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Prerequisites And Basics
To be able to study Trigonometry sucessfully, it is recommended that students complete;
Geometry, Algebra I and Algebra II prior to digging in to the course material.

It is helpful to have a graphing calculator and graph paper on hand to be able to follow along as
well. If one is not available software available on sites such as http://www.graphcalc.com/ may
be helpful.

Introduction
Trigonometry is an important, fundamental step in math education. From the seemingly simple
shape, the right triangle, we gain tools and insight that help us in further practical as well as
theoretical endeavors. The subtle mathematical relationships between the right triangle, the
circle, the sine wave, and the exponential curve can only be fully understood with a firm basis in
trigonometry.

In simple terms
This page is intended as a simplified introduction to trigonometry. (This article is not always
correctly formulated in mathematical language.)

Simple introduction
If you are unfamiliar with angles, where they come from, and why they are actually required, this
section will help you develop your understanding.

In principle, all angles and trigonometric functions are defined on the unit circle. The term unit in
mathematics applies to a single measure of any length. We will later apply the principles gleaned
from unit measures to a larger (or smaller) scaled problems. All the functions we need can be
derived from a triangle inscribed in the unit circle: it happens to be a right-angled triangle.

A Right Triangle
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The center point of the unit circle will be set on a Cartesian plane, with the circle's centre at the
origin of the plane — the point (0,0). Thus our circle will be divided into four sections, or
quadrants.

Quadrants are always counted counter-clockwise, as is the default rotation of angular velocity ω
(omega). Now we inscribe a triangle in the first quadrant (that is, where the x- and y-axes are
assigned positive values) and let one leg of the angle be on the x-axis and the other be parallel to
the y-axis. (Just look at the illustration for clarification). Now we let the hypotenuse (which is
always 1, the radius of our unit circle) rotate counter-clockwise. You will notice that a new
triangle is formed as we move into a new quadrant, not only because the sum of a triangle's
angles cannot be beyond 180°, but also because there is no way on a two-dimensional plane to
imagine otherwise.

Angle-values simplified
Imagine the angle to be nothing more than exactly the size of the triangle leg that resides on the
x-axis (the cosine). So for any given triangle inscribed in the unit circle we would have an angle
whose value is the distance of the triangle-leg on the x-axis. Although this would be possible in
principle, it is much nicer to have a independent variable, let's call it phi, which does not change
sign during the change from one quadrant into another and is easier to handle (that means it is
not necessarily always a decimal number).

!!Notice that all sizes and therefore angles in the triangle are mutually directly proportional. So
for instance if the x-leg of the triangle is short the y-leg gets long.

That is all nice and well, but how do we get the actual length then of the various legs of the
triangle? By using translation tables, represented by a function (therefore arbitrary interpolation
is possible) that can be composed by algorithms such as taylor. Those translation-table-functions
(sometimes referred to as LUT, Look up tables) are well known to everyone and are known as
sine, cosine and so on. (Whereas of course all the abovementioned latter ones can easily be
calculated by using the sine and cosine).

In fact in history when there weren't such nifty calculators available, printed sine and cosine
tables had to be used, and for those who needed interpolated data of arbitrary accuracy - taylor
was the choice of word.

So how can I apply my knowledge now to a circle of any scale. Just multiply the scaling
coefficient with the result of the trigonometric function (which is referring to the unit circle).

And this is also why cos(φ)
2
 + sin(φ)

2 = 1, which is really nothing more than a veiled version of
the pythagorean theorem: cos(φ) = a;sin(φ) = b;a2 + b2 = c2, whereas the c = 12 = 1, a peculiarity
of most unit constructs. Now you also see why it is so comfortable to use all those mathematical
unit-circles.

