
JavaScript/Print version

JavaScript

The current, editable version of this book is available in Wikibooks, the open-
content textbooks collection, at
https://en.wikibooks.org/wiki/JavaScript

Permission is granted to copy, distribute, and/or modify
this document under the terms of the Creative Commons

Attribution-ShareAlike 3.0 License.

https://en.wikibooks.org/wiki/JavaScript
https://en.wikibooks.org/wiki/Wikibooks:Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

Introduction
Dynamic data types
Functional programming
Object-orientated programming
C-like syntax
Relation to Java
JS engines
References

Relation to other languages
Behavior of Variables
Scope of Variables
Classes

First program
Exercises

JavaScript within HTML
Internal vs. external JavaScript
External JavaSscript

The src attribute
The type attribute
The async and defer attributes

Location of <script> elements
The <noscript> element
JavaScript in XHTML files
Reference

Handling Events
Second Example

Development Tools
Development Stage

Locally installed Tools
Online

Validation
Optimization, Obfuscating

Self Test
Introduction
Syntax and Semantic
Type Conversion
Loops

Helpful hints
Predefined functions

alert()
log()

Contents

print()
prompt()
write()

Coding style
Faulty visualization in some code examples

Lexical structure
Summary
Case Sensitivity
Whitespaces
Comments
Semicolons
Literals
Identifiers
Exercises
Notes
References

Automatic semicolon insertion
See also

Reserved words
References

Variables
Purpose
Declaration and initialization

Keyword let
Keyword const
Keyword var
Omitting the declaration

Data types
Scope

Block scope
Function scope
Module scope
Global scope

Exercises
See also
References

Data types
Introduction
Categories of data types
References

Primitive data types
String
Properties and methods for strings

length

concat(text)
indexOf(searchText)
lastIndexOf(searchText)
replace(text, newtext)
slice(start [, end])
substr(start [, number of characters])
substring(start [, end])
toLowerCase()
toUpperCase()

Number
Properties and methods for numbers

Properties
Math.ceil(number)
Math.floor(number)
Math.round(number)
Math.max(number_1, number_2)
Math.min(number_1, number_2)
Math.random()
Number.parseInt(string)
Number.parseFloat(string)

BigInt
Boolean
Undefined
Null
Symbol
See also
Exercises
References

Objects
Create an object
Read a property
Add or modify a property
Delete a property
Merge objects
Functions/methods as part of an object
Exercises

Arrays
Create an array
Access an array element
Varying data types
Nested arrays
Properties and methods

length
concat
join and split

push
pop
unshift
shift

Exercises
See also

Dates
Constructor
Methods
'As Integer'
Timezones
New API: Temporal
Exercises

Regular expressions
String's match method

Make decisions
Meta-characters

Wildcard
Quantifier
Modifier
Character classes

String's replace method
Exercises
See also
External links

Operators
String concatenation
Arithmetic operators
Bitwise operators
Assignment operators
Increment operators

Pre and post-increment operators
Comparison operators
Logical operators
Other operators

? :
delete
new
instanceof
typeof

Exercises
See also

Control structures
if / else

switch
try / catch / finally
throw
Exercises
Loops
See also

Loops
for (;;) {}

Optional syntax parts
Nesting

continue / break
do {} while ()
while () {}
for (x in Object) {}
for (x of Array) {}
for..in vs. for..of
Object.entries() method
Array.forEach() method
Exercises
See also

Functions
Declaration
Invocation

Hoisting
Immediately Invoked Function
Arguments

Call-by-value
Default values
Variable number of arguments

Individual checks
The 'rest' parameter
The 'arguments' keyword

Return
Arrow functions (=>)
Recursive Invokations
Exercises
See also

Closures
Lexical environment
Closure
Exercises
See also

Async
Single-threaded

Strictly sequential? No.
Callback
Promise
async / await
A realistic example
Exercises
See also
References

Object-based programming
Class-based OOP
Prototype-based OOP
OOP in JavaScript "Two jackets for one body"

The classical syntax
The 'class' syntax

See also

OOP-classical
Construction

Functions
new
Predefined data types

Inheritance
setPrototypeOf
new
Object.create
A distinction to class-based approaches

Check object hierarchy
getPrototypeOf
instanceof
typeof

Exercises
See also

OOP-classes
Creation

Static properties and methods
get

Inheritance
Access control
Polymorphism
this
Exercises
See also

Modules
No modules
ECMAScript modules (ES modules)

Nodejs modules (CommonJS)
See also

Generators
Examples
Parameters
References

Introduction to the Document Object Model (DOM)
Nodes
Accessing nodes
Accessing content
Changing content
Modifying the tree structure
See also

Finding elements
Using ID
Using tag name
Using class name
Using a query selector
Navigating the DOM tree
See also
Exercises

Changing elements
Example page
Change the content
Change an attribute

setAttribute()
See also
Exercises

Adding elements
Creating elements
Creating attributes

Alternative syntax
Join the puzzles pieces
'Misusing' innerHTML
write()
See also
Exercises

Removing elements
Remove elements

Children of children
parentNode

Remove attributes
See also

Restructure DOM

Example page
Move an element to the end of siblings
Move an element before a sibling
Attributes
Exercises
See also

Changing element styles
An example
Properties of 'style'
Exercises
See also

Handling DOM events
Create and invoke events

Embedded in HTML
Programmatically in JavaScript

Event types
Event properties
removeEventListener
Synthetic events
(A)synchronous behaviour
Exercises
See also

Exercises
Non-graphical examples
Examples with graphic

Debugging
JavaScript Debuggers

Firebug
Venkman JavaScript Debugger
Internet Explorer debugging
Safari debugging
JTF: JavaScript Unit Testing Farm
jsUnit
built-in debugging tools

Common Mistakes
Debugging Methods

Following Variables as a Script is Running
Browser Bugs
browser-dependent code
Further reading
References

Optimization
JavaScript optimization

Optimization Techniques

Common Mistakes and Misconceptions
String concatenation

Shell
Standalone
From browser
External links

Forms
Further reading
References

Bookmarklets
JavaScript URI scheme
Example uses

Media controls
Using multiple lines of code
The JavaScript Protocol in Links
Examples

Working with files
References

Handling XML
Simple function to open an XML file
Usage

Handling JSON
Native JSON

Modern JSON Handling
Old way

JSONP
More information

CS Communication
XMLHttpRequest
Ajax
Libraries
Fetch API
References

Glossary
Index

A
B
C
D
E
F
H
I

L
M
N
O
R
S
T
U
V

Links
Useful software tools

Editors / IDEs
Engines and other tools

Best practices
document.write
JavaScript protocol
Email validation

Examples valid according to RFC2822
Examples invalid according to RFC2822s
Test page

use strict
For further reading

Best practices in other languages
References

Introduction
JS is a programming language that implements the international standard ECMAScript. It is based on the
following concepts.

JS knows some primitive data types (Number, String, Boolean, BigInt, Symbol, Undefined, Null) and
diverse derivates of the data type object (Array, Date, Error, Function, RegExp). [1] [2] If a variable exists,
its type is clearly defined. But the type can be changed at any time by assigning a value of a different type
to the variable, e.g.: the code fragment let x; x = 'Some text'; x = 2; x = [10, 11,
12]; is perfectly correct. It will not create a compile-time or run-time error. Only the type of the variable x
changes from Undefined to String to Number and lastly to Object/Array.

(Note: JSON is a text-based data format, not a data type. As such, it’s language-independent. It uses the
JavaSript object syntax.)

Functions are first-class citizens similar to variables. They can be assigned to variables, passed as arguments
to other functions, or returned from functions. The code fragment function sayHello()
{return 'Good morning'};let x = sayHello; console.log(x()); creates a
function sayHello, assigns it to the variable x, and executes it by calling x().

JS supports object-oriented programming and inheritance through prototypes. A prototype is an object
which can be cloned and extended. Doing so, a prototype chain (https://developer.mozilla.org/en-US/docs/
Learn/JavaScript/Objects/Object_prototypes) arises. This differs from other OO-languages, e.g. Java,
which uses classes for object-oriented features like inheritance (https://developer.mozilla.org/en-US/docs/Le
arn/JavaScript/Objects/Object-oriented_programming). Nevertheless, at the syntactical level, classes are
available in JS. But this is only 'syntactical sugar'. Under the hood, JS uses the prototype mechanism.

The JS syntax is very similar to that of C, Java, or other members of the C-family. But we must always
consider that the concepts and runtime behavior are distinctly different.

JS has no relation to Java aside from having a C-like syntax. To avoid possible confusion, we would like to
highlight some distinctions between JS and Java clearly.

Dynamic data types

Functional programming

Object-orientated programming

C-like syntax

Relation to Java

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming

In the beginning, Netscape developed JavaScript, and Sun Microsystems developed Java. Java includes
classes and object instances, whereas JavaScript uses prototypes. In Java, variables must be declared before
usage, which is unnecessary (but not recommended) in JS.

In Java, variables have an immutable static type (int or String, for example) that remains the same
during the complete lifespan of a running program. In JS they also have a type (Number or String, for
example), but this type can change during the lifespan of a running program. The type is detected from the
environment. Therefore it's not necessary and not possible to define the type explicitly.

JS can run on the client-side as well as on the server-side. First versions of JS have run in Browsers that
acted as mere interpreters. Today, the language is handled by just-in-time compilers (JIT). They parse the
script, create an Abstract Syntax Tree (AST), optimize the tree, generate a JIT-specific bytecode out of the
AST, generate hardware-specific machine code out of the bytecode, and bring the machine code to
execution. Such just-in-time compilers exist not only in Browsers. They can also be part of other
applications, e.g.: node.js which is written mainly in C++.

Widely used JS engines are:

V8 from Google: Google Chrome, Electron, Chromium, node.js
SpiderMonkey from Mozilla, Firefox
JavaScriptCore from Apple, Safari
ActionScript from Adobe, Flash

1. MDN: Data Types (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Ove
rview)

2. MDN: Details on Data Types (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data
_structures)

int x = 0; // Java: 'name of type', 'name of variable', ...
let x = 0; // JS: 'let' or 'const', 'name of variable', ...
 // The type will be 'Number' because of the right side of the equal
sign.
let x = String (0); // JS: explicit change from 'Number' to 'String' BEFORE assignment to x
 // The type will be 'String'. Test it with: alert(typeof x)

JS engines

References

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Relation to other languages
If you have programming experience or training with another language, learning JS will be easier and more
difficult at the same time. Especially the fact that JS is a member of the C-family languages (C, C++, Java,
...) may help and confuse simultaneously. It uses the common syntax but implements concepts that differ
from the other family members. Therefore it might entice you with this C- or Java-like syntax. Underneath,
it is an entirely different beast. The semantic and design are influenced by the programming languages Self
and Scheme.

The easy part for C or Java programmers will be picking up the syntax. Most parts of the flow control,
logic, and arithmetic are the same. After diving deeper into the language, you will notice the differences.
Here are some distinctions to Java.

Starting with the obvious, JS is a loosely typed language. There are several implications for this:

Integers and floats are both represented by 64-bit floating point numbers (but crazily enough,
bitwise operations are still available and sometimes faster).
You may change a variable's type at will.
Objects consist of key/value pairs, labeled 'properties'. Values can be changed, and
complete properties can be added or removed from an object at will.

The list goes on, and we are granted extraordinary powers to do wonderful and sometimes incredibly stupid
things whilst programming. So it's very important to keep sober-minded when attempting to harness the
power of the dynamic variables.

From module to module: In Java the key-words public, private, and protected
defines the visibility of variables to other modules (classes). In JS there is only the simple
export/import resp. module.exports/require mechanism.

Within a module: In JS the visibility within a module is defined by the key-words
var(outdated, don't use it anymore), let, and const. Java knows the keyword var too, but
its semantic is a little different. The JS const is equivalent to Java's final.
Within blocks: 'Blocks' are code sequences surrounded with brackets { }. The visibility of
variables concerning blocks is identical in JS (using let or const) and Java: The variables
are visible within the defining block and the included blocks but not outside of the defining
block.
Closure: A closure is an - anonymous or named - function that can refer to variables of its
enclosing context. In this case, the function 'sees' the variable's value as of the moment the
function was created but not as of the later moment when it is called. JS has used this
concept since its early days. Java uses similar but not identical technics to access variables
of outer context: inner classes and lambda expressions.

Behavior of Variables

Scope of Variables

Classes

https://en.wikipedia.org/wiki/List_of_C-family_programming_languages
https://en.wikipedia.org/wiki/Self_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikibooks.org/wiki/JavaScript/Closures

Unlike Java, JS is a classless language. Instead, JS uses prototypes to implement object-oriented features
like inheritance. Classes can be simulated, but it is only 'syntactically sugar', and if you remove the idea of
classes from your head, the learning process will become easier.

First program
Here is a single JavaScript statement, which creates a pop-up dialog saying "Hello World!":

For the browser to execute the statement, it must be placed inside a HTML <script> element. This
element describes which part of the HTML code contains executable code. It will be described in further
detail later.

The <script> element should then be nested inside the <head> element of an HTML document.
Assuming the page is viewed in a browser that has JavaScript enabled, the browser will execute (carry out)
the statement as the page is loading.

This basic 'Hello World' program can then be used as a starting point for any new program that you need to
create.

1. Copy and paste the basic program into a file, and save it on your hard disk as 'exercise_1-1.html'. You
can run it in different ways:

By going to the file with a file manager and opening it using a web browser.
By starting your browser and then opening the file from the menu.
By starting your browser and then specify the URL to 'exercise_1-1.html' with the file
protocol. Please note that a) there are 3 slashes after 'file:' and b) replace 'temp' with the
name of your directory.

Windows: file:///C:/temp/exercise_1-1.html (it's Windows syntax,
nevertheless use slash instead of backslash)
Linux: file:///temp/exercise_1-1.html

What happens?

alert("Hello World!");

<script>
 alert("Hello World!");
</script>

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Some Page</title>
 <script>
 alert("Hello World!");
 </script>
 </head>
 <body>
 <p>The content of the web page.</p>
 </body>
</html>

Exercises

https://en.wikipedia.org/wiki/File_manager

Click to see solution

A dialog appears with the text: Hello World!

2. Save the above file as 'exercise_1-2.html'. Replace the double quotes in the line alert("Hello
World!"); with single quotes, so it reads alert('Hello World!'); and save the result. If you
open this file in the browser, what happens?

Click to see solution

Nothing changes. A dialog appears with the text: Hello World! Double quotes and single quotes
(apostrophes) are equivalents in JS.

JavaScript within HTML
The language JavasScript was originally introduced to run in browsers and handle the dynamic aspects of
user interfaces, e.g., validation of user input, modifications of page content (DOM) or appearance of the
user interface (CSS), or any event handling. This implies that an interconnection point from HTML to JS
must exist. The HTML element <script> plays this role. It is a regular HTML element, and its content
is JS.

The <script> element may appear almost anywhere within the HTML file, within <head> as well as
in <body>. There are only a few criteria for choosing an optimal place; see below.

The <script> element either contains JS code directly, or it points to an external file resp. URL
containing the JS code through its src attribute. The first variant is called Internal JavaScript or Inline
JavaScript, the second External JavaScript.

In the case of Internal JavaScript the <script> element looks like:

Internal scripting has the advantage that both your HTML and your JS are in one file, which is convenient
for quick development. This is commonly used for temporarily testing out some ideas, and in situations
where the script code is small or specific to that one page.

For the External JavaScript the <script> element looks like:

Having your JS in a separate file is recommended for larger programs, especially for such which are used
on multiple pages. Furthermore, such splits support the pattern of Separation of Concerns: One specialist
works on HTML, and another on JS. Also, it supports the division of the page's content (HTML) from its
behavior (JS).

Overall, using External scripting is considered a best practice for software development.

Internal vs. external JavaScript

<script>
 // write your JS code directly here. (This line is a comment in JS syntax)
 alert("Hello World!");
</script>

<!-- point to a file or to an URL where the code is located. (This line is a comment in HTML
syntax) -->
<script src="myScript.js"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.1/dist/js/bootstrap.bundle.min.js">
</script>

<!-- although there is nothing within the script element, you should consider that the HTML5
spec -->
<!-- doesn't allow the abbreviation of the script element to: <script src="myScript.js" />
-->

External JavaSscript

https://en.wikipedia.org/wiki/Separation_of_Concerns
https://en.wikipedia.org/wiki/best_practice

For more detailed information you can refer to MDN [1].

Adding src="myScript.js" to the opening script tag means that the JS code will be located in a
file called myScript.js in the same directory as the HTML file. If the JS file is located somewhere else, you
must change the src attribute to that path. For example, if it is located in a subdirectory called js, it reads
src="js/myScript.js".

JS is not the only scripting language for Web development, but JS is the most common one on client-side
(PHP runs on server-side). Therefore it's considered the default script type for HTML5. The formal notation
for the type is: type="text/javascript". Older HTML versions know a lot of other script types.
Nowadays, all of them are graded as legacy. Some examples are: application/javascript,
text/javascript1.5, text/jscript, or text/livescript.

In HTML5, the spec says that - if you use JS - the type attribute should be omitted from the script element
[2], for Internal Scripting as well as for External Scripting.

Old browsers use only one or two threads to read and parse HTML, JS, CSS, This may lead to a bad
user experience (UX) because of the latency time when loading HTML, JS, CSS, images, ... sequentially
one after the next. When the page loads for the first time, the user may have the impression of a slow
system.

Current browsers can execute many tasks in parallel. To initiate this parallel execution with regards to JS
loading and execution, the <script> element can be extended with the two attributes async and
defer.

The attribute async leads to asynchronous script loading (in parallel with other tasks), and execution as
soon as it is available.

defer acts similar. It differs from async in that the execution is deferred until the page is fully parsed.

The src attribute

The type attribute

<!-- Nowadays the type attribute is unnecessary -->
<script type="text/javascript">...</script>

<!-- HTML5 code -->
<script>...</script>

The async and defer attributes

<script async src="myScript.js"></script>

https://en.wikipedia.org/wiki/user_experience

The script element may appear almost anywhere within the HTML file. But there are, however, some
best practices for speeding up a website [3]. Some people suggest to locate it just before the closing
</body> tag. This speeds up downloading, and also allows for direct manipulation of the Document
Object Model (DOM) while it is rendered. But a similar behavior is initiated by the above described
async and defer attributes.

It may happen that people have deactivated JS in their browsers for security or other reasons. Or, they use
very old browsers which are not able to run JS at all. To inform users in such cases about the situation,
there is the <noscript> element. It contains text that will be shown in the browser. The text shall
explain that no JS code will be executed.

XHTML uses a stricter syntax than HTML. This leads to small differences.

First, for Internal JavaScript it's necessary that the scripts are introduced and finished with the two
additional lines shown in the following example.

<script defer src="myScript.js"></script>

Location of <script> elements

<!DOCTYPE html>
<html>
<head>
 <title>Example page</title>
</head>
<body>
 <!-- HTML code goes here -->
 <script src="myScript.js"></script>
</body>
</html>

The <noscript> element

<!DOCTYPE html>
<html>
<head>
 <title>Example page</title>
 <script>
 alert("Hello World!");
 </script>
 <noscript>
 alert("Sorry, the JavaScript part of this page will not be executed because JavaScript is
not running in your browser. Is JavaScript intentionally deactivated?");
 </noscript>
</head>
<body>
 <!-- HTML code goes here -->
</body>
</html>

JavaScript in XHTML files

<script>
 // <![CDATA[
 alert("Hello World!");

Second, for External JavaScript the type attribute is required.

1. MDN: The script element (https://developer.mozilla.org/en-US/docs/Web/HTML/Element/scri
pt)

2. WHATWG: The type attribute (https://html.spec.whatwg.org/dev/scripting.html#attr-script-typ
e)

3. Yahoo: Best practices for speeding up your website (http://developer.yahoo.com/performanc
e/rules.html)

 //]]>
</script>

Reference

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
https://html.spec.whatwg.org/dev/scripting.html#attr-script-type
http://developer.yahoo.com/performance/rules.html

Handling Events
So far, the shown JS programs start automatically when the HTML page is loaded. This kept everything
small, simple, and straightforward.

Now we want to introduce the mechanism of starting a program intentionally at specific points in time.
When a user types in some content, it may be necessary to evaluate it; when a user clicks a button, it may
be necessary to start a complex action like a database query. The actions (validation, DB query) will be
handled in a JS function, and some HTML code will initiate the call to such JS functions. To understand
how it works, we must learn about events. In a later chapter, we will explain events in detail.

Assume a user clicks on a button. This generates an onclick event. The occurrence of such an event is
declaratively combined with a call to a named JS function. The browser calls this JS function. The JS
function runs.

The complete HTML with its embedded JS reads:

In contrast to the previous examples, nothing happens when the page is loaded. This results
from the fact that the alert() command is embedded in the JS function
showSomething(). This function is only defined but not started.
The HTML element <button> has an attribute onclick with a value
showSomething().
When the button is clicked, an onclick event occurs. The event is bound to the button.
The browser handles the event. He notices that a function with the given name shall run.
The browser searches for the function in all available JS scripts (please notice that this
name as well as all JS code is case-sensitive!).
After finding the function with exactly this name in the <script>...</script> part, the
browser starts the function.
The function executes and shows the message.

In essence, the JS function with its message-showing behavior will run whenever the user clicks on the
button.

<!DOCTYPE html>
<html>
<head>
 <title>Testing an event</title>
 <script>
 function showSomething() {
 alert("Someone clicked the button.");
 }
 </script>
</head>
<body>
 <h1>Click the button</h1>
 <button type="button" onclick="showSomething()">A button</button>
</body>
</html>

Second Example

This example offers the possibility to change the background color of some HTML elements. It uses 3
buttons, 2 JS functions, and 1 event type (onclick; there are many other types). Furthermore, it introduces
the concept of an element id.

What are the differences to the first example?

There are 3 buttons. The first two are associated with a JS function; the third is not.
The <body> and the second <button> elements contain an attribute id="...". This
assigns an identifier to them. He can be used in JS to locate them.
The <script> element contains two functions with different names.
When you click on one of the buttons, the associated JS function is called. Because the third
button has no associated JS function, nothing happens there.
In JS, the code part document.getElementById("...") locates the element with this
ID. The code part .style.background = "..." modifies the background color of this
element. Please ignore that the two parts are written in separate lines. This is only for better
reading of the source code on small devices. You can link the two lines together.
The makeBlue() function executes two statements and changes the background color of
the body and of itself.

<!DOCTYPE html>
<html>
<head>
 <title>Second test for events</title>
 <script>
 function makeGreen() {
 document.getElementById("mainPart")
 .style.background = "green";
 }
 function makeBlue() {
 document.getElementById("mainPart")
 .style.background = "blue";
 document.getElementById("blueButton")
 .style.background = "aqua";
 }
 </script>
</head>
<body id="mainPart">
 <h1>Click the buttons</h1>
 <button type="button" onclick="makeGreen()">GREEN</button>
 <button type="button" onclick="makeBlue()"
 id="blueButton">BLUE</button>
 <button type="button">Nothing</button>
</body>
</html>

Development Tools
When working with JS (or HTML, CSS, ...) you need some tools for handling the source code and
becoming more productive. First, there are tools helping you to develop the source code. Second, the code
can be validated against syntax rules. Next, the code can be 'beautified' (indentations, line breaks, empty
lines, ...). And lastly, the code can be optimized - in regard to size, performance, or encryption.

The simplest way to write the code is using a pure text editor like Notepad++, Vim, or Gnome gedit or
Gnome Text editor. You shall create a subdirectory where all the files of your project are located, e.g.
.../firstProject. There you can create the files, e.g. excercise_1.1.html. Start the files as
described in the chapter First program. The result shall be seen in your browser.

This approach has its pros and cons. The tools are easy to install, and they have simple user interfaces. But
they don't give you much help; they just collect the text you write. Sometimes they support syntax
highlighting or automatic indentation, mostly no hints concerning syntax errors. The user is forced to know
the syntax of the language with which he is currently working. We believe that this approach is well suited
for beginners: they shall perform their exercises at a low level.

At the next level, you can use a more complex tool, e.g. Visual Studio Code. In addition to text handling,
they offer additional features from syntax highlighting up to debugging or extensive support for developer
teams.

As an alternative to locally installed tools, you can work with an online JS tool, e.g. JsFiddle (https://jsfiddl
e.net/), W3Schools (https://www.w3schools.com/js/tryit.asp?filename=tryjs_default), or PlayCode (https://p
laycode.io/javascript). They usually offer an integrated environment for HTML, CSS, and JS, including a
browser preview and access to the browser's console.

It's likely that in a first step your code contains some syntactical errors, e.g. f0r instead of for. Browsers
are very lenient and try to repair or ignore simple errors silently. Of course, all your source code shall
conform to the given syntactical rules. But because the browsers offer limited access to validate it or to
locate the erroneous line, it's necessary to use a tool for locating and explaining syntactical errors.

Development Stage

Locally installed Tools

Online

Validation

https://en.wikibooks.org/wiki/JavaScript/First_program
https://jsfiddle.net/
https://www.w3schools.com/js/tryit.asp?filename=tryjs_default
https://playcode.io/javascript

Such validators sometimes offer not only validation but also some more features like formatting or a
preview, e.g. JS validator (https://javascriptvalidator.net/), JS + HTML validator (https://www.htmlstrip.co
m/javascript-validator), W3C validator for HTML (https://validator.w3.org/#validate_by_input),
FreeFormatter (https://www.freeformatter.com/html-validator.html).

The time necessary to transfer HTML and JS code from a server to a browser can be shortened by stripping
out all unnecessary blanks, newlines, tabs, etc. .

When JS code is loaded into a browser, it can easily be viewed by the user. If you want to hide your source
code, you can use the obfuscating technique. It generates a more or less unreadable code (for humans) out
of the original code.

The previous JS + HTML validator (https://www.htmlstrip.com/javascript-validator) offers all of these
techniques.

Optimization, Obfuscating

https://javascriptvalidator.net/
https://www.htmlstrip.com/javascript-validator
https://validator.w3.org/#validate_by_input
https://www.freeformatter.com/html-validator.html
https://www.htmlstrip.com/javascript-validator

Self Test
You can test yourself by answering the following questions. When in doubt, you should undertake a test in
your development environment (editor, IDE, browser). So it's also a test of whether you have installed all
the necessary tools to execute the examples of the Wikibook.

Introduction

1

2

Inside which HTML element do you put the JavaScript code?

<javascript>
<source>
<script>
<scripting>
None of the above.

Does this sequence of statements lead to an error?

Yes
No

Submit

let x = 0;
x = 1;
x = 'one';

Syntax and Semantic

1 Is there a syntax error?

2

3

4

5

Yes
No

Is there a syntax error?

Yes
No

Which line contains a syntax error?

Line 1
Line 2
Line 3
Line 4
None of the above

Which lines contain a syntax error?

Line 1
Line 2
Line 3
Line 4
None of the above

Which line leads to an error message?

let x = 1:

let x = 1;
let y = 2;
x+y = 3;

/* 1 */ let x = 1;
/* 2 */ let y = 1;
/* 3 */ let x = 1, y = 1;
/* 4 */ let x, y = 1;

/* 1 */ let firstName_1 = "Michael";
/* 2 */ let firstName_2 = 'Michael';
/* 3 */ let firstName_4 = 'Mikhaïl';
/* 4 */ let firstName_5 = "Михаил";

6

7

8

Line 1
Line 2
Line 3
Line 4
None of the above

Which line leads to an error message?

Line 1
Line 2
Line 3
Line 4
None of the above

Which line(s) leads to an error message?

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
None of the above

Is there a syntax error?

/* 1 */ let x = 1;
/* 2 */ const y = 2;
/* 3 */ x = 3;
/* 4 */ y = 4;

/* 1 */ let x = 1;
/* 2 */ x = 2 + 3(4 + 5);
/* 3 */ x = 3;
/* 4 */ x = -x;

/* 1 */ let x = [1, 2];
/* 2 */ let x = [[1], [2]];
/* 3 */ let x = [[1, 2], [3, 4]];
/* 4 */ let x = [[[1], [2]], [[3], [4]]];
/* 5 */ let x = [1], [2];
/* 6 */ let x = [1, '2'];

"use strict";
let persons = ['Alice', 'Bert', 'Caesar'];
for (let i = 0, i < persons.length, i++) {

9

Yes
No

Which line contains a syntax error?

Line 1
Line 2
Line 3
Line 4
None of the above

Submit

 alert(persons[i]);
} //

/* 1 */ alert("1 + 2 = " + 3);
/* 2 */ alert("1 + 2 = " + "3");
/* 3 */ alert("1 + 2 = " 3)
/* 4 */ alert(1 + 2 == 3)

Type Conversion

1

2

Which message(s) will not be shown?

3
12
-1
All will be shown.

What message(s) will not be shown?

let x = 1, y = 2, z = '2';
alert(x + y);
alert(x + z);
alert(x - z);

Error Message
true
false
5
1

Submit

let x = 1;
alert(x);
alert(x = 5);
alert(x == '5');
alert(x === 5);

Loops

1

2

What will be the result in sum?

The result in sum will be .

What will be the result in sum?

The result in sum will be .

"use strict";
let sum = 0;
for (let i = 1; i < 5; i++) {
 sum = sum + i;
} //
alert(sum);

"use strict";
let sum = 0;
for (let i = 0; i < 5; i++) {
 for (let j = 10; j >= 0; j--) {
 if (i === j) {
 sum = sum + i - j + 1;
 } //
 } //
} //
alert(sum);

3

4

Is there a syntactical error?

Yes
No

What will be the result?

0
6
Infinite loop
None of the above

Submit

"use strict";
let sum = 0;
for (let i = 0; i < 5; i++)
 for (let j = 10; j >= 0; j--) {
 if (i === j) {
 sum = sum + i - j + 1;
 } //
 } //
} //
alert(sum);

"use strict";
let sum = 0;
for (let i = 0; i = 3; i++) {
 sum = sum + i;
} //
alert(sum);

Helpful hints

All over the Wikibook, code examples are given. Usually, they show their results somewhere in the
browser. This is done via methods that are aligned with Web API interfaces (https://developer.mozilla.org/e
n-US/docs/Web/API) and implemented in browsers.

The function alert() creates a modal window showing the given text.

The function log() writes the message to the console of the browser. The console is a window of the
browser that is normally not opened. In most browsers, you can open the console via the function key F12.

The function print() opens the print dialog to print the current document.

The function prompt() opens a modal window and reads the user input.

Predefined functions

alert()

let x = 5;
window.alert("The value of 'x' is: " + x); // explicit notation
alert("The value of 'x' is: " + x); // short notation

log()

let x = 5;
console.log("The value of 'x' is: " + x); // explicit notation
 // no short notation

print()

window.print(); // explicit notation
print(); // short notation

prompt()

let person = window.prompt("What's your name?"); // explicit notation
person = prompt("What's your name?"); // short notation
alert(person);

write()

https://developer.mozilla.org/en-US/docs/Web/API

The use of document.write() is strongly discouraged (https://developer.mozilla.org/en-US/docs/We
b/API/Document/write).

Our code examples mostly contain the line "use strict"; before any other statement. This advises
the compiler to perform additional lexical checks. He especially detects the use of variable names which are
not been declared before they receive a value.

Without the "use strict"; statement the compiler would generate a second variable with the
misspelled name instead of generating an error message.

Due to a minor fault in the Wikibook template quiz, you will see } // instead of } in some examples. The
two slashes at the end are only shown to overcome this problem; they are not necessary.

Coding style

"use strict";
let happyHour = true;
hapyHour = false; // ReferenceError: assignment to undeclared variable hapyHour

Faulty visualization in some code examples

// the two slashes in the last line are not necessary
if (x == 5) {
 ...
} //

https://developer.mozilla.org/en-US/docs/Web/API/Document/write

Lexical structure

All elements of the language are case-sensitive, e.g.: const x = 0; const X = 0;
defines two different variables; CONST x = 0; leads to a syntax error.
Single line comments are introduced by //. Multi-line comments are surrounded with /*
*/.
Semicolons for ending a statement are optional - with few exceptions.
The first character of a variable name cannot be a number: const 1x = 0; leads to a
syntax error.

JavaScript is case-sensitive. This means that all keywords, variable names, and function names must be
written consistently. If you create a function Hello() it is different from the function HELLO(),
hello(), or hEllo(). Or, the statement IF (x > 0) { } leads to a syntax error because the
keyword if is defined in lower-case.

Whitespace includes spaces, tabs, and line breaks.[note 1] If there is a sequence of multiple whitespaces,
JavaScript reduces them to a single whitespace, e.g: ' ' -> ' ', '\n\t' -> '\n'. This single remaining whitespace
delimits the language elements like keywords and variable names, ... from each other. The resulting source
code is hard to read for people [2] but (a little) easier to parse by the browser. The main advantage is the
smaller size of the code which must be transferred between server and client.

The following script is an example with very little whitespace.

The following is the same script with a typical amount of whitespace.

