B., aussi bien que Koenig, avaient e'te d'accord

k regarder la question comme incapable de solution excepter par le calcul.

Meme s'arroge-t-il le me'rite d'avoir le premier donne' une solution par la

geometrie ordinaire, quoiqu'il n'y a pas de doute qui Maclaurin 1'avait

donne pres de quarante ans avant lui, et donue' pour preuve de la force

de la geometrie aucienne de laquelle il etait un admirateur zele.
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VII.

EXPERIMENTS AND INVESTIGATIONS ON LIGHT AND
COLOUES.

THE optical inquiries of which I am about to give an account,

were conducted at this place in the months of November and
December 1848, and continued in autumn 1849 at Brougham,
where the sun proved of course much less favourable than in

Provence : they were further prosecuted in October. I had
thus an opportunity of carefully reconsidering the conclu-

sions at which I had originally arrived
;
of subjecting them

first to analytical investigation, and afterwards to repetition
and variation of the experiments ;

and of conferring with my
brethren of the Royal Society and of the National Institute.

The climate of Provence is singularly adapted to such studies.

I find, by my journal of 1848, that during forty-six days
which I spent in those experiments, from 8 A.M. to 3 P.M., I

scarcely ever was interrupted by a cloud, although it was

November and December.* I have since had the great
benefit of a most excellent set of instruments made by
M. SOLEIL of Paris, whose great ingenuity and profound

knowledge of optical subjects can only be exceeded by his

admirable workmanship. I ought however to observe, that

although his heliostate is of great convenience in some expe-
riments, it yet is subject (as all heliostates must be) to the

imperfection of losing light by reflexion, and consequently I

* Of seventy-eight days of winter in 1849, 1 had here only five of cloudy
weather. Of sixty-one days of summer at Brougham, I had but three or

four of clear weather ; one of these fortunately happened whilst Sir D.
Brewster was with me, and he saw the more important experiments.
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have generally been obliged to encounter the inconvenience

of the motion of the sun's image, especially when I had to

work with small pencils of light. This inconvenience is

materially lessened by using horizontal prisms and plates.

Although I have made mention of the apparatus of great

delicacy which I employed, it must be observed that this is

only required for experiments of a kind to depend upon nice

measurements. All the principles which I have to state as

the result of my experiments in this paper, can be made with

the most simple apparatus, and without any difficulty or

expense, as will presently appear.
It is perhaps unnecessary to make an apology for the form

of definitions and propositions into which my statement is

thrown. This is adopted for the purpose of making the

narrative shorter and more distinct, and of subjecting my
doctrines to a fuller scrutiny. I must further premise that I

purposely avoid all arguments and suggestions upon the two
rival theories the Newtonian or Atomic, and the Undulatory.
The conclusions at which I have arrived are wholly inde-

pendent, as it appears to me, of that controversy. I cau-

tiously avoid giving any opinion upon 4t ; and instead of

belonging to the sect of undulationists or anti-undulationists,

I incline to agree with my learned and eminent colleague
M. BIOT, who considers himself as a "

Eieniste," and neither
" ondulationiste

"
nor " anti-ondulationiste."

Chateau Eleanor-Louise (Provence^),*
1st November, 1849.

DEFINITIONS.

1. Flexion is the bending of the rays of light out of their

course in passing near bodies. This has been sometimes
termed diffraction, but flection is the better word.

* In experiments at this place, in winter, I found one great advantage,

namely, the more horizontal direction of the rays. In summer they are

so nearly vertical, that a mirror must be used to obtain a long beam or

pencil, which is often required in these experiments, and so the loss of

light countervails the greater strength of the summer sun's light.
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2. Flexion is of two kinds inflexion, or the bending towards

the body ; deflexion, or the bending from the body.
3. Flexibility, deflexibility , inflexibility, express the disposition

of the homogeneous or colour-making rays to be bent, de-

flected, inflected by bodies near which thev pass.

Although there is always presumed to be a flexion and a

separation of the most flexible rays from the least flexible

(the red from the violet for example) when they pass by
bodies, yet the compound rays are not so presumed to be

decomposed when reflected by bodies. This is probably

owing to the successive inflexions and deflexions before and

after reflexion, correcting each other and making the whole

beam continue parallel and undecomposed instead of be-

coming divergent and being decomposed.

PROPOSITION I.

The flexion of any pencil or beam, whether of white or of

homogeneous light, is in some constant proportion to the

breadth of the coloured fringes formed by the rays after

passing by the bending body. Those fringes are not three,

but a very great number, continually decreasing as they
recede from the bending body, in deflexion, where only one

body is acting ; and they are real images of the luminous

body by whose light they are formed.

Exp. 1. If an edge be placed in a beam or in a pencil of

white light, fringes are formed outside the shadow of the

edge and parallel to it, by deflexion. They are seen distinctly

to be coloured, the red being furthest from the shadow, the

violet nearest, the green in the middle between the red and

the violet. The best way to observe

this is to receive the light on an instru-

ment composed of two vertical and two

horizontal plates, each moving by a

screw so as to increase or lessen the

distance between the opposite edges.

a, a' are (fig. 1) the vertical, b, b' the

horizontal edges, s, s are the screws ;
and these may be fitted
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with micrometers, so as to measure very minute distances of

the edges by graduated scales B B', B' C. For the purpose
of the present proposition the aperture only needs be con-

sidered, of about a quarter of an inch square. The light

passing through this aperture is received on a chart placed
first one foot, and then several feet from the instrument. The

fringes are increased in breadth by inclining the chart till

it is horizontal, or nearly so, when the fringes parallel to b, b'

are to be examined, and holding it inclined laterally when
the fringes parallel to a, a' are to be examined. It is also

convenient to let the white light beyond the fringes pass

through ;
and for this purpose, a", b" being the figure of the

instrument (fig. 2), and the light received on

the chart, a hole may be made in its centre

op q, through which the greater portion of the

white light may be suffered to pass. The

fringes are plainly seen to run parallel to the

edges forming them; as op parallel to b" and

p q parallel to a". The reddish is farthest from the shadow,
the bluish nearest that shadow ; also the fringe nearest the

shadow is the broadest, the rest decrease as they recede from

the shadow into the white light of the disc. Sometimes it is

convenient to receive the fringes on a ground glass plate,
and to place the eye behind it. They are thus rendered

more perceptible.

When the edges are placed in homogeneous light, they are all

of the colour which passes by any edge ;
and two diversities are

here to be noted carefully. First, the fringes made by the red

light are broader than those made by any of the other rays, and
the violet are the narrowest, the intermediate fringes being of

intermediate breadths. Second, the fringes
made by the red are farthest from the direct

rays, the violet nearest those rays, the inter-

mediate at intermediate distances. This is

plainly shown in the following experiment. Fi>3.

Exp. 2. In fig. 3, C represents the image
of the aperture when the rays of the prismatic spectrum are
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made to pass through it. But instead of making the fringes

by a single edge deflecting, and so casting them in the spec-

trum, I approach the opposite edges, so that both acting

together on the light, the fringes are seen in the shadow and

surrounding the spectrum. These fringes are no longer

parallel to the shadows of the edges as they were in the white

light, but incline towards the most refrangible and least

flexible rays, and away from the least refrangible and most

flexible. Thus the red part r of the fringes is nearest the

shadow of the edge a'; the orange, o, next
;
then yellow, y ;

green, g ; blue, b
; indigo, i

;
and violet, v. Moreover, the

fringe r v is both inclined in this manner, so that its axis is

inclined, and also its breadth increases gradually from v to r.

This is a complete refutation of the notion entertained by
some that Sir I. NEWTON'S experiment of measuring the

breadths in different coloured lights and finding the red

broadest, the violet narrowest, explains the colours of the

fringes made in white light as if these were only owing to

the different breadths of the fringes formed by the different

rays. The present experiment clearly proves, that not only
the fringes are broadest in the least refrangible rays, but

those rays are bent most out of their course, because both the

axis of the fringes is inclined, and also their breadths are

various.

Exp. 3. Though called by GP.IMALDI, the discoverer, the

three fringes, as well as by NE\VTON and others who followed

him, they are seen to be almost innumerable, if viewed

through a prism to refract away the scattered light that

obscures them. I stated this fact many years ago.*

Exp. 4. That the fringes are images may be at once per-

ceived, not when formed in the light disc as in some of the

foregoing experiments, but when formed in the shadow.

Thus when the opposite edges are moved so near one another

as to form fringes bordering the luminous body's image, they
are formed like the disc they surround. When you view a

*
Philosophical Transactions, 1797, part II.
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candle through the interval of the opposite edges, you per-
ceive that the fringes are images of its flame, with the wick,
and that they move as the flame moves to and fro. \Yhen you
observe the half-moon in like. manner, you perceive that the

side of the fringes answering to the rectilinear side of the

moon, are rectilinear, and the other side circular ; and when
the full moon is thus viewed, the fringes on both sides are

circular. The circular disc of the moon is, indeed, drawn or

elongated as well as coloured. It is, that is to say, the fringe
or image which is exactly a spectrum by flexion. Like the

prismatic spectrum, it is oblong, not circular, and it is

coloured
; only that its colours are much less vivid than those

of the prismatic spectrum.

PROPOSITION II.

The rays of light, when inflected by bodies near which

they pass, are thrown into a condition or state which disposes
them to be on one of their sides more easily deflected than

they were before the first flexion ; and disposes them on the

other side to be less easily deflected : and when deflected by
bodies, they are thrown into a condition or state which

disposes them on one side to be more easily inflected, and on

the other side to be less easily inflected than they were before

the first flexion.

Let E A (fig. 4) be a ray of light whose opposite sides are

R A, E' A', and letA be a bend-

ing edge near which the ray

passes, the side E' A' acquires

by A's inflexion, a disposition
to be more easily deflected by
another body placed between A and the chart C, and the side

EA acquires a disposition to be less easily deflected than

before its first flexion ; and in like manner E' A' acquires

a disposition to be more easily inflected, and E A a dispo-

sition to be less easily inflected by a body placed between A
andC.

Exp. 1. Place A' (fig. 5) in any position between A and v ',
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the image made on C by A's influence, as at A' or A", or close

to A at A'". If it is placed on

Rg.5. the same side of the ray with

A, no difference whatever can

be perceived to be made on the

breadth of rv, or on its dis-

tance v~R' from the direct ray BE'. In like manner the

image by deflexion r' v' is not affected at all, either in its

breadth, or in its removal from E R' by any object, a, a',

placed on the same side with A of the deflected ray A v'.

Y 6
But (fig. 6) place B anywhere_ between A and v r on the side

of the ray opposite to A, and
the breadth of rv is increased,

and also its distance from the direct ray E E', as v' r'
;
and in

like manner (fig. 7) the deflected rays A v, A r are both more

separated, making a broader

image at r" v", and are further

removed from E E' by B's in-

flexion.

Exp. 2. If you bend the rays either by a single edge, or by
the joint action of two edges, it makes not the least difference

either in the breadth or in the distance from the direct rays
of the images, or in the distension or elongation of the lumi-

nous body's disc, whether the bending body is a perfectly

sharp edge (which in regard to the rays of light is a surface,

though a narrow one), or is a plane (that is, a broader sur-

face), or is a curve surface of a very small, or of a very large
radius of curvature.

In fig. 8, a e is an instrument composed of four pieces of

different forms, but all in a perfectly straight line
;
a & is an

extremely sharp edge ; b c a flat surface ;
c d a cylindrical or

circular surface of a great radius of curvature
;
de one of a

small radius of curvature. But all these pieces are so placed
that E 3 y is a tangent to ed, d c, and is a continuation of

y ft K, that is, of c b, b a. So the light passing by the whole

abode, passes by one straight line E K, uniting or joining
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the four surfaces. It is found that the image or fringe 1 1',

made by abcde (or E S y B K), is of the same breadth and in the

Kg*.

1

t-

same position throughout its whole length. So if directly op-

posite to this edge another straight edge is placed, and acts to-

getherwith abcde on the light passing, the breadth ofthe fringe

I is increased, and its distance is increased from the direct rays,

but it has the exact same breadth from I to I'
; its portion 1' q

answering to a b, q P answering to b c, P answering to c d,

and I answering to d e, are of the same breadth, provided
care be taken that the second edge is exactly parallel to the

edge E K. And this experiment may be made with the

second edge behind abode, as in Exp. 1 of this proposition;
also it may be usefully varied by having the second edge

composed of four surfaces like the first, only it becomes the

more necessary to see that this compound edge is accurately
made and kept quite parallel to the first, any deviation, how-

ever minute, greatly affecting the result. "When care is thus

used the fringes are as in r v, v' r', quite the same in breadth

and in position through their whole length ;
and not the least

difference is to be discerned in them, whether made by a

second edge, which is one sharp edge, or by a compound
second edge, similar to abcde.
Hence I conclude that the beam passing by the compound

edge, or compound edges, is exactly as much distended by
the different flexibility of the rays, and is exactly as much
,bent from its direct course when the flexion is performed by
a sharp edge, by a plane surface, by a very flat cylinder, or by
a very convex cylinder ;

and therefore that all the action of

the body on the rays is exercised by one line, or one particle,
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and not first by one and then by others in succession ;
and

this clearly proves that after a first flexion takes place, no
other flexion is made by the body on the same side of the rays.

This is easily shown.

For a plane surface is a series or succession of edges in-

finitely near each other ; and a curve surface in like manner
is a succession of infinitely small and near plane surfaces or

edges. Let a b (fig. 9) be the section of such a curve surface.

The particle P coming first near enough the
^' *

ray RR' to bend it, then the next particle

/* is only further distant from R R', the unbent

e_____^ ray, than the particle P by the versed sine of

IZ-----"'"^ the infinitely small arch P. But is not

at all further distant than P from the rayIV at ail lurtner distant man r ironi tne ray
bent by P into 17?% and yet we see that O
produces no effect whatever on the ray after

P has once bent it. Xo more do any of the other particles

within whose spheres of flexion the ray bent by P passes.

The deflected ray.^ r' no doubt is somewhat more distant from

O than the incident ray was from P, but not so far as to be

beyond O's sphere of deflexion ; for O acts so as to make the

other fringes at greater distances than the first. Consequently
could act on the first fringe made by P as much as P can in

making the second, third, and other fringes ; and if this be

true of a curve surface, it is still more so of a plane surface ;

all whose particles are clearly equidistant from the ray's ori-

ginal path, and the particles after the first are in consequence
of that first particle's flexion nearer the bent ray, at least in

the case of inflexion. But it is to be observed, moreover, that

in the experiment with two opposite edges, inflexion enters

as well as deflection, and consequently this demonstration,

founded on the exact equality of the fringes made by compound
double edges, appears to be conclusive. For it must be ob-

served that this experiment of the different edges and surfaces,

plane and curve, having precisely the same action, is identical

with the former experiment of two edges being placed one be-

hind the other, and the second producing no effect if placed on
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the same side of the ray with the first edge. These two edges
are exactly like two successive particles of the same surface

near to which the rays pass. Consequently the two experiments
are not similar but identical ; and thus the known fact of the

edge and the back of a razor making the same fringes, proves
the polarization of the rays on one side. Thus the proposition
is proved as to polarization.

E.\p. 3. The proposition is further demonstrated, as regards

disposition, in the clearest manner by observing the effect of

two bodies, as edges, whether placed directly opposite to each

other while the rays pass between them so near as to be bent,

or placed one behind the other but on opposite sides of the

rays. Suppose the edges directly opposite one to the other,

and suppose there is no disposition of the rays to be more

easily bent by the one edge in consequence of the other edge's
action. Then the breadth and distension and removal of the

fringes caused by the two edges acting jointly, would be in

proportion to the sum of the two separate actions. Suppose
that one edge deflects and the other inflects, and suppose that

inflection and deflexion are equal at equal distances, following
the same law

;
then the force exerted by- each edge being

equal to d, that exerted by both must be equal to 2 d. But
instead of this we find it equal to 5 (7, or 6 d, which must be

owing to the action of the two introducing a new power, or

inducing a new disposition on the rays beyond what the

action of one did.

If, however, we would take the forces more correctly

(fig. 10), let A and B be the two edges, and let their spheres

of flexion be equal, A C (
= a) being A's sphere of inflexion

and B's sphere of deflexion ;
B C (

=
a) being A's sphere of

deflexion and B's sphere of inflexion ; and let the flexion in

each case be inversely as the mih power of the distance. Let

K 2
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C P = x, P M = y, the force acting on a ray at the distance

a = x from A and a x from B. Then if B is removed and

only A acts, y = -. . If B also acts, y' = (-

(a + a?)" (a + a?)-
1

1

(a x)
m'

Now the loci of y and y' are different curves, one similar to

a conic hyperbola, the other similar to a cubic ; but of some
such form when t = 1, as S S' and T T'. It is evident that

the proportion of 'y
: y' can never be the same at any two

points, and consequently that the breadths of the fringes
made by the action of one can never bear the same proportion
to the breadths of those made by the action of both, unless we
introduce some other power as an element in the equation,
some power whereby from both values, y and y', x may dis-

appear, else any given proportion of y : y' can only exist at

some one value of x. Thus suppose (which the fact is)

y : y' : : I : 5 or 1 : 6, say : : 1 : 6, this proportion could

only hold when

(5" - l) a V4 - l) a
x = 7 or = 7 , if y : y' : : 1 : 5.

o m + 1 4 m + 1

When m = 2, the force being inversely as the square of the

distance, then x = and x =
a, are the values at

V5+ 1

which alone y : y' : : I : 5 and 1 : 6 respectively.

But this is wholly inconsistent with all the experiments ;

for all of these give nearly the same proportion of y : y'

without regard to the distance, consequently the new element

must be introduced to reconcile this fact. Thus we can

easily suppose the conditions, disposition and polarization (I use

the latter term merely because the effect of the first edge
resembles polarization, and I use it without giving any

opinion as to its identity), to satisfy the equation by intro-

ducing into the value of y some function of a x. But that
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the joint action of the two edges never can account for the

difference produced on the fringes, is manifest from hence,

that whatever value we give to ?n, we find the proportion of

y' : y when x = only that of double, whereas 5 or 6 times

is the fact. The same reasoning holds in the case of the

spheres of flexion being of different extent: and there are

other arguments arising from the analysis on this head, which
it would be superfluous to go through, because what is

delivered above enables any one to pursue the subject. The
demonstration also holds if we suppose the deflective force to

act as of the distance, while that of inflexion acts as .

n m
But I have taken m = n as simpler, and also as more probably
the fact.

I have said that the rays become less easily inflected and

deflected
; but it is plain that on the polarized side they are

not inflected or deflected at all. Their disposition on the

opposite side is a matter of degree ;
their polarization is

absolute and their flexion null.

PROPOSITION III.

The rays disposed on one side by the first flexion are

polarized on that side by the second flexion, and the rays

polarized on the other side by the first flexion are depolarized
and disposed on that side by the second flexion.

This proposition is proved by carefully applying the first

experiment of Prop. II. ; but great care is required in this

experiment, because when three edges are used consecutively,
the third edge often appears to act on rays previously acted

on by both the other two, when it is only acting on those

previously acted on by one or other of those two. Thus when

edge A has inflected and edge B aftei'wards deflects the rays

disposed by A, a third edge C may, when applied on the side

opposite to B, seem to increase the flexion, and yet on re-

moving A altogether we may find the same effect continue,

which proves that the only action exercised had been by B
and C, and that C had not acted on rays previously bent by
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both A and B, which the experiment of course requires to

prove the proposition. I was for a long while kept in great

uncertainty by this circumstance, whether the third edge
ever acted at all. That it never acted -on the side of the ray
on which the second edge acted, I plainly saw

;
but I fre-

quently changed my opinion whether or not it acted on the

opposite side, that is, on the same side with the first edge.
K"or could I confidently determine this important point until

I had the benefit of an instrument which I contrived for the

purpose, and which, executed by M. SOLEIL, enabled me

satisfactorily to perform the experimentum cnicis as follows :

In fig. X. A B is a beam, on a groove (of which the sides are

graduated) three uprights are placed, the one, B, fixed, the

>

\

Fig. X.

other two, C and D, moving in the groove of A B. On each

of the uprights is a broad sharp-edged plate, moving up and
down the upright by a rack and pinion, so that both the

plates F Gr could be approached as near as possible to each

other, and so could F be approached to the plate E on the

fixed upright B ;
while also each of the three plates could be

brought as near the rays that passed as was required ;
and so

could each be brought as near the opposite edge of the neigh-

bouring plate. It is quite necessary that this instrument

should be heavy in order to give it solidity : it is equally

necessary that the rack and pinion movement should be just

and also easy; for the object is to fix the plates at will, so
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that their position in respect of the rays may be easily

changed, and when once adjusted may be immovable until the

observer desires to change their position.
The light was passed under the plate E and acted upon by

a b, its lower edge. The second plate F was then raised on C
so as to act on the side of the rays opposite to a b, by its

upper edge c d. The fringes inflected by a b were thus

deflected by c d, in virtue of the disposition given to the side

next c d. Then the third plate G, on its stand D, was moved
so that it could be brought to act by its lower edge eft

which
was approached to the rays deflected by erf, and placed on

their opposite side. The action was observed by examining
the fringes on the chart M. Those which had been as o, made

by the joint action of the two first edges E F, were seen to

move upwards to p as the third edge G came near the rays ;

and p was both broader than o, and further removed from the

direct rays EE'. In order to make quite sure that this

change in the size and position of o had not been occasioned

by the mere action of two plates, as E and G or F and G, it

was quite necessary to remove first E, by drawing it up the

stand B. If the fringe p then vanished, complete proof was
afforded that Ehad acted as well asG. ThenF was removed,
and if p vanished, proof was afforded that F acted as well as

E and G. A very convenient variation of the experiment
was also tried and was found satisfactory. When the

joint action of F and G gave a fringe, as at q, E being
removed up the stand B, then E was gently moved down
that stand, and as it approached the pencil, which was on its

way to F and G, you plainly perceived the fringe enlarged
and removed from q to p. These experiments were there-

fore quite crucial, and demonstrated that all the edges had

concurred to form the fringe at p, the first and third in-

flecting, the second deflecting.

The same experiments were made on the fringes formed by
the deflexion of the first edge and the inflexion of the second,

and the deflexion of the third.

It is thus perfectly clear that the rays bent by the first
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edge and disposed on their side opposite to that edge, are

bent in the other direction "by the second edge acting on that

opposite side, and are, afterwards again bent in the direction

of the first bending by the action of the third edge upon the

side which was opposite the second edge and nearest the first

edge. But this side is the one polarized by the first edge,
and therefore that side is depolarized by the action of the

second edge. Hence it is proved that the rays polarized by
one flexion are depolarized by a second ; and as it is proved

by repeated experiments that no body placed on the same
side of the rays with any of the bending bodies, whether the

first or the second or the third, exercises any action on

those rays, it is thus manifest that any one flexion having

disposed, a second polarizes the disposed side ; and that any
one flexion having polarized, a second flexion depolarizes and

disposes the polarized side.

Exp. 3. Another test may be applied to this subject. In-

stead of a rectilinear edge, I made use of edges formed into a

curve, as in fig. 12, where C is such an edge, and then the

figure made is g h, corresponding to the curve

e b. The first edge in the last experiment being

3 formed like C, instead of a straight-lined edge,
* f we can at once perceive that it has acted

on the rays as well as the second and third edges, because

these being straight-lined, never could give the comb-like

shape g h to the fringes. This completely confirmed the other

observations, and made the inference irresistible.

PROPOSITION IV.

The disposition communicated by the flexion to the rays is

alternative ;
and after inflexion they cannot be again inflected

on either side ; nor after deflexion can they be deflected. But

they may be deflected after inflexion and inflected after de-

flexion, by another body acting upon the sides disposed, and

not by its acting upon the sides polarized.

This is gathered from the experiments in proof of the

second and third propositions.
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PROPOSITION V.

The disposition impressed upon the rays, whether to be

easily deflected or easily inflected by a second bending body,
is strongest nearest the first bending body, and decreases as

the distance between the two bodies increases.

Fig. 11. Let A B = a be the distance between the

first bending body and a given point, more or less arbi-

Eg.11.

trarily assumed ;
P the second body ;

A P = x
;
PM = y,

the force exerted by the second body at P ; C = the chart ;

P M = y is in some inverse proportion to A P, but not as

or
, because it is not infinite at A, but of an assign-

--~i- i- 3C

able value there; therefore y = -.
; and the curve

(a + ar)-'

which is the locus of P has an asymptote at B, when
x = a. The fringes being received on the chart at C,
it might be supposed that the difference in their breadth,

by which I measure the force, or y, is owing to P ap-

proaching the chart C, in proportion as it recedes from A,
and thus making the divergence less in the same proportion ;

but the experiments are wholly at variance with this sup-

position.

Exp. 1. The following table is the result of one such

experiment. The first column contains the distances hori-

zontally of P from A, being the sines of the angle made by
the rays with the vertical edges ; the second column contains

the real distance of the second from the first edge, the secant

of that angle ; the third column gives the breadths of the

fringes at the distances given in the preceding columns ; the
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fourth gives the value of y, supposing M N were a conic

hyperbola.
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all the points of B, from D to E, are equidistant from C ;

therefore nothing can be ascribed to

the divergence of the bent rays.
B bends the rays disposed by A at

different distances D D' and E E' from

the point of disposition. The fringe . _ tg' <3<

is now of various breadths from dd'

to e, the broadest part being that

answering to the smallest distance of D, the point of flexion,

from D' the point of disposition ;
the narrowest part, e,

answering to EE', or the greatest distance of the point
of flexion from the point of disposition. Moreover, the

whole fringe is now inclined ;
it is in the form of a curve

from dd' to e, and the broad part dd', formed by the flexion

nearest the disposition, is furthest removed from the direct

rays ; the narrowest part, e, is nearest these direct rays.
It is thus quite clear that the flexion by B is in some in-

verse proportion to the distance at which the rays are bent

by B from the point where they were disposed by A. I

repeatedly examined the curve de, and found it certainly to

be the conic hyperbola. Therefore m = 1, and the equation

to the force of disposition is y = .

30

In order to ascertain the value of m, I was not satisfied

with ordinary admeasurements, but had an instrument made
of great accuracy and even delicacy. It consisted of two

plates, A and B (Plate VI.), with sharp rectilinear edges,

one, A, horizontal, the other, B, moving vertically on a

pivot, and both nicely graduated. The angle at which the

second plate was vertically inclined to the first, was likewise

ascertained by a vertical graduated quadrant E. Moreover
the edges moved also horizontally, and their angle with each

other was measured by a horizontal graduated quadrant K.

There was a fine micrometer F to ascertain the distances of

the two edges from each other, and another to measure the

breadth of the fringes on the chart. The observations made
with this instrument gave me undoubted assurance that the



140 EXPERIMENTS AND INVESTIGATIONS

equation to the curve M N in fig. 11 is y x = a, a conic hyper-

bola, and that the disposing force is inversely as the distance

at which the flexion of the rays bent and disposed takes

place.

Scholium. It is clear that the extraordinary property
we have now been examining has no connexion with the

different breadths of the pencils at different distances from

the point of the first flexion, owing to the divergence caused

by that flexion.

By the same kind of analysis, which we shall use in

demonstrating the 6th Proposition, it may be shown, first,

that the divergence of the rays alone would give a different

result, the fringes made by an inflexion following a deflexion

and those made by a deflexion following an inflexion;

secondly, that in no case would the equation to the disposing
force be the conic hyperbola, even where that fringe de-

creased with the increase of the distance ; thirdly, even where

the effect of increasing the distance is such as the dispersion
would lead to expect, the rate of decrease of the fringes is

very much greater in fact than that calculation would lead to,

five or six times as great in many cases; and lastly, that

instead of the law of decrease being uniform, it would, if

caused by the dispersion, vary at different distances from the

two edges.* Nothing therefore can be more manifest than

that the phenomena in question depend upon a peculiar pro-

perty of the rays, which makes them change in their dis-

position with the length of the space through which they
have travelled.

It should seem that light may be compared, when bent and

thereby disposed, to a body in its nascent state, which, as we
find by constant experience, has properties different from

those which it has afterwards
;
and I have therefore con-

trived some experiments for the purpose of ascertaining

whether or not light at the moment of its production (by

* I have given demonstrations of these propositions in a memoir pre-

sented to the National Institute, but I am reluctant to load the present

paper with them.
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artificial means) has properties other than those which it

possesses after it has been some time produced. This will

form the subject of a future inquiry. I would suggest, how-

ever, at present that the electric fluid ought to be examined
with a view to find whether or not it has any property ana-

logous to disposition, that is, whether it becomes more

difficultly attracted at some distance from its evolution, as

light is more difficultly bent at a distance from the point of its

being disposed. On heat a like experiment may be made.
The thermometer would no doubt stand at a different height at

different distances from the source of the heat ; but the ques-
tion is if it will not reach its full height, whatever that may
be, more quickly near its source than far from it. This

experiment ought above all to be made on radiant heat, in

which I confidently expect a property will be found similar

to the disposition of light. It is also plain that we may
expect strong analogies in magnetism and electro-magnetism.

I throw out these things because my time for such inves-

tigations may not be sufficiently extended to let me under-

take them with success.

PROPOSITION VI.

The figures made by the inflexion of the second body

acting upon the rays deflected by the first, must, according to

the calculus applied to the case, be broader than those made

by the second body deflecting those rays inflected by the

first.

In fig. 14, let Av' be the violet rays and Ar' the red,

inflected by A and deflected by
B. Let A?- be the red and

A.V the violet deflected by A
ind inflected by B. The action

f B must inflect Ar, Av into

broader fringe F, than the

iction of B deflects A v', A r' into the fringe /.

Let B r = a be the distance at which B acts on A r ; rv = d

>Q the divergence of the red and violet ; c be the distance of
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the two bent pencils, and v' r' the divergence of the inflected

pencil, equal also to d, because we may take the different

inflexibility to be as the different deflexibility. B acts on the

T V
red of A r v as ;

on the violet as ; and so on A v' as
am (a + d)

m

V T
on Ar' as . It is evident that

(a + d+c)' (a+2d+c)
the action in bending A r, A , or the fringe made by that

action, is to the fringe made by the action on Ar', Av', as

r_ __v _

r v

a
""

(a -f- d)
m '

(a + 2d + c)
m
"

(a + d + c)
m '

mately the two actions (or sets of fringes) are (supposing
a = 1 and d also = 1, for simplifying the expression) as

2m X r (3 + c)
m
(2 + c)

m - v (3 + c)
m
(2 + c)

m
to 2m r (2 + c)

m

- 2m v (3 + c)
m

.

Now the former of these expressions must always be greater

than the latter, because (3 + c)
m > 1, and also (3 -f- c)

m

1 > (2 + c)
m ~ 1

5
an<^ this whatever be the value of m

and of c, and whatever proportion we allow of r to v, the

flexibilities. But it is also manifest that the excess of the

first expression above the second will be greater if the flexi-

bility of the red exceed that of the violet, or if r is greater
than v, as 2 v. Hence we conclude

; first, that in mixed or

white light the fringes inflected by B after deflexion by A
are greater than those deflected by B after inflexion by A ;

secondly, that they are also greater in homogeneous light ;

thirdly, that the excess of the inflected fringes over the

deflected is greater in mixed than in homogeneous light.

The action of flexion after disposition is so much greater
than that of simple flexion, that I have only taken into the

calculation the compound flexion. But the most accurate

analysis is -that which makes the two fringes as

r v r v
D + -= - 7-7-77= to D +

(a + d)
m

(a -f 2 d + c)
m

(a + d + c)
m

D being the breadth of the fringes on the chart by simple
flexion in case the rays had passed on without disposition
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and without a second flexion. If it be carefully kept in mind
r T

that D is much less than
,
or even ,

and that
am (a + 2 d + c)

m

d is still less than D, then it will always be certain that the

first quantity is larger than the second.

Cor. It is a corollary to this proposition that the dif-

ference of the two sets of fringes is increased by the dis-

position communicated by the rays in passing by the first

body. For the excess of the value of r over that of v being
increased, the difference between the two expressions is

increased.

PROPOSITION VII.

When one body only acts upon the rays, it must, by
deflexion, form them into fringes or images decreasing as the

distance from the bending body increases. But when the

rays deflected and disposed by one body are afterwards in-

flected by a second body, the fringes will increase as they
recede from the direct rays. Also when the fringes made by
the inflexion of one body, and which increase with the

distance from the direct rays, are deflected by a second body,
the effect of the disposition and of the distances is such as to

correct the effect of the first flexion, and the fringes by de-

flection of the second body are made to decrease as they
recede from the direct rays.

In fig. 15, A P is the pencil inflected by A and forming the

first and narrower fringe p ;
A r

is the pencil inflected nearer to

A and forming the broader fringe
r. Such are the relative breadths,
because the}

7 are inversely as some

power of the distance at which A
acts on them. But if B afterwards

acts, it is shown by the same reasoning which was applied to

the last proposition that r will be less than p ;
and so in like

manner will r' be made less than o', though o' was greater
than r' until B's action, and the effects of disposition with



144 EXPERIMENTS AND INVESTIGATIONS

the greater proximity of the smaller fringe, altered the pro-

portions.

PROPOSITION VIII.

It is proved by experiment that the inflexion of the second

body makes broader fringes or images than its deflexion after

the inflexion of the first body ; and also that the inflecto-

deflexion fringes decrease, and the deflecto-inflexion fringes
increase with the distance from the direct rays.

Exp. 1. It must be observed that when we examine the

fringes (or images) made by the second edge deflecting the

rays which the first had inflected, we can see the effects of

the disposition communicated to the rays at a much greater
distance of the second edge from the first, than we can

perceive the effects of that disposition upon the inflexion by
the second edge of the rays deflected by the first. Indeed

we only lose the fringes thus made by deflexion, in con-

sequence of their becoming so minute as to be imperceptible
to our senses. But it is otherwise with the fringes or

images made by the second edge inflecting the rays which

the first had deflected. These can only be seen when the

second edge is near the first, because the rays cannot pass on

so as to form the images on the chart, if the second is distant

from the first. The pencils diverge both by the deflexion

and by the inflexion of the first edge. But we can always,
when the inflected rays pass too far from the second edge,

bring this so near them as to act on them, whereas we in so

doing intercept the deflected rays. However, after this is

explained, we find no difficulty in examining the effects of

the inflexion by the second edge, only we must place it near

the first, and thus we have two sets of fringes, one ex-

tending into the shadow of the first edge at an inch distance

between the two edges; but at an inch and three-fourths,

nay, at two inches, or even more, this experiment can well

be made.

Exp. 2. At these distances I examined repeatedly the

comparative breadths of the two sets. In fig. 16, ab is the
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fa. i c

white disc, on each side of which are fringes ; those on the one

side, be, c d, are by the inflexion of the second edge ; those on
the opposite side, a/, fe, are by the de-

flexion of that second edge. I repeat-

edly measured these sets of fringes, and

at various distances from the second

edge ;
and I always found them much RgA9.

broader on the side of the second edge
than on the opposite side. Thus a b

being the breadth of 5, & c was 3, and

cd 4, while, on the opposite side, af
was = 1 and fe only -f or ^. The fringes by inflexion of the

second edge also uniformly increased as they receded from a b,

the direct rays, whereas the opposite fringes as constantly

decreased.