Another way to interprete a angle-value would be: A angle is nothing more than a translated
'directed'-length into which the information of the actual quadrant is packed and the applied type
of trigonometric function along with its sign determines the axis ('direction'). Thus something
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like the translation of a (x,y)-tuple into polar coordinates is a piece of cake. However due to the
fact that information such as the actual quadrant is 'translated' from the sign of x and y into the
angular value (a multitude of 90) calculations such as for instance the division in polar-form isn't
equal to the steps taken in the non-polar form.

Oh and watch out to set the right signs in regard to the number of quadrant in which your triangle
is located. (But you'll figure that out easily by yourself).

I hope the magic behind angles and trigonometric functions has disappeared entirely by now, and
will let you enjoy a more in-depth study with the text underneath as your personal tutor.
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Radian and Degree Measure
A Definition and Terminology of Angles
An angle is determined by rotating a ray about its endpoint. The starting position of the ray is
called the initial side of the angle. The ending position of the ray is called the terminal side. The
endpoint of the ray is called its vertex. Positive angles are generated by counter-clockwise
rotation. Negative angles are generated by clockwise rotation. Consequently an angle has four
parts: its vertex, its initial side, its terminal side, and its rotation.

An angle is said to be in standard position when it is drawn in a cartesian coordinate system in
such a way that its vertex is at the origin and its initial side is the positive x-axis.

The radian measure
One way to measure angles is in radians. To signify that a given angle is in radians, a superscript
c, or the abbreviation rad might be used. If no unit is given on an angle measure, the angle is
assumed to be in radians.

Defining a radian

A single radian is defined as the angle formed in the minor sector of a circle, where the minor arc
length is the same as the radius of the circle.
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Defining a radian with respect to
the unit circle.

Measuring an angle in radians

The size of an angle, in radians, is the length of the circle arc s divided by the circle radius r.

(rad).

Because we know the circumference of a circle to be equal to 2πr, it follows that a central angle
of one full counterclockwise revolution gives an arc length (or circumference) of s = 2πr. Thus 2
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π radians corresponds to 360°, that is, there are 2π radians in a circle.

Converting from Radians to Degrees
Because there are 2π radians in a circle:

To convert degrees to radians:

(rad)

To convert radians to degrees:

Exercises
Excercise 1

Convert the following angle measurements from degrees to radians. Express your answer exactly
(in terms of π).

a) 180 degrees

b) 90 degrees

c) 45 degrees

d) 137 degrees

Exercise 2

Convert the following angle measurements from radians to degrees.

5. 

6. 

7. 
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8. 

Answers

Exercise 1

a) π

b) 

c) 

d) 

Exercise 2

a) 60°

b) 30°

c) 15°

d) 135°
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The Unit Circle
The Unit Circle is a circle with its center at the origin (0,0) and a radius of one unit.

The Unit Circle

Angles are always measured from the positive x-axis (also called the "right horizon"). Angles
measured counterclockwise have positive values; angles measured clockwise have negative
values.

A unit circle with certain exact values marked on it is available at Wikipedia.
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Trigonometric Angular Functions
Geometrically defining sin and cosine
In the unit circle shown here, a unit-length radius has been drawn from the origin to a point (x,y)
on the circle.

Defining sine and cosine

A line perpendicular to the x-axis, drawn through the point (x,y), intersects the x-axis at the point
with the abscissa x. Similarly, a perpendicular to the y-axis intersects the y-axis at the point with
the ordinate y. The angle between the x-axis and the radius is α.

We define the basic trigonometric functions of any angle α as follows:
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tanθ can be algebraically defined.

%

These three trigonometric functions can be used whether the angle is measured in degrees or
radians as long as it specified which, when calculating trigonometric functions from angles or
vice versa.

Geometrically defining tangent
In the previous section, we algebraically defined tangent, and this is the definition that we will
use most in the future. It can, however, be helpful to understand the tangent function from a
geometric perspective.

Geometrically defining tangent

A line is drawn at a tangent to the circle: x = 1. Another line is drawn from the point on the
radius of the circle where the given angle falls, through the origin, to a point on the drawn
tangent. The ordinate of this point is called the tangent of the angle.
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Domain and range of circular functions
Any size angle can be the input to sine or cosine — the result will be as if the largest multiple of
2π (or 360°) were subtracted from the angle. The output of the two functions is limited by the

absolute value of the radius of the unit circle, | 1 | .

