VITAL STATISTICS.

LAW OF MORTALITY

IN

MASSACHUSET'IS,

$13 V^{*}$
E. B. ELLIOTT.

From the Proceedings of the American Association for the Advancement of Science, hehd at Montreal, in August, 1857.

tion are given. A vertical plane passed through the axis of the roat diviles it into two solids, such as we have been considering. It can, therefore, be correctly ealculated as one prismoid.

The rule may also be applied to "irregulur cross-sections," or those in which the surface of the ground is so irregular that a number of levels have to be taken at rarious points of cach profile. To do this, we must conceive vertical phanes to pass through all the points of each profile at which the transverse lope of the fround changes. They will thus divide the solid into a number of solifts with warped surfaces, such as we have been considering. The principle of our third hypothesis will then enable us to determine by a simple proportion the height at which the vertical plane passing through any angular summit of one profile cuts the top line of the other. 'Ihis will furnish the data for applying the preceding rule.

If the views here presented should meet with general aeceptance, engineers would be enabled to econontize much time and labor, since they would no longer feel compelled, as nuw, to take their eross-sections so near together that the gronnd betwen them should be approximately plane, but could take them as fap apart as the ground caried Wiformly, no matter how much, or for whent distance, that might be.

The adoption of these principles would also seriously modify the methods now employed in the calculation of earthwork, and the results obtained by them, particularly the use of "equivalent mean heights." The numerical details of these professional matters would,

4. On the Lay of Heman Mortality that aprears to obtain in Massacifobette, witi Tables of practical value denceed therefron. By E. B. Elliott, of Boston.

Trie accompanying tables comprise part of an original series, that has been prepared for the New England Mutual Life Insurance Company of Boston, from extensive and reliable Europenn and American data. They have been calculated from official abstracts of obecrvations
made for the year 1855 , respecting the status and the movements of the population in the 166 of the 331 towns of the Commonwealth of Massachusetts, in each of which, the ratio of the number of registered deaths, to the number of the population, was greater than one to sixtythree.

With the numbers returned for the 166 towns, lave been ineluded two thirds of the numbers of the population, births, and deaths of the three State almshouses; the population of the 166 towns being two thirds (.663) of the population of the entire State.

The aggregate population of these communitics, as returned for the first day of June, 1855, was 751,241 , and the registered deaths in these towns during the year was 16,086 . The well-known Carlisle table of mortality was deduced from only 1,840 deatlis, registered during the nine years 1779-87, the mean population of the period being 8,177.

The rate of mortality, or the ratio of deaths to the population, according to the returns, was probably somewhat lower, in these communities, than the rate that actually prevailed in them, in consequence of probable omissions in the registration of deaths in some of the districts.

But these communities embrace a larger proportion of the more populous distriets of the State, and of those in which we should expeet the prevailing rate of mortality to be higher than the rate for the entire State; and we are probably safe in concluding that the law of mortality obtaining in these districts, according to the returns, does not greatly vary from the law of mortality actually prevailing over the entire population of the Commonwealth.

It is not possible, supplied with only our present information, to indieate the precise line of separation between the reliable and the questionable data; but it is thought that such a division has been made that the data retained are affected by only inconsiderable crrors, and the errors of excess and of defeet nearly compensate for each other.

The tables deduced from the resulting law of mortality are intended to facilitate the solution of ecrtain problems in political arithmetic, and to furnish replies to questions involving the probable duration of human life.

Tables are also given, comparing the rates of mortality obtaining in Maseaclusetts at divers intervals of age, with corresponding rates obtaining in certain European communitics.

The "Fourteenth Aunual Report relating to the Registry and Returns of Birtlis, Marriages, and Deaths, in Massachusetts, for the Year 1855," and the "Abstract of the Census of the Commonwealth of Matsachusetts, taken with reference to facts existing on the first day of June, 1855," prepared under the direction of the Hon. Francis De Witt, Secretary of the Commonwealth, and under the supervision of Dr. Nathaniel 13. Shurtleff, of Boston, appear to have been the first and the only official reports, whether State or national, in which either the ages of the persons living, or the ages of those dying, in the State, have been distinguished by towns; consequently, they are the first that furnish data, from comparison of which it has been possible to construct a Life Table that ean satisfactorily express the law of mortality prevailing over any considerable portion of the pcople of the Commonwealtl1.* \dagger In previous reports the ages have been distinguished only by counties.

Since the Registration Aet of 1849, the registrars, in many of the towns of the Commonwealth, appear to have annually furnished the office of Secretary of State with very valuable and accurate statistics respecting the births, marriages, and deaths occurring in their respective districts.

In other towns the results indicate that this information has been but imperfectly recorded, while in a few cases the officers have uniformly neglected either to register or report.

In registration reports, previous to that for the year 1850., the full

[^0]and reliable information respecting the ages of the dying furnished by the able and competent registrars, in certain towns, has been vitiated by union with the questionable or obriously defective data obtained from other towns in the same county.

In the Registration Report for 1855, the table which distinguishes by age, sex, and locality the deaths registered during the year (Table VI.), was prepared with special reference to its employment in the construetion of Life Tables, and is believed to be a faithful abstract from the returns.

The enumeration of the numbers and ages of the population of Massaelusetts, aecording to the State Census of 1855 , and the previous enumerations ordered by the General Government, may safely be regarded as reliable.

It is to be regretted that the abstracts of the Census for 1855 , in giving the ages of the population, did not distinguish the sexes.

This defieiency may, in a measure, be supplied by assuming that the proportional distribution of the sexes at the different ages in 1855 , was the same as that obtaining in Massachusetts in 1850, according to the National Census of that year.

Of the 324 statistical distriets into which England and Wales are subdivided, in only two was there indicated, aecording to very aecurate observations for the seven years, 1838-44, an annual rate of mortality less than one death to sixty-three persons living. Of the 331 towns in Massachusetts (nearly the same in number with the Einglish distriets just mentioned), there were, in 1855,165 towns, in each of which the rate of mortality, indieated by the returns, was less than one to sixtythree. The returns from the three State almshouses are not included with the returns of the towns in which they happen to be loeated, namely, Monson, Tewksbury, and Bridgewater. The average population of the 331 towns of Massachusetts is much less than that of the 324 English districts; the population of Massachusetts, in 1855, being one million ($1,132,369$), and that of England and Wales, in 1841, sixteen millions $(15,927,867)$. The above assumed test, in seleeting returns showing a mortality orer one to sixty-three, is accordingly confirmed by the Einglish returns, whieh are made, as is well known, with great aceuracy.

The mortality of the 324 English districts varied from 1 in 70 to 1
in 30 ; in the 331 towns of Massachusetts, according to the returns, from zero to 1 in 30 . The mortality of Massachusetts, according to the entire returns, 1.84 per cent., or 1 in 54 ; in the 166 towns it was 2.14 per cent., or 1 in 47.

Averige Andual Rites of Mortality obtaining in the whole, of in barts of Sines Countries of Eerope, arbanged in the Lnverde Order of their Resiective Intensithes.

Years in which the Deaths occurred.	Countries.	To 100 Persons Living,	$\begin{aligned} & \text { One } \\ & \text { Death } \end{aligned}$
		Deaths.	ToPers'ns Living.
7 years 1838-44	England and Wales* .	2.19	46.
20 " 1821-40	Sweden \dagger. .	2.34	43.
4 " 1839-42	France \ddagger	2.36	42.
9 " 1842-50	Belgimm §	2.42	41.
3 " 1839-41	Prussia \ddagger	2.70	37.
3 " 1834, 7,9	Austria \ddagger	3.09	32.
1 " 1842	Russia \ddagger	3.59	28.

According to the above, it appears that in England and Wales the conditions are most favorable to vitality, and in liussia, least; the several eountries, arranged in the inverse order of the respective intensities of mortality, being England, Sweden, France, Belgium, Prussia, Austria, and Russia.