Summary

Case Sensitivity

Whitespaces

function filterEmailKeys(event){
event=event||window.event;
const charCode=event.charCode||event.keyCode;
const char=String.fromCharCode(charCode);
if(/[a-zA-Z0-9_\-\.@]/.exec(char)){return true;}
return false;
}

function filterEmailKeys(event) {
 event = event || window.event;
 const charCode = event.charCode || event.keyCode;
 const char = String.fromCharCode(charCode);
 if (/[a-zA-Z0-9_\-\.@]/.exec(char)) {
 return true;
 }
 return false;
}

The following is the same script with a lot of whitespaces.

Comments are parts of the source code that will - per definition - not be executed.

They allow you to leave notes in your code to help other people understand it. They also allow you to
comment out code that you want to hide from the parser but you don't want to delete.

Single-line comments

A double slash // turns all of the following text on the same line into a comment that will not be processed
by the JavaScript interpreter.

Multi-line comments

Multi-line comments start with /* and end with the reverse */. Multi-line comments don't nest.

Here is an example of how to use the different types of commenting techniques.

In many programming languages, semicolons are required at the end of each code statement. In JavaScript,
the use of semicolons is optional, as a new line indicates the end of the statement (with some exceptions).
This is called automatic semicolon insertion.

function filterEmailKeys(evt) {

 evt = evt || window.event;

 const charCode = evt.charCode || evt.keyCode;
 const char = String.fromCharCode (charCode);

 if (/[a-zA-Z0-9_\-\.@]/.exec (char)) {
 return true;
 }

 return false;
 }

Comments

// Show a welcome message
alert("Hello, World!")

/* This is a multi-line comment
that contains multiple lines
of commented text. */
let a = 1;
/* commented out to perform further testing
a = a + 2;
a = a / (a - 3); // is something wrong here?
*/
alert('a: ' + a);

/* This comment has two /* but they're both canceled out by */

Semicolons

https://en.wikibooks.org/wiki/JavaScript/Automatic_semicolon_insertion

But the exceptions can be quite surprising.[3] Automatic semicolon insertion can create hard to debug
problems.

The above code is not interpreted as two statements. Because of the parentheses on the second line,
JavaScript interprets the above as if it were

when instead, you may have meant it to be interpreted as

Even though semicolons are optional, it's preferable to end statements with a semicolon to prevent any
misunderstandings from taking place.

A literal is a hard-coded value. Literals provide a means of expressing specific values in your script. For
example, to the right of the equals sign:

There are several types of literals available. The most common are the string literals, but there are also
numeric literals, booleans, undefined, null, regex literals, array literals, and object literals.

Examples of an object, a boolean, and a string literal:

Details of these different types are covered in Variables and Types.

An identifier is a name for a piece of data, such as a variable, array, or function. There are rules:

Letters, dollar signs, underscores, and numbers are allowed in identifiers.
The first character cannot be a number.

// the line
x = a + b;
// is equivalent to:
x = a + b

a = b + c
(d + e).print()

a = b + c(d + e).print();

a = b + c;
(d + e).print();

Literals

const myLiteral = "a fixed value";

const myObject = { name:"value", anotherName:"anotherValue" };
const isClosed = true;
const mayBeWrong = "true";

Identifiers

https://en.wikibooks.org/wiki/JavaScript/Variables_and_Types

Examples of valid identifiers:

u

$hello

_Hello

hello90

1A2B3C is an invalid identifier, as it starts with a number.

An example of 'identifiers' are variable names. They obey such rules.

Uppercase and lowercase letters, underscores, and dollar signs can be used.
Numbers are allowed after the first character.
Non-latin characters like "á" can be used in variable names as long as they have the
Unicode properties "ID_Start" or "ID_Continue" for the start or rest of the name
respectively.[4] Special characters are not allowed.
Variable names are case sensitive: different case means a different name.
A variable may not be a reserved word.

... are available on another page (click here).

1. Technically vertical tab, zero-width non-breaking space, and any Unicode character with the
"Space Separator" category also count as whitespace.[1]

1. ECMAScript Language Specification, Chapter 12.2 - White Space (https://tc39.es/ecma262/
multipage/ecmascript-language-lexical-grammar.html#sec-white-space)

2. Khan Academy (https://www.khanacademy.org/computing/computer-programming/programm
ing/writing-clean-code/pt/readable-code)

3. ECMA-262 (https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#s
ec-automatic-semicolon-insertion) ECMAScript Language Specification, Chapter 12.9 -
Automatic Semicolon Insertion

4. ECMAScript Language Specification, the IdentifierName production (https://tc39.es/ecma26
2/multipage/ecmascript-language-lexical-grammar.html#prod-IdentifierName)

Exercises

Notes

References

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#sec-white-space
https://www.khanacademy.org/computing/computer-programming/programming/writing-clean-code/pt/readable-code
https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#sec-automatic-semicolon-insertion
https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#prod-IdentifierName

Automatic semicolon insertion
Automatic Semicolon Insertion (ASI)

In languages of the C-family, the semicolon denotes the end of a statement. Unlike other C-like languages,
JavaScript doesn't enforce that. Instead, the semicolon is optional, and the interpreter adds missing
semicolons - mostly at the end of a line - to terminate statements. Doing so, he takes complex rules (https://d
eveloper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#automatic_semicolon) into
account. This may conflict with the intended purpose.

If you write your code without semicolons at the end of statements, you must take care of problematic
situations. Here are some rules-of-thumb to avoid problems. But there are much more rules.

1. The expression after one of the keywords return, throw, or yield must be on the same
line as the keyword itself.

2. The label identifier after break or continue must be on the same line as the keyword.
3. If a line starts with one of (, [, `, +, -, or /, end the previous line with a semicolon.

While ASI would make your code easier to write (no need to type all of those semicolons), in practice, the
lack of semicolons makes your program harder to debug. Because of this, it is universally recognized as a
best practice to use semicolons at the end of statements anyway. However, the existence of ASI can still
create some bugs that are hard to troubleshoot if you don't know what to look for.

Examples

Entered code interpreted as intended code

return
2a + 1

return;
2a + 1;

return 2*a + 1;

function getObject() {
 return
 {
 // some lines
 }
}

function getObject() {
 return;
 {
 // some lines
 };
}

function getObject() {
 return {
 // some lines
 };
}

i
++

i;
++;

i++;

https://en.wikipedia.org/wiki/List_of_C-family_programming_languages
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#automatic_semicolon

In the first case, the programmer intended 2*a + 1 to be returned; instead, the code returned undefined.
Similarly, in the second case, the programmer intended to return the lines enclosed by the braces {}, but
the code returned undefined. Due to this oddity in JavaScript, it is considered a best practice never to
have lines break within a statement and never have the opening brace on a separate line.

MDN reference (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexica
l_grammar#automatic_semicolon_insertion)
ECMA reference (https://262.ecma-international.org/13.0/#sec-automatic-semicolon-insertio
n)
Whitespaces & semicolons in JavaScript

See also

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#automatic_semicolon_insertion
https://262.ecma-international.org/13.0/#sec-automatic-semicolon-insertion
https://en.wikipedia.org/wiki/JavaScript_syntax#Whitespace_and_semicolons

Reserved words
In JavaScript, some tokens (words) have a special semantic (meaning). Therefore they cannot be used as
names of variables, functions, classes, etc [1] [2]. Some of them are generally reserved words; others are
reserved only in a special context; others are reserved for possible future usage without having a special
functionality nowadays; others have been defined in outdated ECMAScript versions of the years 1997 - 99.

The list of such special words as of 2022 follows. For some of the words, we offer further information.

abstract
await
boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete
do
double
else
enum
export
extends

false
final
finally
float
for
function
goto
if
implements
import
in
instanceof
int
interface
let
long
native
new
null
package
private

protected
public
return
short
static
super
switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
volatile
while
with
yield

Furthermore, there are predefined methods like forEach(), predefined modules like Math, or
predefined objects like BigInt whose names should be avoided also.

1. ECMA: Keywords (https://262.ecma-international.org/#sec-keywords-and-reserved-words)
2. MDN: Keywords (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexic

al_grammar#keywords)

References

https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/abstract&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/await&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/boolean&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/break
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/byte&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/case
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/catch
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/char&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/class&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/const&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/continue
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/debugger&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/default&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/delete&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/do
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/double&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/else
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/enum&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/export&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/extends&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/false&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/final&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/finally
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/float&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/for
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/function
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/goto&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/if
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/implements&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/import&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/in
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/instanceof
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/int&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/interface&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/let&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/long&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/native&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/new
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/null&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/package&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/private&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/protected&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/public&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/return
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/short&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/static&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/super&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/switch
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/synchronized&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/this
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/throw
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/throws&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/transient&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/true&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/try
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/typeof
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/var
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/void&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/volatile&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_words/while
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/with&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_words/yield&action=edit&redlink=1
https://262.ecma-international.org/#sec-keywords-and-reserved-words
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#keywords

Variables

Computer languages need to use variables. Why this? In most cases, programs don't solve single problems
like the very concrete question: What is the circumference of a circle with a radius of 5 cm? Such a
concrete question can be solved without using variables: alert (2 * 5 * 3.14); Instead, most
questions are more general: What is the circumference of a circle with an arbitrary radius? You don't want
to write a program for a radius of 5 cm, another program for a radius of 6 cm, another one for a radius of 7
cm, and so on. You want to write a single program that computes the circumference for all possible radii.
The program needs input (from a user, from another program, from a database, ...) that tells him for which
value it shall run. let r = prompt("How big is the radius of your circle?");
alert (2 * r * 3.14);, or even better: let r = prompt("How big is the
radius of your circle?"); alert (2 * r * Math.PI);.

Those two examples are flexible. They ask the user for the desired radius, store the given value in a
variable with the name r, and compute the circumference using this variable. The variable r is introduced
by the keyword let. And there is a second variable. The module Math has predefined a variable PI with
the keyword const: const PI = 3.141592653589793;.

In JavaScript, variables can be used similarly to variables in mathematical formulas. During runtime, the
values of variables are stored in the main memory of the computer (RAM), from where they can be used at
a later moment in the lifetime of the program. You can imagine a variable as a small box where you deposit
some value and take it out whenever you need it.

Variables are a cornerstone in the transition from individual problem solving to a strategy, respectively an
algorithm.

If you want to use a variable, we recommend declaring (https://developer.mozilla.org/en-US/docs/Web/Java
Script/Guide/Grammar_and_Types#declarations) them explicitly. This is not mandatory but has strong
benefits.

In many cases, the declaration is accompanied by an initialization, e.g. let x = 0;. The declaration is
let x;, and the initialization is x = 0;. But it's also possible to omit the initialization part: let x;
which causes the value of the variable to be undefined.

The keyword let introduces a variable whose value may be changed multiple times.

Purpose

Declaration and initialization

Keyword let

let x = 0;
// ...
x = x + 5;
// ...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_Types#declarations

The keyword const introduces a variable that must be initialized immediately. Moreover, this very first
value can never be changed. That helps the JavaScript engine to optimize the code for better performance.
Use const as often as possible.

When you work with objects, e.g., with arrays, in combination with the keyword const, it's the same:
you cannot assign another value (object, array, number, or whatever) to the variable. Nevertheless, its
elements can be changed.

In some cases const variables are written in uppercase, e.g., PI. This is a convention and not mandatory.

At first glance, var is identical to let. But the range where such variables are known is different from the
variables declared by var; see chapter Scope below.

You can assign a value to a variable without declaring the variable previously. "JavaScript used to allow
assigning to undeclared variables, which creates an undeclared global variable. This is an error in strict
mode and should be avoided altogether."[1] In other words: The variable goes to global scope, see below.
As long as you don't have good reasons you should avoid using the global scope because its usage tends to
create unwanted side effects.

Sometimes such situations occur by accident. If there is a typing error in the source code, JavaScript uses
two different variables: the original one and a new one with the wrongly typed name - even if you use one
of the keywords let, const, or var.

x = -4;
// ...

Keyword const

const maxCapacity = 100;
// ...
maxCapacity = maxCapacity + 10; // not possible
let maxCapacity = 110; // not possible

const arr = [1, 2, 3];
arr = [1, 2, 3, 4]; // not possible
arr = new Array(10); // not possible

arr[0] = 5; // ok: 5, 2, 3
alert(arr);

arr.push(42); // ok: 5, 2, 3, 42
alert(arr);

Keyword var

Omitting the declaration

// direct usage of 'radius' without any keyword for its declaration
/* 1 */ radius = 5;
/* 2 */ alert (2 * radius * 3.14);

You can instruct JavaScript to search for such typos by inserting the command "use strict"; as the
first line of your scripts.

Programmers who are familiar with (strict) typed languages like Java may miss in the above chapter the
possibility of defining the type of variables. JavaScript knows many different data types. But their handling
and behavior is very different from that in Java. In the next chapter you will learn about that.

A scope is a range of consecutive JavaScript statements with a clearly defined start and end. JavaScript
knows four types of scopes: block, function, module, and global scope. Depending on the kind of
declaration and the location of the declaration, variables are within such scopes. They are 'visible'
respectively 'accessible' only within their scope. If you try to access them from outside, an error will occur.

A pair of curly brackets {} creates a block. Variables declared within a block by let or const are bound
to this block and cannot be accessed outside.

The variable x is declared inside a block (in this simple example, the block consists of only two lines.) It is
not accessible behind the end of the block, which is the closing curly bracket } in the else line. The same
applies to the case that the variable x is declared with const instead of let.

Be careful with the keyword var; its semantics is different! First, var is not block-scoped. Second, it
leads to a technique called hoisting (https://developer.mozilla.org/en-US/docs/Glossary/Hoisting), which
has been used in JavaScript since its first days. Hoisting changes the semantics of different declarations

let radius = 5; // or without 'let'
alert("Test 1");
// ... later in the code
radus = 1; // typo will not be detected
alert("Test 2");

"use strict";
let radius = 5;
alert("Test 1");
// ... later in the code
radus = 1; // typo will be detected and an error message given
alert("Test 2"); // will never execute

Data types

Scope

Block scope

"use strict";
let a = 0;
// ...
if (a == 0) {
 let x = 5;
 alert(x); // shows the number 5
} else {
 alert(x); // ReferenceError (with a different 'a')
}
alert(x); // ReferenceError

https://en.wikibooks.org/w/index.php?title=JavaScript/data_types&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

'under the hood'. Concerning var, it splits declaration and initialization into two separate statements and
shifts the declaration part to the top of the current scope. Hence the variable is declared but not initialized if
you use it before the line where it is declared in the source.

The script

is changed to:

On the other hand, the keyword let keeps the declaration in the line where it is written.

There are more differences. Here is a version of the first example of this chapter replacing let by var:

We recommend avoiding var completely because of two reasons:

JavaScript's hoisting technique is not easy to understand.
Other members of the C-family languages don't know it.

Instead of using var, use the keyword let.

A function creates its own scope. Variables declared in the function's scope cannot be accessed from
outside.

"use strict";
alert(x); // undefined, not ReferenceError !
x = 1; // correct, despite of "use strict"
alert(x); // shows 1
var x = 0;

"use strict";
var x;
alert(x); // undefined, not ReferenceError !
x = 1;
alert(x); // shows 1
x = 0;

"use strict";
alert(x); // ReferenceError
x = 1; // ReferenceError
alert(x); // ReferenceError
let x = 0;

"use strict";
let a = 0;
// ...
if (a == 0) {
 var x = 5; // 'var' instead of 'let'
 alert(x); // shows the number 5
} else {
 alert(x); // ReferenceError (with a different 'a')
}
alert(x); // shows the number 5 !!

Function scope

The function scope is sometimes called the local scope because this was the name in older ECMAScript
versions.

See also: Closures works the other way round - access of outer variables inside the function.

It is possible to divide huge scripts into multiple files and let the functions and variables communicate with
each other. Each file creates its own scope, the module scope. The chapter JavaScript/Modules explains
more about that.

Variables or functions are in global scope if they are declared at the top level of a script (outside of all
blocks and functions).

x is declared at the top level, hence it is in the global scope and can be used everywhere. But in the next
example the declaration of x is wrapped by { }. Hence it is no longer in global scope.

"use strict";
function func_1() {
 let x = 5; // x can only be used in func_1
 alert("Inside function: " + x);
}
func_1();
alert(x); // Causes an error

Module scope

Global scope

"use strict";
let x = 42; // 'x' belongs to global scope

// define a function
function func_1() {
 // use variable of the global context
 alert("In function: " + x);
}

// start the function
func_1(); // shows "In function: 42"
alert(x); // shows "42"

"use strict";
{
 let x = 42; // 'x' is not in global scope
}
alert(x); // ReferenceError

https://en.wikibooks.org/wiki/JavaScript/Closures
https://en.wikibooks.org/wiki/JavaScript/Modules

Hint: The use of the global scope isn't considered good practice. It tends to create unwanted side effects.
Instead, try to modularize your code and let the parts communicate via interfaces.

... are available on another page (click here).

Closures

1. MDN: Variable declarations (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guid
e/Grammar_and_Types#declarations)

Exercises

See also

References

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_Types#declarations

Data types

Each variable in JavaScript has a certain data type (Number, String, Boolean, ...) - as long as a value is
stored in the variable. The type of the value determines the type of the variable. In contrast to strongly typed
languages, it is possible to assign - over time - values of different types to the variable so that the type of the
variable may change. This is called weakly or loosely typing. The advantage is that JavaScript programmers
have a wealth of possibilities and freedom to use (or abuse) variables. On the other hand, in strongly typed
languages, a lot of formal errors can be detected during compile-time.

JavaScript knows seven primitive data types (Number, String, Boolean, BigInt, Symbol, Undefined, Null)
and diverse other data types, which are all derived from Object (Array, Date, Error, Function, RegExp) [1]

[2]. Objects contain not only a value, they also have methods and properties. The same can happen with
primitive data types. If they try to invoke methods, the JS engine 'wraps (https://developer.mozilla.org/en-U
S/docs/Web/JavaScript/Data_structures#primitive_values)' them with a corresponding object wrapper and
calls its methods instead. This technique is sometimes called boxing.

You may wonder why we describe data types and initialization in the same chapter. The reason is that they
are very closely related to each other. The initialization (and subsequent assignments) of a value to a
variable determines its type - as noted above. That's why there is no designation of a type during
initialization, in contrast to some other languages private int i = 0; /* Java */

(Note: JSON is a text-based data format, not a data type. As such, it’s language-independent. It uses the
JavaScript object syntax.)

Data types are explained in the following chapters.

Primitive data type
Objects
Arrays
Dates
Regular Expressions

1. MDN: Data Types (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Ove
rview)

2. MDN: Details on Data Types (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data
_structures)

Introduction

Categories of data types

References

https://en.wikipedia.org/wiki/Type_system
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#primitive_values
https://en.wikibooks.org/wiki/JavaScript/Primitive_data_types
https://en.wikibooks.org/wiki/JavaScript/Objects
https://en.wikibooks.org/wiki/JavaScript/Arrays
https://en.wikibooks.org/wiki/JavaScript/Dates
https://en.wikibooks.org/wiki/JavaScript/Regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Primitive data types
Primitive types use a fixed format; some can contain only a limited number of certain values. In contrast,
objects are more complex, especially including methods and properties.

With the exception of null and undefined, primitive types have a corresponding object wrapper (http
s://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#primitive_values) with data type
specific methods. Therefore you will find on this page descriptions of some methods.

String is a datatype to hold text of arbitrary length. String variables are created by assigning a string literal
to them. String literals can be enclosed in " " or ' '.

If your string literal contains a " or ', you can use the other one as the outer delimiter, or you escape them
with a \ .

If your string literal is computed out of some fixed text plus some dynamic parts, you can use the template
literal technique. Here, the literal is enclosed in backticks ` ` and contains variables and expressions.

The + operator concatenates two strings, e.g. alert("Hello " + "world!");. Additionally,
there are a lot of methods (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Obj
ects/String#instance_methods) for strings.

Hint: JavaScript doesn't have something like a 'character' or 'byte' data type.

String

"use strict";
const myName_1 = "Mike"; // double quote
const myName_2 = 'Monica'; // apostrophe
const myName_3 = "naɺ̠ ɯçito"; // non-latin characters

"use strict";
const book_1 = "Mike's book";
const monica_1 = 'Here name is "Monica".';
const book_2 = 'Mike\'s book';
const monica_2 = "Here name is \"Monica\".";

"use strict";
const a = 1;
const b = 2;
const resultMessage = `The sum of ${a} and ${b} is: ${a + b}.`;
// same as:
 'The sum of ' + a + ' and ' + b + ' is: ' + (a + b);
alert(resultMessage);

Properties and methods for strings

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#primitive_values
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#instance_methods

We show some methods which are often used. For a complete list, please refer to MDN (https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#instance_methods).

length is a property, not a method. Hence there are no parenthesizes () . It returns the length of the
string as a whole number.

The method returns a string where 'text' is appended to the original string.

The method returns the position of the first occurrence of 'searchText', starting with 0. If 'searchText' cannot
be found, -1 is returned. The method is case sensitive.

The method returns the position of the last occurrence of 'searchText'. If 'searchText' cannot be found, -1 is
returned. The method is case sensitive.

The method returns a string where 'text' is replaced by 'NewText' on the original string. Only the first
occurrence is replaced. The method is case sensitive.

length

const foo = "Hello!";
alert(foo.length); // 6

concat(text)

const foo = "Hello";
const bar = foo.concat(" World!");
alert(bar); // Hello World!

indexOf(searchText)

const foo = "Hello, World! How do you do?";
alert(foo.indexOf(" ")); // 6

const hello = "Hello world, welcome to the universe.";
alert(hello.indexOf("welcome")); // 13

lastIndexOf(searchText)

const foo = "Hello, World! How do you do?";
alert(foo.lastIndexOf(' ')); // 24

replace(text, newtext)

const foo = "foo bar foo bar foo";
const newString = foo.replace("bar", "NEW"):
alert(foo); // foo bar foo bar foo
alert(newString); // foo NEW foo bar foo

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#instance_methods

As you can see, the replace method only returns the new content and does not modify the origin string
in 'foo'.

The method returns a substring beginning at the 'start' position.

When the 'end' is provided, they are extracted up to, but not including the end position.

slice allows extracting text referenced from the end of the string by using negative indexing.

Unlike substring, the slice method never swaps the 'start' and 'end' positions. If the 'start' is after the
'end', slice will attempt to extract the content as presented, but will most likely provide unexpected
results.

The method is deprecated (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Obj
ects/String/substr). Use substring or slice instead.

The method extracts a substring starting at the 'start' position.

When the 'end' is provided, they are extracted up to, but not including the end position.

substring always works from left to right. If the 'start' position is larger than the 'end' position,
substring will swap the values; although sometimes useful, this is not always what you want; different
behavior is provided by slice.

slice(start [, end])

"hello".slice(1); // "ello"

"hello".slice(1, 3); // "el"

"hello".slice(-4, -2); // "el"

"hello".slice(3, 1); // ""

substr(start [, number of characters])

substring(start [, end])

"hello".substring(1); // "ello"

"hello".substring(1, 3); // "el"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/substr

The method returns the current string in lower case.

The method returns the current string in upper case.

Number is one of the two numeric types (the other one is BigInt). Number stores integer values as well as
floating point values in a unified 64-bit format defined by IEEE 754. That means, that JavaScript doesn't
have different data types for integers and float like some other languages.

The possible range for such values is approximate -10300 to +10300 with different precision depending on
the distance to 0.

In the range from -(253 − 1) to +253 − 1 there is no uncertainness for integer operations. 253 =
9,007,199,254,740,992 which is a little smaller than 1016.

For Number the usual arithmetic operators ('power' is ** and 'modulo' is %), comparison operators (<, >,
...), and bitwise operators are available.

In opposite to some other languages, the division of two whole numbers can result in a number with
decimal places, e.g. alert(1/3);.

Working with numbers is supported by many properties and methods. Internally, they are implemented at
different areas:

The built-in object Math provides properties that represent common mathematical constants
like π or e. Syntax: Math.xyz (no parenthesis)

"hello".substring(3, 1); // "el"

toLowerCase()

const foo = "Hello!";
alert(foo.toLowerCase()); // hello!

toUpperCase()

const foo = "Hello!";
alert(foo.toUpperCase()); // HELLO!

Number

"use strict";
let counter = 20; // no decimal point
alert(counter + " " + typeof counter);
let degree = 12.1; // with decimal point
alert(degree + " " + typeof degree);

Properties and methods for numbers

https://en.wikipedia.org/wiki/IEEE_754

The build-in object Math provides common mathematical functions like sin or log. Syntax:
Math.xyz() (with parenthesis)
The object Number provides properties that characterize the implementation of the data type
number, like MAX_VALUE or NEGATIVE_INFINITY. Syntax: Number.xyz (no parenthesis)
The object Number provides static methods that check the relation between numbers and
other data types, e.g., isInteger or parseFloat. Syntax: Number.xyz() (with parenthesis)
The object Number provides instance methods that act on concrete number values or
variables, e.g., toExponential or toFixed. Syntax: value.xyz() (with parenthesis)

We show some properties and methods which are often used. For a complete list, please refer to MDN
Math (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math) and
MDN Numbers (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Num
ber).

Most commonly used constants:

Math.E Returns the constant e.
Math.PI Returns the constant pi.
Math.LN10 Returns the natural logarithm of 10.
Math.LN2 Returns the natural logarithm of 2.
Math.SQRT2 Returns the square root of 2.

Returns the smallest integer greater than the number passed as an argument.

Returns the greatest integer less than the number passed as an argument.

// some examples
"use strict";

const var_1 = Math.PI;
alert(var_1);
alert(var_1.toFixed(2));

const var_2 = Math.sqrt(3);
alert(var_2);

alert(Number.MAX_VALUE);

alert(Number.isInteger(123)); // true
alert(Number.isInteger(12.3)); // false

Properties

Math.ceil(number)

const myInt = Math.ceil(90.8);
alert(myInt); // 91
alert(Math.ceil(-90.8)); // -90

Math.floor(number)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Returns the closest integer to the number passed as an argument.

Returns the higher number from the two numbers passed as arguments.

Returns the lower number from the two numbers passed as arguments.

Generates a pseudo-random number between 0 and 1.

The two methods parseInt and parseFloat convert strings into numbers. They scan the given
string from left to right. When they recognize a character distinct from 0 - 9, they finish scanning and return
the converted numbers read so far (parseFloat accepts the decimal point). If the first character is distinct
from 0 - 9, they return Math.NaN, meaning Not a Number.

Hint: It's not necessary to specify 'Number.' in the source code.

const myInt = Math.floor(90.8);
alert(myInt); // 90
alert(Math.floor(-90.8)); // -91

Math.round(number)

alert(Math.round(90.8)); // 91
alert(Math.round(-90.8)); // -91

alert(Math.round(90.3)); // 90
alert(Math.round(-90.3)); // -90

Math.max(number_1, number_2)

alert(Math.max(8.3, 9)); // 9
alert(Math.max(8.3, -9)); // 8.3

Math.min(number_1, number_2)

alert(Math.min(8.3, 9)); // 8.3
alert(Math.min(8.3, -9)); // -9

Math.random()

alert(Math.random());

Number.parseInt(string)

Number.parseFloat(string)

BigInt is a data type that represents integers of arbitrary length. Hence, it's a variable-length format
(conceptually) delimited only by the available RAM.

BigInts are created either by adding a 'n' to the end of an integer literal or by using the BigInt()
function.

BigInt supports the arithmetic operators + - * / **, comparison operators, and most of the bitwise
operators.

Boolean variables can contain one of two possible values, true or false. JavaScript represents false
by either a Boolean false, the number 0, NaN, an empty string, or the built-in types undefined or null. Any
other values are treated as true.

Variables that have just been declared but not initialized with any value have the data type undefined.

const x = parseInt("7.5");
alert(x); // 7

const y = parseInt("Five");
alert(y); // NaN

const z = parseFloat("2.8") + 3;
alert(z); // 5.8

// scientific notation is accepted
alert(parseFloat("123.456e6")); // 123456000

BigInt

"use strict";
let hugeNumber_1 = 12345678901234567890n; // 'n' at the end
alert(typeof hugeNumber_1);
let hugeNumber_2 = BigInt("12345678901234567890"); // no 'n'
alert(typeof hugeNumber_2);
// a 'small' BigInt can be created out of an integer value
let hugeNumber_3 = BigInt(123);
alert(typeof hugeNumber_3);

Boolean

"use strict";
let firstLoop = true;
alert(typeof firstLoop);

Undefined

"use strict";
let x;
// ...
alert(typeof x);
if (x == undefined) {
 // remedy the missing initialization
 x = 0;
}

https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

In JavaScript, null is marked as one of the primitive values, because its behavior is seemingly primitive.
However, when using the typeof operator, it returns "object". This is considered a bug, but one which
cannot be fixed because it will break too many scripts.[1]

Symbol represents a unique identifier. Symbols may have a descriptor that is given as a string to its
constructor.

Symbols (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global%20Objects/Symbol)
are used as keys in objects (embedded in []) to guarantee uniqueness.

ECMAScript definitions on data types (https://262.ecma-international.org/#sec-ecmascript-data-types-and-v
alues)

... are available on another page (click here).

1. MDN: Null (https://developer.mozilla.org/en-US/docs/Glossary/Null)

alert(typeof x);
// ...

Null

Symbol

"use strict";
// 'person' is a symbol with the description "Olaf"
const person = Symbol("Olaf");
alert(person.description); // Olaf

See also

Exercises

References

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global%20Objects/Symbol
https://262.ecma-international.org/#sec-ecmascript-data-types-and-values
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Glossary/Null

Objects
In JavaScript, an Object (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#object
s) is a collection of properties; properties are key-value pairs. The keys are Strings or Symbols. Values can
be of any data type - including functions (in this case, they are called methods).

Objects look like associative arrays implemented as hashtables. But in practice, JavaScript engines might
have implemented them in other ways to achieve optimal performance.

Please consider that JavaScript objects are not identical to JSON. JSON is a format for a textual
representation ('serialization' / 'de-serialization') of objects, which can also be done in other languages or in
a pure text editor.

The JavaScript syntax supports different ways to create objects.

'Literal notation' using curly braces { }

Constructor
The new Object() constructor creates a new object.

Object.create()
The Object.create() method creates a new object from an existing object.

Create an object

"use strict";

// an empty object (no properties)
const obj_0 = {};
alert(JSON.stringify(obj_0));

// 'obj_1' contains a set of 3 properties. The value of key 'c' is
// a second object with an empty set of properties.
const obj_1 = { a: "Any string", b: 42, c: {} };
alert(JSON.stringify(obj_1));

// using variables
const a = "Any string";
const b = 42;
const c = {};
const obj_2 = { a: a, b: b, c: c };
alert(JSON.stringify(obj_2));

// shorthand usage of variables
const obj_3 = { a, b, c };
alert(JSON.stringify(obj_3));

"use strict";
const obj_4 = new Object({ a: 5, b: 42 });
alert(JSON.stringify(obj_4));

"use strict";
const obj_5 = Object.create({ a: 5, b: 42 });
alert(JSON.stringify(obj_5)); // ???

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#objects
https://en.wikipedia.org/wiki/associative_array
https://en.wikipedia.org/wiki/Hash_tables

Each property consists of a key-value pair. To read a property's values, you can use its key in one of two
syntactical ways, dot notation or bracket notation.

What if you don't know the keys? To get a list of all existing keys, use the method Object.keys(). It
returns an array whose elements are strings. Those strings may be used in a loop to access the values.
Because you need such loops in many cases, JavaScript offers a special language element for that situation.
The for .. in loop selects the keys and loops over all properties.

Analog to the Object.keys() method there are the two methods Object.values() and
Object.entries() to get the values respectively the properties (key and value). In the latter case,
you get an array of arrays (with two elements each).

You can use the dot notation as well as the bracket notation to add or modify properties. There is no
difference in the syntax between the above read operations and the write operations.

alert(JSON.stringify(obj_5.a));
console.log (obj_5);

Read a property

"use strict";
const person = {firstName: "Albert", lastName: "Einstein" };

// dot notation
alert(person.firstName); // no " " or ' '

// bracket notation
alert(person["firstName"]); // must use a string

// bracket notation using a variable
const fn = "firstName";
alert(person[fn]);

"use strict";
const person = {firstName: "Albert", lastName: "Einstein" };
alert(Object.keys(person)); // firstName, lastName

// The for .. in loop selects all existing keys and loops over the properties
for (const k in person) {
 alert('The key is: ' + k + '. The value is: ' + person[k]);
}

"use strict";
const person = {firstName: "Albert", lastName: "Einstein" };
alert(Object.values(person)); // Albert, Einstein

// for .. of loops differ from for .. in loops in syntax AND semantic; see chapter 'Loops'
for (const [k, v] of Object.entries(person)) {
 alert('The key is: ' + k + '. The value is: ' + v);
}

Add or modify a property

"use strict";
const person = {firstName: "Albert", lastName: "Einstein" };

// add properties

In the above example, the variable 'person' is created with the keyword const. So it's not possible to
assign a new value to it, but it's possible to manipulate its properties. When manipulating properties, the
original object keeps unchanged.

The delete operator removes the complete property from an object - the key as well as the value. This is
different from the case where someone stores null or undefined in the value.

Again, you can use the dot notation as well as the bracket notation.