R represents the set of all real numbers.

No such restrictions apply to the tangent, however, as can be seen in the diagram in the

preceding section. The only restriction on the domain of tangent is that odd multiples of are
undefined, as a line parallel to the tangent will never intersect it.

Applying the trigonometric functions to a right-angled
triangle
If you redefine the variables as follows to correspond to the sides of a right triangle:
- x = a (adjacent)
- y = o (opposite)
- a = h (hypotenuse)

Right Angle Trigonometry
We have defined the sine, cosine, and tangent functions using the unit circle. Now we can apply
them to a right triangle.
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This triangle has sides A and B. The angle between them, c, is a right angle. The third side, C, is
the hypotenuse. Side A is opposite angle a, and side B is adjacent to angle a.

Applying the definitions of the functions, we arrive at these useful formulas:
   sin(a) = A / C  or opposite side over hypotenuse
   cos(a) = B / C  or adjacent side over hypotenuse
   tan(a) = A / B  or opposite side over adjacent side

Exercises: (Draw a diagram!)

1. A right triangle has side A = 3, B = 4, and C = 5. Calculate the following:
sin(a), cos(a), tan(a)

2. A different right triangle has side C = 6 and sin(a) = 0.5 . Calculate side A.
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Graphs of Sine and Cosine Functions
The graph of the sine function looks like this:

The graph of the cosine function looks like this:

Sine and cosine are periodic functions; that is, the above is repeated for preceding and following
intervals with length 2π.
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Graphs of Other Trigonometric Functions

A graph of tan(x).
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A graph of sec(x). sec(x) is defined as .
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A graph of csc(x). csc(x) is defined as .
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A graph of cot(x). cot(x) is defined as or .

Note that tan(x), sec(x), and csc(x) are unbounded.
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Inverse Trigonometric Functions
The Inverse Functions, Restrictions, and Notation
While it might seem that inverse trigonometric functions should be relatively self defining,
some caution is necessary to get an inverse function since the trigonometric functions are not
one-to-one. To deal with this issue, some texts have adopted the convention of allowing sin − 1x,
cos − 1x, and tan − 1x (all with lower-case initial letters) to indicate the inverse relations for the
trigonometric functions and defining new functions Sinx, Cosx, and Tanx (all with initial
capitals) to equal the original functions but with restricted domain, thus creating one-to-one
functions with the inverses Sin − 1x, Cos − 1x, and Tan − 1x. For clarity, we will use this
convention. Another common notation used for the inverse functions is the "arcfunction"
notation: Sin − 1x = arcsinx, Cos − 1x = arccosx, and Tan − 1x = arctanx (the arcfunctions are
sometimes also capitalized to distinguish the inverse functions from the inverse relations). The
arcfunctions may be so named because of the relationship between radian measure of angles and
arclength--the arcfunctions yeild arc lengths on a unit circle.

The restrictions necessary to allow the inverses to be functions are standard: Sin − 1x has range

; Cos − 1x has range ; and Tan − 1x has range (these restricted ranges
for the inverses are the restricted domains of the capital-letter trigonometric functions). For each
inverse function, the restricted range includes first-quadrant angles as well as an adjacent
quadrant that completes the domain of the inverse function and maintains the range as a single
interval.

It is important to note that because of the restricted ranges, the inverse trigonometric functions do
not necessarily behave as one might expect an inverse function to behave. While

(following the expected ),

! For the inverse trigonometric functions,

only when x is in the range of the inverse function. The other direction,

however, is less tricky: for all x to which we can apply the inverse function.