Exp. 3. If however the distance between the two edges be

reduced, it is observed that the disparity between the two

sets of fringes decreases, and they become gradually nearly

equal ;
and when the edges are quite opposite each other

there is no difference observable in the two sets. Each ray
is disposed and polarized alike and affected alike by the two

edges, and no difference can be perceived between the two

sets.

Exp. 4. The experiments also agree entirely with the

calculus in respect of the relative values of r and v affecting

the result. It appears that the fringes by the second edge's

inflexion are broader than those by that edge's deflexion,

whether we use white or homogeneous light. In the latter,

however, the difference is not so considerable. This I have

repeatedly tried and made others try, whose sight was

better than my own. I may take the liberty of mention-

ing my friend Lord DOURO, who has, I believe, heredi-

tarily, great acuteness of vision.

PROPOSITION IX.

The joint action of two bodies situated similarly with

respect to the rays which pass between them so near as to be

affected by both bodies, must, whatever be the law of their
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action
, provided it be inversely as some power of the distance,

produce fringes or images which increase with the distance

from the direct rays.

Let (fig. 17) A and B be the two bodies, and AC = C B = a

be their spheres of flexion, so that

A inflects and B deflects through
A C, and A deflects and B inflects

through C B. Let C P =
ar, PM =

y.

The force y, exerted by the joint
action of A and B on any ray passing between them at P, is

equal to
\- supposing deflexion and inflexion

(a + x}
m

(a-xY
to follow different laws. To find the minimum value of y,

take its differential dy =
; therefore we have

m(a -f x)~
m - l dx + n (a x)~

n ~ l dx = 0, or m(a #)
B+l

= n (a + x)
m+l

.

If m n (as there is every reason for supposing), then

a x = a -\- x, or a; =
; and therefore, whatever be the

value of m (that is whatever be the law of the force), the

minimum value of y is at the point C where A's deflexion

begins. The curve S S', which is the locus of M, comes
nearest the axis at C, and recedes from that axis constantly
between C and B. Hence it is plain that the fringes must

increase (they being in proportion to the united action of

A and B) from C to B ; and in like manner must those made

by B's deflexion and A's inflexion increase constantly from

C to A
;
and this is true whatever be the law of the bending

force, provided it is in some inverse ratio to the distance.

PROPOSITION X.

It is proved by experiment that the fringes or images
increase as the distance increases from the direct rays.

Exp. 1. Kepeated observations and measurements satisfy us

of this fact. We may either receive the images on a chart at

various distances from the double edge instrument, approach-

ing the edges until the fringes appear, or we may receive

them on a plate of ground glass held between the sun and the
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eye. We may thus measure them with a micrometer ;
but no

such nicety is required, because their increase in breadth is

manifest. The only doubt is with respect to their relative

breadth when the edges are not very near and just when they

begin to form fringes. Sometimes it should seem that these

very narrow fringes decrease instead of increasing. How-
ever, it is not probable that this should be found true, at

least when care is taken to place the two edges exactly

opposite each other; because if it were true that at this

greater distance of A from B
(fig. 17) they decreased, then

there must be a minimum value of P M between C and B, and

between C and A ; and consequently the law of flexion must

vary in the different distances of A and B from the rays P, a

supposition at variance it should seem with the law of con-

tinuity.

Exp. 2. The truth of this proposition is rendered more

apparent by exposing the two edges to the rays forming the

prismatic spectrum. The increase is thus rendered manifest.

If the fringes are received on a ground glass plate, you can

perceive twelve or thirteen on each side of the image by the

direct rays. It is also worth while to make similar observa-

tions on artificial lights, and on the moon's light. The pro-

position receives additional support from these. But care

must always be taken in such observations, which require
the eye to be placed near the edges, that we are not misled

by the effect of the small aperture in reversing the action of

the edges. Thus when viewing the moon or a candle through
the interval of two edges, one being in advance of the other,

we have the coloured images (or fringes) cast on the wrong
side. But if we are only making the experiment required to

illustrate this proposition, the edges being to be kept directly

opposite, no confusion can arise.

It is to be noted that the increase of breadth in the fringes
is not very rapid in any of these experiments ;

nor are we led

by the calculus to expect it. Thus suppose m = 1, we find

( because y =
j
at the point C, when x - 0, the breadth

\ a x J
L 2
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2 a
should be proportional to . Take x =

,
and the breadth

a 10

is as ,
or the breadth of the one fringe is to the other only

*} y

as 200 to 198 or 100 : 99. We need not wonder therefore if

there is only a gradual increase of breadth from C to B and

from C to A. The increase is more rapid between x - -
a

and B than between C and -. Thus between the value oi
2.

a a , . . K -n j. * a 3a
x = and the increase is as 4 : 5. But from -- to -42 24
the increase is as 7 : 12

;
and this too agrees exactly with the

experiments ;
for as the edges are approached the increase of

the fringes becomes more apparent.

PROPOSITION XI.

The phenomena described in the foregoing propositions are

wholly unconnected with interference, and incapable of being
referred to it.

1. When the fringes in the shadow are formed by what is

supposed to be interference, there are also formed other

fringes outside the shadow and in the white light. If the

rays passing -on one side the bending body (as a pin or

needle) are stopped, the internal fringes on the opposite side

of the shadow are no longer seen. But no effect whatever is

produced on the external fringes. These continue as long as

the rays passing on the same side of the body on which they
are formed, continue to pass. The external fringes have

many other properties which wholly distinguish them from

the internal or interference fringes.

2. Interference is said to be in proportion to the different

lengths of the interfering rays, and not to operate unless

those lengths are somewhat near an equality. In my experi-

ments the second body may be placed a foot and a half away
from the first, and the fringes by disposition are still formed,
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though much narrower than when the bending bodies are

more near to one another.

3. The breadth of the interference fringes is said to be in

some inverse proportion to the difference in length of the

interfering rays. It is commonly said to be inversely as that

difference.

In fig. 20, A is the first and B the second edge. By inter-

ference the fringe at C should be

broadest and at D narrowest, be-

cause AC BC = AO is less

than AD-BD = AP; and so

as you recede from D, the fringes

should become broader and

broader, because the two rays
become more nearly equal. But

the very reverse is notoriously
the case, the breadth of the fringes

decreasing with their distance

from the direct rays.

4. In the case of the fringes formed by the second body
inflecting and the first deflecting, there can be no interference

at all ;
for the whole action is on one and the same pencil or

beam. A deflects and then B inflects the same ray ; and

when a third edge is placed on the opposite side to B, it

only deflects the same ray, which is thus twice bent further

from the direct rays, the last bending increasing that

distance.

5. Let A be the first and B the second edge as before (fig.

20). Suppose B to be moveable, and find the equation to the

disposing force at different distances of the two edges, we

shall find this to be ?/ = =
, a being

Va.
2 +^2 - A/(a -a:/ + 6*

= A E, b = E D, and A B = x. But all the experiments show

it to be y =
, a wholly different curve.

Again, let B be fixed, or the distance of the two edges be
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constant, we shall get the equation (a being = AE, b = BE,

and EC = a?) y = :
, also a wholly dif-

V^-i-^- Jb* + a*

ferent curve from the conic hyperbola, which all experiments

give. Therefore the conclusion from the whole is that the

phenomena have no reference to interference.

Having delivered the doctrines Vesulting from these experi-

ments, I have some few particulars to add, both as illustrating

and confirming the foregoing propositions, as removing one or

two difficulties which have occurred to others until they were
met by facts, and also as showing the tendency of the results

at which we have arrived.

1. It may have been observed that in all those propositions
I have taken for granted the inflexion of the rays by the body
first acting upon them as well as their deflexion by that body,
and have reasoned on that supposition. It is, however, not

to be denied that we cannot easily perceive the fringes made

by the single inflexion, as we can without any difficulty

perceive those made by the single deflexion, and fully de-

scribed in Proposition I. Sir I. NEWTON even, assumes that

no fringes are made within the shadow. I here purposely

keep out of view the fringes made in the shadow of a hair or

other small body, because the principle of interference there

comes into play. However, I will now state the grounds of

my assuming inflexion and separation of the rays by their

different flexibility, when only a single body acts on them.

In the first place, the first body does act in some way ; for the

second only acts after the first, and if the first be removed the

fringes made in its shadow by the second at once vanish.

Secondly, these fringes made by the second depend upon its

proximity to the first. Thirdly, the following experiment
seems decisive. Place, instead of a straight edge, one of the

form in fig. 18, and then apply at some distance from it, the

second edge, as in the former experiments. You find that the

fringes assume the form, somewhat like a small-tooth comb,
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of a b. If the second edge is furnished with a similar curve

surface the form is more complete, as in c d. But the straight

Eg.18.

edge being used after the first flexion of the curved one,

clearly shows that the first edge bends as well as the second,

indeed more than the second, for the side of the figure

answering to that curved edge is most curved. Fourthly, the

whole experiments with two edges directly opposite each

other negative the idea of there being no inflexion
; indeed

they seem to prove the inflexion equal to the deflexion. The

phenomena under Proposition X. can in no way be re-

conciled to the supposition of the first edge not inflecting

the rays.*
2. \Ve must ever keep in view the difference between the

fringes or images described by Sir I. NEWTON and measured

by him, as made by the rays passing on each side of a hair,

and the fringes or images which are made without the inter-

ference of rays passing on both sides. It is clear that the

rays which form those fringes with their dark intervals do

not proceed after passing the hair in straight lines. Sir I.

N EWTON'S measures | prove this ; for at half a foot from the

hair he found the first fringe T^g-th of an inch broad, and the

second fringe ^-^ ; and at nine feet distance the former were

^'j, the latter 3*5-, instead of between -i- and TV, and the latter

less than T̂ , and so of all the other measures in the table,

each being invariably about one-third what it ought to be if

the rays moved in straight lines ; and this also explains why
the fringes do not run into one another, or encroach on the

* If you hold a body between the eye and a light, as that of a candle,

and approach it to the rays, you see the flame drawn towards the body ;

and a beginning of images or fringes is perceived on that side.

t Optics, B. iii. obs. 3.
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dark intervals in the case of the hair, as they must do if the

rays moved in straight lines.

But the case of the fringes or images which we have been

examining and reasoning tipon is wholly different. I have

measured the breadths of those formed by disposition and

polarization, and found that they are broad in proportion to

the distance from the bending edge of the chart on which

they are received ; and vary from the results given by similar

triangles in so trifling a degree, that it can arise only from

error in measurement. Thus in an average of five trials, at

the relative distances of 41 and 73 inches, the disc was Of at

the shorter, and 10^ at the longer distance
; the fringe next it

3/5 at the shorter, and 5-fT at the longer distance, whereas

the proportions by similar triangles would have been 9-J and

o, so that the difference is small, and is by excess, and not,

as in the hair experiment, by defect. Had the difference

been as in Sir I. NEWTON'S experiment, instead of 1 0-f and 6/3-,

it would have 3 '

T and l|f . In another measurement at 101

and 158 inches respectively, the disc was 15^, the fringe 8|

instead of 14f and 9-^ respectively. But by Sir I. NEWTON'S

proportions these should have been 34-f- and -^T- -^ is plain-

that if the measures had been taken with the micrometer

instruments, which had not been then furnished, there would
have been no deviation. I have since tried the experiment,
not as above, on the fringes formed by the double-edged

instrument, but on those formed by one edge at a distance

behind the other, and have found no reason to doubt that the

rays follow a rectilinear course.

It may further be observed, that in the fringes or images

by disposition and polarization, the dark intervals disappear
at short distances from the point of flexion, and that the

fringes run into one another, so that we find the red mixed

with the blue and violet. This is one reason why I often

experimented with the prismatic rays.

3. It follows from the property of light, which I have

termed disposition, on one side the ray, and polarization on

the opposite side, superinduced by flexion, that those two
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sides onty being affected, the other two at right angles to

these are not at all affected by the flexion which has disposed
and polarized the two former. Consequently, although an

edge placed parallel to the disposing edge and opposite to it

acts powerfully on the disposed light, yet an edge placed at

right angles to the former edge or across the rays, does not
affect them any more than it would rays which had not been

subjected to the previous action of a first edge. Thus (fig. 19)

Rg.19.

if a b c d be the section of the ray, an edge parallel to a b, after

the ray has been disposed, will affect the ray greatly, pro-
vided it had been disposed by an edge also parallel to a b.

The sides a b and c d, however, are alone affected ; and there-

fore the second edge, if placed parallel to a d or b c, will not at

all bend the ray more or make images (or fringes) more

powerfully than it would do if no previous flexion and dis-

position had taken place. Let us see how this is in fact :

efgh is the distended disc after flexion, by passing through
the aperture of the two-edged instrument (Plate XII.). It is

slightly tinged with red at the two ends fg and e h, beyond
which, and in the shadow of the edges, are the usual fringes

or coloured images by flexion and disposition, c, c, the edges

being parallel to eh,fg. Place another edge at some distance

from the two, as 3 or 4 inches, and parallel to these two, but

in the light, and you will see in the disc a succession of nar-

row fringes, parallel to the edges, and in front of the third

edge's shadow. These fringes are on the white disc, and
their colours are very bright, much more so than the colours

of those fringes described in Proposition I., and which are

fringes made by deflexion without any disposition. But
whether this superior brightness is owing to the glare of the
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disc's light being diminished by the flexion of the first two

edges, or not, for the present I stop not to inquire. This is

certain, that if the third edge be placed across the beam, and
at right angles to the two first edges, you no longer have the

small fringes. They are not formed in the direction A
.9,

parallel to the edges as now placed. If the double edges are

changed, and are placed in the direction h'y', you again have
the bright fringes ; but then, if the third edge is now placed
parallel to li e', you cease to have them. Care must, however,
be taken in this experiment not to mistake for these bright

fringes the ordinary deflexion fringes made by one flexion

without disposition, as described in Proposition I. For these

may be perceived, and even somewhat more distinctly in the

disc than in the full light of the white pencil or beam.
Now are these bright fringes only the flexion fringes, that

is fringes by simple flexion without disposition ? To ascer-

tain this I made these experiments.
Ex p. 1. If they are the common fringes, and only enlarged

by the greater divergence of the rays after flexion, and more

bright by the dimness of the distended disc, then it will

follow that the greater the distension, and the greater the

divergence of the rays, the broader will be the bright fringes
in question. I repeatedly have tried the thing by this test,

and I uniformly find that increasing the divergence, by ap-

proaching the edges of the instrument, has no effect whatever
in increasing the breadth of the fringes in question.

Exp. 2. If these fringes are not connected with disposition,
it will follow that the distance of the edge which forms them
from the double-edged instrument cannot affect them. But I

have distinctly ascertained that their breadth does depend on

that distance, and in order .to remove all doubt as to the

distance between the chart and the third edge which forms

them, I allowed that edge to remain fixed, and varied its

distance from the other two by bringing the double-edge
instrument nearer the third edge. The breadths of the bright

fringes varied most remarkably, being in some inverse power
of that distance. Thus, to take one measurement as an
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example of the rest, at 4 feet from the third edge the chart

was fixed and the third edge kept constantly at that distance

from it. Then the double-edge instrument was placed suc-

cessively at 14i, at 9 and at 4^- eighths of an inch from the

third edge. The breadths were respectively 2, 3-| and 4i

twentieths of an inch, In some experiments these measures

approached more nearly the hyperbolic values of y, but I give
the experiment now only for the important and indeed

decisive evidence which it affords, that these fringes are

caused by disposition, and are wholly different from those

formed without previous flexion.

Exp. 3. If the greater breadth of these fringes is owing to

dispersion, then they should be formed more in the rays of

the prismatic spectrum than in white light, or even in light
bent by flexion. Yet we find it more difficult to trace fringes
across the prismatic spectrum than in white light, and more
difficult across the spectrum when there is divergence, than

when formed parallel to its sides when there is no divergence.
There are fringes formed, but of the narrow kind, which are

described in Prop. I.

Exp. 4. I have tried the effect on the fringes in question of

the curvilinear edge described in the first article of these

observations, and the effect of which is represented in fig. 18.

It is certain that at a distance from the doiible-edge instru-

ment the third edge seems only to form fringes rectilinear, or

of its own form. But when placed very near, as half an inch

from the instrument, plainly there is a curvilinear form given
to the fringes in question ; and this is most easily perceived,
when, by moving the third edge towards the side of the

pencil, you form the smaller fringes so as to be drawn across

or along the greater ones made by the two first edges.
I think, without pursuing this subject further, it must be

admitted that these fringes in light, which is bent and dis-

posed, lend an important confirmation to the doctrine of

disposition. It is clear that the rays are aifected only on two
of their four sides, or a b and c d, if these are parallel to the

bending body's edge, and not at all on the sides cb and da;
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that, on the other hand, c b and d a are affected when the

edges are placed parallel to these two sides of the rays ;
and

thus the connection of the fringes in question, with the

preceding action of which disposed and polarized, is clearly

proved.
4. It is an obvious extension and variation of this experi-

ment both to apply edges parallel to the first and disposing

edges, and also to apply edges at right angles to their

direction ; and important results follow from this experiment.
But until a more minute examination of the phenomena with

accurate admeasurements can be had, I prefer not entering
on this subject further than to say, that the extreme difficulty

of obtaining fringes or images at once from the edges parallel
to the first two, and from edges at right angles to these,

indicates an action not always at right angles to the bending

body, but whether conical or not I have not hitherto been

able to ascertain. That the first body only disposes and

polarizes in one direction is certain. But it seems difficult to

explain the effect of the first two edges in preventing the

fringes or images from being made by the second at right

angles to those formed by the first two edges, if no lateral

action exists. One can suppose the approaching of those two
first edges to make the fringes narrower and narrower than

those which the second two edges form when placed at right

angles to the first. But this is by no means all that happens.
There is hardly any set of fringes at all formed at right

angles to the first set (parallel to the first two edges) when
the first two are approached so near each other as greatly to

distend the disc.

5. I reserve for future inquiry also the opinion held by
Sir I. NEWTON, that the different homogeneous rays are acted

upon by bodies at different distances, this action extending
furthest over the least refrangible rays. He inferred this

from the greater breadth of the fringes in those rays.
It is in my apprehension, though I once held a different

opinion,* not impossible to account for the difference of the

*
Philosophical Transactions, 1797.
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breadth of the fringes by the different flexibility of the rays ;

and the reasoning in one of the foregoing propositions shows

how this inquiry may be conducted. But one thing is

certain, and probably Sir I. NEWTON had made the experi-

ment and grounded his opinion upon the result. If you

place a screen, with a narrow slit in the prismatic spectrum's

rays, parallel to the rectilinear sides, and then place a second

prism at right angles to the first and between the screen

and the chart, you will see the image of the slit drawn on

one side, the violet being furthest drawn, the red least

drawn ;
but you will find no difference in the breadth of

the image cast by the slit. Flexion, however, operates in

a different manner, because it acts on rays, which, though
of the same flexibility, are at different distances from the

body.
6. The internal fringes in the shadow (said by interference)

deserve to be examined much more minutely than they ever

have been ; and I have made many experiments on these, by
which an action of the rays on one another is, I think,

sufficiently proved. I shall here content myself with only

stating such results as bear on the question of interference

affecting my own other experiments. First. I observe that

when one side of a needle or pin is grooved so as to be partly

curvilinear, the other side remaining straight, we have in-

ternal fringes of the form in fig. 21. Secondly. It is not at

all necessary the pin or other body forming them should

be of very small diameter, although it is certain that the

breadth of the fringes is inversely as the diameter. I have
obtained them easily from a body one-quarter or one-third of

an inch in diameter, but they must be received at a con-

siderable distance from the body. Thirdly, and this is very
material as to interference at all affecting my experiments,

although certainly the internal fringes vanish when the rays
are stopped coming from the opposite side of the object, the

external fringes are not in the smallest degree affected, unless

you stop the light coming on their own side
; stopping the

opposite rays has no effect whatever. Thus, stopping the
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light on the side a
(fig. 21), the fringes // vanish, but not

the external fringes c. This at once proves there is no inter-

ference in forming the external ones. Lastly. I

may observe, that the law of disposition and

polarization in some sort, though with modifica-

tion, affects the internal fringes as well as the

external.

It is a curious fact connected with polarization

by inflexion, and which indeed is only to be ac-

counted for by that affection of light, that nothing else pre-
vents the rays from circulating round bodies exposed to them,
at least bodies of moderate diameter. If the successive

particles of the surface inflected, one particle acting after the

other, the rays must necessarily come round to the very point
of the first flexion. We should thus see a candle placed at

A (fig. 22) when the eye was placed at B, because the rays
would be inflected all round ; and even

in parts of the earth where the sea

is smooth, nothing but the small curva-

ture of the surface could prevent us

from seeing the .sun many hours after

^ niSht had *Qg bv PlacinS the C
3"
e

close to the ground. This, however,
in bodies of a small diameter, must

inevitably happen. The polarization of the rays alone pre-
vents it, by making it impossible they should be more than

once inflected on their side which was next the bending body,
therefore they go on straight on to C. But for polarization

they must move round the body.
7. It must not be lightly supposed, that because such

inquiries as we have been engaged in are on phenomena of a

minute description and relate to veiy small distances, then-

fore they are unimportant. Their results lead to the con-

stitution of light, and its motion, and its action, and the

relations between light and all bodies. I purposely abstain

from pursuing the principles which I have ventured to

explain into their consequences, and reserve for another



ON LIGHT AKD COLOURS. 159

occasion some more general inquiries founded upon what goes
before. This course is dictated by the manifest expediency
of first expounding the fundamental principles, and I there-

fore begin by respectfully submitting these to the considera-

tion of the learned in such matters.

In the meantime, however, I will mention one inference

to be drawn from the foregoing propositions of some interest.

As it is clear that the disposition varies with the distance,

and is inversely as that distance, and as this forms an inherent

and essential property of the light itself, what is the result?

Plainly this, that the motion of light is quite uniform after

flexion, and apparently before also. The flexion produces
acceleration but only for an instant. If ss is the space

through which the ray moves after entering the sphere of

flexion, and v the velocity before it enters that sphere ; it

moves after entering with a velocity = *J v* + Z d z, Z being
the law of the bending force. Then this is greater than v ;

consequently there is an acceleration, though not veiy great ;

but because y =
,
if s is the space, t the time, the force of

s tds sdt a
acceleration is x 5 ;

but y = -- shows that s is
tds t x

as t, else y = - - would be impossible ; therefore the accele-
JC

s tds s dt
rating force X ; = 0, and so it is shown there is

ds t*

no acceleration after the ray leaves the sphere of flexion.
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DESCRIPTION OF THE INSTRUMENTS.

PLATE XII.

Is the instrument with two plates or edges. A, B, hori-

zontal, D, C, vertical
;

the former moved by the screw E,
which has also a micrometer for the distances on the scale G ;

the latter, in like manner, moved by F, connected with micro-

meter and scale H.
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PLATE xrn.

Is the instrument with four surfaces. A D, a d are two

parallel plates, moving horizontally by a rack and pinion E.

Each plate has an edge composed of four surfaces ; A, a, a

sharp edge or very narrow surface ; B, ft, a flat surface ; C, c,

a cylindrical surface of large radius of curvature, and so flat ;

D, d, one of small radius, and so very convex : this is re-

presented on the figure by A' B' C' D' beside the other. Care

is to be taken that A B C D and a b c d be a perfectly straight

line, made up of the sharp edge, the plane surface and the

tangents to the two cylinders. H is a plate with a sharp and

straight edge, op, which can be brought by its handle F to

come opposite to the compound edge abed, when it is desired

to try the flexion by the latter, without another flexion by an

opposite compound edge, but only with a flexion b}
7 a recti-

linear simple edge.
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PLATE XIV.

c

Is the instrument by which, is tried the experimentum crucis

on the action of the third edge, and also the experiments on

the distances of the edges as affecting the disposing force.

G is the groove in which the uprights H, I, K move. There

is a scale graduated, F, by which the relative distances can

always be determined of the plates A, C and B. A moves up
and down upon H, B upon I, and C upon K ;

each plate is

moved up and down by rack and pinion D. The uprights
also move along the groove G by rack and pinion E.
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PLATE XV.

Is the instrument for ascertaining more nicely the effects of

distance on disposition. A is a plate with graduated edge ;
it

moves vertically on a pivot, and its angle with the horizontal

line is measured by the quadrant E. A also moves hori-

zontally, and its horizontal angle is measured by the quadrant
K. B is another plate with graduated edge, moving in a

groove D, by rack and pinion H, and along a graduated beam
I. F is a fine micrometer, by which the distance of A above

B, when A is horizontal, can always be measured to the

greatest nicety by the circle F and the scale G.

M 2
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PLATE XVI.

Is an instrument also for measuring the effect of the distance

of the edges upon the disposing forces. C C C is a graduated
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beam, adjusted by the spirit-level, and on it moves the up-

right on which a plate A moves by micrometer screw E, so

that the distance of A from the rays that pass along C C C
after flexion by a plate fixed at one end of the beam, can be

ascertained by the scale D. I have experimented with this,

but I did not find it so easy to work by as the other ap-

paratus. C C C is brought to an exact level by screws not

noted in the drawing.*

* This Tract is from the Phil. Trans, for 1850, Part H. See Note IV.
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VIII.

RECHERCHES EXPERIMENTALES ET ANALYTIQUES SUR
LA LUMIERE.

NEWTON, dans le troisieme livre de YOptique, donne ses ex-

periences sur 1'inflexion de la lumiere ; et, examinant les bandes

qu'avait decrites Grimaldi comme entourant les ombres des

corps, Newton trouve qu'elles different de largeur dans les

couleurs de spectre prismatique, qu'elles sont plus larges

formees par les rayons les moins refrangibles, plus minces

formees par les rayons les plus refrangibles, et d'une largeur

moyenne dans les rayons intermediaires. I/experience par

laquelle il voudrait etablir cette proposition est le mesurage de

la ligne entre les centres des bandes des cotes opposes de

1'ombre. H trouva qu'a la distance de six pouces cette ligne

etait de
3*5-

a sV de pouce pour les bandes rouges ;
de TV de

pouce pour les bandes violettes. Or, si les bandes sont a une

distance egale de 1'ombre dans toutes les couleurs, 1'experience
est concluante. Si leurs distances sont difie>entes, 1'experience
ne prouve rien ; des bandes moins larges mais plus distantes

pourront donner la ligne entre leurs centres, plus grande que
la ligne entre les centres des bandes plus larges, mais plus

rapprochees de 1'ombre. Done evidemment Newton supposa

que la distance des bandes etait la meme dans tous les rayons
du spectre ; c'est-a-dire il regarda Faction des corps flechissants

comine formant des bandes de largeur diverse avec les diverses

rayons, mais non pas comme flechissant les rayons differem-

ment de leur cours. En un mot, selon lui, Tangle de flexion

est le meme, quel que soit le rayon fle"chi, qu'il soit rouge ou

qu'il soit violet. La conclusion qu'il deduit de 1'experience

est, non pas que le corps flechit differemment les rayons, mais

que son action ou son influence s'^tend a des distances diffe-
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rentes sur les differents rayons, plus loin sur les rayons les

moins refrangibles. Cependant, il n'y a pas de doute que les

rayons ne soient flechis differemment
;
et comme cette position

est assez importante en soi et dans ses suites, Ton me permet-
tra d'en donner les preuves un peu en detail.

1 Que deux bords ou biseaux exactement paralleles soient

places dans les rayons du spectre prismatique, parallelement a

son axe et perpendiculairement a 1'axe du prisme, et que les

bandes soient observees lorsque les bords sont rapproches
l'un de 1'autre: on voit clairement qu'elles ne sont pas

paralleles entre elles, ni a 1'axe ni aux cotes du spectre. Au
contraire, elles inclinent vers le violet, et sont le plus eloignees,
du spectre et le plus separees entre elles dans T,
les rayons rouges. Aussi leurs largeurs sont dif-

ferentes, les rouges les plus larges, les violettes les

moins larges, les autres de largeur moyenne. YE
est le spectre, B. etant la partie rouge, V la partie

violette, r u, r v sont les bandes d'un cote, incliuees

du rouge r au violet v (fig. 1).

2 Cette experience exige le parallelisme exact des bords,

parce qu'un tres-petit ecart du parallelisme, "en faisaut que snr

un point les bords se rapprochassent plus que sur d'autres

points, ne manquerait pas d'augmenter la largeur et 1'eloigne-

ment des bandes repondant a ce point-la. En effet, les bandes

preadraient la forme hyperbolique si les bords s'inclinaient

meme tres-peu l'un vers 1'autre, et ainsi 1'experience devien-

drait peu concluante
;

c'est pourquoi il y a d'autres experiences

(et qui ne sont pas exposees a la memo objection) qu'il faut

ajouter, apres avoir fait observer que Ton peut verifier 1'expe-
rience avec les bords, en renversant le prisme ou les bords

eux-memes, de maniere a faire passer les rayons violets par
1'endroit ou les bords sont soupgonnes n'etre pas exactement

paralleles, et par ou les rayons rouges avaient passe avant.

3 La preuve de notre proposition est fournie par Fexamen

des bandes formees par un bord ou par un autre corps seul.

Ces bandes, il est vrai, sont beaucoup plus petites et moins

distantes de 1'axe du spectre, ou des bords de 1'ombre, que
celles que forme 1'action combinee de deux tranchants ; mais
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elles varient tant en distance qu'en largeur dans les differentes

couleurs, inclinant du rouge au violet. Pour pouvoir les ob-

server distinctement, il est bon de les recevoir sur un tableau

parallele au corps flechissant, mais incline lateralement de

maniere a les grossir en largeur. II doit etre place de 18 a 20

cent, du corps flechissant, et celui-ci de 5 a 6 pieds du prisme.
Aussi le pinceau refracte doit etre admis par une petite ouver-

ture, pour eviter trop de lueur. Si les largeurs et les distances

respectives sont mesurees, on les trouvera de la raoitie plus

grandes dans les bandes formees par les rayons les raoins

refrangibles, que dans celles que forment les rayons les plus

refraDgibles ; et on trouvera leurs cours a travers les divers

rayons du spectre rectiligne, ou a tres-peu pres, a ce qu'il me
semble. Si leur cours est hyperbolique, c'est de cette courbe

assez loin de 1'origine ou de 1'asymptote.
4 Si une aiguille ou autre corps mince est place dans les

rayons du spectre, on voit assez distinctement les bandes ex-

ternes varier en largeur et en distance de 1'ombre, les rouges
etant les plus larges et les plus eloignees ; les violettes, les

plus minces et les plus proches. Les bandes internes ou de

1'ombre semblent varier aussi, mais il y a une tres-grande
diinculte a les estimer. La ligne grise et obscure a 1'axe de

1'ombre est plus facile a examiner. Elle parait etre phis large

la ou elle repond aux parties rouges du spectre. A la partie

des bandes internes repondant a la point de 1'aiguille, et ou ces

bandes sont divergentes et se joignent aux bandes externes,

la largeur et la separation entre elles sont evidemment plus
considerables dans les rouges, tant dans les bandes internes

que dans les externes.

5 Lorsque dans ces experiences Ton examine les bandes

bien pres du corps flechissant, il faut les recevoir sur un verre

clepoli d'un cote, en pla^ant 1'ceil derriere ce cote du verre.

6 II y a une forme d'experience que j'ai trouvee assez com- y

mode, tant en ce qu'elle peut toujours se faire, que parce'

qu'elle ne depend aucunement du parallelisme des bords.

Placez un prisme d'angle refractant, de 60 deg. au moins, ho-

rizontalement a 5 a 6 pieds d'une bougie ou d'une lampe brulant

d'une petite flamme, et regardez le spectre colorie par deux
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bords places entre le prisme et 1'ceil. Les bandes ou images
colorees de la flamme paraissent decroissantes en largeur et en

distance de la flamme, etant plus larges et plus eloignees dans

la partie rouge, plus minces et plus procb.es dans la partie

violette. Lorsque les bords s'approchent de maniere a faire

distendre l'image de la flamme, elle parait comme a la fig. 2,

qui donne aussi les bandes d'un cote. Lorsque
les bords sont encore plus rapprocbes, le disque
ou image ceutrale de la flamme est encore plus

dilate, et parait divise en deux avec un inter-

valle obscur ou noir o entre les deux, comme
dans la troisieme figure, qui ne donne pas les

bandes, parce qu'elles ont presque disparu. Si Rg--2.

Ton peut soupc,onner que les bords ne sont

pas paralleles, le prisme pourra etre renverse, ou les bords

pourront 1'etre : les bandes restent comme avant, excepte que
si le prisme est renverse, le rouge doit etre en bas et le violet

en haut. Mais cette experience ne peut etre affectee par le

defaut d'un parallelisme tres-exact, vu que les rayons passent
entre une fort petite portion des bords, pas plus qu'un TV de

centimetre. Supposons que les bords ont uue inclinaison meme

sensible, comme d'un angle de 30', et que la flamme est re-

gardee a travers des bords a la distance d'un angle de 10 cent.

Soit P P'
(fig. 4), la partie des bords A P, A M, par laquelle

les rayons du spectre passent a 1'oeil. Si PP' n'est que de

TV cent., M' P' n'est que rTVo nioins grand que M P, ou les

bords ne se rapprochent pas plus sur un point que sur un autre.

Mais supposons que PP' est plus considerable, disons de

tV cent, au lieu de TV, la difference entre M' P' et M P ne
serait meme alors plus que roW cent. Or une difference

meme plus grande que celle-ci ne produit aucun effet sensible

sur les franges, comme je 1'ai bien des fois constate dans des

experiences avec le micrometre. Done la preuve que Ton vient

de donner est sous tous les rapports coucluante, et aucune
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erreur ne peut s'y introduire par le defaut de parallelisme des

bords. II est Men pourtant de regarder la flamme par uiie

partie des bords pas trop pres de Tangle, s'ils ont une incli-

naison entre eux, parce que, bien que M P M' P' est toujours,

quel que soit A P, la meme, pourvu que P P' soit quantite

constante, cependant la proportion de M P a M' P' varie avec

la valeur de A P ; et quelques experiences m'ont fait soup-

Conner que cette proportion variante, quand la difference reste

constante, pourra influer sur les phenomenes.*

* La cinquieme figure donne 1'expe'rience avec la flamme. F = la

flamme ;
B = les bords ; P = le prisme ; BB = les bandes. Mais 1'artiste

qui les a dessinees parait les avoir rcpreseutees un peu trop larges sur la

partie supe'rieure.
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7 Si nous fixons conjoiutement deux lames de verre colore,

1'une rouge et 1'autre bleue, examinant ainsi les bandes formees

de la lumiere qui les traverse par deux bords places derriere,

et que nous regardions aussi le disque distendu par 1'action dea

bords, nous trouvons la partie rouge de ce disque plus distendue

que la partie bleue, et les bandes rouges plus larges et plus

separees les unes des autres.

8 L'augmentation de la distance en meme temps que de

la largeur dans les bandes rouges formees par un bord seul

ou par les deux, parait evidente de ce que si elles n'etaient

qu'egalement eloignees de 1'ombre du corps ou de 1'axe de

spectre, elles seraient paralleles a 1'ombre ou a 1'axe ; et par

consequent il y aurait entre chaque bande et les bandes avoi-

sinantes un intervalle croissant du rouge vers le violet, comme
dans la sixieme figure, ou EV est le spectre, et rv

sont les bandes. Or il n'y a rien de la sorte a voir,

examinez les phenomenes comme vous voudrez. Les

intervalles obscurs, on les voit toujours diminuer de

largeur du rouge vers le violet
;

et au violet ces

intervalles aont si minces, qu'a peine peut-on les

tracer.