JavaScript offers a 'spread syntax' (3 dots). It expands an Object to its properties (key-value pairs) or an
array to its elements. This can be helpful when you want to merge multiple objects into a single one.

The value part of a property may contain the body of a function; see here (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Working_with_Objects#defining_methods). In this case, the function is
called a method.

person.bornIn = "Ulm";
person["profession"] = "Physicist";
alert(JSON.stringify(person));

// modify properties
person.bornIn = "Germany";
person["profession"] = "Theoretical Physics";
alert(JSON.stringify(person));

Delete a property

"use strict";
const person = {firstName: "Albert", lastName: "Einstein", bornIn: "Ulm", profession:
"Physicist" };

delete person.bornIn;
delete person["profession"];
alert(JSON.stringify(person));

Merge objects

"use strict";
const person = {firstName: "Albert", lastName: "Einstein" };
const address = {city: "Ulm" };

// expand the two objects (and merge them)
const newPerson = {...person, ...address};
alert(JSON.stringify(newPerson));
// The result is an object with 3 properties. All values are strings.
// {firstName: "Albert", lastName: "Einstein",city: "Ulm"}

// which is different from the version without the 'spread syntax':
const newPerson1 = {person, address};
alert(JSON.stringify(newPerson1));
// The result is an object with 2 properties. Both values are objects.
// {person: {firstName: "Albert", lastName: "Einstein"}, address: {city: "Ulm"}}

Functions/methods as part of an object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#defining_methods

... are available on another page (click here).

"use strict";

// only definitions here, no execution!
const city = {
 showName: function (cityName) {
 if (typeof cityName === "undefined") {
 alert("Sorry, I don't know my name.");
 } else {
 alert("The name of the city is: " + cityName);
 }
 },

 // this works too!
 showPopulation(count) {
 alert(count + " Inhabitants");
 },
};

// JSON's 'stringify()' doesn't support the serialization of methods. Use 'console.log()'
instead.
console.log(city);

// executions
city.showName();
city.showName("Nairobi");
city.showPopulation(4500000);

Exercises

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1

Arrays

In JavaScript, an array is an object where you can store a set of values under a single variable name. So far,
it's the same as in many other languages. But there are distinctions.

It's not necessary that the values are of the same data type. You can put everything you want
in an array and worry about the data type later. (But there are also typed arrays (https://devel
oper.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) where all values have the same
data type.)
When you create an array, you do not need to declare a size - but you can. Arrays grow
automatically. This makes arrays very convenient to use, but not well-suited for applications
in numerical analysis.
Because arrays are objects, they have methods and properties you can invoke at will. For
example, the .length property indicates how many elements are currently in the array. If
you add more elements to the array, the value of the .length gets larger.
The element-counting starts at 0, which means, for instance, that the 5th element is located
with [4].

(Hint: When using arrays, you should always use the bracket notation with non-negative integers, e.g.,
arr[3] = 42;. Technically, it's also possible to use the dot notation, but this leads - at least for
beginners - to unexpected behavior.)

First, as with all objects, there is a constructor.

Next, the JavaScript syntax supports square brackets when creating or working with arrays.

You can predefine the size of an array when declaring it.

Create an array

"use strict";

const arr_1 = new Array(); // empty array
alert(arr_1.length);
const arr_2 = new Array(0, 2, 4); // 3 elements
alert(arr_2);

"use strict";

const arr_1 = []; // empty array
alert(arr_1.length);
const arr_2 = [0, 2, 4]; // 3 elements
alert(arr_2);

"use strict";

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

Array elements are accessed for reading or writing with the usual bracket notation.

When you access an element above the array's actual length, the size of the array will grow, and the new
element will be created.

You can store values of different data types within an array.

As shown before, an array element may be an array (which itself may contain elements of type array
(which itself may contain ...)). This can occur during runtime or during initialization. To access the lower
levels directly, you must specify as many bracket pairs [] as necessary to reach this level.

const arr_3 = new Array(50); // 50 elements
alert(arr_3.length);

Access an array element

"use strict";

const arr_4 = [0, 2, 4, 6, 8];
alert(arr_4[3]); // 6
arr_4[0] = 9;
alert(arr_4); // 9, 2, 4, 6, 8

"use strict";

const arr_5 = [0, 2, 4, 6, 8];
arr_5[10] = 9;
alert(arr_5); // 0,2,4,6,8,,,,,,9
alert(arr_5.length); // 11

Varying data types

"use strict";

const arr_6 = [0, "two", 4]; // number and string
console.log(arr_6); // [0, "two", 4]

// and even values of data type 'array' can be stored
const arr_7 = [10, 11];
arr_7[2] = arr_6; // array in array
console.log(arr_7); // [10, 11, [0, "two", 4]]
console.log(arr_7.length); // 3

Nested arrays

"use strict";

const arr_8 = [[0, 1], [10, 11, 12, 13], [20, 21]];
console.log(arr_8[2]); // one level goes to an array of numbers: [20, 21]
console.log(arr_8[1][1]); // two levels go to a number: 11

// same with assignments ...
arr_8[2][0] = "twenty";
console.log(arr_8[2]); // ["twenty", 21]

... and a little more complex

length is a property of each array (it's not a method). It represents the number of elements in that array.

Please notice that array indices are zero-based. Therefore the array's length is huger than the last index.

The concat method returns the combination of two or more arrays. To use it, first, you need two or more
arrays to combine.

Then, make a third array and set its value to arr1.concat(arr2).

Note that in this example, the new arr3 array contains the contents of both the arr1 array and the arr2 array.

The join method returns a single string that contains all of the elements of an array — separated by a
specified delimiter. If the delimiter is not specified, it is set to a comma.

There is also a split method that performs the opposite of join: it operates on a string, divides him into
elements based on the specified delimiter, and returns an array that contains those elements. (Hint: split
is a method of the data type string, not of array.)

To use join, first make an array.

"use strict";

const arr_9 = []; // empty
arr_9[0] = [];
arr_9[0][0] = [];
arr_9[0][0][2] = "Hallo world!";
console.log(arr_9); // [[[undefined, undefined, "Hallo world!"]]]

arr_9[2] = "Third element of first level";
console.log(arr_9);
// [[[undefined, undefined, "Hallo world!"]], undefined, "Third element of first level"]

Properties and methods

length

alert([0, 1, 2].length); // 3

concat

const arr1 = ["a","b","c"];
const arr2 = ["d","e","f"];

const arr3 = arr1.concat(arr2); //arr3 now is: ["a","b","c","d","e","f"]

join and split

Then, make a new variable and assign it to abc.join().

You can also use a dedicated delimiter.

Convert it back into an array with the string's split method.

The push method adds one or more elements to the end of an array and returns the array's new length.

The pop method removes the last element of an array and returns the element.

push and pop work at the end of an array; they reverse their respective effects.

The unshift method adds one or more new elements to the beginning of an array and returns the array's
new length. It works by 'unshifting' every old element from its old index to , adds the new element
to index , and adopts the array's length property. It is comparable with push but works at the
beginning of the array.

const abc = ["a", "b", "c"];

const a = abc.join(); // "a,b,c"

// use 'semicolon' plus 'space' as delimiter
const b = abc.join("; "); // "a; b; c"

const a2 = a.split(","); // ["a", "b", "c"]
const b2 = b.split("; "); // ["a", "b", "c"]

push

"use strict";
const arr = [0, 1, 2, 3];

alert(arr); // 0, 1, 2, 3
const len = arr.push(100);
alert(len); // 5
alert(arr); // 0, 1, 2, 3, 100

pop

"use strict";
const arr = [0, 1, 2, 3];

alert(arr); // 0, 1, 2, 3
const elem = arr.pop();
alert(elem); // 3
alert(arr); // 0, 1, 2

unshift

The shift method removes the first element of an array and returns the removed element. It works by
'shifting' every old element from its old index to , adopts the array's length property, and returns
the old first element. It is comparable with pop but works at the beginning of the array.

unshift and shift work at the beginning of an array; they reverse their respective effects.

... are available on another page (click here).

MDN: Arrays (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_O
bjects/Array)

"use strict";
const arr = [0, 1, 2, 3];

alert(arr); // 0, 1, 2, 3
const len = arr.unshift(100);
alert(len); // 5
alert(arr); // 100, 0, 1, 2, 3

shift

"use strict";
const arr = [0, 1, 2, 3];

alert(arr); // 0, 1, 2, 3
const elem = arr.shift();
alert(elem); // 0
alert(arr); // 1, 2, 3

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Dates
In JavaScript, a Date is an object. Hence it must be explicitly created with the new operator.

Date contains a value that represents the number of milliseconds that have elapsed since January 1, 1970
UTC. It's worth mentioning what it does not contain: There is no information about a timezone within the
object. Nevertheless, you can convert it to an appropriate string of any arbitrary time zone. Other methods
can select parts like the month or the day of the week, or you can use the number for any computation, and
more.

The default constructor creates the Date object as of the current point in time of your computer.

You can pass parameters to the constructor to generate a certain Date object.

Some often used methods (https://www.w3schools.com/js/js_date_methods.asp) of Date are:

Static methods

Date.now(): Returns the number of milliseconds since January 1, 1970, 00:00:00 UTC
calibrated (plus/minus some hours) to the timezone of your computer.
Date.UTC(<parameters>): Returns the number of milliseconds since January 1, 1970,
00:00:00 UTC.
Date.parse(text): Parsing of strings with Date.parse() (https://developer.mozilla.org/en-US/do
cs/Web/JavaScript/Reference/Global_Objects/Date#static_methods) is strongly discouraged
due to browser differences and inconsistencies.

Instance methods

toISOString(): Returns a string in ISO 8601 format.
getFullYear(): Returns the full 4-digit year.
getMonth(): Returns the current month. [0 - 11]
getDate(): Returns the day of the month. [1 - 31]

Constructor

const currentMilliSeconds = new Date(); // creates a new Date object as of 'now'
alert(currentMilliSeconds); // implicit conversion to string
alert(currentMilliSeconds.toString()); // explicit conversion to string

alert(currentMilliSeconds.valueOf()); // the real value

// 1000 ms = 1 second after the beginning of JavaScript time
const pointInTime_1 = new Date(1000);
alert(pointInTime_1);
// begin of last minute in last century
const pointInTime_2 = new Date(1999, 11, 31, 23, 59);
alert(pointInTime_2);

Methods

https://www.w3schools.com/js/js_date_methods.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date#static_methods

getDay(): Returns the day of the week. [0 - 6]. Sunday is 0, with the other days of the week
taking the next value.
getHours(): Returns hours [0 - 23] based on a 24-hour clock.
getMinutes(): Returns minutes. [0 - 59]
getSeconds(): Returns seconds. [0 - 59]
getTime(): Returns the time in milliseconds since January 1, 1970.
valueOf(): Returns the time in milliseconds since January 1, 1970. Equivalent to getTime().
getTimezoneOffset(): Returns the difference in minutes between UTC and local time.
setFullYear(year): Stores the full 4-digit year within the Date object.
setMonth(month, day): Sets the month, and optionally the day within the month. '0' is
January, ...

The Date can be returned as an integer by the method valueOf() or by prefixing the constructor with a
+ sign, e.g., to use it for "seeding" a PRNG (Pseudo Random Number Generator) or to perform
calculations.

The Date object purely contains a whole number (Integer). It does not know anything about timezones. As
long as you don't specify timezones in any form, you work in your local timezone.

But sometimes it's necessary to consider timezones.

'As Integer'

const dateAsInteger_1 = new Date().valueOf();
alert(dateAsInteger_1);

const dateAsInteger_2 = +new Date();
alert(dateAsInteger_2);

Timezones

// Example 1

// Create it in UTC: 27th of January, midnight
const date_1 = new Date(Date.UTC(2020, 00, 27, 0, 0, 0));
alert(date_1);

// show it in another timezone (Jakarta is +7) ...
const jakartaTime = new Intl.DateTimeFormat('en-GB', { timeZone: 'Asia/Jakarta', dateStyle:
'full', timeStyle: 'long' }).format(date_1);
alert(jakartaTime);

// ... the original value has not changed
alert(date_1);

// Example 2

// assume we are in New York timezone (-5 against UTC)
const date_2 = new Date();
console.log(date_2.toString());

// show it in another timezone (Los Angeles is -8 against UTC)
const laTime = new Intl.DateTimeFormat('en-GB', { timeZone: 'America/Los_Angeles', dateStyle:
'full', timeStyle: 'long' }).format(date_2);
console.log(laTime);

The object Date has some inconsistencies and shortcomings, especially: weak timezone support, no support
for non-Gregorian calendars, missing calendar functions, and more. Possibly they will be fixed in a new
Temporal API (https://tc39.es/proposal-temporal/docs/index.html) in one of the subsequent JavaScript
versions.

... are available on another page (click here).

// ... the internal value has not changed
console.log(date_2.toString());

New API: Temporal

Exercises

https://tc39.es/proposal-temporal/docs/index.html
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1

Regular expressions

A regular expression - RE or RegExp for short - is a pattern that may or may not correlate with a given
string, i.e. (in pseudo-code): "a single digit followed by one to five letters". The string "3Stars" correlates,
while "Three Stars" does not.

Regular expressions are notated in their own syntax. The above pseudo-code must be expressed as
/\d\w{1,5}/, which is a literal delimited by a slash at the beginning and the end, and contains the
formal description for the words 'digit' \d, 'letter' \w, and 'one to five' {1,5}.

From the perspective of JavaScript, RegExp is a data type that is derived from Object. It has its own
constructors, methods, and properties. But their direct usage in the form of an object is a little
counterintuitive. Because the Wikibook on hand addresses JavaScript beginners, we explain the advantage
and appliance of regular expressions in the context of strings, which is the standard use case. Also, we
show only simple regular expressions and central aspects. For more details on regular expressions, there is a
separate Wikibook Regular Expressions. The focus here is on their usage within JavaScript.

Regular expressions most commonly appear in conjunction with the match and replace methods of
strings.

The match method accepts an RE and returns an array with the matching string(s).

If the match doesn't find something in the string, it returns null. Because JavaScript treats null as
false, the result can be used in an if statement.

String's match method

"use strict";
const myVar = "A short text";

// show the result of the match()
alert(myVar.match(/t t/)); // note the slashes

// match() accepts the RE as String ("..." instead of /.../)
alert(myVar.match("t t"));

// explicit constructor of an RE
const re = new RegExp("t t");
alert(myVar.match(re));

Make decisions

"use strict";
const myVar = "A short text";
if (myVar.match(/t t/)) {
 alert("Bingo.");
} else {

https://en.wikibooks.org/wiki/Regular_Expressions

REs are very powerful through the use of meta-characters instead of concrete characters. Meta-characters
extend the meaning of REs in different ways: indicating character classes, wildcards, quantifiers, groups,
back-references, and much more.

You can use the . (dot) as a wildcard for any character.

There are three quantifiers:

? The question mark indicates zero or one occurrence of the preceding element.
* The asterisk indicates zero or more occurrences of the preceding element.
+ The plus sign indicates one or more occurrences of the preceding element.

The semantics of the RE may be modified by appending one of g, i, or m to the end (after the second
slash) of the RE.

g (global) indicates that all occurrences of the RE shall be returned, not only the first one.
i (ignore case) indicates that the case of characters shall be ignored.
m (multiple lines) indicates that the RE shall work across line terminators.

 alert("Bad luck.");
}

Meta-characters

Wildcard

"use strict";
const myVar = "A short text";
alert(myVar.match(/t..t/)); // text

Quantifier

"use strict";
const myVar = "aaa bbb ccc 789";
alert(myVar.match(/bbb c?/)); // bbb c one 'c'
alert(myVar.match(/bbb x?/)); // bbb zero 'x'
alert(myVar.match(/bbb c*/)); // bbb ccc multiple 'c's
alert(myVar.match(/bbb c+/)); // bbb ccc multiple 'c's

// combination of wildcard and quantifier
alert(myVar.match(/bbb .*/)); // bbb ccc 789 multiple arbitrary characters

Modifier

"use strict";
const myVar = "A short text that contains 7 words.";
alert(myVar.match(/t t./g)); // t te, t th

Some important character classes (or character types) are identified by the following backslash-notations:

\w An alphanumeric character or "_"
\W An non-alphanumeric character or "_"
\d A digit
\D A non-digit
\s A whitespace character (space, tab, newline, formfeed)
\S A non-whitespace character
\b A boundary of a word

The replace method returns a new string where the RE is replaced by the given string.

... are available on another page (click here).

Regular Expressions - a Wikibook dedicated to regular expressions.
Perl Regular Expressions Reference - a chapter devoted to regular expressions in a book
about the Perl programming language.

MDN: Regular Expressions in JavaScript - 1 (http://developer.mozilla.org/en/JavaScript/Guid
e/Regular_Expressions)
MDN: Regular Expressions in JavaScript - 2 (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/RegExp)

alert(myVar.match(/SHORT/)); // null
alert(myVar.match(/SHORT/i)); // short

Character classes

"use strict";
const myVar = "a+ a a3 ";
alert(myVar.match(/a\w/)); // a3
alert(myVar.match(/a\W/)); // a+
alert(myVar.match(/\d/)); // 3
alert(myVar.match(/a\s/)); // a
alert(myVar.match(/a\b/)); // a

String's replace method

"use strict";
const myString1 = "Hello world.";
const myString2 = myString1.replace(/world/, "Tim");
alert(myString2); // Hello Tim.

Exercises

See also

External links

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://en.wikibooks.org/wiki/Regular_Expressions
https://en.wikibooks.org/wiki/Perl_Programming/Regular_Expressions_Reference
http://developer.mozilla.org/en/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

W3Schools: JavaScript RegExp Reference (http://www.w3schools.com/jsref/jsref_obj_regex
p.asp)
JavaScript RexExp Tester (http://www.regular-expressions.info/javascriptexample.html) at
regular-expressions.info

http://www.w3schools.com/jsref/jsref_obj_regexp.asp
http://www.regular-expressions.info/javascriptexample.html

Operators

The + operator acts in two different ways depending on the type of its two operands. If one or both of them
are strings, it acts as a string concatenator. If both are numeric, it acts as an arithmetic addition.

An example of string concatenation is "one " + "world" resulting in "one world". If one of the
two operands isn't a string, it is implicitly converted to a string before the + operation takes place.

JavaScript has the arithmetic operators +, -, *, /, % (remainder), and ** (exponentiation). These operators
work the way you learned in mathematics. Multiplication and division will be calculated before addition
and subtraction. If you want to change such precedence, you can use parenthesizes.

Hint: In opposite to some other languages, the division operation may result in a floating point number - it's
not always a pure integer.

Some mathematical operations, such as dividing by zero, cause the returned variable to be one of the error
values - for example, infinity, or NaN (Not a number).

The return value of the remainder operator maintains the sign of the first operand.

The + and - operators also have unary versions, where they operate only on one variable. When used in
this fashion, + returns the number representation of the object, while - returns its negative counterpart.

String concatenation

"use strict";

// regular concatenation
const word_1 = "one";
const word_2 = "world";
let result = word_1 + " " + word_2;
alert(result); // "one world"

// implicit type conversion
const arr = [41, 42, 43];
result = word_1 + arr + word_2; // first, the array is converted to a string
alert(result); // "one41,42,43world"

// dito
const x = 1;
result = x + word_2;
alert(result); // "1world"

Arithmetic operators

const a = 12 + 5; // 17
const b = 12 - 5; // 7
const c = 12 * 5; // 60
const d = 12 / 5; // 2.4 Division results in floating point numbers
const e = 12 % 5; // 2 Remainder of 12/5 is 2
const f = 12 - 2 * 5; // 2 Multiplication is calculated first
const g =(12 - 2) * 5; // 50 Parenthesis are calculated first

As noted above, + is also used as the string concatenation operator: If any of its arguments is a string or is
otherwise not a number, all arguments are converted to strings and concatenated together. All other
arithmetic operators works the other way round: They attempt to convert their arguments into numbers
before evaluating.

There are seven bitwise operators: &, |, ^, ~, >>, <<, and >>>.

These operators convert their operands to integers (truncating any floating point towards 0), and perform
the specified bitwise operation on them. The logical bitwise operators, &, |, and ^, perform the and, or,
and xor on each individual bit and provides the return value. The ~ (not operator) inverts all bits within an
integer, and usually appears in combination with the logical bitwise operators.

Two bit shift operators, >>, <<, move the bits in one direction that has a similar effect to multiplying or
dividing by a power of two. The final bit-shift operator, >>>, operates the same way, but does not preserve
the sign bit when shifting.

These operators are kept for parity with the related programming languages, but are unlikely to be used in
most JavaScript programs.

The assignment operator = assigns a value to a variable. Primitive types, such as strings and numbers, are
assigned directly. However, function and object names are just pointers to the respective function or object.
In this case, the assignment operator only changes the reference to the object rather than the object itself.
For example, after the following code is executed, "0, 1, 0" will be alerted, even though array_A was
passed to the alert, but array_B was changed. This is because they are two references to the same object.

Similarly, after the next code snippet is executed, x is a pointer to an empty array.

"use strict";
const a = 42;
const b = +a; // b is 42
const c = -a; // c is -42

"use strict";
const a = 42;
const b = "2";
const c = "3";
alert(a + b); // "422" (a string)
alert(a * b); // 84 (a number)
alert(b * c); // 6 (a number)

Bitwise operators

Assignment operators

"use strict";
const array_A = [0, 1, 2];
const array_B = array_A;
array_B[2] = 0;
alert(array_A); // 0, 1, 0

"use strict";
const z = [5];

If the result of any of the above-shown arithmetic or bitwise operators shall be assigned to its first operand,
you can use a shorter syntax. Combine the operator, e.g., +, directly with the assignment operator =
resulting in +=. As an example x = x + 5 can be abbreviated as x += 5.

The abbreviated operator/assignment syntax reads:

Arithmetic Logical Shift

+= &= >>=

-= |= <<=

*= ^= >>>=

/=

%=

For example, a common usage for += in a for loop:

Increment and decrement operators are a particular form of arithmetic operators: ++ and --. a++
increments a and returns the old value of a. ++a increments a and returns the new value of a. The
decrement operator acts similarly but reduces the variable instead.

As an example, the next operations all perform the same task:

const x = z;
z.pop();
alert (x);

"use strict";
const arr = [1, 2, 3];
let sum = 0;
for (let i = 0; i < arr.length; i++) {
 sum += arr[i]; // same as: sum = sum + arr[i];
}
alert(sum);

Increment operators

"use strict";
let a = 1;
alert(a); // 1

a = a + 1;
alert(a); // 2

a += 1;
alert(a); // 3

a++;
alert(a); // 4

++a;
alert(a); // 5

// but this SHOWS something different; see next chapter

Increment operators may be written before or after a variable. The position decides whether they are pre-
increment or post-increment operators, respectively. That affects the operation.

Due to the possibly confusing nature of pre and post-increment behavior, code can be easier to read if you
avoid increment operators.

Comparison operators determine whether their two operands meet the given condition. They return true or
false.

Concerning the 'equal' and 'not-equal' operators, you must take care. == is different from ===. The first
one tries to adapt the data type of the two types to each other and then compares the values. The second
one compares the types as well as their values and returns only true if type and value are identical: 3 ==
"0003" is true and 3 === "3" is false.

alert(a++); // shows 5 again
alert(a); // nevertheless, 'a' was incremented to 6

Pre and post-increment operators

"use strict";

// increment occurs before a is assigned to b
let a = 1;
let b = ++a; // a = 2, b = 2;

// increment occurs to c after c is assigned to d
let c = 1;
let d = c++; // c = 2, d = 1;

"use strict";

// increment occurs before a is assigned to b
let a = 1;
a += 1;
let b = a; // a = 2, b = 2;

// increment occurs to c after c is assigned to d
let c = 1;
let d = c;
c += 1; // c = 2, d = 1;

Comparison operators

Op. Returns Notes

== true, if the two operands are equal May change an operand's type
(e.g. a string as an integer).

=== true, if the two operands are strictly equal
Does not change operands' types.
Returns true if they are the same type and
value.

!= true, if the two operands are not equal May change an operand's type
(e.g. a string as an integer).

!== true, if the two operands are not strictly equal Does not change the operands' types.
Returns true if they differ in type or value.

> true, if the first operand is greater than the second one

>= true, if the first operand is greater than or equal to the
second one

< true, if the first operand is less than the second one

<= true, if the first operand is less than or equal to the
second one

We recommend using the strict versions (=== and !==) because the simple versions may lead to strange
and non-intuitive situations (https://dorey.github.io/JavaScript-Equality-Table/), such as:

... although you might want:

The logical operators are and, or, and not — written as &&, ||, and !. The first two take two boolean
operands each. The third takes one and returns its logical negation.

Operands are boolean values or expressions that evaluate to a boolean value.

0 == '' // true
0 == '0' // true
false == 'false' // false (''Boolean to string'')
false == '0' // true (''Boolean to string'')
false == undefined // false
false == null // false (''Boolean to null'')
null == undefined // true

0 === '' // false
0 === '0' // false
false === 'false' // false
false === '0' // false
false === undefined // false
false === null // false
null === undefined // false

Logical operators

"use strict";
const a = 0;
const b = 1;

if (a === 0 && b === 1) { // logical 'and'
 alert ("a is 0 AND b is 1");
}

if (a === 1 || b === 1) { // logical 'or'

https://dorey.github.io/JavaScript-Equality-Table/

&& and || are short circuit operators: if the result is guaranteed after the evaluation of the first operand, it
skips the evaluation of the second operand. Due to this, the && operator is also known as the guard
operator, and the || operator is known as the default operator.

The ! operator determines the inverse of the given boolean value: true becomes false and false becomes
true.

Note: JavaScript represents false by either a Boolean false, the number 0, NaN, an empty string, or the
built-in types undefined or null. Any other value is treated as true.

Concerning the precedence of the three operators, ! is evaluated first, followed by &&, and lastly ||.

More details on the relationship between precedence and short-circuiting are explained at MDN (https://dev
eloper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#short-circuiting)

The ? : operator (also called the "ternary" operator) is an abbreviation of the if statement. First, it
evaluates the part before the question mark. Then, if true, the part between the question mark and the colon
is evaluated and returned, else the part behind the colon.

However, be careful when using it. Even though you can replace verbose and complex if/then/else chains
with ternary operators, it may not be a good idea to do so. You can replace

 alert ("a is 1 OR b is 1");
}

"use strict";

// declare 'myArray' without initialization
let myArray;

// runtime error!
if (myArray.length > 0) {
 alert("The length of the array is: " + myArray.length);
}

// no error because the part after '&&' will not be executed!
if (myArray && myArray.length > 0) {
 alert("The length of the array is: " + myArray.length);
}

 a || b && !c

 | | | |
 | | └ 1. ┘
 | └───── 2. ───┘
 └───────── 3. ───────┘

Other operators

? :

const target = (a == b) ? c : d;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#short-circuiting

with

The above example is a poor coding style/practice. When other people edit or maintain your code, (which
could very possibly be you,) it becomes much more difficult to understand and work with the code.

Instead, it is better to make the code more understandable. Some of the excessive conditional nesting can be
removed from the above example.

delete obj.x unbinds property x from object obj.

The delete keyword deletes a property from an object. It deletes both the value of the property and the
property itself. After deletion, the property cannot be used before it is added back again. The delete
operator is designed to be used on object properties. It has no effect on variables or functions.

new cl creates a new object of type cl. The cl operand must be a constructor function.

if (p && q) {
 return a;
} else {
 if (r != s) {
 return b;
 } else {
 if (t || !v) {
 return c;
 } else {
 return d;
 }
 }
}

return (p && q) ? a
 : (r != s) ? b
 : (t || !v) ? c
 : d

if (p && q) {
 return a;
}
if (r != s) {
 return b;
}
if (t || !v) {
 return c;
} else {
 return d;
}

delete

new

instanceof

https://en.wikibooks.org/wiki/JavaScript/Objects#Delete_a_property

o instanceof c tests whether o is an object created by the constructor c.

typeof x returns a string describing the type of x. Following values may be returned.

Type returns

boolean "boolean"

number "number"

string "string"

function "function"

undefined "undefined"

null "object"

others (array, ...) "object"

... are available on another page (click here).

MDN: Operators (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Oper
ators/)

typeof

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

Control structures
Most programming languages are composed of 'bricks' like tokens (keywords, variables, operators, ...),
expressions like myArray.length + 1, statements (delimited by ;), blocks {...}, functions, and
modules. At first glance, the execution of the program follows the sequence of statements, top down. But in
nearly all cases, it is necessary that the program does not run in the strict order of the written statements.
Instead, some parts must run only if certain conditions apply, and others will be omitted and run under
different conditions. Or, it may become necessary that some parts are executed repetitively. Other parts may
run in parallel and get synchronized later. Or, a function of a different module must compute a value before
the next statement can be executed.

In this hierarchy of 'language bricks' the term block is essential for the understanding of the program flow.
In JavaScript, a block is a sequence of zero or more statements (or smaller blocks) that are surrounded by
braces { // zero or more statements }. The language constructions we discuss here invoke
or repeat blocks.

The if / else statement (yes, it's a single statement, even though it contains other statements in its
blocks) invokes the execution of one of two blocks depending on the evaluation of a condition. The
evaluation returns a boolean value. If it is true, the first block is executed; if it is false, the second
block is executed. The respectively other block is skipped over.

The else part is optional, i.e. it's possible to use if without the else part and its block.

An example:

if / else

if (condition) {
 // block of statements
} else {
 // block of statements
}

if (condition) {
 // block of statements
}

"use strict";
const a = 3;
const b = "3";
if (a == b) {
 alert("The two variables contains the same value, but may have different data types.");
} else {
 alert("The two variables contain different values.");
}

// an example without 'else'
const c = 6 / 2;
if (a === c) {
 alert("The two variables contains the same value and are of the same data type.");
}

https://en.wikibooks.org/wiki/JavaScript/Primitive_data_types#Boolean

If one of the two blocks contains exactly ONE statement, the braces can be omitted. But for the clearness of
the code, we recommend the use of a unified syntax with braces.

In many cases, the situation demands more complex decisions than a simple true/false alternative. For
example, you may want to know whether a number is negative, zero, or positive. In such cases, a solution
might look like this:

You can shorten this code a bit without losing clarity. Because the first else block contains only a single
statement - namely the second if - you can omit its braces and combine the first else and the second if
within one line.

This is a clear and often-used programming style. It's used in situations where you have a manageable
number of choices or where you have to make decisions with multiple variables.

If the number of decisions grows significantly, the code gets clearer if you use the switch statement
instead of a long list of else if conditions.

// same as above; but this abbreviated syntax is not recommended.

"use strict";
const a = 3;
const b = "3";

if (a == b) alert("The two variables contains the same value, but may have different data
types.");
else alert("The two variables contain different values.");

const c = 6 / 2;
if (a === c) alert("The two variables contains the same value and are of the same data
type.");

"use strict";
const x = 3;

if (x < 0) {
 alert("The number is negative.");
} else {
 // x is equal or greater than 0
 if (x === 0) {
 alert("The number zero.");
 } else {
 alert("The number is positive.");
 }
}

"use strict";
const x = 3;

if (x < 0) {
 alert("The number is negative.");
} else if (x === 0) {
 alert("The number is zero.");
} else {
 alert("The number is positive.");
}

switch

The switch statement evaluates an expression and steers the flow of statements based on the comparison
of its result with the labels behind the keyword case.

If the result of the evaluation matches one of the labels, JavaScript executes the following statements up to
the next break or the end of the entire switch. If none of the labels match, execution continues at the
default label, or - if none is present - skips the switch statement entirely.

Labels are literals or expressions; e.g., case (2 + 1).toString(): is possible.

As soon as a break statement is reached, the execution of the switch gets terminated. Normally it
appears at the end of each case to prevent execution of the code of the following cases. But it can be
omitted if you intentionally want to execute them in addition to the current ones. In the following example,
the same code will run for i equal to 1, 2, or 3.

Because the expression to be evaluated as well as the labels can be complex expressions, it's possible to
build very flexible constructions.

"use strict";

const myVar = "a";

// evaluation takes simple variables as well as complex expressions
switch (myVar.toUpperCase()) {
case "A":
 // …
 break;
case "B":
 // …
 break;
default: // analog to 'else' without any further 'if'
 // …
 break;
}

"use strict";

const i = 2;

switch(i) {
case 1:
case 2:
case 3:
 // …
 break;
case 4:
 // …
 break;
default:
 // …
 break;
}

"use strict";

const i = 2;

switch(true) { // in this example it's a constant value
case (i < 10):
 alert("one digit");
 break;
case (i >= 10 && i < 100):
 alert("two digits");
 break;

The continue keyword does not apply to the switch statement.

If there is a possibility that a runtime error might occur, you can 'catch' that error and perform meaningful
actions to handle the situation. E.g., a network connection or a database might no longer be available; a
user input leads to a division by zero;

If one of the statements in the critical block raises a runtime error, the execution of its remaining statements
is omitted. Instead, the execution invokes the catch block. Lastly, the finally block is executed.

Please note that the finally block is executed in all cases, regardless of whether a runtime error occurs or
not. That even applies if the critical or the catch block executes a return statement.