The population of Massachusetts has increased more rapidly than those of the principal countries of Europe. The annual rate of inerease of the former, during the years 1850-55, was two and two thirds per cent. (2.63). The effect of an increase by births merely is to diminish, in some degree, the general rate of mortality, even though the intensity of mortality, at different ages, remains unchanged.

We will now proceed to the eonstruction of the Life Table.

[^1]Table I. - Number and Ages of tife Poptlation of Massachusetts, according to tife Nitionil Census of 1850 ind of tine Stite Censis of 1855 ; Also tie Anneal Ritio of Lncreise, and the Logiritimis of the Montilis Ratio of Increase, the Ritios being comected for the Numbers Retcraed at Ages not sipecified.

Ages.	Popelition.		Unity plus the Annual Rate of Increase.	Logarithms of the Monthly Ratio of Increase.
	18.0	1855.		
0-1	23,192			
1-5	90,853			
0-5	114,045	132,944	1.03131	. 0011159
5-10	102, 797	115,862	1.02439	. 0008720
10-15	98,024	110,098	1.02367	. 0008468
15-20	105,741	117,047	1.02069	. $0007+13$
20-30	210,997	235,678	1.02254	. 0008067
30-40	143,931	165,046	1.02793	. 0009968
40-50	96,266	111,500	1.02999	. 0010694
50-60	60,254	71,829	1.03594	. 0012779
60-70	36,837	42,423	1.02881	.0010279
70-80	17,936	20,810	1.02034	. 0010818
80-90	5,820	6,138	1.01086	. 0003911
90-100	613	634	1.00693	. 0002498
100 and upwards	19	19	1.00017	. 0000060
Agre not specified	1,234	2,341		
All ages	994,514	1,132,369	1.02630	. 0009396
Specified ages	993,280	1,130,028		
90 and upwards	632	653		. 0002426

From the returns of births for the six years, 1850-55, it appears that the annual rate of increase was 3.49 per cent. But the annual rate of the increase of the living, under the age of five years, was only 3.13. The latter is believed to be the more correct. The difference is probably owing to a gradual improvement in the completeness of the returns of the births.

In that which follows, we shall assume that the population in the selected districts increased, at the different intervals of age, at the same rates as in the entire State.

The population of the 166 towns may be divided into two classes, the migratory and the permanent ; the former comprising immigrants and emigrants.

We assume that the proportional distribution of the ages of those living under the age of five years, was the same in the latter as in the former class; that the ratio of the number of birtlis to the number living under age five, was the same in each; and that the same inverriable law of mortality prevailed over those under the age of five years in each.

In the towns selected, the number of births registered in 1855 was 23,481 . The number of persons living under age five, estimated with reference to the middle of the year and corrected for those returned at unspecified ages, was 90,260 .
The deaths at different ages under $\left\{\begin{array}{cc}\text { Ages. } & \text { Deaths. } \\ \text { five years, correeted for those returned } \\ \text { at unspecified ages, were }\end{array}\left\{\begin{array}{c}3,622 \\ 1-2\end{array}\right.\right.$
$2-3$
$2-354$
$3-4$
$4-5$

Assuming correctness of the returns upon which the above values depend, we find the annual rate of increase of births in the permanent population to have been 1.1023 per cent.* We also find the number of

[^2]deaths at the different ages demanded by a constant supply of 23,481 annual births in a community influenced by migration, but subject to the above-mentioned invariable law of inortality, to be

Ages.	Deaths.
$0-1$	$3,641.9$
$1-2$	$1,681.4$
$2-3$	724.6
$3-4$	389.7
$4-5$	264.7

Hence of 10,000 persons born alive, there would survive, ages 1,2 , 3, 4, and 5, as follows : -

Table II.

Ages.	Numbers.	Logirithms.
0	$\mathbf{1 0 , 0 0 0 . 0}$	4.0000000
$\mathbf{1}$	$8,449.0$	3.9268053
2	$7,732.9$	3.8883424
3	$7,424.3$	3.8706555
4	$7,258.3$	3.8608349
5	$7,145.6$	3.8540387

To continue the above table, we shall need to compare the deaths and the population at the different intervals of age.
births would have been only 22,956 . The number of births registered is somewhat nearer the latter than the former of these two values.

Assuming the correctness of the returns of births, deaths, and population in the selected districts, and of the indieated rates of increase of population, it appoars that 35 per cent. of the increase of the population under age five was due to inercase of hirths in the permancit portion of the population, and 65 per cent. due to the movement of the migratory portion ; also that 38 per ecnt. of the increase of population at all ages was due to excess of births over deaths, leaving 62 per eent. to be aecounted for by execss of immigration over emigration. (Λ.)

Table III.-Deatis, Popelition, Mortality, and Logaritims of the Probability of Living.
Mussachusetts, 166 torens, 1855.

AgEs.		PopulaTION. \qquad June 1st, 18.5.		Logarithme, witn the Sigin chanc"d, of tie Probability of Serviving each Interval op Age.	
$\begin{array}{llll}\text { Under } 1 \text { year } \\ \begin{array}{l}1-2\end{array} & . & .\end{array}$	$\begin{array}{r} 3,595 \\ 1,642 \\ 700 \\ 372 \\ 250 \end{array}$	$\} 89,852$. 0732094		
3-5	622		.0191772*		
5-10	595	76,566	.0077980	$\left.\begin{array}{l} .0168125 \\ .0109100 \end{array}\right\}$. 0168613
10-15	311	71,851	. $00+3+36$	$\left.\begin{array}{l}.0094179 \\ .0094488\end{array}\right\}$. 0094333
15-20	672	76,854	. 0087768	$\left.\begin{array}{l}.0190957 \\ .0190705\end{array}\right\}$. 0190831
20-30	1,817	161,544	. 0112883	$\left.\begin{array}{l}.0491767 \\ .0490648\end{array}\right\}$. 0491208
30-40	1,388	112,489	. 0123781	.0538119 .0538257	. 0538188
40-50	1,035	73,604	. 0141040	$\left.\begin{array}{l}.0613538 \\ .0615053\end{array}\right\}$. 0614295
$50-60$.	908	45,134	. 0201687	$\left.\begin{array}{l}.0881465 \\ .0884615\end{array}\right\}$. 0883040
60-70	942	25,766	. 0366732	$\left.\begin{array}{l}.1624950 \\ .1624646\end{array}\right\}$. 1624798
70-80	976	12,265	. 0798130	$\left.\begin{array}{l}.3729+34 \\ .3595270\end{array}\right\}$. $3684713 \dagger$
80-90	635	3,469	. 1838871	$\left.\begin{array}{r} 1.1507632 \\ .3622095 \end{array}\right\}$. $9536248 \dagger$
90 and upwards .	129	374	. 3466159		
Age not specified .	119	1,472			
All ages Specitied ages	$\begin{aligned} & 16,086 \\ & 15,967 \end{aligned}$	$\begin{aligned} & 751,240 \\ & 749,768 \end{aligned}$. 0213663		

[^3]The method adopted in caleulating the probabilities of living from the annual rate of mortality, is essentially the same as that indicated on pages 60 and 61 of the Proceedings of the American Association for 1856.

From the above Tables II. and III. the following values, from birth to age 90 inclusive, are readily deduced.

Table IV. - Proportions born alive, and surviving certain Ages.

Ages.	Logarithms.	Numbers.
1	4.0000000	
2	3.9268053	10,000
3	3.8883424	8,449
4	3.8706555	7,733
5	3.8608349	7,424
10	3.8540387	7,258
15	3.8371774	7,146
20	3.8277441	6,873
30	3.8086610	6,726
40	3.7595402	6,437
50	3.7057214	5,748
60	3.6442919	5,078
70	3.5559879	4,409
80	3.3935081	3,597
90	3.0250368	2,475
100	2.0714120	1,059
	.3430527	117.9
		2.20

In assigning the average number that may be expeeted to survive age 100 out of a stated number of births, there is room for some diversity of opinion. The influence, however, of the numbers at this extreme age upon tables of practical utility is inconsiderable.

