
NIST

PUBLICATIONS

NAT'L INST. OF STAND & TECH

A 1 1 1 0 1. 7 1 E 7 ^

N I STIR 6777

REFERENCE

Model Checkers in Software Testing

Paul E. Black*

Paul Ammann"
Wei Ding

6

a

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Software Diagnostics & Conformance Testing Division

National Institute of Standards

and Technology

Gaithersburg, MD 20899

b
George Mason University

fsjtsr
QC

N«ct£®taea!l Institute ©# Sfsrad^rdls

100 sand Y@Am@S©g^f

.U56
Technology Administration

U.S. Department of Commerce

#6777

2002

NISTIR 6777

Model Checkers in Software Testing

Paul E. Black*

Paul Ammannb

Wei Ding*

US. DEPARTMENT OF COMMERCE
Technology Administration

Software Diagnostics & Conformance Testing Division

National Institute of Standards

and Technology

Gaithersburg, MD 20899

"George Mason University

February 1, 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arden L. Bement, Jr., Director

Model Checkers in Software Testing

Paul Ammann
George Mason University

Paul E. Black

NIST

Wei Ding

George Mason University

February 1, 2002

Abstract

The primary focus of formal methods is static analysis of specifications

and code, but there is also a long tradition of exploiting formal methods for

testing. This paper continues this tradition by exploring the role of model

checkers in software testing. Model checkers were originally developed

to check that state machines conformed to specifications expressed in a

temporal logic. We show how to apply the powerful computation engines

in model checkers to the problems of test generation and test evaluation

for a variety of test coverage criteria defined on model-based specifications.

1 Introduction

The use of formal methods has been widely advocated to reduce the likelihood of

errors in the early stages of system development. Some of the chief drawbacks to

applying formal methods is the difficulty of conducting formal analysis [10] and

the perceived or actual payoff in project budget. Testing is an expensive part of

the software budget, and formal methods offer an opportunity to significantly

reduce the testing costs.

A broad span of research from early work on algebraic specifications [24] to

more recent work such as [44] addresses the problem of relating tests to formal

specifications. Counterexamples from model checkers have been recognized as

potentially useful test cases. Callahan, Schneider, and Easterbrook used a model

checker to generate tests that cover each block in a certain partitioning of the

input domain [14]. Engels et al used a model checker to generate network

tests [23]. Ammann et al defined a mutation analysis approach to generating

and recognizing tests with a model checker [5, 4]. Gargantini and Heitmeyer

used model checkers [25] to generate tests for systems with SCR (Software Cost

Reduction) [28] requirement specifications.

1

Current Mode Event New Mode
TooLow @T(WaterPres > Low

)

Permitted
Permitted @T(WaterPres > Permit) High
Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit

)

Permitted
Initial State : Mode = TooLow, W aterPres < Low

Mode Transition Table for Pressure.

Mode Events

High False @T(Inmode)
TooLow, @T(Block = On) @T(Inmode) OR
Permitted WHEN Reset = Off @T(Reset = On)

Overridden True False

Event Table for Overridden.

Mode Conditions

High, Permitted True False
TooLow Overridden NOT Overridden

Safety Injection Off On
Condition Table for Safety Injection.

Table 1: Safety Injection Tables

1.1 Running Example

To illustrate our work, we use the Safety Injection problem as a running example.

Table 1 gives the SCR tables from [8] for this problem. It comes from part of a

nuclear reactor safety system. Broadly, if the water pressure is too low, reserve

water is injected, unless overridden. The system is overridden depending on

the pressure, whether the override is blocked, and whether it is reset. The
notation @T(expr) signifies expr becoming true. [8] describes SCR and the

Safety Injection model in detail. The Appendix also has a description of Safety

Injection in the formalism of the Symbolic Model Verifier (SMV) model checker

[35, 13]. In Section 4.2.1, we give the results of applying the mutation model

described in this paper to the example.

1.2 What is a Model Checker?

A model checking specification consists of two parts. One part is the model:

a state machine defined in terms of variables, initial values for the variables,

and a description of the conditions under which variables may change value.

The state space is defined by the possible combinations of valuations for the

variables. The other part is temporal logic constraints over states and execution

paths. Conceptually, a model checker visits all reachable states and verifies that

the temporal logic properties are satisfied over each possible path, that is, the

model checker determines if the state machine is a model for the temporal logic

formula. Model checkers exploit clever ways of avoiding brute force exploration

of the state space, for example, see [13, 20]. If a property is not satisfied, the

model checker attempts to generate a counterexample in the form of a trace or

sequence of states. For some temporal logic properties, no counterexample is

2

possible. For example, if the property states that at least one possible execution

path leads to a certain state and in fact no execution path leads to that state,

there is no counterexample to exhibit.

The model checking approach to formal methods has received considerable

attention in the literature, and readily available tools such as SMV [35, 13] for

the Computation Tree Logic (CTL) and Spin [30] for the Linear Time Logic

(LTL) are capable of handling the state spaces associated with realistic prob-

lems [19]. Although model checking began as a method for verifying hardware

designs, there is growing evidence that model checking can be applied with

considerable automation to specifications for relatively large software systems,

such as the Traffic Alert and Collision Avoidance System II (TCAS II) [15].

The increasing usefulness of model checkers for software systems makes them

attractive targets for use in aspects of software development other than pure

analysis, which is their primary role today.

Model checking has been successfully applied to a wide variety of practical

problems, including hardware design, protocol analysis, operating systems, reac-

tive system analysis, fault tolerance, and security. The chief advantage of model

checking over the alternate approach of theorem proving is complete automa-

tion. Human interaction is generally required to prove all but the most trivial

theorems. Readily available model checkers such as SMV and Spin can explore

the state spaces for finite, but realistic, problems without human guidance [19].

We use the SMV model checker. It is freely available from Carnegie Mellon

University and elsewhere. The model checking algorithm in SMV has the ad-

vantage of being breadth first; hence the counterexamples that we interpret as

test cases tend to be short.

1.3 What is a Test Case?

For our purposes, state machine £ is a tuple (5, <5, So) where S is a set of states, S

is a transition relation, and So C S is a nonempty set of initial states. Typically,

£ is specified with some succinct description of a state machine, SM

,

to avoid

enumerating the potentially large state space. As a very small example, consider

the simple state machine in Figure 1(a). Below, in Figure 1(b), is an explicit

enumeration of £.

Figure 1(c) is a description SM in an SMV-like syntax. VAR declares two

boolean variables, x and y. State s l is represented by encoding i in binary

with the string xy, where false is 0 and true is 1. The ASSIGN section gives

both initial and subsequent values for each variable. The next value of x is

false
,
in case x is true

,
or true

,
in the case of !x. The keyword esac ends the

case statement. Assignments need not be deterministic; for example, the initial

assignment for x may be either true or false.

Note that the description SM is not unique for a given £. For this state ma-

chine, we could use a single variable, mstate, with states 0, 1, 2, and 3 and give

subsequent values with next (mstate) := 3 - mstate;. Another alternative

is to use four boolean variables, sO, sl, s2, and s3. Many other descriptions

are possible.

3

A machine E defines 7 ,
a possibly unbounded set of traces, where each trace

is a sequence of states. Each sequence in 7 begins with a state in the set of

initial states, So, and continues, as allowed by the transition relation, (5, with

zero or more states from S. A test set T is a nonempty, finite subset of 7 . Each

test case t € T is further required to be of finite length. Note that the notion

of a test case here is more abstract than that for traditional program testing,

where a test case is usually specified as an input/output pair. We ignore the

difference between inputs and outputs at this point; both are merely encoded in

the state description. Of course, the traces we derive here must eventually be

refined into traditional test cases suitable for execution by an implementation.

As an example, for the machine in Figure 1, T might include the test t equal to

s2 , si, s 2 - In the description SM, this corresponds to the sequence of {x, y)

pairs {true, false), {false, true), {true, false). Suppose that the system

modeled by E has x as an input and y as an output. Executing test t requires

starting the system with input x = true, verifying that output y is false,

toggling input x to false, verifying that output y is true, then setting input x

back to true, and verifying that output y returns to false.

(a) Example State Machine

S = {so, Si, So, S3}

8 - {(so, S3), (s3 , So), (si, s2), (s2 , Si),}

So — {so, S2}

(b) Explicit Enumeration of E

VAR x: boolean; y: boolean;

ASSIGN

init (x) := {false. true}

;

init (y) := false;

next (x) := case x: false

;

! x

:

true

;

esac

;

next (y) := case y: false

;

y : true

;

esac

;

(c) Description SM

Figure 1: Example of E vs. SM

4

2 Evaluating and Generating Tests With Model
Checkers

In this section we address the potentials of evaluating and generating test sets

with model checkers.

2.1 Evaluating Test Sets

Except in the smallest case, it is impractical to evaluate a piece of code on all

of its behavior. Even if it is purely combinatorial or functional, that is, the

output is a function of the input with no memory or state, the number of input

sets easily becomes too large to exhaustively try. When a system has memory,

input histories or traces must be used. While no substitute for good design

and development practices, testing is necessary to confirm the quality of an

implementation. Thus the tester must choose some relatively tiny set of tests.

Can a tiny set of tests, no matter how chosen, really be expected to detect

most faults? The “coupling effect hypothesis” [21], supported in [38], states that

tests that detect simple faults are likely to detect complex faults, too. Thus the

tester has some confidence that choosing tests to find simple faults may suffice.

Test sets can be chosen by many different criteria, such as, random sample,

frequency of use, critical cases, domain boundary, coverage, etc.

Coverage or adequacy is an intuitively appealing measure: if tests don’t

exercise “all” the aspects of a piece of software, they are more likely to miss

faults. Also unlike frequency of use and critical cases, we can measure coverage

without needing to know how the software is used. One simple notion of “all”

is every statement in the implementation; the aspects are simply executions of

each statement. In the following code, if a is greater than 7, all the code is

executed. On the other hand, if a is less than or equal to 7, the statement in

the body of the conditional is not executed. We can turn this definition into a

coverage measure by dividing the number of aspects satisfied, three statements

in the first case and two statements in the second, by the total number of

aspects, three statements for this example.

b := 7;

c : = b - a;

if (a > b) then

c : = a - b

;

endif

Other definitions, and hence coverage measures, of the aspects of a piece of

software are certainly possible. For instance, branch coverage requires all control

transfers to be exercised. The above code needs two tests, one with a > 7 and

one with a < 7, to test when the branch is taken and when the branch is not

taken. In fact we can compare any particular test set against a criterion to

determine if and how well it satisfies the criterion.

5

We can divide test criteria into two broad categories: those that apply to

source code, see for instance the extensive survey in [46], and those that ap-

ply to specifications, for instance [22, 36, 17, 1, 16, 14, 23, 25, 26, 4]. Metrics

based on source code are more clearly tied to the implementation. However

specification-based metrics allow some language independence and are appli-

cable even without source code, for instance, in the design phase or during

acceptance testing.

