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ABSTRACT

Several small-scale, special -purpose computer programs that were

written to provide design data for a pulse-slimming filter over a wide

range of parameter variations are contained herein, A large-scale

computer program is also used to provide additional data. Some syn-

thesis techniques are discussed, and some of the computer program

outputs are directly applied in illustrating synthesis techniques for

a specific pulse-slimming transfer function,.
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I. INTRODUCTION

Network analysis and synthesis, in general, continues to become less

time-consuming and complex as a result of the continued upgrading of

large-scale network-analysis computer programs such as those listed in

Ref. 1 and the increased interest shown in computer-aided design by

engineers at all levels.

A major disadvantage of the large-scale network analysis programs,

however, is the vast amount of core storage usually required by them.

If a large computer is not available to the design engineer, many of the

more sophisticated programs will not be at his disposal. Additionally,

owing to the fact that network synthesis, particularly filter design, is

approached from many aspects depending on the specific application, the

available large-scale programs must frequently be supplemented by a host

of smaller, special -purpose programs in order to provide the required

design information. Thus, it is essential that the present-day design

engineer be well versed in network analysis programs and computer capabil

i ties in order to successfully compete with his contemporaries.

Computer-aided design procedures are exemplified herein by a compre-

hensive analysis of the pulse-slimming filter designed by H. M. Sierra

[Ref. 2], The use of small, special-purpose programs coupled with a

large-scale program provides the required design parameters.

Some aspects of lattice synthesis are discussed, and with the aid of

the computer programs some of these synthesis techniques are applied to

the Sierra transfer functions.



A. THE SIERRA FILTER

Reference 2 contains a detailed description of the Sierra Filter;

however, for completeness, a brief description of this filter will be

included.

Consider an input pulse, f.(t), approximated by the normal curve

f.(t) = exp(-c
2
t
2

) -a <_ t ^a (1.1)

= otherwise.

The error in this approximation at t = a is simply the value of the

Gaussian function at t = a or

e = exp(-?
2
a
2
). (1.2)

The problem as outlined by Sierra was to find a network composed of

passive elements such that the output, f (t), was approximated by the

normal curve

f
Q
(t) = exp(- n

2
t
2

) "6it 1 3 (1.3)

= otherwise-

Similarly, the error in this approximation at t = 3 is

e = exp(-nV). (1.4)

The compression ratio, K, was defined as

K = 2a/2(3 o (1.5)

Sierra assumed the same tolerable degree of error at both input and

output pulse edges and equated (1.2) and (1.4) obtaining

4a = n(3 (1.6)

or E/n = 1/K .



The network transfer function was expressed as

H(s) = F
o
<s)/F.(s). (1.7)

The two-sided Laplace transform of the input pulse was

F.(s) = / exp(-e
2
t
2

) exp(-st) dt
— 00

= (yf7g) exp(s
2
/44

2
)e (1.8)

For the output pulse,

F
Q
(s) = (A/n) exp(s

2
/4 n

2
)^ (1.9)

After substituting (K8) and (1,9) into (1*7), the transfer function

becomes

H(s) = fe/nj exp[(l/n
2

) - 0/e
2
)] s

2
/4 . (1.10)

When (1.6) is substituted into (1.10), H(s) becomes

H(s) = (1/K) exp[(l/K
2

)
- 1] s

2
/4^

2
. (1.11)

Since equation (1,11) still contains the parameter £, Sierra chose

to normalize the input pulse by making 5=1, thus yielding

H(s) = (1/K) exp[(l/K
2

)
- 1] s

2
/4 . (1.12)

At this point, Sierra introduced the parameter <j>, defining it as

follows:

cj>

2
- (K

2
~1)/4K

2
(1.13)

- /r
2

or * = VK - 1/2K . (1.14)

After substituting (1.13) into (1,12), H(s) reduces to

H(s) = (1/K) exp(-<p
2
s
2

) . (1.15)



As Sierra pointed out, the transfer function given by equation (1.15)

is not realizable, Therefore, instead of the transfer function, another

function was approximated „ In this particular case, Sierra chose to

approximate the magnitude function, noting the possibility of making

this approximation and still obtaining accurate results in the time

domain.

Substituting s=jw into (1,15) and taking the magnitude,

|H(ju)| = (1/K) expU
2

u)

2
) , (1.16)

and ARG H(ju>) = 0°
. (1.17)

The magnitude functions of the input and output pulses are

|F.(ju )| <Texp(-w
2
/4) (1.18)

|F (jo>)| = (flT/K) expU 2
/4K

2
) . (1.19)

To obtain the frequency, co , at which |F. (ju)| = |F (jw)| , Sierra

equated (1.18) and (1,19), yielding the following:

NfT exp(-co
e

2
/4) = (>I?/K) exp(-co

e

2
/4K

2
)

or w
e

= 2K[ln K/(K
2

- 1)]
1/2

. (1.20)

At this juncture, Sierra observed that the approximations to

|H(jco)| must be bandwidth limited in order to obtain realizable transfer

functions; that is, every approximation is valid only up to a frequency

w,. Sierra also pointed out that, since the network is to be realized

with passive elements only, and with the same inpedance level for

uj > co , the necessity for introducing some attenuation factor, A,

exists.

Using equation (1.16), the magnitude-squared function can be

obtained. It is
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|H(jco)|
2

= (1/K
2

) exp(2<|>
2
w
2

) . (1.21)

To approximate (1.21) by a ratio of polynomials in w, Sierra chose

to use the continued-fraction expansion because of the yery fast con-

vergence it offers.

Substituting z = 2<p

2
^
2

(1.22)

into (1.21) yields

|H(z)|
2

= (1/K
2

) exp(z) . (1.23)

Expressing exp(z) as a continued fraction, the following is obtained:

exp(z) = j^
T+z

2

1-z

6

l+z_

6

1-z

10

l+z_
10

l-z_
14

T+T. . (1.24)

If N = number of terms taken in the expansion, the following approx-

imations to exp(z) are obtained:

For N = 1:
1

1

For N = 2:
1

1-z

For N = 3:
2+z

, etc.