The logarithms in Table V. were derived from those in Table IV., by the interpolation of eight additional values, namely, those at the ages of $25,35,45,55,65,75,85$, and 95 . The third differences of the logarithms from age 35 upwards in the following table constitute a constantly increasing series.

Table V. - Massacifisetts Life Table, 1855.*

* This comprelensive form was first given to the Life Table by Dr. Farr, the eminent English statistieian. Valnable details respecting the properties and uses of the colnuns (\& and I ('Table V.) and $/ /$ (Table VII.) may be fonnd in the Sixth Report of the Registrar-General (Eng.)

The integration of the functions $L_{x}, Q_{x}, L_{x}^{\prime}$, and Q_{x}^{\prime}, to obtain the values in columms Q, I, N, and Z respeetively, was chiefly effected by the brief methods detailed in the Proccedings of the American Association for 1856. The ordinary proeess involves a preliminary and formidable interpolation of values at annual intervals of age, and a summation of the values thus obtained. In note B is offered a modification of the method previously given, especially adapted to the computation of values at the higher ages.

A large variety of useful problems may be solved by reference to the table aboye. We can now only advert to some of the more obvious of its properties.

Aecording to the law of mortality for Massachusetts, it appears, that of 10,000 children born alive, 6,437 persons will survive age 20 ;

That these 6,437 persons will live, in the aggregate, 256,651 years ;
That the average number of years which they will live is 39.86 ;
And that the average number of years which they lare lived and will live, that is, the complete average duration of life, past and future, in years, is 59.86 , that is, $20+39.86$.

In a stationary population, supplied by 10,000 annual births, there will annually occur 6,437 deaths of persons at and over age 20.

These 6,437 persons dying will have lived, in the aggregate, 256,561 years over age 20 .

The averaye number of years over age 20 which they will have lived is 39.86 ;

Their average age at death is consequently $(20+39.86=) 59.86$ years.

In a stationary population supplied by 10,000 annual births, there will be 256,561 persons constantly living at and over age 20 .

This generation of 256,501 persons will live in the aggregate $6,367,-$ 019 years;

They have already lived 6,367,019 years over age 20.
The average number of years which they will live is 24.82 .
The average number which they have lived, over age 20 , is 24.82 years; their average age is consequently 44.82 years; and the complete average duration, past and future, of the generation of persons now at and over 20 years of age, or their average age at death, is $(44.82+24.82 \Rightarrow 69.64$ years.

In a stationary population there constantly will be living, to one annual death, 39.86 persons, at and over age 20.

In a community the members of which enter in constant and uniform numbers at age 20 , and retire at age 60 or before in the event of death, the average number of years that the present members will continue with the community is 18.18 ; they have already been members 18.18 years; consequently their complete average duration of membership, past and future, is 36.36 years.

According to the English Life Table (1841) these numbers would be 18.23 and 36.46 , respeetively.

This case approximately represents that of a community of business men, if we assume that its members enter at about the age of 20 years in nearly equal annual numbers, and retire from active life about the age of 60 years, or before in case of dceease.

This table will be found of practical utility, not only for the very valuable purposes of Life Insurance, but also to the statesman and to the political economist, in the solution of many important problems, annong which may be mentioned those rclating to the strength and the decadenee of armies in time of peace, and to the influence of immigration and emigration on the growth of populations.
"The applications and uses of National Life Tables," says Dr. Farr,* "are almost innumerable: without an intimate knowledge of their properties it is impossible to determine the laws of population, whieh are the basis of statistics, or to reason upon sueh matters without falling into great errors, of which, if it were not invidious, too many instanees might be eited from eurrent works on population and public health."

[^4]Table VI. - Preparatory Tables for Determining tie Values of Life Anyuities, and of ofier Single Life Benefits, at Divers Rates of Intereest for Money, according to the Massichusetts Life Table.

安	3 per eent.		4 per cent.		5 per cent.	
	$L_{x i}\left(\frac{1}{1.03}\right)^{x}$	$\Sigma_{x}^{\times} L_{x}^{\prime}$	$L_{x}\left(\frac{1}{1}\left(\frac{1}{1 / 4}\right)^{x}\right.$	$\Sigma_{x}^{\infty} L_{x}^{\prime}$	$L_{x}\left(\frac{1}{1-155}\right)^{x}$	$\sum_{x}^{\infty} L_{x}^{\prime}$
x	L_{x}^{\prime}	N_{x}	L_{x}^{\prime}	N_{x}	L_{x}^{\prime}	N_{x}
0	10,000	189,437	10,000	158,231	10,000	135,595
1	8,203	179,437	8,124	148,231	8,047	125,595
2	7,289	171,234	7,150	140,107	7,014	117,548
3	6,794	163,945	6,600	132,957	6,413	110,534
4	6,449	157,151	6,204	126,357	5,971	104,121
5	6,164	150,702	5,873	120,153	5,599	98,150
10	5,115	122,031	4,643	93,311	4,220	72,932
15	4,317	98,111	3,735	72,001	3,235	53,976
20	3,564	78,061	2,938	54,969	2,426	39,491
2.5	2,913	61,585	2,288	41,636	1,801	28,679
30	2,368	48,151	1,772	31,277	1,330	20,671
35	1,922	37,239	1,370	23,442	980.4	14,763
40	1,5.57	28,388	1,058	17,069	721.4	10,410.3
45	1,256	21,228	812.8	12,291.9	528.4	7,212.3
50	1,006	15,464	620.3	8,6,30.9	384.4	4,875.0
55	791.5	10,876.5	465.2	5,853.5	247.8	3,184.4
60	610.6	7,291.3	342.0	3,784.4	192.6	1,984.1
65	448.8	4,570.8	239.5	2,287.9	128.6	1,156.0
\%	312.5	2,609.2	158.9	1,259.6	81.33	613.51
75	199.7	1,279.4	96.75	595.36	47.20	279.41
80	99.55	490.96	45.96	219.55	21.37	99.00
85	35.44	136.02	15.59	59.44	6.911	25.73
90	8.243	25.989	3.455	10.948	1.460	4.536
95	1.236	3.363	. 494	1.3177	. 1988	. 5210
100	. 1146	.235	. 0436	. 0891	.0168	. 0341

Table Vi. - continued. Prepabatory Tables for Determining the Valees of Life Annuties, and of other Single Life Benefits, at Difers Rates of Interest for Moner, according to the Massacilsetts Life Table.