9 La meme diversite des rayons homogenes, je 1'ai trouvee

dans tous les autres cas des bandes, soit de celles qui sont

formees par la flexion seule, soit de celles formees dans lea

experiences avec des speculums, ou des surfaces striees par la

flexion combinee avec la reflexion. Lorsque ces bandes sont

formees par la lumiere blanche, elles ont toutes les couleurs, et

elles sont paralleles entre elles et a 1'axe du pinceau ou de la

flamme
; mais, formees par les rayons du spectre, elles sont

toujours plus larges dans les rayons les moins refrangibles, et

ont une inclinaison sensible du rouge vers le

violet. Ainsi les bandes d'une surface striee

exposee a la lumiere blanche etant, comme dans

la septieme figure, le rouge plus loin, le bleu plus

pres de la flamme, ces memes bandes regar-
dees par la reflexion des rayons du prisme sont,

comme dans la huitieme figure, plus larges et plus eloignees



172 INQUIKIES ANALYTICAL AND

de 1'image EV de la flamme, dans leur portion rouge r, et

s'approchent entre elles et de la flamme vers la por-
tion violette v. De meme les bandes formees par un
miroir plane assez mince, et qui sont egales entre

elles et paralleles aux bords du miroir, si elles sont

formees dans la lumiere blanche ou dans la lumiere

homogene (mais de meme espece en platjant le miroir

a travers le spectre), deviennent entierement diffe-

rentes si le miroir est place perpendiculairement au prisme
et parallele au spectre ; car alors elles sont plus larges dans

les rouges, et plus distantes des bords du miroir. Ceci est

a observer meme quand on se sert d'un miroir dont les bords

sont inclines a un petit angle, cornme de 5, bien que les

bandes qui repondent a la portion des bords vers Tangle soient

dilatees et eloignees dans une courbe hyperbolique, si elles

sont formees de lumiere blanche, ou que le miroir se trouve

place en travers du spectre. Pourtant, si la partie mince du
miroir est placee dans les rayons violets, et les autres parties

paralleles a 1'axe du spectre, la partie rouge des bandes parait
un peu plus large et plus distante de 1'ombre que la partie

violette, la difference de flexibilite des rayons rouges etant

plus considerable que 1'effet produit par le peu de largeur du
miroir.

10 Done, il n'y a aucun doute sur cette propriete de la

lumiere. Les rayons de differente espece sont non-seulement

disposes en bandes de largeur differente par la force de flexion

mais ils sont flechis differemment
;

les angles de deflexion

different dans les differents rayons, etant plus grands dans les

moins refrangibles, plus petits dans les plus refrangibles ; en

un mot, leur deflexibilite est en raison inverse de leur refran-

gibilite. Suivant le calcul ci-dessus donne de la proportion de

3 a 2, et supposant la deflexion moyenne telle que 1'a donnee

Newton (au moins telle qu'on la peut deduire de ses mesures),
3' 32", alors cet angle pour les rayons rouges sera de 4' 14",

pour les violets de 2' 49". Ceci a rapport a la deflexion par
un bord ou un autre corps seul. Les angles (c'est tout

simple) sont beaucoup plus grands si deux borda agissent ;
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mais il n'y a pas lieu de croire que la proportion des angles est

differente. Si la force flecbissante varie comme (d = dis-
dm

tance du corps aux rayons), et si 1'action sur les rouges est a

3 2
1'action sur les violets comme 3 a 2, elle sera coinme a ;

dm dm

par consequent la distance ne signifie rieu, bien que la dif-

ference de 1'effet produit dans les rayons differents, sur la

largeur des bandes et leur separation entre elles, sera plus

grande plus la distance des rayons aux bords est petite, cette

difference etant comme . Ainsi, cette difference est beau-

coup plus facile a remarquer lorsque les deux bords agissent;
et lorsqu'il n'y a qu'un seul bord, la difference est plus re-

marquable dans les bandes les plus pres de 1'ombre.

Nous avons fait observer que Inexperience newtonienne sur

les largeurs des bandes ne couclut rien a cause de la propriete
de lumiere que nous venons de decrire, et qui avait echappe
a 1'illustre pliilosopbe. It est probable que son erreur venait

de ce qu'il avait aperu a 1'inspection simple que les bandes

etaient plus larges dans les rayons rouges, et que, satisfait de

cela, il n'appliquait ses mesures qu'a constater la proportion
des largeurs. Mais il y a une autre portion de ses observa-

tions qui ne parait pas appuyee par les phenomenes, je vieux

dire la description des intervalles obscurs ou noirs lorsque
les bandes sont formees par la lumiere blanche. II faut cer-

tainement la plus grande hesitation, meme en osant exprimer
un doute sur les recits d'un observateur si acheve. Cependant
on peut concevoir que son attention n'ait pas ete dirigee si

rigoureusement au sujet du troisieme livre qu'aux autres por-
tions de son grand ouvrage. La preuve en est qu'il n'a pas

remarque les bandes internes ou de 1'ombre du tout, bien que
Grimaldi, qu'il cite, en ait fait mention. La raison est pro-
bablement qu'il avait fait ses experiences avec un cbeveu

;
et

les bandes internes ne sont facilement observees qu'avec un

corps un pen plus large. Une aiguille .-^V de diametre les
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forme, mais pas si bien qu'une aiguille un peu plus large.

Le cheveu dont s'est servi Newton n'avait que TTS-
C de largeur.

Nous venons de voir aussi que ses mesures etaient peu con-

cluantes sur les bandes du spectre, parce qu'il n'avait pas

remarque leur different eloignement. Ne serait-il pas possible

qu'il se fut trorape sur les intervalles noirs en regardant comme
un espace obscur ou meme noir le teint plus fonce des bandes

la ou le rouge de 1'une touche au violet de 1'autre ? Que sais-

je ? Mais si 1'on se donne la peine de regarder de pres et avec

grande attention ces bandes formees dans la lumiere blanche,

on sera convaincu que les couleurs se fondent, que le violet

d'une bande se mele avec le rouge de la bande voisine, et que
ce qui d'abord avait paru ligne noire n'est que la confusion de

ces deux couleurs. On a fait 1'experience avec toutes les

mesures et toutes les proportions des observations newta-

niennes : meme grandeur de trou, T
!

7 de pouce anglais ; meme
distance de la fenetre et du tableau au cheveu, 12 pieds 1'une,

6 pouces 1'autre ; et meme largeur de cheveu. Les bandes ont

e"te examinees a toute inclinaison du tableau, de la verticale

a 1'horizontale
;
elles ont ete re9ues sur le verre depoli, et,

I'oeil place derriere le verre pour les recevoir directement,

examinees avec une loupe ou a I'oeil nu, et par plusieurs obser-

vateurs
;
et bien que d'abord it ait paru qu'il y eub un inter-

valle noir, une ligne qui separat les bandes, une inspection plus
attentive et scrupuleuse a toujours fait voir que les bandes ee

fondaient 1'une dans 1'autre au point de leur rapprochement,
la violet ou bleu de 1'une se melant par un espace tres- petit
avec le rouge de 1'autre. Lorsque le verre depoli est place

tres-pres du corps, comme h moins d'un quart de pouce, on

a plus de difficulte a apercevoir la fusion des bandes. Pour-

tant, si tres-pres du corps elles sont separees, on ne peut pas
facilement comprendre comment elles ne se croisent pas totale-

ment et ne s'entrecoupent pas a une distance plus considerable.

II est evident que rien ne prouve que les observations n'ont pas
ete faites tres-pres du corps, parce que les mesures de Newton
etaient reprises a une distance de 6 pouces et de 9 pieds.

Les lignes grises et noires au centre de 1'ombre ne peuvent
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jamais etres confondues avec les bandes, et la separation des

bandes par ces lignes-la est complete.

Lorsque les bandes sont formees par la lumiere homogene,
sans nul doute les intervalles noirs paraissent plus certains

d'exister, et il semble que lorsqu'il n'y a qu'une couleur elles

doivent etre separees, a cause de la non-existence des autres

couleurs dans la bande. Cependant on doit faire observer que
Newton ne donne que la plus petit difference entre les dis-

tances des bandes rouges, par exemple, et des bandes de toutes

couleurs formees par la lumiere blanche. L'une est de -?,

1'autre de 7
1

8 de pouce (difference de TTTT)-
II faut aussi faire remarquer que les bandes rouges, par

exemple, examinees de pres et sur un verre depoli, Trail der-

riere paraissent avoir les autres couleurs aussi. Le rouge

domine, mais il y a du vert et du bleu ; bien que re9ues sur

le tableau, elles paraissent toutes rouges : cela vient evidemment

de la presence de lumiere blanche dispersee sans avoir passe

par le prisme, mais aussi de la presence de lumiere imparfaite-
ment separee par la refraction. Cependant, comme les rayons
autres que les rouges, par exemple, doivent etre flechis aux

endroits differents de ceux ou tombent les rouges, il parait

que ces endroits-la doivent etre occupes par les autres couleurs,

bien qu'ils paraissent noirs.

La meme chose arrive avec le spectre prismatique lui-meine.

Faites un trou tres-petit dans un ecran, et laissez passer les

rayons homogenes par ce trou et tomber sur le tableau. Der-

riere le trou placez un second prisme, vous verrez un petit

spectre ayant le rouge, par exemple, plus abondant et a sa

place, mais ayant aussi du jaune et du vert et du bleu a 1'autre

extremite. Lorsque c'est le bleu ou violet qui passe par le trou

le petit spectre a du vert et du rouge plus clairement que n'a

de vert et de bleu le petit spectre form6 par les rayons rouges.

Lorsque Ton examine les couleurs du spectre prismatique

pres du prisme, il n'y a que du blanc, excepte aux borda, qui
sont colores seulement d'une mince ligne de rouge d'un cote

et de bleu de 1'autre. Ces bords augmentent jusqu'a ce que
les couleurs remplissent 1'espace blanc dans la maniere decrite
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par Newton (Opt., liv. I, part II, prop, viii) ; mais, a moins

que Tangle refractaut du prisme ne soit tres-grand, comme de

68 a 70, le blanc continue a quelque distance du prisme.
Comme cela, selon Newton, vient du melange des diverses

couleurs partant des differentes parties du prisme, il s'ensuit

qu'un corps opaque, place de maniere a intercepter une partie
des rayons avant leur passage a travers la ligne parallele a 1'axe

du prisme, fera paraitre des couleurs immediatement derriere

ce corps-la, mais non pas si le corps est place verticalement

a 1'axe du prisme. Apparemrnent c'est pour cette raison que
les bords flechissants places dans le blanc parallelement a 1'axe

da spectre, et perpendiculaires a 1'axe du prisme, forment des

bandes de meme espece et meme couleur que si les bords

etaient places dans les rayons blancs non refractes, pourvu que
les bandes soient re9ues et examinees pres des bords, et dans

1'espace du spectre qui continue a etre blanc. Eegardees plus

loin, elles deviennent colorees avec les teintes du spectre.

Mais on ne comprend par trop comment sur 1'explication

newtonienne les rayons, une fois disposes par 1'action des

bords en bandes de couleurs tout a fait independantes de celles

dont on suppose que la fusion produit le blanc du spectre,

et etant devenus pinceaux de ces couleurs independantes, pour-
raient plus tard, et a une distance plus grande, devenir nieles

avec les couleurs qui avaient forme le blanc ; car les bords et

les bandes qu'ils forment sont perpendiculaires aux rayons qui

proviennent du prisme. Les bords (fig. 9, a, b) formeut des

bandes de couleurs entre g et /,
differentes de celles cf et dg, qui
s'entremelent avant et jusqu'a E ;

au-dela de E, la fusion de c/, dg
cesse. Mais comment est-ce que
leur separation dans ce sens-la

agit ou influe sur leur separation par a, b, dans un sens entiere-

ment different ? Si a, b, etaient places en travers, de maniere

a intercepter c / ou dg, nul doute que 1'effet produit ne fut

de faire des couleurs dans la partie blanche du spectre. Mais

cet effet serait produit de suite, passe a, b, et non pas a E
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settlement. Les rayons, ce semble, etant blancs a leur passage

par les bords a, 6, sont disposes en bandes par 1'action de a, 6,

qui leur fait prendre une direction a un angle horizontal a a, 6,

c'est-a-dire que les bords decomposent le blanc en rouge, vert,

bleu, par action laterale et horizontale ; et pourtant, par 1'action

verticale du prisme, ces memes couleurs sont changees passe E.

Supposons qu'au lieu des bords a, b, un prisme fut place verti-

calement, il devrait former un spectre avec le rouge le plus

pres de a, b, le violet de 1'autre cote ou a 1'autre bout du

spectre, si toutefois Tangle refractant du prisme est tourne vers

a, 5. Done, si la meme chose arrive a ce spectre qui arrive aux

bandes, il s'ensuivrait que le rouge devrait etre change, au

moins teint des couleurs qui, melees ensemble entre c et f, d

et g, sont separees passe E, ce qui evidemment n'arrive pas.

Cependant la grande diversite de 1'action de flexion et de

refraction doit toujours nous etre presente, et il n'y a rien dans

ces phenomeues de plus remarquable. Lorsque la lumiere

homogene passe par les bords, parallelement et non pas diver-

gente, elle est disposee en bandes non-seulement a distances

differentes de 1'axe du spectre, mais de largeur diverse. Le
trait ou pinceau est disteudu. Lorsque la lumiere est refractee

par un second prisme place verticalement au premier ou

parallele a 1'axe du spectre, il est refracte aux diverses distances

de 1'axe, le violet le plus eloigue, le rouge le plus pres. En
cela il y a grande ressemblance avec les phenomenes de flexion

si ce n'est que les rayons les moins refractes sont le plus
flechis. Mais la cesse 1'analogie des deux operations ;

car il

n'y a pas dans la refraction par le second prisme la plus petite
distension ou dilatation du pinceau, comme il pourrait y avoir

si le second prisme etait place horizontalement ou a travers le

spectre ; car alors, bien que les rayons, tous de la meme couleur,

ne puissent pas etre distendus, cependant un trait compose de

plusieurs couleurs pourrait etre distendu. Mais dans la flexion

c'est different. Les bords places parallelement a 1'axe du

spectre formeut des bandes autant que s'ils etaient places a

travers le spectre, et les pinceaux sont distendus lateralement,

quand meme les rayons qui les composent sont exactement de
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meme couleur. It est vrai que les bandes sont plus larges

lorsque les bords sont places parallelemerit au prisme et en

travers du spectre, a cause de la differente flexion des rayons
differents

;
mais cette augmentation relative n'est pas tres-

considerable, parce que les rayons pres des bords (oranges,

par exemple) ne sont pas autaut flechis que les rouges plus

loin, cette difference etant une compensation de la plus grande
distance de ceux-ci ; et ainsi la dispersion est plus petite qu'elle

ne serait, a cause de la proximite des uns et de la distance des

autres.

Ces deux proprietes, la differente distension (ou dispersion)

des differents rayons indiquee par la differente largeur des

baa des, et la differente flexibilite des rayons indiquee par la

differente distance des bandes, voyons comment on peut les

expliquer, et si elles sont independantes 1'une de 1'autre, ou si

*lles peuvent etre ramenees au meme principe.

Newton, pour Implication de la premiere propriete (la seule

qu'il ait remarquee), a donne Fhypothe'se que 1'action des corps

s'eteiid plus loin sur les rayons moins refrangibles ; et il parait

penser qu'a la meme distance 1'action est la meme, mais que
cette action, plus pres sur les uns, egale 1'action plus loin sur

les autres. Cela explique certainement la difference de lar-

geur, mais non pas le different eloignement des bandes. Pour

expliquer eel a, il faut que Faction ne soit pas seulement egale
a une plus grande distance, mais qu'elle soit plus forte a la

meme distance.

II y a pourtant une objection a faire a la theorie newto-

nienne. C'est que Faction ne cesse pas avec la premiere bande
;

il y en a une suite d'autres, toutes produites par la continua-

tion de la meme action, diminuant avec la distance. Aiusi la

theorie n'a pas d'application, a moins qu'on n'ajoute une hypo-
these encore, savoir : Qu'il y a une suite de spheres d'action,

chacune repondant a une bande, et que dans chaque sphere
Faction s'etend plus loin sur les rayons les moins refrangibles.

Mais il faut ajouter encore un hypothese, ce me semble, pour

expliquer le plus grand eloignement de bandes formees par
ceux-ci. II faut que la sphere, ou plutot les spheres, d'action
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commencent, pour les diverses couleurs, a differentes distances

du corps flechissant. Eii faveur de cette hypothese, ou pour-
rait faire remarquer la bande ou ligne assez brilliante de blanc

touchant a 1'ombre, et entre 1'ombre et la premiere bande

coloree. Cette ligne blanche a toujours paru difficile a expli-

quer ; mais je ne suis pas d'avis que 1'explication depende

uuiquement de ce que Ton vient de dire sur le commencement
des spheres d'action. II faut se rappeler que la deflexion

commence la oi} I'inflexion cesse. Ainsi les rayons qui passent
le plus pres du corps sont exposes a toutes les deux actions,

et ne peuvent pas etre decomposes plus qu'ils ne le sont en

passant par deux prismes dont les angles refractants sont places
en sens inverse. Dans ce cas-la, il n'y a que le blanc qui
sorte ; ou si la lumiere est homogene, il n'y a pas de change-
ment dans le cours des rayons. Meme chose pour 1'actiou des

bords. Une troisieme hypothese me parait meriter notre

attention, d'autant plus qu'elle pourrait peut-etre fournir

1'explication de toutes les deux proprietes, et que les regies de

philosopher defendent la multiplication de causes ou de prin-

cipes. II se peut que la proportion de 1'action, a la distance

du corps, varie dans les differents rayons ;- que le long du

spectre dans 1'equation y =
(y

= force flectrice ; x = dis-

x z

3

tance du bord ou corps ;
z - 1'axe, ou plutot les

portions successives de 1'axe du spectre; z = AP,
x = T*q; AB =

1'axe) (fig. 10). Ainsi z varie dans

les couleurs, ou le long de 1'axe, et differe pour tous

les rayons de 1'extreme rouge a 1'extreme violet.

Nous avons done une equation exponentielle, mais
T / Fi,ff 10.

peu compnquee.
Nous avons fait observer que 1'hypothese newtonienne n'ex-

plique aucunement la distance variante des bandes selon la

refrangibilite des rayons. Aussi faut-il convenir qu'elle ne

peut du tout expliquer les couleurs prismatiques des bandes

formees par la lumiere blanche. Supposons que 1'unique
difference des rayons fut que 1'action du corps flechissant

N 2

_
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s'etendit plus loin sur les rouges et moins sur les autres succes-

sivement; le resultat serait que les rayons rouges seraient disposes

sur un espace, cornme bande, E V, et plus large de o E que les

_ espaces qu'occupent les autres ; les oranges
seraient disposes sur 1'espace V o

;
les

jaunes, sur 1'espace ~Vj; et ainsi des autres,

p.
x/

B de maniere que la seule partie qui serait

d'une couleur simple et unique, c'est oE
;

tandis que toutes les autres seraient teintes d'un melange de

couleurs, jo, rouge et orange ; Y'y, rouge, orange et jaune ;

b V, rouge, orange, jaune et vert ;
i b, ces couleurs avec le bleu

;

v
i, ces couleurs avec 1'indigo ;

et V v, toutes les couleurs ou

blanc. Eien ne peut etre plus different de 1'apparence des

bandes
;
les teints saillants sont rouge, vert et bleu. Or, selon

la theorie, le vert serait mele avec le rouge, 1'orange et le

jaune, et le bleu avec toutes ces couleurs ; et, finalement,

1'espace qui devait etre violet serait blanc.

La differente etendue de Faction n'explique done pas du tout

les couleurs des bandes. Eien ne les explique, que la differente

flexion des differents rayons, de maniere a faire occuper aux

couleurs des places differemment eloign^es de 1'ombre. Mais

cette differeute flexion donne 1'explication tres-facilernent. II

n'y a que la differente largeur des bandes de couleurs differentes

qui donne le moindre embarras, et cela n'est pas considerable.

II s'ensuivrait de cette difference que la partie rouge du spectre

de flexion (c'est-a-dire de la bande formee par la lumiere

blanche) devrait etre plus large que les autres parties, et la

violette la plus mince de toutes. Mais la rouge et 1'orange

se confondeut, et font une partie rnaterielle de la bande
;
le

violet, 1'indigo et le bleu de meme paraissent bleus
;
le vert et

le jaune passent pour verts; et aiusi les couleurs paraissent

plutot rouge, vert et bleu, qu'en plus grand nombre.

Nous avons parle, mais peu, des bandes internes. Evidein-

ment les rayons qui les forment viennent des cotes opposes du

corps flechissant, et se croisent ou au moins se rencontrent a

uu point plus ou moins distant du corps, selon que ce corps est

plus ou moins mince. Qu'ils se croisent ou se touchent, parait
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d'abord par Texperience fondamentale d'interference, Tobstruc-

tion des rayons d'un cote et I'effacement des bandes du cote

oppose. Mais cela parait aussi, si les bandes sont examinees

pres du corps, en les recevant sur un verre depoli, 1'oeil place

derriere. II n'y a point de bandes si le verre n'est pas a une

certaine distance ; plus pres, il n'y a que 1'ombre parfaitement
noire. La determination de ce point, ou commeucent a paraitre
les bandes internes, nous donne le moyen de calculer Tangle

d'inflexion, le demi-diametre de 1'aiguille ou un autre corps
mince etant le sinus de cet angle, et la distance du corps son

cosinus. Je n'ai jamais pu fixer cet angle a moius de 20' ; ce

qui demontre combien la force d'inflexion differe de celle de

deflexion, Tangle de deflexion etant, comme nous Tavons vu

plus haut, six fois moins grand. Des observations m'ont fait

conclure que Tangle d'inflexion des rayons rouges est de 27' a

30', et il est probable que cet angle pour les violets est de 18'

a 20' au moins, si la proportion de 3' a 2' se conserve pour les

bandes internes comme pour les externes.

Pour pouvoir decider la question, savoir, si les phenomenes
de flexion (diffraction) peuvent etre ramenes au principe de

Tinterference, il faut considerer que, selon ce principe, Teffet

produit est en raison inverse dela difference entre les longueurs
des rayons interferents ; je ne dis pas dans la proportion simple
inverse, mais dans une proportion inverse quelconque. Soient

B, D (fig. 12), les deux bords ; B E, D E, les rayons interferents

a E ; mettez AB = a, CD =
6, AC=c; soit C E = x

; y =
Teffet de Tinterference. Nous avons cet effet-la en raisou

inverse de D E BE, c'est-a-dire

1

y =
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Or, cette courbe doit avoir une asymptote, quelle que soit

la valeur des constantes de 1'equation, et quelle que soit la

valeur de m ; c'est-a-dire dans toutes les positions des hordes, et

quel que soit 1'ordre de la courbe. C'est-a-dire que, quelle que
soit la loi d'interference, pourvu que 1'interference agisse en

raison inverse quelconque a la difference des longueurs des

rayons, on peut toujours trouver un point S, auquel DE =

B E ou V b* + a? = A/ (c + x)* + a*. Ce point-la se trouve ou

b
z

c
2 a2

x =
. Done la valeur de y augmente entre A et ce

C

point S, ou elle devient infinie. Done les bandes doivent

augmenter en largeur et en eloignement 1'une de 1'autre, des

le point A vers le point S. Mais au contraire elles diminuent

en largeur et en distance. La plus large est la plus pres de

A
;

les autres diminuent constamment jusqu'a ce qu'elles

disparaissent ; et la ou il y a des intervalles entre elles, comme
dans la lumiere homogene, ces intervalles sont plus grands
entre les bandes le plus pres de A, et vont en diminuant vers

S, route comme les bandes elles-memes. Plus le bord B est

pres de D dans le sens C A ou Dd, et plus eloigne sera le point
S. Cela parait non-seulement par la valeur de x ci-dessus,

mais aussi par la raison geometrique de la solution du probleme
de trouver le point ou deux lignes inflechies de deux points sur

une troisieme ligne sont egales. Ainsi, plus les bords sont

pres 1'un de 1'autre dans le sens d D, et plus les bandes devraient

etre minces et rapprochees 1'une de 1'autre
;
ce qui est diame-

tralement contraire aux phenomenes.

Jusqu'ici nous n'avons regarde que le cours de la courbe

de A a S, en le comparant avec les phenomenes de ce cote-

la de A B. Maintenant considerons la courbe du cote oppose
de A vers F. Elle approche de 1'axe durant une portion de

son cours, et ne commence a s'en eloigner qu'a M, la ou il

y a un point de rebroussement. Done, entre A et F (1'abscisse

pour le point de rebroussement), les ordonnees diminuent,
et ne commencent k augmenter que passe F. Pour trouver F,
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y
il faut trouver y en termes de x dans 1'equation -^

= 0.

Mais 1'operation devient embarrassante, meme accablante, le

denominateur de la premiere differentielle de y ayant 16

facteurs multiplies par la racine carree d'une fonction de

4 facteurs, et puis une quantite de 30 facteurs a soustraire ;

et le numerateur est meme plus complique, et puis le tout

doit etre differencie pour avoir d*y. Mais on peut trouver

la valeur approximative de x
;
et si 1'on prend les propor-

tions de A C, A B et D C, les distances auxquelles I'experience

se fait commodement, a = 80; b = 90, et c l
m

; le point S

est a 849 de A; etFC = 9.9, ou AP = 8.9; car a x = -
8,

y - ; a x = 9, y = . ,..,.; a x = 9.5, y
10.039 10.049_ /y _ _ Q Q ,i/ _ ^^^____ <-y ^_ 10 VI - np _

10.05' "10.04"
U

' y ~10.049
)

- 12
> y =

T7T7TT7' et * x = - 15, y =
10. 044'

"
-10.026'

Done il est clair que si les phenomenes 6taient causes par

1'interference, les bandes devraient diminuer tant en largeur

qu'en distance 1'une de 1'autre, de A jusqu'a F ; car y va en

diminuant entre ces deux points. Mais au contraire les bandes

augmentent en largeur et en distance, non-seulement passe F,

mais sur toute la route de A a F.

II faut faire remarquer que ces phenomenes sont tous ob-

serves, et en effet ne peuvent etre observes qu'assez pres
des lignes AB, CD. Car d'apres les proportions ci-dessus,

et qui sont celles des experiences qu'on a reellement faites,

les bandes d'un cote (celles de deflexion apres 1'inflexion)

ne sont visibles que dans un espace de 3 a 4 mill. ; et lea

bandes augmentent de 1'autre cote, celles d'inflexion apres

deflexion, dans un espace plus considerable, mais seulement

de 6 a 7 mill. Mais les premieres, qui devraient augmenter

jusqu'a S, vont constamrnent en diminuant jusqu'a ce qu'elles

cessent d'etre visibles, tandis que les secondes, qui devraient
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diminuer jusqu'a un certain point I\ vont en augmentant

toujours, et ne diminuent jamais.

II faut aussi faire attention a ce que Ton a pris la courbe

dans la supposition que m =
1, on que Faction d'interference

est en raison inverse simple de la difference des longueurs ;

mais le raisonnement est le meme, quelle que soit la valeur

qu'on donne a m. Soit 1'actiou en raison inverse des carres

ou m = 2, ou des racines carrees, ou m =
-J,

on trouvera que
la courbe est de la meme forme en ce qui regarde cette portion
dont il est question. Les distances des points S, F sont les

memes. Les courbes sont d'ordres differents, et leurs autres

branches varient de beaucoup de celles de la courbe que Ton

vient d'examiner. Mais en ce qui regarde la branche dont il

s'agit, il n'y a pas de difference.*

Si 1'on regarde les baudes internes ou de Tombre, le prin-

cipe d'interference est difficile a appliquer, mais 1'application

n'est pas impossible. Soit a le diametre de 1'aiguille ; b, la

distance du tableau ou les bandes sont re9ues; x, la dis-

tance de 1'extremite du diametre a, vers son centre; liqua-

tion est y = 7 '^- - -
..-

;
et ici, comme

(V (a
- x? + V - V^+tf8

)
m

dans 1'autre cas, nous avons une asymptote, savoir, quand

x =
,
et les ordonne*es augmentent de x = jusqu'a x =

2

; et les phenomenes s'accordent avec la theorie a un
40

certain point, car les bandes augmentent tres-faiblement

Si m 1, la courbe est du huitieme ordre.

Si m = 1, elle est du quatrieme ordre.

Si m = 5, elle est du sixieme ordre.

Si m =
J, elle est du douzieme ordre.

Mais la forme ne varie pas beaucoup. II va sans dire que lorsque
m = -

1, il n'y a pas d'asymptote. Si la proportion est, non pas de la

difference des rayons, mais de leur carre, hypothese presque impossible, la

courbe est une hyperbole conique, y = ; et un porisme
o2 a3 c2 2cx

assez curieux se rapporte a cette propriete' de la courbe.
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jusqu'a 1'axe de 1'ombre, et si peu'que plusieurs observateurs

ont affirme qu'elles sont toutes de la meme largeur. Au centre

de 1'axe, pourtant, il y a un espace gris, manifestement plus

large que les bandes ; et il y a deux iutervalles d'un noir fonce

entre cet espace gris et les bandes colorees. Ces deux in-

tervalles noirs sont aussi plus larges que les bandes, et que
les autres intervalles noirs. Mais la theorie indique une aug-
mentation de largeur beaucoup plus considerable. Prenez

m = 1
;

a =
-gV

c
^ = 2, o, 7|-, 15, 75, 100 successive-

ment, nous aurons la proportion de la valeur de y lorsque
x =

0, et lorsque x = 2f du demi-diametre (ou de TV)>
c'est-a-dire tres-pres du centre, comme 1 : 12. Ainsi, les

bandes pres du centre doivent etre 12 fois plus larges qu'a
1'extremite de 1'orDbre. Mais, rneme en comptant les bandes

noires et grises centrales, elles ne sont jamais pres du double.

Si m = 2, ou plus, la difference est beaucoup plus grande.
Meme en prenant m = ^ ou (racine carree ou cube), la

disproportion est beaucoup trop grande. Si m =
^, elle est

encore considerable, comme 47286 : 87263. Done, sans etre

impossible, il est difficile de ramener les bandes internes au

principe d'interference. Pour ce qui regarde les bandes ex-

terieures, cela devient impossible. II y a la certainement op-

position complete des phenomeues a la theorie.

La theorie ou hypothese de M. Fresnel, dont j'ai parle dans

mon Memoire de 1'annee passee, est d'une grande importance,

je veux dire la proposition que les phenomenes de flexion (dif-

fraction selon lui) "dependent uniquement de la largeur de

1'ouverture par laquelle la lumiere est introduite." (Mem,
de rinst., 1821, 1822, p. 372.) Si cela est vrai, toute 1'in-

fluence des corps flechissants disparait, et tout est reduit a la

question de la largeur de 1'ouverture.

La preuve la plus directe du contraire est aussi la moins

facile a obtenir par les experiences ; mais on peut 1'avoir.

C'est la mesure de 1'ouverture lorsque les bords sont places
directement vis-a-vis 1'un de 1'autre. La largeur des bandes

n'est pas en raison inverse de la largeur de 1'ouverture. La
seconde preuve est de placer les bords 1'un apres 1'autre sur
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une ligne rigoureusement horizontale, et parallels aux rayons

parcourant horizontalement la chambre. Les bandes et leurs

distances des rayons directs, qui ne sont que de \ de mill,

et meme moins, si les bords sont distants 1'un de 1'autre hori-

zontalement de 10 cent., ont la largeur et 1'eloignement de

2 mill, lorsque la distance horizontale des bords est d'un cent.
;

et les bandes ont la largeur et 1'eloignement de 10 cent.,

lorsque les bords ne sont que
-*- mill, distants 1'un de 1'autre.

Mais la distance verticale des bords 1'un de 1'autre reste la

meme, elle est d'un mill. : c'est-a-dire 1'ouverture reste la

meme, tandis que la distance horizontale variee a entiere-

ment change la largeur et 1'eloignement des bandes ;
demon-

stration conclusive que la largeur de 1'ouverture ne decide pas
de celle des bandes et de leur eloignement des rayons directs.

Pourtant cette experience exige le parallelisme rigoureux de la

ligne ou barre sur laquelle les bords sont places. Ainsi je
donne encore une preuve qui parait decisive sans que 1'exact

parallelisme soit necessaire ; et par consequent cette troisieme

experience est facile a faire.

Placez les bords dans un pinceau, n'importe de quelle in-

cliuaison ni a quel angle les bords le rencontreut ; ils feront

des bandes plus ou moins larges, plus ou moins eloignees des

rayons directs, en proportion inverse de la distance des bords

1'un derriere 1'autre dans le sens du pinceau. Soit cette dis-

tance de 10 cent., et faites que le bord le plus pres du trou qui
admet la lumiere dans la chambre se porte de plus en plus dans

le pinceau, jusqu'4 ce que le passage des rayons entre les deux

bords soit ferme, et qu'il n'en passe plus. Eemarquez bien les

bandes avant qu'elles disparaissent, et vous verrez qu'a cette

distance des bords ces bandes u'atteignent jamais qu'une largeur

tres-petite, meme lorsqu'elles sont evanouissantes. Rapprochez
les bords, et retirez du pinceau celui qui est le plus pres du

trou, jusqu'a ce que les rayons puissent passer entre les deux
bords (ces bords sont maintenant a une distance 1'un de 1'autre

d'un cent., selon le cours du pinceau) ; et vous verrez que

quand meme la distance verticale des bords n'est pas tres-petite,
il y a des bandes considerables. Faites entrer le bord dans le
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pinceau jusqu'a ce que les bandes soient d'un mill, ou mill, et

demi de largeur, et que la distance des bords selon le cours du

pinceau ne soit que d'un cent, ou f de cent. ; puis placez le

second bord a une distance de 10 cent, ou de 20 cent., faites-

le entrer dans le pinceau, et vous trouverez que quand mSme le

bord est place dans le pinceau de maniere a faire intercepter
tous les rayons, au moment de 1'evanouissement des bandes elles

ne sont jamais de la largeur dont elles etaient lorsque les bords

furent places 1'un pres de 1'autre, pas meine du dixieme de cette

largeur. Done, a des distances meme peu considerables des

bords 1'un derriere 1'autre, il n'y a pas de petitesse d'ouverture

(ou distance verticale de ces bords) qui puisse former des bandes

tant soit peu larges. J'ai vu ceux qui penchaient du cote de

1'hypothese de 1'ouverture etre convaincus tout de suite de leur

erreur, en voyant qu'a plusieurs assez petites distances des

bords 1'un derriere 1'autre, on peut varier a 1'infini leur distance

verticale, c'est-a-dire 1'ouverture, sans qu'aucune diminution de

cette ouverture puisse augmenter la largeur ni 1'eloignement des

bandes considerablement.

Qu'il me soit permis, avant de conclure, de faire observer

que Newton, dans un passage remarquable de son troisieme

livre, parait mais assez obscurement, s'etre doute d'une pro-

priete des rayons telle que je 1'ai decrite sous le nom de dis-

position dans mon Memoire de 1849.* En parlant des deux

bords ou tranchants de couteau, il dit que le couteau le plus

pres de chaque rayon determine le cours que prendra ce

rayon, et que 1'autre augmente la flexion. Or 1'autre, c'est le

bord oppose ; et ceci me parait approcher de tres-pres de ma
theorie.

