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Effect of Rib Flexibility on the Vibration Modes of a
Delta-Wing Aircratft

Wilhelmina D. Kroll

A systematic study was made to determine whether decreasing the number of ribs or
making the ribs more flexible would have any appreciable effect on the vibration modes and

frequencies of a delta-wing aircraft.

The modes and frequencies were computed for the

basic wing and for the following modifications of the basic wing: (1) One rib outboard of
the fuselage removed, (2) two ribs removed, (3) stiffness of ribs outboard of fuselage reduced

one-half, and (4) rib stiffness reduced nine-tenths.

The results indicated that the frequencies

and mode shapes of the modified wings differed little from those of the basic wing and,
therefore, that changes similar to these modifications would not appreciably affect the vibra-

tion characteristics of delta wings.
1. Introduction

The designer of an airplane might eliminate some
of the wing ribs or reduce their stiffnesses if he were
faced with the problem of providing room for fuel
tanks or other stores in the airplane wing or of making
the wing thinner for flicht at higher speeds. As a
result of these structural modifications, the airplane
wings during flicht might be subject to chordwise
bending with attendant changes in the modes and
frequencies of the wing vibration.

An experimental investigation on model wings was
carried out at the Southwest Research Institute to
determine the effect of chordwise bending on the
flutter characteristics of several shapes of wings [1].!
The models were low-aspect ratio cantilever wings
having wing-bending, wing-torsion, and rib-bending
degrees of freedom. The bending and torsion stiff-
nesses of the wings were kept fixed but the rib
stiffnesses were reduced by cutting the main ribs at
three chordwise stations and then reconnecting
adjacent sections of the ribs with steel beam-type
springs of specified stiffnesses. The critical flutter
speeds of the wings for four different values of rib
stiffness were obtained in a wind tunnel at subsonic
speeds.  One of the conclusions from this study was
that decreasing the rib-bending stiffness of an airplane
wing consistently decreases its critical flutter speed.
The reduction in critical flutter speed was 13 percent
of the rigid rib condition for the delta wing, 22 per-
cent for the 45 degree sweptback wing, and 40 percent
for the straight wing.

This experimental work led to the present investi-
gation in which the purpose was to determine if the
computed natural modes and frequencies of airplanes
which differ in chordwise stiffness would indicate
that one might expect a reduction of critical flutter
speed for full-scale airplanes similar to the reduction
found in the model experiments. No flutter analyses
were made.

As the trend for high-speed, low-aspect ratio, thin
wings is toward the delta shape, a delta-wing airplane
was used for this study. The vibration modes and
frequencies of the airplane were computed. The
wing structure was then modified so as to differ from

1 Figures in brackets indicate the literature references at the end of this paper.

the original in having lower chordwise stiffnesses.
These modifications were: (1) One rib outboard of
fuselage removed, (2) two ribs outhoard of fuselage
removed, (3) stiffnesses of ribs outboard of fuselage
reduced one-half, and (4) rib stiffness reduced nine-
tenths. The frequencies and modes of vibration of
these modified wings were also computed.

This work was done at the National Bureau of
Standards under the sponsorship and with the
financial assistance of the Bureau of Aeronautics,
Department of the Navy.

2. Structure

The airplane chosen for this study had a delta
wing with 6 spars and 12 ribs, figure 1. The actual
structure was simplified, for ease of computation,
into the structure of figure 2 which had the same
number of spars but only 5 ribs. The moments of
inertia of the 5 composite ribs were equal to those of
the 12 ribs in the actual structure. The simplified
structure had, therefore, the same torsional and
bending properties as the original one. Rib 5 was
on the centerline of the airplane, rib 4 was at the
junction of the wing and the fuselage and ribs 1, 2,
and 3 were all outhboard of the fuselage. The loca-
tions of the spars and composite ribs are shown in
figure 2.

The following four modifications of the wing which
would result in the wing having less chordwise stiff-
ness were considered :

Case A.1 Rib 2 removed from wing.

Case A.2 Ribs 1 and 3 removed from wing.

Case B.1 Stiffnesses of ribs 1, 2, and 3 reduced to
half their original values.

Case B.2 Stiffnesses of ribs 1, 2, and 3 reduced to

one-tenth their original values.
These modified wings are shown in figure 3.

3. Influence Coefficients

The method of obtaining the influence coefficient
matrix of the wing is described in reference [2]. It
is a method of consistent deformations. The total
load carried by the wing is considered to be the sum
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Fraure 1. Structure of delta-wing airplane.
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Ficure 2. Location of stations on the wing and fuselage of

simplified structure.

of the loads carried (1) by the spars in bending, (2)
by the ribs in bending, and (3) by the cover sheet in
torsion.