8\%	6 per cent.		7 per cent.		8 per cent.	
	$I_{x}\left(\frac{1}{1 \cdot 06}\right)^{x}$	$\sum_{x}^{\infty} I_{x}^{\prime}$	$L_{x}\left(\frac{1}{1.07}\right)^{x}$	$\Sigma_{x}^{\infty} I_{x}^{\prime}$	$L_{x}\left(\frac{1}{1 \cdot 08}\right)^{x}$	$\sum_{x}^{\infty} L_{x}^{\prime}$
x	L_{x}^{\prime}	N_{x}	L_{x}^{\prime}	N_{x}	L_{x}^{\prime}	N_{x}
0	10,000	118,630	10,000	105,552	10,000	95,219
1	7,971	108,630	7,896	95,552	7,823	85,219
2	6,882	100,659	6,754	87,656	6,630	77,396
3	6,234	93,777	6,060	80,902	5),894	70,766
4	5,749	87,543	5,537	74,842	5,335	64,872
5	5,340	81,795	5,095	69,305	4,863	59,537
10	3,838	58,193	3,494	47,141	3,184	38,703
15	2,806	41,207	2,438	31,948	2,120	25,099
20	2,007	28,865	1,663	21,411	1,381	16,091
25	1,421	20,077	1,124	14,256	890.7	10,250.8
30	1,001	13,870	755.1	9,433	571.3	6,493.1
35	703.6	9,502	506.5	6,194.8	365.8	4,085.1
40	493.7	6,433	339.1	$4,024.2$	233.8	2,544.1
45	344.9	4,283.5	226.1	2,572.9	148.7	1,560.8
50	239.3	2,784.7	149.7	1,607.3	94.00	936.60
5\%)	163.2	1,750.7	97.36	971.6	58.37	544.23
60	109.1	1,050.2	62.08	560.91	35.53	302.20
65	69.44	589.31	37.72	303.09	20.60	157.12
70	41.89	301.41	21.71	149.33	11.32	74.545
75	23.19	132.22	11.47	63.11	5.707	30.335
80	10.01	45.00	4.724	20.62	2.245	9.524
85	3.088	11.230	1.390	4.94	. 6304	2.191
90	. 6221	1.894	. 2672	. 7973	. 1157	. 338
95	. 0808	.2078	. 0331	. 0862	. 01368	. 0350
100	.0065	. 0132	.0025	.0051	. 00100	. 00200

Table VII. - For Determining the aferige Values of Life Anycities, and of otier Sivgle Life Benefits, on the whole of a Stationary Popelation, or on the Part at and over Certain Ages, accordinǵ to the Massaciusetts Life Table.

Interest of Money. - Five per cent.

Ages.	$Q_{x}\left(\frac{\pi 1}{1.05}\right)^{x}$	$\Sigma_{x}^{\infty} Q_{x}^{\prime}$	$\frac{Z x}{\left(C_{x}^{\prime}\right.}-1$
	Q_{x}^{\prime}	Z_{x}	${ }^{\prime} \prime_{x}^{\prime}$ anveity.
0	397,653	5,682,478	13.29
1	370,148		
2	345,230		
3	322,263		
4	300,885		
5	280,918	3,946,299	13005
10	198,606	2,717,810	12.68
15	139,258	1,851,426	12.29
20	96,695	1,246,093	11.88
25	66,504	827,263	11.44
30	45,254	540,311	10.94
35	30,402	345,934	10.38
40	20,097	216,087	9.75
45	13,013	130,868	9.06
50	8,198	76,207	8.30
55	4,982	42,192	7.47
60	2,882	21,860	6.59
65	1,558	10,360	- 5.65
70	765	4,332	- 4.66
75	321	1,510	3.71
80	105.8	417.4	9.95
85	25.3	83.2	2.29
90	4.2	12.4	1.95
95	. 5	1.2	1.49
100	. 03	. 06	1.00

The average of the present values of one dollar, payable at the close of each year during the eontinuance of each of the lives of the persons now at and over the age of 20 years, in a stationary population, interest of money being eomputed at the rate of 5 per eent. per annum, is \$11.89. [Table VII.]

Examiles. - The present value of one dollar, payable at the elose
of each year during the eontinuance of the life of a person now 20 years of age, interest of inoney being computed at the rate of

$$
\left\{\begin{array}{l}
4 \text { per cent. per annum, is } \$ 17.71 \\
5 \text { per cent. per annum, is } \$ 15.28
\end{array}\right.
$$

[T'uble vini.]
Our L_{x}^{\prime} is commonly written D_{x}.
The N_{x} is that used by Dr. Farr and a few other late writers, and is equivalent to the N_{x-1} introduced by Mr. Griflith Davies, and adopted in certain standard treatises on life annuities and reversions.
Q, Q^{\prime}, Y, and Z retain the same signification as in the Reports of the English Registrar-General.
i is any annual rate of interest for money; as, $\cdot 03, \cdot 04$, or $\cdot 05$.
Formulas for determining values of annuities, annual premiums, and single premiums, are given in the headings of the respective columns in which those values appear. [Table VIII.]

$$
\begin{aligned}
& L_{x}^{\prime}=L_{x}\left(\frac{1}{1+i}\right)^{x} \\
& Q_{x}^{\prime}=Q_{x}\left(\frac{1}{1+i}\right)^{x} .
\end{aligned}
$$

N_{x} (which equals $\left.\Sigma_{x}^{\infty} L_{x}^{\prime}\right)=L_{x}^{\prime}+L_{x+1}^{\prime}+L_{x+2}^{\prime}+\cdots L_{\infty}^{\prime}$, and represents the aggreagate present values of a constant sum, the $\left(\frac{1}{1+i}\right)^{x}$ portion of one dollar, payable at the beginning of each year, during the continuance of each of the lives of the L_{x} persons living at the age x.
Z_{x} (which equals $\left.\Sigma_{x}^{\infty} Q_{x}^{\prime}\right)=Q_{x}^{\prime}+Q_{x+1}^{\prime}+Q_{x+2}^{\prime}+\cdots Q_{\infty}^{\prime}$, and represents the aggregate present values of a constant sum, the $\left(\frac{1}{1+i}\right)^{x}$ portion of one dollar, payable, at the beginning of each ycar, during the continuance of each of the lives of the Q_{x} persons living in a stationary population at and over age x.
$a_{x}^{\prime}\left(\right.$ which equals $\left.\frac{Z_{x}}{Q_{x}^{\star} \frac{1}{(1+i)^{x}}}-1\right)$ represents the average of the present values of one dollar, payable, at the beginning of each year, during the continuance of the lives of each of persons living $\left(Q_{x}\right)$ in a stationary population at and over age x.

A column, represented by the well-known symbol M_{x}, may be eonstructed from values in columns L_{x}^{\prime} and N_{x} by the following simple formula:

$$
M_{x}=L_{x}^{\prime}-\frac{i}{1+i} N_{x}
$$

M_{x} represents the aggregate present values of a eonstant sum, the $\frac{1}{(1+i)^{x}}$ portion of one dollar, payable at the end of each of the years in which the deaths of the L_{x} persons living at the age x will occur.

For methods for dedueing from the above the values of other single life benefits, the reader is referred to the writings of Mr. David Jones, in his work on "Annuities and Reversionary Payments," of Professor De Morgan, in the Companions to the 13ritish Almanae for 1840 and 1842, and of Dr. Farr, in the Sixth and the Twelfth Reports of the Registrar-General (Eng.). These benefits may be uniform or variable, and may apply either to the entire period of life or to limited portions.

Tables, for determining the values of benefits eontingent upon a eombination of lives, may be framed by brief proeesses, in some degree analogous to those already indieated.

Table Vili.

Life Annuity. - The present value, after arriving at a certain age, of one dollar, payable at the end of each year during life.			Anyell Premicm Cxacgble at the bwinging of euch year, after arriving at a certain age, which will amount to one hundred dollars at the end of the year of decease.		Siygle Premicm Unatgmented. - The present value, after arriving at a certain age, of one hundred dollars, payable at the end of the year of decease.	
				$\begin{aligned} & e^{4} \\ & + \end{aligned}$		
	4 per cent.	5 per cent.	4 per cent.	5 per cent.	4 per cent.	5 per cent.
0	14.824	12.560	2.47	2.61	39.14	35.43
1	17.247	14.608	1.63	1.65	29.82	25.68
2	18.595	15.759	1.26	1.21	24.64	20.20
3	19.145	16.236	1.12	1.04	22.52	17.92
4	19.367	16.438	1.06	. 97	21.67	16.96
5	19.459	16.530	1.04	. 94	21.31	16.52
10	19.097	16.297	1.13	1.02	22.70	17.64
15	18.277	15.685	1.34	1.23	25.86	20.55
20	17.710	15.278	1.50	1.38	28.04	22.48
25	17.198	14.924	1.65	1.52	30.01	24.17
30	16.651	14.542	1.82	1.67	32.11	26.99
35	16.111	14.058	2.00	1.88	34.19	28.30
40	15.133	13.431	2.35	2.17	37.95	31.28
45	14.123	12.649	2.77	2.57	41.83	35.00
50	12.914	11.682	3.34	3.12	46.49	39.61
55	11.583	10.588	4.10	3.37	51.60	44.82
60	10.065	9.301	5.19	4.95	- 57.44	50.95
65	8.553	7.989	6.62	6.36	63.26	57.19
70	6.927	6.543	8.77	8.50	69.51	64.08
75	5.154	4.920	12.40	12.13	76.33	71.81
80	3.727	3.633	17.09	16.82	81.63	77.94
85	2.813	2.723	22.38	22.10	85.33	82.27
90	2.169	2.101	27.71	27.50	87.81	85.24
95	1.670	1.621	33.61	33.40	89.73	87.43

Table IX. - Comparison of the Present Values of a Widow's Rigit of Dower in the Income of an Estate worth $\$ 1,000$, complthed according to the Massachusetts, the Exglisif, and the Prussian Life Tables.