The Inverse Relations
For the sake of completeness, here are definitions of the inverse trigonometric relations based on
the inverse trigonometric functions:

• (the
sine function has period 2π, but within any given period may have two solutions and

)
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• (the cosine function has period 2π, but
within any given period may have two solutions and cosine is even--

)

• (the tangent function has period π and is one-
to-one within any given period)
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Applications and Models

Simple harmonic motion

Simple harmonic motion. Notice that the position of the dot
matches that of the sine wave.

Simple harmonic motion (SHM) is the motion of an object which can be modeled by the
following function:

or

where c1 = A sin Ï† and c2 = A cos Ï†.

In the above functions, A is the amplitude of the motion, Ï‰ is the angular velocity, and Ï† is the
phase.

The velocity of an object in SHM is

The acceleration is

Springs and Hooke's Law

An application of this is the motion of a weight hanging on a spring. The motion of a spring can
be modeled approximately by Hooke's Law:

F = -kx

where F is the force the spring exerts, x is the position of the end of the spring, and k is a
constant characterizing the spring (the stronger the spring, the higher the constant).
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Calculus-based derivation

From Newton's laws we know that F = ma where m is the mass of the weight, and a is its
acceleration. Substituting this into Hooke's Law, we get

ma = -kx

Dividing through by m:

The calculus definition of acceleration gives us

Thus we have a second-order differential equation. Solving it gives us

(2)

with an independent variable t for time.

We can change this equation into a simpler form. By lettting c1 and c2 be the legs of a right
triangle, with angle Ï† adjacent to c2, we get

and
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Substituting into (2), we get

Using a trigonometric identity, we get:

(3)

Let and . Substituting this into (3) gives
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Analytic Trigonometry

Using Fundamental Identities
Some of the fundamental trigometric identities are those derived from the Pythagorean Theorem.
These are defined using a right triangle:

By the Pythagorean Theorem,

A2 + B2 = C2 {1}

Dividing through by C2 gives

{2}

We have already defined the sine of a in this case as A/C and the cosine of a as B/C. Thus we can
substitute these into {2} to get

sin2a + cos2a = 1

Related identities include:

sin2a = 1 − cos
2a or cos2a = 1 − sin

2a

tan2a + 1 = sec2a or tan2a = sec2a − 1

1 + cot2a = csc2a or cot2a = csc2a − 1

Other Fundamental Identities include the Reciprocal, Ratio, and Co-function identities
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Reciprocal identities

Ratio identities

Co-function identities (in radians)
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Solving Trigonometric Equations
Trigonometric equations involve finding an unknown which is an argument to a trigonometric
function.

Basic trigonometric equations

sin x = n

| n | > 1
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The equation sinx = n has solutions only when n is within the interval [-1; 1]. If n is within this
interval, then we need to find and α such that:

The solutions are then:

Where k is an integer.

In the cases when n equals 1, 0 or -1 these solutions have simpler forms which are summarizied
in the table on the right.

For example, to solve:

First find α:

Then substitute in the formulae above:

Solving these linear equations for x gives the final answer:

Where k is an integer.

cos x = n
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| n | > 1

Like the sine equation, an equation of the form cosx = n only has solutions when n is in the
interval [-1; 1]. To solve such an equation we first find the angle α such that:

Then the solutions for x are:

Where k is an integer.

Simpler cases with n equal to 1, 0 or -1 are summarized in the table on the right.

tan x = n
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General
case

An equation of the form tanx = n has solutions for any real n. To find them we must first find an
angle α such that:

After finding α, the solutions for x are:

When n equals 1, 0 or -1 the solutions have simpler forms which are shown in the table on the
right.

cot x = n
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General
case

The equation cotx = n has solutions for any real n. To find them we must first find an angle α

such that:

After finding α, the solutions for x are:

When n equals 1, 0 or -1 the solutions have simpler forms which are shown in the table on the
right.

csc x = n and sec x = n

The trigonometric equations csc x = n and sec x = n can be solved by transforming them to other
basic equations:
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Further examples
Generally, to solve trigonometric equations we must first transform them to a basic trigonometric
equation using the trigonometric identities. This sections lists some common examples.

a sin x + b cos x = c

To solve this equation we will use the identity:

0 \\ \pi + \tan^{-1} \left(b / a\right), && \mbox{if } a

The equation becomes:

This equation is of the form sinx = n and can be solved with the formulae given above.