In computing the influence coefficients, the follow-
ing conditions were used:

(1) The station at the junction of rib 5 and spar 6,
station 60, was clamped.

(2) The leading edge of the wing had no bending
stiffness.

N\
Case A.1 Case A.2
[TT N\
Case B.! Cose 8.2

Fraure 3. Modifications of basic wing.

Case A.1, Rib 2removed from wing; Case A.2, ribs 1 and 3 removed from wing;
Case B.1, bending stiffness of ribs 1, 2, and 3 reduced to one-half their original
stiffness; Case B.2, bending stiffness of ribs 1, 2, and 3 reduced to one-tenth their
original stiffness.

(3) The spars extended to the leading edge. The
moment of inertia of a spar at the leading edge was
zero, condition (2), but was taken arbitrarily as 3.5
in.* so that influence coefficients for stations on the
leading edge could be computed. This value of 3.5
in.* 1s small compared to moments of inertia at other
stations along the spar.

(4) Half of the fuselage stiffness was added to the
stiffness of rib 4 in computing the influence coefficient
matrix for symmetric modes.

(5) One-tenth of the fuselage stiffness was added
to the stiffness of rib 4, and the torsional stiffnesses
of the torque boxes between ribs 4 and 5 were in-
creased by a factor of 10 in computing the matrix
for the antisymmetric modes.

(6) For the torsion boxes, the triangular segments
of the wing form part of the adjacent rectangular
boxes.

3.1. Influence Coefficients for Unmodified Wing

The influence coefficient matrix for the symmetric
case gives the deflection at point n due to a unit up-
load at point m on both sides of the wing when sta-
tion 60 is clamped. The influence coefficient matrix
for the antisymmetric case gives the deflection at
point 7 due to a unit up-load at point m on the left
half of the wing and a unit down-load at point m
on the right half of the wing with station 60 clamped.
Therefore, the deflections of the wing as given by the
influence coefficient matrix are those obtained by
subtracting from the wing deflection at the various
stations the deflection of a plane tangent to the wing
at station 60.
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a. Influence Coefficients for Symmetric Modes

For the symmetric modes, the reference plane for
the deflections has displacement and pitch but no
roll.  The slope of the reference plane normal to the
fuselage axis must be zero along the fuselage axis.

The influence coeflicients were computed by
SEAC, Standards Eastern Automatic Computer, for
each of the spars and ribs considering the root sta-
tions clamped. The method used is explained in
[3].  The root stations for the spars were along the
fuselage axis and those for the ribs along spar 6,
figure 2. For spars 1 to 5, the root stations can be
displaced but the slopes at those stations are zero
due to the symmetrical loads on the other half of

the wing. In watrix notation, for spars 1 to 5, the
computation above yields
{y—yd=[e{L} (1)

where
{y—y.} 1s the matrix of deflections at all stations
but the root station ¢,
[6] is the matrix of influence coefficients con-
sidering the root station clamped,
{L} is the load matrix for all stations but the
root station ¢.
For spar 1, for example, the following matrix using
the data of table 1 was obtained

yn—yw}* 0.0000198943 0.0000444295 /,11
Y12— Y10y L .0000444295 0001295786 1,12
(1a)
To obtain the loads in terms of the deflections, from
(1),
= 7_.7/1} (2)

where [6]7! is the inverse of [§]. This is eq (11a), [2]

TaBLE 1.—Data needed to delermine influence coefficients

of spar 1

Station Distance Moment of |

from rib 5 inertia

in. in.t

10 0 124. 55
a 7 112. 00 |
b 14 | 100. 80 |
c 21 90. 20 ‘
| d 28 79.80 |
| | |
S B 69.04 |
‘ e 42 59.40 |
f 49 49. 50 |

‘ g 56 39. 49

‘ h 63 29.70
|
| 12 65 25.00 |

For spar 1, from (1a),
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— 145955 .4 Yii— 7/1“
175689.7 ?/17—7/10

- 251275 —145955.4 —105320 1/11
145955.4 175689.7 —29734.3 I/]}
7/1(.
‘).
However, in symmetric motion, the sum of the ver-
tical forces is equal to zero, or
L=-—L—-L—...—-L;...—L, (3)

where the subseript ¢ refers to the root station and
other subscripts to the other stations along the
spars. Applying this to eq (2a) for spar 1, the Toads
at all the stations on spar 1 in terms of the deflec-
tions at those stations for a root condition of free
displacement, zero root slope, are

(L)

Ly

L]«WJ
251275  —145955.4 —105320 T (yu)
=| —145955.4  175689.7 —29734.3 ylgk.
— 105320 —29734.3 135054 | Ly )
(3a)

The loads for spars 2, 3, 4, and 5 were obtained in a
similar manner. The loads in spar 6 and in rib 5
were obtained by using eq (2b), reference (2], which
is applicable for a clamped root condition. Equa-
tions (11) and (12), reference [2], were used to
determine the loads in ribs 1 to 4 with free root
conditions.