After [27] we say that a test criterion1
is a predicate that defines proper-

ties of a specification to be exercised to constitute a “thorough” test, i.e., one

whose successful execution provides strong evidence that the software imple-

ments the specification. More simply, since software should correspond with its

specification, a test set with better coverage of the specification is likely to more
accurately assess the quality of a piece of software than a test set with poorer

coverage.

Measuring coverage using a model checker begins with a specification of the

system and a set of tests to be evaluated against it; see Figure 2. Although the

specification need not be a complete description of all behavior of the system, the

more detailed it is, the more that can be checked. The set of tests is converted

to a set of finite state machines. Each machine is a subset of possible system

behavior; the subset is the behavior given by the test. Consider the following

simplified test case, which essentially turns Reset on then off again. The first

line indicates that Reset and Block should be Offand Pressure should be

TooLow. In the next execution step Reset should be On. Since variables not

reported are unchanged from the previous step, Block should still be Off and

Pressure should be TooLow. In the final step, Reset should be Off again, and

Block and Pressure unchanged.

Reset = Off; Block = Off; Pressure = TooLow; STEP;

Reset = On; STEP;

Reset = Off; STEP;

A state machine representing this test case is constrained to start with Reset

and Block Off and Pressure TooLow, then set Reset On, and finally, set Reset

Off with no further change in the variables. Section 2.1.1 explains in more

detail the process of turning a test into an appropriate state machine.

The next step is that some test criterion is chosen, such as mutation ade-

quacy [4], conjunctive complementary closure (CCC) partitions [14], modified

condition/decision coverage (MC/DC) [16], automata theoretic [17], branch cov-

erage [25], transition pair coverage [41], disconnection or redirection faults [26],

stuck-at faults [1], etc. For a specification, the criterion defines a set of prop-

erties. For a test set to satisfy the test criterion, each property must hold for

at least one test case in the test set. These properties are called test require-

ments. Section 3 describes some different criteria and how the corresponding

test requirements can be derived for a given specification.

x Our notion of test criteria falls under the general concept of “test purposes” in [23].

6

Coverage _

Measure

reqs satisfied

total # reqs

Figure 2: A Specification-Based Test Measurement

A particular criterion may express requirements either negatively or posi-

tively. That is, a requirement may be considered satisfied if it is found to be

inconsistent with an execution (negative), or it may be satisfied if it is consis-

tent (positive). Suppose we apply a simple state coverage criterion to the safety

injection example: a test set is adequate if Pressure takes the values TooLow,

Permitted, and High.

In the CTL notation used in SMV, and which we use other places in this

paper, A is the universal quantifier all across possible alternative traces. The no-

tation G suggests “global”
,
that is, for all future states, F means for some states

in the “future,” and the notation X means “next” states. Hence, AG specifies

properties that should hold in every future state on all possible traces. That

is, AG specifies invariants. E, recalling “there exists” (3) in standard mathe-

matical notation, is the existential quantifier across possible alternative traces.

Hence, EF specifies properties that should hold in some future state of some

possible trace. Logical conjunction is represented by &, -> is implication, <->

is equivalence, and ! is logical negation.

Stated as positive requirements, state coverage can be checked with

EF Pressure = TooLow

EF Pressure = Permitted

EF Pressure = High

If these are found to be consistent, the requirements are satisfied. Stated as

negative requirements, state coverage is checked with the following requirements.

AG ! (Pressure = TooLow)

AG ! (Pressure = Permitted)

AG ! (Pressure = High)

If these are found to be inconsistent, the requirements are satisfied. Negative

requirements, or “never-claims” as they are called in [23], can be used to generate

tests, as we explain in Section 2.2.

7

2.1.1 Symbolic Execution of Test Cases

How can test cases be evaluated against requirements? Conceptually a test case

is a single trace through the state machine that represents the behavior of the

system. We can express the test case as a constrained finite state machine
,
or

CFSM, by adding a special variable, State
,
that controls the machine. Each

original variable gets a new value depending solely on State. If not specifically

changed, it is unchanged.

Consider again the simple test case that turns Reset on then off.

Reset = Off; Block = Off; Pressure = TooLow; STEP;

Reset = On; STEP;

Reset = Off; STEP;

The corresponding constrained finite state machine may be described in SMV
as follows. The controlling variable, State, is declared to have three possible

values, 0 through 2. The init statements set each variable to the appropriate

initial value. Since Block and Pressure do not change during the test, their

next-state specifications are trivial. The value of Reset is driven solely by the

State. State is incremented twice. Note that this specification is automatically

generated, not hand-crafted.

VAR

State : 0 . . 2

;

ASSIGN

init (Reset) := Off;

init (Block) := Off;

init (Pressure) := TooLow;

init(State) :=0;

next (Block) := case

1 : Block;

esac

;

next (Pressure) := case

1 : Pressure;

esac

;

next (Reset) := case

State =0 : On;

State = 1 : Off;

1 : Reset;

esac

;

next (State) := case

State < 2: State + 1;

1 : State;

esac

;

The final step to evaluate a test set is to check, or symbolically execute,

the CFSM’s one at a time against the requirements. An adequacy or coverage

8

measure is the ratio of the number of requirements satisfied to the total number

of requirements. Higher ratios indicate that the test set covers the specification

more completely or better. Lower ratios indicate less complete coverage. We
give details of how to compute a more accurate coverage in Section 2.1.2. The
flow in Figure 2 is then a metric, or standard way of measurement, of how
completely a test set exercises a specification.

Handling the End of Test

There are some additional details in converting test cases to CFSM’s. In a

reactive system, such as Safety Injection, freezing the state at the end of the

test may be fine. However consider systems that have no quiescent state, such

as a free-running counter. A consistent specification indicates that the state

always changes. The specification is inconsistent with any CFSM generated as

described, since the state freezes. However conceptually the specification is not

wrong. Also, model checkers generally treat deadlock—that is, the absence of

a next state—as an error, and so it is useful to encode test cases in such a way
that spurious results are not generated by any behavior, or lack thereof, beyond

the end of a test.

To avoid false reports of inconsistency, one may elaborate the CFSM with

a special variable or macro, Sustain 2
,
that has the value false when the test

ends. All the specifications are mechanically rewritten to include Sustain and

evaluate to true when Sustain is false. This rewriting is detailed and proved

correct in [3]. For the above test, all we need add is a definition of the following

macro.

Sustain := State < 2;

Implementing Sustain as a variable may make evaluating temporal logic con-

straints faster, because the macro is not evaluated for each constraint. However

since model checkers are usually limited by the state space, a macro probably

allows larger models to be checked.

For SMV [35, 13], the requirements, rendered in CTL [18], are elaborated

according to the following rules. If a CTL formula does not begin with a tem-

poral operator, it is rewritten as an implication so it has the value true when

Sustain is false. Otherwise the temporal operator rewriting rule is applied.

_ ,. _ f cr(f,True) if / begins with a temporal operator

\ Sustain —> cr(f,True) otherwise

Formulae are rewritten recursively so that embedded temporal operators, that

refer to future states, are rewritten to be true when Sustain is false in those

future states. Constraint rewriting with a value, cr(f,v), tracks whether the

formula has been negated. If the formula is a logical negation, implication,

or equivalence, the value is negated in rewriting some of the subexpressions.

2 Callahan, Easterbrook, and Schneider name a similar variable done [14].

9

Otherwise the subexpressions are rewritten with the value unchanged.

cr(! f,v)

cr{f kg, v)

cr(f\g,v)

cr(f -> g,v)

cr(f <-> g,v)

! cr(/,~u)

cr(f, v) k cr(g, v)

cr(f,v)
|

cr(g,v)

cr(f,~v) -> cr(g,v)

cr(f,~v)—> cr(g,v) k cr(g,~v)—> cr(f,v)

If the formula is a temporal operator, it is rewritten so the expression becomes

true (or false) when Sustain is false. The operators AG, AF, AX, EG, EF,

and EX follow these patterns. The meta-variable OP represents one of these six

operators.

cr(0P f,True) — OP Sustain —> cr(f,True)

cr(OP /, False) = OP Sustain k cr(f, False)

The operators A. . . U and E. . . U follow these patterns.

cr(OPg\Jf, True) — OPgOSustain —> cr(f,True)

cr(0Pg\Jf, False) — OPgUSustain k cr(f, False)

If the formula is none of the above, say, a variable, it is unchanged: cr(f, v) — f.

For example, the following specification states one instance of the rule that

if Reset changes, Block does not change.

SPEC AG(Reset = Off & Block = On ->

AX(Reset = On -> Block = On))

Rewriting to stop checking at the end of the test yields the following clause.

SPEC AG (Sustain -> (Reset = Off & Block = On ->

AX(Sustain -> Reset = On -> Block = On)))

Correctness of Rewrite Rules

We will now argue that when Sustain is false, every constraint evaluates to

true. This is a proof sketch; see [3] for a more formal proof. Note that by

definition, once Sustain becomes false, it remains false. We first argue the

rules for rewriting universally quantified expressions to be true are correct.

The AG rule describes an invariant on every state along all paths; clearly this

rule exempts a particular state if Sustain is false in that state. The AF rule

describes a property of some future state along all paths; if Sustain is false,

it is false in all future states, and therefore the property is true for all future

states. The AX rule is a special case of the AF rule where the future state is

simply the next state.

Finally, the meaning of AgUf requires / to become true eventually and for g

to hold until it does. If Sustain is false, the second rewritten predicate s —> /

holds thus satisfying that the second predicate becomes true eventually. Also

10

when Sustain is false
,
the second predicate is true immediately, which satisfies

the “until” condition, too.

Next we argue that the rules for rewriting boolean expressions are correct.

If the formula is a conjunction or disjunction, both subexpressions become true

when Sustain is false, thus the expression is true. If the formula is a logical

negation, we rewrite the subexpression to be false when Sustain is false, thus

the expression is true. Similarly for implication, we rewrite left hand subex-

pression to be false when Sustain is false and the right hand subexpression to

be true when Sustain is false. Equivalence is rewritten as two implications.

We now argue the case when we to rewrite the expression to be false. The
rewrites for AG, AF, and A . . . U force the value to be false when Sustain is

false. For AX we must also use the definition of CTL structures that every

state has at least one outgoing transition. Otherwise if some state had no next

state, AX False would be vacuously true.

Finally, the rules for rewriting existential quantifiers to be true or false

are similar. They can be derived from the rules for universal quantifiers. For

instance,

cr (EF f, True) cr :

' AG !f, True)

! cr(AG !f
, False)

! AG Sustain & cr(!f, False)

EF Sustain —> !cr(!f, False)

EF Sustain —> cr(!!f, True)

EF Sustain —> cr(i,True)

DeMorgan’s law

negation rewrite

AG, False rewrite

DeMorgan’s law

negation rewrite

Note that rewriting EX expressions to be true also uses the definition that every

state has a next state. If some state had no next state, EX True would be false

for that state, since there exists no next state at all.

Using these rewrite rules to stop checking requirements at the end of a test,

we can turn test cases into state machines and soundly compare the requirements

against them.

2.1.2 Implementing a Metric on Specifications

The specification coverage metric for a test set, T, over a specification, s, is

conceptually simple. It is similar to the test data adequacy of Wu, et al. [45],

but must be applied to specifications, not programs. In this section we give a

formal definition and explain ways of computing coverage more accurately.