For example we will solve:

In this case we have:

Apply the identity:
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So using the formulae for sinx = n the solutions to the equation are:
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Sum and Difference Formulas
Cosine Formulas

cos(a + b) = cosacosb − sinasinb

cos(a − b) = cosacosb + sinasinb

Sine Formulas
sin(a + b) = sin a cos b + cos a sin b

sin(a - b) = sin a cos b - cos a sin b

sin2a = 2 sin a cos a

Tangent Formulas
tan(a +b) = (tan a + tan b)/(1 - tan a tan b)

tan(a - b) = (tan a -tan b)/(1 + tan a tan b)

Derivations
• cos(a + b) = cos a cos b - sin a sin b

• cos(a - b) = cos a cos b + sin a sin b

Using cos(a + b) and the fact that cosine is even and sine is odd, we have
            cos(a + (-b)) = cos a cos (-b) - sin a sin (-b)
                          = cos a cos b - sin a (-sin b)
                          = cos a cos b + sin a sin b

• sin(a + b) = sin a cos b + cos a sin b

Using cofunctions we know that sin a = cos (90 - a). Use the formula for cos(a - b) and
cofunctions we can write
         sin(a + b) = cos(90 - (a + b))
                    = cos((90 - a) - b)
                    = cos(90 -a)cos b + sin(90 - a)sin b
                    = sin a cos b + cos a sin b

• sin(a - b) = sin a cos b - cos a sin b
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Having derived sin(a + b) we replace b with "-b" and use the fact that cosine is even and sine is
odd.
      sin(a + (-b)) = sin a cos (-b) + cos a sin (-b)
                    = sin a cos b + cos a (-sin b)
                    = sin a cos b - cos a sin b
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Multiple-Angle and Product-to-sum
Formulas
Multiple-Angle Formulas

• sin(2a) = 2 sin a cos a

• cos(2a) = cos2 a - sin2 a = 1 - 2 sin2 a = 2 cos2 a - 1

• tan(2a) = (2 tan a)/(1 - tan2 a)

Proofs for Double Angle Formulas
• cos(a + b) = cos(a)cos(b) − sin(a)sin(b) ; a = b for cos(2a)

 cos2(a) − sin2(a) = cos(2a)
  cos2(a) − (1 − cos2(a)) = 2cos22(a) − 1 = cos(2a) (Note that sin2(x) = 1 −
cos2(x)

• sin(a + b) = sin(a)cos(b) + sin(b)cos(a) ; a = b for sin(2a)
  sin(a)cos(a) + sin(a)cos(a) = 2cos(a)sin(a) = sin(2a)

Trigonometry



38

Additional Topics in Trigonometry

Law of Sines
Consider this triangle:

It has three sides

• A, length A, opposite angle a at vertex a

• B, length B, opposite angle b at vertex b

• C, length C, opposite angle c at vertex c

The perpendicular, oc, from line ab to vertex c has length h

The Law of Sines states that:

The law can also be written as the reciprocal:
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Proof

The perpendicular, oc, splits this triangle into two right-angled triangles. This lets us calculate h
in two different ways

• Using the triangle cao gives

• Using the triangle cbo gives

• Eliminate h from these two equations

• Rearrange

By using the other two perpendiculars the full law of sines can be proved.

Law of Cosines
Consider this triangle:
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It has three sides

• a, length a, opposite angle A at vertex A

• b, length b, opposite angle B at vertex B

• c, length c, opposite angle C at vertex C

The perpendicular, oc, from line ab to vertex c has length h

The Law Of Cosines states that:

Proof

The perpendicular, oc, divides this triangle into two right angled triangles, aco and bco.