The loads carried by the individual torsion boxes
were computed according to the method outlined in
reference [2].

The deflections equivalent to the loads carried by
the spars, ribs and torsion boxes were summed to
give the external load carried by the composite wing.
The matrix relating the external loads to the de-
flections, or the composite stiffness matrix, was then
inverted to give the symmetric influence coefficient
matrix for the wing.

b. Influence Coefficients for Antisymmetric Modes

For the wing in antisymmetric vibration, the air-
plane will have roll but no pitch or displacement
relative to a plane tangent to the airplane wing at
station 60. This would mean that the fuselage axis
could rotate but not deflect, and, therefore, the
deflections at stations along the fuselage axis would
be zero.

As in the case for symmetric modes, the influence
coefficients, considering the root clamped, were
computed for the ribs and spars by the method of
reference [3]. The loads carried by spars 1 to 5 were
obtained by use of eq (10), reference [2], for a simply-
supported root condition; the loads carried by spar



6 were given by eq (2b), reference [2], for a clamped
root condition; and the loads carried by ribs 1 to 4
were given by eqs (11) and (12), reference [2], for a
free root condition. No computations were made
for rib 5 because rib 5 is along the fuselage axis and,
as stated above, the deflections would be zero.

The loads carried by the individual torsion boxes
were computed as outlined in reference [2].

The composite stiffness matrix for antisymmetrical
vibration, obtaimned by summing the deflections
equivalent to the loads carried by the spars, ribs, and
torsion boxes at the various wing stations, was
inverted to give the antisymmetric influence co-
efficient matrix. .

3.2. Influence Coefficients for Wings With Ribs
Removed

Two different configurations of the wing with
fewer ribs than the basic wing were investigated.
In case A.1, rib 2 was removed and in case A.2, ribs
1 and 3 were removed. It was assumed, in com-
puting the influence coefficients, that shear webs were
present to transmit shear at the locations of the
removed ribs but that these shear webs contributed
nothing to the bending stiffness of the wing. Tt is
believed that this assumption would not cause large
errors in the results.

The composite stiffness matrix for case A.1 was
obtained by summing the deflections equivalent to
the loads carried by the spars, by ribs 1, 3, 4, and 5,
and by the torsion boxes.

The composite stiffness matrix for case A.2 was
obtained by summing the deflections equivalent to
the loads carried by the spars, by ribs 2, 4, and 5,
and by the torsion boxes.

The composite stiffness matrices were inverted to
give the influence coefficient matrices. y
3.3. Influence Coefficients for Wings With Reduced

Flexibility

In order to study the effect of reduced rib flexi-
bility of the entire wing outboard of the fuselage on
the vibration characteristics of the airplane, the ribs
in that region were considered to have one-half of
their original stiffness in case B.1 and one-tenth of
their original stiffness in case B.2. The composite
stiffness matrices differed from those for the basic
wing by having the deflections equivalent to the
loads carried by ribs 1, 2, and 3 reduced by 50 per-
cent in case B.1 and by 90 percent in case B.2.
The influence coefficient matrices were obtained by
inverting these stiffness matrices.

4. Modes of Vibration

The modes and frequencies of the airplanes were
computed by SEAC. The method of computation
and the codes written to do this work on SEAC are
described in reference [4]. The masses at stations
along the fuselage axis were considered lumped with
those on rib 4 which is at the junction of the wing
and fuselage. The locations of the stations and the

TABLE 2. Masses at stations and location of stations.
Spanwise | Chordwise
Station Mass location location
X z

b sectin. in. in.

61 3. 79503 35 0

62 0.14034 65

63 . 14195 95

64 . 32369 125

65 . 18343 198. 6

50 0 0 37

51 3.71553 35

52 0. 12099 65

53 .12093 95

54 . 12707 125

55 .16938 177.1

40 0 77

41 2. 82958 35

42 0.31897 65

43 29490 95

44 15024 125

45 05325 154.1

30 0 0 121

31 1.38148 35

32 0. 50266 65

33 37260 95

34 08068 125

20 0 0 165

21 1. 61046 35

22 0. 48945 65

23 15619 95

10 0 0 209

11 4. 55061 35

12 0. 26255 65

02 2. 34865 35 320

01 3. 26669 35 420

masses at the stations are given in table 2. These,
together with the composite influence coefficient
matrices, were used in the computation.