Let C be a criterion and method for creating a set of test requirements, N be

the number of requirements created from the specification, and k be the number

of requirements satisfied by the test set. The score, S, is

S(C,s,T) = A (1)

We usually express the score as a percentage. The lowest, or worst, score is 0%
when no test requirements are satisfied. The highest, or best possible, score is

100% when all requirements are satisfied.

11

Winnowing

Some methods to create requirements may produce useless or duplicate require-

ments. For instance, a path coverage criterion may create a requirement to

use a particular transition several times, once for each path that includes it, or

it may require the use of an infeasible transition. A mutation adequacy crite-

ria may create a requirement that is vacuously true. To increase the precision

and accuracy of some methods, the metric includes a step to discard redundant

requirements. We call this step winnowing. There are three distinct types of

requirements that one may wish to discard.

1. Impossible requirements, i.e., positive requirements that are infeasible or

negative requirements that are consistent,

2. Trivial requirements, i.e., positive requirements that are true or negative

requirements that are false ,
and

3. Duplicate requirements, i.e., different instances of semantically identical

requirements.

Each type has a different effect on the score and needs a different approach to

eliminate.

The first type of requirement to winnow are those that are impossible to

satisfy. For example, a branch coverage criterion may require that each guard

of a clause is exercised. The default case when the Pressure is TooLow has a

disjunction of conditions that would yield the following two positive require-

ments.

SPEC EF(Pressure=TooLow & WaterPres >= Low)

SPEC EF(Pressure=TooLow -> EX (! WaterPres >= Low))

The first requirement is infeasible, that is, it is impossible to have Pressure

TooLow and WaterPres greater than or equal to Low. Since this requirement

is always inconsistent, it is impossible to satisfy with any test. Impossible

requirements prevent any test set from scoring 100%.

The next type of requirement to winnow is trivial requirements, that is,

positive requirements that evaluate to true in all conditions or negative require-

ments that evaluate to false in all conditions. For instance, a “replace_vars”

mutation operator might replace a variable, p, with another variable, q, that is

the semantic negation of p. The resulting negative requirement, AG (p <-> q),

is always false or inconsistent, and therefore is satisfied by any test. Counting

them would inflate the score.

Trivial requirements may be detected by comparing the negations of all

requirements with a totally unconstrained state machine specification in a single

run of the model checker. Suppose a negative requirement P is always false.

The negation !P is always true. Thus when AG (

!

P) is consistent, P is false and

trivially satisfied by any test.

12

Finally we may winnow semantic duplicates, that is, requirements that eval-

uate the same for all possible tests. For instance, suppose the mutation oper-

ators “negate_expr” and “replace_oper” are applied to AG (P<Q) and produce

AG (! P<Q) and AG (P>=Q) respectively. These are exactly the same: any test

either kills both or neither. Leaving duplicate requirements, instead of removing

all but one copy, adds more weight to the duplicates and discretizes the score.

Duplicate requirements may be detected by essentially comparing every re-

quirement against every other requirement. For instance, if we have require-

ments AG rl, AG r2 and AG r3, check the following.

AG (rl <-> r2)

AG (rl <-> r3)

AG (r2 <-> r3)

Only duplicates will be consistent. In practice, we can reduce the number of

comparisons by running a few tests to quickly determine requirements that are

not duplicates, then comparing possibly-duplicate requirements with each other.

2.1.3 Minimizing Test Sets

We note that one can use the measurement in Equation 1 to minimize test sets.

One can examine which requirements are satisfied by which tests and select a

subset of tests that yield a satisfactory score. Although choosing a minimal sub-

set is NP-complete, some test sets may be drastically reduced with little or no

loss of coverage. In the flight guidance example discussed in Section 4.2.2, min-

imization reduces the number of tests from 311 to 166. Although full coverage

is maintained, the number of test cases is cut by nearly half.

2.2 Generating Tests

In addition to measuring coverage, model checkers can also be used to gener-

ate tests that satisfy various requirements derived from formal specifications,

as demonstrated in [14, 5, 23, 25]. Figure 3 shows the overall approach. Not

coincidentally, it is similar to the specification-based test adequacy measure-

ment in Figure 2. As with adequacy measurement, one begins with a system

specification suitable for a model checker. After that, all processing can be

automatic.

Automatically generating the inputs for tests, even in sophisticated and con-

strained combinations, is usually straight-forward. However coming up with an

oracle, that is, the part of the test system that validates the results, is often

labor intensive. The oracle might be a reference implementation, expected re-

sults that are captured or derived offline and read from a file, a special checking

program, or something else. However if software cannot be economically judged

as to whether it passes a test, the test is of little value. To be clear about this

point, remember from Section 1.3 that a test case includes both a set of inputs

or stimuli and the expected result or response. We also use the term complete

13

System

Specification

Test
Set

Figure 3: Automatic Test Generation

test case to emphasize that it includes inputs and results. The above approach

uses formal specifications to automatically generate complete test cases.

The approach begins with the user selecting some test criterion, such as mu-
tation adequacy [4], CCC partitions [14], MC/DC [16], automata theoretic [17],

branch coverage [25], transition pair coverage [41], disconnection or redirection

faults [26], stuck-at faults [1], etc. To generate tests, the criterion must produce

negative requirements, that is, requirements that are satisfied when found to be

inconsistent, as explained in Section 2.1. The model checker checks the require-

ments against the system specification. If the requirement can be satisfied, it

is found to be inconsistent, and the model checker generates a counterexample.

The counterexample is an exact description of an example execution, or trace,

of the system specification that demonstrates the inconsistency. That is, the

counterexample is a test that satisfies the requirement.

Since counterexamples have both stimuli and expected values, they have

enough information to be automatically converted into complete test cases. No
separate oracle or checker is needed for the output.

2.2.1 Turning Counterexamples into a Test Set

Since a single counterexample may satisfy more than one requirement, we have

the opportunity to reduce the set. In fact, the original set of counterexamples

may be reduced by an order of magnitude for some test criteria, such as mu-
tation adequacy. The set of counterexamples may be reduced by processes as

simple as eliminating syntactic duplicates and removing counterexamples that

are “prefixes” of other, longer counterexamples, or as computationally intensive

as searching for a minimal set.

A program scans the model checker output for counterexamples, and extracts

any that are found, writing one trace for each counterexample. Figure 4 is part

of a typical SMV output, edited for brevity. Note that values that do not change

from the previous state are not given. For example, Safetylnjection is On in state

2.1, is not shown in state 2.2, so it is still On, then is shown to change to Off in

state 2.3.

14

— specification AG (Pressure = TooLow -> AX (! Press... is false
— as demonstrated by the following . .

.

state 2.1:

Saf etylnjection = On

Reset = On

Overridden = 0

Block = Off

WaterPres = 2

Pressure = TooLow

state 2.2:

Reset = Off

state 2.3:

Saf etylnj ection = Off

Overridden = 1

Block - On

Figure 4: Typical counterexample

The model checker may produce the same counterexample several times, so

duplicate traces are automatically combined. To further reduce the test set,

any trace that is a prefix of another trace is automatically discarded since it

is unnecessary. Suppose there is a trace A that is a prefix of another, longer

trace B. Any positive requirement on states visited 3 that is satisfied by A is

also satisfied by B. Any positive requirement on transitions between states that

is satisfied by A is also satisfied by B. What if it requires the trace to stop at

the end of A? Since in SMV every state must have a next state, no trace can

actually end—just the counterexample leading to an indicated state ends. In

fact, there is no way to specify such a requirement in CTL.
As pointed out in Section 2.1.2, the test set may be further reduced by

selecting a subset with the same, or sufficient, coverage. For large specifications

the decision of how much effort should be devoted to minimizing the number of

test cases depends on how much it costs to reduce the test set compared with

the cost of testing, that is the product of the cost of running the test set and

the number of times the test set will be run.

A test case corresponding to the trace assigns initial values to variables as de-

scribed in the first state and then changes values for the inputs, or independent

variables, such as Block, Reset, and Overridden, as specified in subsequent

states. Correct operation is verified by checking if the values of dependent vari-

ables, Safetylnjection in this case, agree or disagree with the those computed

by the implementation.

3
If we require that a state is not visited, a shorter sequence, A in this case, may satisfy the

requirement while a longer sequence does not. Thus the restriction to positive requirements.

15

It is worth noting that system level tests can only rely on explicit inputs and

outputs visible at the system level. Mode or internal variables, such as Pressure

for this example, may not be visible or may be implicit in the implementation

even though they are explicit in the specification. As a result, the utility of tests

depends, in part, on the visibility of variables in the particular implementation

under test.

3 Test Criteria

The previous section showed how to use a model checker either to evaluate an

existing test set against a given test criterion or to generate a test set that sat-

isfied the test criterion. Specific criteria were not addressed, nor were details

given on how to encode the test requirements for a particular criterion into tem-

poral logic formulae suitable for a model checker. In this section, we turn our

attention to specific criteria and the associated encodings in temporal formu-

lae. First, we develop a specification-based mutation test criterion. Since this

contribution is novel to this paper, this section is relatively formal and detailed.

Then we turn to other specification-based criteria, specifically uncorrelated full

predicate coverage, which is related to MC/DC coverage [16], transition pair

coverage [41], and branch coverage [25].

Briefly, a mutation coverage criterion requires tests to distinguish between

the original specification and a slightly different one (a “mutation”). Uncorre-

lated full predicate coverage requires tests to exercise different behaviors when

each variable in every boolean expression is true or false. One step up from

requiring that every transition be exercised, transition pair coverage requires

the execution for every state of every combination of transitions into and out

of that state. Finally, branch coverage requires that every case in SMV next

statements is exercised.

3.1 Specification-Based Mutation Coverage

Traditional program mutation analysis [21] is a code-based method for devel-

oping a test set that is sensitive to small syntactic changes to the structure of

a program. Following is a theoretical foundation for mutation analysis of state

machine descriptions such as might be found in SMV or Spin.

We are interested in generating and evaluating test sets for mutation ade-

quacy with respect to a state machine description SM

.

That is, we would like

a set of tests that distinguish the behavior of the state machine E as described

by SM from the behavior of each machine E' described by SM', where SM'
is a minor syntactic variation of SM. For reasons of scalability, we choose SM
instead of E as the basis for mutation analysis. Specifically, E is usually subject

to state explosion problems, but SM typically is not. Why? Each additional

variable in the description SM adds a few lines of text, while an additional

variable in the state machine E roughly multiplies the number of states by the

16

number of values of the variable. Hence, for n variables, the size of a description

is typically c^n while the size of a state machine is c”.

The choice of SM over £ is also consistent with program-based mutation

analysis, where the foundation of inquiry is the program source code as opposed

to the underlying input-output relation. Another way of thinking about this

decision is that mutation analysis is traditionally a syntactic, rather than a

semantic, approach to testing, and this work continues that tradition.