In computing the above table, the widow's interest in the.estate was supposed to continue until the moment of decease. Such tables have been sometimes framed on the assumption that the claim was to cease with the end of the year preceding that in which the death should oceur.

We observe a close resemblance between the values from the Massachusetts data, and those derived from the table that expresses the law of mortality that prevails over the females of England.

The values from Prussian data are usually less than those from the English and the Ameriean observations.

We now give tables comparing the newly determined law of mortality for Massachusetts, in some of the forms in which it has been presented, with the laws whieh prevail over the populations of several of the communities of Europe.

The ratios of deaths to population, in Tables X. and XI. do not, in all eases, admit of direet and exact comparison, owing to want of uniformity in the intervals of age. Their relations, however, are sulfieiently obvious for our present purpose. If eurves be traeed, to whieh the ratio of the number of the living to one annual death, at each of the intervals of age, and the age of the middle of the interval shall be courdinates, the relative vitality of the several communities at every age of life may be readily eompared, and with sufficient approaeh to exactness.

Table X. - Mortality, per clent., or, The Number of Deaths to 100 Plersons Living, in divers Comulnities, compared.

Ages.	$\begin{gathered} \text { Massacius'ts, } \\ 166 \text { Towns, } \\ 18 \overline{5} . \end{gathered}$	England and Wales,*Seven Years,$1838-4$. 1838-44.		Smeden,** Thirty Years, 1811-40.		Carlisle, \dagger Nine Years. 179-87.
	Persons.	Males.	Females.	Males.	Females.	Persons.
$0-5$	7.32	7.07	6.04	7.28	6.27	8.23
5-10	. 78	. 93	. 90	. 83	. 78	1.02
10-15	. 43	. 50	. 55	. 52	. 49	. 50
15-20	. 88	. 70	. 79	. 54	. 53	. 68
20-30	1.13	. 94	. 94	. 90	. 73	. 75
30-40	1.24	1.09	1.13	1.31	1.06	1.06
40-50	1.41	1.45	1.32	1.96	1.42	1.43
50-60	2.02	2.26	1.98	3.09	2.30	1.83
60-70	3.67	4.28	3.79	5.66	4.72	4.12
$70-80$	7.98	9.22	8.42	11.81	10.54	8.30
80-90	18.39	20.11	18.32	2.5 .63	23.01	17.57
90 and over	34.66	36.53	34.58	42.15	39.72	28.44
All ages	2.14	2.27	2.10	2.56	2.28	2.50

* From a paper by T. R. Edmonds, Esq., published in the numbers of "The Lancet" (London) for the 9 th and the 16 th of March, 1850.
\dagger Derivel from values on page 418 of Mr. Milne's Treatise on "Annuities and Assurances."

Table NI. - Mortality per cent., or the Nember of Deatis to 100 Persors living, in divers Commlenities, compared.

Ages.	Belaicm	Evglat and Wales.		Sweden	Ages.	Ages.	$\begin{array}{r} \text { Prussia } \\ - \\ \hline 3 \text { years, } \\ 30,40,41 . \\ \text { Persons. } \end{array}$
	$\begin{aligned} & 9 \text { years, } \\ & 1842-50 . \end{aligned}$	$\begin{aligned} & 7 \text { years, } \\ & 1838-44 . \end{aligned}$	10 years. $184 \bar{v}-\bar{j} 4$.	$\begin{aligned} & 20 \text { years, } \\ & 1821-40 . \end{aligned}$			
	Persons.	Mean of Males and Females.	Mean of Males and Females.	Mean of Males and Females.			
0-1	20.11	17.92		19.84	0-1		
1-2	7.19	6.55		\} 3.80			
2-3	3.78	3.51		\} 3.80	I-3		
3-4	2.61	2.50		$\} 1.56$	$3-5$		
4-5	1.80	1.84		\} 1.56	$3-5$		
0-5	6.99	6.54	6.85	6.43	0-5	0-5	8.02
5-10	1.09	. 91	. 91	. 76	5-10	5-7	1.52
10-15	. 22	. 53	. 53	.47	10-15	7-14	. 78
15-20	. 87	\} . 82	. 85		15-25	14-20	. 63
20-25	1.04	. 82	. 85	. 59	15-25	20-25	. 89
25-30	1.05	\} .99	1.05	. 97	25-35	25-30	. 97
$30-35$ $35-40$	1.08	(. 0		. 97	25-35	30-35	1.08
$30-40$ $40-45$	1.21	\} 1.25	1.30	1.42	35-45	35-40	1.32
45-50	1.56) $40-45$	
50-55	2.08	1.66	1.76	2.06	45-55	\} 45-55	2.10
55-60	2.75	2.95				55-60	3.57
60-65	2.77	2.95	3.04	3.57	55-65	60-65	5.58
65-70	5.38	\} 6.22	6.43	7.61			
70-75	8.41		6.43	7.61	65-60	$\{65-75$	9.09
$75-80$ $80-85$	11.69	\} 13.74	14.32	16.93	75-85	\} 75-85	15.15
85-95	22.70	28.42	29.19	32.60	85-95	85 \& upw.	26.62
95 \& upw.	25.79	41.46	45.22	43.64	95 \& upw.		
All ages	2.42	2.19	2.28	2.34			2.70

* Ninth Rep. Reg. Gen., p. 177, and Seventeenth Rep. Reg. Gen., p. xvi.
\dagger Eighth Rep. Reg. Gen. (Eng.), p. 276.
\ddagger Procecdings Am. Assoc. for the Adr. of Science, 1856, p. 56.

Table XII. - Proportions bory and sumiting certain Ages in divers Communties, compared.

	$\begin{aligned} & \text { Massacne'ts, } \\ & 166 \text { towns. } \\ & 1850 . \end{aligned}$	$\begin{gathered} \text { Evgland and } \\ \text { Wals, } \\ 1841 . \\ \text { Farr. } \end{gathered}$	Carlisle, 1779-87. Milne.	$\begin{gathered} \text { Prussia, } \\ 1839,40,41 . \\ \text { Elliott. } \end{gathered}$	SWEDEN AND Finlasid, 1801-5. Milne.	Belgium, 1842-50. Elliott.
0	10,000	10,000	10,000	10,039	10,000	10,000
1	8,449	8,537	8,461	8,294	8,112	8,504
2	7,733	8,010	7,779	7,721	7,659	7,918
3	7,424	7,739	7,274	7,364	7,403	7,625
4	7,258	7,554	6,998	7,147	7,226	7,429
5	7,146	7,420	6,797	6,992	7,096	7,296
10	6,873	7,061	6,460	6,589	6,729	6,912
15	6,726	6,863	6,300	6,385	6,5.58	6,671
20	6,437	6,606	6,090	6,165	6,377	6,386
30	5,748	6,033	5,642	5,641	5,918	5,754
40	5,078	5,383	5,075	5,008	5,369	5,130
50	4,409	4,662	4,397	4,243	4,647	4,413
60	3,597	3,800	3,643	3,141	3,590	3,464
70	2,475	2,453	2,401	1,573	2,163	2,185
80	1,059	938	953	444	644	787
90	118	115	142	50	49	110
100	2	1	9	1	0	5

Table XIII. - Average Futlre Deration of Life in certain Commenities, compared.