SUPPLEMENT.

Dans mon dernier Memoire,f en donnant les preuves de

la differente flexibility des rayons homogenes, je me suis

* Un resume des experiences et des conclusions qu'on en a tirees, a ete

lu plus tard a la Socie'te royale. (Voir
'
Phil. Trans.' 1850, part II.)

t II precede ce Supple'ment.
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exprime avec quelque hesitation sur le cours rectiligne, que

j'attribuais aux bandes formees par la lumiere da spectre

prisraatique. Les experiences avec deux bords tres-pres 1'un

de 1'autre, places dans les rayons parallelement & 1'axe du

spectre, ont paru donner des bandes rectilignes, ou & ires-

pen pres. La distance des bords dans ces experiences etait

en general de
-J
de millimetre, et rarement de moins de TV- J'ai

fait depuis des experiences avec un reseau de lignes gravees sur

verre, et distantes entre elles de ^V et aussi de T'IF
de millimetre ;

et j'ai ete surpris de trouver qu'a la premiere de ces distances,

mais bien plus a la seconde, les bandes etaient courbees, et

d'une assez grande courbure. Cette forme de 1'expe'rience est

assez commode, parce que, quoique deux de ces lignes grave'es,

seules, donnent des bandes peu distinctes, six ou plus rendent

les bandes tres-brillantes, en faisant tomber sur le tableau (ou
sur la retine lorsqu'on regarde le phenomene par voie de vision

directe) les bandes formees par plusieurs lignes, ou paires de

lignes, du reseau.

La fig.
1 donne les bandes formees sur le tableau, lorsque

le reseau est place dans les rayons du spectre prismatique.

La fig.
2 donne les bandes vues par vision directe, le reseau

etant place pres de 1'oeil et derriere le prisme, et le prisme

place entre le reseau et un assez petit disque de lumiere

solaire jetee sur un tableau blanc, pres du petit trou

par lequel la lumiere entre dans la chambre obscure.

Soit AB, fig. 3, 1'axe du spectre, A = violet,

B = rouge. Si la force flectrice (ou 1'influence,

quelle qu'elle puisae etre, par laquelle les bandes

sont formees) augmente en raison directe de la

distance de P a A, cette force agissante en lignes

paralleles (et perpendiculairement aux bords flechissants),



EXPERIMENTAL ON LIGHT. 189

'X

PM =
?/, A P = x, nous avons 1'equation y =

, ligue

droite, et c7MC est rectiligne. Evidemment done si c?MC
est curviligne, la force P M (fig. 4) n'est pas en raison simple
de A P, c'est-a-dire en raison simple inverse de la

xu

refrangibilite ; et 1'equation de d~M.C est y =
,

x'
u

et celle de d' M' C' est y'
= p. Mais nous avons

TO

pris la refrangibilite comme une fonction du sinus

de refraction soustrait de la constante AB. Si

Ton prend la refrangibilite en raison du sinus de refraction,

toute proportion inverse de la refrangibilite donne uue courbe

hyperbolique qui ne peut etre d'accord avec les phenomenes,

excepte en supposant le centre de I'hyperbole assez eloigne de

1'origine du spectre (le rouge) ; et quoique dans ce cas la ligne

serait a peu pres droite, la force ne serait pas en raison inverse

de la refrangibilite, c'est-a-dire du sinus de Tangle de refraction,

mais de la difference entre ce sinus et une autre ligne. Mais

si Ton doit faire cette supposition, on pourrait egalement sup-

poser la proportion directe de la difference en partant du violet,

ce qui donnerait une ligne rigoureusement droite.

Mes mesures de la distance des courbes a 1'axe du spectre,

c'est-a-dire des lignes P M, P M', B C, B C', m'ont donn lieu a

supposer que n = 3, et que la courbe est parabolique. Elles

ne s'accordent pas avec une courbe hyperbolique, A B = 18,

B C = 13, B C' = 15. II faut pourtant faire observer que la

Xs

courbe y = ne parait pas d'accord avec la courbure des
m

bandes. Car le rayon de courbure etant ^ - -
,
ce rayon

bmr x

parait etre plus grand pour rf'M'C' que pour d?MC, excepte

3

(q x* -4- m2

)^
tres-pres de d et d'. Car, egalant les quantites

--

z
- et
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I

--- pour trouver le point M ou M' ou P, ou les deux
m*

courbes ont la meme courbure, on trouve x 7^ a peu pres.

Dans mon dernier Memoire (qui precede ce supplement),

j'ai suggere que I'hypotkese d'une force fiectrice variant avec

a
la difference de refrangibilite, y = ~7 (a?

= distance du rayon

au point du bord flechissant, z distance du point a 1'extremite

rouge du spectre), pourrait expliquer la difference de la largeur
des bandes formees par les rayons de differentes couleurs

;
et

qu'ainsi la differente flexibilite expliquerait les deux phenomenes,
le different eloignement des bandes et leur differente largeur.

Soit A', fig. 5, un point des bords, sa distance de

1'extreme rouge = z. A P = x, la distance du rayon
au point A, x' = la distance d'un rayon plus eloigne
du point A. Si la flexion est en raison inverse de

la distance a?, x', la difference B C des sinus des

angles de flexion A P B, A P'C, donnera la largeur

a
de la bande. Mais nous supposons que la force y = ~. Ainsi,x z

plus z est grand, et plus B G, difference des sinus des angles de

flexion, est grand. Soit AP = 2, AP' = 3; et pres de

a a

1'extreme rouge du spectre z =
2, y = ~= et y' = ~T= et

/ /o~ _ J~^\
B D = - - -_=

-- x . Mais plus loin du rouge, z = 3
;
et

_ a
< -^-~-

, et la bande violette est moms large que la

^6
bande rouge.*

* This Traut is from ' Mem. de 1'Institut
'

for 1854.



IX.

OX FORCES OF ATTRACTION TO SEVERAL CENTRES.

FORCES INVERSELY AS THE DISTANCE.

1. IT is to be lamented that Sir I. Newton did not treat the

problem of forces directed to more fixed points than one, as

to two such points, either in the same or different planes
from the body acted on. This is the fundamental point in

considering disturbing forces when the centres are not fixed,

which makes the problem more complicated and difficult.

It is, however, sufficiently so even where the centres are

fixed.

2. That the subject must have attracted Ms attention there

can be no doubt. He had gone so much into the more
difficult inquiries respecting disturbing forces that he must

have fully considered the somewhat simpler, what may be

termed the fundamental, case of fixed centres. Indeed, a

paper communicated to the Eoyal Society in 1769 {Phil. Trans.

p. 74) contains a demonstration by W. Jones, an intimate

friend of Newton, of a proposition on this subject, which
Machin had immediately after Sir Isaac's death given to the

translator of the Principia. Machin had observed on the

want of some investigation of the motion of forces directed to

two centres, as required to explain the motions of planet and

satellite, which gravitate to different centres, in a word the

problem of the Three Bodies. The proposition of Machin
and Jones goes but a very little way to supply the defect

complained of. It is confined to the case of the line joining
the two centres being in different planes from the line of
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projection ; it is that the triangle formed by the radii vectores

and the line joining the two centres or fixed points, describes

equal solids in equal times round that line
;
and the demon-

stration is similar to that of the first proposition, of equal
areas in equal times when a single force is directed to one

centre. It seems reasonable to conclude, that Newton had,

upon full consideration, found the full investigation of the

subject beyond the powers of the calculus as it then existed.

It is at least certain that, though he might have mastered it,

he never could have delivered his results synthetically as in

the Principia.

3. The solutions on disturbing forces generally consider

one force as acting in the one direction, that of the radius

vector, and another in a line perpendicular to that radius

vector. Thus Clairaut {Mem. Acad. 1748, p. 435) gives these

equations rd*v + 2drdv = Hdx*
rdv* d*r = Zdx*;

r being the radius vector, v its angle with the axis, d x the

differential of the time, II the force to the centre, I the

disturbing force. So D'Alembert (Mem. Acad. 1745, p. 365)
takes the same course, and obtains an equation to the orbit in

question, depending on the integration of fTIdz, II being
the disturbing force acting in a line perpendicular to the

radius vector, and z the circular arc described with a radius

equal to the distance between the centre of force and the

vertex of the orbit. This assumes, however, that the orbit, is

itself nearly circular.

4. If P = distance of E (Earth) from Moon (M)'s quadra-
ture, s = sin. angle of rad. vec. r with the perpendicular to a,

the distance of E from S, the Sun
;
v = velocity of M

;
then

rdP 3P*mnsds
vdv =

p 1 , supposing the motion of JVI to
-t Qi

be almost uniform. Here one of the forces acting on M
E-f-M SxME

is directed towards E, and is =
| ; the

JVI Jtli D JVI

other force is in a line parallel to S E or a, and is =
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SxSE S
5^pii'

It was in consequence of this mvestiga-
o M3 o -ili

tion that Clairaut for some time announced, as did also

Eulcr and D'Alembert, that there was a material error in

the Newtonian theory of the Moon^s motion. The error,

which afterwards was found to arise from their having
omitted the consideration of certain quantities, was acknow-

ledged by Clairaut three years later (Mem. Acad. 1748,

pp. 421, 434), but no one can read that paper without

feeling that the acknowledgment was too coldly made, after

he had gone so far as to suppose that the whole Newtonian

doctrine was overthrown, and to propose a new law of

-| , the whole of this arising from his own error.
r r*

It is to be remarked, however, that the investigation of 1745

was in all respects most accurately conducted, and must have

led to the same result as in 1748 but for the supposition that

certain quantities might safely be neglected. Eve'n in 1745,

Clairaut, upon Newton's assumption of the excentricity of M
being nothing, comes to his conclusion that the proportion of

the axes is as 69 to 70.

4. Legendre treats the subject very fully, as far as regards
two centres, and also confining himself to the forces being

inversely as the square of the distance (Exercises de Calcul.

Integral, part iv. sect. 2). He deduces from his analysis

several theorems, two of which he regards as very remark-

able. The first apparently strikes him in this light, because

it shows the same orbit to be produced by the combined

action of the two forces directed towards two foci, as either

force would produce acting on the body, and directed to one

of the foci. If V is the velocity at the vertex of the ellipse

which would make the body describe that curve when acted

upon by the force directed to one focus, v tie velocity at the

same point which would make the body desciibe the ellipse

when acted upon by the other force directed to the other

focus ;
then if the two forces act together upon the body, and

o
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I is the initial velocity, or velocity of projection, it will

describe the same ellipse, provided I2 = V 2
-f- u

8
.

5. The other theorem follows from his integration which

gives the expression for the time. It is that if two equal
forces act upon the body directed to the two foci, and the

masses of the attracting bodies consequently are equal, the

revolving body will describe the ellipse in a shorter periodic

time, will move more swiftly, than if the whole mass were

placed in one focus and acted from thence upon the revolving

body. He takes the example of the tangent of the orbit with

the axis making an angle of 30, and finds the periodic time

shorter in the proportion of nearly 78 to 100 when the

attracting mass is divided into two, one acting in each focus,

than when both combined act from one focus.

6. What renders this problem of more centres than one so

difficult, is that the resultants of the forces pass through
different points, and that they vary by a law which differs

in each case, as the locus of their extremities is a different

curve. Take the least complicated, but still full of diffi-

culty, that of two fixed points as the centres of force, and

take the instances in nature of the forces being inversely
as the square of the distance ; the radius vector to one

rrn

point being r, the force ;
to the other point the radius

171'

vector q. the force ^. Now the force which acts on the
<?

body being the resultant of these two, and these forces not

being as r and q, the diagonal does not pass through the

middle point of the line joining the two centres
; except in

the single point of the orbit where r = q, and even then it

may not reach that line, for it is ^ . At every other

point it runs in a different direction. Let S and S' be the

two fixed points ; S P =
r, and S' P =.

q. Then P a being
77X 7TL

taken = . and Pa' =
-5-, the resultant at that point

r2 q*
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P bisects a a' and is PC, and produced, P M cutting the

axis. From hence may be seen how complicated would be

the analysis, how next to impossible the geometrical con-

struction of the locus of P, by referring the lines P M to

771

S S' as an axis. We know indeed that one of the forces 3-

r
2

771

or -
acting towards S or S', the locus of P is an ellipse;

but it would not follow that if both forces acted the same

curve would be the locus. That the force would be differ-

ent is certain, because it would be as P c, and not as either

P a or P a'. But it may be said that the curve also would
be different. Let us, however, suppose the case of the

curve, whatever it be, cutting the axis S S' produced at

I and I', points equally distant from S and S', so that

S I = S' I' ; also that the angle and the initial velocity of

projection from I and I' is the same, and further that the

attraction as the mass is the same from S and S', or that

the mass of the body in S and in S' is the same ;
then it

o 2
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seems impossible to avoid the conclusion that an ellipse,

and the same ellipse, must be described; because one of

the forces alone acting from S, as -j, would give the ellipse

passing through S and 2'
;
and the other force alone acting

from S, as -, would give the ellipse passing through the

same points S and 2'
; and the initial velocity

* and angle
of projection would prevent any difference in the length of

the conjugate axis
; and in the middle point answering to

the centre C, the equality of r and q and of P a and Pa'

would make the diagonal PC coincide with the conjugate
axis. But a further combination of forces may be sup-

posed in this case ; two forces acting towards the points
T (1

S and S' and in the proportion of r and q. or -- and .

m m
How will this addition affect the locus of P? It should

seem, for a reason similar to that before given, that the

curve would remain the same; for the two new forces

T fl
- and

, acting in r or q or PS and PS' respectively,m m
their resultant must, if there were none other acting, pass

through the middle point C, between S and S' ; and as we
know that a force acting from that point, and in proportion
to the distance from that point, causes the body to move in

an ellipse whose centre is that point, and r -f- q being con-

stant, the ellipse must have the same axis and coincide

with the ellipse produced by the combination of the forces

TO m
and -5-.

r
z

q*

7. This had appeared to be a necessary consequence of

the conditions stated, but not as at all proving the ve-

locity to be the same in the ellipse, when described by
* The condition of Legcnclre (mentioned in page 193), that I2 = V2 + if

ia supposed to hold ; for otherwise the centrifugal force would not be

sufficient to balance the centripetal.
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one force -j or
,
or when described by the combined action

r
of both, or when described by the combined action of and

TO

q m m r q
,
or of -5-, ;, ,

and ; because in all those cases them i* q* m m

velocity will be different, and particularly the action of

T- -I with - + - will occasion a different velocity in
r* m q* m

7l ITt

each point from that occasioned by r H r. Thus to take
i* q*

the velocity at one point answering to C. If II a and II a' be

taken as and . the diagonal He' is the force of and
i* (f r

arn v* sy
- combined, II C is the resultant of and combined

(f mm
(supposing w =

1). Therefore the velocity in II will be as

II c' + II C, when all the forces act, and only as II c' when the

two former act alone, and as II C when the two latter act

alone.* But the curves appear to be the same in each case.

8. These consequences seeming to follow from a con-

sideration of the conditions stated, but without a full and

rigorous investigation, it was very satisfactory to find that

Lagrange had arrived at the same conclusion in one case

of his solution of the problem of two fixed centres (Mec.
Anal, part ii. sect. 7, chap. 3). That solution is marked

throughout with the stamp of his great genius. Euler had,
in the Berlin Memoirs for 1760, treated the case of the

inverse square of the distance and the centres and orbit

being in the same plane. Lagrange's solution is general for

* The difference in velocity is easily obtained, in comparing the effect

of one force and of the combined forces, from the equation v? = 2 (/ X half

2 t) T
chord osculating circle, the chord being =

'

, p = perpendicular to

the tangent, and E = radius of curvature.
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the force being as any function of the distance, and of x, y, z,

being the co-ordinates. Pressed by the great difficulties of

the problem, and the impossibility of a general solution, he

first confines himself to the inverse square of the distance

(p. 97), and a general integration being still impossible, even

after obtaining a differential equation with the variables

separated, he makes a supposition which enables him to

obtain two particular integrals (p. 99), and this gives for the

orbit an ellipse in the one case and an hyperbola in the

other, with the foci in the two centres of force
;
and it

follows, he observes, from the investigation, that the same
conic section which is described in virtue of a force to one

focus, acting inversely as the square of the distance, or to the

centre and acting in the direct ratio of the distance, may be

still described in virtue of three such forces (" trois forces

pareilles"*), tending to two foci and to the "centre." He
adds :

" Ce qui est tres remarquable
"

(p. 101). It having

appeared to many persons that a portion of the demonstration

was not so rigorous as might be desired, M. Serret has very

ably and satisfactorily supplied the defect (Mec. An. torn. ii.

note iii. p. 329, ed. 1855), but he arrives at the same result.

There is also given a very important generalization of

Lagrange's solution, and of Legendre's theorem already men-

tioned, by M. Ossian Bonnet (Ibid, note iv.).

9. The same reason already given proves that if, instead

of two points not in the trajectory we take two in it, as I
and I', and refer the forces to those two, and make the forces

and - in in' and I' n' respectively, and the angle of
r- <f

projection and initial force the same, the same circle will

be described by the body ; and that if two other forces

*
It is plain that

"
pareilles

"
does not mean of the same kind as r-

and v ; for he resolves the force to the centre into two acting to the foci,

a /8

and calls the whole forces + 2 y r and
5- + 2 7 q.*
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f T O \
also act on it, as 2 n' and 2' n'

[
or and

)
the same

\ m m /

circle will be described by the joint action of the forces.

This is even a more remarkable consequence than the

other
; because the forces acting to the centre would of

course give a uniform motion, and those acting to the

points in the circumference an accelerated motion, and the

forces combined will give an accelerated motion. At the

middle point II, the velocity will be, if only the forcesmm V m r q ,

and r act, as -- -=- ; if the forces and also act, it
r5 q

5 2cr mm
will be as * / + I* must, however, be added,V 4 a4 m
that Lagrange's solution does not contain this case of the

circle and two points in the circumference, and there is very
great difficulty in applying to it his analysis. Indeed, it

appears that if the problem be worked upon the datum
* o

of B = + 2 y r, and Q = - + 2 y q, there is no possi-

bility of obtaining an expression freed from the integral sign

in the same way as Lagrange does from his equation,

founded upon the datum R = + 2 y r and Q =
-f- 2 y q

m = 2, and consequently m + 2 = seems necessary to

his process.
There seems reason to suppose that the kind of reasoning

on which we have relied as to the identity of the trajectories
had influenced Legendre in confining his investigation to

the case of curves which have not infinite branches. He
expressly says (Ex. de Cole. Int. 11, 372), that he confines

himself to curves where the orbit is restricted to a definite

space. Certain it is, that the reasons applied to the identity
in the case of curves returning into themselves is wholly

inapplicable to curves having infinite branches.
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10. The extreme complication of the problem arising

from the resultants passing through innumerable points in

the axis has been above noted, as regards the case of two

771 TfL 7*

forces only -^- and . When we add the other two -
r* q* m

and the complication is not considered by Lagrangem
to be increased (p. 99), and probably it is not as regards
the analytical investigation. But it certainly is increased

as regards the geometrical construction ; for we then have

to take the resultant of P c with P C (which is the resultant

of r and g), and this will carry the ultimate diagonal repre-

senting the whole force applied to P beyond the axis S Sf

.

Lagrange indeed does not take P C into his analysis, because

he supposes the forces r and q to act in the same line of the

radii vectores with the forces and . But this would
r* (f

cause these radii vectores to be produced, and make their

resultant also fall below the axis. It can hardly be doubted

that these considerations weighed with Sir Isaac Newton, in

disinclining him to the investigation of a problem which

could afford no hope of a geometrical, or of any synthetical
solution. That he had deeply considered the subject of

attraction to various centres, in the more difficult case of

moveable centres is certain. The justly celebrated LXVIth

proposition of the First Book affords ample proof of it
; and

indeed the LXIVth proposition comes so near the subject of

this note, that it may be correctly said to contain the grounds
both of Clairaut's and Legendre's more full investigation.

11. In connection with this subject Lagrange expresses

great admiration of a theorem of Lambert, which no doubt

is remarkable, that in ellipses (
the central force being as ^ )

\ r J
the time taken to describe any arc depends only on the

transverse axis, the chord of the arc, and the sum of the radii

vectores at its extremities. We may observe, in passing, that
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the vanishing of the expression for the conjugate axis in some
fundamental formulae connected with the ellipse, for example,
the subtangent, gives rise to other curious properties of the

curve similar to the one noted in this theorem, which is

itself related to that peculiarity. (See a porism arising from

this circumstance in Tract IV.) The same theorem had oc-

curred to Lagrange himself, in examining the problem of

deflecting forces to two centres ; it is indeed derivable imme-

diately from the case of that problem when one force vanishes

and the centre connected with it is in an arc of the ellipse ;

for then the radius vector belonging to that centre becomes
the chord. But Euler, long before either of them, in 1744,

had given the theorem for parabolic arcs, which they only
extended to elliptic arcs, and had published it in the Berlin

Mem. 1760. Yet when Lambert claimed it as his own in

1771, and Lagrange gave him the honour of it in 1780, Euler,

though he lived three years after, never thought of reminding
them of his prior claims. It was thus, too, with the first of

analysts, respecting the extension of the Differential Calculus

to that of Partial Differences (Tract III.), by far the greatest

step in mathematical science which has been made since the

age of Newton and Leibnitz, if it have not a rival in the

calculus of variations, the honour of which also is shared by
him with Lagrange.

12. It must be observed that when in 1771 {Berlin Mem.)
Lambert extended the theorem to elliptic arcs, he was ig-

norant of Euler having anticipated him as to parabolic arcs.

But Lagrange truly states (Mec. Anal. ii. 28, ed. 1855), what
shows that all of them had been anticipated by Newton. For
in the IV. and V. Lemmas of the Third Book he had very

distinctly given the whole materials of the proposition as far

as parabolic arcs are concerned.

Lagrange notes the uses of the theorem, and observes upon
the remarkable circumstance of the time not depending at all

on the form of the ellipse, providing the transverse axis

remains the same. This must have frequently recurred to

his recollection, when engaged in those great investigations
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which show the connection that the transverse axis re-

maining unchanged has with the permanency of the sys-

tem.

13. He further remarks upon another consequence of the

conjugate axis, or the form of the orbit, not affecting the

time ; namely, that the conjugate wholly disappearing, and
the orbit becoming rectilinear, the theorem applies to the

time of falling to the centre, on the centrifugal force or that of

projection ceasing to act. (Berlin Mem. 1778.) But Newton's

Vlth Lemma, to which he does not refer, in some degree

anticipated this also.

14. The great difficulty of the problem of several centres

has been stated. Euler was clearly of this opinion, and he

was the first that undertook the solution. After speaking of

the general problem (Berlin Mem. 1760, p. 228) as alike

important and difficult, he confines himself to the case of two

bodies in fixed positions, acting upon a third, which moves in

the plane of those distiirbing bodies ;
in a word, to the

motion of a body drawn towards two fixed centres. He says

that, whoever undertakes the solution of this less difficult

problem "will find difficulties almost as insurmountable as

in the great fundamental problem of astronomy ;" and adds

that, after making many fruitless attempts, he had at last

been led to a solution by the accident of an error into which

he had fallen in his investigation. What he proposes is to

find the cases in which the curve is algebraical ; there being,

according to the conditions, an infinite variety, most of them
transcendental. He considers, however, that if this case of

two bodies in fixed centres, and in the same plane with the

body attracted, should be incapable of solution, the general

problem must prove still more so. Nothing can exceed the

clearness of his investigation ;
and the ingenious subtlety of

the contrivances by which he facilitates the reduction of his

differential equations to those of a lower degree. Of this

Lagrange expresses great admiration, who, in giving a solu-

tion of the case in some respects more extended, but in others

less, became fully sensible of the difficulties of the process,
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and whose investigation is less luminous than his great pre-
decessor's. Euler reduces his investigation to the integration
of the equation

fj.dx vdy

V x + of V y + y
8

'

and obtaining the relation between the angles made by the

two radii vectores with the axis. It is clear that Lagrange's
solution is obtained by another course altogether.

FORCE VARYING INVERSELY AS THE DISTANCE.

It is remarkable that what at first sight seems to be the most

simple of all the cases, that of the central force varying in-

versely as the distance, or of m = 1 in
,
should be found so

much the most difficult of solution, and that, whether the

proportion of - - enters into motion related to one centre
r

only or to more centres than one. Herman, in the ' Pho-

ronomia,' turns away from it, merely observing that his

formula fails when m = 1. Clairaut, in his excellent com-

mentaries on the Trincipia,' his additions to Madame du

Chatelet's translation, deduces, chiefly from the Propositions
of the Second and Eighth Sections (lib. i.), a general dif-

ferential equation for the curve described by a body under
the influence of a centripetal force as Y, a function of the

radius vector; and the equation is therefore a polar one.

It involves the integration of
j"
Y dy. Consequently, when

Y =
,
the case we are now considering, the integral con-

tains an unmanageable logarithm ; for the equation becomes

He

V(2B -logy
8
)

y)
makes no mention of this case, as, like Herman and most
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others, he seems unwilling to approach it; undoubtedly,
however, such is the application of his formula.

Keil, in his paper on Central Forces in '

Phil. Trans.' 1708,

p. 174, gives the case of the force as and reduces it to

finding = P, the perpendicular to the tangent.

(6
-

log r)*

By one process grounded on Prop. XLL, Lib. I., this

result is obtained for the case of
, that is

r , 2 2 y|-

C(*2dxd*x-\-1dyd*y
'

f J~^~ (x d x -f- y d y^
\ j~a = ^ A1 9~. 5 or

a r or 4- y*J u tJ ' n
C* dx* A- dip

j~^ 2 log O2

-f- f) - c =
;
and d t* being

(y dx xdyf (*=
2 ,

the equation becomes
(ydx - xdy}*:

- lo <

hr
The process grounded on the formula / =

=5 is, if

l
} It

possible, more hopeless ; for this gives

ft(y 4. (x - CJY X (dxtfy - dytfx) __1_
2 (ydx - xdy + c dy}*

~

^ + (^ _ C))T*

or h (y
8 + (# c)

2

) (dxd*y dy d* x} = 2 (ydx xdy -\-

cduY or
kdy - ^(ydx-xdy + cdy}*
~d^

~
J dx*(f + (x-c?)

The difficulty follows wherever that proportion enters

into the investigation. Thus in the problems connected with

different centres, when it is found that forces varying as

and , being combined with forces varying as the dis-
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tance directly, or as r and q, give an elliptic orbit, the

resultant of the latter forces passes through the centre, and

the locus of that resultant is the opposite semi-ellipse, and so

of a circle. But when the proportion is and
, (also if

the force towards each centre is as the radius vector to the

other centre), the resultant passes through innumerable

points to an opposite curve, sometimes of a different kind,

although each resultant differing in its direction from all the

others, and in the case of the circle, from the diameter, is

equal to the one passing through the middle point of the line

joining the two centres. In this case, therefore, there is no

combined action of the forces - and -, or and - or of
r <f r5

(f

their several resultants, with the resultant of and
, asj^ ;;:.-.

r q
T (1

there is in the case of and
,
but the several forces actm m

wholly in the direction of the radii vectores^ severally.

It evidently appears to be a more simple and natural com-

bination that the two sets of forces should diminish with the

distance increasing, as in - and r combined with and
r2 (f . r

, than that one set should decrease and another increase
q

i

with the distance, as in and - with r and a. in which
r- (f

case there must even be an extinction of force at one point,
where (taking the sum of the forces instead of their resultant)

m m r -4- q q
a m*

- = -. or r is as in the equation r
a
H

r <f m q*

r
2 = m2

. Of course the value of q would be the same ; and

the resultant (more accurately taken to measure the increase

of the force) would at one value give the two sets of forces as

counterbalanced.
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The younger Euler (J. A. Euler) lias a paper in the Berlin

Mem. 1760, p. 250, upon the action of a central force de-

creasing as the distance, in the case of the attracted body's
descent towards the centre, and states the reason of this

problem being insoluble except by arcs or logarithms. He
finds that taking a = the height from which the descent

begins, f = that at which the centripetal force is equal to

the gravity of the attracted body, the time of descent to-

wards the centre is = =r -- , y being the distance
'

= =r -- ,

SfJ

from the centre.*

* This Tract is from Appendix in. and IV. to the Analytical View of

the Priucipia, pp. 424, 421.
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X.

METEORIC STONES.

THE histories of all nations, in early times, abound with

fabulous accounts of natural phenomena. Showers of blood

and of flesh
;

battles of armed men in the air
; animals of

different descriptions uttering articulate sounds are a few of

the tales which we meet with in the annals of ancient Rome :

and the lively imagination of Oriental countries has infinitely

varied this catalogue of wonders. Of such incidents, however,
it has frequently been found possible to give some explanation
consistent with the ordinary laws of nature, after the nar-

ratives have been freed from the fictions with which super-
stition or design had at first mingled them. "But it is singular
with what uniformity the notion of showers of stones has pre-
vailed in various countries, at almost every period of society ;

with how few additions from fancy the story has been propa-

gated ; and how vain all attempts have proved, to account,

by natural causes, for the phenomenon, with whatever modi-

fications it may be credited. Accordingly, philosophers have

rejected the fact, and either denied that stones did fall, or

affirmed, at least, that if they fell on one part of the earth,

they were previously elevated from another. The vulgar
have as stedfastly believed that they came from beyond the

planet on which we live ;
and every day's experience seems

now to increase the probability, that in this instance, as in

some others, credulity has been more philosophical than

scepticism.
There are two methods of inquiring into the origin of those

insulated masses which are said to have fallen into different
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parts of the earth. We may either collect, as accurately as

possible, the external evidence, the testimonies of those

persons in whose neighbourhood the bodies are situated
; or

we may examine the nature of the substances themselves, and

compare them with the kinds of matter by which they are

surrounded. The first mode of investigation is evidently
more liable to error, and less likely to proceed upon full and

satisfactory data than the other. But if both inquiries lead to

conclusions somewhat analogous; if both the inductions of

fact present us with anomalous phenomena of nearly the same

description, and equally irreducible to any of the classes into

which all other facts have been arranged, we may rest assured

that a discovery has been made and the two methods of de-

monstration will be reciprocally confirmed.

I. The first narrative which has been offered to the world,

under circumstances of tolerable accuracy, is that of the

celebrated Gassendi. He was himself the eyewitness of what

he relates. On the 27th of November, in the year 1627, the

sky being quite clear, he saw a burning stone fall on mount

Vaisir, between the towns of Guillaumes and Perne in

Provence. It appeared to be about four feet in diameter, was
surrounded by a luminous circle of colours like a rainbow,

and its fall was accompanied with a noise like the discharge
of cannon. But Gassendi inspected the supposed fallen stone

still more nearly; he found that it weighed 59 lib., was

extremely hard, of a dull metallic colour, and of a specific

gravity considerably greater than that of common marble.

Having only this solitary instance to examine, he concluded,

not unnaturally, that the mass came from some neighbouring

mountain, which had been in a transient state of volcanic

eruption.
The celebrated stone of Ensisheim is not proved to have

fallen by testimony quite so satisfactory ; but there are

several circumstances narrated with respect to it, which the

foregoing account of Gassendi wants. Contemporary writers

all agree in stating the general belief of the neighbourhood,

that on the 7th of November 1492, between eleven and
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twelve o'clock, A.M., a dreadful thunder-clap was heard at

Ensisheim, and that a child saw a huge stone fall on a field

sowed with wheat. It had entered the earth to the depth of

three feet ;
it was then removed, found to weigh 260 lib.,

and exposed to public view. The defect in Gassendi's rela-

tion is here supplied ; for we have the nature of the ground

distinctly described : the natives of the place must have

known that in their wheat-field no such stone had formerly
existed: but the evidence of its having actually been ob-

served to fall is by no means so decisive as that of Gassendi.

Other recitals have been given of similar appearances, but

by no means so well authenticated, or so fully examined,

although somewhat nearer our own times. In 1672, one of

the members of the Abbe Bourdelot's academy presented at

one of the meetings, a specimen of two stones which had

lately fallen near Verona ;
the one weighed 300, the other

200 lib. The phenomenon, he stated, had been seen by
three or four hundred persons. The stones fell in a sloping
direction during the night, and in calm weather. They
appeared to burn, fell with a great noise, and ploughed up the

ground. They were afterwards taken from thence, and sent

to Verona. This account, it may be observed, was published in

the same year. Paul Lucas the traveller relates, that when he

was at Larissa, in 1706, a stone of 72 lib. weight fell in the

neighbourhood. It was observed, he says, to come from the

north, with a loud hissing noise, and seemed to be enveloped
in a small cloud, which exploded when the stone fell. It

smelt of sulphur, and looked like iron dross.

M. De la Lande, in 1756, published an account of a phe-
nomenon very nearly resembling the above, but deficient in

several points of direct evidence. His narrative, however,
deserves our attention, because he seems to have been upon
the spot, and to have examined, with great care, the truth of

the circumstances which he describes. In September 1753,

during an extremely clear and hot day, a noise was heard in

the neighbourhood of Pont-de-Vesle, resembling the discharge
of artillery. It was so loud as to reach several leagues in all

p
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directions. At Liponas, three leagues from Pont-de-Vesle, a

hissing sound was remarked
;
and at this place, as well as at

Pont-de-Yesle, a blackish mass was found to have fallen in

ploughed ground, with such a force as to penetrate half a foot

into the soil. The largest of these bodies weighed 20 lib. ;

and they both alike appeared, on the surface, as if they had

been exposed to a violent degree of heat. It may here be

observed, that the small depth at which these bodies were

found in the ploughed land, renders it in the highest degree

improbable that they should have existed there previously to

the time of the explosion. To the same purpose we may
remark the complete resemblance of the two masses found at

so great a distance from each other.

In the year 1768, no less than three stones were presented
to the Academy of Sciences at Paris, all of which were said to

have fallen in different parts of France ; one in the Maine,
another in Artois, and the third in theCotentin. These were

all externally of the very same appearance ;
and Messrs. Fouge-

raux, Cadet, and Lavoisier drew up a particular report upon
the first of them. They state, that on the 18th of September
1768, between four and five o'clock in the evening, there

was seen near the village of Luce, a cloud in which a short

explosion took place, followed by a hissing noise, without

any flame
;
that some persons about three leagues from Luce,

heard the same ^ound, and, looking upwards, perceived an

opaque body which was describing a curve line in the air, and
was about to fall upon a piece of green turf in the neighbour-

ing high road ; that they immediately ran to this place, and
found a kind of stone, half buried in the earth, extremely hot,

and about 1\ lib. weight. This account of the fact was
communicated to the academicians by the Abbe Bachelay.
But they do not appear to have attached much credit to the

whole circumstances of his narrative
; for they conclude

(chiefly from several experiments made to analyze it) that

the stone did not fall upon the earth, but was there before

the thunder-clap, and was only heated and exposed to view

by the stroke of the electric fluid.
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Of late years, the attention of philosophers has been more

anxiously directed to this curious subject ; and more accurate

accounts of the supposed fall of stones have been collected

from various quarters. It is not a little singular that the

narrative which, of all others, was supported by the very-

best and most direct evidence, was treated by naturalists

near the spot, with perverse incredulity, until the results of

chemical analysis, about ten years after the thing happened,

began to operate some change upon the common opinions

relating to such matters. We allude to the shower of stones

which fell near Agen, 24th July 1790, between nine and ten

o'clock at night. First, a bright ball of fire was seen tra-

versing the atmosphere with great rapidity, and leaving
behind it a train of light which lasted about fifty seconds ; a

loud explosion was then heard, accompanied with sparks
which flew off in all directions. This was followed, after a

short interval, by a fall of stones, over a considerable extent

of ground, at various distances from each other, and of differ-

ent sizes ; the greater number weighing about half a quarter
of a pound, but many a vast deal more. Some fell with a

hissing noise, and entered the ground : others (probably the

smaller ones) fell without any sound, and remained on the

surface. In appearance, they were all alike. The shower

did no considerable damage ;
but it broke the tiles of some

houses. All this was attested in a proces-verlal, signed by the

magistrates of the municipality. It was further substantiated

by the testimony of above three hundred persons, inhabitants

of the district; and various men, of more than ordinary

information, gave the very same account to their scientific

correspondents. One of these (M. D'Arcet, son of the cele-

brated chemist of that name) mentions two additional cir-

cumstances, of great importance, from his own observation.