Possible mutations to a description SM are defined by a set of mutation

operators, Op. As an example, a mutation operator op G Op might replace

an occurrence of a variable with another of compatible type. A set of mutant

descriptions M is produced by systematically applying each mutant operator

op G Op to SM. Each mutant SM' G M is the result of applying one muta-

tion operator one time to SM

.

In other words, we only consider “first-order”

mutations in this treatment
[
38]. Extensions beyond first-order mutations are

straight forward, but seem unlikely to be useful.

The state machine S' defined by a mutated description SM' generates its

own set of traces 7'. Adopting the terminology of program-based mutation anal-

ysis, we say that the mutant SM' is equivalent (to SM) if 7' = 7. An equivalent

mutant cannot lead to a test case. For mutants that are not equivalent, the way

in which 7' differs from 7 is important. We say that a mutant SM' can be killed

iff there is a trace t in 7 that is not in 7'. That is, t kills SM' if £ allows t but

£' does not.

The reverse is also possible. We say that a mutant SM' can be excluded iff

there is a trace t in 7' that is not in 7. That is, t excludes SM' if £' allows

t but £ does not. We ignore mutants that can be excluded, but not killed.
4

The reason is that a correct implementation cannot execute such a trace t. The
vast majority of the testing literature focuses on test cases that are feasible

rather than test cases that must be rejected. Nonetheless, there are specialized

situations where such traces are useful for testing, such as safety testing, where

one might wish to systematically attempt dangerous behavior to increase the

confidence that the implementation correctly rejects the dangerous actions.

The distinction between killing and excluding mutants can be summarized

as follows. A mutant is killed by showing that it fails to provide some required

behavior. A mutant is excluded by showing that it provides some disallowed

behavior. The Venn diagrams in Figure 5 illustrate the possibilities. Figure 5a

illustrates an equivalent mutant, that, by definition, can be neither killed nor

excluded. Figure 5b illustrates a mutant that can be killed but not excluded.

Figure 5c illustrates a mutant that can be excluded but not killed. Finally,

Figures 5d and 5e illustrate mutants that can be both killed and excluded.

We are now in a position to define the mutation testing criterion.

A test set T is mutation adequate with respect to mutation operators

Op and description SM iff for each killable mutated description SM'
in M, the set of mutated state machine descriptions generated by

applying Op to SM
,
there is a trace t G T that kills SM'

.

4 The resulting tests are called “negative tests” in [23] and “failing tests” in [5] .

17

Figure 5: Venn diagrams for killable vs. excludable mutations

Next, we wish to implement mutation analysis with a model checker .

5 To do

this, we implement each mutation operator with an equivalent construction in

the temporal logic. Specifically, to implement each mutation SM' we construct

a temporal logic formula / so that / is inconsistent with respect to £ iff SM'
can be killed. Specifically, / is constructed so that each trace t G 7 — 7 ' is a

counterexample that shows / to be inconsistent with £. If 7 — 7
' = 0, as occurs

in Figures 5a and 5c, the formula / is simply consistent with £.

In procedural terms, the following occurs. We elaborate on these steps in

subsequent sections.

1. The description SM is expounded to make implicit parts of the description

explicit.

2 . A set of mutation operators Op is selected.

3. For each operator op G Op
,
an equivalent operator opt that produces

the required temporal logic formulation is derived. In general, a proof is

required to show that the derived operator opt does in fact implement op.

4. Construct the set Mt of logic formulae produced by the various op t
applied

to SM

.

5. The logic formulae can be used for either test case evaluation or test case

generation as described in Section 2.

We discuss the first three steps in detail below. Step 4 is mechanical; tool

support for this aspect is mentioned later in the paper.

3.1.1 Expoundment

Before applying mutation operators to a description SM, there are two reasons

to modify SM through a process we call expoundment. Expoundment essen-

tially makes implicit parts of a specification explicit. Making implicit parts

of a specification explicit is a standard aspect of many formal methods. It is

5 In the original descriptions of this work [4, 5], the mutation model was defined in the

context of both a state machine description and a set of temporal logic constraints. The
approach taken here of using the model checker merely as a tool is considerably simpler. It

also avoids certain unpleasantries such as inconsistent temporal logic clauses that nonetheless

lack counterexamples.

18

clear from prior work that explicit specifications are definitely desirable from

the perspective of test coverage [5].

The first reason for expoundment is to make more of the description avail-

able for mutation analysis. For example, in SMV, the default branch on a case

statement offers little for a mutation analyzer to manipulate. If instead, the de-

fault is replaced with an explicit predicate detailing the conditions under which

the default is taken, the mutation analyzer has a rich syntactic structure to

manipulate. An example of a concrete benefit of expoundment is that mutation

analysis without expoundment is unlikely to satisfy branch coverage [25] for a

given application, but after expoundment, there are various mutation operators

that imply branch coverage.

The second reason for expoundment is to ease the subsequent process of

implementing a mutation with a temporal logic formula. For example, to im-

plement mutation operators to the various branches in case structures, it is

convenient if the guards on the branches form a partition and if the outcomes

of each branch are pairwise disjoint. We discuss this aspect in section 3.1.3.

3.1.2 Mutation Operators

In this section, we illustrate six mutation operators on a description SM. We
do so in the context of SMV descriptions. We explicitly do not claim to define

a canonical set of mutation operators. Rather, we argue that the precise set Op
suitable varies from one application to another. Below, we give a possible set.

6

Consider the following SMV state machine description fragment from a case

construct in a next structure. We use this fragment to illustrate six mutation

operators defined below.

next (Overridden) := case

Pressure=TooLow & Reset=0ff & next (Reset)=0n : 0

esac

;

1 Const - replace one constant with another, e.g.,

Pressure=High & Reset=0ff & next (Reset)=0n : 0

2. Negate - negate a boolean expression, e.g.,

! (Pressure=TooLow) & Reset=0ff & next (Reset)=0n : 0

3. Operat - replace one boolean operator with another, e.g., replace “and”

with “or”

Pressure=TooLow I Reset=0ff & next (Reset) =0n : 0

6 In Section 3.2 we argue that the stuck-at mutation operator is of special merit.

19

4. Vars - replace a variable with another variable, e.g.,

Pressure=TooLow & Block=0f f & next (Reset)=0n : 0

5. Stuck-at - replace a simple condition with 1 (true) or 0 (false),

Pressure=TooLow & 0 & next (Reset) =0n : 0

6. Remove - remove a simple expression from conjunctions, disjunctions, and

implications, e.g.,

Pressure=TooLow & next (Reset) =0n : 0

We emphasize that the preceding is one possible list of operators, but not a

definitive one. Even for program-based mutation analysis, there is no theoretical

characterization of an “ideal” set of mutation operators, although empirical

results show a few operators to be quite powerful [11, 39, 40], and theoretical

considerations [12, 32] prove that some operators subsume others. That is, any

test set that kills all mutants of a subsuming operator also kills all mutants

of the subsumed operator, while the opposite is not true. Thus if we use a

subsuming operator, we need not use subsumed operators.

3.1.3 Reflection

The goal of reflection is to express the state machine in temporal logic. These

temporal logic formulae can be manipulated to implement a test criterion to be

analyzed by a model checker.

Consider the SMV case structure constraining possible next values of a

variable, which is the context of the six mutation operators defined in section

3.1.2.

next (x) := case

bl : vl;

b2 : v2

;

bN : vN

;

esac

;

These semantics are typical of a programming language case statement. The
guard bl is evaluated; if it is true, vl is the next value for x. The right hand

side, vl may be a set, thereby allowing for nondeterminism. If bl is false, b2 is

evaluated. The case bN often is a default, which is 1 or true in SMV.
Suppose that expoundment has recast the bi to be a partition; that is the

bi are pairwise disjoint and their union is universally true. Further, assume

that the vi are pairwise disjoint. That is, if two guards have the same value for

a target, the guards are joined into one guard. 7

7We also assume that the case statement is “flat,” that is, that nested case statements

have been collapsed into one. This is not strictly necessary, but eases the exposition.

20

Theorem: If the bi are a partition and the vi are pairwise disjoint, any

mutation to a guarded command, bi : vi, in a next construct for variable

x can be implemented with the same mutation applied to the temporal logic

formula:

SPEC AG(bi -> AX (x = vi) & ! bi -> AX(!(x = vi))

(Note: If vi is a set, we write: x in vi instead of x = vi.)

Specifically, if the mutation is to bi to form bi ’
,
then we get:

SPEC AG(bi ’ -> AX (x = vi) & !bi> -> AX (! (x = vi))

Similarly, if the mutation is to vi to form vi ’
,
then we get:

SPEC AG (bi -> AX (x = vi’) & ! bi -> AX(!(x = vi’))

In either case, we define the traces of interest T to be those that include the

state evaluated in the context of the X operator. A trace that ends in the prior

state, while technically a counterexample in CTL, is not sufficient to kill the

mutant.

Proof: To show this construct is correct, it is necessary to show that a trace

t is in the set 7 — 7' iff t is in the set T

.

First, assume t is in 7 — 7'. Since the only difference between SM and SM'
is in the mutation to the guarded command bi : vi, it must be the case that

either predicate bi evaluates differently or vi differs. If the mutation is bi’,

then there must be a state in t where bi and bi’ evaluate differently, or else

7 — 7' is empty. In the subsequent state, if bi is true, x has the value vi in

t
,
and if bi is false, x has some value not equal to vi in t. In either case, due

to the assumption that the bi are a partition and the vi are disjoint, machine

SM' assigns the wrong value (or possibly an undefined value) to x, and this is

captured exactly by the CTL formula. If the mutation is vi’, then x simply

has the wrong value for some state in t. The assumptions again prevent x from

acquiring the correct value by coincidence.

Now, assume t is in T. Then, there must be the same transition in t where,

depending on the mutation, either the source state has bi evaluate differently

from bi ’ or the target state has x — vi instead of x — vi ’
. Due to the partition

assumption on bi and the disjointness assumption on vi, t must necessarily be

in 7 — 7'.

Corollary Given the conditions in Theorem 1 , the SPEC clause

SPEC AG(bi <-> bi’)

is a satisfactory implementation for mutations to bi if each trace t in T is

defined to include at least one additional state beyond the counterexample to

the CTL formula. Further, assuming there is at least one mutation operator

that applies to each bi, then tests that kill these mutations will also kill any

mutation to vi. Thus, we prove that mutation operators that apply to the vi are

redundant under the partition of the bi and disjointness of the vi assumptions.

21

Proof: It might seem curious that it is not necessary to mention vi and vi ’

to kill mutations vi’, but the partition property of the bi and the disjointness

of the vi ensure that if the target vi’ is different, any trace t that includes

a state where x is set to vi will surely kill SM'

.

Such a trace is necessarily

provided if, in the previous state, bi and bi ’ differ for any mutation bi ’

.

3.2 Uncorrelated Full Predicate Coverage

We define a criterion, Uncorrelated Full Predicate Coverage, that is closely

related to the popular multiple condition/decision coverage (MC/DC) criterion.

We then explain why MC/DC is difficult to implement with a model checker

and show how to implement the new criterion with a model checker. Chilenski

and Miller define MC/DC as follows [16]:

Every point of entry and exit in the program has been invoked at

least once, every condition in a decision in the program has taken

on all possible outcomes at least once, and each condition has been

shown to independently affect the decision’s outcome. A condition is

shown to independently affect a decision’s outcome by varying just

that condition while holding fixed all other possible conditions.