Ages.	Mass.achesETTS.	England and Wales.			Sifeden and Finland.	Pressia.	Carlisle.
	$18 \% 5$.	1841.		1838-44.	1801-05.	1839, $40,41$.	1719-87.
	Persons.	Males.	Females.	Males.	Persons.	Persons.	Persons.
0	39.8	40.2	42.2	40.4	39.4	36.7	38.7
5	50.2	49.6	50.4	50.2	50.0	47.1	51.3
10	47.1	47.1	47.8	47.5	47.6	44.8	48.8
15	43.0	43.4	44.1	43.6	43.8	41.2	45.0
20	39.9	39.9	40.8	40.0	40.0	37.5	41.5
25	36.9	36.5	37.5	36.6	36.3	34.0	37.9
30	34.0	33.1	34.2	33.2	32.7	30.6	34.3
35	31.0	29.8	31.0	29.8	29.1	27.1	31.0
40	27.9	26.6	27.7	26.5	25.5	23.8	27.6
45	24.6	23.3	24.4	23.1	22.1	20.4	24.5
50	21.3	20.0	21.1	19.9	18.7	17.1	21.1
55	18.1	16.7	17.6	16.7	15.6	14.0	17.6
60	15.0	13.6	14.4	13.6	12.6	11.2	14.3
65	12.1	10.9	11.5	10.9	9.9	9.0	11.8
70	9.4	8.5	9.0	8.6	7.5	7.4	9.2
75	6.8	6.6	6.9	6.6	5.7	6.0	7.0
80	5.0	4.9	5.2	5.0	4.2	4.8	5.5
85	3.7	3.7	3.8	3.7	3.2	3.8	4.1
90	2.9	2.7	2.8	2.8	2.4	3.0	3.3
95	2.3	2.0	2.1	2.1	1.7		3.5

Table XIV. - Aterage Feture Deration of Life of a Generatiox, or of those living at and over certain Ages, in a Population considered Statioxary.

* Sixth and Twelfth Reports Reg. Gen.

From inspection of Tables \mathbf{X}. and XI. it appears (so far as the data show) that, from a point below age 5 to about age 15 , lower rates of mortality obtain in Massachusetts than generally in European communities; that, from age 15 to divers ages hetween 35 and 50 , the Massachusetts rates are much higher; after which they again fall somewhat below the European. Under the age of five years, mortality in Mas-achusetts seems more intense than in Europe generally, though less so than in Prussia, and less than was experienced in the town of C'arlisle during the nine years, 1779-87, which period was before the introduction of raccination.

In the first of the above-mentioned intervals (say from age 3 to age 15), the mortality of Massachusetts approaches more closely to that of Sweden than to those of the other European communities.

In the second of the intervals (from about age 17 to 45), it more nearly represents the mortality of Belgiom, though higher; and from age 45 onwards, it is lower than, but nearer to, the average English rates, not varying greatly from the mortality of the females of England.

The mortality of Massachusetts appears to be lower than that of

Carlisle previous to about age 17 , thence generally ligher to about age 60 , lower to about age 80, and higher from that point onward.

As a whole, the mortality of the State is better represented by that of England, than of any

From about age 3 to age 35 the mortality of Sweden appears to be lower than that of England, and after age 35, higher.

In Prussia, with the exeeption of the intervals between the ages 1.7 and 25 , and between ages 85 and 95 , the mortality is uniformly higher than in England.

Through mueh of the interval under the age of 8 years, the mortality of Belgium closely resembles that of England; from that age to about 55 it is higher, thence to 85 nearly the same, and above that point, lower.

The Belgic rate is higher than the Prussian from age 15 to 32 , beyond which point it is generally the lower.

At birth, the average future duration of life in Massachusetts (see Table XIII.) appears to be slighty lest than in Sweden. From age 5 to age 25 inclusive, it agrees well with that of the males of England, and also with that of the population of Sweden. From age 30 onwardto advanced age, it is usually best represented by that of the females of England.

For mueh of the period from age 30 to age 75 inclusive, the Carlisle and the Massachusetts results do not greatly differ. Our eomparisons have been made with national life tables and with the Carlisle table. The latter is introdueed because of its extensive employment in this country and in Europe for insurance and in legal proceedings.

We observe, aceording to the Massachusetts life table, that of all born alive, somewhat less than one in six (.155) die before arriving at the age of one year ; that one fourth (.26) die before attaining the age of three years; that seven tenths (.71) survive the age of five years; one half (.51), the age of forty years; one fourth (.25) the age of serenty ycars; one tenth (.11), the age of eighty years; and that one of every hundred born alive reaches the advanced age of ninety years. Great reliance cannot be reposed in eonclusions respecting extreme longevity derived from the data employed in the construetion of any of the tables, whether European or American, both in consequence of the less reliable character of the returns at those ages, and of their limited number.

We have seen that in Massachusetts a greater disparity exists than in European countries, between the rates of mortality at the ages of 5 to 15 , and the rates from age 15 to about 45 .

In the towns of Massachusetts selected, the rate of mortality at the ages of 5 to 15 was but little more than one half (.55) of the rate at the ages of 15 to 40. In England, in 1841, the rate of mortality in the former interval of age was about three fourths $(.78)$ of the rate in the latter interval.

A similar disparity is observable on comparing the returns of deaths for the entire State for the six years, 1850-55, with the average of the numbers living at different ages according to two enumerations, - the one ordered in connection with the national census for the 1st of June, 1850, and the other in connection with the State census for the 1st of June, 1855. In the six years mentioned (1850-55), the rate of mortality in the entire State, according to the returns, at the ages of 5 to 15 , was fifty-six one hundredths $(.56)$ of the rate at the ages of 15 to 40 . This ratio (.56) is almost identical with (.55) that of the towns selected in 1855 , and strengthens the conclusion, that the feature under consideration prevails in the law of mortality of the population of the State.

The returns of deaths for the six years (1850-55) probably comprise but about eighty-five per cent. of the actual deaths of the period.

In the foregoing pages has been presented the Life Table for Massachusetts, with divers tables deduced therefrom. Among the more important of the latter may be enumerated: tables of average future duration of life ; preparatory tables for finding the values of ammities and other single life benefits, calculated at six different rates of interest ; and tables of life annuities, annual premiums, and single premiums at two rates of interest. Tables also have been given comparing the rates of mortality, the proportions living at certain ages according to the Life 'Table, and the average future duration of life in Massaehusetts, with corresponding values in several European countries.

We defer for the present a comparison of the new results with those derived from other American observations, and with those from observations respecting select classes of lives.

We append two notes, - the former (Note Λ) giving the formula employed in caleulating the influenee of immigration and emigration
on the population umler the age of fiee years, preparatory to the determination of the values in the Life Table under that age; the latter (Note 13) presenting the methods employed in constructing, by summary processes, from the Life Table, other tables of practical value.