Thus, substituting for z yields the following approximations

For N = 1: I H( joo) 1

2
. (1/K

2
) 1



For N = 2: |H(ju))|
2

~ (1/K
2

) 2 2
1 - 24>V

2 2

For N = 3: |H(jw)|
2

s (1/K
2

)

] + ^ , etc.

1 - <j> to

Approximations to H(s)H(-s) were obtained by substituting s = jt

For N = 1: H(s)H(-s) = (1/K
2

) |

For N = 2: H(s)H(-s) = (1/K
2

) ^^T
1 + 2<J> s

9 1 a
2 2

For N = 3: H(s)H(-s) = (1/n '
" + % ptr

1 + </s '

etCo

The poles and zeros for the approximations to H(s)H(-s) for N = 2

through N = 9 are contained in Table I. The numerical values of these

poles and zeros, that is, the values prior to being multiplied by l/<j>

will hereafter be referred to as the pseudo poles and zeros.
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N ZEROS POLES

-k±l+jO)

(±1 ,22474487+jO)

-(+1.271229882 ±jO. 340625032

6 h ±1.45534667 ±jO. 343560805)

j(±1.52387182+j0)

—(±1 .47994076 ±jO. 5927200616)

i

1

^-(±1 .6572801 ±jO. 801741003)

(±1.680548372+j0)

(±1.64112335 ±jO. 59616025)

t(±1. 72038868 ±jO. 252045949)

-(0±jO. 70710678)

-Jko±ji)

^-(±0.3352200067±jl .054690705)

^(±0.340625032 ±jl .271229882)

(0±jl. 34867233)
4

1(±0. 587391538 ±jl .29829514)

t(0±j1. 52387182)
<p

^-(±0.5927200616 ±jl .47994076)

U±0. 79700116 ±jl .497202089)
<p

U±0. 250044024 ±jl .56720106)
9

^-(±0.801741003 ±jl. 6572801)
9

^-(±0.252045949 ±jl .72038868)
9

TABLE I. Poles and Zeros of H(s)H(-s) for N = 2 through 9.

11



11 • COMPUTER SIMULATION

In order to effectively analyze the Sierra Filter, several small-

scale, special -purpose computer programs were required. Most of these

programs were written to provide an output over a range of compression

ratios for a given input. In addition to providing an optimum compres-

sion ratio for a given transfer function, this procedure permitted the

rapid evaluation of design parameters for a specified compression

ratio* Computer programs were written to provide design information

for all the Sierra transfer functions from N = 2 through N = 9 using

both right-hand-plane (RHP) zeros and left-hand-plane (LHP) poles and

LHP zeros and LHP poles. In some instances, therefore, minor modifica-

tions to the basic program were required* These modifications, of

course, depended upon the specific transfer function being considered.

A brief description of the pertinent computer programs with the required

modifications will now be delineated,

A, PROGRAM NUMBER ONE

This program generated sample values of the normalized input Gaussian

pulse for various values of standard deviation. The mean was chosen to

be zero for convenienceo

The output of this program provided the time, standard deviation, and

value of the normalized pulse. A plot of the input pulse was also pro-

vided.

The primary purpose of this program was to provide the standard

deviation for a specified pulse width and truncation error. This program,

however, also provided sample values of the input pulse which could be

used in spectrum analysis or convolution routines as required,

12



B. PROGRAM NUMBER TWO

This program generated the poles and zeros for all the Sierra transfer

functions listed in Table I for values of compression ratio varying from

1.1 through 10.0 in steps of 0.1. In effect, this program performed the

iterative multiplication suggested in columns 2 and 3 of Table I. The

output, of course, provided the required poles and zeros.

C. PROGRAM NUMBER THREE

This program computed and plotted the magnitude and phase of the

Sierra transfer functions for values of compression ratio ranging from

1.2 through 3.0 in steps of 0.1.

The inputs to this program were the pseudo poles and zeros listed in

Table I and the desired compression ratios. The required iterations were

performed by the program.

The output of this program provided the compression ratio, the corre-

sponding value of omega in radians and in degrees, and the corresponding

magnitude and phase. A rapid means of comparing magnitude and phase for

specified compression ratios was made possible by this program output.

Minor modifications to this program were required for each transfer

function considered. These modifications related to the manner in which

the transfer function was generated and will be included herein for con-

venience.

1 . Modification for N = 2

DO 70 1-1,100
PSI=2.*TK/SQRT(TK**2-1.)
S1=(0.0,0.70710678+W/PSI)
S2=(0.0,-0.70710678+W/PSI)
P1=PSI*S1
P2=PSI*S2
Wl=(l. 0,0.0)
W2=P1*P2
T=(1./TK)*(W1/W2)

13



Modification for N = 3

DO 70 1=1,100
PSI=2.*TK/SQRT(TK**2-1.)
R1=(-1.0,W/PSI)
S1=(0.0,1.0+W/PSI)
S2=(0 o s -l„0+W/PSI)
P1=PSI*S1
P2-PSI*S2
W1=Z1

W2=P1*P2
T=(1./TK)*(W1/W2)

Modification for N = 4

DO 70 1*1,100
PSI=2„*TK/SQRT(TK**2-lo)
R1=(-1 C 22474487 S W/PSI)
SWO. 33522001, 1 .05469071 +W/PSI)
S2=(0o 33522001, -K 05469071 +W/PSI)
P1=PSI*S1
P2-PSI*S2
P3=(l o 0,0 o 0)