MC/DC coverage has a strong reputation; typically it is part of the justifi-

cation for FAA certification of critical civil avionics software under DOD-STD-
178B. One reason for this reputation may be that there is a correspondence

between MC/DC coverage of source code and branch coverage of the underly-

ing (compiled) object code. For the purposes of this paper, it is of interest to

see whether we can implement something like MC/DC at the specification level

with a model checker. Offutt provides a possible definition with full predicate

coverage (FP) in the context of a state transition model where predicates are

associated with transitions [41]:

For each predicate P on each transition, T includes tests that cause

each clause c in P to result in a pair of outcomes where the value of

P is directly correlated with the value of c.

What is interesting about both of these criteria is that they define test

coverage in terms of pairs of test cases. In the case of MC/DC, the pair of test

cases must be related so that the predicate in question evaluates differently at

exactly one condition. In essence, this condition toggles between the two test

cases. The full predicate criterion generalizes this so that other conditions may
change as well, as long as the predicate in question still has its value determined

by the single condition. Explicit care is taken in full predicate coverage—via

the “correlation” clause—to ensure that decision coverage is maintained; that

is, the predicate in question evaluates to true on one test in each pair and false

on the other.

Note that any test set that satisfies MC/DC also satisfies full predicate, but

that the converse is not true. For example, consider the predicate P = a&(6|c).

22

Triples t\ — (false, true, false) and 12 = (true, false, true) are full pred-

icate adequate with respect to variable a8 but not MC/DC adequate. Triples

t3 = (/alse, true, false) and £4 = (true, true, false) are both full predicate

adequate and MC/DC adequate with respect to variable a.

A model checker builds test cases as counterexamples, and, in general, there

is no way to tie the generation of one counterexample to specific characteristics

of other counterexamples that have been previously generated .

9 So, on the

face of it, implementing either MC/DC or full predicate coverage with a model

checker is not possible.

There are two routes out of this dilemma. One is to exploit specific properties

of the algorithm used in a specific tool, such as SMV, to generate counterexam-

ples. This is useful, but dangerous from an engineering perspective, since the

algorithm for generating counterexamples may change without warning.

The other route is to define a new criterion, that covers as much of MC/DC
(or full predicate coverage) as possible, and leaves the remainder of the criterion

explicitly aside. We follow this route here.

The new criterion is full predicate coverage without the section that puts re-

quirements on pairs of test cases. We define uncorrelated full predicate coverage

(UFP) as a modification of FP follows:

For each predicate P on each transition, T includes tests for each

condition c in P such that c is true when P depends on c and c is

false when P depends on c.

Essentially, UFP drops the requirement for decision coverage from FP. That

is, it is possible for some predicates P to choose a pair of test cases for some

condition a such that a assumes both truth values, but P does not. For example,

consider P to be a <—> b, that is, a equals b. A test set T of (a, b) pairs that is

{(false, true), (true, false)} is UFP adequate with respect to a, but is neither

FP adequate nor MC/DC adequate, since P evaluates to false in both tests.

Note that any test case that satisfies full predicate also satisfies UFP, but that

the converse is not true.

To implement the UFP with a model checker, it is convenient to use the

boolean derivative [2]. Temporal logic clauses are developed as follows. Consider

some predicate P that appears in the specification. Suppose that P is a function

of condition a and zero or more other unnamed conditions. To achieve UFP,
compute the boolean derivative of P with respect to each condition. For a, this

yields dP/da, a predicate in the remaining conditions that is true iff the value of

a determines the value of P. For UFP, first we need a to assume the value true

under conditions where a determines the value of P, that is, under conditions

defined by dP/da. We do this with a never-claim that says that a is never true

under conditions dP/da. This yields the CTL formula:

SPEC AG (dP/da ->
! a)

8 Tests to yield adequacy with respect to b and c are omitted for clarity

9
It is possible in Spin to ask for an entire set of counterexamples to be enumerated, but

this capability is not sufficiently powerful for our purposes here.

23

Given this SPEC clause, the model checker then produces a counterexample

with the desired result.

To produce a test case where a is false under conditions where a determines

the value of P, we write the never-claim:

SPEC AG (dP/da -> a)

An additional pair of CTL formulae is required for each of the remaining

conditions in P. Thus a predicate P in n conditions yields 2n CTL formulae.

Curiously, even if all of the never-claims are inconsistent, only n + 1 counterex-

amples are required for these 2n formulae [16].

3.2.1 Mutation Analysis and UFP

There is an interesting tie between the stuck-at mutation operator and UFP:
Theorem: If a test set T is mutation adequate with respect to the stuck-at

mutation operator, T is also UFP adequate. Further, if no variable occurs more

than once in a given predicate, T is mutation adequate for stuck-at iff T is UFP
adequate.

Proof: Suppose for the moment that P has exactly one occurrence of some

variable a. Let Pt be P with a replaced by true and Pf be P with a replaced

by false. Consider the two positive test requirements (1) and (2) generated by

the stuck-at operator and the two corresponding test requirements (3) and (4)

for UFP:

(1) EF ! (P <-> Pt)

(2) EF ! (P <-> Pf)

(3) EF ! (dP/da -> a)

(4) EF ! (dP/da ->
! a)

The theorem amounts to showing first that any trace that satisfies (1) also

satisfies (3) and second that any trace that satisfies (2) also satisfies (4). The
arguments for these two cases are the same, so we only consider the first.

Suppose that trace t satisfies (1). It must be the case that a is false in the

last state of this trace; otherwise P and Pt would necessarily have the same
value. For the same reason, the other variables in P must have values such that

P depends on a. This implies that dP/da must be true, and so (3) must also

be satisfied by trace t. This shows the first part of the theorem.

Under the assumption that P has one occurrence of a, the reverse argument

also holds for exactly the same reasons, and therefore if (3) is satisfied then so

must be (1). However, a may occur multiple times in P. The stuck-at mutation

operator changes exactly one occurrence of a at a time, whereas UFP considers

all occurrences of a at once. Put another way, mutation analysis generates a

pair of test requirements for each occurrence of a, but UFP generates exactly

just one pair of test requirements for a no matter how may times a appears.

Consequently although a trace generated from UFP is guaranteed to satisfy at

24

least one test requirement for the stuck- at operator, there is no guarantee that

the trace will satisfy all of them.

For example, consider the predicate P — a&6|a&c. Note that dP/da — b\c.

The six test requirements, 4 for stuck-at and 2 for UFP are:

(1) EF ! (P <-> b 1 a & c) — the first ''a" set to true

(2) EF ! (P <-> a & c) — the first ''a" set to false

(3) EF ! (P <-> a & b
|

c) — the second "a" set to true

(4) EF ! (P <-> a & b) -- the second "a" set to false

(5) EF !((b
I

c) -> a)

(6) EF !((b
|

c) ->
! a)

Test requirements (5) and (6) can be satisfied with the (a, b, c) triples t\ =
(false, true, false) and t2 = (true, true, false), respectively. Triple t\ satisfies

test requirement (1); triple t2 satisfies test requirement (2). Neither 1 i nor t^

satisfy test requirements (3) or (4).

3.3 Transition Pair Coverage

Offutt defines transition pair testing over a graph G as follows [41]:

For each pair of adjacent transitions St : Sj and Sj : S

k

in G, there

is a test that traverses the pair of transitions in sequence.

Offutt’s definition is developed in the context of SCR specifications, and

the graph in question has modes for nodes. The definition can be extended

easily to state machine descriptions such as those in SMV. Specifically, consider

any variable x with possible values vl through vN. Transition pair coverage with

respect to variable x simply requires finding tests that start with x having each of

its possible values in some state, having a specific value vi in a successor state,

and finally assuming each possible value in a third state. That is, transition

pair coverage requires pairs of transitions, one of which reaches a state where

x equals vi, and another where x leaves that state. Note that the values of

all other variables have been abstracted away, so that the graphs being covered

are all of a size determined by domain of the variable under analysis. For this

reason, transition pair coverage scales linearly with the size of the specification.

Different variants of the criterion depend on whether x is allowed to remain

in the intermediate state for multiple transitions, and also on the handling of

“self-loops,” that is, transitions where variable x maps to the same value in both

the source and target state.

Transition pair coverage, of whatever variant, can be expressed directly with

a set of temporal logic never-claims. Specifically, to ensure that a counterexam-

ple covers a particular pair of transitions: x = vi to x = vj to x = vk under

the assumption that self-loops are not allowed, one would write the never-claim:

SPEC AG(x = vi -> AX(x = vj -> AX (!x = vk)))

25

In English, the never-claim is equivalent to saying, “It is always true that

if x = vi in some state and x = vj in the next state, then x does not equal

vk in any state immediately after that.” The counterexample, assuming one

exists, delivers the desired test case. If no counterexample exists, the model

checker reports the SPEC clause to be consistent, thereby implying that the

test requirement is infeasible and can safely be ignored.

In summary, the test requirements for transition pair coverage can be ex-

pressed directly with temporal logic never-claims, thereby making a model

checker a convenient tool for implementing the transition pair criterion.

3.4 Branch Coverage

Gargantini and Heitmeyer achieve branch coverage for SMV and Spin descrip-

tions by adding labels to the state machine description at each branch [25].

In SMV, this corresponds to each guarded command in a next statement. The

CTL formulae are then simply never-claims that the labels are unreachable. For

counterexamples, the model checker generates traces that reach each guarded

command.
As with program-based mutation analysis, specification-based branch cov-

erage is implied by specification-based mutation analysis provided that at least

one nonequivalent mutant is generated for each guarded command in a next

statement. Generally, expoundment is required to achieve this, or else the de-

fault case in the next statement may not yield a structure amenable to the

mutation operators chosen.

3.5 Disconnection and Redirection Faults

Godskesen [26] generates tests for embedded systems by hypothesizing discon-

nection and redirection faults. Disconnecting an input can be modeled by a

mutation that replaces the input variable with false. Redirecting an input can

be modeled by replacing one input variable with the input to which it is redi-

rected. An output disconnection is equivalent to many large specification faults

at once, so are difficult to model with simple mutation operators.

4 Practical applications and examples

In this section we document some of the tools available and give examples.

4.1 Tools

Theoretical approaches without implementations are rarely helpful to practi-

tioners. In fact, there is a significant opportunity for tools that do even part

of a task with near-total automation compared with tools that do all of a task,

but require a lot of user expertise or time [42].

26

4.1.1 Deriving Mutation Requirements

The mutation engine is based on the SMV [35, 13] parser and abstract syntax

tree manipulation routines. Its overall design is to

1. parse an SMV file and build a corresponding data structure in mem-
ory with the state machine descriptions and specifications annotated with

pointers to type information,

2. write the unmodified SMV information, and

3. traverse the syntax trees one or more times invoking specific, hard-coded

pattern matching routines that recognize an opportunity for a mutation,

make a mutant, and write the mutant.