In the above example, the JavaScript engine throws an exception by itself. In other situations, the
JavaScript engine acts in one way or another, but you may want to see it treated differently. E.g., in the case
of a division by zero, the engine doesn't throw an error; it assigns Infinity to the result and jumps to
the following statement. If you want a different behavior, you can create and throw exceptions by your own
program.

default:
 // …
 break;
}

try / catch / finally

try {
 // critical block where errors might occur
} catch (err) {
 // block to handle possible errors. Normally not executed.
} finally {
 // block that will be executed in ALL cases
}

"use strict";

const x = 15;
let average;
try {
 // block with critical statements
 x = x + 5;
 average = x / 0;
 alert("The average is: " + average);
} catch (err) {
 // block to handle possible errors
 alert("Something strange occurs. The error is: " + err);
} finally {
 // block that will be executed in ALL cases
 alert("End of program.");
}

throw

"use strict";

const x = 15;
let average;
try {

If an exception occurs - generated by the JavaScript engine or by your program - and is not caught by a
catch block, the script terminates or - if it is a function - it returns control to the calling function. The error
handling may be implemented there or in one of the functions which have been called it.

... are available on another page (click here).

Loops and iterations are other cases where the sequential flow of statements is manipulated by surrounding
language constructs. This is described on the next page.

MDN: Control program flow and error handling (https://developer.mozilla.org/en-US/docs/We
b/JavaScript/Guide/Control_flow_and_error_handling)

 // block with critical statements
 average = x / 0;
 // or: const z = "abc"; average = z / 0;
 if (average === Infinity || Number.isNaN(average)) {
 // Throw your own exception with any text
 throw "Error during division. The result is: " + average;
 }
 alert("The average is: " + average);
} catch (err) {
 // block to handle possible errors
 alert("Something strange occurs. The error is: " + err);
} finally {
 // block that will be executed in ALL cases
 alert("End of program.");
}

"use strict";

const answer = prompt("How old are you?");
const age = Number(answer);

if (isNaN(age)) {
 throw answer + " cannot be converted to a number.";
 // The script terminates with this message (it's not a function)
}
alert("Next year you will be " + (age + 1));

Exercises

Loops

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling

Loops
JavaScript supports the repetitive execution of code blocks via the keywords for and while. Similar
behavior is offered by the forEach method of data type Array (and similar data types).

The syntax of the for statement is: for (<initial expression>; <condition>;
<final expression>) { <block> }. It is executed based on the following rules:

1. The initial expression is executed - exactly once for the complete for statement.
Usually, it declares and initiates one or more variables - often numbers with integer values.
Sometimes the declaration of the variables is made above the for statement.

2. The condition is evaluated. If it returns true, step 3 follows. If it returnsfalse, the for
statement terminates.

3. The code block is executed.
4. The final expression is executed. Usually, it increments or decrements a variable that

is part of the condition.
5. The loop repeats at step 2.

An example: Show the series of even numbers multiplied by itself (power 2); show the sum over the
numbers from 0 to 10.

The initial expression, the condition, and the final expression are optional. If you
omit one or more of them, your script shall perform other useful statements to control the loop. Some
examples:

for (;;) {}

for (let i = 0; i < 10; i++) {
 // a block of statements
}

"use strict";

const upperLimit = 10;
let sum = 0;
let tmpString = "";

for (let i = 0; i <= upperLimit; i++) {
 sum = sum + i;
 if (i % 2 === 0) {
 tmpString += i*i + "; "
 }
}
alert ("The sum is: " + sum + ". The square numbers are: " + tmpString);

Optional syntax parts

"use strict";

// an infinite loop if you do not terminate it with 'break' (see below)
for (;;) {

for loops can be nested. You can use a second (or 'inner') loop within the block of the first (or 'outer')
loop.

This nesting of loops is also possible in all the below constructs.

Sometimes only parts or the block shall run. This can be realized by one or more if / else statements.
If it's appropriate, such conditional statements can be shortened by the keyword continue. If
continue is reached, the rest of the block is skipped, and the above step 4 final expression is
executed.

This example is very simple. It skips the lower part of the block for the case where i equals to 5. Of
course, it can be expressed differently. A more realistic example would be a loop over the result of a
database search which skips parts of a complex handling of rows with a specific status.

 // ...
 break;
}

const answer = prompt("With which start value shall the loop begin?");
let i = Number(answer);
for (; i >= 0 && i < 10; i++) {
 // the start value is computed above the loop
}

for (let i = 0; i < 10;) {
 // ...
 if (true) { // an arbitrary other condition to control the increment
 i++;
 }
}

Nesting

"use strict";

const maxInner = 10;
const maxOuter = 4;
let myString = "";

for (let o = 1; o <= maxOuter; o++) {
 myString = "";
 // Be careful. It's easy to confuse inner and outer loop variables.
 for (let i = 1; i <= maxInner; i++) {
 myString = myString + o*i + ", ";
 }
 alert(myString);
}

continue / break

"use strict";

for (let i = 0; i <= 6; i++) {
 if (i === 5) {
 continue; // skip the rest of the block
 }
 alert(i); // 0, 1, 2, 3, 4, 6
}

The break keyword is similar but more rigid than the continue keyword. It skips not only the rest of
the block but also terminates the complete loop.

A realistic scenario is a loop over the result of a database search where the connection to the database is
broken in the middle of the loop.

You can use continue and break in all forms of the here-discussed variants of loops.

The syntax of the statement is: do { <block> } while (<condition>). It is executed based
on the following rules:

1. The block is executed. Because this is the very first step, the block is executed at least 1
time. This is helpful if you want to be sure that something happens under all circumstances.

2. The condition is evaluated. If it returns true, step 1 is invoked again. If it returnsfalse,
the loop terminates. Please notice that there is no specific part where you can manipulate a
variable that is checked in the condition. This must be done somewhere in the block among
the other statements.

The syntax of while (<condition>) { <block> } is very similar to the previous do {
<block> } while (<condition>). The only difference is that the condition is checked before
and not after the block.

This language construct is intended to iterate over the properties of an object. Its syntax is: for
(<variable> in <object>) { <block> }. The variable receives the key of all properties -
one after the next - of the object. For each of them, the block is executed once.

"use strict";

for (let i = 0; i <= 6; i++) {
 if (i === 5) {
 break; // terminal the loop
 }
 alert(i); // 0, 1, 2, 3, 4
}

do {} while ()

"use strict";

let counter = 100;
do {
 counter++;
 alert(counter); // ... or some logging
} while (counter < 10);

while () {}

for (x in Object) {}

"use strict";

const myObj = {firstName: "Marilyn", familyName: "Monroe", born: 1953};

Arrays are specialized objects. Hence it is possible to use the for..in on arrays. The keys for arrays are
integers starting with 0 - and that is precisely what is extracted from the array.

Arrays also accept non-numeric keys, e.g., myArray["four"] = "cuatro";. The for..in
loop handles such non-numeric keys - in opposite to the below for..of loop, and in opposite to the
traditional for loop at the top of this page.

See also: MDN: for..in (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/fo
r...in)

This language construct is intended to iterate over an array. Its syntax is: for (<variable> of
<iterable object>) { <block> }. The variable receives all values - one after the next - of
the array. For each of them, the block is executed once.

This definition sounds similar to the above definition of the for..in. But there are significant
differences:

It returns the values, not the keys resp. index of the array.
It works only on all iterable objects (Array, Map, Set, ...). The data type 'object' is not iterable.
It works only on such keys which are numeric. Non-numerical keys resp. index are silently
ignored.

See also: MDN: for..of (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/fo
r...of)

The differences between the two language constructs are summarized in an example.

for (const key in myObj) {
 alert(key); // firstName, familyName, born
 // alert(myObj[key]); // if you want to see the values
}

"use strict";

const myArray = ["certo", "uno", "dos", "tres"];
for (const key in myArray) {
 alert(key); // 0, 1, 2, 3
 // alert(myArray[key]); // if you want to see the values
}

for (x of Array) {}

"use strict";

const myArray = ["cero", "uno", "dos", "tres"];
myArray["four"] = "cuatro";

for (const myValue of myArray) {
 alert(myValue); // cero, uno, dos, tres. No 'cuatro' because the key is a string.
}

for..in vs. for..of

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

If you are looking for a loop that processes both keys and values of an object, there is a more
straightforward method than the above-shown combination of the for..in with myObj[key]. The
data type Object offers the entries() method that returns an array. Each element of this array contains
an array with two values: the property key and the property value. In other words: the return value of the
entries() method is a two-dimensional array. And - as usual with arrays - you should use it in
combination with for..of.

Hint: The Object.entries() as well as the following Array.forEach() methods are no 'core'
language elements like keywords or the for..in or for..of language constructs. They are methods
of the Object respectively Array data type.

The data type Array offers the method forEach(). It loops over the elements of the array, returning one
element after the next. The interesting point is that it takes a function as its argument. This makes the
difference to the divers for and while loops. Such functions are often called callback function.

The method invocation is very easy: myArray.forEach(myFunction). The - possibly - confusing
part is that function calls can be abbreviated in various ways.

The first example shows the function call explicitly. It defines the function myFunction which also takes a
single argument. When myFunction is called by forEach(), the next array element is inserted as the
argument to myFunction.

"use strict";

const myObj = {firstName: "Marilyn", familyName: "Monroe", born: 1953};
const myArray = ["cero", "uno", "dos", "tres"];
myArray["four"] = "cuatro";

// for..of not allowed on true objects; only for..in is possible.
for (const x of myObj) {}; // error

for (const x in myArray) {
 alert(x); // 0, 1, 2, 3, four
}

for (const x of myArray) {
 alert(x); // cero, uno, dos, tres. NO cuatro!
}

Object.entries() method

"use strict";

const myObj = {firstName: "Marilyn", familyName: "Monroe", born: 1953};
const myArray = ["cero", "uno", "dos", "tres"];
myArray["four"] = "cuatro";

for (const [key, val] of Object.entries(myObj)) {
 alert(key + ' / ' + val);
}
for (const [key, val] of Object.entries(myArray)) {
 alert(key + ' / ' + val); // 'four / cuatro' is included
}

Array.forEach() method

https://en.wikibooks.org/wiki/JavaScript/Functions

The following examples show some abbreviations of the function invocation syntax.

It depends on your preference, which syntax you use.

In many cases, the called function performs side effects like logging. To calculate values over all array
elements, it is necessary to use the technique of closures. In the following example, the variable sum is not
defined in the outer context, not in the anonymous function.

All in all, the following rules apply to the forAll() method:

The method can be used for iterable objects like Array, Map, Set. The data type Object is not
iterable.

"use strict";

// function definition (the function is not called here!)
function myFunction(element) {
 alert("The element of the array is: " + element)
};

// a test array
const myArray = ['a', 'b', 'c'];

// iterate over the array and invoke the function once per array element
myArray.forEach(myFunction);

"use strict";

// the 'arrow' syntax
const myFunction =
 (element) => {
 alert("The element of the array is: " + element)
 };

// same code without line breaks:
// const myFunction = (element) => {alert("The element of the array is: " + element)};

const myArray = ['a', 'b', 'c'];
myArray.forEach(myFunction);

"use strict";
const myArray = ['a', 'b', 'c'];

// Define the function directly as the argument of the forEach(). Such
// functions are called 'anonymous' functions.
myArray.forEach((element) => {alert("The element of the array is: " + element)});

"use strict";
const myArray = ['a', 'b', 'c'];

// in simple cases, more syntactical elements are optional
myArray.forEach(element => alert("The element of the array is: " + element));

"use strict";

const myArray = [3, 0, -1, 2];
let sum = 0;

myArray.forEach(element => sum = sum + element);
alert(sum);

https://en.wikibooks.org/wiki/JavaScript/Closures

The method only iterates over such elements which have a numerical key - what is the usual
case for arrays.

See also:

MDN: forEach() (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glob
al_Objects/Array/forEach)
MDN: Iterative methods (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Refere
nce/Global_Objects/Array#iterative_methods)

... are available on another page (click here).

MDN: Loops and iterations (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Loops_and_iteration)

Exercises

See also

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#iterative_methods
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Loops_and_iteration

Functions
A function is a block of code that solves a dedicated problem and returns the solution to the calling
statement. The function exists in its own context. Hence, functions divide massive programs into smaller
'bricks' which structure the software as well as the software development process.

JavaScript supports the software development paradigm functional programming. Functions are a data type
derived from Object; they can be bound to variables, passed as arguments, and returned from other
functions, just as any other data type.

Functions can be constructed in three main ways. The first version can be abbreviated further; see below.

The conventional way:

Construction via a variable and an expression:

Construction via the new operator (this version is a little cumbersome):

// define a function
function <function_name> (<parameters>) {
 <function_body>
}

// call a function
<variable> = <function_name> (<arguments>);

Declaration

"use strict";

// conventional declaration (or 'definition')
function duplication(p) {
 return p + "! " + p + "!";
}

// call the function
const ret = duplication("Go");
alert(ret);

"use strict";

// assign the function to a variable
let duplication = function (p) {
 return p + "! " + p + "!";
};

const ret = duplication("Go");
alert(ret);

"use strict";

// using the 'new' constructor
let duplication = new Function ("p",
 "return p + '! ' + p + '!'");

https://en.wikipedia.org/wiki/Functional_programming

For the declaration of functions, we have seen 3 variants. For their invocation, there are also 3 variants. The
declarations and invocations are independent of each other and you can arbitrarily combine them.

The conventional invocation variant uses the function name followed by parenthesis (). Within the
parenthesis, there are the function's arguments, if any exist.

If the script runs in a browser, there are two more possibilities. They use the window object that is
provided by the browser.

Hint: If you use the function name without the parenthesis (), you will receive the function itself (the
script), not any result of an invocation.

Functions are subject to 'hoisting'. This mechanism transfers the declaration of a function automatically to
the top of its scope. As a consequence, you can call a function from an upper place in the source code than
its declaration.

const ret = duplication("Go");
alert(ret);

Invocation

"use strict";

function duplication(p) {
 return p + "! " + p + "!";
}

// the conventional invocation method
const ret = duplication("Go");
alert(ret);

"use strict";

function duplication(p) {
 return p + "! " + p + "!";
}

// via 'call'
let ret = duplication.call(window, "Go");
alert(ret);

// via 'apply'
ret = duplication.apply(window, ["Go"]);
alert(ret);

"use strict";

function duplication(p) {
 return p + "! " + p + "!";
}

alert(duplication); // 'function duplication (p) { ... }'

Hoisting

So far, we have seen the two separate steps declaration and invocation. There is also a syntax variant that
allows the combination of both. It is characterized by using parenthesis around the function declaration
followed by () to invoke that declaration.

This syntax is known as a Immediately Invoked Function Expression (IIEF) (https://developer.mozilla.org/e
n-US/docs/Glossary/IIFE).

When functions are called, the parameters from the declaration phase are replaced by the arguments of the
call. In the above declarations, we used the variable name p as a parameter name. When calling the
function, we mostly used the literal "Go" as the argument. At runtime, it replaces all occurrences of p in the
function. The above examples demonstarte this technique.

Such substitutions are done 'by value' (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Functions#passing_arguments) and not 'by reference'. A copy of the argument's original value is passed to
the function. If this copied value is changed within the function, the original value outside of the function is
not changed.

"use strict";

// use a function above (in source code) its declaration
const ret = duplication("Go");
alert(ret);

function duplication(p) {
 return p + "! " + p + "!";
}

Immediately Invoked Function

"use strict";

alert(// 'alert' to show the result
 // declaration plus invocation
 (function (p) {
 return p + "! " + p + "!";
 })("Go") // ("Go"): invocation with the argument "Go"
);

alert(
 // the same with 'arrow' syntax
 ((p) => {
 return p + "! " + p + "!";
 })("Gooo")
);

Arguments

Call-by-value

"use strict";

// there is one parameter 'p'
function duplication(p) {
 // In this example, we change the parameter's value
 p = "NoGo";
 alert("In function: " + p);
 return p + "! " + p + "!";

https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions#passing_arguments

For objects (all non-primitive data types), this 'call-by-value' has a - possibly - astonishing effect. If the
function modifies a property of the object, this change is also seen outside.

When the example runs, it shows that after the invocation of duplication, the changes made by the
function are visible not only in the return value. Also, the properties of the original object x have changed.
Why this; is it different from the behavior concerning primitive data types? No.

The function receives a copy of the reference to the object. Hence, within the function, the same object is
referenced. The object itself exists only one time, but there are two (identical) references to the object. It
does not make a difference whether the object's properties are modified by one reference or the other.

Another consequence is - and this may be intuitively the same as with primitive data types (?) - that the
modification of the reference itself, e.g., by the creation of a new object, will not be visible in the outer
routine. The reference to the new object is stored in the copy of the original reference. Now we have not
only two references (with different values) but also two objects.

Note 1: The naming of this argument-passing technique is not used consistently across different languages.
Sometimes it is called 'call-by-sharing'. Wikipedia gives an overview.

};

let x = "Go";
const ret = duplication(x);

// is the modification of the argument done in the function visible here? No.
alert("Return value: " + ret + " Variable: " + x);

"use strict";

function duplication(p) {
 p.a = 2; // change the property's value
 p.b = 'xyz'; // add a property
 alert("In function: " + JSON.stringify(p));
 return JSON.stringify(p) + "! " + JSON.stringify(p) + "!";
};

let x = {a: 1};
alert("Object: " + JSON.stringify(x));
const ret = duplication(x);

// is the modification of the argument done in the function visible here? Yes.
alert("Return value: " + ret + " Object: " + JSON.stringify(x));

"use strict";

function duplication(p) {

 // modify the reference by creating a new object
 p = {};

 p.a = 2; // change the property's value
 p.b = 'xyz'; // add a property
 alert("In function: " + JSON.stringify(p));
 return JSON.stringify(p) + "! " + JSON.stringify(p) + "!";
};

let x = {a: 1};
alert("Object: " + JSON.stringify(x));
const ret = duplication(x);

// is the modification of the argument done in the function visible here? No.
alert("Return value: " + ret + " Object: " + JSON.stringify(x));

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

https://en.wikipedia.org/wiki/Evaluation_strategy#Strict_binding_strategies

Note 2: The described consequences of JavaScript's argument-passing are comparable with the
consequences of using the keyword const, which declares a variable to be a constant. Such variables
cannot be changed. Nevertheless, if they refer to an object, the object's properties can be changed.

If a function is invoked with fewer arguments than it contains parameters, the surplus parameters keep
undefined. But you can define default values for this case by assigning a value within the function's
signature. The missing parameters will get those as their default values.

For some functions, it is 'normal' that they get involved with different numbers of arguments. For example,
think of a function that shows names. firstName and familyName must be given in any case, but it's
also possible that an academicTitle or a titleOfNobility must be shown. JavaScript offers
different possibilities to handle such situations.

The 'normal' parameters, as well as the additional parameters, can be checked to determine whether they
contain a value or not.

Default values

"use strict";

// two nearly identical functions; only the signature is slightly different
function f1(a, b) {
 alert("The second parameter is: " + b)
};

function f2(a, b = 10) {
 alert("The second parameter is: " + b)
};

// identical invocations; different results
f1(5); // undefined
f1(5, 100); // 100

f2(5); // 10
f2(5, 100); // 100

Variable number of arguments

Individual checks

"use strict";

function showName(firstName, familyName, academicTitle, titleOfNobility) {
 "use strict";

 // handle required parameters
 let ret = "";
 if (!firstName || !familyName) {
 return "first name and family name must be specified";
 }
 ret = firstName + ", " + familyName;

 // handle optional parameters
 if (academicTitle) {
 ret = ret + ", " + academicTitle;
 }
 if (titleOfNobility) {
 ret = ret + ", " + titleOfNobility;
 }

Every single parameter that may not be given must be individually checked.

If the handling of the optional parameters is structurally identical, the code can be simplified by using the
rest operator syntax - mostly in combination with a loop. The syntax of the feature consists of three dots in
the function's signature - like in the spread syntax.

How does it work? As part of the function invocation, the JavaScript engine combines the given optional
arguments into a single array. (Please note that the calling script does not use an array.) This array is given
to the function as the last parameter.

The third and all following arguments of the call are collected into a single array that is available in the
function as the last parameter. This allows the use of a loop and simplifies the function's source code.

In accordance with other members of the C-family of programming languages, JavaScript offers the
keyword arguments within functions. It is an Array-like object that contains all given arguments of a
function call. You can loop over it or use its length property.

Its functionality is comparable with the above rest syntax. The main difference is that arguments
contains all arguments, whereas the rest syntax affects not necessarily all arguments.

 return ret;
}

alert(showName("Mike", "Spencer", "Ph.D."));
alert(showName("Tom"));

The 'rest' parameter

"use strict";

// the three dots (...) introduces the 'rest syntax'
function showName(firstName, familyName, ...titles) {

 // handle required parameters
 let ret = "";
 if (!firstName || !familyName) {
 return "first name and family name must be specified";
 }
 ret = firstName + ", " + familyName;

 // handle optional parameters
 for (const title of titles) {
 ret = ret + ", " + title;
 }

 return ret;
}

alert(showName("Mike", "Spencer", "Ph.D.", "Duke"));
alert(showName("Tom"));

The 'arguments' keyword

"use strict";

function showName(firstName, familyName, academicTitles, titlesOfNobility) {

 // handle ALL parameters with a single keyword

The purpose of a function is to provide a solution of a dedicated problem. This solution is given back to the
calling program by the return statement.

Its syntax is return <expression>, where <expression> is optional.

A function runs until it reaches such a return statement (, or an uncatched exception occurs, or behind
the last statement). The <expression> may be a simple variable of any data type like return 5, or a
complex expression like return myString.length, or is omitted entirely: return.

If there is no <expression> within the return statement, or if no return statement is reached at
all, undefined is returned.

Arrow functions are a compact alternative to the above-shown conventional function syntax. They
abbreviate some language elements, omit others, and have only a few semantic distinctions (https://develop
er.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions) in comparison to the
original syntax.

They are always anonymous but can be assigned to a variable.

 for (const arg of arguments) {
 alert(arg);
 }
}

showName("Mike", "Spencer", "Ph.D.", "Duke");

Return

"use strict";

function duplication(p) {
 if (typeof p === 'object') {
 return; // return value: 'undefined'
 }
 else if (typeof p === 'string') {
 return p + "! " + p + "!";
 }
 // implicit return with 'undefined'
}

let arg = ["Go", 4, {a: 1}];
for (let i = 0; i < arg.length; i++) {
 const ret = duplication(arg[i]);
 alert(ret);
}

Arrow functions (=>)

"use strict";

// original conventional syntax
function duplication(p) {
 return p + "! " + p + "!";
}

// 1. remove keyword 'function' and function name
// 2. introduce '=>' instead
// 3. remove 'return'; the last value is automatically returned
(p) => {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Here is one more example using an array. The forEach method loops over the array and produces one
array-element after the next. This is put to the arrow function's single argument e. The arrow function
shows e together with a short text.

Other programming languages offer the concept of arrow functions under terms like anonymous functions
or lambda expressions.

Functions can call other functions. In real applications, this is often the case.

A particular situation occurs when they call themselves. This is called a recursive invokation. Of course,
this implies the danger of infinite loops. You must change something in the arguments to avoid this hurdle.

Typically the need for such recursive calls arises when an application handles tree structures like bill of
materials, a DOM tree, or genealogy information. Here we present the simple to implement mathematical
problem of factorial computation.

The factorial is the product of all positive integers less than or equal to a certain number , written as .
For example, . It can be solved by a loop from to , but there is also a
recursive solution. The factorial of is the already computed factorial of multiplied with , or in
formulas: . This thought leads to the correspondent recursive construction of the
function:

 p + "! " + p + "!"
}

// remove { }, if only one statement
(p) => p + "! " + p + "!"

// Remove parameter parentheses if it is only one parameter
// -----------------------------
 p => p + "! " + p + "!" // that's all!
// -----------------------------

alert(
 (p => p + "! " + p + "!")("Go")
);

"use strict";

const myArray = ['a', 'b', 'c'];

myArray.forEach(e => alert("The element of the array is: " + e));

Recursive Invokations

"use strict";

function factorial(n) {
 if (n > 0) {
 const ret = n * factorial(n-1);
 return ret;
 } else {
 // n = 0; 0! is 1
 return 1;
 }
}

const n = 4;
alert(factorial(n));

https://en.wikipedia.org/wiki/Anonymous_function
https://en.wikipedia.org/wiki/bill_of_materials
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Genealogy
https://en.wikipedia.org/wiki/Factorial

As long as is greater than , the script calls factorial again, but time with as the argument.
Therefore the arguments converge to . When is reached, this is the first time the factorial function
is not called again. It returns the value of . This number is multiplied by the next higher number from the
previous invocation of factorial. The result of the multiplication is returned to the previous invocation
of factorial,

... are available on another page (click here).

MDN: Functions (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Function
s)
MDN: Rest parameter (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Functions/rest_parameters)

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

Closures
A Closure is a technique where a function is bundled (enclosed) with its surrounding variables, the lexical
environment. Typically, Closures are implemented in functional programming languages like JavaScript
where they support Currying.

First, we show the access of a function to its lexical environment. This alone is not a Closure.

The function incrementByCertainValue increments its parameter by the value of the variable
certainValue. Because incrementByCertainValue as well as certainValue are
defined within the same block, the function has access to the variable. Whenever the function is called, it
reads the variable and uses it to compute its return value.

To extend the above example to a Closure, we have to combine an (inner) function with access to variables
of its lexical environment - typically another function -, and save this state by returning this inner function.

The (outer) function incrementByCertainValue

contains a parameter param,
defines an (inner) function add that takes another parameter certainValue,

Lexical environment

"use strict";

function incrementByCertainValue(param) {
 return param + certainValue;
}

let certainValue = 10;
alert(incrementByCertainValue(8)); // 18

certainValue = 100;
alert(incrementByCertainValue(8)); // 108

Closure

"use strict";

function incrementByCertainValue(param) {
 // declare a function that will perform the work. (Only declaration, currently not
invoked.)
 const add = function (certainValue) {
 // access to 'param' from lexical environment and to its parameter 'certainValue'
 return param + certainValue;
 }
 return add;
}

const incrementByFive = incrementByCertainValue(5);
alert(incrementByFive(8)); // 13

const incrementBySix = incrementByCertainValue(6);
alert(incrementBySix(8)); // 14

alert(incrementByFive(10)); // 15

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18

https://en.wikipedia.org/wiki/Currying

in addition to its parameter, the (inner) function has access - as usual - to its lexical
environment where param is defined
returns the (inner) function.

So far, there are exclusively declarations and no running code.

When the variable incrementByFive is declared in line 12, it is initialized with the return value of the
function incrementByCertainValue(5). This is the crucial point where code runs and the
Closure technique acts. Within incrementByCertainValue the 5 is known as the
parameter/variable param. Next, the function add is created using param from its lexical environment.
This function add accepts one parameter that must be given from the calling routine later on. The return
statement of incrementByCertainValue delivers this function add that has bound the value '5'
into its body. Please note that the function name add is arbitrary and not seen outside of
incrementByCertainValue.

When incrementByCertainValue is called a second time with the argument '6', the '6' is bound to
a separate, second function.

... are available on another page (click here).

MDN: Closures (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures)
Wiki: Closures
Currying in JavaScript (German).

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/de:Currying#JavaScript

Async
Without particular keywords and techniques, the JavaScript engine executes statements one after the next in
the sequence of the written code. In most cases, this is necessary because the result of a line is used in the
following line.

Lines 1 and 2 must be finished entirely before line 3 can be executed. This is the usual sequential behavior.

But there are situations where it is not necessary for the following statements to wait for the end of the
current one. Or, you expect that an activity will run for a long time, and you want to do something else in
the meanwhile. Such parallel execution has the potential to reduce the overall response time dramatically.
That becomes possible because modern computers have multiple CPUs and are able to perform multiple
tasks at the same time. In the above example, lines 1 and 2 may run in parallel. Moreover, the client/server
architecture delegates activities across multiple servers.

Typical situations are long-running database updates, handling of huge files, or CPU-intensive
computations. But even for simple-looking things like the rendering of an HTML page, a browser typically
runs multiple tasks.

Natively, "JavaScript is single-threaded and all the JavaScript code executes in a single thread. This
includes your program source code and third-party libraries that you include in your program. When a
program makes an I/O operation to read a file or a network request, this blocks the main thread"[1].

To reach the goal of simultaneous activities anyway, browsers, service workers, libraries, and servers offer
additional appropriate interfaces. Their primary use case is the unblocking execution of HTTP and database
requests; a smaller proportion focuses on CPU-intensive computations.

At the level of the JavaScript language, there are three techniques to achieve asynchronism - what 'feels'
like simultaneity.

Callback function
Promise
Keywords async and await

The basic technique is the use of callback functions. This term is used for functions that are passed as an
argument to another function, especially - but not only - for functions that implement an asynchronous
behavior.

A Promise represents the final completion or failure of an asynchronous operation, including its result. It
steers further processing after the end of such asynchronous running operations.

"use strict";

/* Line 1 */ const firstName = "Mahatma";
/* Line 2 */ const familyName = "Gandhi";
/* Line 3 */ const completeName = firstName + " " + familyName;

Single-threaded

Because the evaluation of Promises with .then and .catch may lead to hard-to-read code - especially
if they are nested -, JavaScript offers the keywords async and await. Their usage generates well-
arranged code comparable with try .. catch .. finally of traditional JavaScript. But they
don't implement additional features. Instead, under the hood they are based on Promises.

To demonstrate that code is not always executed in strict sequential order, we use a script that contains a
CPU-intensive computation within a more or less huge loop. Depending on your computer, it runs for
several seconds.

Expected output:

Strictly sequential? No.

"use strict";

// function with CPU-intensive computation
async function func_async(upper) {
 await null; // (1)
 return new Promise(function(resolve, reject) { // (2)
 console.log("Starting loop with upper limit: " + upper);
 if (upper < 0) {
 // an arbitrary test to generate a failure
 reject(upper + " is negative. Abort.");
 }
 for (let i = 0; i < upper; i++) {
 // an arbitrary math function for test purpose
 const s = Math.sin(i); // (3)
 }
 console.log("Finished loop for: " + upper);
 resolve("Computed: " + upper);
 })
}

const doTask = function(arr) {
 for (let i = 0; i < arr.length; i++) {
 console.log("Function invocation with number: " + arr[i]);
 func_async(array1[i]) // (4)
 .then((msg) => console.log("Ok. " + msg))
 .catch((msg) => console.log("Error. " + msg));
 console.log("Behind invocation for number: " + arr[i]);
 }
}

const array1 = [3234567890, 10, -30];
doTask(array1);
console.log("End of program. Really?");

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Function invocation with number: 3234567890
Behind invocation for number: 3234567890
Function invocation with number: 10
Behind invocation for number: 10
Function invocation with number: -30
Behind invocation for number: -30
End of program. Really?
Starting loop with upper limit: 3234567890
Finished loop for: 3234567890
Starting loop with upper limit: 10
Finished loop for: 10
Starting loop with upper limit: -30
Finished loop for: -30
Ok. Computed: 3234567890
Ok. Computed: 10
Error. -30 is negative. Abort.

The core of the asynchronous function func_async is a loop where a mathematical
computation is done [(3) line 14]. The loop needs more or less time depending on the given
parameter.
The return value of func_async is not a simple value but a Promise. [(2) line 6]
func_async is invoked by doTask once per element of the given array. [(4) line 24]
Because of the asynchronous nature of asyn_func the function doTask is executed
totally before func_async runs! This can be observed by the program output.
The await null [(1) line 5] is a dummy call. It suspends the execution of func_async,
giving doTask the chance to continue. If you delete this statement, the output will be
different. Conclusion: To make the function really asynchronous you need both keywords,
async in the function signature and await in the function body.
If you have a tool to observe your computer in detail, you can recognize that the three
invocations of func_async doesn't run at the same time on different CPUs but run one
after the next (on the same or on different CPUs).

Passing a function as a parameter to an (asynchronous) function is the original technique in JavaScript. We
demonstrate its purpose and advantage with the predefined setTimeout function. It takes two
parameters. The first one is the callback function we are speaking about. The second is a number specifying
the milliseconds after which the callback function is called.

If showMessage is invocated, it runs instantly. If showMessageLater is invocated, it passes
showMessage as a callback function to setTimeout, which executes it after a delay of 3 seconds.

A Promise keeps track of whether an (asynchronous) function has been executed successfully or has
terminated with an error, and it determines what happens next, invoking either .then or .catch.

The Promise is in one of three states:

Pending: Initial state, before 'resolved' or 'rejected'
Resolved: After successful completion of the function: resolve was called
Rejected: After completion of the function with an error: reject was called

Callback

"use strict";

function showMessageLater() {
 setTimeout(showMessage, 3000); // in ms
}

function showMessage() {
 alert("Good morning.");
}

showMessage(); // immediate invocation
showMessageLater(); // invocation of 'showMessage' after 3 seconds

Promise

"use strict";

// here, we have only the definition!
function demoPromise() {

Expected output:

When demoPromise is invoked, it creates a new Promise and returns it. Then, it performs the time-
consuming action, and depending on the result, it invokes resolve or reject.