The frequencies of the symmetric and antisym-
metric modes of vibration of the basic wing and of
the four modified wings are given in table 3. The
nodal lines and relative displacements of parts of the
airplane wing and fuselage are shown in figure 4 for
the symmetric modes of vibration and in figure 5
for the antisymmetric ones. In a particular mode
of vibration, the cross-hatched parts of the airplane
would be deflected downward and the other parts
upward, or vice versa.

The normalized deflections of the wing in the
symmetric and antisymmetric modes for case B.1,
wing-rib stiffness 50 percent of original stiffness, are
plotted in figure 6. The dotted lines indicate nega-
tive deflections of the wing and the solid lines, posi-
tive deflections. These are typical of the results
obtained in the other cases. The values of the de-
flections for the symmetric case are given in table 4.

5. Results and Discussion

The ratios of the frequencies for the modified wings
to those of the basic wing were computed and are
given in table 5. It is seen from the values of the
ratios that, for the first three modes of symmetric
and antisymmetric vibration, the frequencies of the
modified wings are within 2 percent of the frequencies
for the unmodified wing. In the fourth symmetric
mode, however, the frequency for case A.2, two ribs
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TaBLE 3. Natural frequencies of wings
ModeSeauses 1 2 3 4
~__Frequency
- rad/sec cps rad/sec cps rad/sec cps rad/sec cps rad/sec cps
ase
SYMMETRIC
48.78 7.76 69.14 11. 00 133. 90 21.31 168. 68 20255 ] ST [
48.29 7.69 68.71 10. 94 133. 24 21.21 159. 51 25. 39 185. 34 29. 50
48.28 7.68 68. 59 10. 92 133. 01 21.17 142. 42 22. 67 181. 07 28. 82
48. 34 7.69 68. 65 10. 93 133.41 21.23 152. 95 24,34 183.37 29.18
47. 86 7.62 68. 56 10. 91 131.89 20.99 135. 72 21. 60 179. 88 28.63
ANTISYMMETRIC
19.36 3.08 58.08 9.24 97. 67 15. 54 120. 41 19.16 151.33 24. 08
19. 36 3.08 57.77 9.19 97. 59 15.53 119. 44 19.01 150. 85 24.01
19.34 3.08 57.43 9.14 97. 40 15. 50 117.84 18.75 144. 91 23. 06
19. 35 3.08 57.66 9.18 97. 50 15. 52 118. 86 18.92 149. 54 23. 80
19. 34 3.08 57.12 9. 09 97. 30 15.49 116. 53 18. 55 141. 44 22,51
Mode ! 2 [ 3 4
w, rad/sec 48.78 69.14 13390 168,68
{ Mode
%] & % @, rad/sec
Unmodified wing
B Unmodified wing
S =
Mode | 2 3 4
w, rad /sec o 48,29 68.71 133.24 159.51 Mode
U b ! <, rod/sec 57,77
Case Al 2
Wing rib 2 removed 9! %! Cose A.l
Wing rib 2 removed
r
= 2
Mode |
w, rad /sec 48.28 Mode !
w, rod/sec 1934 57.43
2
Case A,2
Cose A.2

Wing ribs / 83 removed F

Mode |
w, rad /sec 48.34

Case B.|

Wing ribs have 50%
of original stiffness

Mode |
w, rod/sec 47.86

Case B.2

Wing ribs have 10 %
of original stiffness

Ficure 4.

Nodal lines for symmetric modes of vibration.