M-Cl.O.O.'OJ
Z1=PSI*R1
Z2=(l. 0,0.0)
Z3=(l. 0,0.0)
Z4=(l. 0,0.0)
W1-Z1*Z2*Z3*Z4
W2=P1*P2*P3*P4
T-(1./TK)*(W1/W2)

Modification for N - 5

DO 70 1-1,100
PSI=2.*TK/SQRT(TK**2-1.)
Rl = (-1 . 271 22988 9 0c 34062503+W/PSI

)

R2=(-l t 271 22988, -0,34062503+W/PSI)
SI = (0. 34062503 , 1 . 271 22988+W/PSI

)

S2=(0, 34062503, -1 . 271 22988+W/PSI)
P1=PST*S1
P2=PSI*S2
P3=(l, 0,0.0)
P4=(l. 0,0.0)
Z1=PSI*R1
Z2=PSI*R2
Z3=(l. 0,0.0)
Z4=(l. 0,0.0)
W1=Z1*Z2*Z3*Z4
W2-P1*P2*P3*P4
T=(1„/TK)*(W1/W2)

14



5o Modification for N = 6

DO 70 1=1
s 100

PSI=2.*TK/SQRT(TK**2-1 .

)

Rl=(-1. 45534667, 0.34356080+W/PSI)
R2=(-lo45534667 9 -0o34356080+W/PSI)
S1=(0.0,1.34867233+W/PSI)
S2=(0.0,-lo34867233+W/PSI)
S3=(0. 58739154, 1.2982951+W/PSI)
S4= (0,587391 54,-1. 2982951 +W/PSI)
P1=PSI*S1
P2=PSI*S2
P3=PSI*S3
P4=PSI*S4
Z1=PSI*R1
Z2=PSI*R2
Z3=(l,0,0„0)
Z4=(l, 0,0.0)
W1=Z1*Z2*Z3*Z4
W2=P1*P2*P3*P4
T=(1./TK)*(W1/W2)

6o Modification for N = 7

DO 70 1-1,100
FSI=2.*TK/SQRT(TK**2-1.)
Rl=(-1. 52387182, 0.0+W/PSI)
R2=(-l ,. 47994076, 0.59272006+W/PSI)
R3=(-l . 47994076, -0.59272006+W/PSI)
SI =(0 o 0,1. 523871 82+W/PSI)
S2=(0.0,-1„52387182+W/PSI)
S3= (0, 59272006 ,1.47994076+W/PSI)
S4= (0 ; 59272006 , -1 . 47994076+W/PSI

)

P1=PSI*S1
P2-PSI*S2
P3=PSI*S3
P4=PSI*S4
Z1=PSI*R1
Z2=PSI*R2
Z3=PSI*R3
Z4=(l. 0,0.0)
W1=Z1*Z2*Z3*Z4
W2=P1*P2*P3*P4
T=(1./TK)*(W1/W2)

7, Modification for N - 9

DO 70 1-1,100

PSI=2.*TK/SQRT(TK**2-1.)
Rl=(-1. 6572801 ,0.80174100+W/PSI)
R2=(-l, 6572801, -0.80174100+W/PSI)
R3=(-L 72038868,0, 25204595+W/PSI)
R4= (-1 . 72038868,-0 , 25204595+W/PSI

)

15



S1=(0, 80174100,1. 6572801+W/PSI)
S2= (0.801 741 00,-1. 6572801+W/PSI)
S3= (0. 25204595 , 1 . 72038868+W/PSI

)

S4- (0.25204595,-1. 72038868+W/PSI)
P1=PSI*S1
P2=PSI*S2
P3-PSI*S3
P4=PSI*S4
Z1=PSI*R1
Z2=PSI*R2
Z3=PSI*R3
Z4=PSI*R4
W1-Z1*Z2*Z3*Z4
W2^P1*P2*P3*P4
T=(1./TK)*(W1/W2)

D. PROGRAM NUMBER FOUR

This program computed the maximum magnitudes of the Sierra transfer

functions and the corresponding values of omega to five decimal places

for values of compression ratio ranging from 1.2 through 3.0.

The inputs to this program were the pseudo poles and zeros listed in

Table I, the desired compression ratio and the values of delta, the step

size for omega. This program computed the maximum magnitude as follows:

Initially, the step size for omega was 0,1. When the maximum was passed,

i.e., omega (I) less than omega (1-1), the computer went to omega (1-2),

changed the step size to 0.01 and continued the process. Any desired

degree of accuracy could thus be obtained employing this technique.

In many instances, it is necessary to multiply the original transfer

function, H(s), by some constant in order to realize it. Specifically,

in order to realize the constant-resistance lattice network, the require-

ment that
|

H ( j 03 ) |

be less than or equal to unity must be met. This

program, therefore, provides an accurate value of the maximum magnitude

so that these requirements can be fulfilled.

16



Since this program generated the transfer functions in the same

manner as Program Number Three, the same basic modifications are appli-

cable. These modifications will not be reiterated,

Eo PROGRAM NUMBER FIVE

This program computes the numerator/denominator coefficients of the

Sierra transfer functions for values of compression ratio ranging from

1,1 through 10„0 by performing the iterative multiplication of the fac-

tored terms in the numerator and denominator.

The input to this program was the pseudo poles and zeros. The output

provided the required coefficients. This program was written to provide

the coefficients using either LHP zeros or RHP zeros. Thus, the sign of

the pseudo poles and zeros and the indicator value determined which

coefficients were computed for a specified transfer function.