Next (in the meanwhile, the calling script has done other things), either the .then() or the .catch()
functions behind the call to demoPromise are executed. The two functions accept an (anonymous)
function as their parameter. The parameter given to the anonymous function is the value of the Promise.

Please notice that the last statement of the script has been executed previously.

Many interfaces to libraries, APIs, and server functions are defined and implemented as functions returning
a Promise, similar to the above demoPromise. As long as it's not necessary that you create your own
asynchronous functions, it's not necessary that you create Promises. Often it's sufficient to call an external
interface and work only with .then or .catch (or the async or await of next chapter).

The keyword await forces the JavaScript engine to run the script named behind await entirely -
including the new Promise part - before executing the following statement. Hence, - from the
standpoint of the calling script - the asynchronous behavior is removed. Functions with await must be

 // The 'return' statement is executed immediately, and the calling program
 // continues its execution. But the value of 'return' keeps undefined until
 // either 'resolve' or 'reject' is executed here.
 return new Promise(function(resolve, reject) {
 //
 // perform some time-consuming actions like an
 // access to a database
 //
 const result = true; // for example

 if (result === true) {
 resolve("Demo worked.");
 } else {
 reject("Demo failed.");
 }
 })
}

demoPromise() // invoke 'demoPromise'
 .then((msg) => console.log("Ok: " + msg))
 .catch((msg) => console.log("Error: " + msg));

console.log("End of script reached. But the program is still running.");

End of script reached. But the program is still running.
Ok: Demo worked.

 .then((msg) => console.log("Ok: " + msg))
		└── parameter ──┘ └────── funct. body ────┘						
	└───────────── anonymous function ───────────────┘							
└─────── parameter of then() function ───────────────┘								
 └─────────────────── then() function ──────────────────────┘

async / await

flagged in their signature with the keyword async.

The use of async .. await allows you to work with the traditional try .. catch statement
instead of .then and .catch.

We use the freely available demo API https://jsonplaceholder.typicode.com/. It offers
a small amount of test data in JSON format.

"use strict";

// same as above
function demoPromise() {
 return new Promise(function(resolve, reject) {
 const result = true; // for example
 if (result === true) {
 resolve("Demo worked.");
 } else {
 reject("Demo failed.");
 }
 })
}

// a function with the call to 'demoPromise'
// the keyword 'async' is necessary to allow 'await' inside
async function start() {
 try {
 // use 'await' to wait for the end of 'demoPromise'
 // before executing the following statement
 const msg = await demoPromise();
 // without 'await', 'msg' contains the Promise, but without
 // the success- or error-message
 console.log("Ok: " + msg);
 } catch (msg) {
 console.log("Error: " + msg);
 }
}

start();
console.log("End of script reached. End of program?");

A realistic example

"use strict";

async function getUserData() {

 // fetch() is an asynchronous function of the Web API. It returns a Promise
 // see: https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
 await fetch('https://jsonplaceholder.typicode.com/users')

 // for the use of 'response', see: https://developer.mozilla.org/en-
US/docs/Web/API/Response/json
 // '.json()' reads the response stream
 .then((response) => { return response.json() })

 // in this case, 'users' is an array of objects (JSON format)
 .then((users) => {
 console.log(users); // total data: array with 10 elements

 // loop over the ten array elements
 for (const user of users) {
 console.log(user.name + " / " + user.email);
 }
 })
 .catch((err) => console.log('Some error occurred: ' + err.message));
}

https://jsonplaceholder.typicode.com/

The steps of the example are:

await fetch(): Get the data behind the URL. The await part guarantees that the script
will not continue before the fetch has delivered all data.
json() reads the stream which contains the resulting data.
The resulting data is an array of 10 elements. Each element is in JSON format, e.g.:

As an example, the script shows the complete data and some of its parts in the console.

// same with 'try / catch'
async function getUserData_tc() {
 try {
 const response = await fetch('https://jsonplaceholder.typicode.com/users');
 const users = await response.json();
 console.log(users);
 console.log(users[0].name);
 for (const user of users) {
 console.log(user.name + " / " + user.email);
 }
 } catch (err) {
 console.log('Some error occurred: ' + err.message);
 }
}

getUserData();
getUserData_tc();

{
 "id": 1,
 "name": "Leanne Graham",
 "username": "Bret",
 "email": "Sincere@april.biz",
 "address": {
 "street": "Kulas Light",
 "suite": "Apt. 556",
 "city": "Gwenborough",
 "zipcode": "92998-3874",
 "geo": {
 "lat": "-37.3159",
 "lng": "81.1496"
 }
 },
 "phone": "1-770-736-8031 x56442",
 "website": "hildegard.org",
 "company": {
 "name": "Romaguera-Crona",
 "catchPhrase": "Multi-layered client-server neural-net",
 "bs": "harness real-time e-markets"
 }
}

Note: It's likely that you will run into a CORS error (https://developer.mozilla.org/en-US/docs/Web/HTTP/
CORS) when you use an arbitrary URL.

... are available on another page (click here).

Processes and Threads (in Node.js) (https://www.digitalocean.com/community/tutorials/how-
to-use-multithreading-in-node-js#understanding-processes-and-threads)
Promises and 'async' (in Node.js) (https://www.geeksforgeeks.org/difference-between-promi
se-and-async-await-in-node-js/)
MDN: async (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statemen
ts/async_function)
MDN: Fetch API (https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetc
h)

1. Hiden threads in Node.js (https://www.digitalocean.com/community/tutorials/how-to-use-mult
ithreading-in-node-js#understanding-hidden-threads-in-node-js)

Exercises

See also

References

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://www.digitalocean.com/community/tutorials/how-to-use-multithreading-in-node-js#understanding-processes-and-threads
https://www.geeksforgeeks.org/difference-between-promise-and-async-await-in-node-js/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://www.digitalocean.com/community/tutorials/how-to-use-multithreading-in-node-js#understanding-hidden-threads-in-node-js

Object-based programming
Object-oriented programming (OOP) is a software design paradigm that first arose in the 1960s and gained
popularity in the 1990s. It strives for modularization, reusability, encapsulation and hiding of state (data)
and behavior (functions), design in a hierarchy of generalization, inheritance, and more.

It allows the components to be as modular as possible. In particular, when a new object type is created, it is
expected that it should work without problems when placed in a different environment or new
programming project. The benefits of this approach are a shorter development time and easier debugging
because you're re-using program code that has already been proven. This 'black box' approach means that
data goes into the object and other data comes out of the object, but what goes on inside isn't something
you need to concern yourself with.

Over time different techniques have been developed to implement OOP. The most popular ones are the
class-based and the prototype-based approach.

Classes are a blueprint that defines all aspects - state as well as behavior - of a group of structurally identical
objects. The blueprint is called the class, and the objects instances of that class. Popular members of the C-
family languages, especially Java, C++, and C#, implement OOP with this class-based approach.

In the prototype-based approach, every object stores its state and behavior. In addition, it has a prototype (or
null if it is on top of the hierarchy). Such a prototype is a pointer to another, more general object. All
properties of the referenced object are also available in the referencing object. Classes don't exist in the
prototype-based approach.

One of JavaScript's cornerstones is the provision of objects in accordance with the rules of the prototype-
based OOP. Objects consist of properties that are key/value pairs holding data as well as methods. One of
those properties is always the prototype property '__proto__'. It points to the 'parent' object and, by this,
realizes the relationship.

┌─────────────────────┐ ┌─────────────────────┐
│ child │ ┌──> │ parent │
├─────────────────────┤ | ├─────────────────────┤
│ name: Joel │ | │ : ... │
├─────────────────────┤ | ├─────────────────────┤

Class-based OOP

Prototype-based OOP

OOP in JavaScript "Two jackets for one body"

// relationships are realized by the property '__proto__'
let parent = [];
let child = {
 name: "Joel",
 __proto__: parent,
};
console.log(Object.getPrototypeOf(child)); // Array []

https://en.wikipedia.org/wiki/List_of_C-family_programming_languages
https://en.wikipedia.org/wiki/class-based
https://en.wikipedia.org/wiki/prototype_based

│ __proto__: parent │ ──┘ │ __proto__: ... │ ──> ... ──> null
└─────────────────────┘ └─────────────────────┘

If a requested property is missed on any object, the JavaScript engine searches it in the 'parent' object,
'grandparent' object, and so on. This is called the prototype chain.

All of that applies to user-defined objects and system-defined objects like Arrays or Date in the same
way.

Since EcmaScript 2015 (ES6), the syntax offers keywords like class or extends, which are used in
class-based approaches. Even though such keywords have been introduced, the fundaments of JavaScript
haven't changed: Those keywords lead to prototypes in the same way as before. They are syntactical sugar
and get compiled to the conventional prototype technique.

In summary, the syntax of JavaScript offers two ways to express object-oriented features like inheritance in
the source code: the 'classical' and the 'class' style. Despite the different syntax, the implementation
techniques differ only slightly.

Since its first days, JavaScript has defined the parent/child relation of objects with the 'prototype'
mechanism. If not explicitly notated in the source code, this happens automatically. The classical syntax
exposes it quite well.

To define a parent/child relation of two objects explicitly, you should use the method setPrototypeOf
to set the prototype of an object to a dedicated other object. After the method has run, all properties -
inclusive functions - of the parent object are known to the child.

The classical syntax

<!DOCTYPE html>
<html>
<head>
 <script>
 function go() {
 "use strict";

 const adult = {
 familyName: "McAlister",
 showFamily: function() {return "The family name is: " + this.familyName;}
 };
 const child = {
 firstName: "Joel",
 kindergarten: "House of Dwars"
 };

 // 'familyName' and 'showFamily()' are undefined here!
 alert(child.firstName + " " + child.familyName);

 // set the intended prototype chain
 Object.setPrototypeOf(child, adult);
 // or: child.__proto__ = adult;

 alert(child.firstName + " " + child.familyName);
 alert(child.showFamily());
 }
 </script>
 </head>

 <body id="body">
 <button onclick="go()">Run the demo</button>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

https://en.wikipedia.org/wiki/syntactical_sugar

The 'adult' object contains the 'familyName' and a function 'showFamily'. In the first step, they are not
known in the object 'child'. After setPrototypeOf was running, they are known because the 'child's
prototype no longer points to the default 'Object' but to 'adult'.

The next script demonstrates the prototype chain. It starts with the user-defined variables myArray and
theObject. myArray is an array with three elements. The assignment operation in line 6 sets
theObject to the same array. A loop shows the prototype of theObject and assigns the next higher
level of the prototype chain to it. The loop finishes when the top level of the hierarchy is reached. In this
case, the prototype is null.

As you know, properties are key/value pairs. Hence it is possible to directly use the value of the 'prototype'
property to identify and manipulate prototypes. Interestingly the key's name isn't 'prototype' but '__proto__'.
This is shown in line 11. Nevertheless, we recommend ignoring this technique and using API methods for
prototype manipulations, such as Object.getPrototypeOf, Object.setPrototypeOf, and
Object.create instead.

The script defines two classes, Adult and Child with some internal properties, one of them being a method.
The keyword extends combines the two classes hierarchically. Afterward, in line 21, an instance is
created with the keyword new.

 </body>
</html>

32
33

 function go() {
 "use strict";

 // define an array with three elements
 const myArray = [0, 1, 2];
 let theObject = myArray;

 do {
 // show the object's prototype
 console.log(Object.getPrototypeOf(theObject)); // Array[], Object{...}, null
 // or: console.log(theObject.__proto__);

 // switch to the next higher level
 theObject = Object.getPrototypeOf(theObject);
 } while (theObject);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

The 'class' syntax

<!DOCTYPE html>
<html>
<head>
 <script>
 function go() {
 "use strict";

 class Adult {
 constructor(familyName) {
 this.familyName = familyName;
 }
 showFamily() {return "The family name is: " + this.familyName;}
 }
 class Child extends Adult {
 constructor(firstName, familyName, kindergarten) {
 super(familyName);
 this.firstName = firstName;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

The property familyName and the method showFamily are defined in the Adult class. But they are
also known in the Child class.

Please note again that this class-based inheritance in JavaScript is implemented on top of the prototype-
based classical approach.

MDN: OOP in JavaScript (https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Object
s/Object-oriented_programming)
More Details (http://dmitrysoshnikov.com/ecmascript/javascript-the-core-2nd-edition/)

 this.kindergarten = kindergarten;
 }
 }

 const joel = new Child("Joel", "McAlister", "House of Dwars");
 alert(joel.firstName + " " + joel.familyName);
 alert(joel.showFamily());
 }
 </script>
</head>

<body id="body">
 <button onclick="go()">Run the demo</button>
</body>
</html>

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

See also

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming
http://dmitrysoshnikov.com/ecmascript/javascript-the-core-2nd-edition/

OOP-classical

The heart of JavaScript's object-based approach is the linked list of objects where every object acts as a
prototype for its successor. It is revealed when using the classical syntax.

There are different syntactical ways to construct objects. They are not identical, but even looking behind
the scene, you will see only slight differences in their semantics. All variants create a set of key/value pairs,
the properties. This set of properties composes an object.

The three language constructs literal, new, and Object.create create simple or complex objects.
Such objects can be subsequently extended by assigning values to additional properties.

The 'value' part of the key/value pairs can contain not only values of primitive data types. It's also possible
that they contain functions. (When functions are the value-part of a property, they are called a method.)

Construction

"use strict";

// construction via literals
const obj_1 = {};
obj_1.property_1 = "1";
alert(obj_1.property_1);

const obj_1a = {property_1a: "1a"};
alert(obj_1a.property_1a);

// construction via 'new' operator
const obj_2 = new Object();
obj_2.property_2 = "2";
alert(obj_2.property_2);

const obj_2a = new Object({property_2a: "2a"});
alert(obj_2a.property_2a);

// construction via 'Object.create' method
const obj_3 = Object.create({});
obj_3.property_3 = "3";
alert(obj_3.property_3);

const obj_3a = Object.create({property_3a: "3a"});
alert(obj_3a.property_3a);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Functions

"use strict";

// pure literal syntax for 'func_1'
const obj_1 = {
 property_1: "1",
 func_1: function () {return "Message from func_1: " + this.property_1}
};
// add a second function 'func_2'
obj_1.property_2 = "2";

1
2
3
4
5
6
7
8
9

https://en.wikibooks.org/wiki/JavaScript/Objects#Create_an_object

In the previous example, we defined objects containing a property with a value and another with a method.
Both parts are accessible by the usual dot-notation. But they miss a smart syntactical feature: it's not
possible to define their properties directly with the first invocation. Something like const x = new
obj_1("valueOfProperty") or const mike = new Person("Mike") will not run
because such a syntax misses the name of the property.

We change and extend the above example to allow this syntax, the new operator in combination with
parameters. To do so, we define functions (which are also objects) that contain and store variables as well
as ('inner') functions/methods.

The function Person takes parameters as every other function. The first letter of its name is written in
uppercase, but this is only a convention and not mandatory. If the function is invoked with the new
operator, in the first step, a new object is constructed (https://developer.mozilla.org/en-US/docs/Web/JavaSc
ript/Reference/Operators/new). Within the function, you can refer to the new object with the keyword 'this',
e.g., to store the given parameters. If, in addition, the function shall offer some functionality in the form of
('inner') functions, you define them and store a reference to them in 'this' under an arbitrary name - in the
example, it is the 'show' function.

After the function is defined, you can use them via the new operator to create individual objects
(instances). Such individual objects store the given arguments and offer the internally defined functions.

Please note that the new Person(...) statement is different from the usual invocation of a function
without the new operator: Person(...). The new is necessary to indicate that the construction of an
object must be done before the body of the function can run. Without new, the JavaScript engine doesn't
create an object, and the use of 'this' will fail.

obj_1.func_2 = function () {return "Message from func_2: " + this.property_2};

// invoke the two functions
alert(obj_1.func_1());
alert(obj_1.func_2());

10
11
12
13
14

new

"use strict";

function Person(name, isAlive) {
 this.name = name;
 this.isAlive = isAlive;
 // a (sub-)function to realize some functionality
 this.show = function () {return "The person's name is: " + this.name};
}

// creation via 'new'
const mike = new Person("Mike", true);
const john = new Person("John", false);

alert(mike.name + " / " + mike.show());
alert(john.name + " / " + john.show());

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Predefined data types

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new

Many predefined data types (Date, Array, ...) are defined in the above way. Therefore you can use the new
operator for their creation: const arr = new Array([0, 1, 2]). The arguments are stored
somewhere in the newly created object. Here, it's only a single one, a literally expressed array. It gets
decomposed, and the array elements are stored. Some derived properties are computed, e.g., the length,
and a lot of methods are provided, e.g., push and pop. All in all, the internal structure often differs from
the externally visible form.

In addition to this unified syntax with new there are some syntax variants that are special according to the
intended data type. E.g., for Array you can use const arr = [0, 1, 2]. But it's just an
abbreviation for: const arr = new Array([0, 1, 2]).

This chapter shows different syntactical possibilities for how to arrange objects in a hierarchy.

If you have defined independent objects, you can subsequently link them together so that they build a
parent/child relationship afterward. The crucial function is setPrototypeOf. As its name suggests, the
function sets one object as the prototype of another object. By this, the parent's properties, including
functions, are accessible to the child.

After setPrototypeOf is successfully executed, the child object 'extends' the parent object. It gets
access to all properties of the parent object, as shown in line 12.

How does it work? Every single object contains a property named '__proto__', even if it is not mentioned
anywhere in the source code. Its value refers to the object which acts as its 'parent'. Also, the 'parent'
contains such a '__proto__' property, and so on. At the highest level, the value is null to flag the end of
the hierarchy. All in all, it's a 'linked list' of objects. It is called the prototype chain. It is the heart of
JavaScript's implementation of OOP: 'parents' act as 'prototypes' for the referencing objects - for all system
objects as well as for all user-defined objects.

The JavaScript engine uses the prototype chain whenever it searches for any property. When the engine
doesn't find it, it switches to the next higher level and repeats the search.

This applies in the same way to the case that a function is searched.

Inheritance

setPrototypeOf

"use strict";

// two objects which are independent of each other (in the beginning)
const parent = {property_1: "1"};
const child = {property_2: "2"};

// alert(child.property_1); // undefined in the beginning

// link them together
Object.setPrototypeOf(child, parent);

alert(child.property_1); // '1'

1
2
3
4
5
6
7
8
9

10
11
12

"use strict";

const parent = {

1
2
3

https://en.wikipedia.org/wiki/linked_list

After line 13, the method func_1 can be invoked by the child object, although it is defined by the parent.

Suppose you know in advance that one object shall act as a child of another object. In that case, the new
operator offers the possibility to define the dependency from the beginning. The already existing object can
be given as a parameter to the creation process. The JavaScript engine will combine this existing object
with the newly creating object by the exact same mechanism, the '__proto__' property.

This pre-known hierarchical relation can also be realized with the Object.create method.

There are some distinctions between JavaScript's prototype-based approach and class-based approaches.
One of them regarding inheritance is shown here.

After creating a prototype hierarchy and instances with one of the above methods, you can modify the
'parent' instance to manipulate all 'child' instances at once.

 property_1: "1",
 func_1: function () {return "Message from func_1: " + this.property_1}
};
const child = {
 property_2: "2",
 func_2: function () {return "Message from func_2: " + this.property_2}
};

// alert(child.func_1()); // not possible at the beginning
Object.setPrototypeOf(child, parent);

alert(child.func_1()); // '1'

4
5
6
7
8
9

10
11
12
13
14
15

new

"use strict";

const parent = {property_1: "1"}

// inheritance via 'new' operator
const child = new Object(parent);
alert(child.property_1);

Object.create

"use strict";

const parent = {property_1: "1"}

// construction via 'Object.create'
const child = Object.create(parent);
alert(child.property_1);

A distinction to class-based approaches

"use strict";

// construction of a small hierarchy
const parent = {property_1: "1"}
const child_11 = {property_11: "11"}
const child_12 = {property_12: "12"}

1
2
3
4
5
6

The statement in line 17 adds the property 'property_2' - virtually - to all instances at once. Whenever
'property_2' is acquired by a subsequent statement, the JavaScript engine will follow the prototype chain.
First, in the 'child' instances, it will not find 'property_2'. But following the prototype chain, it will find it in
the 'parent' instance. For the 'child' instances, it doesn't make a difference whether the property is in its own
space or in its parent space.

The distinction to a class-based approach is that not only the value of the new property is added. Also, the
structure of all instances is expanded: the added property hasn't existed at all before line 17.

There are different ways to check the hierarchy of data types of any variable or value.

The getPrototypeOf method gives you a chance to inspect the hierarchy. It returns the parent object
itself, not its data type. If you are interested in the data type of the parent, you must check the parent's data
type with one of the other operators.

Or, follow the prototype chain in a flexible loop:

Object.setPrototypeOf(child_11, parent);
Object.setPrototypeOf(child_12, parent);

// show that none of the instances contains a property 'property_2'
alert(parent.property_2); // undefined
alert(child_11.property_2); // undefined
alert(child_12.property_2); // undefined

// a single statement adds 'property_2' to all three instances:
parent.property_2 = "2";
alert(parent.property_2); // 2
alert(child_11.property_2); // 2
alert(child_12.property_2); // 2

7
8
9

10
11
12
13
14
15
16
17
18
19
20

Check object hierarchy

getPrototypeOf

"use strict";

const parent = {property_1: "1"}
const child_1 = Object.create(parent);

// use 'console.log'; it's more meaningful than 'alert'
console.log(Object.getPrototypeOf(child_1)); // {property_1: "1"}

const arr = [0, 1, 2];
const child_2 = Object.create(arr);
console.log(Object.getPrototypeOf(child_2)); // [0, 1, 2]
console.log(Object.getPrototypeOf(arr)); // []

1
2
3
4
5
6
7
8
9

10
11
12

"use strict";

// define an array with three elements
const myArray = [0, 1, 2];
let theObject = myArray;

do {
 // show the object's prototype
 console.log(Object.getPrototypeOf(theObject)); // Array[], Object{...}, null

 // switch to the next higher level

1
2
3
4
5
6
7
8
9

10
11

The instanceof (https://developer.mozilla.org/en-US/docs/Web/JavaScr
ipt/Reference/Operators/instanceof) operator tests whether the prototype chain of a
variable contains the given data type. It returns a boolean value.

The typeof (https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/typeof) operator returns a string showing the data type of its operand.
But it is limited to detect only certain data types respectively their parent object. Possible return values are:
"undefined", "object", "boolean", "number", "bigint", "string", "symbol", "function".

... are available on another page (click here).

MDN: Prototypes (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and
_the_prototype_chain)

 theObject = Object.getPrototypeOf(theObject);
} while (theObject);

12
13

instanceof

"use strict";

// define an array with three elements
const myArray = [0, 1, 2];
alert (myArray instanceof Array); // true
alert (myArray instanceof Object); // true
alert (myArray instanceof Number); // false

1
2
3
4
5
6
7

typeof

"use strict";

// define an array with three elements
const myArray = [0, 1, 2];
let theObject = myArray;

do {
 // show the object's prototype
 console.log(typeof theObject); // object, object, object

 // switch to the next higher level
 theObject = Object.getPrototypeOf(theObject);
} while (theObject);

1
2
3
4
5
6
7
8
9

10
11
12
13

Exercises

See also

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

OOP-classes
The popularity of class-based programming languages inspires the JavaScript community to cover its
prototype-based implementation of OOP with a syntax that mimics a class-based approach. EcmaScript
2015 (ES6) gets expanded by corresponding key words like 'class' or 'extend'.

Classes are templates or 'blueprints' to create objects. They encapsulate their data and contain functions to
work on it.

The keyword class introduces the class definition. In the example, Person is the class name. It is
followed by the class body that is enclosed in curly brackets { }, lines 1 - 11. Within the body, there is a
special method constructor. This function is invoked during class creation. In the example, it takes
one argument, the name of a person. Within constructor this argument is stored internally by using
the keyword 'this'. The class offers only one functionality: the showName method.

The above syntax shows how to handle properties and methods of individual objects (instances - like 'ada'
in the above example). It's also possible to define properties and methods that are not available at the level
of individual objects but at the class level - 'Person' in the above example. They are introduced by the
keyword static.

Creation

class Person {
 // Class body is always implicitly in "use strict" mode
 constructor(name) {
 // Data. Declarations like 'let x = 0' are not necessary.
 this.name = name;
 }
 // functionality
 showName() {
 return "My name is: " + this.name;
 }
}

const ada = new Person("Lovelace");
alert(ada.showName());

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Static properties and methods

class Person {
 constructor(name) {
 // data
 this.name = name;
 }

 static className = "The PERSON Class";
 static showClassName() {return "The name of this class is: " + this.className};

 showName() {
 return "My name is: " + this.name;
 }
}

const ada = new Person("Lovelace");

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Lines 7 and 8 use the 'static' keyword. Therefore the property and method are NOT available for instances,
only for the class altogether.

Class methods can be offered as properties. This frees the programmer to distinguish between access to
methods - via parenthesis () - and properties. The keyword get introduces the feature.

Next, we define a hierarchy of classes. This is done with the keyword extends. In the example,
Employee is a sub-class of Person and has access to all its properties and methods.

// alert(ada.showClassName()); // Error!
alert(Person.showClassName());

16
17

get

class Person {
 constructor(name) {
 this.name = name;
 }
 // getter
 get showTheName() {
 return this.showName();
 }
 // 'regular' method
 showName() {
 return "My name is: " + this.name;
 }
}

const ada = new Person("Lovelace");
// NO parenthesis ()
alert(ada.showTheName);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Inheritance

class Person {
 constructor(name) {
 this.name = name;
 }
 // method
 showName() {
 return "My name is: " + this.name;
 }
}
class Employee extends Person {
 constructor(name, company) {
 super(name);
 this.company = company;
 }
 // method
 showCompany() {
 return "I, " + this.name + ", work at the company " + this.company;
 }
}

const henry = new Employee("Henry Miller", "ACME Inc.");
alert(henry.showCompany());
alert(henry.showName()); // method of the parent class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Line 12 invokes the constructor of the parent class. This is necessary because the parent's constructor
creates 'this'.

By default, class properties and methods are accessible. You can hide them by using a hash # as the first
character of their name.

If a method name is used in a 'parent' class as well as in a 'child' class, the JavaScript engine invokes that
one of the correlating class.

Access control

class Person {

 // two hidden properties (sometimes called 'private fields')
 #firstName;
 #lastName;

 constructor(firstName, lastName) {
 this.#firstName = firstName;
 this.#lastName = lastName;
 // one public property
 this.name = lastName + ", " + firstName;
 }
 #showName() { // hidden method
 alert("My name is " + this.name);
 }
}

const ada = new Person("Ada", "Lovelace");
alert(ada.name); // ok
alert(ada.firstName); // undefined
alert(ada.#firstName); // undeclared private field

alert(ada.#showName()); // undeclared private method

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Polymorphism

class Person {
 constructor(name) {
 this.name = name;
 }
 // method name is used also in 'child'
 showName() {
 return "My name is: " + this.name;
 }
}
class Employee extends Person {
 constructor(name, company) {
 super(name);
 this.company = company;
 }
 // same method name as in 'parent'
 showName() {
 return "My name is: " + this.name + ". I'm working at the company " + this.company;
 }
}

const henry = new Employee("Henry Miller", "ACME Inc.");
alert(henry.showName()); // from Employee

const nextPerson = new Person("John");
alert(nextPerson.showName()); // from Person

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

The example defines and uses two different methods showName.

this is not a variable or an object; it's a keyword. Depending on the context, it refers to different things.
In the context of class definitions, it refers to the class itself, e.g., this.city = "Nairobi" refers to
the property 'city' of the current class.

When this is used at the top level of a file (in other words: outside of any function or object), it refers to
the global object. In a function, in strict mode, this is undefined. In a DOM event, it refers to the
element that received the event.

... are available on another page (click here).

MDN: Classes (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classe
s)
W3Schools: OOP in JavaScript (https://www.w3schools.com/js/js_class_intro.asp)

this

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://www.w3schools.com/js/js_class_intro.asp

Modules
In the early days of JavaScript, scripts were relatively small. In many cases, the complete functionality
resides in a single JavaScript file. Over time requirements and solutions grow significantly. Mainly, often-
used functionalities are shifted into separate files. With this growth of complexity, the danger of unwanted
side effects grows as well, and the need for modularisation of source code gets obvious.

The original JavaScript syntax - which is valid until today - does not know borders between source code
written in different files of scripts. Everything is known everywhere, regardless of the file organization. The
following example shows that the two functions are known from within HTML and from each other. One
can call the other.

When the HTML page is loaded, both script parts are read by the browser; hence two alert
messages are shown. After clicking the button, function_1 is called, which invokes function_2.

The same behavior occurs when you transfer the scripts to external files and refer them via <script
src="./function_1.js"></script>

To avoid the possibility of unwanted side effects from one function to another or from one file to another,
diverse forms of modularisations have been developed.

Since ECMAScript 2015 (ES6), the standard defines a syntax for modules and their behavior. Most
browsers support it natively without any additional library.

No modules

<!DOCTYPE html>
<html>
<head>
 <script>
 alert("In script 1");
 function function_1 () {
 "use strict";
 alert("In function_1");
 function_2();
 }
 </script>
 <script>
 alert("In script 2");
 function function_2 () {
 "use strict";
 alert("In function_2");
 }
 </script>
</head>
<body>
 <button onclick="function_1()">Click</button>
</body>
</html>

ECMAScript modules (ES modules)

Concerning HTML, the syntax changes slightly. The <script> element must be extended by the type
attribute <script type="module">. This declares a file or an inline script to be a module.
Afterward, its internal classes, functions, variables, ... are no longer visible to other inline scripts, files, or
HTML. In the following example, a click on the button results in an error message because the inline script
with its function function_1 is treated as a module.

Due to security reasons, it's complicated to create an example with pure inline scripts. We use an example
with an external file. When testing, create this file as shown in the following inline script.

When the HTML page is loaded, it shows an alert message (line 7).
The external file function_1.js publishes its function function_1 to the public (line 16). All
other functionality keeps hidden (in this simple example, there is no other functionality).
The function function_1 gets imported to the inline script (line 5).
We add the event listener via addEventListener to the button (line 10). The event
listener consists of an anonymous function that calls function_1 (in the external file). In
line 10, the event listener is only declared; at this moment, it is not called.
The "use script" statement gets superfluous because modules always act in strict mode.

<!DOCTYPE html>
<html>
<head>
 <script type="module">
 alert("In script 1");
 function function_1 () {
 "use strict";
 alert("In function_1");
 }
 </script>
</head>
<body>
 <button onclick="function_1()">Click</button>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<!DOCTYPE html>
<html>
<head>
 <script type="module">
 import {function_1} from "./function_1.js";

 alert("In script 1");

 const btn1 = document.getElementById("btn1");
 btn1.addEventListener("click", () => function_1());

 /* create a file 'function_1.js' with the following content:
 function function_1() {
 alert("In function_1");
 }
 export { function_1 };
 */

 </script>
</head>
<body>
 <button id="btn1">Click</button>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

In essence, the ES6 module syntax (http://w:https://developer.mozilla.org/en-US/docs/web/javascript/referen
ce/statements/export#syntax) consists of the two statements export and import. export is used in
the publishing module to make some of its classes, functions, or variables publically available. import is
used in the calling script to get access to those objects.

Web servers are not steered by HTML elements. Therefore they use to have a different technique to make
the decision about which JS scripts they have to tread as modules and which not.

The popular Web server node.js supports the export/import syntax of ES modules. But its default module
system is different. It's called CommonJS.

To tell node.js which syntax you use, an additional line must be added to the project's package.json
file.

leads to the ES module syntax. An alternative way is the use of the extension '.mjs' instead of '.js' for file
names. A "type": "commonjs" line (respective no definition) leads to the node.js specific syntax
CommonJS.

Within CommonJS exports are done with modules.exports (please note the additional 's') and
imports with the require statement. An example:

MDN: Modules (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules)
Node.js modules (https://nodejs.org/api/modules.html)

Nodejs modules (CommonJS)

{
 ..
 "type": "module",
 ..

// export in a file 'logger.js'
...
function doLogging() { ... };
module.exports = {doLogging};

// import in a file 'main.js'
const doLogging = require('./logger.js')
...

See also

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://nodejs.org/api/modules.html
https://en.wikipedia.org/wiki/nodejs

Generators
The term generator denotes a technique to generate a sequence of 'anything': numbers, strings, rows of
database queries, elements of an array, nodes of a DOM tree, ...

It's used to avoid any memory overloading, by splitting the data in small chunks.

To use them, you must define a generator function[1] first. Such functions are notated with an asterisk *
directly behind the keyword function, e.g., function* myGenerator(){...}.

When called, the function will not run instantly. It only runs just before the first occurrence of a yield
statement and returns a 'Generator object'. This 'Generator object' offers a next method. Calling next
again and again returns the sequence elements one after the next. The elements arise by each yield that is
reached within the generator function.

The script generates a sequence of 4 integers.

Every next() call returns not only a value; there is also a boolean done. Hence you can
call the generator in loops.

Generation out of an array, a database request, or a tree traversal.