Wing ribs |83 removed

Mode

@, rad/sec 57.66

Cose B, |

Wing ribs hove 50 %
of original stiffness

Mode

w, rad/sec 57.12

Case B,2

Wing ribs have 10 %
of original stiffness -

Ficure 5.
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Nodal lines for antisymmetric modes of vibration.
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(a) Symmetric modes
Mode | 2 &
(b) Antisymmetric modes -
TaBLE 4. Frequencies and normalized deflections of airplone Fraure 6. Normalized deflections for case B.1.
in symmelric modes of vibration for case B.1
N TaBLE 5. Ratios of frequencies of modified wings to those of
\\ n Y2 ¥s s s basic wing
© 8
Station \_ | 48.338 68. 646 133.406 | 152.951 183. 370 }\\
- = = Mode
61 —0.023366 | —0.597532 | 0.064970 |—0.030576 | 0.244639 1 2 3 4 5
62 055915 | —. 522353 | —. 221243 | —. 223263 - 070761 Case "\ |
63 181575 | —. 875047 | —. 554459 | —. 441755 | —. 166899 N
64 1353876 | —. 135694 | —.710990 | —.585403 | —. 359846 ‘
65 1.000000 | 1.000000 | 1.000000 | —. 127819 | —.214930 SYMMETRIC
50 —0.048380 |—0.273765 | 0.119176 | 0.024826 | —0.007621
51 —029958 | —. 256161 044341 | 018315 | —. 028416 ALl 0. 990 0.994 0.995 0.946
52 S017086 | —.203917 | —.137250 | 016923 | —.067289 A2 £990 L0992 1993 -844
53 1094203 | —.106702 | —. 372036 | 055241 | —. 068634 B.1 1991 1993 - 996 - 907
54 1203519 | .049471 | —. 570739 | 198112 £ 063063 B.2 Jo81 L992 1085 805 | ..
55 S490470 | .533566 | —. 539838 | 1.000000 |  1.000000 1 i
|
40 —0. 041609 0. 056758 0. 059669 0. 035455 —0. 192319 ANTISY MM ETRIC
41 —.035204 | .066205 | .027762 | 050300 | —.207610
42 — 016061 | .092546 | —.06148% | 000034 | —.225663
43 019798 | 142327 | —. 192616 | 205203 | —. 197289 Al 1. 000 0.995 ] 0.999 0. 992 0.997
44 076395 | .224714 | —.320063 | 372557 | —.067638 A2 0.999 989|997 1979 1958
45 150926 | .343674 | — 402425 | 606766 S177174 B.1 1999 993 | 98 L9087 L9588
B.2 1099 L9083 } - 996 L968 L9035
30 —0.036457 | 0.332393 | 0.018014 | 0.043027 | —0.217790
31 —.037428 | .332424 | 015574 042329 | —. 231232
32 —.037508 | .338331 | 002002 053431 | —. 275082
33 —[036011 | 343156 | —.000667 | 065737 | —. 207386
B2 SAEED [ GRRERE || SR G | =22 removed, was about 16 percent lower than the fre-
20 0035268 | 0408628 | 000608 | 0.008283 | —0. 77 quency for the basic wing. For this same mode,
21 = . 50005 s 1 .007191 —. 121 & < < c S
% 0036603 | .504075 | .007660 | 007018 | — 139345 case B.2, wing-rib stiffness 10 percent of basic wing-
= D | GRS | IR || = rib stiffness, showed a reduction of about 20 percent.
lo 005148 | 056203 | 0.000760 |-0.036406 | 0.050795 Although the fifth symmetric mode was not com-
= 57631 1000625 | —. - 053813 S . .
12 —. 031025 . 5é1933 . 000666 —. 037373 . 054991 puted‘for the ba‘SIC wing, the freq uaenciles Of the mOdl-
R R TP T O o s R R B fied wing differ little from each other, table 3, so it 1s
oo (046376 | —.793464 | 005584 | 045834 | —.147923 reasonable to assume that the reduction in frequency
is small for this mode also.
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The airplane whose ribs outboard of the fuselage
had a stiffness of only 10 percent of the original
stiffness, case B.2, showed the greatest reduction in
all frequencies, table 5. The airplane with only one
of its ribs outboard of the fuselage removed, case
A.1, showed the least reduction.

While the modes of vibration differ somewhat,
there seems to be little change in the general shape
of the vibrations for a particular mode even though
the chordwise stiffness of the wing outboard of the
fuselage was reduced drastically. This is indicated
by the positions of the nodal lines in ficures 4 and 5.
However, these graphs do show some regions of local
vibration, as for example, in case B.2 antisymmetric
where there is a local vibration extending from the
fuselage axis a short distance into the wing at
station 21.  The deflections in these local regions are
very small.

Figure 6 shows how the surface of the airplane
looks when vibrating in a particular mode. It should
be remembered, however, that these are normalized
deflections and that the magnitude of the deflections
in mode 5, for example, would be much smaller
actually than the deflections in mode 1.

6. Conclusions

Based on the results obtained in this study, rib
stiffness apparently has little effect on the modes or
frequencies of vibration of the delta wing. Modi-
fications of a delta wing similar to those investigated
in this paper would not appreciably affect the air-
plane’s vibration characteristics.

No reduction in critical flutter speed as a result of
decreased rib stiffness would be indicated from the
results.
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