Currently the mutation engine implements six mutation operators similar to

those explained in Section 3.1.2: replace enumeration constant, replace defined

constant, negate expression, negate only simple expression, replace operator,

replace variable, and remove simple expression.

If one were to adhere strictly to mutation theory, one would write one entire

SMV file for each separate mutation, yielding thousands of files. However, the

overhead of starting SMV, parsing the file, and checking all the specifications

that did not change is enormous. Since specifications are checked independently,

computing counterexamples is unchanged if we combine hundreds, if not all, of

the mutations in one SMV file. Combining the mutations amortizes the overhead

to a negligible cost at a slight increase in memory use.

4.1.2 Generating Test Cases

A single program, mugent, automatically generates tests, as diagrammed in

Figure 3 and explained in Section 2.2. It runs the mutation engine, to derive

mutations as test requirements, runs the model checker, to generate counterex-

amples, then extracts succinct test cases and reduces them. For now the only

reduction is keeping just one copy of syntactically duplicate test cases and dis-

carding any test case that is a prefix of another, longer case.

4.1.3 Turning Test Cases into Executable Tests

The final stage of automatic test generation is to turn each test case, with

modeled variable references, into executable test code, including a test harness,

drivers, and checking and reporting code. We use TAO (Test Assistant for

Objects) [34], a software interface testing environment developed at NIST. TAO
integrates two popular test specification technologies, context free grammars and

constraint satisfaction, into a single software test generation tool.

4.1.4 Evaluating Test Sets

We use two tools to evaluate test sets. The first is “alltests,” which symboli-

cally executes a set of test cases, as described in Section 2.1.1, against a list of

27

requirements. Negative requirements that are found to be inconsistent are sat-

isfied by the test, while positive requirements are satisfied if they are consistent.

For example, in mutation analysis the mutants serve as negative requirements

which are killed, or satisfied, if they are inconsistent. To reduce the disk use of

saving counterexamples from thousands of requirements over hundreds of tests,

the program can write just a T or F depending on whether the requirement is

consistent (true) or inconsistent (false).

The second tool is “repcov,” which reports the coverage of a test set by listing

each requirement and how many tests satisfy it. It also reports the coverage as

a ratio between the number of satisfied requirement and the total number of

(satisfiable) requirements.

4.2 Examples

Our primary example throughout the paper has been a piece of the specification

of the safety system to inject water into a reactor. We also note our work on

other models: an automobile cruise control, a Java10 virtual machine stack, part

of a secure operating system, and a flight guidance system.

4.2.1 Safety Injection

To illustrate, we apply our method to the Safety Injection problem. See the

Appendix for an SMV specification or Table 1 for a higher-level specification.

The results are shown in Table 2. The top row of the table shows, for each

type of mutant, the total number of test requirements generated (in parenthesis),

and then the number of feasible test requirements. The second row enumerates

the test cases, that is, the unique counterexamples, generated by the model

checker. The first number is before minimization; the second number is after

minimization. All evaluations of one mutation operator against another are

done with respect to the minimized test sets. The remaining rows show these

cross comparisons. An operator’s row gives the mutation scores for that operator

against the test requirements generated by the mutation operators in the various

columns. For example, the entry in the third row, labeled Const, and second

column is 275/276 and 997,. This means that the eleven tests generated by

Const satisfied 275 of 276 test requirements generated by Negate. The mutation

operators are in the same order as Section 3.1.2. The entries on the diagonal

are omitted for clarity; these all show complete coverage.

4.2.2 Other Examples

Earlier versions of the method described in this paper have been applied to a

variety of applications. The primary reason to mention these applications here

10 Java is a trademark of Sun Microsystems, Inc. Certain commercial equipment, designs,

or software are identified in this paper in order to specify the experimental procedure ade-

quately. Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the software

or equipment identified are necessarily the best available for the purpose.

28

Const

(168)106

Negate

(343)276

Operat

(477)270

Vars

(296)105

Stuck-at

(348)124

Remove

(158)53

Total

(1790)934

Tests (20)11 (22)11 (26)14 (17)10 (22)11 (19)10 (28)16

Const - 275/276

997.

253/270

937.

95/105

907.

123/124

997.

52/53

987.

904/934

967.

Negate 106/106

1007.

- 254/270

947.

97/105

927.

124/124

1007.

53/53

1007.

910/934

977.

Operat 106/106

1007.

276/276

1007.

- 97/105

927.

124/124

1007.

53/53

1007.

926/934

997.

Vars 97/106

917.

260/276

947.

234/270

867.

- 112/124

907.

45/53

847.

853/934

917.

Stuck-at 106/106

1007.

276/276

1007.

254/270

947.

97/105

927.

- 53/53

1007.

910/934

977.

Remove 106/106

1007.

270/276

977.

250/270

927.

89/105

847.

120/124

967.

- 883/934

947.

Table 2: Comparison of Mutation Operators on Safety Injection

is to bolster the case for the feasibility of our technique. Particularly, the flight

guidance example shows that reasonably large examples can be addressed with

our technique.

1. Cruise Control: Cruise Control [31] was our first example. Many variations

of it exist; we use one from Atlee and Bucklee [6], which was originally

coded in Software Cost Reduction (SCR) [29]. Results are reported in

[5]. Briefly, mutation analysis generates 24 test cases. We wrote a draft

implementation of it so that we could examine the code coverage. The
24 test cases cover 14 of 16 branches. One missed branch was infeasible.

The other missed branch was a default case and not explicitly specified.

This pointed out the need to expound the specification, as explained in

Section 3.1.3. Having expounded the implicit branches, test cases were

generated to test the missed branch. The tests did reveal that the draft

implementation was incorrectly written level-triggered, while the specifi-

cation was edge-triggered.

2. Java Stack: In the hardware realm, we applied this technique to a model

of the operand stack of a Java virtual machine. We abstracted it to get

a model expressible in SMV. The model is a stack with zero, one, two,

three, or “many” items plus a variable that prevents counterexamples if

the stack size exceeds three, since traces in the model might not apply to

the machine. Instructions were abstracted to those that push one item

(pushl), pop one item (popl), or pop two items (pop2). In addition to

29

reflecting the state machine, it includes “use case” specifications such as

“pushl then popl leaves the stack unchanged.”

Combining duplicates and discarding prefixes yielded nine unique tests

with lengths from three to seven operations. By comparison, exhaustive

enumeration yields 45 tests of length seven.

3. Secure Operating System: To generate tests, we modeled part of a Unix-

like secure operating system. The simple model consists of two processes

and one file. Files have an owner, a group, and a numerical security level.

Files also have permission bits to allow a file to be read or written by

the owner, anyone in the group, and others. Processes have a user and

group, and may have privileges to raise or lower the security level of a file.

We modeled the system calls of opening a file, changing the permission

(chmod), and changing the security level. We specified some “use cases” in

addition to reflecting the state machine. A typical use case is if a process

can read a file, and any process tries to lower the file’s security level,

the process can still read the file, regardless of whether the downgrade

succeeded.

Mutation analysis generated 3172 mutants, of which 2845 were inconsis-

tent. We started with a restricted test frame, one process using only the

system call to change the security level, and enlarged it in steps to pick

the simplest test cases to kill the mutants. After we reduced the test set

with “mugent” (Section 4.1.2), we ended up with 193 tests.

4. Flight Guidance: In an effort to see how the mutation approach scales to

a larger example, the mutation method in [4] was applied to a portion of a

model flight guidance system developed by Rockwell Collins with support

from NASA Langley for the express purpose of academic investigation on a

realistic example [37]. The portion evaluated was the subset of the model

required to analyze one invariant for the system. The invariant states that

the autopilot must be engaged when the “reset” signal is received, and

that the “flight director” must be on when the autopilot is engaged. This

ensures that the current flight guidance modes are displayed to the flight

crew. The resulting SMV model has 39 variables, of which 17 were boolean

and 22 were “scalar” (integers with a limited range). Mutation analysis

produced 10,186 test requirements, of which 6,938 were satisfiable. The
tools produced 311 unique counterexamples, which, after minimization,

resulted in a set of 166 tests that satisfied these requirements. The time

required to complete this analysis—both the generation of the original 311

traces and the evaluation required for minimization of the test set—was

about a half a day, concurrent with normal use, on a Computer Science

department’s UNIX server, a Sun SPARC® 11
30. Our conclusion is that

the technique is feasible for systems of interest.

11SPARC is a registered trademark of SPARC International, Inc.

30

5 Abstraction Issues

Even though model checking is increasingly applicable to software analysis,

clever abstractions are required for problems of even modest complexity to avoid

the state space explosion problem, which renders the model checker useless.

Some of these abstractions are informal, although there have been significant

formalizations of the abstraction process [3, 15, 8, 33]. Other abstractions [43]

are formalized to the extent of being paired with theorem provers and model

checkers to calculate and refine them. These abstractions are directed at the

analysis problem, that is, determining whether given properties expressed in a

temporal logic hold over a given state machine.

We know of several existing, mechanical approaches to reduction or abstrac-

tion. To be useful, abstractions must preserve some properties of the original.

Two useful measures are soundness and completeness.

In a sound abstraction, properties of the reduced or abstract specification are

also properties of the original specification. Soundness avoids false positives. In

a complete abstraction, properties of the original specification are also properties

of the reduced specification. Completeness avoids false negatives.

Bharadwaj and Heitmeyer [8, 9] formalize an abstraction, RP1, that removes

irrelevant entities. Briefly, to check that some property q holds for a specifica-

tion, one may remove variables and inputs that do not occur in or contribute to

q. They also formalize RP2, that abstracts monitored or input variables. That

is, if a monitored variable only influences the value of another “summary” vari-

able, the monitored variable may be removed. For instance, WaterPres, with a

discrete range from 0 to 2000, is immediately quantized to TooLow, Permitted,

or High and may be removed. Both abstractions are sound and complete for

analysis.

Chan, et. al. [15] use another method to reduce the state size. Some specifi-

cations place time bounds on the intervals between events. The obvious specifi-

cation keeps time as an integer, uses variables to record the times of events, and

has predicates on the difference in times. Instead, they keep (bounded) timers

measuring the time since events. When the bound is exceeded, the timers enter

a “satisfied” (or “unsatisfied”) state.

They also use a temporal strength reduction. Suppose there is a predicate

on the value from a previous state. Rather than saving the previous value

and computing the predicate, just save the value of the predicate. For instance

rather than save the previous value of an integer y then compute prev(y) > 1000,

compute prev(y > 1000). The abstracted model only need save a boolean value.

Kurshan [33] explains how k verifications may be done on k reductions of a

system, each of which is a l/k part of the entire system. Since verification is

often exponential in the size of the system, n, a verification of the entire system

at once may be proportional to c
n while k verifications take kcn ^ k work.

In an overview presentation, Rushby [43] advocates “ubiquitous abstrac-

tion,” that is, using abstractions in several different ways in all parts of anal-

ysis. For instance, even for one given problem, different abstractions may be

appropriate, depending on the invariants used to prove a goal. The invariants

31

may be automatically strengthened when the proof fails. Another noteworthy

approach is calculating transitions of a state abstraction using rules that guar-

antee correctness, as opposed to taking a hand-crafted abstraction and proving

it is sound and complete. Abstractions may be refined automatically using in-

formation from static analysis, such as reachable states. In contrast, we are

still at the stage of characterizing abstractions in our work, albeit for a different

notion of soundness, rather than computing them.