The stones, when they fell upon the houses, had not the

sound of hard and compact substances, but of matter in a

soft, half-melted state
; and such of them as fell upon straws

adhered to them, so as not to be easily separated. It is

utterly impossible to reconcile these facts with any other

p 2
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supposition, than that of the stones having fallen from the

air, and in a state of fusion. That they broke the roofs of

houses, and were found above pieces of straw adhering to

them, is the clearest of all proofs of their having fallen from

above.

Although, nothing can be more pointed and specific than

this evidence, it yet derives great confirmation from the

similar accoimts which have still more recently been com-

municated. On the 18th December 1795, the weather being

cloudy, several persons in the neighbourhood of Captain

Topham's house, in Yorkshire, heard a loud noise in the air,

followed by a hissing sound, and afterwards felt a shock, as if

a heavy body had fallen to the ground at a little distance

from them. One of these, a ploughman, saw a huge stone

falling towards the earth, eight or nine yards from the place

where he stood. It was seven or eight yards from the ground
when he first observed it. It threw up the mould on every

side, and buried itself twenty-one inches. This man, assisted

by others who were near the spot at the time, immediately
raised the stone, and found that it weighed about 56 lib.

These statements have been authenticated by the signatures
of the people who made them.

On the 17th March 1798, a body, burning very brightly,

passed over the vicinity of Ville Franche, on the Saone,

accompanied with a hissing noise, and leaving a luminous

track behind it. It exploded with great noise, about twelve

hundred feet from the ground ; and one of the shivers, still

luminous, being observed to fall in a neighbouring vineyard,
was traced. At that spot, a stone above a foot in diameter,
was found to have penetrated about twenty inches into the

soil. It was sent to M. Sage, of the National Institute, accom-

panied by a narrative of the foregoing circumstances, under

the hand of an intelligent eyewitness.
While these observations in Europe were daily confirming

the original but long-exploded idea of the vulgar, that many
of the luminous meteors observed in our horizon are masses of

ignited matter, an account of a phenomenon, precisely of the
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same description, was received from the East Indies, vouched

by authority peculiarly well adapted to secure general

respect. Mr. AVilliarns, a member of the Eoyal Society of

London, residing in Bengal, having heard of an explosion,

accompanied by a descent of stones, in the province of Bahar,.

made all possible inquiries into the circumstances of the

phenomenon, among the Europeans who happened to be on

the spot. He learnt, that on the 19th December 1798, at

eight o'clock P.M., a luminous meteor, like a large ball of fire,

was seen at Benares, and in different parts of the country ;

that it was attended with a rumbling, loud noise ;
and that,

about the same time, the inhabitants of Krakhut, fourteen

miles from Benares, saw the light, heard a loud thunder-clap,

and, immediately after, heard the noise of heavy bodies falling

in their neighbourhood. Next morning the fields were found

to have been turned up in different spots, which was easily

perceived, as the crop was not more than two or three inches

above the ground : and stones of different sizes, but appa-

rently of the same substances, were picked out of the moist

soil, generally from a depth of six inches. As the occurrence

took place in the night, and after the people had retired to

rest, no one observed the meteor explode, or the stones fall ;

but the watchman of an English gentleman who lived near

Krakhut, brought him one next morning, which he said had

fallen through the top of his hut, and buried itself in the

earthen floor.

Several of the foregoing narratives mention the material

circumstance, of damage done to interposed objects by the

stones supposed to have fallen on the earth. In one instance,

still more distinct traces were left of their progress through
the air. During the explosion of a meteor, on the 20th

August 1789, near Bordeaux, a stone, about fifteen inches

diameter, broke through the roof of a cottage, and killed a

herdsman and some cattle. Part of the stone is now in the

museum of Mr. Greville, and the rest in that of Bordeaux.

It is singular that this fact is not mentioned by M. Izarn,

in his work on the subject of these stones, nor by Vauquelin,
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although he examined a specimen evidently taken from the

same stone, and received a proces-verbal of the manner in

which it fell. We take the account from Mr. Greville's paper

(Phil. Trans. 1803, part I.) ;
and he appears to have received

it from M. St. Amand, Professor of Natural History at the

Central School of Agen.
It is quite impossible, we apprehend, to deny very great

weight to all these testimonies ;
some of them given by intel-

ligent eyewitnesses; others by people of less information,

indeed, but prepossessed with no theory ; all concurring in

their descriptions, and examined by various persons of acute-

ness and respectability, immediately after the phenomena had

been exhibited. Without offering any further remarks, then,

upon this mass of external evidence, we shall only remind

the reader of the main points which it seems satisfactorily to

substantiate. It proves, that, in various parts of the world,

luminous meteors have been seen moving through the air, in

a direction more or less oblique, accompanied by a noise,

generally like the hissing of large shot, followed by explosion,
and the fall of hard, stony, or semi-metallic masses, in a

heated state. The hissing sound, so universally mentioned ;

the fact of stones being found, unlike those in the neighbour-

hood, at the spots towards which the luminous body or its

fragments were seen to move ; the scattering or ploughing up
of the soil at those spots, always in proportion to the size of

the stones ; the concussion of the neighbouring ground at the

time ; and, above all, the impinging of the stones upon bodies

somewhat removed from the earth, or lying loose upon its

surface are circumstances perfectly well authenticated in

these reports ; and, when taken together, are obviously fatal

to any theory, either of the masses having previously existed

in the soil ready formed, and having been disclosed by the

the electric fluid or of their component parts having ex-

isted there, and having been united and consolidated by that

fluid.

II. While the internal evidence on this question, that is,

the inference arising from an examination of the stones them-
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selves, agrees most harmoniously with the conclusion to

which the narratives above analyzed force our assent, and

greatly strengthens that conclusion, it also leads to a further

knowledge of the subject, than the mere external evidence

could of itself have afforded us.

The reports from all those who observed the meteors, and

found the stones in the neighbourhood, after the explosions,

agree in describing those substances as different from all the

surrounding bodies, and as presenting, in every case, the

same external appearance of semi-metallic matter, coated on

the outside with a thin black crust, and bearing strong marks
of recent fusion. This general resemblance we should be

perfectly entitled to infer from the various accounts of eye-

witnesses, even if no more particular observations had been

made by men of science, to whose inspection many of the

fallen bodies were submitted. But fortunately a considerable

number of these singular substances have been examined,
with the greatest care, by the first chemists and naturalists of

the age ; and their investigations have put us in possession of

a mass of information, capable of convincing the most

scrupulous inquirer that the bodies in question have a com-
mon origin, and that we are as yet wholly unacquainted with

any natural process which could have formed them on our

globe.

M. De la Lande appears to have examined the stones which

fell near Bourg, in the province of Bresse, 1753, with some
attention He remarks their external coating of black vitri-

fied matter, the metallic or pyritical threads interspersed

through them, and more particularly the cracks filled with

metallic particles. His chemical analysis is very meagre and

unsatisfactory ;
but such as it was, its results, as well as the

general observations of external character, corresponded with

the inferences drawn by him from a similar examination of

the stone which fell in 1750, near Coutances, in Normandy,
at the distance of three hundred and sixty miles from Bourg.
The external appearance of the three stones presented to

the Academy of Sciences, as having fallen in different parts of
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France during the year 1768, was precisely the same. But

Messrs. Lavoisier, &c., the committee appointed to examine

them, performed the chemical analysis with much greater

accuracy and fulness than M. De la Lande, who was no

chemist, had done. That which fell in the Maine, and was

presented by the Abbe Bachelay, underwent the most careful

process. It was found to contain, of sulphur, 8J per cent. ;

iron, 36 ; and vitrifiable earth, 55^. It must be remarked,

however, that this decomposition was effected by means of

experiments performed upon an integral part of the whole

stone, considered as a homogeneous substance ; whereas, it is

in fact a congeries of substances which ought to have been

separately analyzed. This consideration will, in part at least,

enable us to account for the apparent discrepancy between the

results obtained by the academicians and those of later

experimentalists. Messrs. Lavoisier, &c., also examined par-

ticularly another stone, said to have fallen in a different

part of France, and obtained very nearly the same results.

The only difference was, that it did not give out sulphurated

hydrogenous gas when acted upon by the muriatic acid ;
a

peculiarity distinctly observable in the other substance.

The description which Professor Barthold gives of the

external character of the stone which fell near Ensisheim, in

the fifteenth centuiy, corresponds exactly with the descrip-
tions given of these stones, and of the ores examined by
M. De la Lande. The results of this analysis are somewhat

different; but he examined the whole heterogeneous com-

pound, and not the parts separately. He concluded, that this

mass contained 2 per cent, of sulphur, 20 of iron, 14 magnesia,
17 alumina, 2 lime, 42 silica. Mr. Howard has very justly
remarked, that the Professor's own account of his experiments
is at variance with the idea of lime being contained in the

substance
;
and that he has given no sufficient proof of the

existence of alumina. It is also to be observed, that from the

exceptionable method of analysis pursued both by Barthold

and the academicians, the metallic particles were not ex-

amined with sufficient precision. The specific gravity of the
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stones examined by the academicians was to that of water, as

3535 to 1000. The specific gravity of the stone of Ensisheim,

as tried by Barthold, was 3233 ; that of the stone examined

by Gassendi (who saw it fall) was 14, common marble being
1 1

; and, taking the specific gravity of marble to that of water,

as 2716 to 1000, the specific gravity of the stone observed by
Gassendi will be to that of water as 3456 to 1000. So near a

coincidence between observations, made at such a distance

of time, upon these various substances, cannot fail to strike us

as very remarkable, and to prepare us for that fuller demon-

stration of their identity, which was reserved for the labours

of our countryman, Mr. Howard.
This excellent philosopher has elucidated the subject of

our present consideration, by a course of experiments as

interesting and instructive as any that the science of chemical

analysis can boast of. He fortunately obtained specimens of

the stones which fell in several very distant quarters of the

globe ; at Benares, and in Yorkshire (as we have already

described) ; near Sienna, and in Bohemia, according to

evidence not altogether so satisfactory as that upon which the

other narratives rest.

He began his inquiries, very judiciously, by a minute

examination of the external mineralogical characters of these

four substances ; and in this pail of his task he was indebted

to the learning and expertness of the Count de Bournon.

The substances were found to resemble each other very

closely in their general appearance, and in the nature of their

component parts. The chief difference consisted in the

different proportions in which the same component parts

were combined, so as to form the aggregate of the hetero-

geneous masses. Their specific gravities were nearly the

same, unless that the abundance of iron in one of the masses

caused a considerable increase of its gravity. It may con-

tribute to the formation of a precise estimate, if we present,

in one view, the results of the experiments made to measure

the specific gravities of the most remarkable specimens
hitherto examined. The four last in the list were calculated
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by the Count de Bournon. The specific gravity of water

being 1000,

That of the Ensisheim stone is 3233

Gassendi's* 3456

,, Bachelay'sf ,, 3535
Yorkshire 3508
Sienna 3418

Benares 3352
Bohemia 4281

All the stones examined by Count de Bournon and Mr.

Howard were found to consist of four distinct substances:

small metallic particles ; a peculiar martial pyrites ;
a number

of globular and elliptical bodies, also of a peculiar nature ;

and an earthy cement surrounding the other constituent parts.

It was only the stone from Benares that Mr. Howard could

separate into its constituent parts, with sufficient accuracy,
and in sufficient abundance, for a minute analysis of each.

He found, however, that the nature of the metallic particles

was the same in all
; they were in each case an alloy of iron

and nickel. In the pyrites of the Benares stone, nickel as

well as iron was detected ;
and the easy decomposition of the

pyrites by muriatic acid, in all the specimens, afforded a dis-

tinguishing character of this substance. The globules in the

Benares stone contained silica, magnesia, and oxides of nickel

and iron ; the earthy cement consisted of the same substances,

very nearly in the same proportions. In the other stones,

these globules could not be easily separated from the cement
and pyrites. Mr. Howard, therefore, after freeing the aggre-

gate as well as possible from the metallic particles, and

several of the globules, was obliged to satisfy himself with

analyzing the heterogeneous mass. Still the composition

appeared wonderfully to agree with that of the basis and

globules of the Benares stone ; as the following Table, which

we have collected from Mr. Howard's experiments, and re-

duced to the parts of a hundred, will clearly evince.

* Found in Provence. t Found in the Maine.
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and towards the stony substances. M. Proust, a considerable

time before the date of Mr. Howard's discoveries, had proved
that the enormous mass of native iron found in South

America, contained a large portion of nickel in its composi-
tion. Mr. Howard was led to the same conclusion by ana-

lyzing another portion of this body ; and he found that the

solitary masses discovered in Siberia, Bohemia, and Senegal,
contained a mixture of the same metal with iron, though in

various proportions. The Bohemian iron is an alloy, of

which nickel forms eighteen parts in the hundred ;
in the

Siberian iron, it forms seventeen : and in the Senegal iron,

five or six. But what is still more striking, and tends to

place the similarity of their origin beyond all doubt, the

Siberian mass is interspersed with cavities, containing an

earthy substance of the very same nature as the earthy
cement and globules of the Benares stone ; nay, the propor-
tions of the ingredients, according to Mr. Howard's analysis,

are nearly alike, if we except that of the oxide of iron, which
is considerably smaller in the Siberian earth. This curious

fact excites the strongest prepossession in favour of the idea,

that the Siberian iron owes its origin to the same causes

which formed and projected the different stones supposed to

have fallen on the earth : and, coupled with the other details

of the analysis, it naturally leads us to conclude, that the

masses of native iron, as they are called, differ in no respect
from the metallic particles, or the alloy of iron and nickel,
which constitute one of the four aggregate parts in every
stone hitherto examined.

It may be remarked, that, excepting the tradition of the

Tartars respecting the fall of the Siberian iron from heaven,
no external evidence has been preserved to illustrate the

origin of those masses of native metal which have been ana-

lyzed by chemists. A tolerably authentic testimony has,

however, lately been found, to prove the fall of a similar

body in the East Indies. Mr. Greville has communicated to

the Royal Society (Phil. Trans. 1803, part I.), a very interest-

ing document, translated from the Emperor Tchangire's
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Memoirs of his own reign. The Prince relates, that in the

year 1620 (of our era), a violent explosion was heard at a

village in the Punjaub, and during the noise, a luminous

body fell from above on the earth. That the amnil (or fiscal

officer) of the district immediately repaired to the spot where

the body was said to have fallen, and having found it to be

still hot and not burnt up, caused it to be dug up ;
when the

heat increasing, he at last came to a lump of iron violently
hot

; that this was sent to court, where the emperor had it

weighed in his presence, and ordered it to be forged into a

sabre, a knife, and a dagger ;
that the workmen reported that

it was not malleable, but shivered under rhe stroke ;
and that

it required to be mixed up with one-third part of common

iron, when the mass was found to make excellent blades.

The royal historian adds, that upon the incident of this iron

of lightning being manufactured, a poet presented him with a

distich, purporting that,
"
during his reign, the earth attained

order and regularity ; that raw iron fell from lightning, and

was, by his world-subduing authority, converted into a dagger,
a knife, and two sabres."

The exact resemblance of the occurrence here related, in

all its essential circumstances, to the accounts of fallen stones

formerly detailed, and the particular observation upon the

unmalleable nature of the iron, give, it must be confessed,

a very great degree of credibility to the whole narrative,

and bestow additional weight on the inference previously
drawn from internal evidence, that the solitary masses of

native iron, found in different quarters of the globe, have the

same origin with the stones analyzed by Vauquelin and

Howard.
We have now gone through the whole evidence, both with

respect to the circumstances in which these singular bodies

are found, the ingredients of which they are compounded, and

the outward appearance and structure which they exhibit :

we are next to consider the inferences respecting their pro-

bable origin, which this mass of information may warrant us

to draw.
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Independent of the distinct negative which the external

evidence gives to any such conclusions, we are fully entitled

to deny that these bodies are formed in the ground by light-

ning, or existed previously there, both from their exact resem-

blance to each other in whatever part of the earth they have

been found, and from their containing substances nowhere
else to be met with. It cannot surely be imagined, that

exactly in those spots where fire, of some unknown kind,

precipitated from an exploded meteor, happened to fall, there

should exist certain proportions of iron, sulphur, nickel,

magnesia and silica, ready to be united by the heat or elec-

tricity. Still less conceivable is it, that in eveiy such fall of

fire, those ingredients should first combine, by twos and

threes, in the very same manner, and then that the binary
and ternary compounds should unite in similar aggregates.

But, least of all is it reasonable to suppose, that bodies formed

in the earth should, upon being dug up, be found enveloped
in a crust diiferent from the rest of their substance, and bear-

ing evident marks of having undergone the action of heat in

contact with the air.

The same unquestionable resemblance which prevails

among all these bodies, and, still more, the peculiar nature of

the pyrites which they contain, prove very clearly that they
have not a volcanic origin. Even if such an hypothesis were

liable to no other objection, it would be inadmissible on this

ground, that we know of no volcano which throws up so

small a portion of matter, and so uniformly of the same kind.

But though we were to admit the existence of this volcano,

where must we place it, that its eruptions may extend from

Bengal to England, France, Italy, and Bohemia : nay, from

Siberia to Senegal and South America ? And if we are forced

to admit the existence of a series of such volcanoes, which are

known to us only by these peculiar effects of their eruptions,
do we not acknowledge that we are compelled to imagine a

set of causes, without any other foundation for our belief in

them, than our occasion for their assistance in explaining the

phenomenon ? In short, do we not account for one difficulty,
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by fancying a greater ? But if it is alleged that the stones

come from volcanoes already known, we demand, what volcano

exists in the Peninsula of India, or in England, or in France,

or in Bohemia ? And if it is said that these bodies are

projected by Hecla, Mtna, Vesuvius, to all manner of dis-

tances, we must ask, whether this is not explaining what is

puzzling, by assuming what is impossible? It is surely

much better to rest satisfied with recording the fact, and

leaving it under all its difficulties, than to increase its wonders

by the addition of a miracle.

The same remark may be extended to those who have

fancied that the constituent parts of the stones exist in the

atmosphere, and are united by the fire of a meteor, or by the

electric fluid. We have no right to make any such hypothe-
sis. We have never seen iron, silica, nickel, in the gaseous
state. These bodies may, for aught we know, be compounds
of oxygen and azote or hydrogen, &c. ;

but as yet we have no

reason to think so. Besides, he who amuses us with this

clumsy and gratuitous explication, will probably account for

every other phenomenon by a similar process of creation.

He may, with equal plausibility, conceive the earth to be

formed by a union of burnt gases, and then cover it with

vegetables, and people it with living creatures, by a few more

conflagrations and explosions. Such, however, is the theory
most heavily expounded by M. Izarn spun, with tiresome

and unprofitable industry, into cobwebs, which touch every-

fact, without catching it and enveloped in the mist of

general logical positions, which faintly conceal the funda-

mental postulate an entire act of creation.

From the whole, we may safely infer, that the bodies in

question have fallen on the surface of the earth, but that

they were not projected by any volcanoes, and that we
have no right, from the known laws of nature, to suppose
that they were formed in the upper regions of the atmo-

sphere. Such a negative conclusion seems all that we are,

in the present state of our knowledge, entitled to draw.

But an hypothesis may perhaps suggest itself, unencumbered
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by any of the foregoing difficulties, if we attend to the fol-

lowing undoubted truths.

As the attraction of gravitation extends over the whole

planetary system, a heavy body, placed at the surface of the

moon, is affected chiefly by two forces
;

one drawing it

towards the centre of the earth, and another drawing it

towards that of the moon. The latter of these forces, how-

ever, is beyond all comparison greatest at or near the moon's

surface. But as we recede from the moon, and approach to

the earth, this force decreases, while the other augments ;

and at one point between the two planets these forces are

exactly equal so that a heavy body, placed there, must
remain at rest. If, therefore, a body is projected from the

moon towards the earth, with a force sufficient to carry it

beyond this point of equal attraction, it must necessarily fall

on the earth. Nor would it require a very great impulse to

throw the body within the sphere of the earth's superior
attraction. Supposing the line of projection to be that which

joins the centres of the two planets, and supposing them to

remain at rest
;

it has been demonstrated, on the Is ewtonian

estimation of the moon's mass, that a force of projection

moving the body 12,000 feet in a second, would entirely
detach it from the moon, and throw it upon the earth. This

estimate of the moon's mass is, however, now admitted to be

much greater than the truth ; and upon M. De la Place's cal-

culation, it has been shown that a force of little more than

one half the above would be sufficient to produce the effect.

A projectile, then, moving from the moon with a velocity
about three times greater than that of a cannon ball, would

infallibly reach the earth ; and there can be little doubt that

such forces are exerted by volcanoes during eruptions, as well

as by the production of steam, from subterranean heat. We
may easily imagine such cause of motion to exist in the moon,
as well as in the earth. Indeed, several observations have

rendered the existence of volcanoes there extremely probable.
In the calculation just now referred to, we may remark, that

no allowance is made for the resistance of any medium in the
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place where the motion is genei'ated. In fact, we have every
reason to believe, from optical considerations, that the moon
has no atmosphere.
A body falling from the moon upon the earth, after being

impelled by such force as we have been describing, would not

reach us in less than two days and a half. It would enter

our atmosphere with a velocity of nearly 25,000 feet in a

second
;

but the resistance of the air increasing with the

velocity, would soon greatly reduce it, and render it uniform.

We may remark, however, that all the accounts of fallen

stones agree in attributing to the luminous bodies a rapid

motion in the air, and the effects of a very considerable mo-

mentum to the fragments which reach the ground. The

oblique direction in which they always fall, must tend greatly
to diminish their penetrating power.
While we are investigating the circumstances that render

this account of the matter highly probable, we ought not to

omit one consideration, which lies wholly in the opposite
scale. The greater part of these singular bodies have first

appeared in a high state of ignition ; and it does not seem

easy to conceive how their passage through" so rare a fluid as

the atmosphere could have generated any great degree of

heat, with whatever rapidity they may have moved. Viewing,
as we do, the hypothesis of their lunar origin as by far the

most probable in every other respect, we will acknowledge
that this circumstance prevents us from adopting it with

entire satisfaction. And while we see so many invincible

objections to all the other theories which have been offered

for the solution of the difficulty, we must admit that the

supposition least liable to contradiction from the facts, is

nevertheless sufficiently exceptionable, on a single ground, to

wan-ant us in concluding with the philosophical remark of

Vauquelin,
" Le parti le plus sage qui nous reste a prendre

dans cet etat des choses, c'est d'avouer franchement, que nous

ignorons entierement 1'origine de ces pierres, et les causes

qui ont pu les produire."

If, however, a more extensive collection of accurate obser-
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vations, and a greater variety of specimens, shall enable us to

reconcile the discrepancy, and to push still farther our

inquiries into the nature of the new substance, a knowledge
of the internal structure of the moon may be the splendid
reward of our investigations. And, while the labours of the

astronomer and optician are introducing new worlds to our

notice, Chemistry may, during the nineteenth century, as

wonderfully augment our acquaintance with their produc-
tions and arrangement, as she has already, within a much
shorter period,' enlarged our ideas of the planet which we
inhabit.*

* This Tract is a paper contributed to the Edinburgh Eeview, and

printed in the number for January, 1804. The subject has since undergone
much further investigation ; and opinions are greatly changed upon it.

This Tract was designed as a sifting of the evidence by which the facts are

proved, and those facts resting on that evidence have formed the ground

of all the subsequent investigations. Note V.
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CENTRAL FORCES AND LAW OF THE UNIVERSE
ANALYTICALLY INVESTIGATED.

THE fundamental proposition of the whole Newtonian system
is this. If a body is driven by any single impulse or force of

projection, and is also drawn continually by another force so

as to revolve round a fixed centre, the radius vector, or line

drawn from the body to that centre, describes areas which

are in the same fixed plane, and are always proportional to

the times of the body's motion ; and conversely, if any body
which moves in any curve described in a plane so that the

radius vector to a point either fixed or moving uniformly in

a straight line, describes areas proportional to the times of

the body's motion, that body is acted on by a centripetal force

tending towards and drawing it to the point.

To prove this, we have to consider that if a body moves

equably on a straight line, the areas or triangles which are

described by a line drawn from it to any point are propor-
tional to the portions of the straight line through which the

body moves (that is to the time, since, moving equably, it

moves through equal spaces in equal times), because those

triangles, having the same altitude, are to one another in the

proportions of their bases. S being the point and AO the

line of motion, SAB is to SB c as A B to B c. If then at

B a force acts in the line S B, drawing the body towards S,

it will move in the diagonal B C of a parallelogram of which

the sides are B c and B V, the line through which the deflecting

force would make it move if the motion caused by the other

force ceased. C c therefore is parallel to V B, and the triangle

Q 2
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SBC is equal to the triangle S B c ; consequently the motion

through AB and BC, or the times, are as the two triangles

R

A

SAB and SBC; and so it may be proved if the force acting
towards S again deflects the body at C, making it move in the

diagonal C D. If, now, instead of this deflecting force acting
at intervals A, B, C, it acts at every instant, the intervals of

time become less than any assignable time, and then the

spaces A B, B C, CD will become also indefinitely small and

numerous, and they will form a curve line ; and the straight

lines drawn from any part of that curve to S will describe

curvilinear areas, as the body moves in the curve A B C D,
those areas being proportional to the times. So conversely,
if the triangles S B c and SBC are equal, they are between
the same parallels, and c C is parallel to S B, and D d to S C ;

consequently the force which deflects acts in the lines S B and
S C, or towards the point S. It is equally manifest that the

direction of the lines Be, C d, from which the centripetal
force deflects the body, is that of tangents to the curve which
the body describes, and that consequently the velocity of the

body is in any given point inversely proportional to the

perpendicular drawn from the centre to the tangent ; the

areas of the triangles whose bases are equal, being in the pro-

portion of their altitude, that is, of those perpendiculars, and

those areas being by the proposition, proportional to the times.

There are several other corollaries to this important pro-

position which deserve particular attention. B c and D e are
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tangents to the curve at B and D respectively ;
B C and D E

the arcs described in a given time
;
C c and E e lines parallel

Kg. 2 .

V B

to the radii vectores S B and S D respectively ;
and C V, E d

parallel to the tangents. The centripetal forces at B and D
must be in the proportion of V B and dD (being the other

sides of the parallelograms of forces) if the arcs are evanescent,

so as to coincide with the diagonals of the parallelograms V c

and d e. Hence the centripetal forces in-B and D are as the

versed sines of the evanescent arcs
;
and the same holds true

if instead of two arcs in the same curve, we take two arcs in

different but similar curves.*

From these propositions another follows plainly, and its

consequences are most extensive and important. If two or

more bodies move in circular orbits (or trajectories) with an

equable motion, they are retained in those paths by forces

tending towards the centres of the circles ; and those forces

are in the direct proportion of the squares of the arcs described

in a given time, and in the inverse proportion of the radii of

the circles.

First of all it is plain, by the fundamental proposition, that

the forces tend to the centres S, s, because the sectors A S B
and PBS being as the arcs A B, B P, and the sectors a s b,

* If B C, D E, are bisected, the proportion is found with the halves of

V B, D d ; and that is the same proportion with the whole versed sines.
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p b s, as the arcs a 6, bp, which arcs being all as the times, the

areas are proportional to those times of describing them, and

therefore S and s are the centres of the deflecting forces.

Then, drawing the tangents A C, a c, and completing the

parallelograms DC, dc, the diagonals of which coincide with

the evanescent arcs A B, a b, we have the centripetal forces

in A and a, as the versed sines AD, ad. But because A B P
and abp are right angles (by the property of the circle), the

triangles ADB, APB, and adb, apb, are respectively similar

to one another. Wherefore AD:AB::AB:AP and A D
AB* ab*

=
-r-^r ; and in like manner a a - , or, as the evanescent arcsAP ap

coincide with the chords, A D = arc pr- and a d = arc .AP ap
Now these are the properties of any arcs described in equal
times ; and the diameters are in the proportion of the radii

;

therefore the centripetal forces are directly as the squares of

the arcs, and inversely as the radii.

It is difficult to imagine a proposition more fruitful in con-

sequences than this
; and therefore it has been demonstrated

with adequate fulness.

In the first place, the arcs described being as the velocities,

if F,/ are the centripetal forces, and V, v the velocities, and

R, r the radii, F : / : : V2
:

; and also : : r : K; or F : / : :
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V2
V*

=- : -. Now as in the circle V and E, v and r are both
E r

constant quantities, the centripetal force is itself constant,

which retains a body by deflecting it towards the centre of

the circle.

Secondly. The times in which the whole circles are described

(called the periodic times) are as the total circumferences or

peripheries ;
T : t : : P : p. But the peripheries are as the

P p
radii or : : E : r. Therefore T : t : : E : r

; also V :t :: = :-,
JL t

E r
therefore inversely as the radii, or T : t : : -^ : -, and Vs

:

V v

E2
r2 V2

v
2

v8 :::. But the centripetal forces F :/::=-: ; sub-
_L 6 1 1 7*

E2 r
2

stituting for the ratio of V* : v
9
, its equal the ratio of : ,

E r
F :/::: ; or the centripetal forces are directly as the

J. v

distances and inversely as the squares of the periodic times
;

the forces being as the distances if the times are equal ; and
the times being equal if the forces are as the distances. It

also follows that if the periodic times are as the distances,

then F : / : :
-

t
:

; that is, :: :-, or inversely as the
it T Jet T

distances. In like manner if the periodic times are in pro-

portion to any power n, of the distance, or T : t : : E" : r", we

shall have T2
: F : : E2 "

:

" and F : / : :
~

:

-J- ; that is

: : ; 2^i : Is^I ' an(^ conversely if the centripetal force is in

the inverse ratio of the (2 n l)
tb

power of the distance, the

periodic time is as the nth

power of that distance. Likewise,

E r
as the velocities of the bodies in their orbits or V : v : : -= : -,

i 6
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if we make T : t : : E" : r", then V : v : : : -^, or : : -^ :

1 3
-j3j. Thus, suppose n is equal to - we have for the velocities

1 1
V : v : : =. : =, or they are in the inverse subduplicate

proportion of the distances ; and for the centripetal forces we

have F : / : : ^^ :
t

: : :
; or the attraction to the

-ti T -Ll T

centre is inversely as the square of the distance.

Now if n -
f, T : $ :: B* : r ,

or T2
: t* : : E3

: r
3

; in other
2i

words the squares of the periodic times are as the cubes of

the distances from the centre, which is the law discovered by
Kepler from observation actually to prevail in the case of the

planets. And as he also showed from observation that they
describe equal areas in equal times by their radii vectores

drawn to the sun, it follows from the fundamental proposi-

tion, first, that they are deflected from the tangents of their

orbits by a power tending towards the sun ; and then it

follows, secondly, from the last deduction respecting it, (namely,

the proportion of F :/ : : ^ :

-^,)
that this central force acts

it Ir

inversely as the squares of the distances, always supposing
the bodies to move in circular orbits, to which our demon-
stration has hitherto been confined.*

The extension, however, of the same important proposition
to the motion of bodies in other curves is easily made, that is

to the motion of bodies in different parts of the same curve

or in curves which are similar. For in evanescent portions
of the same curve, the osculating circle, or circle which has

the same curvature at any point, coincides with the curve at

that point; and if a line is drawn to the extremity of that

* This sesquiplicate proportion only holds true on the supposition of

the bodies all moving without exerting any action on each other.
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circle's diameter, A M B and a in b may be considered as

triangles ;
and as they are right angled at M and m, A M2

is

equal to A P x A B and a m* to a p x a b ; and where the

curvature is the same as in corresponding points of similar

curves, those squares are proportional to the lines A P, or

a p ; or those versed sines of the arcs A M and a m are pro-

portional to the squares of the small arcs. Hence if the

distances of two bodies from their respective centres of force

be D, d, the deflecting force in any points A and a, being as

the versed sines, those forces are as A M2
: a m2

;
and from

hence follows generally in all curves, that which has been

demonstrated respecting motion in circular orbits.

The planets then and their satellites being known by Kep-
ler's laws to move in elliptical orbits, and to describe round

the sun in one focus areas proportional to the times by their

radii vectores drawn to that focus, and it being further found

by those laws that the squares of their periodic times are as

the cubes of the mean distances from the focus, they are by
these propositions of Sir Isaac Newton which we have been

considering, shown to be deflected from the tangent of their

orbit, and retained in their paths, by a force acting inversely
as the squares of the distances from the centre of motion.

But another important corollary is also derived from the

same proposition. If the projectile or tangential force in the

direction A T ceases (next figure), the body, instead of

moving in any arc A N, is drawn by the same centripetal
force in the straight line A S. Let A n be the part of A S,
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through which the body falls by the force of gravity, in the

same time that it would take to describe the arc AN. Let

A M be the infinitely small arc described in an instant ; and
A P its versed sine. It was before shown, in the corollaries

to the first proposition, that the centripetal force in A is as

A P, and the body would move by that force through A P, in

the same time in which it describes the arc A M. Now the

force of gravity being one which operates like the centripetal
force at every instant, and uniformly accelerates the descend-

ing body, the spaces fallen through will be as the squares of

the times. Therefore, if A n is the space through which the

body falls in the same time that it would describe A N, A P

is to A n as the square of the time taken to describe A M to

the square of the time of describing A N, or as A M2
: A N*,

the motion being uniform in the circular arc. But A M, the

nascent arc, is equal to its chord, and A M B being a right

angled triangle as well as APM, AB: AM::AM:AP
AM2

and A P = . Substituting this in the former proportion,
-A. -L>

AM2 AM2

we have
^-

: A n : : A M2
: A N2

, or An : A N2
: :

-j-^-
:

A M*, that is : : 1 : A B. Therefore A N2 = A n x A B, or

the arc described, is a mean proportional between the dia-

meter of the orbit, and the space through which the body
would fall by gravity alone, in the same time in which it

describes the arc.
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Now let A M N B represent the orbit of the moon ;
A N the

arc described by her in a minute. Her whole periodic time

is found to be 27 days 7 hours and 43 minutes, or 39,343

minutes ; consequently AN : 2 ANB :: 1 : 39,343.