Note A. - In a commmity unaffected by migration, and in which the births increase by a constant ratio, the followiag formula expresses, the relation which holds between the number of births $\left(L_{0}\right)$ in a given year, their amual ratio of increase $\left(\frac{1}{v}\right)$, the function which determines the number of deaths $\left(D_{0, x}\right)$ under any age $\left({ }_{x}\right)$ in the same year, according to the prevailing intern law of mortality, supposed invariable, and the number of those living $\left(P_{0,5}\right)$ under the age of five years in the middle of that year.

$$
L_{0}=\left\{P_{0,5}+\int_{0}^{5} \frac{v^{5-x} D_{0, x}}{\int_{-\frac{1}{2}} v^{x}}\right\} \frac{\int_{-\frac{1}{2}} 2^{x}}{\int_{0}^{5} v^{x}}
$$

Since the value of $d_{x} \int_{-\frac{1}{2}}^{\frac{1}{2}} v^{x}$ closely approximates unity, for the above formula may be substituted

$$
L_{0}=\frac{P_{0,5}+d x \int_{0}^{5} v^{5-x} D_{0, x}}{d x \int_{0}^{5} v^{x}}
$$

When the births are constant, the expression becomes

$$
L_{0}=\frac{P_{0,5}+d x \int_{0}^{5} D_{01 x}}{5}
$$

This relation is more fully discussed in the Proceedings of the American Association for 1856.

$$
\int_{0}^{5} v^{x} d x=\frac{v^{5}-1}{\text { Nap. log. } v .}=\frac{v^{5}-1}{\text { Com. log. } v .} \times \cdot 1342945
$$

To obtain $\int_{0}^{5} v^{5-x} D_{0 / x} d x$, when v and $D_{0,1}, D_{0 / \Omega}, D_{0,3}, D_{0,4}$, and $D_{0,5}$ are given, first determine the values of $v^{4} D_{0,1}, v^{3} D_{0 / 2}, v^{2} D_{0 / 3}$, and $v D_{0,4}$.

Then putting

$$
\begin{aligned}
& S_{5} \text { for } D_{0,5}+v D_{0,4}+v^{u} D_{0,3}+v^{3} D_{0,2}+v^{4} D_{0,1} \\
& S_{4} \text { for } v D_{0,4}+v^{u} D_{0,3}+v^{3} D_{0,2}+v^{4} D_{0,1} \\
& S_{3} \text { for } \\
& v^{2} \cdot v_{0,3}+v^{3} D_{0,2}+v^{4} D_{0,1}
\end{aligned}
$$

and assuming an algebraic law of relation to connect the values S_{2}, S_{4}, and S_{3}, we have

$$
\int_{0}^{5} v^{5-x} D_{0, x} d x=\frac{S_{5}+S_{4}}{2}-\frac{D_{0,5}-v^{2} D_{0,3}}{24}
$$

Note B. - On Methods employed in the Construction of certain Tables.

$$
\begin{aligned}
& Q_{x}=d x \int_{x}^{\infty} L_{x} \\
& Y_{x}=d x \int_{x}^{\infty} Q_{x} \\
& N_{x}=\Sigma_{x}^{\infty} L_{x}^{\prime}=\Sigma_{x}^{\infty} \frac{L_{x}}{(1+i)^{x}} \\
& Z_{x}=\Sigma_{x}^{\infty} Q_{x}^{\prime}=\Sigma_{x}^{\infty} \frac{Q_{x}}{(1+i)^{x}}
\end{aligned}
$$

On account of the obvious similarity of construction of Q and Y, and also of N and Z, we need only present the methods adopted in deducing Q from L, and N from L^{\prime}.

From age five onwards to advanced age, the values of L and L^{\prime} are given quinquennially; from birth to age five, annually. The construction of the values in columns Q and Y, at ages earlier than five years, differs. Let S_{x} and S_{x}^{\prime} represent the sum of the values of L_{x} and L_{x}^{\prime} respectively, at and over any age x, at equidistant intervals of n years; that is, let
and

$$
S_{x}=L_{x}+L_{x+n}+L_{x+2 n}+\cdots
$$

$S_{x}^{\prime}=L_{x}^{\prime}+L_{x+n}^{\prime}+L_{x+2 n}^{\prime}+\cdots \cdot$
L_{x} and L_{x}^{\prime} are general terms of series of positive values, that vanish when x is taken sufficiently great.

We remark, that

$$
d x \int_{x}^{\infty} L_{x}=d x \int_{x}^{x+n} S_{x}
$$

and

$$
\Sigma_{x}^{\infty} L_{x}^{\prime}-\frac{L_{x}^{\prime}}{2}=\Sigma_{x}^{\infty} S_{x}^{\prime}-\frac{S_{x}^{\prime}}{2} .
$$

We then assume the following formulas of integration,

$$
Q_{x}\left(\text { or } d x \int_{x}^{\infty} L_{x}, \text { which equals } d x \int_{x}^{x+n} S_{x}\right)
$$

equals
(A)

$$
n\left(\frac{S_{x}+S_{x+n}}{2}-\frac{1}{12} \cdot \frac{m D_{x}+D_{x-n}}{m+1}\right) ;
$$

and

$$
N_{x}\left(\text { or } \Sigma_{x}^{\infty} L_{x}^{\prime}, \text { which equals } \Sigma_{x}^{x+n} S_{x}^{\prime}-\frac{\Sigma_{x}^{\prime}}{2}+\frac{L_{x}^{\prime}}{2}\right),
$$

equals

$$
\begin{equation*}
n\left(\frac{S_{x}^{\prime}+S_{x+n}^{\prime}}{2}\right)+\frac{S_{x}^{\prime}}{2}-\frac{n^{2}-1}{12 n} \cdot \frac{m D_{x}^{\prime}+D_{x-n}^{\prime}}{m+1}, \tag{13}
\end{equation*}
$$

in which
and

$$
D_{x}=L_{x}-L_{x+n}
$$

$$
D_{x}^{\prime}=I_{x}^{\prime}-I_{x+n}^{\prime}
$$

Let m equal unity, when the ratio, $\frac{D_{x-n}}{D_{x}^{* *}}$ or $\frac{D_{x-n}^{\prime}}{D_{x}^{\prime}}$, is greater than $\frac{4}{v}$, and less than $2 \frac{1}{4}$.

These ratios, except at quite advanced ages, will commonly be such that m will equal unity, and the values of Q and N will not then differ from those that result from the assumption of an algebraic law of relation connecting the four values of S_{x} or S_{x}^{\prime}, at the ages $x-n, x, x+n$, and $x+2 n$.

If in (A) for $S_{x}+S_{x+n}$ the sum of the values of S_{x} at the limiting ages x, and $x+n$, we put G, and for $\frac{m D_{x}+I_{x-n}}{m+1}$ we put H; and in (B), in like manner, put G^{\prime} and I^{\prime}, we shall have

$$
\begin{equation*}
Q_{x}=n\left(\frac{G}{2}-\frac{I I}{12}\right) \tag{C}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{x}^{\prime}=\frac{n G^{\prime}}{2}+\frac{L_{x}^{\prime}}{2}-\frac{n^{2}-1}{12 n} H^{\prime} \tag{D}
\end{equation*}
$$

When it is desired to determine the values of Q or N from but three given equidistant values of S, or S^{\prime}, for H or I^{\prime} we put the sec-
ond difference of the three values; this is equivalent to assuming that the three values are connected by an algebraic law of relation.

If in (C) we let H be zero, Q_{x} becomes merely the product of the average $\left(\frac{G}{2}\right)$ of the values of S_{x} at the limiting ages x, and $x+n$, by (n) the number of years in the interval; and is equivalent to assuming that a law of arithnetical progression connects the values of S_{x} within the limits.* When the interval of age is quinquennial, $\frac{n^{2}-1}{12 n}$ equals ${ }_{10}^{4}$.

The operations in (C) and (D) may receive verbal interpretations.
To obtain Q_{x}; from the average of the limiting values $\left(\frac{S_{x}+S_{x+n}}{2}\right)$ of S_{x}, subtraet one twelfth $\left(1_{12}\right)$ of a mean (I) of the second differenees (D_{x-n}, and D_{x}) of the four consecutive values $\left(S_{x-n}, S_{x}, S_{x+n}\right.$, and $\left.S_{x+2 n}\right)$ of S_{x}, one of which $\left(S_{x-n}\right)$ shall preeede, and another ($S_{x+2 n}$) follow the valucs at the limiting ages (x and $x-n$), and multiply by the number of years (n) in the interval of age.