Bensalem, Lakhnech, and Owre [7] explain a semi-automated abstraction in

which the analyst chooses a state abstraction and then a conservative (sound) set

of corresponding transitions are computed. Construction begins with a complete

set of transitions, that is, a transition from every abstract state to every other

abstract state. If a transition can be (automatically) proven to be impossible, it

is removed. Since such proofs are in general too complex, they combine it with

three techniques based on partitioning the abstract variables, substituting, and

using the property being investigated.

Since our goal is automatic test generation, rather than property analysis,

we can use different abstractions, as explained in [3]. For analysis, abstractions

may summarize states and discard details of transitions. An abstracted model

may still be quite useful even if it is not precise. To automatically generate tests,

we may wish to retain details in order to easily determine if an implementation

behaves properly. We can then accumulate sets of tests generated from different

precise reductions. In summary an abstraction that is perfectly satisfactory for

one purpose, property, or specification may be unusable in another.

One abstraction for test generation is to map variables with large or un-

bounded domains to a fixed subset of the possible values. For example, an

integer variable x might be modeled with a corresponding variable Xmodei with

a bounded range of 0, l,and 2. From the test generation perspective, the ranges

simply need to cover values that may be interesting when used in actual test

cases. We used this abstraction in the Java Stack example in Section 4.2.2.

6 Conclusions

Testing, particularly system testing, consumes a significant portion of the bud-

get for software development projects. Formal methods, typically used in the

specification and analysis phases of software development, offer an opportunity

not only to reduce the cost of testing, but to increase confidence in the soft-

ware through formal criteria for test thoroughness. We showed how to use the

powerful computation engines of model checking to the problem of evaluating

and generating test sets that satisfy a variety of coverage criteria. In either

case, we encode each (negative) test requirement for a given specification and

a given coverage criterion as temporal logic formula. For evaluation, test cases

are encoded as constrained finite state machines and checked against the test re-

quirements. For generation, counterexamples are generated for each satisfiable

test requirement. These counterexamples are interpreted as test cases.

We gave special attention to a mutation analysis approach suitable for state

32

machines. Although earlier work [5, 4] applied mutation analysis to model

checking specifications, this paper provides the sound formal basis lacking in the

earlier efforts. The formal basis allows comparisons between different criteria;

for example, we showed a relationship between mutation coverage with the

stuck-at operator and the UFP variant of the popular MC/DC criterion.

Acknowledgments

We thank Angelo Gargantini and Connie Heitmeyer of the Naval Research Lab-

oratory for the Safety Injection specifications. We also thank Vadim Okun of

the University of Maryland, Baltimore County, for his mutation engine and Jeff

Offutt and Aynur Abdurazik for helpful discussions. We give special thanks to

Vladimir Yakhnis of Rockwell Collins for supplying the partial SMV model for

the flight guidance example.

APPENDIX
This specification of the Safety Injection problem is a modification of one sup-

plied by the Navy Research Laboratory. The specification corresponds to Table

1. See [9] for a closely related specification in all of SCR, Spin, and SMV.
Semantically, the inputs to this model are a reset signal, modeled by Reset

in the VAR section, a blocking signal, modeled by Block, and the water pressure,

WaterPres. Reset may be on or off, as may be the blocking input. The input

water pressure, WaterPres, ranges from 0 to 200 (no units are given).

The boolean variable Overridden is an internal variable representing whether

the safety injection system is overridden. Another internal variable is Pressure,

which is the water pressure classified as three ranges, TooLow, Permitted, and

High. The range limits are given by the macros Low and Permit given in the

DEFINE section. The model keeps the previous value of each variable in a cor-

responding variable, prefixed with a P, to determine transitions, that is, when

a value has just changed.

The DEFINE section encodes when the under-pressure safety injection system

is activated with the variable Saf etylnjection. Safety injection is on only if

the pressure is too low and the system is not overridden.

The ASSIGN section starts the water pressure at 2 and the reset on. At any

point either block can turn change, reset can change, or the water pressure can

change by up to 3. (The assertions in the TRANS section ensure only one of these

variables change at a time.)

MODULE main

VAR

Reset : {On, Off};

Block : {On, Off};

WaterPres : 0..200;

Overridden : {0,1}; —boolean

33

Pressure : {TooLow, Permitted, High};

PReset : {On, Off};

PBlock ; {On, Off};

PWaterPres : 0..200;

POverridden : {0,1}; —boolean

PPressure : {TooLow, Permitted, High};

DEFINE

Lou := 90;

Permit := 100;

Safetylnjection : = case

Pressure = Permitted: Off;

Pressure = High: Off;

Pressure = TooLow: case

Overridden : Of f

;

! Overridden :0n;

esac ;

esac

;

ASSIGN
-- ASSIGN init

init(Block) := Off;

init (Reset) := On;

init (WaterPres) := 2;

init (Overridden) := 0;

init (Pressure) : = TooLow;

init(PBlock) := Block;

init (PReset) := Reset;

init (PWaterPres) : = WaterPres;

init (POverridden) := Overridden;

init (PPressure) := Pressure;

— ASSIGN NEXT

next(PBlock) := Block;

next(PReset) := Reset;

next (PWaterPres) := WaterPres;

next (POverridden) := Overridden;

next (PPressure) := Pressure;

next(Block) := {On, Off};

next(Reset) := {On, Off};

next (WaterPres) := 0..200;

next (Overridden) :=

case

((Pressure = TooLow) &

((! (Pressure = next (Pressure)) I

(! (Reset = On) fc next (Reset) = On)) I

(!(! (Pressure = next(Pressure)) I

(((Reset = On) & next(Reset) = On)) &

!(! (Block = On) & next(Block) = On & Reset = Off) &

Overridden =0))) I

34

((Pressure = Permitted) ft

((((Pressure = next (Pressure)) I

(((Reset = On) ft next(Reset) = On)) I

(!(! (Pressure = next(Pressure)) I

(((Reset = On) ft next (Reset) = On)) ft

!(! (Block = On) ft next(Block) = On ft Reset = Off) ft

Overridden =0))) I

((Pressure = High) ft

(((Pressure = next (Pressure)) I

((Pressure = next (Pressure)) ft

Overridden = 0)))

: 0;

((Pressure = TooLow) ft

((((((Pressure = next (Pressure)) I

(((Reset = On) ft next(Reset) = On)) ft

(((Block = On) ft next(Block) = On & Reset = Off)) I

(!(! (Pressure = next(Pressure)) I

(((Reset = On) ft next(Reset) = On)) ft

!(! (Block = On) ft next(Block) = On & Reset = Off) ft

Overridden =1))) I

((Pressure = Permitted) ft

((!(! (Pressure = next (Pressure)) I

(((Reset = On) ft next(Reset) = On)) ft

(((Block = On) ft next(Block) = On & Reset = Off)) I

(!(! (Pressure = next (Pressure)) I

(((Reset = On) ft next(Reset) = On)) ft

!(! (Block = On) ft next(Block) = On ft Reset = Off) ft

Overridden = 1))) I

((Pressure = High) k

(((Pressure = next (Pressure)) k

Overridden = 1)))

: 1 ;

esac

;

next (Pressure) :=

case

(Pressure = TooLou k

((! (WaterPres >= Lou) k next(WaterPres) >= Lou))) I

(Pressure = Permitted k

(!(! (WaterPres < Lou) k next (WaterPres) < Lou) k

((((WaterPres >= Permit) k next (WaterPres) >= Permit))) I

(Pressure = High k

((((WaterPres < Permit) k next (WaterPres) < Permit)))

: Permitted;

(Pressure = TooLou k

(!(! (WaterPres >= Lou) k next (WaterPres) >= Lou))) I

(Pressure = Permitted k

((((WaterPres < Lou) k next (WaterPres) < Lou)))

: TooLou;

(Pressure = Permitted k

(((((WaterPres < Lou) k next (WaterPres) < Lou) ft

(((WaterPres >= Permit) ft next (WaterPres) >= Permit))) I

(Pressure = High ft

(!(! (WaterPres < Permit) ft next(WaterPres) < Permit)))

35

: High;

esac

;

TRANS

(! (next (Reset) = Reset) St next (Block) = Block St next (WaterPres) =

WaterPres) I

(! (next (Block) = Block) St next(Reset) = Reset St next(WaterPres) =

WaterPres) I

(! (next (WaterPres) = WaterPres) St (next (WaterPres) - WaterPres) <= 3 S

(WaterPres - next (WaterPres)) <= 3 & next(Reset) = Reset St next(Block)

= Block)

-- The temporal logics

SPEC AG (— 1

(((PPressure = TooLow St

((! (PPressure = Pressure) I

(! (PReset = On) St Reset = On)) I

(!(! (PPressure = Pressure)
I

(! (PReset = On) St Reset = On)) St

!(!(PBlock = On) St Block = On St PReset = Off)

POverridden =0))) I

(PPressure = Permitted St

((! (PPressure = Pressure) I

(! (PReset = On) St Reset = On)) I

(! (! (PPressure = Pressure) I

(! (PReset = On) St Reset = On)) St

! (! (PBlock = On) St Block = On St PReset = Off)

POverridden =0))) I

(PPressure = High St

(.•(PPressure = Pressure) I

(PPressure = Pressure St POverridden = 0))))
-> Overridden =0)

St

(!((PPressure = TooLow St

((((PPressure = Pressure) I

(! (PReset = On) I

I

PReset = Off) St

Reset = On))

(((•(PPressure = Pressure) I

(((PReset = On) St Reset = On))

!(! (PBlock = On) St Block = On

POverridden =0))) I

(PPressure = Permitted k

((((PPressure = Pressure) I

(((PReset = On) St Reset = On))

(! (! (PPressure = Pressure) I

(((PReset = On) k Reset = On))

! (((PBlock = On) St Block = On

POverridden =0))) I

(PPressure = High St

(((PPressure = Pressure) I

(PPressure = Pressure k POverridden = 0))))
-> Overridden =1)

St PReset = Off) k

SPEC AG (—2
(((PPressure = TooLow k

((!(! (PPressure = Pressure) I

(((PReset = On) St Reset = On)) St

36

(! (PBlock = On) k Block = On k PReset = Off)) I

(! (! (PPressure = Pressure) |

(! (PReset = On) k Reset = On)) &

!(! (PBlock = On) k Block = On k PReset = Off) k

POverridden =1))) I

(PPressure = Permitted k

((!(! (PPressure = Pressure)
|

(! (PReset = On) k Reset = On)) k

(! (PBlock = On) k Block = On & PReset = Off)) I

(!(! (PPressure = Pressure) I

(! (PReset = On) k Reset = On)) k

!(! (PBlock = On) k Block = On 6 PReset = Off) k

POverridden =1))) I

(PPressure = High k PPressure = Pressure k POverridden = 1))