Examples

function* fourInts() {
 let int = 0;
 while (int < 4) {
 yield int; // each .next() receives the current value of 'int'
 int++;
 }
}

const gen = fourInts(); // creation
alert(gen.next().value); // 0
alert(gen.next().value); // 1
alert(gen.next().value); // 2
alert(gen.next().value); // 3
alert(gen.next().value); // undefined

function* fourInts() {
 let int = 0;
 while (int < 4) {
 yield int;
 int++;
 }
}

const gen = fourInts(); // creation
do {
 const tmp = gen.next();
 if (tmp.done) {
 break;
 } else {
 alert(tmp.value); // 0, 1, 2, 3
 }
} while (true)

Creation of the infinite sequence of all even numbers.

The generator function may receive parameters. In this example, the 'pageSize' defines the number of array
elements to be returned.

1. MDN: Generator function (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Referen
ce/Statements/function*)

function* arrayElements() {
 // for simplicity, we use an array; database queries or tree traversals
 // are more realistic.
 const myArray = ["yellow", "green", "blue"];
 for (const elem of myArray) {
 yield elem;
 }
}

const sequence = arrayElements(); // creation
do {
 const tmp = sequence.next();
 if (tmp.done) {
 break;
 } else {
 alert(tmp.value); // "yellow", "green", "blue"
 }
} while (true)

function* evenNumbers() {
 for (let i = 0; true; i = i + 2) {
 yield i;
 }
}

const sequence = evenNumbers(); // creation
let i = 0;
while (i < 20) {
 i = sequence.next().value;
 alert(i); // 0, 2, 4, ...
}

Parameters

function* pagination(arr, pageSize) {
 for (let i = 0; i < arr.length; i = i + pageSize) {
 yield arr.slice(i, i + pageSize);
 }
}

const arr = [1, 2, 3, 4, 5, 6, 7]
const page = pagination(arr, 3);

alert (page.next().value); // { value: [1, 2, 3], done: false }
alert (page.next().value); // { value: [4, 5, 6], done: false }
alert (page.next().value); // { value: [7], done: false }
alert (page.next().value); // { value: undefined, done: true }

References

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

DOM-model

Introduction to the Document Object Model
(DOM)
HTML pages are internally
implemented by a tree that
contains the HTML elements
(and CSS styles) as its nodes.
This tree is called Document-
Object Model, or DOM.
JavaScript has full access to the
DOM. It can navigate through
the tree, modify the tree and
nodes, ranging from simply
adding new nodes to rearranging
several areas on the page.

A hint about the terminology:
Because of its closeness to
XML, HTML uses the term
element; and because of its
structure as a tree, DOM uses
the term node.

When loading into the browser,
the HTML document is broken
down into a tree of nodes. For
example, take a look at the
following HTML snippet:

Through DOM, JavaScript sees this snippet as four nodes.

The div, from its start tag through its end tag, is one node. This div happens to have a
property assigned inside its start tag. This property is named "id" and has the value
"exampleDiv".

The three other nodes in this example are inside the div. They are called child nodes of
the div, because the div contains them. Conversely, the div is their parent node.

The first child of the div is a text node, with the value "This is an". Text nodes contain only
text; they never contain tags, which is why the tree stops here.
The br tag is another node.
The rest of the text is another text node.

Nodes

<div id="exampleDiv">This is an
example HTML snippet.</div>

https://en.wikibooks.org/wiki/File:DOM-model.svg
https://en.wikipedia.org/wiki/document_object_model

Since the text nodes and the br tag all share the same parent, they are said to be sibling nodes.

You can access nodes of the DOM tree by various methods. One of them is getElementById.

When clicking on the button, the function go is called. It accesses the element with the id 'p2' and shows its
content.

If you want to get access to the content of a node, you can use different properties of different classes:
Node.textContent (https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent),
HTMLElement.innerText (https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/inner
Text), or Element.innerHTML (https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHT
ML). But they are not equal; please consider the differences (https://developer.mozilla.org/en-US/docs/We
b/API/Node/textContent). To keep our examples clear and easy, we use Element.innerHTML
whenever possible because it is very close to the HTML source code.

After accessing a node, you can change its content by assigning a new value to its content.

Accessing nodes

<!DOCTYPE html>
<html>
 <head>
 <script>
 function go() {
 "use strict";
 const p = document.getElementById("p2");
 alert(p.innerHTML);
 }
 </script>
 </head>

 <body id="body">
 <p id="p1" style="background: aqua">one</p>
 <p id="p2" style="background: green">two</p>
 <p id="p3" style="background: red">three</p>
 <button onclick="go()">Show the second paragraph</button>
 </body>
</html>

Accessing content

const exampleContent = document.getElementById("example").innerHTML;

Changing content

<!DOCTYPE html>
<html>
 <head>
 <script>
 function go() {
 "use strict";
 const p = document.getElementById("p2");
 p.innerHTML = "Another text";
 }
 </script>
 </head>

https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/innerText
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent

When clicking on the button, the function go is called. Again, it accesses the element with the id 'p2' and
changes its content.

JavaScript can manipulate the structure of the DOM tree.

When clicking on the button, the function go is called. It accesses the elements 'body' and 'p2', then, it
moves the 'p' element to the end of the 'body'.

MDN DOM (https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model)

 <body id="body">
 <p id="p1" style="background: aqua">one</p>
 <p id="p2" style="background: green">two</p>
 <p id="p3" style="background: red">three</p>
 <button onclick="go()">Change the second paragraph</button>
 </body>
</html>

Modifying the tree structure

<!DOCTYPE html>
<html>
 <head>
 <script>
 function go() {
 "use strict";

 // read 'body' node
 const b = document.getElementById("body");
 // read second 'p' node
 const p = document.getElementById("p2");
 // moves it to the end of 'body'
 b.appendChild(p);
 }
 </script>
 </head>

 <body id="body">
 <p id="p1" style="background: aqua">one</p>
 <p id="p2" style="background: green">two</p>
 <p id="p3" style="background: red">three</p>
 <button onclick="go()">Move the second paragraph</button>
 </body>
</html>

See also

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Finding elements
To work with nodes of the DOM tree, you need to locate them directly or navigate to them beginning at a
starting point. DOM's Document (https://developer.mozilla.org/en-US/docs/Web/API/Document) interface
serves as an entry point into the web page's content. It offers a rich set of properties and methods to reach
particular nodes. The methods return single nodes or an array of nodes.

We use the following HTML page to demonstrate the most important methods.

<!DOCTYPE html>
<html>
<head>
 <script>
 function show() {
 "use strict";
 // ...
 }
 </script>
 <style>
 .head_2 {
 display: flex;
 justify-content: center;
 }
 .text {
 padding-left: 1em;
 font-size: 1.4em;
 }
 .button {
 height:1.4em;
 width: 4em;
 margin-top: 1em;
 font-size: 1.2em;
 background-color: Aqua;
 }
 </style>
</head>

<body>
 <h1>An HTML header</h1>

 <h2 class="head_2">An HTML sub-header</h2>
 <div id="div_1">
 <p id="p1" class="text">Paragraph 1</p>
 <p id="p2" class="text">Paragraph 2</p>
 <p id="p3" class="text">Paragraph 3</p>
 </div>

 <div id="div_2">
 <h2>Another HTML sub-header</h2>
 <div id="div_3">
 <p>Another paragraph 1</p>
 <p>Another paragraph 2</p>
 <p>Another paragraph 3</p>
 </div>
 </div>

 <button class="button" onclick="show()">Go</button>

</body>
</html>

https://developer.mozilla.org/en-US/docs/Web/API/Document

Clicking on the button invokes the function show. The examples should be included there.

An easy-to-use, fast, and exact method to locate an individual element is to mark the element with the id
property in the HTML, e.g., <p id="p2">, and use this id as the parameter to
getElementById(). The following code snippet will locate the element and displays its content.

The getElementById method returns one single element (the first with this id if the id is not
unique).

That is also true if the element is not a text node but a node with child nodes. The return value is a single
element with all its child elements included.

Another way to find elements on an HTML page is the getElementsByTagName method. It accepts
a tag name, e.g., 'h1', 'div', or 'p', and returns all such elements in an array.

Here, we use the method to retrieve an array of all 'div' elements.

Using ID

function show() {
 "use strict";
 const elem = document.getElementById("p2");
 alert(elem.innerHTML);
}

function show() {
 "use strict";
 const elem = document.getElementById("div_3");
 alert(elem.innerHTML);
}
// expected output:
// <p>Another paragraph 1</p>
// <p>Another paragraph 2</p>
// <p>Another paragraph 3</p>

Using tag name

function show() {
 "use strict";

 // if you want to search in the complete document, you must specify 'document'
 let elemArray = document.getElementsByTagName("div");
 // loop over all array elements
 for (let i = 0; i < elemArray.length; i++) {
 alert(elemArray[i].innerHTML);
 }

 alert("Part 2");

 // if you want to search only a sub-tree, you must previously locate
 // the root of this sub-tree
 const elem = document.getElementById("div_2");
 elemArray = elem.getElementsByTagName("div");
 for (let i = 0; i < elemArray.length; i++) {
 alert(elemArray[i].innerHTML);

Next, elements can be located by an associated CSS class selector. Class selectors can have a complex
syntax. Here, we use only the simple form of class names.

The example retrieves all elements that use the CSS class text - what is done by the 3 paragraphs of the first
div. Please note, that the other paragraphs are not retrieved.

The shown locating methods use specialized semantics to locate elements. But there is also a general
method that combines all of that - plus more.

Query selectors (https://developer.mozilla.org/en-US/docs/Web/API/Document_object_model/Locating_D
OM_elements_using_selectors) use a complex syntax consisting of HTML element ids, HTML element
names, HTML attributes, CSS classes, positions, and more. They locate single elements or a list of
elements. To retrieve the first element which satisfies the selector, use the querySelector method. If
you want to retrieve all matching elements, use querySelectorAll.

You can navigate in the DOM tree in the direction from the root to the leaves. This is done by locating an
element and using this node as the new root for the following navigation steps.

 }
}

Using class name

function show() {
 "use strict";

 let elemArray = document.getElementsByClassName("text");
 // loop over all array elements
 for (let i = 0; i < elemArray.length; i++) {
 alert(elemArray[i].innerHTML);
 }
}

Using a query selector

function show() {
 "use strict";

 // '#' locates via ID, '.' locates via CSS class
 let elemArray = document.querySelectorAll("h1, #p2, .head_2");
 // loop over all array elements
 for (let i = 0; i < elemArray.length; i++) {
 alert(elemArray[i].innerHTML);
 }
}

Navigating the DOM tree

function show() {
 "use strict";

 // start at 'div_2'
 const elem_1 = document.getElementById("div_2");
 // use this element as the new root for further selections
 const elemArray = elem_1.getElementsByTagName("h2");
 for (let i = 0; i < elemArray.length; i++) {

https://en.wikipedia.org/wiki/CSS#Selector
https://developer.mozilla.org/en-US/docs/Web/API/Document_object_model/Locating_DOM_elements_using_selectors

DOM methods (https://developer.mozilla.org/en-US/docs/Web/API/Document#instance_met
hods)

... are available on another page (click here).

 alert(elemArray[i].innerHTML);
 }
 // only the child-'h2' is selected! The first 'h2' is ignored.
}

See also

Exercises

https://developer.mozilla.org/en-US/docs/Web/API/Document#instance_methods
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1

Changing elements
On this page, we show how to change two different things of an HTML element, respectively, DOM node.

Its content (there is only one - or none)
Any of its attributes (there may be many)

Please take note of this distinction between content and attributes.

We use the following example HTML page to demonstrate the possibilities.

Clicking on the button invokes the function show. The examples should be included there.

We use the example of a paragraph p. To change its content, the text, just assign the new value to its
innerHTML.

<!-- in general: -->
<element_name attribute_name="attribute_value">content of the element</element_name>
<!-- a concrete example. 'href' is an attribute. 'Visit IANA...' is the content. -->
Visit IANA's example domain.

Example page

<!DOCTYPE html>
<html>
<head>
 <script>
 function show() {
 "use strict";
 // ...
 }
 </script>
</head>

<body id="body" style="margin:2em">
 <p id="p1" style="background: aqua">A blue paragraph</p>

 <svg id="svgSrc" width="100" height="100" viewBox="0 0 100 100">
 <circle cx="50" cy="50" r="25" fill="green"/>
 </svg>

 <p />
 Visit IANA's example domain.

 <p />
 <button id="buttonShow" onclick="show()">Start</button>
</body>
</html>

Change the content

function show() {
 "use strict";
 const elem = document.getElementById("p1");
 elem.innerHTML = "New text in the paragraph.";

Or, to do the same with a different HTML element, we change the SVG graphic.

Because the new text is HTML code, you can 'misuse' this approach to add child nodes.

The script inserts two more paragraphs, but not behind the first one. They are within the first one.

In general, the syntax to change attributes is as follows:

The HTML element a knows a href attribute: <a id="refToSomewhere"
href="https://www.example.com">.... This href attribute can be changed:

First, the element is located. Second, the function assigns a new value to its attribute 'href' (and to the
innerHTML).

The following example changes the src attribute of img element and the value attribute of button
element

}

function show() {
 "use strict";
 const elem = document.getElementById("svgSrc");
 elem.innerHTML = "<rect width='80' height='40' fill='blue'/>";
}

function show() {
 "use strict";
 const elem = document.getElementById("p1");
 elem.innerHTML = "New text in the paragraph.<p>next P</p><p>and even one more P</p>";
}

<p id="p1">New text in the paragraph
 <p>next P</p>
 <p>and even one more P</p>
</p>

Change an attribute

element_name.attribute_name = "new value";
// or:
element_name.setAttribute("attribute_name", "new value");

function show() {
 "use strict";
 const elem = document.getElementById("refToSomewhere");
 elem.href = "https://en.wikibooks.org";
 elem.innerHTML = "Link changed";
}

// The HTML

<input id="buttonOne" value="I'm a button!">

// The JavaScript
document.getElementById("imgOne").src = "otherPicture.jpg";

https://www.example.com/

The modification of attributes can also be done via the function setAttribute.

MDN setAttribute (https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute)

... are available on another page (click here).

const b = document.getElementById("buttonOne");
b.value = "I'm a changed button";

setAttribute()

function show() {
 "use strict";
 const elem = document.getElementById("refToSomewhere");
 elem.setAttribute("href", "https://en.wikibooks.org");
 elem.innerHTML = "Link changed";
}

See also

Exercises

https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1

Adding elements

DOM's Document (https://developer.mozilla.org/en-US/docs/Web/API/Document) interface offers - among
other things - functions that create new elements, including their attributes and content, and joins them
together or into an existing DOM.

createElement() creates an element. createAttribute() creates an attribute that can be
assigned to this new or an already existing element. setAttribute() creates an attribute and links it to
an existing element. appendChild() integrate an element into another.

Now, the element and its content are created. But until here, they are not part of a DOM. They exist only in
the memory of the JavaScript engine.

To integrate them into the page, we retrieve the body or any other element of an existing page and append
the new element as its last element.

All in all, the HTML plus JavaScript looks like this:

Creating elements

// an <p> element
const p = document.createElement("p");
// its content
p.innerHTML = "The new paragraph.";

const body = document.getElementById("body");
body.appendChild(p);

<!DOCTYPE html>
<html>
<head>
 <script>
 function show() {
 "use strict";

 // an create an <p> element
 const p = document.createElement("p");
 // create its content
 p.innerHTML = "The new paragraph.";

 // integrate it into the body
 const body = document.getElementById("body");
 body.appendChild(p);
 }
 </script>
</head>

<body id="body" style="margin:2em">
 <button id="buttonShow" onclick="show()">Start</button>
</body>
</html>

https://developer.mozilla.org/en-US/docs/Web/API/Document

The original page does not contain a paragraph. But after you click on the button, the paragraph is
integrated into the page and is visible. Btw: You can click more than once on the button. What will happen?

Attributes are created with either the createAttribute() or the setAttribute() function. The
first of the two acts like the above shown createElement() function. It creates the new attribute only
in memory without a connection to other elements. Because setAttribute() integrates the new
attribute directly into an element, we use this variant.

The example uses the a element with its href attribute.

Now, the element, a single attribute, and the element's content are created. Again, we integrate them into the
page as we have done above.

All in all, the HTML plus JavaScript looks like this:

Creating attributes

// an <a> element
const anchor = document.createElement("a");
// its content
anchor.innerHTML = "The IANA example daomain.";
// its 'href' attribute
anchor.setAttribute("href", "https://www.example.com");

<!DOCTYPE html>
<html>
<head>
 <script>
 function show() {
 "use strict";

 // an create an <a> element
 const anchor = document.createElement("a");
 // create its content
 anchor.innerHTML = "The IANA example domain.";
 // create its 'href' attribute
 anchor.setAttribute("href", "https://www.example.com");
 // see below: anchor.href = "https://www.example.com";

 // integrate the element inclusive its attribute into the body
 const body = document.getElementById("body");
 body.appendChild(anchor);
 /* now, the body looks like this:
 <button id="buttonShow" onclick="show()">Start</button>
 The IANA example domain.
 */
 }
 </script>
</head>

<body id="body" style="margin:2em">
 <button id="buttonShow" onclick="show()">Start</button>
</body>
</html>

The original page does not contain a link. But after you click on the button, the link to the IANA example
page is integrated into the page and is usable.

One of the previous pages has explained how to change attributes with a different syntax.

Just use the element plus its attribute name and assign the attribute value to it. If you change the previous
example to this syntax, you will reach the same behavior of adding the link.

The shown functions create elements and attributes. Such new objects can be joined together to create
huger parts - of course in a nested way. And they can be joined to an already existing HTML page,
respectively, the DOM tree.

The content of an element can be changed by assigning a new value to its property innerHTML. If this
new value contains the string representation of an HTML fragment, the assignment creates child nodes
within the element. That's possible but not the intended way of using innerHTML.

.. leads to ..

The JavaScript fragment inserts two more paragraphs, but not behind the first one. They exist within the
first one.

Alternative syntax

element_name.attribute_name = "new value";

 anchor.href = "https://www.example.com";
 // instead of the above:
 // anchor.setAttribute("href", "https://www.example.com");

Join the puzzles pieces

const div = document.getElementById("div_1");
const anchor = document.createElement("a");
div.appendChild(anchor);

'Misusing' innerHTML

const elem = document.getElementById("p1");
elem.innerHTML = "New text in the paragraph.<p>next P</p><p>and even one more P</p>";

<p id="p1">New text in the paragraph
 <p>next P</p>
 <p>and even one more P</p>
</p>

write()

https://en.wikibooks.org/wiki/JavaScript/Changing_elements#Change_an_attribute

The antiquated function document.write() was able to insert new elements into an HTML page. Its
usage is strongly discouraged (https://developer.mozilla.org/en-US/docs/Web/API/Document/write)
nowadays.

MDN Create Element (https://developer.mozilla.org/en-US/docs/Web/API/Document/createE
lement)
MDN Set Attribute (https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute)
MDN Append Child (https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild)

... are available on another page (click here).

See also

Exercises

https://developer.mozilla.org/en-US/docs/Web/API/Document/write
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1

Removing elements
HTML pages and DOM objects are hierarchically structured. Every element and attribute belongs to
exactly one parent. To delete an element or attribute, first, you must locate the parent element. The remove
operation can be done on this object.

Elements are removed with the removeChild function. To delete the <p> element from the <div>
element in the following example

the JavaScript code is ...

... and the remaining HTML structure will be

If an element is removed, all of its children are removed as well. By this, you can remove huge parts of the
DOM with one command if they have a common root. E.g., remove a complete list:

The JavaScript fragment removes the element as well as all elements.

Remove elements

<div id="parent">
 <p id="child">I'm a child!</p>
</div>

// get elements
const parent = document.getElementById("parent");
const child = document.getElementById("child");

// delete child
parent.removeChild(child);

<div id="parent"></div>

Children of children

<div id="div_1">
 <ul id="listOfNames">
 Albert
 Betty
 Charles

</div>

const parent = document.getElementById("div_1");
const child = document.getElementById("listOfNames");

To remove an element, you need to know its parent element. If you can locate only the child, but for some
reason, not the parent, the child's property parentNode shows you the way.

Attributes are removed with the removeAttribute function. To delete the href attribute from the
<a> element in the following example

the JavaScript code is:

The element itself, including the text of the link, keeps alive, but you cannot navigate anymore.

MDN Remove Child (https://developer.mozilla.org/en-US/docs/Web/API/Node/removeChild)
MDN Remove Attribute (https://developer.mozilla.org/en-US/docs/Web/API/Element/remove
Attribute)

parent.removeChild(child);

parentNode

// get the child element
const child = document.getElementById("child");

// retrieve the parent
const parent = child.parentNode; // no parenthesis ()

// remove the child element from the document
parent.removeChild(child);

Remove attributes

Wikibook

// get element
const anchor = document.getElementById("anchor");
// remove attribute
anchor.removeAttribute("href");

See also

https://developer.mozilla.org/en-US/docs/Web/API/Node/removeChild
https://developer.mozilla.org/en-US/docs/Web/API/Element/removeAttribute

Restructure DOM
Besides adding and removing nodes, a common activity on trees is the rearranging of nodes respectively of
sub-trees. In some of the previous examples, we have seen that appendChild inserts a node as the last
child of a parent node. Of course, this is not delimited to the case that the child is currently created. The
same operation is possible for an existing node. Hence it is an appropriate function to perform
rearrangements.

We use the following example HTML page to demonstrate the possibilities.

We identify two elements and move them to the end of another node. This other node is not necessarily the
old parent. But after the movement, it becomes the new parent.

Example page

<!DOCTYPE html>
<html>
<head>
 <script>
 function show() {
 "use strict";
 // ...
 }
 </script>
</head>

<body id="body" style="margin:2em">
 <h1>The magic manipulator</h1>
 <button id="buttonShow" onclick="show()" style="margin:1em 0em 1em 0em">Start</button>

 <div id="div_1">Our sweet products
 <ul id="ul_1">
 <li id="li_11">Ice creme
 <li id="li_12">Chocolate
 <li id="li_13">Coffee

 </div>

 <div id="div_2">Additional offers
 <ul id="ul_2">
 <li id="li_21">Creme
 <li id="li_22">Sugar
 <li id="li_23">Cakes

 </div>

</body>
</html>

Move an element to the end of siblings

function show() {
 "use strict";

 // select the first as the new parent
 const ul_1 = document.getElementById("ul_1");

 // select two elements to get moved
 const li_11 = document.getElementById("li_11");
 const li_23 = document.getElementById("li_23"); // The 'cakes'

As you see, the 'Ice creme' is moved to the end (temporarily) of its product group. After that, the 'cakes',
which were a child of the second product group, were moved to the end of the first product group.

You can move an element to any position within a group of siblings. ('Siblings' are nodes with a common
parent node.) First, you must locate the parent. Next, you locate the child, which shall become the new
successor of the element. When both nodes are known, the function insertBefore inserts the element
to this position.

As an example, we move the 'Cakes' to the first place of the first product group.

Here, the 'Cakes' become the first element of the first product group. With the same commands you can
move them to any position in the sequence of siblings. Just locate the sibling that shall be his new successor
instead of 'li_11'.

The sequence of attributes within an element is in no way relevant. Hence, there is no need and no function
to rearrange them. When a DOM gets serialized, programs may do it in different ways (original sequence,
alphabetically, ...).

... are available on another page (click here).

MDN Append Child (https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild)
MDN Insert Before (https://developer.mozilla.org/en-US/docs/Web/API/Node/insertBefore)

 // move the two children
 ul_1.appendChild(li_11);
 ul_1.appendChild(li_23);
}

Move an element before a sibling

function show() {
 "use strict";

 // select the first element; it acts as the parent
 const ul_1 = document.getElementById("ul_1");
 // select the first li element; we need it for positioning
 const li_11 = document.getElementById("li_11");
 // select 'Cakes' li element
 const li_23 = document.getElementById("li_23");

 // move the 'Cakes' to the first place of the first product group
 ul_1.insertBefore(li_23, li_11);
}

Attributes

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/insertBefore

Changing element styles
As you have seen in previous chapters, the attributes of an element can be modified by JavaScript. Two
attributes, the class and style, influences the visual representation of an element. They contain CSS
code.

The class attribute identifies a CSS class that is created in the style element of HTML. The style
attribute defines CSS rules inline (locally).

To modify them, handle them like any other attribute. They do not have special rules or exceptions.

We use the above HTML file; only the JavaScript function is changed. When the button is clicked, the
function assigns the CSS class 'divClassRed' to 'div_1' and it changes the inline 'style' attribute of 'div_2' to
a different value.

<!DOCTYPE html>
<html>
<head>
 <script>
 function toggle() {
 "use strict";
 // ...
 }
 </script>
<style>
 .divClassGreen {
 background-color: green;
 padding: 2em;
 margin: 1em
 }
 .divClassRed {
 background-color: red;
 padding: 2em;
 margin: 1em
 }
</style>
</head>

<body id="body">
 <div id="div_1" class="divClassGreen">A DIV element</div>
 <div id="div_2" style="background-color: blue; padding: 2em; margin: 1em">Another DIV
element</div>
 <button id="buttonToggle" onclick="toggle()" style="margin:1em 0em 1em 0em">Start</button>
</body>
</html>

An example

 function toggle() {
 "use strict";

 // locate the elements to be changed
 const div_1 = document.getElementById("div_1");
 const div_2 = document.getElementById("div_2");

 // modify its 'class' attribute
 div_1.setAttribute("class", "divClassRed");

 // an 'inline' modification
 div_2.setAttribute("style", "background-color: silver; padding: 4em; margin: 2em");

https://en.wikibooks.org/wiki/JavaScript/Changing_elements#Change_an_attribute

The 'style' attribute stores the CSS properties like 'color' or 'padding' in its own properties. This correlates
with the general JavaScript object rules. Therefore the following syntax is equivalent to the previous
div_2.setAttribute call.

In CSS, some properties are defined with a hyphen in their name, e.g., 'background-color' or 'font-size'.
When you use them in JavaScript in the syntax of a property of style, the names change slightly. The
character after the hyphen must be written in upper-case, and the hyphen disappears:
'style.backgroundColor' or 'style.fontSize'. This is called camel-case.

All other places where such names appear in CSS do not change. Especially the shown syntax with
hyphens inside the HTML <style> element, as well as the use in the form of an inline definition, keeps
unchanged.

... are available on another page (click here).

MDN: CSS basics (https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the
_web/CSS_basics)

 //or: div_2.style = "background-color: silver; padding: 4em; margin: 2em";
 }

 div_2.style.backgroundColor = "silver"; // see below: camel-case
 div_2.style.padding = "4em";
 div_2.style.margin = "2em";

Properties of 'style'

div_1.style.fontSize = "2em"; // the font's size as property of 'style'
/*
The next line would run into a syntax error because the hyphen
would be interpreted as a minus operation.
div_1.style.font-size = "2em";
*/

Exercises

See also

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/CSS_basics

Handling DOM events
Applications with a user interface - and other application types - are predominantly driven by events. Here
we focus on DOM events (https://w3c.github.io/uievents/). They originate (or fire) from specific actions or
situations in a browser or a native app, e.g., a user clicks with the mouse, types a keyboard key, or works
on a touch screen; a visual object is 'dragged & dropped', 'copied & pasted', or resized; the HTML page is
loaded or shall be unloaded; the browser or a visual object gets or loses the focus; and much more. It's also
possible that the application creates events programmatically (dispatch).

An event is related to its originating object and with a JavaScript statement; that is, in most cases, a call to a
function that is denoted as the event handler. The JavaScript part is invoked after the event arises. Common
actions are communication with a server, validation of user input, or modification of DOM or graphics.

A short example shows how events are defined in an HTML page, fire, and execute. This syntax version is
denoted as inline JavaScript.

When a user clicks on one of the buttons, the browser reads the button's attribute onclick, creates a
JavaScript object that contains all properties of the event, and executes the JavaScript statement(s). Mostly,
the JavaScript part is a call to a function. That function is denoted the event handler. It receives the
JavaScript object as its first parameter. Only in very simple cases, the complete JavaScript script is inlined.

Of course, the called function must exist somewhere. Some standard functions like alert() are
predefined and provided by the browser. Your self-written functions exist within the HTML tag
<script>, or the tag refers to a file or URL where they exist.

Hint: Embedding event definitions directly into HTML is called inline JavaScript. It's the earliest method of
registering event handlers, but it tends to make the source hard to read for non-trivial applications.
Therefore it can be seen as being a less desirable technique (https://developer.mozilla.org/en-US/docs/Lear

Create and invoke events

Embedded in HTML

<!DOCTYPE html>
<html>
<head>
 <script>
 function handleEvent(evt) {
 "use strict";
 alert("Perform some actions via a JavaScript function.");
 }
 </script>
</head>

<body id="body" style="margin:2em">
 <!-- inline all statements; unusual -->
 <button onclick="const msg='Direct invocation of small actions.'; alert(msg);">First
button</button>
 <!-- call a function (the event handler) -->
 <button onclick="handleEvent(event)">Second button</button>
</body>
</html>

https://w3c.github.io/uievents/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events#inline_event_handlers_%E2%80%94_dont_use_these

n/JavaScript/Building_blocks/Events#inline_event_handlers_%E2%80%94_dont_use_these) than other
unobtrusive techniques; see next chapter. The use of inline JavaScript can be considered to be similar in
nature to that of using inline CSS, where HTML is styled by putting CSS in style attributes.

Nevertheless, the Wikibook on hand will use inline JavaScript often in its demonstration pages because the
syntax is short and the concept is easy to understand.

JavaScript knows two ways to register an event handler for an HTML element. First, the event handler
function can be directly assigned to the element's properties onxxx (onclick, onkeydown, onload,
onfocus, ...). Their name starts with 'on' and ends with the value of the event type. Second, the function
addEventListener registers the event type and the event handler.

The onclick event handler 'register' of button 'button_1' is registered with the above inline JavaScript
syntax. When the page loads, only this event handler is known. Clicks to the paragraph 'p1' don't trigger
any action because it does not have any event handler so far. But when the button gets pressed, the handler
of button 'button_1' registers the second event handler, the function 'showMessage'. Now, after a click on
the paragraph, the alert "A click-event to the paragraph..." occurs.

The registration is done in line 10 p1.onclick = showMessage. The noticeable difference to the
inline JavaScript is that there are no parenthesizes. The inline JavaScript calls the function
showMessage and hence needs to use parenthesizes. The function register does NOT call
showMessage. It uses only its name for the registration process.

Programmatically in JavaScript

<!DOCTYPE html>
<html>
<head>
 <script>
 function register() {
 "use strict";
 const p1 = document.getElementById("p1");

 // do it this way ...
 p1.onclick = showMessage; // no parenthesis ()
 // ... or this way (prefered)
 //p1.addEventListener('click', showMessage);
 alert("The event handler is assigned to the paragraph.");
 }
 function showMessage(evt) {
 "use strict";
 // the parameter 'evt' contains many information about
 // the event, e.g., the position from where it originates
 alert("A click-event to the paragraph. At position " +
 evt.clientX + " / " + evt.clientY + ". Event type is: " + evt.type);
 }
 </script>
</head>

<body>
 <h1>Register an event</h1>
 <p id="p1" style="margin:2em; background-color:aqua">
 A small paragraph. First without, then with an event handler.
 </p>
 <button onclick="register()" id="button_1">A button</button>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events#inline_event_handlers_%E2%80%94_dont_use_these

The alternative to assigning the function to the paragraph's 'onclick' property is the use of the function
addEventListener. It acts on the element 'p1' and takes two parameters. The first one is the event
type (click, keydown, ...). Such event types correlate with the onxxx names in that they miss the first two
characters 'on'. The second parameter is the name of the function that acts as the event handler.

You can test the example by commenting out either line 10 or line 12. Line 12 with the
addEventListener function is the preferred version.

Different kinds of events exist depending on the kind of the originating element. The complete list of event
types is incredibly huge (MDN) (https://developer.mozilla.org/en-US/docs/Web/Events#event_index)
(W3schools) (https://www.w3schools.com/jsref/dom_obj_event.asp). We show some important types and
examples.

Name Description

blur An input element loses focus

change An element gets modified

click An element gets clicked

dblclick An element gets double-clicked

error An error occurred loading an element

focus An input element received focus

keydown A key was pressed when an element had focus

keyup A key was released when the element had focus

load An element was loaded

mouseenter The mouse pointer was moved into the element

mousemove The mouse pointer moves while inside the element

mousedown The mouse button was pressed on the element

mouseup The mouse button was released on the element

mouseleave The mouse pointer was moved out of the element

reset The form's reset button was clicked

resize The containing window or frame was resized

select Some text within the element was selected

submit A form is being submitted

unload The content is being unloaded (e.g., window being closed)

The following example demonstrates some different event types.

Event types

<!DOCTYPE html>
<html>
<head>
 <script>
 function registerAllEvents() {
 "use strict";
 // register different event types

1
2
3
4
5
6
7

https://developer.mozilla.org/en-US/docs/Web/Events#event_index
https://www.w3schools.com/jsref/dom_obj_event.asp

When the page is loaded, the onload event of the body is fired. Please notice that here the 'on' prefix is
necessary because it's the inline JavaScript syntax (line 23). The called function registerAllEvents locates
diverse HTML elements and registers event handlers of different types (lines 8 - 13). Often you will register
different functions, but to keep things easy, we register in this example the same function handleAllEvents
to all elements. This function reports the event type and the originating HTML element.