Program Number Two generated the poles and zeros for the Sierra

transfer functions and provided the transfer functions in the form

(s+zJIs+zJ , , , (s+z )

Hts) *
(1/K)

(s+p^U+p*) . .. . (s+pj •
< 2J >

Program Number Five, however, provided the transfer functions in the

form

a s
n

+ a .s
11
"

1

+ , , , + a
n

H(s) = (1/K)
n

m

"- 1

m .
1

-£
(22)

b
m
s +b

m-l
s +

- •
' +b

' •

}

Program Number Five was written, therefore, to provide additional

design flexibility, since some network analysis programs can only accept

transfer functions appearing in the form of (2,1) while others can only

accept them in the form of (2,2). Also, analysis and synthesis frequently

17



demand that both the poles and zeros and the coefficients of the transfer

functions be available*

Minor modifications to this program were required in order to calcu-

late the numerator and denominator coefficients- for all the transfer

functions. Since the same program was used to generate both the numera-

tor and denominator coefficients, the FORMAT statements and the manner

in which the coefficients were generated required modification,

1

.

Modifications Required for Denominator Coefficients

In order to label the output properly, the two FORMAT statements

utilizing the Hollerith field must be changed when generating the deno-

minator coefficients,

2. Other Required Modifications

By inspecting the poles and zeros contained in Table I, it is

evident that the numerator and denominator coefficients for N = 9 and

the denominator coefficients for N = 8 are generated in the same manner.

These coefficients were generated as follows:

70 PSI=2,*TK/SQRT(TK**2-1.)
A1=((A**2)+(B**2))
A2=((C**2)+(D**2))
S0-(PSI**4)*A1*A2
Sl=(2 o 0*(PSI**3))*(C*Al+A*A2)
S2=(PSI**2)*(A1+A2+4.0*A*C)
S3-2„0*PSI*(A+C)

The numerator coefficients for N - 8 and N - 7 were generated in

the same manner as shown in Program Number Five.

The denominator coefficients for N = 7 and N = 6 were generated

using the following modification:

70 PSI=2.*TK/SQRT(TK**2-1.)
A1=((C**2)+(D**2))
S0=(PSI**4)*((B**2)*A1)
S1=(PSI**3)*2„0*(B**2)*C
S2=(PSI**2)*((B**2)+A1)
S3=PSI*2.0*C

18



The numerator coefficients for N = 6, the numerator and denomi-

nator coefficients for N = 5, and the denominator coefficients for N = 4

were generated as follows:

70 PSI=2.*TK/SQRT(TK**2-1.)
A1=((A**2)+(B**2))
S0=(PSI**2)*A1
S1=PSI*2.0*A
S2=1.0
S3=0.0

The appropriate modification to this program, therefore, yielded

the desired coefficients for the Sierra transfer functions.

F. PROGRAM NUMBER SIX

This program makes use of the DSL/360 (Digital Simulation Language)

[Ref. 3] to provide the output for a given Gaussian input pulse and a

given transfer function. The standard deviation of the input pulse can

be varied several times in the same program, thus permitting a rapid

comparison of the outputs versus input pulse width. Other parameters

such as compression ratio and mean can also be varied as desired.

The inputs to this program were the numerator and denominator

coefficients of the transfer functions. These coefficients were generated

by Program Number Five. A FORTRAN subprogram was written to generate the

Gaussian input pulse with a truncation error of one percent. Program

Number One, of course, provided the required standard deviation for a

given pulse width.

19



III. SOME ASPECTS OF LATTICE SYNTHESIS

In analyzing the Sierra Filter, synthesis was restricted to the

symmetrical lattice. Similar synthesis procedures, however, could be

applied to ladder development. In fact, in many cases, the symmetrical

lattice can be decomposed into an equivalent ladder network [Ref„ 4].

Figure 1 below shows the standard form of the symmetrical lattice and

the bridge form, respectively.

(a). Standard Form

(b) Bridge Form

Figure 1 „ The Symmetrical Lattice

20



A. THE UNLOADED LATTICE

Referring to Figure la, it is evident that

Sr
=

'n 1
!

+z
i2

r

2

and V™, = Z^-j I , + Z^^I^

Thus

and

11

11

12

vir

i
2
=o

rr°

(3.1)

(3.2)

(3.3)

(3.4)

Since the symmetrical lattice is being considered, Z,,=Z
22

and Z-^Zp-.

By applying elementary network analysis, it can be shown that

Zn = Z
22

= 1/2 (Za + Zb) (3.5)

and
12 21 1/2 (Zb - Za) . (3.6)

Consider now the transfer function, H(s), defined as follows:

V
22

,(s)

H(s) =
T^vn

or, from (3.1) and (3.2)

I
2
=0 (3.7)

H(s) zi
[

22

(3.8)

Substituting (3.5) and (3.6) into (3.8) yields

„,* _ 1/2 (Zb - Za) (Zb - Za)
" {s) ' 1/2 (Za + Zb) " (Zb + Za)

(3.9)

Dividing numerator and denominator of (3.9) by Zb, the transfer function

can be written as

21



H(s)
1 - Za/Zb

1 + Za/Zb
(3.10)

Solving for Za/Zb

Za/Zb . I^JM
1 + H(s)

Thus, Za = 1 - H(s)

and Zb = 1 + H(s)

(3.11)

(3.12)

(3.13)

are synthesis possibilities for the unloaded symmetrical lattice.

B. THE CONSTANT-RESISTANCE LATTICE

The symmetrical lattice terminated in a load of constant resistance

R and possessing a driving point impedance of R at the input terminals

will now be considered,, Figure 2 below depicts this situation.

in * R

Figure 2 Symmetrical lattice terminated in a resistance R

with an input impedance of R*

Using Eqs. (3.1) and (3.2) and noting the fact that V
22

following equations are obtained:

V
11

and -IpR

Z
11

I
1

+ Z
12

!
2

z
21

i
1

+ z
22

i
2

-I
2
R , the

(3.14)

(3.15)

22



Solving for I
?

in (3.15) and substituting into (3.14) yields

vir =
z
ii

T
i

+z
i2 (7^ •

(3J6)
Z
22

+ R

V1V
Solving (3.16) for —=— , the driving-point impedance is obtained.