To obtain N_{x}; multiply the average of the limiting terms of S_{x}^{\prime} by the number of years (n) in the interval of age, add one half of the value of I^{\prime}, corresponding to the age, and subtract $\frac{n^{2}-1}{n}$ twelfths of a mean $\left(H^{\prime}\right)$ of the second differences $\left(D_{x-n}^{\prime}\right.$ and $\left.D_{x}^{\prime}\right)$ of the four values of $S_{x}^{\prime \prime}$ at the ages $x-n, x, x+n$, nnd $x+2 n$.

We remark that $I I$ and I^{\prime} are arithmetical means only when m equals unity; in other cases the greater weight is commonly given to the less of the second differences.

By giving to m the values which we lave mentioned above, we are enabled readily, and without resort to logarithmic tables, to arrive at, values that elosely approximate those that would lave resulted from the integration of the exponential function

$$
a+b x+c d^{x}
$$

which may be assumed to equal S_{x} or S_{x}^{\prime}. a, b, c, and d are

[^5]constants to be determined from the four values of the functions (S_{x} or S_{x}^{\prime}) corresponding to the specified ages $x-n, x, x+n$, and $x+2 n$.
d will, in all cases, be positire, and the curve represented by above exponential function, if referred to rectangular coördinates, will have no point of contrary flexure.

If $S_{x} S_{x}^{\prime}$ be represented by the algebraic function

$$
a+b x+c x^{2}+d x^{2}
$$

the curve, to which the above is the equation, if referred to rectangular coürdinates, will have a point of contrary flexure within the limits of the ages $x-n$, and $x+2 n$, whenever the ratios of the second differences $\binom{\mathrm{D}_{x-n}}{\mathrm{1}_{x}}$ of the values of S_{x} corresponding to the ages $x-n, x$, $x+n$, and $x+2 n$ is greater than 2 , or less than $\frac{1}{2}$; and the larger the ratio, if greater than 2 , or the smaller the ratio, if less than $\frac{1}{2}$, the more eceentric the curve.

If in (A) we give to m the value

$$
\begin{aligned}
& (r-1-12 \delta) r \\
& 12 \delta r-r+1
\end{aligned}
$$

in which

$$
r=\frac{D_{x-n}}{D_{x}}
$$

and

$$
\delta=\frac{1}{2} \frac{r+1}{r-1}-\frac{1}{\text { Nap. } \log \cdot r},
$$

we shall obtain for Q_{x} precisely the values that would have resulted from the direct integration within the limits x and $x+n$, of the exponential expression,

$$
S_{x}=a+b x+c d^{x}
$$

Ahove age 5 , the values of Q_{x} were formed by successively adding to the previously determined value of Q_{5}, the values of the definite integrals of L_{x} for the ages 4 to 5,3 to 4,2 to 3 , and 1 to 2, determined according to algebraic laws of relation, involving, in the first case (that from 4 to 5), three, and in the other cases four of the given equidistant values of $L_{x^{\prime}}$. The integral from birth to age 1 was determined by assuming that the values at ages 0,1 , and 2 were connected by the parabolic law of relation,

$$
L_{x}=L_{0}-\left(L_{0}-L_{1}\right) x^{b}
$$

in which b obviously equals

$$
\frac{\log \cdot\left(L_{0}-L_{2}\right)-\log \cdot\left(L_{0}-L_{1}\right)}{\log .2}
$$

The value of $\int_{0}^{\prime \prime} L_{x} d x$, the required integral, is

$$
\left(L_{0}-\frac{L_{0}-L_{1}}{1+b}\right)
$$

5. On a New Form of Aritimetical Complements. By Thomas Hill, of Waltham, Mass.

If we give the name of arithmetical supplement to the arithmetical eomplement diminished by one, or, in other words, to the complement obtained by subtracting each digit of a number, zeros̃ ineluded, from the highest digit of the system ; (that is, in decimal notation from nine) then the following theorem is manifestly true.

If from the supplement of any whole number we subtract the same number that we add to the ughole number, the sum and difference thus obtained are supplements of each other.

Thus $1863+857=2720$ and $8136-857=7279$; and 1863 is the suppleinent of 8136 , and 2720 of 7279 . These supplements may be used in arithmetical machines by printing the supplement of each digit in a smaller type by its side, so that we add by looking at the larger figures, and subtraet by looking at the smaller. Thus the example already given may be printed

$$
1_{8} 8_{1} 6_{3} 3_{6} \pm 857=2_{7} 7_{2} 2_{7} 0_{9}
$$

Thinking that possibly other uses might be found for them, I have thus called the attention of computers to them.

MU'VUAL, LIFE INSUIRANCE。

THE NEW ENGLAND

MUTUAL LIFE INSURANCE COMPANY,

OFFICE, 14 STATE STREET, BOSTON,

Insures lives on the Mutual 1'rinciple. Accumulation over $\$ \mathbf{1 , 2 0 0 , 0 0 0}$, and increasing, for benefit of Members, present and future. The whole safely and advantageously invested.

The business conducted exelusively for the benefit of the persons insured.
The greatest risk taken on a life, $\leqslant 15,000$. Surplus distributed among the members every fifth year, from Jecember $1,1843$.

Premiums may be paid quarterly or semi-annually, where desired, and amounts not too small.

Forms of applieation and pamphlets of the Company, and its reports, to be had of its Agents, or at the Oflice of the Company, or forwarded by mail, if written for, post-pilid.

WILLAR1) l'HiLLIl's, President.
BENJAMIN F. STEVENS, Secretary.
J. HOMANS, M. D., Consulting Physician.

[^0]: * A Life Table, prepared by the eminent Dr. Edward Wigglesworth from sixtytwo IBills of Mortality recorded previous to the year 1789 in the States of Massaclusetts and of New I Iampshire, was published in the second rolume of the Memoirs of the American Academy of Arts and Sciences. Unfortunately, in constructing the table, allowance was not made for the fact that the population had been rapidly increasing, aud the table was framed on the assumption that it had been stationary. This table has been employed by the conts of the Commonwealth in determining the values of "life interests in estates, legracies, and pensions," and the values of "reversions in heritable property."
 \dagger A valuable Life Table, constructed from observations respecting the mortality of the Alumni of Harvard University, and, consequently, expressing the law of mortality which prevails, in America, over the more highly educated classes, was laid before the Anerican Association at its late meeting in Montreal, by Irof. Benjamin P'eiree, of Cambridge.

[^1]: * 9th Report Registrar General (England).
 \dagger sth Report Registrar General (England).
 \ddagger See 6th Report Registrar General (England).
 § Statistique de la Belgique, l’ublié par le Ministre de l'Interieur.

[^2]: * Had the rate of the annual increase of the nmmbers living moder age five (3.13 per eent.) resulted entirely from the increase of births in a permament population, the number of hirths of 1855 would have been 24,457 , instead of 23,481 , the number registered. On the other hand, had the inerease resulted wholly from migration (the annual mmber of births in the permanent population being constant), the nmber of

[^3]: * From deaths and estimuted popalation, at the ages of three to five.
 \dagger The former of these values was obtained by giving double, and the latter by giving triple, weight to the antecedent of the respeetive duplicate values in the preceding column.

[^4]: * Sixth Rep. Reg. Gen. p. 524

[^5]: * This very simple form does not differ essentially from that given by Dr. Farr in the Fifth Report of the Reg. Gen. (Eng.), and is sufficiently accurate for the earlier ages, if the uniform interval of age (n) is not larger than quinquennial.