The event is always passed to the event handler as its first parameter in the form of a JavaScript object.
JavaScript objects consist of properties; properties are key/value pairs. In all cases, one of the keys is 'type'.
It contains the event's type; some of its possible values are shown in the above table. Depending on the
event type, a lot of other properties are available.

Here are some examples of more or less important properties.

 document.getElementById("p1").addEventListener("click", handleAllEvents);
 document.getElementById("p2").addEventListener("dblclick", handleAllEvents);
 document.getElementById("p3").addEventListener("mouseover", handleAllEvents);
 document.getElementById("t1").addEventListener("keydown", handleAllEvents);
 document.getElementById("t2").addEventListener("select", handleAllEvents);
 document.getElementById("button_1").addEventListener("mouseover", handleAllEvents);
 }
 function handleAllEvents(evt) {
 "use strict";
 alert("An event occurred from element: " +
 evt.target.id + ". Event type is: " + evt.type);
 }
 </script>
</head>

<body onload="registerAllEvents()" style="margin:1em">
 <h1 id="h1" style="background-color:aqua">Check Events</h1>
 <p id="p1" style="background-color:aqua">A small paragraph. (click)</p>
 <p id="p2" style="background-color:aqua">A small paragraph. (double click)</p>
 <p id="p3" style="background-color:aqua">A small paragraph. (mouse over)</p>
 <p style="background-color:aqua">
 <textarea id="t1" rows="1" cols="50">(key down)</textarea>
 </p>
 <p style="background-color:aqua">
 <textarea id="t2" rows="1" cols="50">(select)</textarea>
 </p>
 <button id="button_1">A button (mouse over)</button>
</body>
</html>

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Event properties

Name Description

button Returns which mouse button was clicked

clientX Returns the horizontal coordinate of the mouse pointer within the local coordinates: scrolled-out
parts don't count

clientY Returns the vertical coordinate of the mouse pointer within the local coordinates: scrolled-out
parts don't count

code Returns a textual representation of the pressed key, e.g., "ShiftLeft" or "KeyE"

key Returns the value of the pressed key, e.g., "E"

offsetX Returns the horizontal coordinate of the mouse pointer within the target DOM element

offsetY Returns the vertical coordinate of the mouse pointer within the target DOM element

pageX Returns the horizontal coordinate of the mouse pointer within the page coordinates - including
scrolled-out parts

pageY Returns the vertical coordinate of the mouse pointer within the page coordinates - including
scrolled-out parts

screenX Returns the horizontal coordinate of the mouse pointer within the complete monitor coordinates

screenY Returns the vertical coordinate of the mouse pointer within the complete monitor coordinates

target Returns the element that triggered the event

timeStamp Returns the number of milliseconds between element creation and event creation

type Returns the type of the element that triggered the event

x An alias for clientX

y An alias for clientY

An example of accessing a property is given in the following script.

<!DOCTYPE html>
<html>
<head>
 <script>
 function changeTitle(evt) {
 "use strict";
 const xPos = evt.x;
 const yPos = evt.y;
 document.title = [xPos, yPos];
 }
 </script>
</head>

<body onmousemove="changeTitle(event)" style="margin:1em; border-width: 1px; border-
style: solid;">
 <h1 id="h1" style="background-color:aqua">Check Events</h1>
 <p id="p1" style="margin:2em; background-color:aqua">A small paragraph.</p>
 <p id="p2" style="margin:2em; background-color:aqua">Another small paragraph.</p>
 <button id="button_1">Button</button>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20

A mouse-move event is registered for the body. Whenever the mouse moves across the body, the event is
triggered. The event handler reads the x/y properties out of the JavaScript object and shows them in the title
of the browser's active tab.

Similar to addEventListener the function removeEventListener removes an event listener
from an element.

The system offers the above-shown rich set of event types. Additionally, you can create your own events
and trigger them from your application.

First, you create a function with one parameter, the event handler. Next, you register this event handler for
an element. So far, everything is the same as with predefined event types.

Now you can trigger this event in any part of your application. To do so, you create a new event of
precisely the chosen type and fire it with a call to dispatchEvent.

For test purposes, we bind this functionality to the button. The complete page now looks like this:

removeEventListener

Synthetic events

function register() {
 "use strict";

 // ...

 // choose an arbitrary event type (first parameter of 'addEventListener')
 // and register function on element
 document.getElementById("p1").addEventListener("syntheticEvent", f);
}
// the event handler for the non-system event
function f(evt) {
 alert("Invocation of the synthetic event on: " + evt.target.id +
 " The event type is: " + evt.type);
}

function triggerEvent(evt) {
 "use strict";
 // create a new event with the appropriate type
 const newEvent = new Event("syntheticEvent");
 // trigger this event on element 'p1'
 document.getElementById("p1").dispatchEvent(newEvent);
}

<!DOCTYPE html>
<html>
<head>
 <script>
 function register() {
 "use strict";
 document.getElementById("p1").addEventListener("click", showMessage);
 document.getElementById("p2").addEventListener("click", showMessage);
 document.getElementById("button_1").addEventListener("click", triggerEvent);

 // choose an arbitrary event type (first parameter of 'addEventListener')
 // and register function on element
 document.getElementById("p1").addEventListener("syntheticEvent", f);
 }

At the beginning, the button listens to click events, and 'p1' listens to events of type 'click' as well as of type
'syntheticEvent'. When the button is clicked, his event handler 'triggerEvent' creates a new event of type
'syntheticEvent' and fires it on 'p1' (what is the primary purpose of this example). The event handler
showMessage shows a message without 'p1' being clicked. In other words: The event on 'p1' occurs
without a click on 'p1'.

Possibly you need in the event handler some data from the calling function, e.g., the text of an error-
message, the data of an HTTP response, You can pass such data by using the CustonEvent and its
property 'detail':

Access the data in the event handle:

Most events are handled synchronously, e.g., 'click', 'key', or 'mouse'. But there are a few exceptions that
are handled asynchronously, e.g., 'load' [1] (https://w3c.github.io/uievents/#sync-async) [2] (https://w3c.git
hub.io/uievents/#event-types-list). 'Synchronous' means that the sequence of invocations is the same as the

 // the event handler for the non-system event
 function f(evt) {
 "use strict";
 alert("Invocation of the synthetic event on: " + evt.target.id +
 " The event type is: " + evt.type);
 }

 function showMessage(evt) {
 "use strict";
 // the parameter 'evt' contains many information about
 // the event, e.g., the position from where it originates
 alert("A click event to element: " + evt.target.id +
 " The event type is: " + evt.type);
 }

 function triggerEvent(evt) {
 "use strict";
 // create a new event with the appropriate type
 const newEvent = new Event("syntheticEvent");
 // trigger this event on element 'p1'
 document.getElementById("p1").dispatchEvent(newEvent);
 }

 </script>
</head>

<body onload="register()">
 <h1>Create an event programmatically.</h1>
 <p id="p1" style="margin:2em; background-color:aqua">A small paragraph.</p>
 <p id="p2" style="margin:2em; background-color:aqua">Another small paragraph.</p>
 <button id="button_1">Button</button>
</body>
</html>

const newEvent = new CustomEvent("syntheticEvent", {detail: "A short message."});

function f(evt) {
 "use strict";
 alert("Invocation of the synthetic event on: " + evt.target.id +
 " The event type is: " + evt.type + ". " + evt.detail);
}

(A)synchronous behaviour

https://w3c.github.io/uievents/#sync-async
https://w3c.github.io/uievents/#event-types-list

sequence of their creations. Clicking on Button A, B, and then C leads to the invocation of A's, B's, and
then C's event handler in exactly this sequence. In contrast, 'asynchronous' events can lead to the invocation
of the correlated handlers in an arbitrary sequence.

You must distinguish this question, the invocation of event handlers, from the implementation of their
bodies. Every implementation may act strictly sequential or may contain asynchronous calls - it depends on
your intention. Typical asynchronous calls are HTTP requests or database queries. Of course, they can be
part of the handler of a click event.

... are available on another page (click here).

MDN: Event handlers introduction (https://developer.mozilla.org/en-US/docs/Web/Guide/Eve
nts/Event_handlers)
MDN: Event reference and types (https://developer.mozilla.org/en-US/docs/Web/Events)
W3Schools: Events (https://www.w3schools.com/jsref/dom_obj_event.asp)
W3Schools: EventListener (https://www.w3schools.com/js/js_htmldom_eventlistener.asp)

Exercises

See also

https://en.wikibooks.org/wiki/JavaScript/Async#async_/_await
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version/Exercises&action=edit&redlink=1
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Event_handlers
https://developer.mozilla.org/en-US/docs/Web/Events
https://www.w3schools.com/jsref/dom_obj_event.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp

Exercises
You can solidify your JavaScript knowledge with some additional exercises and games. The pages don't
offer additional information; they use the already shown language aspects plus access to the DOM tree.

To keep everything manageable within a WikiBook, we put the source code always into one file. You may
divide it into different files on your computer, e.g., separate HTML-, CSS-, JS-, and image-files. For the
same reason, the examples don't use any games engine, framework, library, or server access. They are
standalone scripts that need nothing but a browser.

The examples are divided into two groups. The first group doesn't use a graphical context. They rely purely
on events and pure HTML elements like text, buttons, links, or colors. The second group additionally
contains a canvas. Within such a canvas, you can use graphical elements like circles, rectangles, lines,
...

Guess a number
Check your reaction time
TicTacToe

Introduction
Speed; Detect collisions
Moving Walls

Non-graphical examples

Examples with graphic

https://en.wikibooks.org/wiki/JavaScript/Exercises/GuessNumber
https://en.wikibooks.org/wiki/JavaScript/Exercises/ReactionTime
https://en.wikibooks.org/wiki/JavaScript/Exercises/TicTacToe
https://en.wikibooks.org/wiki/JavaScript/Exercises/IntroGraphic
https://en.wikibooks.org/wiki/JavaScript/Exercises/Collisions
https://en.wikibooks.org/wiki/JavaScript/Exercises/MovingWalls

Debugging

Firebug (http://www.getfirebug.com/) is a powerful extension for Firefox that has many
development and debugging tools including JavaScript debugger and profiler.

Venkman JavaScript Debugger (http://www.hacksrus.com/~ginda/venkman/) (for Mozilla
based browsers such as Netscape 7.x, Firefox/Phoenix/Firebird and Mozilla Suite 1.x)
Introduction to Venkman (http://web.archive.org/web/20040704044520/devedge.netscape.co
m/viewsource/2002/venkman/01/)
Using Breakpoints in Venkman (http://web.archive.org/web/20040603085323/devedge.netsc
ape.com/viewsource/2003/venkman/01/)

Microsoft Script Debugger (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sd
bug/Html/sdbug_1.asp) (for Internet Explorer) The script debugger is from the Windows 98
and NT era. It has been succeeded by the Developer Toolbar
Internet Explorer Developer Toolbar (http://www.microsoft.com/downloads/details.aspx?Fam
ilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en)
Microsofts Visual Web Developer Express (http://www.microsoft.com/express/vwd/) is
Microsofts free version of the Visual Studio IDE. It comes with a JS debugger. For a quick
summary of its capabilities see [3] (http://www.berniecode.com/blog/2007/03/08/how-to-debu
g-javascript-with-visual-web-developer-express/)
Internet Explorer 8 (http://www.microsoft.com/windows/Internet-explorer/) has a firebug-like
Web development tool by default (no add-on) which can be accessed by pressing F12. The
Web development tool also provides the ability to switch between the IE8 and IE7 rendering
engines.

Safari includes a powerful set of tools that make it easy to debug, tweak, and optimize a website for peak
performance and compatibility. To access them, turn on the Develop menu in Safari preferences. These
include Web Inspector, Error Console, disabling functions, and other developer features. The Web
Inspector gives you quick and easy access to the richest set of development tools ever included in a
browser. From viewing the structure of a page to debugging JavaScript to optimizing performance, the Web
Inspector presents its tools in a clean window designed to make developing web applications more
efficient. To activate it, choose Show Web Inspector from the Develop menu. The Scripts pane features the
powerful JavaScript Debugger in Safari. To use it, choose the Scripts pane in the Web Inspector and click

JavaScript Debuggers

Firebug

Venkman JavaScript Debugger

Internet Explorer debugging

Safari debugging

http://www.getfirebug.com/
http://www.hacksrus.com/~ginda/venkman/
http://web.archive.org/web/20040704044520/devedge.netscape.com/viewsource/2002/venkman/01/
http://web.archive.org/web/20040603085323/devedge.netscape.com/viewsource/2003/venkman/01/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdbug/Html/sdbug_1.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
http://www.microsoft.com/express/vwd/
http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-developer-express/
http://www.microsoft.com/windows/Internet-explorer/

Enable Debugging. The debugger cycles through your page’s JavaScript, stopping when it encounters
exceptions or erroneous syntax. The Scripts pane also lets you pause the JavaScript, set breakpoints, and
evaluate local variables.[1]

JTF (http://jtf.ploki.info) is a collaborative website that enables you to create test cases that
will be tested by all browsers. It's the best way to do TDD and to be sure that your code will
work well on all browsers.

jsUnit (http://www.jsunit.net/)

Some people prefer to send debugging messages to a "debugging console" rather than use the alert()
function[4] (http://osteele.com/archives/2006/03/inline-console)[5] (http://www.webreference.com/js/colum
n108/5.html)[6] (http://www.experts-exchange.com/Web/Web_Languages/JavaScript/Q_21380186.html).
Following is a brief list of popular browsers and how to access their respective consoles/debugging tools.

Firefox: Ctrl+Shift+K opens an error console.
Opera (9.5+): Tools >> Advanced >> Developer Tools opens Dragonfly.
Chrome: Ctrl+Shift+J opens chrome's "Developer Tools" window, focused on the
"console" tab.
Internet Explorer: F12 opens a firebug-like Web development tool that has various features
including the ability to switch between the IE8 and IE7 rendering engines.
Safari: Cmd+Alt+C opens the WebKit inspector for Safari.

Carefully read your code for typos.
Be sure that every "(" is closed by a ")" and every "{" is closed by a "}".
Trailing commas in Array and Object declarations will throw an error in Microsoft Internet
Explorer but not in Gecko-based browsers such as Firefox.

Remember that JavaScript is case sensitive. Look for case related errors.
Don't use Reserved Words as variable names, function names or loop labels.

JTF: JavaScript Unit Testing Farm

jsUnit

built-in debugging tools

Common Mistakes

 // Object
 var obj = {
 'foo' : 'bar',
 'color' : 'red', //trailing comma
 };

 // Array
 var arr = [
 'foo',
 'bar', //trailing comma
];

http://jtf.ploki.info/
http://www.jsunit.net/
http://osteele.com/archives/2006/03/inline-console
http://www.webreference.com/js/column108/5.html
http://www.experts-exchange.com/Web/Web_Languages/JavaScript/Q_21380186.html
https://en.wikipedia.org/wiki/Opera_Dragonfly
https://en.wikipedia.org/wiki/Microsoft_Internet_Explorer
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words

Escape quotes in strings with a "\" or the JavaScript interpreter will think a new string is
being started, i.e:

alert('He's eating food'); should be
alert('He\'s eating food'); or
alert("He's eating food");

When converting strings to numbers using the parseInt function, remember that "08" and
"09" (e.g. in datetimes) indicate an octal number, because of the prefix zero. Using parseInt
using a radix of 10 prevents wrong conversion. var n = parseInt('09',10);
Remember that JavaScript is platform independent, but is not browser independent.
Because there are no properly enforced standards, there are functions, properties and even
objects that may be available in one browser, but not available in another, e.g. Mozilla /
Gecko Arrays have an indexOf() function; Microsoft Internet Explorer does not.

Debugging in JavaScript doesn't differ very much from debugging in most other programming languages.
See the article at Computer Programming Principles/Maintaining/Debugging.

The most basic way to inspect variables while running is a simple alert() call. However some development
environments allow you to step through your code, inspecting variables as you go. These kind of
environments may allow you to change variables while the program is paused.

Sometimes the browser is buggy, not your script. This means you must find a workaround.

Browser bug reports (http://www.quirksmode.org/bugreports/)

Some advanced features of JavaScript don't work in some browsers.

Too often our first reaction is: Detect which browser the user is using, then do something the cool way if
the user's browser is one of the ones that support it. Otherwise skip it.

Instead of using a "browser detect", a much better approach is to write "object detection" JavaScript to
detect if the user's browser supports the particular object (method, array or property) we want to use.[7] (htt
p://www.quirksmode.org/js/support.html) [8] (http://pageresource.com/jscript/jobdet.htm)

To find out if a method, property, or other object exists, and run code if it does, we write code like this:

Debugging Methods

Following Variables as a Script is Running

Browser Bugs

browser-dependent code

var el = null;
if (document.getElementById) {
 // modern technique
 el = document.getElementById(id);
} else if (document.all) {
 // older Internet Explorer technique
 el = document.all[id];

https://en.wikipedia.org/wiki/Platform_(computing)
https://en.wikipedia.org/wiki/web_browser
https://en.wikipedia.org/wiki/Microsoft_Internet_Explorer
https://en.wikibooks.org/wiki/Computer_Programming_Principles/Maintaining/Debugging
http://www.quirksmode.org/bugreports/
https://en.wikibooks.org/wiki/Microsoft_Certified_Professional_Developer/Exam_70-528/Web-Based_Client_Development/Program_a_Web_application#Detect_browser_types_in_Web_Forms.
http://www.quirksmode.org/js/support.html
http://pageresource.com/jscript/jobdet.htm

"JavaScript Debugging" (http://www.mozilla.org/docs/web-developer/js/debugging/) by Ben
Bucksch

1. "Safari - The best way to see the sites." (in English) (HTML). Apple.
http://www.apple.com/safari/features.html#developer. Retrieved 2015-03-09.

} else if (document.layers) {
 // older Netscape Web browser technique
 el = document.layers[id];
}

Further reading

References

http://www.mozilla.org/docs/web-developer/js/debugging/
http://www.apple.com/safari/features.html#developer
http://www.apple.com/safari/features.html#developer

Optimization

High Level Optimization

Algorithmic Optimization (Mathematical Analysis)
Simplification

Low Level Optimization

Loop Unrolling
Strength Reduction
Duff's Device
Clean Loops

External Tools & Libraries for speeding/optimizing/compressing JavaScript code

Strings in JavaScript are immutable objects. This means that once you create a string object, to modify it,
another string object must theoretically be created.

Now, suppose you want to perform a ROT-13 on all the characters in a long string. Supposing you have a
rot13() function, the obvious way to do this might be:

Especially in older browsers like Internet Explorer 6, this will be very slow. This is because, at each
iteration, the entire string must be copied before the new letter is appended.

One way to make this script faster might be to create an array of characters, then join it:

JavaScript optimization

Optimization Techniques

Common Mistakes and Misconceptions

String concatenation

var s1 = "the original string";
var s2 = "";

for (i = 0; i < s1.length; i++) {
 s2 += rot13(s1.charAt(i));
}

var s1 = "the original string";
var a2 = new Array(s1.length);
var s2 = "";

for (i = 0; i < s1.length; i++) {
 a2[i] = rot13(s1.charAt(i));

https://en.wikipedia.org/wiki/ROT-13

Internet Explorer 6 will run this code faster. However, since the original code is so obvious and easy to
write, most modern browsers have improved the handling of such concatenations. On some browsers the
original code may be faster than this code.

A second way to improve the speed of this code is to break up the string being written to. For instance, if
this is normal text, a space might make a good separator:

This way the bulk of the new string is copied much less often, because individual characters are added to a
smaller temporary string.

A third way to really improve the speed in a for loop, is to move the [array].length statement outside the
condition statement. In face, every occurrence, the [array].length will be re-calculate For a two occurrences
loop, the result will not be visible, but (for example) in a five thousand occurrence loop, you'll see the
difference. It can be explained with a simple calculation :

"x = 0" is evaluated only one time, so it's only one operation.

"x < myArray.length" is evaluated 5000 times, so it is 10,000 operations (myArray.length is an
operation and compare myArray.length with x, is another operation).

"x++" is evaluated 5000 times, so it's 5000 operations.

There is a total of 15 001 operation.

"x = 0" is evaluated only one time, so it's only one operation.

"l = myArray.length" is evaluated only one time, so it's only one operation.

"x < l" is evaluated 5000 times, so it is 5000 operations (l with x, is one operation).

}
s2 = a2.join('');

var s1 = "the original string";
var c;
var st = "";
var s2 = "";

for (i = 0; i < s1.length; i++) {
 c = rot13(s1.charAt(i));
 st += c;
 if (c == " ") {
 s2 += st;
 st = "";
 }
}
s2 += st;

// we assume that myArray.length is 5000
for (x = 0;x < myArray.length;x++){
// doing some stuff
}

// we assume that myArray.length is 5000
for (x = 0, l = myArray.length; x < l; x++){
// doing some stuff
}

"x++" is evaluated 5000 times, so it's 5000 operations.

There is a total of 10002 operation.

So, in order to optimize your for loop, you need to make code like this :

var s1 = "the original string";
var c;
var st = "";
var s2 = "";

for (i = 0, l = s1.length; i < l; i++) {
 c = rot13(s1.charAt(i));
 st += c;
 if (c == " ") {
 s2 += st;
 st = "";
 }
}
s2 += st;

Shell
You can play around with JavaScript in one of multiple shells, in interactive batch mode. This means that
you can enter JavaScript one line at a time and have it immediately executed; and if you enter a statement
that returns a value without assigning the value anywhere, the value is displayed.

For a list of shells, see the mozilla.org list referenced from Enternal links.

Mozilla Firefox uses SpiderMonkey JavaScript engine, which is available as a standalone interactive shell
for multiple platforms. You can download it from:

https://archive.mozilla.org/pub/firefox/nightly/latest-mozilla-central/

Look for jsshell-*.zip

Unzip the file, and run "js" from the command line. A prompt appears:

js>

You can enter statements, one at a time:

js> function incr(i) { return i+1; }
js> incr(1)
2
js> function plus2(i) {
return i+2;
}
js> plus2(1)
3
js> incr
function incr(i) { return i+1; }
js> print ("1+1:"+incr(1))
1+1:2
js> console.log("Yep.") // Console is available
Yep.

Multi-line function definitions can be entered one line at a time, pressing enter after each line.

To run JavaScript snippets that use alert function--since they are intended for web browsers, you can define
your own alert function:

js> function alert(message) { print ("Alert: "+message); }

You can have an interactive mode, entering JavaScript one line at a time and have it immediately executed,
directly from your web browser.

Standalone

From browser

https://archive.mozilla.org/pub/firefox/nightly/latest-mozilla-central/

In many versions of Firefox, press Control + Shift + K to get a web console window. At the bottom of the
console window, there is a separate one-line field into which you can enter JavaScript lines and have them
run by pressing Enter. Even multi-line function definitions can be entered, but not by pressing Enter but
rather Shift + Enter and pressing Enter only after the whole definition was entered.

Introduction to the JavaScript shell (https://developer.mozilla.org/en-US/docs/Mozilla/Project
s/SpiderMonkey/Introduction_to_the_JavaScript_shell), developer.mozilla.org
JavaScript shells (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Shells),
developer.mozilla.org
JavaScript Engine Speeds (http://ejohn.org/blog/javascript-engine-speeds/), ejohn.org
JavaScript interactive shell with completion (http://stackoverflow.com/questions/41207/javas
cript-interactive-shell-with-completion), stackoverflow.com

External links

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Introduction_to_the_JavaScript_shell
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Shells
http://ejohn.org/blog/javascript-engine-speeds/
http://stackoverflow.com/questions/41207/javascript-interactive-shell-with-completion

Forms
Many users are familiar with filling out forms on a web page and then hitting the "submit" button. There
are at least two ways JavaScript can improve this process:

JavaScript can be used to check the data before it is sent to the server.

JavaScript can pre-validate the data, to catch common errors and suggest improvements
immediately while the user is filling out the form, before the user clicks the "submit"
button.
JavaScript can take text typed into a text area and pre-render it in a separate area of the
page, so people can see how it will be rendered and formatted before clicking the
"preview" button.[1][2][3]

JavaScript can give a live wordcount or character count of text typed into a text
area.[4][5][6][7]

Sometimes a web site does a "online" calculation involving only a small amount of data and
returns the result to the user. In this case, JavaScript can intercept the "submit" button, do the
entire calculation locally in the browser. The user gets the results more or less immediately,
rather than waiting for the data he typed in to be sent to the server, waiting for the server to
get around to processing that data, and waiting for the data to come back from the server.

Many people recommend keeping all the content accessible to people with disabilities and to people who
have JavaScript turned off. One way to do that is to start with standard HTML forms, and then add
unobtrusive JavaScript to improve the user experience to people who have JavaScript turned on. The
system should degrade gracefully, keeping all the content available (and validating user data, if necessary),
whether or not any or all of the JavaScript runs successfully.

JavaScript/Working With Files mentions one use of HTML forms
HyperText Markup Language/Forms explains how to write "plain" forms without JavaScript.

1. "How can I display the HTML content of a Text Area within a div as HTML content and not
text?" (http://stackoverflow.com/questions/1323812/how-can-you-render-html-as-it-is-typed-i
nto-a-textarea)

2. Andrey Fedoseev. "jQuery plugin to add realtime preview panel to text areas, similar to
StackOverflow edit interface" (http://andreyfedoseev.name/en/blog/post/34/jquery-textareapr
eview)

3. Guillaume DE LA RUE. "A Markdown live editor in JS" (http://www.js2node.com/markdown/a
-markdown-live-editor-in-js).

4. Sacha Schmid. JavaScript word count (http://radlikewhoa.github.io/Countable/)
5. Drew Schrauf. "JavaScript Wordcount That Works" (http://drewschrauf.com/blog/2012/06/13/

javascript-wordcount-that-works/).
6. "JavaScript word-count for any given DOM element" (http://stackoverflow.com/questions/765

419/javascript-word-count-for-any-given-dom-element)

Further reading

References

https://en.wikibooks.org/wiki/JavaScript/Working_With_Files
https://en.wikibooks.org/wiki/HyperText_Markup_Language/Forms
http://stackoverflow.com/questions/1323812/how-can-you-render-html-as-it-is-typed-into-a-textarea
http://andreyfedoseev.name/en/blog/post/34/jquery-textareapreview
http://www.js2node.com/markdown/a-markdown-live-editor-in-js
http://radlikewhoa.github.io/Countable/
http://drewschrauf.com/blog/2012/06/13/javascript-wordcount-that-works/
http://stackoverflow.com/questions/765419/javascript-word-count-for-any-given-dom-element

7. Jake Rocheleau. "Building a Live Text area Character Count Limit with CSS3 and jQuery" (h
ttp://spyrestudios.com/building-a-live-textarea-character-count-limit-with-css3-and-jquery/)

http://spyrestudios.com/building-a-live-textarea-character-count-limit-with-css3-and-jquery/

Bookmarklets
Bookmarklets are one line scripts stored in the URL field of a bookmark. Bookmarklets have been around
for a long time so they will work in older browsers.

You should be familiar with URL that start with schemes like http and ftp, e.g.
http://en.wikibooks.org/. There is also the JavaScript scheme, which is used to start every
bookmarklet.

The values in these examples can be adapted as desired. One may replace video with audio where
applicable, meaning where an <audio> tag is embedded.

Loop the video

Can be switched off using 0 or false.

Jump to ten minutes (using multiplication)

Jump forward by one minute (sixty seconds)

Jump back by half a minute (using division)

Get duration of a video on the page in console

Alert the duration

JavaScript URI scheme

JavaScript:alert('Hello, World!');

Example uses

Media controls

javascript:document.getElementsByTagName("video")[0].loop=1;
javascript:document.getElementsByTagName("video")[0].loop=true; // also works

javascript:document.getElementsByTagName("video")[0].currentTime=60*10;

javascript:document.getElementsByTagName("video")[0].currentTime+=60;

javascript:document.getElementsByTagName("video")[0].currentTime-=60/2;

javascript:document.getElementsByTagName("video")[0].duration

Alert the playback time

Set audio volume to 50%

Mute audio

Unmute using 0 or false.

Double the playback speed

Ask for playback speed

parseFloat is necessary to prevent setting the value to zero if the dialogue window is closed without
user input.

Ask for playback position in seconds

Ask for playback position in minutes

Ask for playback position in percentage (0 to 100)

javascript:alert('This video is '+document.getElementsByTagName("video")[0].duration+'
seconds long.')

javascript:alert('The current position of the video is at
'+document.getElementsByTagName("video")[0].currentTime+' seconds.')

javascript:document.getElementsByTagName("video")[0].volume=50/100

javascript:document.getElementsByTagName("video")[0].muted=1 // "true" works as well

javascript:document.getElementsByTagName("video")[0].playbackRate=2

javascript:document.getElementsByTagName("video")[0].playbackRate= parseFloat(prompt("How
fast should it play?"));

javascript:document.getElementsByTagName("video")[0].currentTime=parseFloat(prompt("Jump to
playback position in seconds:"));

javascript:document.getElementsByTagName("video")[0].currentTime=60*parseFloat(prompt("Jump
to playback position in minutes:"));

javascript:document.getElementsByTagName("video")
[0].currentTime=document.getElementsByTagName("video")[0].duration/100*parseFloat(
prompt("Jump to playback position in percents:"));

Using multiple lines of code

Since you cannot have line breaks in bookmarklets you must use a semicolon at the end of each code
statement instead.

The JavaScript protocol can be used in links. This may be considered bad practice, as it prevents
access for or confuses users who have disabled JavaScript. See Best Practices.

A large quantity of links may be found on bookmarklets.com (http://www.bookmarklets.com/), which show
a variety of features that can be performed within JavaScript.

JavaScript:name=prompt('What is your name?'); alert('Hello, ' + name);

The JavaScript Protocol in Links

blue background

Examples

https://en.wikibooks.org/wiki/JavaScript/Best_Practices
http://www.bookmarklets.com/

Working with files
With pure HTML4 and pure JavaScript, there's really only one thing you can do with the users files:

The server sends a Web page that includes a form something like this:[1]

and then, the browser allows the user to select one file, and the browser uploads it -- without any JavaScript
on the client being able to see any of that data or cancel the transmission or even show a progress bar.

If you want JavaScript to know anything about the file before it is transmitted (for example, to immediately
cancel the transmission of a large file rather than wait an hour for the file to be transmitted, then tell the user
"File too large"; or to show a progress bar), you'll have to use something other than pure JavaScript on pure
HTML4.

Some popular options are:[2][3][4][5]

use a modern Web browser that supports the HTML5 File API.
use Flash (perhaps a tiny flash utility like Gmail uses to draw a little progress bar)
use a Java applet
use an ActiveX control

1. RFC 1867, RFC 2388
2. Getting upload file size before upload (http://stackoverflow.com/questions/4190934/getting-u

pload-file-size-before-upload)
3. Is it possible to use Ajax to do file upload? (http://stackoverflow.com/questions/543926/is-it-p

ossible-to-use-ajax-to-do-file-upload)
4. File API: W3C Last Call Working Draft 12 September 2013 (http://www.w3.org/TR/FileAPI/)
5. Reading files in JavaScript using the File APIs (http://www.html5rocks.com/en/tutorials/file/d

ndfiles/)

<form action="/upload_handler" method="post">
 <input type="file" />
</form>

References

https://tools.ietf.org/html/rfc1867
https://tools.ietf.org/html/rfc2388
http://stackoverflow.com/questions/4190934/getting-upload-file-size-before-upload
http://stackoverflow.com/questions/543926/is-it-possible-to-use-ajax-to-do-file-upload
http://www.w3.org/TR/FileAPI/
http://www.html5rocks.com/en/tutorials/file/dndfiles/

Handling XML

This function first tries for Microsoft Internet Explorer, then for Firefox and others:

Now you can do any DOM operations on oNodes.

XML modifications can't be saved in JavaScript, as this is clientside…

Simple function to open an XML file

function loadXMLDoc(xmlfilename) {
 var event = new Error();
 // Internet Explorer
 try {
 var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 } catch(event) {
 // Firefox, Mozilla, Opera, others
 try {
 xmlDoc = document.implementation.createDocument("","",null);
 } catch(event) {
 throw(event.message);
 }
 }

 try {
 xmlDoc.async = false;

 xmlDoc.load(xmlfilename);
 return(xmlDoc);
 } catch(event) {
 throw(event.message);
 }
 return(null);
}

Usage

var objXML = loadXMLDoc("filename.xml");
var oNodes = objXML.getElementsByTagName("AnyTagYouWish");

Handling JSON

Handling JSON may require adding a supporting library, which creates the global JSON object. This object
is present natively only in new browsers (e.g. FF 3.5, IE8). Such a library can be found here (http://www.js
on.org/js.html):

In old browsers you could use the following syntax, but this raises issues of security, such as XSS.