^dp^
s;

r
1

zn z
22

+ r
• lJ,,/;

Since Z,, = Z
22

and Z,
2

= Zp, , Eq. (3.17) can be written as foil ows:

2 2
Z / - Z / + Z RW s

) = ——-—— •

(3J8)
P Z

ll
+ R

Thus, for the driving-point impedance to equal R ohms, it is required

that the right-hand portion of Eq. (3.18) equal R. In other words

Zn
2

- Z
12

2
+ Zn R = Z^R + R

2
(3.19)

or Z^ 2
= Z

]2

2
+ R

2
. (3.20)

Substituting (3.5) and (3.6) into (3.20) yielded

1/4 (Za
2

+ 2ZaZb + Zb
2

) = R
2

+ 1/4 (Zb
2

- 2ZaZb + Za
2

) (3.21)

or ZaZb = R
2

If R is normalized to 1 ohm, then Eq. (3.22) implies that, in order for

the driving-point impedance to equal the constant value 1, Za and Zb

must be reciprocal impedances.

Using the normalized value for R and noting the fact that V
?
„, = -I

2
,

the following relations were obtained from Eqs. (3.1) and (3.2):

23



Vir
= l^l-i - Z

12
V
22

, (3.23)

and V
22

,
- Z

21
I

]
- T-^ll* • (3.24)

Again, using the relations Z,, = Z
?2

and Z,
?

= Z
?

, , the voltage

transfer function defined by

H(s) = tt^- (3.25)

was found. Multiplying (3.23) by Z,
2

and (3„ 24) by Z,, and

subtracting yielded

(Z
11

2 -Z
12

2
+ Z

11
)V

22
,

= Z
12

Vn , (3.26)

*99' 19
or H(s) = tj^- = o

[d

p
. (3.27)

hv (z^-z^ + z,,)

Substituting (3 e 5) and (3,6) into (3. 27) gave

H < s > Za Ala* Zb •
< 3 - 28 '

Since R is normalized to 1 ohm, Zb = 1 /Za was substituted into Eq. (3.28)

obtaining

H(s) = f^|| (3.29)

or Za « T"T-r|s}
(3 ' 30)

and Zb = 1/Za (3.31)

thus yielding a synthesis possibility for the constant-resistance

symmetrical lattice*
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The restrictions that must be placed on H(s) in order for Za to be

realizable will now be examined.

First of all, H(s) can have no poles in the RHP. This restriction,

of course, applies to all output-to-input transfer functions. Secondly,

H(jw) must be bounded and less than or equal to 1 . A cogent discussion

of the second requirement is given in Ref. 5. Thus, for Za and Zb

to be positive real and, therefore, realizable, the following require-

ments must be met:

(1) H(jco) has no poles in the RHP or on the jco axis.

(2) |H(ju))| <_ 1.

Baycura [Ref. 6] outlines in detail a method for realizing the Sierra

transfer functions as constant-resistance symmetrical lattice networks

using the relations given in Eqs. (3.30) and (3.31). In fact, Ref. 6

contains the realization of the Sierra transfer function for N = 9 and

K = 2. Similar techniques will now be applied in realizing the Sierra

transfer function for N = 8 and K = 2 using the relations given in Eqs.

(3.12) and (3.13).
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IV „ SYNTHESIS O F THE SIERRA TRANSFER FUNCTION FOR N=8 AND K=2

Employing Eqs. (3.12) and (3.13) as a synthesis possibility for the

unloaded symmetrical lattice, synthesis techniques for the Sierra trans-

fer function for N - 8 and K - 2 were demonstrated. The outputs of the

computer programs discussed in Chapter II were used extensively and

greatly simplified the synthesis task. It is noteworthy that the syn-

thesis techniques outlined herein can be readily applied to any of the

Sierra transfer functions, the poles of which are located in the left-

hand plane.

A. SYNTHESIZING THE IMPEDANCE Za(s)

The transfer function for N = 8 and K = 2 was divided by H(s) MAX

to obtain

H*fO - H
(
S

J
-

a
3
S + a

2
S + a

l

s + a
, .

H ^ s '
" h/vv mat " —

7
~ ~~?

—

— {^-nHIS] MAX
(
^ + xls + X2)(^ + X3s + x4)

The technique of resistance padding discussed by Guillemin [Ref. 7]

could have been used, thus alleviating the necessity of dividing H(s)

by H(s) MAX, This technique, however, can also be applied after the

transfer function is normalized.

Za(s), as given in Eq. (3.12) can now be written as

Za(s) - 1 - H*(s) = 1 -
jSJjf}

(4.2)

Za(s) =
D(s)

p^ (s)
. (4.3)

Writing Za(s) as a ratio of polynomials

26



Za(s) =
A4s

!
+ A3% * Kj + AU + A0

. (4.4)
B4s + B3s + B2s + Bis + BO

Program Number Two provided the poles and zeros for the original

transfer function, H(s). Since the poles of Za(s) given in Eq. (4.4)

are the same as the poles of the original transfer function, (4.4) was

expanded in partial fractions as follows:

Za( s) = ^JLi + Csi^ + E (4>5)

s + Xls + X2 s + X3s + X4

Using the output of Program Number Two for N = 8 and K = 2, the

factorization required by (4.5) was performed and the values of XI, X2,

X3, and X4 were thus obtained.

Equations (4.4) and (4.5) are identities and must, therefore, be

equal for all values of s. After equating (4.4) and (4.5) and clearing

fractions, five equations in five unknowns were obtained. Program

Number Five provided the denominator coefficients of Eq. (4.4), thereby

simplifying the task of clearing fractions.