-> Overridden =1)
k

(!((PPressure = TooLow k

((!(! (PPressure = Pressure) I

(! (PReset = On) k Reset = On)) k

(! (PBlock = On) k Block = On k PReset = Off)) I

(!(! (PPressure = Pressure) I

(! (PReset = On) k Reset = On)) k

!(! (PBlock = On) k Block = On k PReset = Off) k

POverridden =1))) I

(PPressure = Permitted k

((!(! (PPressure = Pressure) I

(! (PReset = On) k Reset = On)) &

(! (PBlock = On) k Block = On k PReset = Off)) I

(!(! (PPressure = Pressure) |

(! (PReset = On) k Reset = On)) k

!(! (PBlock = On) k Block = On k PReset = Off) k

POverridden =1))) I

(PPressure = High k PPressure = Pressure k POverridden = 1))

-> Overridden = 0)

SPEC AG (—3
(((PPressure = TooLow k

((! (PWaterPres >= Low) k WaterPres >= Low))) I

(PPressure = Permitted &

(!(! (PWaterPres < Low) k WaterPres < Low) k

((! (PWaterPres >= Permit) k WaterPres >= Permit))) I

(PPressure = High k

((! (PWaterPres < Permit) k WaterPres < Permit))))

-> Pressure = Permitted)

k

(!((PPressure = TooLow k

((! (PWaterPres >= Low) k WaterPres >= Low))) I

(PPressure = Permitted k

(!(! (PWaterPres < Low) k WaterPres < Low) k

!(! (PWaterPres >= Permit) k WaterPres >= Permit))) I

(PPressure = High k

((((PWaterPres < Permit) k WaterPres < Permit))))

-> ((Pressure = Permitted))

SPEC AG(—4

37

(((PPressure = TooLow k

(! (! (PWaterPres >= Low) k WaterPres >= Low))) I

(PPressure = Permitted k

((((PWaterPres < Low) & WaterPres < Low))))
-> Pressure = TooLow)

k

((((PPressure = TooLow k

(!(! (PWaterPres >= Low) k WaterPres >= Low))) I

(PPressure = Permitted k

((((PWaterPres < Low) k WaterPres < Low))))
-> ((Pressure = TooLow))

)

SPEC AG(—5
(((PPressure = Permitted k

(! (((PWaterPres < Low) k WaterPres < Low) k

(((PWaterPres >= Permit) k WaterPres >= Permit))) I

(PPressure = High k

(!(! (PWaterPres < Permit) k WaterPres < Permit))))
-> Pressure = High)

k

((((PPressure = Permitted k

(! (! (PWaterPres < Low) k WaterPres < Low) k

(((PWaterPres >= Permit) k WaterPres >= Permit))) I

(PPressure = High k

(!(! (PWaterPres < Permit) & WaterPres < Permit))))
-> ((Pressure = High))

References

[1] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital System Testing

and Testable Design. IEEE Computer Society Press, New York, N.Y., 1990.

[2] S.B. Akers. On a theory of boolean functions. SIAM Journal

,

7(4), 1959.

[3] Paul Ammann and Paul E. Black. Abstracting formal specifications to generate software

tests via model checking. In Proceedings of the 18th Digital Avionics Systems Conference

(DASC99), volume 2, page 10.A. 6. IEEE, October 1999. Also NIST IR 6405.

[4] Paul E. Ammann and Paul E. Black. A specification-based coverage metric to evaluate

test sets. In Proceedings of Fourth IEEE International High-Assurance Systems En-
gineering Symposium (HASE 99), pages 239-248. IEEE Computer Society, November
1999. Also NIST IR 6403.

[5] Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking to gener-

ate tests from specifications. In Proceedings of the Second IEEE International Conference

on Formal Engineering Methods (ICFEM’98), pages 46-54. IEEE Computer Society, De-

cember 1998.

[6] Joanne M. Atlee and M. A. Buckley. A logic-model semantics for SCR software require-

ments. In Proceedings of the 1996 International Symposium on Software Testing and
Analysis, pages 280-292, January 1996.

[7] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of infinite

state systems compositionally and automatically. In Proceedings of the International

Conference on Computer-Aided Verification (CAV’98), volume 1427 of Lecture Notes in

Computer Science, pages 319-331. Springer-Verlag, June/July 1998.

[8] Ramesh Bharadwaj and Constance Heitmeyer. Verifying SCR requirements specifica-

tions using state exploration. In Proceedings of the First ACM SIGPLAN Workshop on

Automatic Analysis of Software, Paris, France, January 1997.

38

[9]

Ramesh Bharadwaj and Constance L. Heitmeyer. Model checking complete require-

ments specifications using abstraction. Memorandum Report NRL/MR/5540-97-7999,
U.S. Naval Research Laboratory, Washington, DC 20375, November 1997.

[10] Paul E. Black, Kelly M. Hall, Michael D. Jones, Trent N. Larson, and Phillip J. Wind-
ley. A brief introduction to formal methods. In Proceedings of the IEEE 1996 Custom
Integrated Circuits Conference (CICC ’96), pages 377-380. IEEE, May 1996.

[11] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifications. In

15** IEEE International Conference on Automated Software Engineering (ASE2000),

pages 81-88. IEEE Computer Society, September 2000.

[12] Paul E. Black, Vadim Okun, and Yaccov Yesha. Mutation of model checker specifications

for test generation and evaluation. In W. Eric Wong, editor, Mutation Testing for the

New Century (MUTATION 2000), pages 14-20. Kluwer Academic Publishers, October

2000 .

[13] Jerry R. Burch, Edmund M. Clarke, Jr., Ken L. McMillan, David L. Dill, and L. J.

Hwang. Symbolic model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142-170, June 1992.

[14] John Callahan, Francis Schneider, and Steve Easterbrook. Automated software testing

using model-checking. In Proceedings 1996 SPIN Workshop, Rutgers, NJ, August 1996.

Also WVU Technical Report #NASA-IVV-96-022.

[15] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno,
David Notkin, and Jon D. Reese. Model checking large software specifications. IEEE
Transactions on Software Engineering, 24(7):498 - 520, July 1998.

[16] J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision coverage to

software testing. Software Engineering Journal

,

pages 193-200, September 1994.

[17] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE Trans-

actions on Software Engineering, SE-4(3):178-187, May 1978.

[18] Edmund M. Clarke, Jr., E. Allen Emerson, and A. Prasad Sistla. Automatic verification

of finite-state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems

,

8(2):244-263, April 1986.

[19] Edmund M. Clarke, Jr., Orna Grumberg, and David E. Long. Verification tools for finite-

state concurrent systems. In A Decade of Concurrency - Reflections and Perspectives,

volume 803 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[20] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, 1999.

[21] Richard A. De Millo, Richard J. Lipton, and Frederick G. Sayward. Hints on test data

selection: Help for the practicing programmer. IEEE Computer, 11(4):34-41, April 1978.

[22] Richard D. Eldred. Test routines based on symbolic logical statements. Journal of the

ACM, pages 33-36, January 1959.

[23] Andre Engels, Loe Feijs, and Sjouke Mauw. Test generation for intelligent networks

using model checking. In Ed Brinksma, editor, Proceedings of the Third Interna-

tional Workshop on Tools and Algorithms for the Construction and Analysis of Sys-

tems. (TACAS’97), volume 1217 of Lecture Notes in Computer Science, pages 384-398.

Springer-Verlag, April 1997.

[24] J. Gannon, P. McMullin, and R. Hamlet. Data- Abstraction Implementation, Speci-

fication, and Testing. ACM Transactions on Programming Languages and Systems,

3(3):211-223, July 1981.

[25] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests

from requirements specifications. In Proceedings of the Joint 7th European Software En-

gineering Conference and 7th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, Toulouse, France, September 1999.

39

[26] Jens Chr. Godskesen. Fault models for embedded systems. In Proceedings of

CHARME’99, volume 1703 of Lecture Notes in Computer Science. Springer-Verlag,

September 1999.

[27] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data selection.

IEEE Transactions on Software Engineering, 1(2):156-173, June 1975.

[28] Constance L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency

checking of requirements specifications. ACM Transactions on Software Engineering

and Methodology, 5(3) :23 1—261
,
July 1996.

[29] K. L. Heninger. Specifying software requirements for complex systems. IEEE Transac-

tions on Software Engineering, SE-6(1):2-13, January 1980.

[30] Gerald J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279-295, May 1997.

[31] James Kirby, Jr. Example NRL/SCR software requirements for an automobile cruise

control and monitoring system. Technical Report TR-87-07, Wang Institute of Graduate

Studies, July 1987.

[32] D. Richard Kuhn. Fault classes and error detection in specification based testing. ACM
Transactions on Software Engineering Methodology, 8(4), October 1999.

[33] Robert P. Kurshan. Computer-aided verification of coordinating processes: the automata-

theoretic approach. Princeton University Press, New Jersey 08540, 1994.

[34] William J. Majurski. Issues in software component testing. To appear in ACM Computing
Surveys, 1998.

[35] Ken L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[36] Kin C. Yan Mei. Bridging and stuck-at faults. IEEE Transactions on Computers, pages

720-727, July 1974.

[37] S. P. Miller. Specifying the mode logic of a flight guidance system in CoRE and SCR.
In Second Workshop on Formal Methods in Software Practice, Clearwater Beach, FL,

March 1998.

[38] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM Trans-

actions on Software Engineering Methodology, 1(1) :3— 18, January 1992.

[39] A. Jefferson Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An experimental deter-

mination of sufficient mutation operators. ACM Transactions on Software Engineering

Methodology, 5(2):99-118, April 1996.

[40] A. Jefferson Offutt, Gregg Rothermel, and Christian Zapf. An experimental evaluation of

selective mutation. In Proceedings of the Fifteenth International Conference on Software

Engineering, pages 100-107, Baltimore, MD, May 1993. IEEE Computer Society Press.

[41] Jeff Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generating specification-based

tests. In Proceedings of the Fifth IEEE Fifth International Conference on Engineering

of Complex Computer Systems (ICECCS ’99), pages 119-131, Las Vegas, NV, October

1999. IEEE Computer Society Press.

[42] Scott Ranville and Paul E. Black. Automated testing requirements-Automotive perspec-

tive. In John Penix and Nigel J. Tracey, editors, Proceedings of the 2nd International

Workshop on Automated Program Analysis, Testing and Verification, May 2001.

[43] John M. Rushby. Ubiquitous abstraction: A new approach to mechanized formal verifi-

cation. In Proceedings of Second IEEE International Conference on Formal Engineering

Methods (ICFEM’98), pages 176-178. IEEE Computer Society, December 1998.

[44] Phil Stocks and David Carrington. A framework for specification-based testing. IEEE
Transactions on Software Engineering, 22(11), November 1996.

[45] D. Wu, M. A. Hennell, D. Hedley, and I.J. Riddell. A practical method for software

quality control via program mutation. In Proceedings of the 2nd Workshop on Software

Testing, Verification and Analysis, pages 159-170, Banff, Canada, July 1988.

[46] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and

adequacy. ACM Computing Surveys, 29(4):366-427, December 1997.

40