But the mean distance of the moon from the earth is about

30 diameters of the earth, and the diameter of her orbit, 60 of

those diameters ;
and a great circle of the earth being about

131,630,572 feet, the circumference of the moon's orbit must

be 60 times that length, or 7,897,834,320, which being
divided by 39,343 (the number of minutes in her periodic

time), gives for the arc A N described in one minute 200,743,

of which the square is 40,297,752,049, or A N 2
,
which (by the

proposition last demonstrated) being divided by the diameter

A B gives A ??. But the diameter being to the orbit as

1 : 3.14159 nearly, it is equal to about 2,513,960,866. There-

fore A n = 16.02958, or 16 feet, and about the third of an

inch. But the force which deflects the moon from the tan-

gent of her orbit, has been shown to act inversely as the

square of the distance ; therefore she would move 60 X 60

times the same space in a minute at the surface of the earth.

But if she moved through so much in a minute, she would in

a second move through so much less in the proportion of the

squares of those two times, as has been before shown. Where-
fore she would in a second move through a space equal to

16 g
'

T nearly (16.02958). But it is found by experiments

frequently made, and among others by that of the pendulum,*
that a body falls about this space in one second upon the

surface of the earth. Therefore the force which deflects the

moon from the tangent of her orbit, is of the same amount,
and acts in the same direction, and follows the same propor-
tions to the time that gravity does. But if the moon is

drawn by any other force, she must also be drawn by gravity ;

* It is found that a pendulum, vibrating seconds, is about the length
of 3 feet 3j inches in this latitude ; and the space through which a body
falls in a second is to half this length as the square of the circumference

of a circle to that of the diameter, or as 9.8695 : 1, and that is the propor-
tion of the half of 3 feet 3 inches to somewhat more than 16 feet.
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and as that other force makes her move towards the earth 16

,feet i inch, and gravity would make her move as much, her

motion would therefore be 32 feet | inch in a second at the

earth's surface, or as much in a minute in her orbit ; and her

velocity in her orbit would therefore be double of what it is,

or the lunar month would be less than 13 days and 16 hours.

It is, therefore, impossible that she can be drawn by any other

force, except her gravity, towards the earth.*

Such is the important conclusion to which we are led from

this proposition, that the centripetal forces are as the squares
of the arcs described directly, and as the distances inversely.

This conclusion was the discovery of the great law of the

universe. The fruit of the consequences of this proposition
is the ascertaining the laws of curvilinear motion generally.
The versed sine of the half of any evanescent arc (or sagitta

of the arc) of a curve in which a body revolves, was proved
to be as the centripetal force, and as the square of the times ;

or as F x T2
. Therefore the force F is directly as the versed

sine, and inversely as the square of the time. From this it

follows that the central force may be measured in several

ways. The arc being Q C, we are to measure the central

force in its middle point P. Then the areas being as the

times
;
twice the triangle S P Q, or Q L X S P is as T in the

last expression ; and, therefore, Q E being parallel to L P, the

O T?

central force at P is as
^-j^

. So if S Y be the perpen-O i P\ J-J v^

dicular upon the tangent P Y, because P E and the arc P Q,

evanescent, coincide, twice the triangle S P Q is equal to S Y
O T?

X Q P
;
and the central force in P is as ^^ . Lastly,O JL X y -

if the revolution be in a circle, or in a curve having at P the

same curvature with a circle whose chord passes from that

* The proposition may be demonstrated by means of the Prop. XXXVI.
of Book I. of the Principia, as well as by means of the proposition of

which we have now been tracing the consequences (Prop. TV.). But in

truth the latter theorem gives a construction of the former problem (Prop.

XXXVI.), and from it may be deduced both that and Prop. XXXV.
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point through S to V, then the measure of the central force

will be ^-^ p-^r. By finding the value of those solids in
O X s\ -t V

Fig. 6.

any given curve, we can determine the centripetal force in

terms of the radius vector S P ; that is, we can find the pro-

portion which the force must bear to the distance, in order to

retain the body in the given orbit or trajectory ; and con-

versely, the force being given, we can determine the tra-

jectory's form.

This proposition, then, with its corollaries, is the founda-

tion of all the doctrine of centripetal forces, whether direct or

inverse
;
that is, whether we regard the method of finding,

from the given orbit, the force and its proportion to the

distance, or the method of finding the orbit from the given
force. We must, therefore, state it more in detail, and in the

analytical manner, Sir Isaac Newton having delivered it syn-

thetically, geometrically, and with the utmost brevity.



238 CENTRAL FORCES;

It may be reduced to five kinds of formulae.

1. If the central force in two similar orbits be called F and

f, the times T and t, the versed sines of half the arcs S and s,

O Q

then F :/::: ;
and generally F is as

^.

2. But draw S P to any given point of the orbit in the

middle of an infinitely small arc Q C. Let T P touch the

curve in P, draw the perpendicular SY from the centre of

forces S to P T produced, draw S Q infinitely near S P, and

Q E parallel to S P, Q o and E o parallel to the co-ordinates

S M, III P. Then P being the middle of the arc, twice the

triangle S P Q is proportional to the time in which C Q is

described. Therefore QPx SYorQL xPSis proportional

C
to the time

;
and Q E is the versed sine of , therefore F as

2i

S O E
7 becomes F as -=^- ^-^ ; and if SM = x, M P =

y, and
-*-' y X O -L

because the similar triangles QEo and SMP give QE =

x

,
and because AM being the first differential of S M,

lifferential (negatively), therefore Q E =

(taken with reference to dt constant), and

is as But L
x x LQ2 x (

L P is the differential of S P or V^2 + f. Therefore L Q2 =

y

But as the differential of the time (L Q x P S) may be

made constant, Q E will represent the centripetal force
;
and
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cl? 3C A/ iJC* "\^ 1J*

that force itself will therefore be as * taken
x

with reference to dt constant.

3. The rectangle S Y x Q P being equal to Q L x S P

ydxxdy QR
and S Y =

,

, we have F as

(ydx- xdyj / x
Cl

S Y2 x Q Pa

Q R QP2

4. Because F = T =T--^ and -77^ is equal to the chord
S Y 2 x Q P Q K

PV of the circle, which has the same curvature with Q P O
in P, and whose centre is K (and because QP2 = QRxPV
by the nature of the circle and the equality of the evanescent

Q P2 O T?
arc QP with its sine, and thus P V =

, therefore ^r^a

=
],
F is as ^^ ^P^V'

^n^e manner ^ *ne velocity,

v
2

which is inversely as S Y, be called v, F is as ^ . Now the

chord of the osculating circle is to twice the perpendicular
S Y as the differential of S P to the differential of the per-

pendicular ;
and calling S P the radius vector r, and S Y =

p,

2pdr . _. . dpwe have P V = -~
,
and F is as .'' ; and also F is as

dp 2p
A dr

eu (I T)

-. In these formulas, substituting for p and r their
2 d r

* Of these expressions, although I have sometimes found this, which

was first given by Herrman, serviceable, I generally prefer the two,

which are in truth one, given under the next heads. But the expression

first given
---

2" 1S without integration an useful one.
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values
^
in terms of x and y, we obtain a mean of estimating

the force as proportioned to r, which is V x1

4. y*.

5. The last article affords, perhaps, the most obvious me-

thods of arriving at central forces, both directly and inversely.

Although the quantities become involved and ernbarassing in

the above general expressions for all curves, yet in any given
curve the substitutions can more easily be made. A chief

recommendation of these expressions is, that they involve no

second differentials, nor any but the first powers of any
differentials. But it may be proper to add other formulas

which have been given, and one of which, at least, is more
convenient than any of the rest.

One expression for the centrifugal force (and one some-

d s
8

times erroneously given for the centripetal)* is -, s being
2 ri

the length of the curve and E the radius of curvature. This

gives the ready means of working if that radius is known.

But its general expression involves second differentials, the

ds3

usual formula for it being /d y\; consequently we
Ct Ou s\ d I

p

I

\dxj
dy

must first find = X (a function of x}. and then there are
d x

only first differentials.

rfs
2

Another for this radius of curvature is

r d T
and this is used by Laplace ; and another is

, which, with
dp

other valuable formulas, is to be obtained from Maclaurin's

Fluxions. But the formula generally ascribed to John Ber-

* This error appears to Lave arisen from taking the case where the

radius of curvature and radius vector coincide, that is, the case of the

circle, in -which the centrifugal and centripetal forces are the same. See

Mrs. Somerville's truly admirable work on the Mec. Cel., where the error

manifestly arises from this circumstance.
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noulli (Mem. Acad. des Sciences, 1710), is, perhaps, the

r
most elegant of any, F = -

; and this results from

substituting 2 E for its value
,
in the equation to F,

dp
dp

deduced above from Newton's formula, namely, F =
, .

2p
s dr

But the proposition is so important, that it may be well to

prove it, and to show that it is almost in terms involved in

the third corollary to Prop. VI. Book I. of the Principia.

By that corollary F =
g (C being the osculating circle's

chord which passes through the centre of forces). But draw-

ing S Y, the perpendicular to the tangent, and P C F through

the centre of the circle, which is, therefore, parallel to Y S,

and joining VF, we have VP:PF :: S Y : SP or C : 2E ::p : r

and C = - -^-, which substituted for C in the above equa-

tion, gives F =

In all these cases p is to be found first, and the expres-
sion for it (because, pp. 286, 287, TP : PM :: TS : S Y and

TS =
dy

and _

dy
is p =
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, ,x

ydx xdy
dac*

y
Also r = SP =

f j 2 t J 2\ ^ 7

Then the radius of curvature K = - ^
---

-\J- (X being -

dx* x c?X &
<:/#

in terms of a?, and having no differential in it when the sub-

stitution for dy is made). Therefore, the expression for the

centripetal force becomes -
-. ,

in which,

when y and dy are put in terms of x, as both numerator and

denominator will be multiplied by dx3
,
there will be no

differential, and the force may be found in terms of the

radical that is, of r, though often complicated with x also.

It is generally advisable, having the equation of the curve,

to find p, r, and E, first by some of the above formulas, and

then substitute those values, or dp and dr
t
in either of the

* -n dp r
expressions for F, ; or ^-^5.3 8

2p
3 dr

To take an example in the parabola, where S being the

focus, and S = a, y
2 = 4 a x, and T M = 2 x, and p = Y S

= V (a + x) a; r = SP = a + x, and E = = 2 (a + x)

la + x

V~^~ ' we have therefore F as

Fur. 8.

. E

S M N

a + x

a (a + x~) )|-
= 2 (a -f a?) /a + x _ a + a:/a + ^ _ a + ^

v a 2 a (a + a?)
8
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-
, or, because S (the parameter) is

2 QJ (a -(- X) a \JQ Q"
constant, inversely as the square of the distance : And the

other formula F as , 7 gives the same result for the law
p

3 dr

of force, or
,, 3

.*
4 o 1.

Again, in the ellipse, if a be half the transverse axis, and b

half the conjugate, and r the radius vector, we have p = b

r & b d r
,
and dp = -; therefore the formula

2 a - >

dp ab dr a .v *becomes = -
,

or the force is m-
p.dr b* *J r X r? X d r b r*

versely as the square of the distance.

Lastly, as the equations are the same for the hyperbola,
with only the difference of the signs, the value of the force is

also inversely as r
2
, or the square of the distance. In the

circle a = the radius = r = p; hence - - becomes , which.
p

3 E a4

being constant, the force is everywhere the same. But if the

centre of forces is not that of the circle, but a point in the

circumference, the force is as .

r"

Eespecting centrifugal forces it may be enough to add.

that if v is the velocity and r the radius, the centrifugal force

v*

/, in a circle, is as . Also if E be the radius of curvature,
r

f for any curve is = ^ . When a body moves in a circle by

a centripetal force directed to the centre, the centrifugal force

* This result coincides with the synthetical solution of Sir Isaac Newton
in Prop. XIII.

R 2
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is equal and opposite to the centripetal. Also the velocity in

o

uniform motion, like that in a circle, being as , the space
c

divided by the time, and the arc being as the radius r, f is as

,S

2 T

5
or as -. If two bodies moving in different circles have

y* v v

the same centrifugal force, then the times are as *Jr. It

is to the justly celebrated Huygens that we owe the first

investigation of centrifugal forces. The above propositions,

except the second, are abridged from his treatise.*

i. First, where the centre of force is the centre of the tra-

jectory. In exemplifying the use of the formulas we have

shown the proportion of the force to the distance in the conic

sections generally, their foci being the centres of forces. Let

us now see more in detail what the proportion is for the

circle. Let S be the centre of forces and K of the circle, P T
a tangent, SY a perpendicular to it, KM and MP co-ordi-

nates, SK = b, KO = a, PM = y, and MK = x. Then, by
ST x KP

similar triangles, TKP and TSY, we have SY = ^ ,

y*
or (because the sub-tangent M T =

, and a* = x* + */*)
oc

a +
or f

g
J"

)

' also S P = V a + 2 6 x + 6
2

,
and

a \ 2 a J

*
Horologium Oscillatorium, ed. 1673, p. 159, App.



LAW OF THE UNIVERSE. 245

because by the property of the circle S X S B or (a + &)

(a
-

b)
= a8 - 8 - P S X S V ; therefore

a* -I* 2a* + 2bx
SV = ^^^=== and P V = .

tj a* + 2 b x -f- b* \/ a* -\- 2 b x -\- b*

Now by the formula already stated as Bernoulli's, but

really Sir Isaac Newton's, the centripetal force in P is as

SP
,
K being the radius of curvature, and in the circle

fe A X "

that is constant being = a, the semidiameter ; therefore the

force is as ^
. . . or as ~.

8 a3

B 0' x S P B O8 x S P3

8 r RS

BO 8 2 a

X P S*

SP3

BO 2

= P V. Therefore the central force is as -r- -
; or

P V* X 8 P2

(because B2
is constant) the central force is inversely as

the square of the distance and the cube of the chord jointly.

Of consequence, where S is in the centre of the circle and
b o, the force is constant, S P becoming the radius and P V
the diameter ; and if S is in the circumference of the circle as

at B, or a =
5, then the chord and radius vector coinciding,

the force is inversely as the fifth power of the distance, and is

also inversely as the fifth power of the cosine of the angle
PSO.
By a similar process it is shown that in an ellipse the force

directed to the centre is as the distance. Indeed, a property
of the ellipse renders this proof very easy. For if S Y is the

perpendicular to the tangent T P, and N P (the normal)
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parallel to S Y, and S A the semi-conjugate axis
; S A is a

mean proportional between S Y and P N, and therefore S Y =
AS2

; also the radius of curvature of the ellipse is (like that

4PN8

of all conic sections) equal to ^ , P being the parameter.

Therefore we have to substitute these values for S Y and the

radius of curvature, K, in the expression for the central force,

SP SP P2

and we have ^R
= =- x SP; so

RXSY"'"
u 4.PN AS6 ~4AS'

P8

P2

that, neglecting the constant
,
the centripetal force is as

4 A. o
the distance directly.

From hence it follows, conversely, that if the centripetal
force is as the distance, the orbit is elliptical or circular, for

by reversing the steps of the last demonstration we arrive at

an equation to the ellipse ; or, in case of the two axes being

equal, to the circle. It also follows that if bodies revolve in

circular or elliptical orbits round the same centre, the centre

of the figures being the centre of forces, and the force being
as the distance, the periodic time of all the bodies will be the

same, and the spaces through which they move, however dif-

fering in length from each other, will all be described in the

same time. This proposition, which sonaetimes has appeared

paradoxical to those who did not sufficiently reflect on the

subject, is quite evident from considering that the force and

velocity being increased in proportion to the distance, and
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the lengths of similar curvilinear and concentric figures being
in some proportion, and that always the same, to the radii,

the lengths are to each other as those radii, and consequently
the velocity of the whole movement is increased in the same

proportion with the space moved through. Hence the times

taken for performing the whole motion must be the same.

Thus, if V and v are the velocities, E and r the radii, S and s

the lines described in the times T and
, by two such bodies

round a common centre, V : v : : E : r, and S : s : : E : r ; and

because V =
7=- and v = , -^ : : : E : r, and S : s : : T E :

-L r J. 6

tr; or E : r : : T E : t r
;

and therefore T = t. Hence if

gravity were the same towards the sun that it is between the

surface and centre of each planet, or if the sun were moved
but a very little to one side, so as to be in the centre of the

ellipse, the whole planets would revolve round him in the

same time, and Saturn and Uranus would, like Mercury, com-

plete their vast courses in about three of our lunar months

instead of 30 and 80 years a velocity in the case of Uranus

equal to 75,000 miles in a second, or nearly one-third that of

light.

It also follows from this proposition that, if such a law

of attraction prevailed, all bodies descending in a straight

line to the centre would reach it in the same time from what-

ever distance they fell, because the elliptic orbit being inde-

finitely stretched out in length and narrowed till it became a

straight line, bodies would move or vibrate in equal times

through that line. This is the law of gravity at all points
within the earth's surface.

Another consequence of this proposition is, that if the

centre of the ellipse be supposed to be removed to an infinite

distance, and the figure to become a parabola, the centripetal

force being directed to a point infinitely remote, becomes

constant and equable ; a proposition discovered first by
Galileo.



248 CENTRAL FOBCES
;

Next, where the centre of force is in the focus. If P A
be a conic section whose parameter is D, S Y the perpen-
dicular to the tangent T P, P E the radius of curvature at P ;

T) S P
then SY:SP::iD:PN (the normal), and S Y =

also P K = Substitute these values of S Y and P R

(p and E) in the expression formerly given for the central

SP
- -, and we have U* . S P3 4 P N3 or T
P X E -7T-F7-^r X ^ D X

force

which is (D being invariable) as the inverse square of the

distance. Therefore any body moving in any of the conic

sections by a force directed to the focus, is attracted by a,

centripetal force inversely as the square of the distance from
that focus. This demonstration, therefore, is quite general in

its application to all the conic sections.

It follows that if a body is impelled in a straight line with

any velocity whatever, from an instantaneous force, and is at

the same time constantly acted upon by a centripetal force

which is inversely as the square of the distance from the

centre, the path which the body describes will be one or other

of the conic sections. For if we take the expression =r ?-=-D . S P*

and work backwards, multiplying the numerator and deno-

minator both by S P, and then multiplying the denominator
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8 D* P Xs
'

^ -r^o ^. ->- we obtain the expressions for the value of
8 D* . P IX

3

S Y, the perpendicular, and for E, the radius of curvature.

But no curves can have the same value of S Y and K, except
the conic sections ; because there are no other curves of the

second order, and those values give quadratic equations
between the co-ordinates.

By pursuing another course of the same kind algebraically,
we obtain an equation to the conic sections generally, accord-

ing as certain constants in it bear one or other proportion to

one another, The perpendicular S Y and the radius of cur-

vature are given in terms of the normal; and either one

Q

(d a^-f d y
2
)

or the other will give the equation. Thus E = --^-

xa(\
4 P N8 4 if 3=
jp-

= ^ dx, X (d oc* + dy*)* which gives D2 d x3 =

4 y* X (d* y d x d* x d y) an equation to the co-ordinates.

Now whether this be resolvable or not, it -proves that only
one description of curves, of one order, can be such as to have

the property in question. The former operation of going
back from the expression of the central force, proves that the

conic sections answer this condition. Therefore no other

curves can be the trajectories of bodies moving by a centri-

petal force inversely as the square of the distance.*

This truth, therefore, of the necessary connexion between
motion in a conic section and a centripetal force inversely as

the square of the distance from the focus, is fully established

by rigorous demonstration of various kinds.

* The equation may be resolved and integrated ; there results, in the

first instance, the equation dx = ^ , and therefore the integral

is this quadratic, c2^ - 2 c>/
- 2cC^-r-C2 -|-D2 = 0.
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If we now compare the motion of different bodies in con-

centric orbits of the same conic sections, we shall find that

the areas which, in a given time, their radii vectores describe

round the same focus, are to one another in the subduplicate
ratio of the parameters of those curves. From this it follows,

that in the ellipse whose conjugate axis is a mean propor-
tional between its transverse axis and parameter, the whole

time taken to revolve (or the periodic time / being in the pro-

portion of the area (that is in the proportion of the rectangle
of the axes) directly, and in the subduplicate ratio of the

parameter inversely, is in the sesquiplicate ratio of the trans-

verse axis, and equal to the periodic time in a circle whose
diameter is that axis. It is also easy to show from the

formula already given respecting the perpendicular to the

tangent, that the velocities of bodies moving in similar conic

sections round the same focus, are in the compound ratio of

the perpendiculars inversely and the square roots of the

parameters
*

directly. Hence in the parabola a very simple

expression obtains for the velocity. For the square of the

perpendicular being as the distance from the focus by the

nature of the curve (the former being a2 + a x, and the latter

a + .r), the velocity is inversely as the square root of that

distance. In the ellipse and hyperbola where the square of

the perpendicular varies differently in proportion to the dis-

tance, the law of the velocity varies differently also. The

square of the perpendicular in the ellipse (A being the trans-

verse axis and B the conjugate, and r the radius vector) is

B2 X r B2 X r
;

in the hyperbola, ,
or those squares of the

T T
perpendicular vary as and ,

in those curves re-
A - r A + r

spectively, B
2

being constant. Hence the velocities of bodies

moving in the former curve vary in a greater ratio than that

*
By parameter is always to be understood, unless otherwise mentioned,

the principal parameter, or the parameter to the principal diameter.
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of the inverse subduplicate of the distance, or =, and in a
Vr

smaller ratio in the latter curve, while in the parabola =
V r

is their exact measure.

To these useful propositions, Demoivre added a theorem of

great beauty and simplicity respecting motion in the ellipse.

The velocity in any point P is to the velocity in T, the point
where the conjugate axis cuts the curve, as the square root

of the line joining the former point P and the more distant

focus, is to the square root of the line joining P and the

nearer focus. It follows from these propositions that in the

ellipse, the conjugate axis being a mean proportional between

the transverse and the parameter, and the periodic time

being as the area, that is as the rectangle of the axes directly,

and the square root of the parameter inversely, t being that

time, a and b the axes, and p the parameter, t =
,
and

b* - a p; therefore ab = a */ a p = V 3 X J p; and t =

mj a3
,
and t

3 = a3
;
or the squares of the periodic times are as

the cubes of the mean distances. So that all Kepler's three

laws have now been demonstrated, d priori, as mathematical

truths
; first, the areas proportional to the times if the force is

centripetal second, the elliptical orbit, and third, the ses-

quiplicate ratio of the times and distances, if the force is

inversely as the squares of the distances, or in other words if

the force is gravity.

Again, if we have the velocity in a given point, the law of

the centripetal force, the absolute quantity of that force in

the point, and the direction of the projectile or centrifugal

force, we can find the orbit. The velocity in the conic sec-

tion being to that in a circle at the given distance D as m to

n, and the perpendicular to the tangent being p, the lesser

Imp . 2Dn2

axis will be --
, and the greater axis -

;
--

;,
tne

/ o fi ft
a V n* - Ml*V 2 n* m* z w -m
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signs being reversed in the denominator of each quantity for

the case of the hyperbola. Hence the very important con-

clusion that the length of the greater axis does not depend at

all upon the direction of the tangential or projectile force,

but only upon its quantity, the direction influencing the

length of the lesser axis alone.

Lastly, it may be observed, that as these latter propositions

give a measure of the velocity in terms of the radius vector

and perpendicular to the tangent for each of the conic sec-

tions, we are enabled by knowing that velocity in any given
case where the centripetal force is inversely as the square of

the distance, and the absolute amount of that force is given,
as well as the direction of the projectile force and the point
of the projection, to determine the parameters and foci of the

curve, and also which of the conic sections is the one de-

scribed with that force. For it will be a parabola, an hy-

perbola, or an ellipse, according as the expression obtained

for p* (the square of the perpendicular to the tangent) is as

the radius vector, or in a greater proportion, or in a less pro-

portion. This is the problem above referred to, which John
Bernoulli had entirely overlooked, when he charged Sir

Isaac Newton with having left unproved the important
theorem respecting motion in a conic section, which is clearly
involved in its solution.

Before leaving this proposition, it is right to observe that

the two last of its corollaries give one of those sagacious

anticipations of future discovery which it is in vain to look

for anywhere but in the writings of Newton. He says, that

by pursuing the methods indicated in the investigation, we

may determine the variations impressed upon curvilinear

motion by the action of disturbing, or, what he terms, foreign
forces

; for the changes introduced by these in some places,
he says, may be found, and those in the intermediate places

supplied, by the analogy of the series. This was reserved

for Lagrange and Laplace, whose immortal labours have

reduced the theory of disturbed motion to almost as great
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certainty as that of untroubled motion round a point by virtue

offerees directed thither.*

We have thus seen how important in determining all the

questions, both direct and inverse, relating to the centripetal

force, are the perpendicular to the tangent and the radius of

curvature. Indeed it must evidently be so, when we con-

sider, first, that the curvature of any orbit depends upon the

action of the central force, and that the circle coinciding with

the curve at each point, beside being of well-known proper-

ties, is the curve in which at all its points the central force

must be the same ; and, secondly, that the perpendicular to the

tangent forms one side of a triangle similar to the triangle

of which the differential of the radius vector is a side
; the

other side of the former triangle being the radius vector,

the proportion of which to the force itself is the material

point in all such inquiries. The difficulty of solving all these

problems arises from the difficulty of obtaining simple ex-

pressions for those two lines, the perpendicular p and the

radius of curvature R. The radius vector r being always

V x* -f if interposes little embarrassment ; but the other two
lines can seldom be concisely and simply expressed. In

some cases the value of F, the force, by dr and dp may be

more convenient than in others ; because p may involve the

investigation in less difficulty than E
;
besides that p

8 enters

into the expression which has no differentials. But in the

greater number of instances, especially where the curve is

r
given, the formula

-^-j-
will be found most easily dealt with.

J) -tw

ii. We are next to consider the motion of bodies in conic

sections which are given, and ascending or descending in

straight lines under the influence of gravity ;
that is, the

velocities and the times of their reaching given points, or

*
Laplace (Mec. Cel. lib. xv. ch. i.) refers to this remarkable passage as

the germ of Lagrange's investigations in the Berlin Memoires for 1786.
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their places at given times. This branch of the subject,

therefore, divides itself into two parts; the one relating to

motion in the conic sections, the other to the motion of bodies

ascending or descending under the influence of gravitation.

In order to find the place of a revolving body in its

trajectory at any given time, we have to find a point such

that the area cut off by the radius vector to that point shall

be of a given amount; for that area is proportional to the

time. Thus, suppose the body moves in a parabola, and that

its radius vector completes in any time a certain space, say in

half a year moves through a space making an area equal to

the square of D ;
in order to ascertain its position in any

given day of that half year, we have to cut off, by a line

drawn from, the centre of forces, an area which shall bear to

D2 the same proportion that the given time bears to the half

year, say 3 to m2
,
or we have to cut off a section A S P =

g
D2

,
A P being the parabola and S the focus. This will be

m
done if A B be taken equal to three times A S, acd B being

drawn perpendicular to A B, between B 0, B A asymptotes, a

rectangular hyperbola is drawn, HP, whose semi-axis or

semi-parameter is to D in the proportion of 6 to m
;

it will cut

the parabolic trajectory in the point P, required. For calling

A M = x and PM = y and A S = a ; then AB = 3 a and y x

(# -+- 3 a)
= half the square of the hyperbola's semi-axis,

6D 36 D2 18 D2

which axis being equal to
, y (x + o a) = - =

,m 2 m3 mr
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6D2

fx a\ 3D2 /2 1

2
'

2

3 D2 2 1 3D2

~^"*
Therefore

3
x y -

2 (x ~ a
) y =

~^s~'

2 211
and -, AM X PM = - xy; and -

(a:
- a)y = - SM . PM =

o 2 2i

3 D2

S M P
; therefore the sector A S P = ;- : so that the radius

m2

from the focus S cuts off the given area, and therefore P is

g
the point where the comet or other body will be found in -

parts of the time.

If the point is to be found by computation, we can easily

1 8 a2
I)

2

find the value of y by a cubic equation, y
3

-j- 3 a*y =--
,

Ttl

and making B L =
?/, L P parallel to A M, cuts A P in the

point P required. Sir Isaac Newton gives a very elegant
solution geometrically by bisecting A S in G, and taking the

perpendicular G E to the given area as 3 to 4 A S, or to S B,
and then describing a circle with the radius E S ; it cuts the

parabola in P, the point required. This solution is infinitely

preferable to ours by the hyperbola, except that the demon-
stration is not so easy, and the algebraical demonstration far

from simple.
It is further to be observed, that the place being given,

either of these solutions enables us to find the time. Thus,

3 D2

in the cubic equation, we have only to find . It is equalm2

y
3 _i_ 3 a8 u

to -
t ; and as D2

is the given integer, or period of e.g.
Ct

half a year, the body comes to the point P in a time which

bears to D2 the proportion of unity to --- _ .J 3 2
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iii. The next object of research is to generalise the pre-

ceding investigations of trajectories from given forces, and

of motion in given trajectories, applying the inquiry to all

kinds of centripetal force, and all trajectories, instead of con-

fining it, to the conic sections, and to a force inversely as the

square of the distance.

We formerly gave the manner of finding the force from the

trajectory in general terms, and showed how, by means of

various differential expressions, this process was facilitated.

It must, however, be remarked, that the inverse problem of

finding the trajectory from the force, is not so satisfactorily

solved by means of those expressions. For example, the most

, ... . , f
general one at which we arrived ot

(x a
n

being put = ----
-, or the force inversely as the square

y* + (x a)*

of the distance, presents an equation in which it may be pro-

nounced impossible to separate the variables so as to inte-

grate, at least while d X, the differential of , remains in
dx

so unmanageable a form
;

for then the whole equation is

d*ydx-d*xdy C
,

2(ydx-(x-a)d yy
, and thus from

hence no equation to the curve could be found. It cannot be

doubted that Sir Isaac Newton, the discoverer of the calculus,

had applied all its resources to these solutions, and as the

d T)

expressions for the central force, whether- , or -
, or

'2p*.r p
3 dr

d^ x \ls? -4- y
2--
(in some respects the simplest of all, being

taken in respect of dt constant, and which is integrable in
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the case of the inverse squares of the distances, and gives the

general equation to the conic sections with singular elegance),
are all derivable from the Sixth Proposition of the First Book,
it is eminently probable that Newton had first tried for a

general solution by those means, and only had recourse to

the one which he has given in the Forty-first Proposition
when he found those methods unmanageable. This would

naturally confirm him in his plan of preferring geometrical
methods ; though it is to be observed that this investigation,

as well as the inverse problem for the case of rectilinear

motion in the preceding section, is conducted more analyti-

cally than the greater part of the Principia, the reasoning of

the demonstration conducting to the solution and not follow-

ing it synthetically.
A is the height from which a body must fall to acquire the

velocity at any point D, which the given body moving in

the trajectory V I K (sought by the investigation) has at the

corresponding point I
;
D I, E K, being circular arcs from

the centre C, and C I = C D and C K = C E. It is shown

previously that, if two bodies whose masses are as their

weights descend with equal velocity from A, and being acted

on by the same centripetal force, one moves in V IK and the

other in A V C, they will at any corresponding points have

the same velocity, that is at equal distances from the centre G.

So that, if at any point D, D b or DF be as the velocity at D
s
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of the body moving in AVC, D6 or DF will also represent
the velocity at I of the body moving in V I K. Then take

D F = y as the centripetal force in D or I (that is, as any

power of the distance D C, or a x, V C being ,
and C D, x)

V D F L will be / y d z. Describe the circle V XY with C V
71

fl Z
as radius. Let VX = z, and YX will be dz, and N K = .

a

Then ICK being as the time, and dt being constant, that

I C x K X .

triangle, or
,
is constant, and K .N is as a constant

quantity divided by I C, or as . If we take to *J A V L B

(proportioned to the force at any one point V and therefore

given), as KN to IK, therefore this will in all points be the

proportion ; and the squares will be proportional, or
J* y d x :

Oa~
: : I K2

, or K N2 + I N 2
,
to K N2

;
and therefore fydxX

Q2 Q2 xs d z* x d z
:
- - :: I N 2

,
or d x* : . Therefore =

x x a a

Qd x a^a z

;
and multiplying by x, - -

(twice the

x*

Qdx . x*dz
sector I C K) = . Again a dz : : : a* : x* ;

Q2

or
J _ ~2 ~

tff \Jfif I* It- V^, \Ai tAS , -

and adz = - - x - =
^ X = twice the

a a* a* / Q2

x"

sector Y C X.

Hence results this construction. Describe the curve a & Z,

Q
such that (D b = u) its equation shall be u =

2V fydx ~*
and the curve acx such that (D c = 0) its equation may be
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- Then the differentials of the areas

of these curves, or u d x and d x, being respectively

Q d x Qcfdx
and

, and those being

equal to and
,
or the sectors which are the differen-

2. d _

tials of the areas VIC and VX C, the areas themselves are

equal to those areas
;
and therefore from VX C being given

(if the area c D V a be found), and the radius C V being given
in position and magnitude, the angle VOX is given; and
from C X being given in position, and C V in magnitude and

position, and also the area CI V, (if VDba be found), the

point I is found, and the curve V I K is known. This, how-

ever, depends upon the quantities made equal to u and

severally berag expressed in terms of #, for this is necessary
in order to eliminate y from the equations to these curves ;

and then it is necessary to integrate these expressions ; for

else the angle VOX, and the curve V I K, are only obtained

in differential equations. Hence Sir Isaac Newton makes the

quadrature of curves, that is, first the integration of fydcc, to

eliminate y, and then the integration of the equations result-

ing in terms of u and x, < and x respectively, the assumptions
or conditions of his enunciation. The inconvenience of this

method of solving the problem gave rise to the investigations
of Hermann and Bernoulli. The equation of the former,

involving, however, the second differential of the co-ordinate,

is to the rectangular co-ordinates ; that of the latter is a polar

equation, in terms of the radius vector and angle at the centre

of forces.

To illustrate the difficulty with which this method of

quadratures is applied, in practice take the case of the

centripetal force being inversely as the cube of the distance ;

s 2
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then y = -^ and the curve B L F is quadrable. If we seek

the circle VX Y by rectangular co-ordinates X 0, V, we find

the equation to obtain V = D in terms of x, is of the form]

~Q2

2^2

\/ jydx -^
Q cfdx

(c being the constant introduced by integrating f y d x).
Now there is no possibility of integrating these two quantities

otherwise than by sines, and we thus obtain, nor can we do

more, the following equation to D in terms of x ;

a-D V~2 . Q . a2 V n + 2 Q2

C a2 arc sin.- = - x arc cos. ---
.

And if we get D from this, in terms of cos. x, we have then to

obtain P C by similar triangles, and from I P C being right-

angled and 1C = x, to obtain P I, in order to have the curve

VIK.
But if we proceed otherwise, and instead of working by

quadratures, take v the velocity of the body at I, or in the

Q

straight line at D, and make the area described in a

second, and the angle V C I, we obtain as a polar equation
f* fi T*

to V I K, d 6 = (x being in this case both C D
/ j 9 9 9 V. O

x v 4 x v c

and the radius vector). Then, to apply this general equation

to the case of the centripetal force being as
5,

let the force
3C

at the distance 1 be put equal to unity, and supposing the

velocity of projection to be that acquired in falling from an

infinite height, the equation to the trajectory becomes

c (I cr c* x
de = - -

. and integrating, =-- - x log. .

#V4-c2
-v/4-c2



(
261 )

XII.