An existing subroutine was used to solve the above equations. The

results were:

A = 0.47590151 = 0.48

B = 13.81737083 ~ 13.82

C = -1.18232859 ~ -1.18

D = -20.97217061 * -20.97

E = 1.70642708 ~ 1.71

Substituting these values into Eq. (4.5) yielded

Za(s) = V8s ' + 13 ' 82
+ t 185 ' - 20 ' 97

1.71 (4.6)
s + 3.68s + 15.34 s + 1.15s + 13.43
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or Za(s) = Z^s) + Z
2
(s) + Z

3
(s) . (4.7)

The equivalent impedance of a series LC circuit shunted by a resis-

tance R was found to be

2

Z(s) = H + R/LC
. (4.8)

s + R/l s + 1/LC

Thus, the first term in (4.6), Z, (s) , can be realized as a series LC

circuit shunted by a resistance R.

The second and third terms of (4,6) were written as follows:

Z (S)+Z(S) . -1-18S
2

- 20.97 + 1.71(s
2
+U5s+13.43)

. (4>g)
c J

s + 1.15s + 13.43

Simplifying yielded

7 (c\ 7 (c\ 0o53s
2

+ 1.975 + 2.03 ,. ...
Z„(s) + Z~(s) s -? . (4.10)

J
s + U5s + 13.43

Equation (4.10) was written as follows:

7 / c x 7 / c n 0.53s
2

+ 2.03 1.97s ,, ,,J
Z9 (s) + Z~(s) s -? + -5 (4.11)
c J

s + 1.15s + 13.43 s^ + 1.15s + 13.43

Z,(s) -
?

53$2 + 2 - 03
(4.12)

L
S + 1.15s + 13.43

and Z-(s) = -* }-^h
. (4.13)

6
s + 1.15s + 13.43

Z«(s) is now in the form of Eq. (4.8) and can, therefore, be realized as

a series LC circuit shunted by a resistance.

The equivalent impedance of a parallel RLC circuit was found to be

28



Z(s) = -* (1/C) S
. (4.14)

s + (l/RC)s + (1/LC)

Equation (4.13) has the same form as (4.14) and can, therefore, be

realized as a parallel RLC circuit. Thus, Za(s) can be realized as

three RLC circuits in series. Similar synthesis techniques can be

applied to obtain a realization for Zb(s).
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V. CONCLUSIONS

The Sierra Filters, like the linear phase filters discussed by Kuo

[Ref. 8], produce increasingly complex transfer functions as the number

of terms in the continued fraction expansion is increased.

Several computer programs were written to provide a host of useful

design parameters for virtually all the Sierra transfer functions ranging

from N = 2 through N = 9 with the compression ratio and frequency varying

over a significant range* Although these programs do not provide all the

design parameters that may be required, they frequently simplify the task

of obtaining others,.

The use of small-scale programs that are designed to provide an out-

put over a wide range of parameter variations can sometimes be more

effective than the large-scale programs, some of which seem to handle

parameter variations awkwardly and provide redundant information.

Some synthesis techniques were delineated, primarily to demonstrate

the value of these small-scale programs in synthesizing the transfer

functions and, secondly, to demonstrate a synthesis technique that is

relatively simple and can be applied to all the Sierra transfer functions

that are realizable using passive elements.
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c

C PROGRAM NUMBER ONE
C

C —TAYLOR—THESIS
C

C THIS PROGRAM GENERATES SAMPLE VALUES OF INPUT

C GAUSSIAN PULSE FOR VARIOUS VALUES OF STANDARD
C DEVIATION (SIGMA). THE MEAN IS EQUAL TO ZERO FOR

C CONVENIENCE.
C

DIMENSION A(61),B(61),D(61,2),JXY(2)
Z=l .OOOOOOOO

10 WRITE (6,20)
20 FORMAT (1H1 ,4HTIME,7X,5HSIGMA,8X,8HFUNCTI0N,//)

T=-3. 00000000
C

C CALCULATE THE INPUT PULSE VALUE AS A FUNCTION OF

C TIME AND ITERATE THE VALUE OF SIGMA.
DO 40 1=1,61

X=-(Z*T)**2
F=EXP(X)
A(I)=F
B(I)=T
SIGMA=1./(SQRT(2.)*Z)

C

C PRINT OUT TIME, STANDARD DEVIATION AND VALUE OF

C INPUT PULSE.
C

WRITE (6,30) T, SIGMA,

F

30 FORMAT (1H ,F4.1 ,2F14.8)
T=T+0. 100000000

40 CONTINUE
C

C STORE VALUES IN A MANNER ACCEPTABLE TO THE PLOT
C ROUTINE.

C

DO 50 1=1,61

D(I,1)=B(I)
50 D(I,2)=A(I)

JXY(1)=1
JXY(2)=2

C

C PLOT THE INPUT PULSE VERSUS TIME FOR VARIOUS VALUES
C OF STANDARD DEVIATION.
C

CALL VPLOT (D,JXY,61,61,1,0,XMIN,XMAX,YMIN,YMAX)
Z=Z+0. 100000000
IF(Z.EQ.4.0) GO TO 70

60 GO TO 10

70 STOP
END
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FUNCTION F(X)

F=EXP(X)
RETURN
END
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c

C PROGRAM NUMBER TWO
C

C ---TAYLOR—THESIS
C

C THIS PROGRAM GENERATES THE POLES AND ZEROS FOR THE

C SIERRA TRANSFER FUNCTIONS FOR VALUES OF COMPRESSION
C RATIO (TK) VARYING FROM 1.1 THROUGH 10.0 IN

C INCREMENTS OF 0.1.

C

C N=8

C

COMPLEX P1,P2,Z1,Z2,S1,S2,R1,R2
WRITE (6,10)

10 FORMAT (1H1,1X,2HTK,6X,3HPHI,14X,5HP0LES,19X,
1 5HP0LES , 1 9X .5HZER0S ,1 9X 9 5HZER0S ,//

)

C

C READ IN THE PSEUDO POLES AND ZEROS FOR THE

C TRANSFER FUNCTION.
C

Rl=( 1.68054837,0,00000000)
R2=(l. 64112335, 0.59616025)
S1=(0. 79700116, 1,49720209)
S2=(0. 25004402, 1.56720106)
TK=1.1

C

C CALCULATE THE POLES AND ZEROS.

C

DO 30 1=1,90
PHI=2,*TK/SQRT(TK**2-1.)
P1=PHI*S1
P2=PHI*S2
Z1=PHI*R1
Z2=PHI*R2

C

C PRINT OUT THE POLES AND ZEROS AND THE CORRESPONDING
C COMPRESSION RATIO.
C

WRITE (6,20) TK,PHI,P1,P2,Z1,Z2
20 FORMAT (1H ,F3,1 ,9F1 2.8)

TK=TK+0.1
30 CONTINUE

STOP
END
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c

C PROGRAM NUMBER THREE
C

C —TAYLOR—THESIS
C

C THIS PROGRAM COMPUTES AND PLOTS THE MAGNITUDE AND

C PHASE OF THE SIERRA TRANSFER FUNCTIONS FOR VALUES
C OF COMPRESSION RATIO VARYING FROM 1.2 THROUGH 3.0
C AND OMEGA VARYING FROM ZERO TO TEN RADIANS PER SEC. ,

C

COMPLEX T,R1 ,R2,R3,R4,S1 ,S2,S3,P1 ,P2,P3,P4,Z1 ,S4,

1Z2,Z3,Z4,W1,W2
DIMENSION A(100),B(100),C(100),D(100,2),E(100,2),
1JXY(2)

10 READ(5,20) TK
20 FORMAT (F10.9)

N=8

WRITE (6,30) N

30 FORMAT (1H1,29HMAG AND PHASE VS OMEGA FOR N=,I1,//1X,
12HTK,6X,10H0MEGA(RAD),5X,10H0MEGA(DEG),7X,
19HMAGNITUDE,9X,5HPHASE,//)
W=0, 00000000

C

C GENERATE THE SIERRA TRANSFER FUNCTION IN A MANNER
C THAT PERMITS ITERATION OF OMEGA AND COMPRESSION RATIO,

C

DO 70 1=1,100

PSI=2.*TK/SQRT(TK**2-1.)
R1=CMPLX(-1 . 68054837, 0,00000000+W/PSI)
R2=CMPLX(-1. 641 12335, 0.5961 6025+W/PSI)
R3=CMPLX (-1 . 641 1 2335 , -0 . 5961 6025+W/PSI

)

SI =CMPLX (0.7970011 6, 1.49720209+W/PSI)
S2-CMPLX(0, 7970011 6, -lo49720209+W/PSI)
S3*CMPLX(0. 25004402 ,1.56720106+W/PSI)
S4-CMPLX(0. 25004402,-1. 567201 06+W/PSI)
P1=PSI*S1
P2=PSI*S2
P3-PSI*S3
P4=PSI*S4
Z1=PSI*R1
Z2-PSI*R2
Z3-PSI*R3
Z4=CMPLX(1.0,0.0)
W1=Z1*Z2*Z3*Z4
W2=P1*P2*P3*P4
T=(1./TK)*(W1/W2)

C

C COMPUTE THE MAGNITUDE OF THE TRANSFER FUNCTION.
C

TMAG-CABS(T)
A(I)=TMAG
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c

C COMPUTE THE PHASE OF THE TRANSFER FUNCTION.

C

PHASE=57.29578*(ATAN2(AIMAG(W1),REAL(W1))
3-ATAN2(AIMAG(W2),REAL(W2)))

C

C APPLY SCALE FACTOR TO PHASE.

50 C(I)=PHASE/10.0
C

0MEGA=57.29578*W
B(I)=OMEGA

C

C PRINT OUT COMPRESSION RATIO, OMEGA IN RADIANS AND
C IN DEGREES, MAGNITUDE AND PHASE.

C

WRITE(6,60) TK,W, OMEGA, TMAG, PHASE
60 F0RMAT(1H ,F3.1 ,4F16.8)

W=W+0.1
70 CONTINUE

J=25
NDIM=100

C

C PLOT THE MAGNITUDE AND PHASE VERSUS OMEGA.

C

DO 80 1=1,

J

D(I,1)=B(4*I-1)
D(I,2)=A(4*I-1)

80 CONTINUE
JXY(1)=1
JXY(2)=2
CALL VPL0T(D,JXY,J,NDIM,1 ,0,XMIN,XMAX,YMIN,YMAX)
DO 90 1=1, J

E(I,1)=D(I,1)
E(I,2)=C(4*I-1)

90 CONTINUE
CALL VPL0T(E,JXY,J,NDIM,1 ,0,XMIN,XMAX,YMIN,YMAX)
IF(TK.EQ.3.0) GO TO 100

GO TO 10

100 STOP
END
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c

c

c

c

c

c

c

c

c

PROGRAM NUMBER FOUR

—TAYLOR—THESIS

THIS PROGRAM COMPUTES THE MAXIMUM MAGNITUDE OF THE
SIERRA TRANSFER FUNCTIONS FOR VALUES OF
COMPRESSION RATIO RANGING FROM 1.2 THROUGH 3.0.

COMPLEX T,R1 9 R2,R3,R4,S1 ,S2,S3,S4,P1 ,P2,P3,P4,Z1

,

1Z2,Z3,Z4,W1.W2
DIMENSION A(500),B(500),C(500)
N=8
WRITE (6,40) N

40 FORMAT (1H1,27HHMAX VS OMEGA AND TK FOR N=,I1,//2X,
12HTK 9 7X 5 10H0MEGA(RAD),6X,10H0MEGA(DEG),13X,
18HMAG(MAX),/)

READ IN DELTA, TK, AND J. DELTA IS THE STEP SIZE
FOR OMEGA, TK IS THE COMPRESSION RATIO AND J IS AN
INDICATOR.