First we will find the length of the other two sides of triangle aco in terms of known quantities,
using triangle bco.

h=a sin B

Side c is split into two segments, total length c.

ob, length c cos B

ao, length c - a cos B

Now we can use Pythagoras to find b, since b2 = "ao"2 + h2

The corresponding expressions for a and c can be proved similarly.
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Vectors and Dot Products

Consider the vectors U and V (with respective magnitudes |U| and |V|). If those vectors enclose
an angle θ then the dot product of those vectors can be written as:

If the vectors can be written as:

then the dot product is given by:

Trigonometric Form of the Complex Number

where

• i is the Imaginary Number 

• the modulus 

• the argument is the angle formed by the complex number on a polar graph
with one real axis and one imaginary axis. This can be found using the right angle
trigonometry for the trigonometric functions.

This is sometimes abbreviated as and it is also the case that

(provided that φ is in radians).
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Trigonometry References

Trigonometric Formula Reference
The principal identity in trigonometry is:

sin2
θ + cos2

θ = 1

All trigonometric function are 2π periodic:

sinθ = sin(θ + 2π)

cosθ = cos(θ + 2π)

tanθ = tan(θ + 2π)

cotθ = cos(θ + 2π)

cscθ = cos(θ + 2π)

secθ = cos(θ + 2π)

Formulas involving sums of angles are as follows:

sin(α + β) = sinαcosβ + cosαsinβ

cos(α + β) = cosαcosβ − sinαsinβ

Substituting α = β gives the double angle formulae

Trigonometric Identities Reference
Pythagoras

1. sin2(x) + cos2(x) = 1

2. 1 + tan2(x) = sec2(x)

3. 1 + cot2(x) = csc2(x)

These are all direct consequences of Pythagoras's theorem.

Sum/Difference of angles

1. 
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2. 

3. 

Product to Sum
1. 2sin(x)sin(y) = cos(x - y) - cos(x + y)

2. 2cos(x)cos(y) = cos(x - y) + cos(x + y)

3. 2sin(x)cos(y) = sin(x - y) + sin(x + y)

Sum and difference to product
1. Asin(x) + Bcos(x) = Csin(x + y)

where 

1. 

2. 

3. 

4. 

Double angle
1. cos(2x) = cos2(x) − sin

2(x) = 2cos2(x) − 1 = 1 − 2sin
2(x)

2. sin(2x) = 2sin(x)cos(x)

3. 

These are all direct consequences of the sum/difference formulae
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Half angle

1. 

2. 

3. 

In cases with , the sign of the result must be determined from the value of . These derive
from the cos(2x) formulae.

Power Reduction

1. 

2. 

3. 

Even/Odd
1. sin( − θ) = − sin(θ)

2. cos( − θ) = cos(θ)

3. tan( − θ) = − tan(θ)

4. csc( − θ) = − csc(θ)

5. sec( − θ) = sec(θ)

6. cot( − θ) = − cot(θ)
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Calculus

1. 

2. 

3. 

4. 

5. 

6. 
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Natural Trigonometric Functions of Primary Angles
θ (radians) sinθ cosθ tanθ cotθ secθ cscθ θ (degrees)

0 0 1 0 undef 1 undef

2

1 1

2

1 0 undef 0 undef 1

- 2

- 1 - 1

2

π 0 - 1 0 undef - 1 undef

- 2

- 1 - 1

- 2

- 1 0 undef 0 undef - 1

2

- 1 - 1

- 2

2π 0 1 0 undef 1 undef
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Note: some values in the table are given in forms that include a radical in the denominator--this
is done both to simplify recognition of reciprocal pairs and because the form given in the table is

simpler in some sense.
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License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.



49

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
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H. Include an unaltered copy of this License.

I.  Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K.  For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L.  Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M.  Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for
example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all
as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If
there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History";
likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the
compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire
aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free Software Foundation

External links

• GNU Free Documentation License (Wikipedia article on the license)

• Official GNU FDL webpage