ATTRACTION OF BODIES; OF SPHEEICAL AM) NON-
SPHERICAL SURFACES ANALYTICALLY TREATED.

i. THE attraction exerted by spherical surfaces and by hollow

spheres is first to be considered. If P be a particle situated

anywhere within A B D C, and we
conceive two lines AD, BC, in-

finitely near each other drawn

through P to the surface, and if

these lines revolve round a P b,

which passes from the middle

points a and b, of the small arcs

DC, and AB, through P, there

will two opposite cones be de-

scribed ; and the attraction of the small
"

circles D C, A B

upon P, will be in the lines from each point of those

circles to P, of which lines C P, DP, are two from one

cirle, and A P, B P, two from the other circle. Now^,
this attraction of the circle C D is to that of the circle

A B, as the circle C D to the circle A B, or as C D2 to

A B8

(the diameters), and by similar triangles C D8
: A B

: : P C8
: P A8

. But by hypothesis, the attraction of C D
is to that of A B as A P* : P C2

; therefore the attraction

of D C is to the opposite attraction of A B as A P8
, to

P C2
, and also as P C 8 to A P8

, or as A P2 x P C2 to A P8

X P C8
, and therefore those attractions are equal ; and

being opposite they destroy one another. In like manner,

any^particle of the spherical surface on one side of P, acting
in the direction of a P, is equal as well as opposite to the

attraction of another particle acting on the opposite side, and

so the whole action of every one particle is destroyed by
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the opposite action of some other particle : and P is not at

all attracted by any part of the spherical surface ; or the

sum of all the attractions upon P is equal to nothing. So of a

hollow sphere ; for every such sphere may be considered as

composed of innumerable concentric spherical surfaces, to

each of which the foregoing reasoning applies; and conse-

quently to their sum.

We may here stop to observe upon a remarkable inference

which may be drawn from this theorem. Suppose that in the

centre of any planet, as of the earth, there is a large vacant

spherical space, or that the globe is a hollow sphere ; if any

particle or mass of matter is at any moment of time in any

point of this hollow sphere, it must, as far as the globe is con-

cerned, remain for ever at rest there, and suffer no attraction

from the globe itself. Then the force of any other heavenly

body, as the moon, will attract it, and so will the force of the

sun. Suppose these two bodies in opposition, it will be

drawn to the side of the sun with a force equal to the dif-

ference of their attractions, and this force will vary with

the relative position (configuration) of the three bodies
; but

from the greater attraction of the sun, the particle, or

body, will always be on the side of the hollow globe next

to the sun. Now the earth's attraction will exert no influ-

ence over the internal body, even when in contact with the

internal surface of the hollow sphere ;
for the theorem which

we have just demonstrated is quite general, and applies to

particles wherever situated within the sphere. Therefore,

although the earth moves round its axis, the body will always
continue moving so as to shift its place every instant and
retain its position towards the sun. In like manner, if any
quantity of movable particles, thrown off, for example, by the

rotatory motion of the earth, are in the hollow, they will not

be attracted by the earth, but only towards the sun, and will

all accumulate towards the side of the hollow sphere next the

sun. So of any fluid, whether water or melted matter in the

hollow, provided it do not wholly fill up the space, the whole
of it will be accumulated towards the sun. Suppose it only

f
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enough to fill half the hollow space ; it will all be accumu-

lated on one side, and that side the one next the sun
;
conse-

quently the axis of rotation will be changed and will not pass

through the centre, or even near it, and will constantly be alter-

ing its position. Hence we may be assured that there is no
such hollow in the globe filled with melted matter, or any hol-

low at all, inasmuch as there could no hollow exist without

such accumulations, in consequence of particles of the internal

spherical surface being constantly thrown off by the rotatory
motion of the earth.*

Eg.15.

If AHKB be a spherical section (or great circle), PEK
and P I L lines from the particle P, and infinitely near each

other, S D, S E perpendiculars from the centre, and I q per-

pendicular to the diameter
; then, by the similar triangles

PIE, Pp D, we find that the curve surface bounded by I H,

* The argument is here succinctly and popularly stated respect-

ing the supposition of a hollow in the centre of the earth, and several

steps are omitted. One of these may be mentioned in case it should

appear to have been overlooked. Suppose a mass m detached from the

hollow sphere M, and impelled at the same time with that sphere by an
initial projectile force, then its tendency would be to describe an

elliptic orbit round the sun, the centre of forces, and if it were detached

from the earth it would describe an ellipse, and be a small planet. But
as the accelerating force acting upon it would be different from that

S + M S + m
acting on the earth, the one being as ~> an<i the other as = -

(D being the distance and S the mass of the sun), it is manifest that,

sooner or later, its motion being slower than that of the hollow sphere,

if m be placed in the inside, it must come in contact with the interior

circumference of the sphere, and either librate, or, if fluid, coincide with

it, as assumed in the text. Where parts of the spherical shell come off by
the centrifugal force, of course no such step in the reasoning is wanted ;

nor is it necessary to add that neither those parts nor any other within

the hollow shell can have any rotatory motion.
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and formed by the revolution of IHK L I round the diameter

IP2

A B, and which is proportional to I H x I q, is as ^ =-- ;

Pp x P S

and if the attraction upon the particle P is as the surface

directly, and the square of the distance inversely, or
-^-^,

that

attraction will be as
'

-. But if the force acting in
Pp X PS

the line P I is resolved into one acting in P S and another

P<7
acting in SD, the force upon P will be as

=j^,
or (because of

P
the similar triangles PIQ, PS^) as -. The attraction,

therefore, of the infinitely small curvilinear surface formed

by the revolution of IH is as rp72 or as ^-^ ; that is

inversely as the square of the distance from the centre of the

sphere. And the same may be shown of the surface formed

by the revolution of K L, and so of every part of the spherical
surface. Therefore the whole attraction of the spherical sur-

face will be in the same inverse duplicate ratio.

In like manner, because the attraction of a homogeneous
sphere is the attraction of all its particles, and the mass of

these is as the cube of the sphere's diameter D, if a particle
be placed at a distance from it in any given ratio to the

diameter, as ra.D, and the attraction be inversely as the

square of that distance, it will be directly as D3
,
and also as

g -p^,
and therefore will be in the simple proportion of D,

the diameter. Hence if two similar solids are composed of

equally dense matter, and have an attraction inversely as the

square of the distance, their attraction on any particle simi-

larly placed with respect to them will be as their diameters.

Thus, also, a particle placed within a hollow spheroid, or in a

solid, produced by the revolution of an ellipsis, will not be
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attracted at all by the portion of the solid between it and the

surface, but will be attracted towards the centre by a force

proportioned to its distance from that centre.

It follows from these propositions, first, that any particle

placed within a sphere or spheroid, not being affected by
the portion ofthe sphere or spheroid outside and without it, and

being attracted by the rest of the sphere, or spheroid in the

ratio of the diameter, the centripetal force within the solid is

directly as the distance from the centre
; secondly, that a

homogeneous sphere, being an infinite number of hollow

spaces taken together, its attraction upon any particle placed
without it is directly as the sphere, and inversely as the

square of the distance ; thirdly, that spheres attract one

another with forces proportional to their masses directly,
and the squares of the distances from their centres in-

versely ; fourthly, that the attraction is in every case as

if the whole mass were placed in the central point ;

fifthly, that though the spheres be not homogeneous, yet if

the density of each varies so that it is the same at equal
distances from the centre of each, the spheres will attract

one another with forces inversely as the squares of the

distances of their centres. The law of attraction, however,
of the particles of the spheres being changed from the

inverse duplicate ratio of the distances to the simple law
of the distances directly, the attractions acting towards the

centres will be as the distances, and whether the spheres
are homogeneous or vary in density according to any law

connecting the force with the distance from the centre, the

attraction on a particle without will be the same as if the

whole mass were placed in the centre ; and the attraction

upon a particle within will be the same as if the whole of the

body comprised within the spherical surface in which the

particle is situated were collected in the centre.

From these theorems it follows, that where bodies move
round a sphere and on the outside of its surface, what was

formerly demonstrated of eccentric motion in conic sections,

the focus being the centre of forces, applies to this case of
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the attraction being in the whole particles of the sphere;
and where the bodies move within the spherical surface,

what was demonstrated of concentric motion in those curves,

or where the centre of the curve is that of the attracting

forces, applies to the case of the sphere's centre being that of

attraction. For in the former case the centripetal force

decreases as the square of the distance increases ; and in the

latter case thatforce increases as the distance increases. Thus it

is to be observed, that in the two cases of attraction decreasing

inversely as the squares of the central distance (the case of

gravitation beyond the surface of bodies), and of attraction

increasing directly with the central distance (the case of

gravitation within the surface), the same law of attraction

prevails with respect to the corpuscular action of the spheres
as regulates the mutual action of those spheres and their

motions in revolution. But this identity of the law of attrac-

tion is confined to these two cases.

Having laid down the law of attraction for these more

remarkable cases, instead of going through others where the

operation of attraction is far more complicated, Sir Isaac

Newton gives a general method for determining the attraction

whatever be the proportions between the force and the dis-

tance. This method is marked by all the geometrical ele-

gance of the author's other solutions ; and though it depends

upon quadratures, it is not liable to the objections in practice
which we before found to lie against a similar method applied
to the finding of orbits and forces ; for the results are easily

enough obtained, and in convenient forms.

If A E B is the sphere whose attraction upon the point P
it is required to determine, whatever be the proportion

according to which that attraction varies with the distance,

and only supposing equal particles of A E B to have equal
attractive forces ; then from any point E describe the circle

E F, and another ef infinitely near, and draw E D, e d ordi-

nates to the diameter A B. The sphere is composed of small

concentric hollow spheres E e/F ; and its whole attraction is

equal to the sum of their attractions. Now that attraction
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of Ee/F is proportional to its surface multiplied by F/, and

the angle D E r being equal to D P E (because P E r is a right

angle by the property of the circle), therefore E r = =--r; ,

JJ Jjj

and if we callPE,or PF =
r, ED = y, and DF = x, Drfwill

V U X
be d x, and E r =

; and the ring generated by the revo-
%j

lution of r E is equal to r E x E D, or rE x y ;
therefore this

ring is equal to re? a?, or the attraction proportional to the

whole ring Ee will be proportional to the sum of all the

rectangles P D x D d, or (a #) d x ;
that is, to the integral

2 (L T* - _ <>"

of this quantity, or to ; which by the property of
2

V
a

the circle is equal to -. Therefore the attraction of the
t

solid E e/F will be as y* x F/, if the force of a particle F/

Kg .16.

on P be given ; if not, it will be as y* x F/ x / that force.

PS v dx
Now d x : F/ :: r : P S, and therefore F/ =-

,
and the

attraction of E e/F is as ;
or taking / = r

(as any power of the distance PE), then the attraction of

Ee/F is as PS . r*~ l

y*dx. Take DN (
=

u) equal to
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PS.r"" 1

^, and let BD = z, and the curve BNA will be

described, and the differential area N Ddn will be ndz = (by

construction) PS . r"~ l

y*dx ; consequently udz will be the

attractive force of the differential solid Ee/F; and fudz
will be that of the whole body or sphere A E B, therefore the

area ANB = C udz is equal to the whole attraction of the

sphere.

Having reduced the solution to the quadrature of ANB,
Sir Isaac Newton proceeds to show how that area may be

found. He confines himself to geometrical methods ; and the

solution, although extremely elegant, is not by any means so

short and compendious as the algebraical process gives. Let

us first then find the equation to the curve A N B by referring

it to the rectangular coordinates DN, AD. Calling these

y and x respectively, and making PA =
&, A S (the sphere's

f
radius) = a and P S, or a -j- b, for conciseness, = --. Then

-;r8
;
PE=

a x
x ; and D N =y = (by construction)

1
^

the attractive force of the particles being supposed as the -th
n

power of the distance, or inversely as (6
s

+/#)*. This

equation to the curve makes it always of the order .

m

If then the force is inversely as the distance, A N B is a conic

hyperbola ; if inversely as the square, it is a curve of the fifth

order ; and if directly as the distance, it is a conic parabola ;

if inversely as the cube, the curve is a cubic hyperbola.

The area may next be determined. For this purpose we

have / y d x = C^2ax ~ x

*\^.
Let 2 (a/+ 6

s

)
= h, this

J 2(6"+/*)~
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1 A
integral will be found to be - x 7;

- X (b* + /#)4 (a + b)* 3 n

1 - n 5 - n

(2a +

and

,the constant C is -. T- x ---
\-*

.

4 (a + 6)* \o n I n

b
3~n

J.
This in every case gives an easy and a finite

O """"* / /

expression, excepting the three 'cases of n = 1, n = 3, and
n = 5, in which cases it is to be found by logarithms, or by
hyperbolic areas. To find the attraction of the whole sphere,

when x = 2 a, we have .
-rr-q X ( 7;

- (2 a + &)
3~"

4 (a + b)
a

\3 n ^

x (2 a
l -n 5 n ' 5-* '

1 -n

(2 a + Z>)
8

|
for the whole area AN B, or the whole

3 nj

attraction. If P is at the surface, or AP = b = 0, and n = 2,

then the expression becomes as a, that is, as the distance from

the centre directly. We may also perceive from the form of

the expression, that if n is any number greater than 3, so that

n 3 = m, the terms &
3~" become inverted, and b is in

their denominator thus :
~

r-*j.
Hence if n > 3 and A P

( JL ^"* lit j

= 5=0, or the particle is in contact with the sphere, the

expression involves an infinite quantity, and becomes infinite.

The construction of Sir Isaac Newton by hyperbolic areas

leads to the same result for the case of n = 3, being one of

those three where the above formula fails. At the origin of

the abscissae we obtain, by that construction, an infinite area ;

and this law of attraction, where the force decreases in any

higher ratio than the square of the distance, is applicable to

the contact of all bodies of whatever form, the addition of any
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other matter to the spherical bodies having manifestly no

effect in lessening the attraction.

By similar methods we find the attraction of any portion or

segment of a sphere upon a particle placed in the centre, or

upon a particle placed in any other part of the axis. Thus in

the case of the particle being in the centre S, and the

particles of the segment E B G attracting with forces as the

-th power of the distance S or S I, the curve AN B will by

its area express the attraction of the spherical segment, if

I O8 (x of c*
DN or y be taken = ^- = *,- ^ ,

S being put = c,

and A D = x, and AS = a, as before ; f y dx may be found as

\ IT ^"~ CL 1 Cl SC """ (* U X
before by integrating

---r-- . The fluent is
( oc ~* a )

(x
-

a)
3""

(a? -a)
1 _ 2 c

3-"

s---- c
2 -----H C ;

and C = -;
- ----

; and
3 - n 1 n* - 4 n + 3

the whole attraction of the segment upon the particle at the

a3-"
c* a 1"" 2 c

3-*

centre S is equal to ----
,
--h -5

-
;

--
o- Ihus, it

3 n I n n* 4 + 3

<a c)
2

n = 2 the attraction is as ---
,
or as B8

directly, and as

S B inversely ;
and if c = o, or the attraction is taken at the

centre, it is equal to a; and if the attraction is as the dis-

tance, or n = 1, then the attractive force of the segment is

ii. Attractions of non-spherical bodies. The attractions of

two similar bodies upon two similar particles similarly situ-

ated with respect to them, if those attractions are as the same

power of the distances -, are to one another as the masses

directly, and the nth

power of the distances inversely, or the

nth

power of the homologous sides of the bodies ; and because
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the masses are as the cubes of these sides, S and s, the attrac-

tions are as S3
. s" : s

3
. S", or as s"~

3
: Sn~3

. Therefore, if

n =
1, the attraction is as S2

: s
8

;
if the proportion is that of

the inverse square of the distance, the attraction is as S : s ; if

that of the cube, the attraction is as 1 : 1, or equal ;
if as the

biquadrate, the attraction is as s : S ; and so on : and thus the

law of the attractive force may be ascertained from finding

the action of bodies upon particles similarly placed.
Let us now consider the attraction of any body, of what

form soever, attracting with force proportioned to the distance

towards a particle situated beyond it. Any two of its particles

A B attract P, with forces as A x A P and B x B P, and if G
is their common centre of gravity, their joint attraction is as

(A + B) x G P, because B P, being resolved into B G and

GP, and AP into AP and GP,
and (by the property of the

centre of gravity) GP x A =

A P x G, therefore the forces in

the line AP destroy each other,

and there remain only P G x B
and P G x A to draw P, that is

(A -}- B) x P G ;
and the same

may be shown of any other par-

ticles C and the centre G' of gravity, of A, C, and B, the

attraction of the three being (A + B + C) x G' P. Therefore

the whole body, whatever be its form, attracts P in the line

P S, S being the body's centre of gravity, and with a force

proportional to the whole mass of the body multiplied by the

distance P S. But as the mutual attractions of spherical bodies,

the attraction of whose particles is as their distance from one

another, are as the distances between the centres of those

bodies, the attraction of the whole body AB C is the same with

that of a sphere of equal mass whose centre is in S, the body's

centre of gravity. In like manner it may be demonstrated that

the attraction of several bodies A, B,C, towards any particle P,

is directed to their common centre of gravity S, and is equal

to that of a sphere placed there, and of a mass equal to the
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sum of the whole bodies A, B, C ; and the attracted body will

revolve in an ellipse with a force directed towards its centre

as if all the attracting bodies were formed into one globe and

placed in that centre.

But if we would find the attraction of bodies whose particles

act according to any power n of the distance, we must, to

simplify the question, suppose these to be symmetrical, that

is, formed by the revolution of some plane upon its axis.

Let AM C H G be the solid, M G the diameter of its extreme

circle of revolution next to the particle P ; draw PM and p m
to any part of the circle, and infinitely near each other, and

take P D = P M, and P o = P m
;
D d will be equal to oM (dn

being infinitely near D N), and the ring formed by the revo-

lution of M m round A B will be as the rectangle A M x M m,

or (because of the triangles A P M, m o M, being similar, and

D d = om) PM x D d, or P D x D d. Let D N be taken = y
= force with which any particle attracts at the distance

P D = PM = x, that is as xn
;
and if A P =

b, the force of any
b tj

particle of the ring is as ,
and the attraction of the ring,

1} V
described by M m, is as X D d x

X
. or as I y dx, and the



ATTRACTION OF BODIES. 273

whole attraction of the circle whose radius is A M, being the

sum of all the rings, will be as bfydx,or the area of the

curve L N I, which is found by substituting for y its value

in x, that is x". This fluent or area is therefore = t> C x" d x

bxn+l bn+3

f- C ; and C = -
. Also, making P b = P E in

n -J- 1 ?i + 2

order to have the whole area of L N I, which measures the

attraction of the whole circle whose radius is F A, we have

c
n+l ^n+Z

(x being =Pb = c) for that attraction. Then
n + 1 n + 2

,

taking D X' in the same proportion to the circle D E in which
D X is to the circle A F, or as equal to the attraction of the

circle D E, we have the curve E N T, whose area is equal to

the attraction of the solid L H C F.

To find an equation to this curve, then, and from thence to

obtain its area, we must know the law by which DE in-

creases, that is, the proportion of D E to A D ;
in other words,

the figure of the section A F E C B, whose revolution generates
the solid.

Thus if the given solid be a spheroid, we find that its at-

traction for P is to that of a sphere whose diameter is equal

a . A2 - D . L a3

to the spheroid s shorter axis, as to -
, A

d* + A* a 3d*

and a being the two semi-axes of the ellipsoid, d the distance

of the particle attracted, and L a constant conic area which

may be found in each case ; the force of attraction being sup-

posed inversely as the squares of the distances. But if the

particle is within the spheroid, the attraction is as the dis-

tance from the centre, according to what we have already
seen.

Laplace's general formula for the attraction of a spherical

surface, or layer, on a particle situated (as any particle must

be) in its axis, is - - ffdf X f dfF, in which / is the

distance of the particle from the point where the ring cuts
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the sphere, r its distance from the centre of the sphere, or the

distance of the ring from that centre, du consequently the

thickness of the ring, TT the semicircle whose radius is unity,
and F the function of f representing the attracting force.

The whole attraction of the sphere, therefore, is the integral
taken from f = r u to f = r + u, and the expression be-

comes - - + ffdf X fdfY with (r + M) (r w),

substituted for/, when / results from this integration. Then

let F =, or the attraction be that of gravitation ; ihe ex-

2-K.uduCr C df Zir.udu /
pression becomes--

I fdf X r,
= - - X -

r J J f r

1 2 w . udu (r 4- u) (r u) 2 -rrudu_ \s _/ _ v>
",, ~ ~"xv>~ ~A~
f r 2 r

u = 2nu*du X -; and the coefficient of dr. taking the
r

2 w y 3 du
differential with r as the variable, is + - -

s ; consequently

the attraction is inversely as the square of the distance of the

particle from the centre of the sphere, and is the same as if

the whole sphere were in the centre.*

* Mec. Gel. liv. ii. ch. 2. The expression is here developed ; but it

coincides with the analysis in 11.'

1 This Tract and the last are both taken from the 'Analytical View of

the Principia,' Lib. I.



( 275 )

XIII.

ADDRESS DELIVERED ON THE OPENING OF THE
NEWTON MONUMENT AT GRANTHAM,

SEPT. 21, 1858.

To record the names, and preserve the memory of those whose

great achievements in science, in arts, or in arms have con-

ferred benefits and lustre upon our kind, has in all ages been

regarded as a duty and felt as a gratification by wise and

reflecting men. The desire of inspiring an ambition to

emulate such examples, generally mingles itself with these

sentiments
;
but they cease not to operate even in the rare

instances of transcendent merit, where matchless genius
excludes all possibility of imitation, and nothing remains but

wonder in those who contemplate its triumphs at a distance

that forbids all attempts to approach. We are this day as-

sembled to commemorate him of whom the consent of nations

has declared, that he is chargeable with nothing like a

follower's exaggeration or local partiality, who pronounces the

name of NEWTON as that of the greatest genius ever bestowed

by the bounty of Providence, for instructing mankind on the

frame of the universe, and the laws by which it is governed.
"
Qui genus humanum ingenio superavit, et omnes

Kestinxit; stellas exortus uti setkerius sol." {Luc.)
" In genius who surpassed mankind as far

As does the mid-day sun the midnight star." (Dryden.)

But though scaling these lofty heights be hopeless, yet is

there some use and much gratification in contemplating by
what steps he ascended. Tracing his course of action may

T 2
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help others to gain the lower eminences lying within their

reach ; while admiration excited and curiosity satisfied are

frames of mind both wholesome and pleasing. Nothing new,
it is true, can be given in narrative, hardly anything in

reflection, less still perhaps in comment or illustration ;
but

it is well to assemble in one view various parts of the vast

subject, with the surrounding circumstances whether acci-

dental or intrinsic, and to mark in passing the misconceptions
raised by individual ignorance, or national prejudice, which

the historian of science occasionally finds crossing his path.

The remark is common and is obvious, that the genitis of

Newton did not manifest itself at a very early age. His

faculties were not, like those of some great and many ordinary

individuals, precociously developed. Among the former,

Clairaut stands pre-eminent, who, at thirteen years of age,

presented to the Royal Academy a memoir of great originality

upon a difficult subject in the higher geometry; and at

eighteen, published his celebrated work on Curves of Double

Curvature, composed during the two preceding years. Pascal,

too, at sixteen, wrote an excellent treatise on Conic Sections.

That Newton cannot be ranked in this respect with those

extraordinary persons, is owing to the accidents which pre-
vented him from entering upon mathematical study before his

eighteenth year ; and then a much greater marvel was wrought
than even the Clairauts and the Pascals displayed. His

earliest history is involved in some obscurity ; and the most
celebrated of men has in this particular been compared to the

most celebrated of rivers,* as if the course of both in its

feebler state had been concealed from mortal eyes. We have

it, however, well ascertained that within four years, between

the age of 18 and 22, he had begun to study mathematical

science, and had taken his place among its greatest masters ;

learnt for the first time the elements of geometry and analysis,

and discovered a calculus which entirely changed the face of

the science ; effecting a complete revolution in that and in

* The Nile.
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every branch of philosophy connected with it. Before 1601

he had not read Euclid
;
in 1665 he had committed to writing

the method of Fluxions. At 25 years of age he had discovered

the law of gravitation, and laid the foundations of Celestial

Dynamics, the science created by him. Before ten years had

elapsed, he added to his discoveries that of the fundamental

properties of Light. So brilliant a course of discovery, in so

short a time changing and reconstructing Analytical, Astro-

nomical, and Optical science, almost defies belief. The state-

ment could only be deemed possible by an appeal to the

incontestable evidence that proves it strictly true.*

By a rare felicity these doctrines gained the universal

assent of mankind as soon as they were clearly understood
;

and their originality has never been seriously called in ques-
tion. Some doubts having been raised respecting his inven-

ting the calculus, doubts raised in consequence of his so long

* The birth of Newton was 25th Dec., 1642. (O. S.) or 5th Jan., 1643,

(N. S.) la 1661, 5th June, he was entered of Cambridge, and matricu-

lated 8th July. Before that tune he had applied himself in a desultory

way to parts of practical mechanics, as the movement of machines, and to

dialling. As soon as he arrived at Cambridge he began to read '

Euclid,'

and threw the book down as containing demonstrations of what he deemed
too manifest to require proof. It is, therefore, probable that he had before

meditated upon the position and proportion of lines, perhaps of angles.

Upon laying aside
'

Euclid,' he took np
' Descartes' Geometry,' then

Kepler's Optics, which he speedily mastered, as he did a book on Logic,

showing the College Tutor that he had anticipated his lessons. In 1663

and '64 he worked upon Series and the Properties of Curves. In summer,

1664, he investigated the quadrature of the hyperbolic area by the Method
of Series which he had contrived. A paper in his handwriting dated

20th May, 1665, gives the method of Fluxions, and its application to the

finding of tangents, and the radius of curvature. So that at tlu's time the

direct method at least was invented. Another paper also in his hand-

writing, Oct., 1666, gives its application to equations involving surds.

The Optical Lectures in 1669, 70 and '71, give the doctrine of Different

Refrangibility. In 1665 he formed the opinion of gravitation extending

to the heavenly bodies, but was prevented from drawing the conclusion

definitively, by the imperfect estimate of a degree as 60 miles, to which

alone he had access. After 1670, when Picard showed it to be 69 miles

he resumed his demonstration, and found it exact.
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withholding the publication of his method, no sooner was

inquiry instituted than the evidence produced proved so

decisive, that all men in all countries acknowledged him to

have been by several years the earliest inventor, and Leibnitz,

at the utmost, the first publisher ; the only questions raised

being, first, whether or not he had borrowed from Newton,
and next, whether as second inventor he could have any merit

at all ; both which questions have long since been decided in

favour of Leibnitz.*

But undeniable though it be that Newton made the great

steps of this progress, and made them without any anticipa-
tion or participation by others, it is equally certain that there

had been approaches in former times, by preceding philo-

sophers, to the same discoveries. Cavalleri, by his '

Geometry
of Indivisibles,' (1635,) Eoberval, by his 'Method of Tan-

gents,' (1637,) had both given solutions which Descartes

could not attempt; and it -is remarkable that Cavalleri

regarded curves as polygons, surfaces as composed of lines,

whilst Eoberval viewed geometrical quantities as generated

by motion ; so that the one approached to the differential

calculus, the other to fluxions : and Fermat, in the interval

between them, came still nearer the great discovery by his

determination of maxima and minima, and his drawing of

tangents. More recently Schooten had made public similar

methods invented by Hudde
; and what is material, treating

the subject algebraically, while those just now mentioned had
rather dealt with it geometrically.']' It is thus easy to per-

* Leibnitz first published his method in 1684 ; but he had communicated
it to Newton in 1677, eleven years after the fluxional process had been

employed, and been described in writing by its author.

t Cavalleri's
'

Exercitationes Geometries'' in 1647, as his 'Geometria
Indivisibilis

'
in 1635, showed how near he had come to the calculus.

Fermat, however, must be allowed to have made the nearest approach ;

insomuch that Laplace and Lagrange have botli regarded him as its in-

ventor. He proceeds upon the position that when a Co-ordinate is a
maximum or minimum, the equation, formed on increasing it by an

infinitely small quantity, gives a value in which that small quantity
vanishes. He thus finds the subtangent. But perhaps his most remark-



GBANTHAM ADDEE8S. 279

ceive how near an approach had been made to the calculus

before the great event of its final discovery.
There had in like manner been approaches made to the

law of gravitation, and the dynamical system of the universe.

Galileo's important propositions on motion, especially on

curvilinear motion, and Kepler's laws upon the elliptical

form of the planetary orbits, the proportion of the areas to the

times, and of the periodic times to the mean distances,

and Huygens's theorems on centrifugal force, had been
followed by still nearer approaches to the doctrine of attrac-

tion. Borelli had distinctly ascribed the motion of satellites

to their being drawn towards the principal planets, and thus

prevented from being carried off by the centrifugal force.*

Even the composition of white light, and the different action

of bodies upon its component parts, had been vaguely con-

jectured by Ant. de Dominis, Archbishop of Spalatro, at the

beginning, and more precisely in the middle of the seventeenth

century by Marcus (Kronland of Prague), unknown to New-

ton, who only refers to the Archbishop's work; while the

Treatise of Huygens on light, Grimaldi's observations on

colours by inflexion as well as on the elongation of the image
in the prismatic spectrum, had been brought to his attention,

although much less near to his own great discovery than

Marcus's experiment.!

able approach to the calculus is the rule given to suppress all terms in

which the square or the cube of the small quantity is found, because, it is

said, those powers are infinitely small in comparison of the first power of

the quantity. Thus calling that quantity e (or as we should say d x\ he

considers e2 and e3 (dx
2 and <Zz3) as to be entirely rejected. Hudde's letter

to Schooten, 1658. Descartes' Geom. I. 507.
* Galileo's problem on the motion of bodies by gravity acting uniformly

in parallel lines could have been no novelty to Newton ; and Huygens's

explanation of centrifugal tendency by the comparison of a stone's ten-

dency to fly off when whirled round in a sling, is as correctly as possible

that now received. But his theorems had been investigated by Newton
several years before, as appears from a letter of Huygens himself.

f The Archbishop's explanation in 1611 of the rainbow, and his experi-
ment to illustrate it by a thin glass globe filled with water and giving
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But all this only shows that the discoveries of Newton,

great and rapid as were the steps by which they advanced our

knowledge, yet obeyed the law of continuity, or rather of

gradual progress, which governs all human appi'oaches
towards perfection. The limited nature of man's faculties

precludes the possibility of his ever reaching at once the

utmost excellence of which they are capable. Survey the

whole circle of the sciences, and trace the history of our pro-

gress in each, you find this to be the universal rule. In

chemical philosophy the dreams of the alchemists prepared
the way for the more rational though erroneous theory of

Stahl : and it was by repeated improvements that his errors,

so long prevalent, were at length exploded, giving place to

the sound doctrine which is now established. The great
discoveries of Black and Priestley on heat and aeriform fluids,

had been preceded by the happy conjectures of Kewton, and

the experiments of others. Xay Voltaire* had well nigh

colours by refraction, is remarkable ; but far less so than Marcus's in 1648

on the
'
Iris Trigonia,' as he calls the spectrum, and his observation of the

colours not changing by a second refraction, so nearly approaching
Newton's '

Experimentum Crucis.' It is best to mention this, because

writers on the history of science have so often stated that nothing like a

trace of the Newtonian doctrine of light can be found in the works of

former observers. There is no appearance whatever of Newton having
known Marcus's work.

* In his Prize Memoir we find (among many great errors chiefly arising
from fanciful hypotheses) such passages as this, being an observation on
one of his own experiments,

'
II y a certainement du feu dans ces deux

liqueurs, sans quoi elles ne seraient point fluides ;' and again, in speaking
of the connexion between heat and permanent or gaseous elasticity,

'

N'est

ce pas que 1'air n'a plus alors la quantite de feu necessaire pour faire jouer
toutes ses parties, et pour le de'gager de I'atmosphere engourdie qui le

renferme.' The experiments which he made on the temperature of liquids
mixed together, led him to remark the temperature of the mixture as

different from what might have been expected, regard being had to that

of the separate liquids. Again, speaking of his experiments on the calci-

nation of metals,
' II est tres possible que 1'augmcntation du poids soit

venue de la mattere re'pandue dans I'atmosphere ; done dans toutes lea

autres operations par lesquelles les matieres calcinees acquierent du poids
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discovered both the absorption of heat, the constitution of the

atmosphere, and the oxidation of metals, and by a few more

trials might have ascertained it.

Cuvier had been preceded by inquirers who took sound

views of fossil osteology : among whom the truly original

genius of Hunter fills the foremost place. The inductive

system of Bacon, had been, at least in its practice, known to

his predecessors. Observations and even experiments were

not unknown to the ancient philosophers, though mingled with

gross errors : in early times, almost in the dark ages, experi-

mental inquiries had been carried on with success by Friar

Bacon, and that method actually recommended in a treatise,

as it was two centuries later, by Leonardo da Vinci ; and at

the latter end of the next century Gilbert examined the whole

subject of magnetic action entirely by experiment. So that

Lord Bacon's claim to be regarded as the father of modern

philosophy rests upon the important, the truly invaluable,

step of reducing to a system the method of investigation

adopted by those eminent men, generalizing it, and extending
its application to all matters of contingent truth, exploding
the errors, the absurd dogmas, and fantastic subtleties of the

ancient schools above all, confining the subject ofour inquiry,

and the manner of conducting it, within the limits which our

faculties prescribe.*

cette augmentation pourrait aussi leur etre venue de la meme cause, et non

de la matiere iguee.' He had been experimenting with a view to try if

heat had any weight. (Acad. des Sciences, 1737, Prix. IV. p. 169.)
* Friar Bacon's '

Opus Majus
'

was composed about the middle of the

13th century, certainly before 1267 ; and it contains, among other matters

connected with experimental inquiry, a treatise expressly setting forth the

advantages of that mode of philosophising. His aversion to the Aristote-

lian errors, and his departure from the whole philosophy of the times, was

probably at the bottom of the charges of heresy under which he suifered

cruel persecution for so many years. Gilbert's Treatise,
' De Magnete et

Corporibus Magneticis,' was published in 1600. It is entirely founded on

experiments and observations, and is called by Lord Bacon " A painful and

experimental work." Newton, who never alludes to Bacon, has been by
some supposed not to have been acquainted with his writings. Sir D.
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Nor is this great law of Gradual Progress confined to the

physical sciences; in the moral it equally governs. Before

the foundations of political economy were laid by Hume and

Smith, a great step had been made by the French philosophers,

disciples of Quesnay ;
but a nearer approach to sound princi-

ples had signalized the labours of Gournay, and those labours

had been shared and his doctrines patronized by Turgot when
Chief Minister. Again, in constitutional policy, see by what
slow degress, from its first rude elements the attendance of

feudal tenants at their lord's court, and the summons of

burghers to grant supplies of money the great discovery of

modern times in the science of practical politics has been

effected, the Eepresentative scheme, which enables states of

any extent to enjoy popular government, and allows Mixed

Monarchy to be established, combining freedom with order

a plan pronounced by the statesmen and writers of antiquity
to be of hardly possible formation, and wholly impossible con-

tinuance.* The globe itself as well as the science of its

inhabitants, has been explored according to the law which
forbids a sudden and rapid leaping forward, and decrees that

each successive step, prepared by the last, shall facilitate the

next. Even Columbus followed several successful discoverers

on a smaller scale ; and is by some believed to have had,

unknown to him, a predecessor in the great exploit by which

Brewster and others have peremptorily denied that his mode of inquiry
was either suggested, or at all influenced by those writings. It is certain

that neither he, nor indeed any one but Bacon himself, ever followed in

detail the rules prescribed in the ' Novum Orgamirn.'
* The opinion of Tacitus on this subject is well known. "Cunctas

nationes et urbes populus, aut primores, aut singuli regunt. Delecta (some
editions add consociata) ex his et constituta rei publicae forma laudari

facilius quarn evenire ; vel si evenit, haud diuturna, esse potest." (Ann.
IV. 33.) Cicero, in his Treatise ' De Kepublica,' giving his opinion that

the best form of government is that ' extribus generibus, regali, optimatum,
et populari, modice confusa,'' does not in terms declare it to be clumerical ;

yet he distinctly says in the same Treatise (II. 23) that liberty cannot exist

under a king. Liberty, he says, consists "non in eo ut justo utamur

domino sed ut nullo."
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he pierced the night of ages, and unfolded a new world to the

eyes of the old.

The arts afford no exception to the general law. Demos-
thenes had eminent forerunners, Pericles the last of them.

Homer must have had predecessors of great merit, though
doubtless as far surpassed by him as Fra Bertolomeo and

Pietro Perugino were by Michael Angelo and Eaphael. Dante
owed much to Virgil ; he may be allowed to have owed,

through his Latin Mentor, not a little to the old Grecian ; and
Milton had both the Orators and the Poets of the ancient

world, for his predecessors and his masters. The art of war
itself is no exception to the rule. The plan of bringing an

overpowering force to bear on a given point had been tried

occasionally before Frederic II. reduced it to a system, and the

Wellingtons and Napoleons of our own day made it the foun-

dation of their strategy, as it had also been previously the

mainspring of our naval tactics.

It has oftentimes been held that the invention of Logarithms
stands alone in the history of science, as having been preceded

by no step leading towards the discovery. There is, however,

great inaccuracy in this statement; for not only was the

doctrine of infinitesimals familiar to its illustrious author, and

the relation of geometrical to arithmetical series well known
;

but he had himself struck out several methods of great in-

genuity and utility, (as that known by the name of '

Napier's

Bones,') methods that are now forgotten, eclipsed as they
were by the consummation which has immortalized his

name.* So the inventive powers of Watt, preceded as he
was by Worcester and Newcomen, but more materially by
Gauss and Papin, had been exercised on some admirable con-

* ' The Rhabdologia,' was only published in 1617, the year he died ;

but Napier had long before the invention of logarithms used the contri-

vances there described. His ' Canon Mirificus
' was only published by

him in 1611 : but it appears from a letter of Kepler that the invention

least as early as 1594. The story of Longomontanus having anti-

cipated him is a mere fable ; but Kepler believed that one Byrge had at

least come near the invention, and he had done much certainly upon
natural sines. (Epist. Leips. 1718.)
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trivances, now forgotten, before he made the step which
created the engine anew, not only the Parallel Motion, possibly
a corollary to the proposition on circular motion in the
'

Principia,' but the Separate Condensation, and above all the

Governor, perhaps the most exquisite of mechanical inven-

tions
;
and now we have those here present who apply the

like principle to the diffusion of knowledge, aware as they
must be, that its expansion has the same happy effect naturally
of preventing mischief from its excess, which the skill of the

great mechanist gave artificially to steam, thus rendering his

engine as safe as it is powerful.
The grand difference, then, between one discovery or

invention and another is in degree rather than in kind
; the

degree in which a person while he outstrips those whom he

comes after, also lives as it were before his age. Nor can any
doubt exist that in this respect Newton stands at the head of

all who have extended the bounds of knowledge. The sciences

of Dynamics and of Optics are especially to be regarded in

this point of view
;
but the former in particular ;

and the

completeness of the system which he unfolded, its having been

at the first elaborated and given in perfection, its having,

however, now stood the test of time, and survived, nay gained

by the most rigorous scrutiny, can be predicated of this system
alone, at least in the same degree. That the calculus, and
those parts of dynamics which are purely mathematical,
should thus endure for ever, is a matter of course. But his

system of the Tiniverse rests partly upon contingent truths,

and might have yielded to new experiments, and more ex-

tended observation. Nay, at times it lias been thought to fail,

and further investigation was deemed requisite to ascertain if

any error had been introduced ;
if any circumstance had

escaped the notice of the great founder. The most memor-
able instance of this kind is the dircrepancy supposed to have

been found between the theory and the fact in the motion of

the lunar apsides, which about the middle of the last century

occupied the three first analysts of the age.* The error was
*

D'Alembert, Clairaut, Euler.
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discovered by themselves to have been their own in the pro-
cess of their investigation ; and this, like all the other doubts

that were ever momentarily entertained, only led in each

instance to new and more brilliant triumphs of the system.
The prodigious superiority in this cardinal point of the

Newtonian, to other discoveries, appears manifest upon ex-

amining almost any of the chapters in the history of science.

Successive improvements have by extending our views con-

stantly displaced the system that appeared firmly established.

To take a familiar instance, how little remains of Lavoisier's

doctrine of combustion and acidification except the negative

positions, the subversion of the system of Stahl ! The sub-

stance having most eminently the properties of an acid,

(chlorine,) is found to have no oxygen at all,* while many
substances abounding in oxygen, including alkalis themselves,

have no acid property whatever ; and without the access of

oxygenous or of any other gas, heat and flame are produced in

excess. The doctrines of free trade had not long been pro-

mulgated by Smith, before Bentham demonstrated that his

exception of usury was groundless ; and his theory has been

repeatedly proved erroneous on colonial ^establishments, as

well as his exception to it on the navigation laws ; while the

imperfection of his views on the nature of rent is undeniable,

as well as on the principle of population. In these, and such

instances as these, it would not be easy to find in the original

doctrines the means of correcting subsequent errors, or the

germs of extended discovery. But even if philosophers finally

adopt the undulatory theory of light instead of the atomic, it

must be borne in mind that Newton gave the first elements of

it by the well-known proposition in the eighth section of the

second book of the '

Principia,' the scholium to that section

also indicating his expectation that it would be applied to

optical science ;| while M. Biot has shown how the doctrine

* Eecent inquiries are said to have shaken if not displaced Davy's

theory of chlorine.

t The 47th prop. lib. H, has not been disputed except as to the suffici-

ency of the demonstration, which Euler questioned, but without adding the
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of fits of reflection and transmission tallies with polarization,

if not with undulation also.

But the most marvellous attribute of Newton's discoveries

is that in which they stand out prominent among all the other

feats of scientific research, stamped with the peculiarity of

his intellectual character ; they were, their great author lived

before his age, anticipating in part what was long after wholly

accomplished ;
and thus unfolding some things which at the

time could be but imperfectly, others not at all comprehended ;

and not rarely pointing out the path and affording the means

of treading it to the ascertainment of truths then veiled in

darkness. He not only enlarged the actual dominion of

knowledge, penetrating to regions never before explored,
and taking with a firm hand undisputed possession ; but he

showed how the bounds of the visible horizon might be yet
further extended, and enabled his successors to occupy what

he could only descry ; as the illustrious discoverer of the

new world made the inhabitants of the old cast their eyes
over lands and seas far distant from those he had traversed ;

lands and seas of which they could form to themselves no

conception, any more than they had been able to com-

prehend the course by which he led them on his grand

enterprise. In this achievement, and in the qualities which
alone made it possible inexhaustible fertility of resources,

patience unsubdued, close meditation that would suffer no

distraction, steady determination to pursue paths that seemed
all but hopeless, and unflinching courage to declare the truths

they led to how far soever removed from ordinary apprehen-
sion in these characteristics of high and original genius we

proof of its insufficiency, or communicating his own process. Cramer has

done both, and his demonstration is given by Leseur and Jacquier, II. 364,

together with another upon Newton's principle, but supplying the defects,

by the able and learned commentators. The adherents, too, of the undu-

latory theory have always explicitly admitted the connexion between the

Newtonian experiments and their doctrine. See particularly Mr. Airy's

very able Tracts Thus,
" Newton's rings have served in a great degree for

tlie foundation of all the theories." S. 72, (p. 311, Edit. 1831.)
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may be permitted to compare the career of those great men.
But Columbtis did not invent the mariner's compass, as Newton
did the instrument which guided his course and enabled him
to make his discoveries, and his successors to extend them by
closely following his directions in using it. Nor did the

compass suffice to the great navigator without making any
observations

; thoiigh he dared to steer without a chart ; while

it is certain that by the philosopher's instrument his dis-

coveries were extended over the whole system of the universe,

determining the masses, the forms, and the motions of all its

parts, by the mere inspection of abstract calculations and
formulas analytically deduced.*

The two great improvements in this instrument which have

been made, the Calculus of Variations by Euler and Lagrange,
the method of Partial Differences by D'Alembert, we have

every reason to believe were known, at least in part, to

Newton himself. His having solved an isoperimetrical

problem (finding the line whose revolution forms the solid of

least resistance) shows clearly that he must have made the co-

ordinates of the generating curve vary, and his construction

agrees exactly with the equation given "by that calculus.f

* The investigation of the masses and figures of the planets from their

motions by Newton the discovery by Laplace of peculiarities in those

motions never before suspected, a discovery made from the mere inspection
of algebraical equations without leaving their study are as if Columbus
had never left his cabin.

t The differential equation of the curve deduced by help of the calculus

of variations is of this form :

y d f _
dx

Which may be reconciled with the equation in the commentary to the

Schol. of Prop. XXXIV. lib. II. If p =
|^, the equation becomes
el x

c(l + p2
}
2

y = --
3
-

. T. Simpson, in his general solution of isoperimetrical

problems (' Tracts/ 1757), gives a method which leads precisely to the

above result derived from the calculus of variations, see p. 104. See, too,

Emerson's '

Fluxions," where we see his near approach to the calculus.
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That he must have tried the process of integrating by parts
in attempting to generalize the inverse problem of central

forces before he had recourse to the geometrical approximation
which he has given, and also when he sought the means of

ascertaining the comet's path (which he has termed by far the

most difficult of problems), is eminently probable, when we
consider how naturally that method flows from the ordinary

process for differentiating compound quantities by supposing
each variable in succession constant ;

in short, differentiating

by parts. As to the calculus of variations having substan-

tially been known to him no doubt can be entertained.

Again, in estimating the ellipticity of the earth, he pro-
ceeded upon the assumption of a proposition of which he gave
no demonstration (any more than he had done of the isoperi-

metrical problem) that the ratio of the centrifugal force to

gravitation determines the ellipticity. Half a century later,

that which no one before knew to be true, which many
probably considered to be erroneous, was examined by one of

his most distinguished followers, Maclaurin, and demonstrated

most satisfactorily.

Newton had not failed to perceive the necessary effects of

gravitation in producing other phenomena beside the regular
motion of the planets and their satellites, in their course

round their several centres of attraction. One of these phe-
nomena, wholly unsuspected before the discovery of the

general law, is the alternate movement to and fro of the earth's

axis, in consequence of the solar (and also of the lunar) at-

traction combined with the earth's motion. This Libration,
or Nutation, distinctly announced by him as the result of the

theory, was not found by actual observation to exist till sixty

years and upwards had elapsed, when Bradley proved the

fact.*

* The Nutation, and by name, is given in Prin. Lib. III. prop. 21, the

demonstration being referred to as in Lib. I. prop. 66, cor. 20. Clainuit,
'

Princ. de Du Chatelet,' torn. II. p. 72, 73, refers to the same proposition.

F. Walmsley,
' Phil. Trans.' 1746, lias an excellent paper on Precession

and Nutation, treated Geometrically. It is stated in Montucla, IV. 216,
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The great discoveries which have been made by Lagrange
and Laplace upon the results of disturbing forces, have estab-

lished the law of periodical variation of orbits, which secures

the stability of the system by prescribing a maximum and a

minimum amount of deviation ; and this is not a contingent but

a necessary truth, deduced by rigorous demonstration as the

inevitable result of undoubted data in point of fact the eccen-

tricities of the orbits, the directions of the motions, and the

movement in one plane of a certain position. That wonderful

proposition of Newton,* which with its corollaries may be

said to give the whole doctrine of disturbing forces, has been

little more than applied and extended by the labours of

succeeding geometricians. Indeed, Laplace, struck with

wonder at one of Newton's comprehensive general statements

on disturbing forces in another proposition,f has not hesitated

to assert, that it contains the germ of Lagrange's celebrated

inquiry, exactly a century after the '

Principia
' was given to

the world. J

The wonderful powers of generalization, combined with the

boldness of never shrinking from a conclusion that seemed the

legitimate result of his investigations, how new and even

startling soever it might appear, was strikingly shown in that

memorable inference which he drew from optical pheno-
mena, that the diamond is 'an unctuous substance coagu-
lated ;' subsequent discoveries having proved both that such

substances are carbonaceous, and that the diamond is

that Koemer had given some conjectural explanation of the phenomena of

what he termed vacillation; but no date is assigned Koemer died in 1710.

In the same passage it is said that before Bradley's discovery, Newton had
"
suspected the nutation." He had deduced it from the propositions above

referred to, and was considered so to have done by Clairaut. Bradley'K

paper was published in the 'Phil. Trans.' 1747; and it is not a little

singular that he makes no mention at all of Newton.
*

Lib. I. Prop. LXVI.
t The XVHth's two last Corollaries.

J
' Mem, de Berlin,' 1786, p. 253, is the memoir referred to by Laplace.

The memoir is by Duval le Koi, but adopted by Lagrange as a supplement
to his two memoirs, 1782 and 1784.

U
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crystallized carbon
;

and the foundations of mechanical

chemistry were laid by him with the boldest induction and

most felicitous anticipations of what has since been effected.*

The solution of the inverse problem of disturbing forces has

led Le Verrier and Adams to the discovery of a new planet,

merely by deductions from the manner in which the motions

of an old one are affected, and its orbit has been so calculated

that observers could find it nay its disc as measured by them

only varies one twelve-hundredth part of a degree from the

amount given by the theory. Moreover, when Newton gave
his estimate of the earth's density, he wrote a century before

Maskelyne, by measuring the force of gravitation in the Scotch

mountains, 1772, gave the proportion to water as 4-716 to 1

and many years after by experiment with mechanical apparatus

Cavendish, 1798, corrected this to 5'48, and Baily more re-

cently, 1842, to 5'66, Newton having given the proportion as

between 5 and 6 times. In these instances he only showed

the way and anticipated the result of future inquiry by his

followers. But the oblate figure of the earth affords an

example of the same kind, with this difference that here he

has himself perfected the discovery, and nearly completed the

demonstration. From the mutual gravitation of the particles

which form its mass, combined with its motion round its axis,

he deduced the proposition that it must be flattened at the

poles ; and he calculated the proportion of. its polar to its

equatorial diameter. By a most refined process he gave this

* '

Optics,' Book II. prop. 10. It might not be wholly without ground
if we conceived him also to have concluded, on optical grounds, that \vuter

has some relation to inflammable substances ; for he plainly says that it

lias a middle nature between unctuous substances and others ; and this he

deduces from its refractive powers, though he gives other reasons in con-

firmation. In the celebrated 31st Query, Book III. (p. 355), he plainly

considers rusting, inflammation, and respiration, as all occasioned by the

acid vapours in which he says the atmosphere abounds. In another place

he treats of electricity as existing independent of its production or evolu-

tion by friction. Black always spoke of that Query with wonder, for the

variety of original views which it presents on almost every branch of

chemical science.
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proportion upon the supposition of the mass being homogene-
ous. That the proportion is different in consequence of the

mass being heterogeneous does not in the least affect the

soundness of his conclusion. Accurate measurements of a

degree of latitude in the equatorial and polar regions, with

experiments on the force of gravitation in those regions, by
the different lengths of a pendulum vibrating seconds, have

shown that the excess of the equatorial diameter is about

eleven miles less than he had deduced it from the theory ;

and thus that the globe is not homogeneous: but on the

assumption of a fluid mass, the ground of his hydrostatical

investigation, his proportion of 229 to 230 remains unshaken,
and is precisely the one adopted and reasoned from by
Laplace, after all the improvements and all the discoveries of

later times. Surely at this we may well stand amazed, if not

awe-struck.* A century of study, of improvement, of dis-

covery has passed away ;
and we find Laplace, master of all

the new resources of the calculus, and occupying the heights
to which the labours of Euler, Clairaut, D'Alembert, and

Lagrange have enabled us to ascend, adopting the Newtonian
fraction of one two-hundred-and-thirtieth, as the accurate

solution of this speculative problem. New admeasurements

have been undertaken upon a vast scale, patronised by the

munificence of rival governments ; new experiments have been

pei'formed with improved apparatus of exquisite delicacy ;

new observations have been accumulated, with glasses far

exceeding any powers possessed by the resources of optics in

the days of him to whom the science of optics, as well as

dynamics, owes its origin ; the theory and the fact have thus

been compared and reconciled together in more perfect

* The wholly erroneous measurement of an arc by the two first Cassinis,

(Dominic and James,) was supposed to prove the shortening of the degree
towards the poles, in opposition to the Newtonian theory. But all doubt
on the subject was set at rest by the admeasurement in Peru in 1735, and
in Lapland in 1736; and in France more recently. But the error of
Dominic and James Cassini was also corrected by the Cassini de Thury,
who found that it had arisen from an imperfect measure employed.

.2
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harmony ; but that theory has remained unimproved, and the

great principle of gravitation, with its most sublime results,

now stands in the attitude, and of the dimensions, and with

the symmetry, which both the law and its application received

at once from the mighty hand of its immortal author.

But the contemplation of Newton's discoveries raises other

feelings than wonder at his matchless genius. The light with

which it shines is not more dazzling than useful. The diffi-

culties of his course, and his expedients, alike copious and

refined, for surmounting them, exercise the faculties of the

wise, while commanding their admiration ; but the results of

his investigations, often abstruse, are truths so grand and

comprehensive, yet so plain, that they both captivate and

instruct the simple. The gratitude, too, which they in-

spire, and the veneration with which they encircle his name,
far from tending to obstruct future improvement, only pro-
claim his disciples the zealous, because rational, followers of

one whose example both encouraged and enabled his successors

to make further progress. How unlike the blind devotion to

a master which for so many ages of the modern world para-

lysed the energies of the human mind !

" Had we still paid that homage to a name
Which only God and nature justly claim,

The western seas had been our utmost bound,

And poets still might dream the sun was drown'd.

And all the stars that shine in southern skies

Had been admired by none but savage eyes." (Dryden.)

Nor let it be imagined that the feelings of wonder excited

b}
r

contemplating the achievements of this great man are in

any degree whatever the result of national partiality, nor

confined to the country which glories in having given him
birth. The language which expresses her veneration is

equalled, perhaps exceeded, by that in which other nations

give utterance to theirs
;
not merely by the general voice, but

by the well-considered and well informed judgment of the

masters of science. Leibnitz, when asked at the royal table

in Berlin his opinion of Newton, said that "
taking mathe-
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maticians from the beginning of the world to the time when
Newton lived, what he had done was much the better half."
" The '

Principia
'

will ever remain a monument of the pro-
found genius which revealed to us the greatest law of the

universe,"
* are the words of Laplace.

" That work stands

pre-eminent above all the other productions of the human
mind." f

" The discovery of that siitple and general law, by
the greatness and the variety of the objects which it embraces,
confers honour upon the intellect of man." J Lagrange, we
are told by Delambre, was wont to describe Newton as the

greatest genius that ever existed ;
but to add how fortunate he

was also,
" because there can only once be found a System of

the Universe to establish." "
Never," says the father of the

Institute of France, one filling a high place among the most

eminent of its members "
Never," says M. Biot,

" was the

supremacy of intellect so justly established and so fully con-

fessed."|| "In mathematical and in experimental science

without an equal and without an example ; combining the

genius for both in its highest degree." ^[ The '

Principia
'

he

terms the greatest work ever produced by the mind of man,

adding in the words of Halley that a nearer approach to the

Divine nature has not been permitted to mortals.**" In first

giving to the world Newton's method of fluxions," says

Fontenelle,
" Leibnitz did like Prometheus he stole fire

from Heaven to teach men the secret." ff
" Does Newton,"

L'H6pital asked,
"
sleep and wake like other men ? I figure

him to myself as of a celestial kind, wholly severed from

mortality."
To so renowned a benefactor of the world, thus exalted to

the loftiest place by the common consent of all men, one whose
life without the intermission of an hour was passed in the

* '

Syst. du Monde,' V. 5. t Ib. V. 5.

J Ib. IV. 5.
' Mem. de L'Instit.' 1812, p. XLIV.

||

' Journ. de Sav.' 1852, p. 135. f ' Journ. de Sav.' 1852, p. 279.
*

Ib. 1855, p. 552.
" Nee fas est propius mortal! attingere divos.'

ft
' Acad. des Sciences,' 1727.
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search after truths the most important, and at whose hands the

human race had only received good, never evil, those nations

have raised no memorial which erected statues to the tyrants
and conquerors, the scourges of mankind

; whose lives were

passed not in the pursuit of truth but the practice of false-

hood ; across whose lips, if truth ever chanced to stray
towards some selfish end, it surely failed to obtain belief;

who, to slake their insane thirst of power, or of pre-eminence,

trampled on all the rights, and squandered the blood of their

fellow-creatures
;
whose course, like the lightning, blasted

while it dazzled
;
and who, reversing the noble regret of the

Roman Emperor, deemed the day lost that saw the sun go

^down upon their forbearance, no victim deceived, or betrayed,
or oppressed. That the worshippers of such pestilent genius
should consecrate no outward symbol of the admiration they

freely confessed, to the memory of the most illustrious of men,
is not matter of wonder. But that his own countrymen, justly

proud of having lived in his time, should have left this duty
to their successors, after a century and a half of professed
veneration and lip homage, may well be deemed strange.
The inscription upon the Cathedral, masterpiece of his cele-

brated friend's architecture, may possibly be applied in

defence of this neglect.
" If you seek for a monument, look

around."* If you seek for a monument lift up your eyes to

the heavens which show forth his fame. Nor when we re-

collect the Greek orator's exclamation,
" The whole earth is

the monument of illustrious men," f can we stop short of

declaring that the whole universe is Newton's. Yet in

raising the Statue which preserves his likeness near the plaee
of his birth, on the spot where his prodigious faculties were

unfolded and trained, we at once gratify our honest pride as

citizens of the same state, and humbly testifiy our grateful
sense of the Divine goodness which deigned to bestow upon
our race one so marvellously gifted to comprehend the works

* "
Si momunentum quams, circumspice." (On Wren in St. Paul's.)

t Pericles. (Thuc. IT. 43.)
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of Infinite Wisdom, and so piously resolved to make all his

study of them the source of religious contemplations, both

philosophic and sublime.

Besides the remarkable solution of T. Simpson, p. 53, his Tracts contain

other singular anticipations. A very learned person (Mr Jerwood of

Exeter) has pointed out a distinct anticipation of Lagrange's celebrated

formula on the stability of the System. Nothing can be more delight-
ful than contemplating the signal success of self-taught men, as Emerson
was nearly T. Simpson altogether and both in humble circumstances.





NOTES.

NOTE I., pp. 18, 23.

THE demonstration of the XXVIIIth Lemma, Principia, lib. I.,

has been generally admitted to be inconclusive ;
there being

many curves which can be squared and rectified returning into

themselves, and not falling within the exception in the Lemma,
of curves having an oval, with infinite branches. Thus the

whole of the figures whose equation is

y
m = nm

(aj
("- I)m

) x (" #*)

are quadrable when m is an even number ; for

f y dx = f n xn~ l

(a" a?")
5" d x

is integrable, because the power of x without the radical sign

is one less than the power within ; and yet the curve can

have no asymptote, because there is no divisor ;
while it is

plain that the root of a" xn
is impossible when either

4- x or x is greater than a, n and m being both whole even

numbers. Therefore the curve returns into itself; and, as

y = both when x = and when x = + a, or a ;
therefore

the curve consists of two ovals touching at the origin. These

are quadrable ; for the integral y d x is

m m+l
c- "(*-*) .~.

n (m + 1)
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The curve considered at length in Tract V. is another

instance of the failure of the XXVIIIth Lemma; for that

line continues through the cusps and returns into itself, though
not, strictly speaking, an oval. The cardioide also.

The demonstration given, instead of Sir I. Newton's, in

Tract I., is not exposed to the other objections which have

been made to the Newtonian demonstration ;
but it is equally

liable to the objection now urged from the consideration of the

equation to the class of curves whereof the lemniscata is one,

and from the case of the curve described in Tract V., where the

rectification is possible, as well as the quadrature. Perhaps we
should extend the exception in the Lemma to curves which
consist of two or more ovals touching each other, and to curves

having cusps though without any infinite branches.

NOTE II., pp. 23, 74.

In the Encyc. xiii. p. 126, D'Alembert states Forism to be

synonymous with Lemma in the ancient writers, but he adds

that lemma is the only word used in modern times. His
definition is not inaccurate as applied to lemma, a proposition
of which we have need in order to pass to another more im-

portant ; and on this he grounds his notion of porism, from

Tropof, passage. Under the word Poristique in another part
of the Encyc., he gives a different definition of porism. Some
authors, he says, call by this name the description

" de la
" maniere de determiner par quels moyens, et de combien, de
" differentes faons un probleme peut 6tre resolu."

Nothing can be deduced from the Greek for passage, because

the word Tropur/ia is plainly not derived from Tropoe, but from

7roptw, which rather sanctions the opinion connecting porism
with corollary, than the opinion .in the text of a transition

from determinate to indeterminate. That the ancients some-

times used the word as synonymous with corollary there can

be no doubt.

The subject has been handled incidentally by one of the

most eminent geometricians of our day, M. Chasles, with his
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wonted learning and perspicacity, in his celebrated treatise,

Geometric Superieure, Jntrod. p. xxi., and there is good reason

to hope that a more full discussion will accompany his work

lately announced as in preparation, the restoration of Euclid's

three books (Les trois Livres de Porismes d'JEuclide re'taUis pour
la premiere /o?s) M. Chasles puts in the front of his title that

the restoration is effected after the notice and lemmas of

Pappus, and conformably to the view of Simson, touching the

form of the enunciation of the propositions. Nevertheless,

his theory differs in some particulars from that of Simson.

It has been highly gratifying to find that this great geometri-
cian refers with approval to a porism in the First Tract

(prop, vii.) which he considers to throw light upon one of the

kinds of porisms described by Pappus as belonging to Euclid's

Third Book. Perhaps he will cast an eye upon an illustra-

tion of the views entertained on this subject in Tract III.

It seems essential to the formation of a porism that there

should be a transition from determinate to indeterminate, a

change in the data which makes the problem indeterminate,

and so capable of innumerable solutions. Take very simple
and elementary cases. Suppose the problem is to find in the

diameter of a circle produced, a point such that the line drawn
from it to a given point in the circumference shall have its

square equal to the rectangle under the diameter produced, and

the portion of it between the circle and the point to be found.

Call the diameter a, the portion without the circle d, and the

line cutting the circumference f, then f* = (a + d) d. Let y
be the ordinate, and x the abscesse, to the given point in the

circumference, then also

a x
f* =. (d + xf + a x - x* = d* + 2 dx + a x

;
and d= ^-.

Ci ~ X
But if the point in the circumference is such that

2 (a x x1
) ace 2 (a x x9

)
d + x =

;
then - + x =

,
and

a 2 x a 2 x a 2 x

2 a x 2 x* = 2 a x 2 x*
;
or the point in the diameter pro-

duced is found whatever be the point in the circumference ;
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and also every point in the diameter produced gives a line

cutting the circumference, and whose square is equal to the

rectangle of the segments of the diameter.

So the data may be such as to render the solution im-

possible, and a change of these data making the solution

indeterminate, a porisni results. Thus, let it be required to

draw from a given point in the diameter produced a line cut-

ting the circumference, such that its square shall be equal to

the rectangle contained by the whole line and that portion of

it between the point and the ordinate to the point where the

circumference is cut; then there is no such point of the

diameter beyond the circle, because the square of the line

drawn to cut the circumference must always be less than the

rectangle under the segments of the diameter ; but/* being as

before = d* -J- rdx -j- ax, and being also = to (a + d) (d + x)
we have

d* -\- 2 dx + ax = d2 -^ dx -\- ax + ad, max = ad;

and if d = 0, or the point is the extremity of the diameter,

/z = a x, and any line drawn to any point of the circumference

answers the conditions
;
so that when the problem is impos-

sible, as well as when it admits of a determinate solution, a

change of the data making it indeterminate will give rise to a

Porism.

Again : an ellipse and a point without it being given, and
a chord of the ellipse, let it be required to draw a straight
line from the given point cutting the ellipse and the chord,
so that it shall be divided by the ellipse and the chord in har-

monical proportion ; only one such line can be found, unless

in the case of the chord being so situated that the tangents
from the given point touch the ellipse at the extremities of

the chord
;
and in that case every line drawn from the point,

and cutting the ellipse and the chord, is divided in har-

monica! proportion. Solving the problem algebraically; if

the equation to the ellipse be a8 ?/

8 + tf(x c)
8 = a*68

; and
that to the given chord x = dy + n ; and that to the chord

required x = my; and so m the quantity to be found we*
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c' fl" C
2 ~ Q*

obtain for the given chord = d x 1- n, and
c cm

therefore m = -
; and thus we have the chord which

c* a n c

it was required to find. But if the given chord be the line

joining the points of contact of the tangents drawn to the

a9

ellipse from the given point; then x = c (= my\ and
c

c* a*
therefore d = 0, and n =

; so that m =
, and the

c

problem becoming indeterminate, any chord answers the con-

ditions of harmonic division.

It is remarkable with how great earnestness M. Chasles

inculcates the advantage of studying the ancient writers, and
how much he extols the preference which Sir I. Newton gives
to synthetical demonstration conducted geometrically. We
may be allowed, however, to question the degree in which he

regards the Newtonian investigations as purely geometrical,
and still more the assertion that they were conducted by the

resources of the ancient geometry. The saying of Machin is

well known that the Principia was algebra in disguise ; and
no one can doubt that the investigations were carried on by
the resources of the calculus ; the analysis being algebraical,
and the composition or synthesis geometrical, at least in most

instances.

NOTE III., p. 38.

Professor Playfair's enunciation of the principle is not quite

satisfactory. "If," he says,
" the motion which the particles

" of a moving or a system of moving bodies, have at any
"

instant, be resolved into each two, one of which is the
" motion which the particles had in the preceding instant,
" then the sum of all these third motions must be such that

"
they are in equilibrium with one another." (Ed. JRev.

xi. 253.)
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Mr. Eyley's statement of the principle is this : After the

enunciation given in page 38, line 21, "it would have re-
" mained at rest," add, "Since these last forces mutually
"
destroy each other, and that the forces actually impressed

" were compounded of them and of those (usually called
"

effective}
which act in the direction the bodies really move

"
in, so that the force originally applied (usually called the

"
impressed force) is the result of these two forces, it follows

" that the effective forces would, if they acted in the contrary
"

direction, exactly balance the impressed forces." He adds,

that problems of dynamics are thus reduced to a general

equation of equilibrium, and become statical.

Dr. Booth thus states it : Since the impressed forces result

in the effective forces, their differences or the lost forces must

l>e zero or equilibrate each other.

An excellent geometrician has observed, that " the prin-
"

ciple applies equally to the most elementary and the most
"

difficult problems ;
to the motion of a body down an inclined

"
plane and the vibration of a simple pendulum, or to the

"
theory of the radiation of heat and the vibrations of a chord

" two subjects of insuperable difficulty, to which D'Alembert
"
applied his new method of partial differences as well as his

"
principle, and which became remarkable in his hands, not

"
only for the solutions which he obtained, but also for the

" manner of them." It was indeed his singular good fortune,

by the further improvement of the calculus, to overcome the

analytical difficulties into which the fecundity of his dy-
namical principle had led him.

NOTE IV.

There is not given among these Tracts the two papers on

Light and Colours, inserted in the Phil. Trans, for 1796 and

1797, because objections have been made to the principal
doctrines there maintained, upon the different inflexibility of

the rays as supposed to be indicated in the colours which

appear in the spectra made by reflexion from striated surfaces.
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Those have been ascribed by most philosophers to other causes

than a different reflexibility. But one proposition maintained

in those papers has been generally admitted to be well founded,

the non-existence of reflexibility in the sense of Sir I.

Newton ; namely, the disposition to be reflected, and not trans-

mitted. He conceived, that the most refrangible rays were

also in this sense the most reflexible ;
and I ventured to make

this objection, that his experiment introduces different refran-

gibility, being the reflexion from the base of a prism after the

rays have been refracted, and when they are about to be re-

fracted again. Professor Prevost, of Geneva, impugned my
doctrine upon this subject in a paper which was inserted in

the Phil. Trans, for 1799. But it is generally admitted that

his objection applied rather to the course of my reasoning than

to the support of the Newtonian doctrine, that is, to different

reflexibility in the Newtonian sense ; and this, there is reason

to believe, has now been given up. Indeed, one circumstance

appears sufficient to show that it can have no existence. If,

instead of a prism which introduces different refrangibility
into the experiment, we take an extremely thin plate of glass,

and incline it in the rays of the spectrum, we find that there

is no difference in the angle at which the different rays are

reflected, instead of being transmitted. M. Arago, however,

independent of this circumstance, considered the Newtonian
different reflexibility as having been sufficiently disproved.

In these papers of 1796 and 1797 the different inflexibility

of light was asserted, but not so fully proved as in these

Tracts VII. and VIII. The experiments and observations in

the Phil. Trans, for 1796 were made in 1794 and 1795, when the

paper was sent to the Eoyal Society. There was an anticipa-
tion of Photography given in the copy of the paper first sent,

but Sir C. Blagden considered that it referred rather to a

subject of Art, and it was left out in the copy subsequently

sent, and from which the paper was printed. According to

the best of my recollection, it consisted of a remark on the

effect of exposing a plate of ivory, stained with nitrate ol

silver, to the rays of the spectrum, and also on the effect
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of exposing the plate to the rays passing through a very
small hole into a dark room, and which form the image,
more or less distinct, of external objects. It is unfortunate

that this did not appear in the paper of 1796, "because there

can be little doubt that it would have led to making trials

which must have ended in the discovery of the photographic

process many years before it was eventually introduced.

NOTE V., p. 226.

The subsequent examination of the question touching the

origin of aerolites appears to have thrown great light upon
the subject, and may be said to have displaced the lunar

theory. Laplace, Biot, and Poisson investigated the sub-

ject of the initial velocity required to project a body from

the Moon to the Earth. Laplace made this 7,379 French feet

in a second; Poisson, 7,123; Biot, 7,791; Olbers made it

7,780 ;
and these numbers are without making any allowance

for atmospheric resistance. But the mean velocity of aerolites

is 114,000 ; and therefore the initial velocity is calculated at

about 110,000, or fourteen times greater than Laplace's pro-

portion, which he reckons at five or six times the velocity of

a cannon ball. There is no ground for believing that any
volcano exists in the Moon sufficiently active to exert this

force. If one does exist it must be of double the force of any
known on the earth. Furthermore the aerolites, for the most

part, reach the earth moving in one direction ; and there is no

reason, on the lunar theory, why they should move in one

direction rather than another. The whole subject is treated

with great clearness in Humboldt's ' Cosmos '

(vol. i. p. 105),
and more particularly in note 69, p. 383, of the admirable

translation of that work by General Sabine, who has added

some very valuable notes, especially at pp. 411, 454-457.

Poisson (Mec. Annal. torn, i.) discusses the lunar theory of

aerolites, and rejects it.
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