10 READ(5,20) DELTA,TK,J
20 F0RMAT(2F10.9,I1)
30 W=0. 00000000

B(1)=0„ 00000000
50 1=2

GENERATE THE TRANSFER FUNCTIONS IN A MANNER THAT
PERMITS ITERATION OF COMPRESSION RATIO AND OMEGA.

60 PSI=(2.*TK)/SQRT((TK**2)-1.)
Rl <MPLX ( -1 . 68054837 ,0 . OOOOOOOO+W/PSI

)

R2=CMPLX (-1 . 641 1 2335 ,0. 5961 6025+W/PSI

)

R3=CMPLX(-1, 641 12335, -0.5961 6025+W/PSI)
Sl-CMPLX(0o79700116
S2<MPLX(0. 79700116
S3=CMPLX(0. 25004402
S4=CMPLX(0c 25004402.

P1=PSI*S1
P2=PSI*S2
P3=PSI*S3
P4=PSI*S4
Z1=PSI*R1
Z2-PSI*R2
Z3=PSI*R3
Z4=CMPLX(1. 0,0.0)
W1=Z1*Z2*Z3*Z4
W2^P1*P2*P3*P4
T=(1./TK)*(W1/W2)

1.49720209+W/PSI)
-1.49720209+W/PSI)
1.56720106+W/PSI)
-1,56720106+W/PSI)
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C COMPUTE THE MAGNITUDE OF THE TRANSFER FUNCTION.
C

TMAG=CABS(T)
A(I)=W
C(I)=57.29587*A(I)
B(I)=TMAG

C

C COMPUTE THE MAXIMUM MAGNITUDE BY CONTINUALLY
C PASSING THROUGH IT AND REDUCING THE STEP SIZE

C FOR OMEGA.
C

IF(B(I)-B(I-1)) 80,70,70
70 W=W+DELTA

1=1+1

GO TO 60

80 W=A(I-2)
READ(5,90) DELTA, TK,J

90 F0RMAT(2F10.9,I1)
IF(J) 130,120,100

C

C PRINT OUT THE MAXIMUM MAGNITUDE, OMEGA IN DEGREES
C AND IN RADIANS AND THE COMPRESSION RATIO.
C

100 WRITE(6,110) TK,A(I-1),C(I-1),B(I-1)
110 F0RMAT(1H ,F4.1 ,2F16.8,F22.8)

GO TO 10

120 1=1+1

GO TQ 60

130 STOP
END
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C PROGRAM NUMBER FIVE

C

C ---TAYLOR—THESIS
C

C THIS PROGRAM COMPUTES THE NUMERATOR/DENOMINATOR
C COEFFICIENTS OF THE SIERRA TRANSFER FUNCTIONS
C FOR VALUES OF COMPRESSION RATIO (TK) RANGING
C FROM 1„1 THROUGH 10,0 IN STEPS OF 0.1.

C

C READ IN THE PSEUDO POLES AND ZEROS, THE

C COEFFICIENT OF THE FOURTH POWER OF S AND THE
C INDICATOR, I.

C

10 READ (5,20) A,B,C,S4 9 I

20 F0RMAT(4F12.8,I1)
TK=1.1
N-8

C

C IF I IS LESS THAN ZERO, RHP ZEROS ARE BEING
C USED. IF I IS EQUAL TO ZERO, LHP ZEROS
C ARE BEING USED,

C

IF(I-l) 30,50,100
30 WRITE(6,40) N

40 F0RMAT(1H1,28HNUMERAT0R COEFFICIENTS USING, /1X,
130HRHP ZEROS AND LHP POLES FOR N=,I1 ,//2X,2HTK,
19X,2HS0,15X,2HS1,15X,2HS2,15X,2HS3,15X,2HS4,//)

C

C GENERATE THE COEFFICIENTS.
C

70 PSI=(2 3 *TK)/SQRT(TK**2-1„)
A1=((B**2)+(C**2))
S0=(PSI**3)*A*A1
Sl=(PSI**2)*(Al+2o0*A*B)
S2=PSI*(A+2,0*B)
S3=lo 00000000

C

C PRINT OUT THE COEFFICIENTS AND CORRESPONDING
C VALUE OF COMPRESSION RATIO
C
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WRITE(6,80) TK,S0,S1,S2,S3,S4
80 F0RMAT(1H ,F4.1 .5F16.8)

IF(TK.GT.9.9) GO TO 10

90 TK=TK+0.1
GO TO 70

STOP
END
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STORAG
TABLE

PARAM

CONTRL
PRINT
PREPAR
GRAPH
PRPLOT
END

PARAM
END

PARAM
END

PARAM
END

STOP
FORTRAN

PROGRAM NUMBER SIX

—TAYLOR—THESIS

THIS PROGRAM PROVIDES THE OUTPUT PULSE
FOR A SPECIFIED INPUT AND TRANSFER FCN,

IC(4),NUM(4),DEN(5)
IC(l-4M*0,NUM(l-4)=0„5,-5.7305 9 ...

22.8391,-31.5524,DEN(1-5)=1,4.8360,...
33.02724,67.1682,206.0996
TMU=3.0,SIGMA=0.9
Y-GAUS(TMU, SIGMA,TIME)
0UT-TRNFR(3,4,IC,NUM,DEN,Y)
FINTIM=8,DELT=0.1
0.1,Y,0UT,DELT
0.1, OUT
TIME, OUT

ONLY

SIGMA-O. 70710678

SIGMA-O- 58925565

SIGMA-O. 41594517

REAL FUNCTION GAUS(TMU, SIGMA,TIME)
GAUS-EXP((-0.5)*((TIME-TMU)/SIGMA)**2)
IF(ABS(GAUS).LEo0c01) GO TO 5

RETURN
GAUS-0.0
RETURN
END
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