Given browser restrictions on cross-domain Ajax (allowed only by configuration in some earlier browsers,
by non-standard means in IE8, and with server headers in HTML5), one way to circumvent such
restrictions (while still requiring some server-side script coordination) is for sites to insert an HTML script
tag dynamically into their code, whereby the cross-domain script they target (typically) supplies JSON, but
wrapped inside a function call (the function name being supplied according to the value of a "callback"
parameter supplied by the requestor) or some other executable code.

In PHP, one might serve such JSONP in as simple a fashion as this:

jQuery and other frameworks have their own means of generating JSONP requests, but we'll use the
following custom code.

Note: It is important to bear in mind that the following code should not be used, if the targeted site
or the data supplied by the target site, may come from a non-trustworthy source, since it is possible
for such scripts to run with the privileges of the using site (e.g., to read user cookies and pass them

Native JSON

Modern JSON Handling

//Parsing JSON:
var myObject = JSON.parse(myJSONtext)

//Creating JSON:
var myJSONText = JSON.stringify(myObject);

Old way

var myObject = eval("(" + myJSONtext + ")")

JSONP

<?php
if (isset($_GET['callback'])) {
 header('Content-Type: application/javascript');
 $our_site_data = ... // Set to an array or object containing data to be supplied for use at
other sites
 print $_GET['callback'] . '(' . json_encode($our_site_data) . ')';
}
?>

https://en.wikipedia.org/wiki/JSON
http://www.json.org/js.html
https://en.wikibooks.org/w/index.php?title=Cross-domain_Ajax&action=edit&redlink=1

on to another site) and thereby execute a Cross-site scripting attack.

Using native JSON in Firefox (https://developer.mozilla.org/En/Using_native_JSON)
Using native JSON in IE8 (http://blogs.msdn.com/ie/archive/2008/09/10/native-json-in-ie8.as
px)
Web Application Security Guide/XML, JSON and general API security

<script>
var JSONP = function(global) { // Introduces only one global
 // MIT Style license, adapted from http://devpro.it/code/209.html
 function JSONP(uri, callback) {
 function JSONPResponse() {
 // Reduce memory by deleting callbacks when finished
 try { delete JSONP[src] } catch(e) { JSONP[src] = null; }
 documentElement.removeChild(script);
 // Execute the user's callback with the arguments supplied by the server's JSONP call
 if (typeof callback === 'string') { // Assumes only one return argument and that it is
an HTML string
 document.getElementById(callback).innerHTML = arguments[0];
 } else {
 callback.apply(this, arguments);
 }
 }
 // Ensure a unique callback
 var src = '_' + id++,
 script = document.createElement("script");
 // Add our callback as a property of this JSONP
 // function to avoid introducing more globals
 JSONP[src] = JSONPResponse;
 // We include "callback", as it is typically used in
 // JSONP (e.g., on Wikibooks' API) to specify the callback
 documentElement.insertBefore(
 script,
 documentElement.lastChild
).src = uri + (uri.indexOf('?') === -1 ? '?' : '&') + "callback=JSONP." + src;
 }
 var id = 0, documentElement = document.documentElement;
 return JSONP;
}(this);

// Get the parsed HTML of this page you are reading now
// using the Mediawiki API (See http://en.wikibooks.org/w/api.php
// for Wikibooks, but it also applies at other Mediawiki wikis) that
// allows for such cross-domain calls
JSONP('http://en.wikibooks.org/w/api.php?
action=parse&format=json&page=JavaScript/Handling_JSON',
 function (data) {
 alert(data.parse.text['*']);
 }
);
</script>

More information

https://en.wikipedia.org/wiki/Cross-site_scripting
https://developer.mozilla.org/En/Using_native_JSON
http://blogs.msdn.com/ie/archive/2008/09/10/native-json-in-ie8.aspx
https://en.wikibooks.org/wiki/Web_Application_Security_Guide/XML,_JSON_and_general_API_security

CS Communication
In many cases, the communication between clients and servers is programmed in JavaScript. Those JS-
scripts use core and extended aspects of the language, especially its asynchronous features. To realize the
communication, there is no need to introduce any special or additional features to the language itself.

But there are some terms, libraries, and APIs that are special to that communication, namely: the term Ajax,
the XMLHttpRequest object, libraries like jQuery or Axios, and the Fetch API. Because of their importance,
there are separate Wikibooks and Wiki pages that describe their behavior and application. The Wikibook on
hand gives only a survey about their significance, short summaries, and links to appropriate pages for
further readings.

The dominating protocol for client/server communication is http(s) (https://developer.mozilla.org/en-US/doc
s/Web/HTTP). It offers commands to read data from a server (GET) and to change the server's data (POST,
PUT, PATCH, DELETE). Such commands are transferred within an object called XMLHttpRequest. It also
contains the content (data) for both directions: to the server and from the server. Nowadays, the data is
formatted chiefly in JSON - despite its name XMLHttpRequest, which stands for its originally used XML
format.

How to work with the XMLHttpRequest object is described in:

MDN: XMLHttpRequest (https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpReques
t)
Wikipedia: XMLHttpRequest
W3Schools: XMLHttpRequest (https://www.w3schools.com/xml/xml_http.asp)

The response (data) returned by XMLHttpRequest may contain HTML fragments or other information that
is used to create HTML fragments locally, e.g., data from a database that shall be shown in an HTML table.
Therefore it is - among other things - a cornerstone to realize single-page applications (SPA).

Directly working with XMLHttpRequest is not outdated but a legacy technique where you have to consider
many details. Libraries based on XMLHttpRequest and other APIs can make your work easier.

The asynchronous behavior of the HTTP protocol is so important that it found its way into one of the
central terms: "Asynchronous JavaScript and XML, or Ajax, is not a technology in itself, but rather an
approach to using a number of existing technologies together, including HTML or XHTML, CSS,
JavaScript, DOM, XML, XSLT, and most importantly the XMLHttpRequest object." [1].

You can find short examples at the following sites:

MDN: Ajax Introduction (https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_
Started)
Wikipedia: Ajax
Wikibook: Programming Ajax

XMLHttpRequest

Ajax

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://en.wikipedia.org/wiki/XMLHttpRequest
https://www.w3schools.com/xml/xml_http.asp
https://en.wikipedia.org/wiki/single-page_application
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started
https://en.wikipedia.org/wiki/Ajax_programming
https://en.wikibooks.org/wiki/Programming_Ajax

W3Schools: Ajax examples (https://www.w3schools.com/js/js_ajax_php.asp)

jQuery is a JavaScript library that simplifies commonly used activities like DOM traversal and
manipulation, event handling, and client/server communication. You can find more information and
examples at:

jQuery Website (https://jquery.com/)
Wikipedia: jQuery
W3Schools: jQuery (https://www.w3schools.com/jquery/)

Axios is a JavaScript library. It realizes a client for browsers and for the Webserver node.js. Axios supports
promises.

Axios Website (https://axios-http.com/)
Digital Ocean: Axios Tutorial (https://www.digitalocean.com/community/tutorials/js-axios-vani
lla-js)

The fetch API supports the same features as the legacy XMLHttpRequest object and its interface. It is an
entirely new implementation (with some minor differences from XMLHttpRequest) and is available in all
modern browsers; there is no need for any additional library or framework. It is a member of the Web API
family (https://developer.mozilla.org/en-US/docs/Web/API) (service worker, DOM API, cache API, ...).

Despite of its name fetch it does not only read data from a server. HTTP commands like PUT, POST, or
DELETE are also supported.

You can find more information at:

MDN: Fetch API (https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)
W3Schools: Fetch API (https://www.w3schools.com/js/js_api_fetch.asp)

A complete example is given in the Wikibook on hand. Here is the structure of the script:

The fetch command requests an example page. This page always returns an array of ten addresses in
json format. The first then picks the json-part out of the result, and the second then shows it in the
console. If an error occurs (network, typo in URL, ...), the catch-part executes and shows an error
message.

1. MDN: Ajax (https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX)

Libraries

Fetch API

fetch('https://jsonplaceholder.typicode.com/users') // an example page
 .then((response) => { return response.json() }) // pick the json part
 .then((users) => { console.log(users) }) // show result
 .catch((err) => console.log('Some error occurred: ' + err.message));

References

https://www.w3schools.com/js/js_ajax_php.asp
https://jquery.com/
https://en.wikipedia.org/wiki/jQuery
https://www.w3schools.com/jquery/
https://en.wikipedia.org/wiki/node.js
https://en.wikibooks.org/wiki/JavaScript/Async#Promise
https://axios-http.com/
https://www.digitalocean.com/community/tutorials/js-axios-vanilla-js
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.w3schools.com/js/js_api_fetch.asp
https://en.wikibooks.org/wiki/JavaScript/Async#A_realistic_example
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX

Glossary
We try to keep consistency within the Wikibook when using technical terms. Therefore here is a short
glossary.

object An object is an associative array with key-value pairs. The pairs are called properties. All data
types are derived from object - with the exception of primitive data types.

property A key-value pair that is part of an object. The key part is a string or a symbol, the value part is
a value of any type.

dot notation The syntax to identify a property of an object using a dot: myObject.propertyKey

bracket
notation The syntax to identify a property of an object using brackets: myObject["propertyKey"]

curly braces
notation The syntax to express an object 'literaly' using { }: const myObject = {age: 39}

function

A function is a block of code introduced by the keyword function, an optional name, open
parenthesis, optional parameters, and closing parenthesis.

The above function is a named function. If you omit the function name, we call
it a anonymous function. In this case, there is an alternative syntax by using
the arrow syntax =>.

method A method is a function stored as a key-value pair of an object. The key represents the method
name, and the value the method body. A method can be defined and accessed with the
following syntax:

function greeting(person) {
 return "Hello " + person;
};

function (person) { // no function name
 return "Hello " + person;
};

// 'arrow' syntax. Here is only the definition of the function.
// It is not called, hence not running.
(person) => {
 return "Hello " + person;
};
// or:
(person) => {return "Hello " + person};

// assign the definition to a variable to be able to call it.
let x = (person) => {return "Hello " + person};
// ... and execute the anonymous function by calling the variable
// that points to it: x(...)
alert(x("Mike"));

// interesting:
alert(x);

// execute an anonymous function directly
((person) => {
 alert("Hello " + person);
})("Mike");

let person = {
 firstName: "Tarek",
 city : "Kairo",
 show : function() {
 return this.firstName +
 " lives in " +
 this.city;
 },

callback
function A function that is passed as an argument to another function.

console
Every browser contains a window where internal information is shown. It's called the console
and normally not opened. In most browsers, you can open the console via the function key
F12.

item A single value in an array. Same as 'element'.

element A single value in an array. Same as 'item'.

parameter When defining a function, variables can be declared in its signature, e.g.,: function
f(param1, param2). Those variables are called parameters.

argument
When calling a function, variables can be stated to be processed in the function, e.g.,:
f(arg1, arg2). Those variables are called arguments. The arguments replace the
parameters which were used during the function definition.

};
alert(person.show());

Index

Adding Elements
Arrays
Associative Arrays

Best Practices
Bookmarklets

Changing Elements
Code Structuring

DHTML
DOM
Debugging

Event Handling

Finding Elements
First Program
Functions and Objects
Further Reading

Hello World

Introduction
Introduction to the Document Object Model

A

B

C

D

E

F

H

I

https://en.wikibooks.org/wiki/JavaScript/Adding_elements
https://en.wikibooks.org/wiki/JavaScript/Arrays
https://en.wikibooks.org/wiki/JavaScript/Functions_and_objects
https://en.wikibooks.org/wiki/JavaScript/Best_practices
https://en.wikibooks.org/wiki/JavaScript/Bookmarklets
https://en.wikibooks.org/wiki/JavaScript/Changing_elements
https://en.wikibooks.org/wiki/JavaScript/Code_structuring
https://en.wikibooks.org/wiki/JavaScript/DHTML
https://en.wikibooks.org/wiki/JavaScript/Introduction_to_the_Document_Object_Model_(DOM)
https://en.wikibooks.org/wiki/JavaScript/Debugging
https://en.wikibooks.org/wiki/JavaScript/Event_Handling
https://en.wikibooks.org/wiki/JavaScript/Finding_elements
https://en.wikibooks.org/wiki/JavaScript/First_program
https://en.wikibooks.org/wiki/JavaScript/Functions_and_objects
https://en.wikibooks.org/wiki/JavaScript/Further_reading
https://en.wikibooks.org/wiki/JavaScript/First_program
https://en.wikibooks.org/wiki/JavaScript/Introduction
https://en.wikibooks.org/wiki/JavaScript/Introduction_to_the_Document_Object_Model_(DOM)

Iteration

Lexical Structure
Links

Message

Numbers

Operators
Optimization

Regular Expressions
Removing Elements
Reserved Words

Strings
Substring
The SCRIPT Tag

Time
Types

Useful Software Tools

Variables

L

M

N

O

R

S

T

U

V

https://en.wikibooks.org/wiki/JavaScript/Control_structures
https://en.wikibooks.org/wiki/JavaScript/Lexical_structure
https://en.wikibooks.org/wiki/JavaScript/Links
https://en.wikibooks.org/wiki/JavaScript/DHTML
https://en.wikibooks.org/wiki/JavaScript/Numbers
https://en.wikibooks.org/wiki/JavaScript/Operators
https://en.wikibooks.org/wiki/JavaScript/Optimization
https://en.wikibooks.org/wiki/JavaScript/Regular_expressions
https://en.wikibooks.org/wiki/JavaScript/Removing_elements
https://en.wikibooks.org/wiki/JavaScript/Reserved_words
https://en.wikibooks.org/wiki/JavaScript/Strings
https://en.wikibooks.org/wiki/JavaScript/Strings#substring()
https://en.wikibooks.org/wiki/JavaScript/The_SCRIPT_tag
https://en.wikibooks.org/wiki/JavaScript/Dates
https://en.wikibooks.org/wiki/JavaScript/Variables_and_types
https://en.wikibooks.org/wiki/JavaScript/Useful_software_tools
https://en.wikibooks.org/wiki/JavaScript/Variables_and_types

Links
Featured weblinks:

JavaScript portal (http://developer.mozilla.org/en-US/docs/JavaScript) at
developer.mozilla.org
JavaScript Reference (http://developer.mozilla.org/en-US/docs/JavaScript/Reference) at
developer.mozilla.org
JavaScript Guide (http://developer.mozilla.org/en-US/docs/JavaScript/Guide) at
developer.mozilla.org
Gecko DOM Reference (http://mozilla.org/docs/dom/domref/dom_shortTOC.html) at
developer.mozilla.org

JavaScript Reference (http://msdn.microsoft.com/en-us/library/ie/yek4tbz0%28v=vs.94%29.a
spx) at msdn.microsoft.com

Wikipedia:JavaScript
Wikipedia:ECMAScript
Wikipedia:JavaScript engine

Wikiversity: Topic:JavaScript
Wikiversity: Advanced JavaScript

JavaScript Tutorial (http://www.w3schools.com/js/) at w3schools.com
JavaScript Reference (http://www.w3schools.com/jsref/default.asp) at w3schools.com
About: Focus on JavaScript (http://javascript.about.com/) from Stephen Chapman at
javascript.about.com

ecmascript.org (http://www.ecmascript.org/)
ecma-international.org (http://www.ecma-international.org/)
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Discussion forums, bulletin boards:

HTML, CSS and JavaScript (http://www.coderanch.com/forums/f-20/HTML-CSS-JavaScript)
at coderanch.com
JavaScript Workshop forums (http://jsworkshop.com/bb/) at jsworkshop.com
Forum: Client-side technologies (http://www.webxpertz.net/forums/forumdisplay.php/119-Cli
ent-side-technologies) at webxpertz.net

More Web sites:

JavaScript tutorials (http://webreference.com/programming/javascript/) at webreference.com
Videos (https://www.youtube.com/results?hl=en&q=crockford%20javascript) from w:Douglas
Crockford on JavaScript (http://javascript.crockford.com/)

http://developer.mozilla.org/en-US/docs/JavaScript
http://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://developer.mozilla.org/en-US/docs/JavaScript/Guide
http://mozilla.org/docs/dom/domref/dom_shortTOC.html
http://msdn.microsoft.com/en-us/library/ie/yek4tbz0%28v=vs.94%29.aspx
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/JavaScript_engine
https://en.wikiversity.org/wiki/Topic:JavaScript
https://en.wikiversity.org/wiki/Advanced_JavaScript
http://www.w3schools.com/js/
http://www.w3schools.com/jsref/default.asp
http://javascript.about.com/
http://www.ecmascript.org/
http://www.ecma-international.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.coderanch.com/forums/f-20/HTML-CSS-JavaScript
http://jsworkshop.com/bb/
http://www.webxpertz.net/forums/forumdisplay.php/119-Client-side-technologies
http://webreference.com/programming/javascript/
https://www.youtube.com/results?hl=en&q=crockford%20javascript
https://en.wikipedia.org/wiki/Douglas_Crockford
http://javascript.crockford.com/

JavaScript (http://www.epanorama.net/links/pc_programming.html#javascript) at
epanorama.net
JavaScript Tutorials (http://www.pickatutorial.com/tutorials/javascript_1.htm) at
pickatutorial.com
JavaScript Essentials (http://www.techotopia.com/index.php/JavaScript_Essentials) at
techotopia.com - An online JavaScript book designed to provide Web developers with
everything they need to know to create rich, interactive and dynamic Web pages using
JavaScript.
JavaScript Tutorials (http://www.yourhtmlsource.com/javascript/) at yourhtmlsource.com
www.quirksmode.org (http://www.quirksmode.org) - over 150 useful pages for CSS and
Javascript tips & cross-browser compatibility matrices.
Wiki: I wanna Learn JavaScript (http://c2.com/cgi/wiki?IwannaLearnJavaScript) at c2.com - A
list of links to Web resources on JavaScript
Unobtrusive JavaScript (http://www.onlinetools.org/articles/unobtrusivejavascript/chapter1.ht
ml) at onlinetools.org - a guide on how to write JavaScript so that your site degrades
gracefully (i.e., if the browser does not support or has turned off JavaScript, your site is still
usable).

http://www.epanorama.net/links/pc_programming.html#javascript
http://www.pickatutorial.com/tutorials/javascript_1.htm
http://www.techotopia.com/index.php/JavaScript_Essentials
http://www.yourhtmlsource.com/javascript/
http://www.quirksmode.org/
http://c2.com/cgi/wiki?IwannaLearnJavaScript
http://www.onlinetools.org/articles/unobtrusivejavascript/chapter1.html

Useful software tools
A list of useful tools for JS programmers.

Adobe Brackets: Another browser-based editor by Adobe
Eclipse: The Eclipse IDE includes an editor and debugger for JS
Notepad++ (https://notepad-plus-plus.org/): A great tool for editing any kind of code. It
includes syntax highlighting for many programming languages.
Programmers' Notepad (https://www.pnotepad.org/): A general tool for programming many
languages.
Scripted (https://github.com/scripted-editor/scripted): An open-source browser-based editor
by Spring Source
Sublime Text: One of the most used editors for HTML/CSS/JS editing
Web Storm or IntelliJ IDEA: both IDEs include an editor and debugger for JS, IDEA also
includes a Java development platform

JSLint: static code analysis for JS
jq (http://stedolan.github.io/jq/) - " 'jq' is like sed for JSON data "
List of ECMAScript engines

Editors / IDEs

Engines and other tools

https://en.wikipedia.org/wiki/Adobe_Brackets
https://en.wikipedia.org/wiki/Eclipse_(software)
https://notepad-plus-plus.org/
https://www.pnotepad.org/
https://github.com/scripted-editor/scripted
https://en.wikipedia.org/wiki/SublimeText
https://en.wikipedia.org/wiki/WebStorm
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Jslint
http://stedolan.github.io/jq/
https://en.wikipedia.org/wiki/List_of_ECMAScript_engines

Best practices
This chapter will describe current JavaScript community standards and best practices that every
programmer should know.

This is deprecated. Use innerHTML or DOM manipulation methods instead.

In XHTML, document.write does not work, but you can achieve the same effects with DOM
manipulation methods[9] (http://w3.org/MarkUp/2004/xhtml-faq#docwrite).

Try to avoid links that exist solely for executing JavaScript code.

Instead consider:

Users with JavaScript enabled will be provided with the JavaScript-embellished version of content (perhaps
using DHTML), whereas those without will be redirected to a XHTML page that provides it statically. This
is more accessible than having an <a> element lacking a normal href attribute value. First, it uses proper
language semantics. Second, it provides access to your content for users without JavaScript. Third, it
detects whether the function execution succeeded and redirects JS-enabled readers too in case of a failure.

The onclick expression evaluates to a Boolean value. If the function succeeds to perform the desired effect
and returns true, the onclick will return a failure and hyperlink not execute. When the function fails for
whatever reason, the false, null or undefined value will evaluate to true and not prevent the link from being
executed. Alternatively, if you do not wish to provide a static equivalent, you may embed the onclick
attribute within an element with less demanding semantics:

Thus no user agent will be confused upon reading a reduced <a> element.

Many people use JavaScript functions to immediately catch the most common sorts of errors in form entry.
For example, some web forms ask people to enter the same thing twice. Other web forms ask people to
enter an email address. Then they do a quick check to see if what was entered looks at least vaguely like an
email address:

document.write

JavaScript protocol

See my résumé!

See my résumé!

<strong onclick="resumeFancyVersion()">See my résumé!

Email validation

http://w3.org/MarkUp/2004/xhtml-faq#docwrite
https://en.wikipedia.org/wiki/XHTML

Unfortunately, some other "email validation" JavaScript functions reject perfectly valid email addresses. For
example, some incorrectly reject (http://www.javascriptsource.com/forms/email-validation---basic.html)
valid addresses that include "+" signs.

The original email address syntax (RFC 821) did allow "+" signs. RFC 822, published in the same month
(August 1982), also allowed them. The current version of the syntax is given in RFC2821 (http://www.faq
s.org/rfcs/rfc2821.html)/RFC2822 (http://www.faqs.org/rfcs/rfc2822.html). Section 3 of RFC3696 (http://w
ww.faqs.org/rfcs/rfc3696.html) gives useful examples of unusual valid email addresses.

After validation, many JavaScript programmers encode the email address using
encodeURIComponent() to work-around certain client-side languages that can't seem to handle plus
signs properly.[1][2]

The complexity of the quoting rules used for email addresses makes it impractical to test the local-part of an
address or a domain literal completely. Given that there isn't necessarily a real mailbox corresponding to a
valid local-part how much extra download time is worth spending on a complex validation script?

me@example.com

a.nonymous@example.com

name+tag@example.com

a.name+tag@example.com

me.example@com

"spaces must be quoted"@example.com

!#$%&'*+-/=.?^_`{|}~@[1.0.0.127]

!#$%&'*+-/=.?
^_`{|}~@[IPv6:0123:4567:89AB:CDEF:0123:4567:89AB:CDEF]

function isValidEmail(string) {
 // These comments use the following terms from RFC2822:
 // local-part, domain, domain-literal and dot-atom.
 // Does the address contain a local-part followed an @ followed by a domain?
 // Note the use of lastIndexOf to find the last @ in the address
 // since a valid email address may have a quoted @ in the local-part.
 // Does the domain name have at least two parts, i.e. at least one dot,
 // after the @? If not, is it a domain-literal?
 // This will accept some invalid email addresses
 // BUT it doesn't reject valid ones.
 var atSym = string.lastIndexOf("@");
 if (atSym < 1) { return false; } // no local-part
 if (atSym == string.length - 1) { return false; } // no domain
 if (atSym > 64) { return false; } // there may only be 64 octets in the local-part
 if (string.length - atSym > 255) { return false; } // there may only be 255 octets in the
domain

 // Is the domain plausible?
 var lastDot = string.lastIndexOf(".");
 // Check if it is a dot-atom such as example.com
 if (lastDot > atSym + 1 && lastDot < string.length - 1) { return true; }
 // Check if could be a domain-literal.
 if (string.charAt(atSym + 1) == '[' && string.charAt(string.length - 1) == ']') { return
true; }
 return false;
}

Examples valid according to RFC2822

http://www.javascriptsource.com/forms/email-validation---basic.html
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc822
http://www.faqs.org/rfcs/rfc2821.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc3696.html

me(this is a comment)@example.com – comments are discouraged but not
prohibited by RFC2822.

me@

@example.com

me.@example.com

.me@example.com

me@example..com

me\@example.com

spaces\ must\ be\ within\ quotes\ even\ when\ escaped@example.com

a\@mustbeinquotes@example.com

COMMENT: This code has been incorrectly designed to reject certain emails that are actually valid. If
changes to valid and invalid emails are accepted, the following code should also be reviewed.

The following test page can be used to test an email validation function. Save the three files in the same
directory and then open validEmail.htm in a web browser.

validEmail.js

Examples invalid according to RFC2822s

Test page

function isValidEmail(string) {
 // These comments use the following terms from RFC2822:
 // local-part, domain, domain-literal and dot-atom.
 // Does the address contain a local-part followed an @ followed by a domain?
 // Note the use of lastIndexOf to find the last @ in the address
 // since a valid email address may have a quoted @ in the local-part.
 // Does the domain name have at least two parts, i.e. at least one dot,
 // after the @? If not, is it a domain-literal?
 // This will accept some invalid email addresses
 // BUT it doesn't reject valid ones.
 var atSym = string.lastIndexOf("@");
 if (atSym < 1) { return false; } // no local-part
 if (atSym == string.length - 1) { return false; } // no domain
 if (atSym > 64) { return false; } // there may only be 64 octets in the local-part
 if (string.length - atSym > 255) { return false; } // there may only be 255 octets in the
domain

 // Is the domain plausible?
 var lastDot = string.lastIndexOf(".");
 // Check if it is a dot-atom such as example.com
 if (lastDot > atSym + 1 && lastDot < string.length - 1) { return true; }
 // Check if could be a domain-literal.
 if (string.charAt(atSym + 1) == '[' && string.charAt(string.length - 1) == ']') { return
true; }
 return false;
}

function testIsValidEmail(string) {
 alert("'" + string + "' is " + (isValidEmail(string) ? "" : "NOT ") + " a valid email
address.");
}

function checkSamples() {
 var validAddress = [
 'me@example.com',
 'a.nonymous@example.com',

 'name+tag@example.com',
 'name\\@tag@example.com',
 'spaces\\ are\\ allowed@example.com',
 '"spaces may be quoted"@example.com',
 '!#$%&\'*+-/=.?^_`{|}~@[1.0.0.127]',
 '!#$%&\'*+-/=.?^_`{|}~@[IPv6:0123:4567:89AB:CDEF:0123:4567:89AB:CDEF]',
 'me(this is a comment)@example.com'
];
 var invalidAddress = [
 'me@',
 '@example.com',
 'me.@example.com',
 '.me@example.com',
 'me@example..com',
 'me.example@com',
 'me\\@example.com'
];

 var results = new StringBuffer();

 var handlesValidAddressesCorrectly = true;
 results.append('<table border="1">');
 results.append('<caption>Does the function accept all the valid sample addresses?
</caption>');
 results.append('<tr><th>Valid address</th><th>Function returns</th></tr>');
 for (var i = 0; i < validAddress.length; i++) {
 results.append('<tr><td>');
 results.append(validAddress[i]);
 results.append('</td><td>');
 if (isValidEmail(validAddress[i])) {
 results.append('true');
 } else {
 handlesValidAddressesCorrectly = false;
 results.append('<strong class="fail">false');
 }
 results.append('</td></tr>');
 }
 results.append('</table>');

 var handlesInvalidAddressesCorrectly = true;
 results.append('<table border="1">');
 results.append('<caption>Does the function reject all the invalid sample addresses?
</caption>');
 results.append('<tr><th>Valid address</th><th>Function returns</th></tr>');
 for (var i = 0; i < invalidAddress.length; i++) {
 results.append('<tr><td>');
 results.append(invalidAddress[i]);
 results.append('</td><td>');
 if (!isValidEmail(invalidAddress[i])) {
 results.append('false');
 } else {
 handlesInvalidAddressesCorrectly = false;
 results.append('<em class="warning">true');
 }
 results.append('</td></tr>');
 }
 results.append('</table>');

 var conclusion;
 if (handlesValidAddressesCorrectly) {
 if (handlesInvalidAddressesCorrectly) {
 conclusion = '<p><strong class="good">The function works correctly with all the sample
addresses.</p>';
 } else {
 conclusion = '<p><em class="warning">The function incorrectly accepts some invalid
addresses.</p>';
 }
 } else {
 conclusion = '<p><strong class="fail">The function incorrectly rejects some valid
addresses.</p>';
 }

 document.getElementById('testResults').innerHTML = conclusion + results.toString();
}

validEmail.css

validEmail.htm

function StringBuffer() {
 this.buffer = "";
}

StringBuffer.prototype.append = function(string) {
 this.buffer += string;
 return this;
};

StringBuffer.prototype.toString = function() {
 return this.buffer;
};

body {
 background-color: #fff;
 color: #000
}

table {
 margin-bottom: 2em
}

caption {
 margin-top: 2em
}

.good {
 background-color: #0f0;
 color: #000
}

.warning {
 background-color: #fc9;
 color: #000
}

.fail {
 background-color: #f00;
 color: #fff
}

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Valid email test</title>
 <link rel="stylesheet" href="validEmail.css">
 <script src="validEmail.js"></script>
 </head>
 <body onload="checkSamples()">
 <h1>Unit test for email address validation functions</h1>
 <h2>Interactive test</h2>
 <form action="#">
 <fieldset>
 <legend>Email address</legend>
 <label for="emailAddress">Email</label>
 <input type="text" size="40" value="" name="email" id="emailAddress">
 <input type="button" name="validate" value="Check address"
 onclick="testIsValidEmail(this.form.email.value)">
 </fieldset>
 </form>
 <h2>Selected samples</h2>
 <p>This section shows the results of testing the function with sample strings.
 The sample includes both valid strings and invalid strings
 according to RFC2822.
 </p>
 <div id="testResults">You need to enable JavaScript for this unit test to work.</div>

Many JavaScript programmers recommend enabling ECMAScript 5's strict mode by putting the exact
statement "use strict"; before any other statements:[3][4][5]

JavaScript best practices:

Coding Cookbook/Validate Email Address
"Six JavaScript features we do not need any longer" by Christian Heilmann (http://wait-till-i.c
om/index.php?p=104).
source code for Apple's recommended JavaScript validation functions: checkEmail(), etc. (htt
p://developer.apple.com/internet/webcontent/validation.html)
JavaScript form validation - doing it right (http://www.xs4all.nl/~sbpoley/webmatters/formval.
html)
"FORM submission and the ENTER key?" (http://ppewww.physics.gla.ac.uk/~flavell/www/for
mquestion.html) discusses forms that submit when you press Enter; forms that don't submit
when you press Enter; and how to make a form work the other way.
"JavaScript Best Practices" by Matt Kruse (http://www.mattkruse.com/javascript/bestpractice
s/)
"Comparing E-mail Address Validating Regular Expressions" (http://fightingforalostcause.ne
t/misc/2006/compare-email-regex.php) has a list of valid and invalid email addresses and a
variety of regular expressions and how well each one works on that list.

Computer programming/Standards and Best Practices

1. Jan Wolter. "JavaScript Madness: Query String Parsing" (http://unixpapa.com/js/querystring.
html) 2011.

2. PHP bug #39078: Plus sign in URL arg received as space (https://bugs.php.net/bug.php?id=
39078).

3. Nicholas C. Zakas. "It’s time to start using JavaScript strict mode" (http://www.nczonline.net/
blog/2012/03/13/its-time-to-start-using-javascript-strict-mode/). 2012.

4. "What does “use strict” do in JavaScript, and what is the reasoning behind it?" (http://stackov
erflow.com/questions/1335851/what-does-use-strict-do-in-javascript-and-what-is-the-reasoni
ng-behind-it)

5. Mozilla Developer Network: "Strict mode" (https://developer.mozilla.org/en-US/docs/Web/Ja
vaScript/Reference/Functions_and_function_scope/Strict_mode).

 </body>
</html>

use strict

 "use strict";
 function …

For further reading

Best practices in other languages

References

https://en.wikibooks.org/wiki/Coding_Cookbook/Validate_Email_Address
http://wait-till-i.com/index.php?p=104
http://developer.apple.com/internet/webcontent/validation.html
http://www.xs4all.nl/~sbpoley/webmatters/formval.html
http://ppewww.physics.gla.ac.uk/~flavell/www/formquestion.html
http://www.mattkruse.com/javascript/bestpractices/
http://fightingforalostcause.net/misc/2006/compare-email-regex.php
https://en.wikibooks.org/wiki/Computer_programming/Standards_and_Best_Practices
http://unixpapa.com/js/querystring.html
https://bugs.php.net/bug.php?id=39078
http://www.nczonline.net/blog/2012/03/13/its-time-to-start-using-javascript-strict-mode/
http://stackoverflow.com/questions/1335851/what-does-use-strict-do-in-javascript-and-what-is-the-reasoning-behind-it
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode

Retrieved from "https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version&oldid=4217528"

This page was last edited on 8 December 2022, at 16:06.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy.

https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version&oldid=4217528
https://creativecommons.org/licenses/by-sa/3.0/
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy

