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Arrow of time and its reversal on 
the IBM quantum computer
G. B. Lesovik1, I. A. Sadovskyy2, M. V. Suslov1, A. V. Lebedev1,3 & V. M. Vinokur   2

Uncovering the origin of the “arrow of time” remains a fundamental scientific challenge. Within the 
framework of statistical physics, this problem was inextricably associated with the Second Law of 
Thermodynamics, which declares that entropy growth proceeds from the system’s entanglement with 
the environment. This poses a question of whether it is possible to develop protocols for circumventing 
the irreversibility of time and if so to practically implement these protocols. Here we show that, while 
in nature the complex conjugation needed for time reversal may appear exponentially improbable, one 
can design a quantum algorithm that includes complex conjugation and thus reverses a given quantum 
state. Using this algorithm on an IBM quantum computer enables us to experimentally demonstrate a 
backward time dynamics for an electron scattered on a two-level impurity.

A fundamental question of the origin of irreversibility of time emerged already in classical statistical physics1–5 
and has been remaining ever since a subject of an continuous attention6–8. Intense researches revealed several 
aspects of this problem. One of them is a statistical mechanics view discussing the irreversibility problem in the 
context of the fluctuation theorem9–16. In particular, it was quantitatively described and shown experimentally 
that in a finite temporal interval the time reversed dynamics can emerge17. The quantum systems were discussed 
in18 where the positive entropy production rate was experimentally demonstrated on a single spin-1/2 particle, 
while in19 the negative entropy production rate in the presence of a Maxwell’s Demon was observed for spin-1/2 
quantum system. Moreover, the full quantum treatment have shown theoretically20,21 and later experimentally22 
that the presence of initial mutual correlations between subparts of a quantum system may lead to a local violation 
of thermodynamical laws and hence to the thermodynamic arrow of time reversal. Even in a quantum system ini-
tially not correlated with an environment, the local violation of the Second Law can occur, as it was demonstrated, 
with the mathematical rigor23, in the framework of the quantum channel theory24. Most of the above works were 
based in a good part on thermodynamic considerations. From the slightly different perspective this question 
was discussed in the seminal work by Zurek25, who looked at the irreversibility issue from the angle of the loss of 
predictability with the time. A solely quantum mechanical aspect of the problem was stressed by Landau26 and 
von Neumann27 who related irreversiblity to the process of a macroscopic measurement. In28 the arrow of time 
dilemma was addressed from the point of view system-observer considerations, but later this approach was criti-
cized in29. Here, in the spirit of quantum mechanics, we elaborate on the implications of the Wigner’s result30 that 
time reversal operation is anti-unitary because it requires complex conjugation. We demonstrate that this emerg-
ing anti-unitarity predicates that the universal time reversal operation does not spontaneously appear in nature. 
To make the time reversal possible, one would need a supersystem manipulating the quantum system in question. 
In most of the cases, such a supersystem cannot materialize spontaneously. As an illustration, we use the simplest 
systems of a single- or two particles subject to electromagnetic fluctuations. We show that even the evolution of 
these single- or two-particle states in a free space generates the complexity that renders spontaneous time reversal 
either highly improbable or actually impossible. We expect that if irreversibility emerges even in the systems that 
simple, than, even, more it should appear in the more complex systems. In what follows, we quantify the complex-
ity of the preparation of the time-reversed quantum state and the probability of its spontaneous emergence. We 
show that the time-reversal complexity of the developed quantum state scales linearly with the dimension of the 
Hilbert space swept by the system in the course its forward time evolution, but that one can devise an administer-
ing supersystem artificially. This is implemented experimentally by modeling a real system, the electron scattered 
on the two-level systems, on the IBM quantum computer. In this respect we utilize the conjectures by Lloyd6.

Further, a principal possibility of occurring of the time reversal was discussed in20.
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Reversal of The Spreading Wave Packet
That in quantum mechanics in order to execute a time reversal operation one has to perform complex conjugation 
of the wave function, implies that the time reversal operator ̂  is a product of a complex conjugation operator ̂ 
and a unitary rotation ÛR, i.e. =ˆ ˆ ˆURT K, where for any Ψ, Ψ = Ψˆ ⁎ . This operation not only reflects velocities like 
in the classical physics, but also reverses phases of the wave function components. A general universal operation 
that can reverse any arbitrary wave function, does not exist in nature. Yet, some special Ψ-dependent operation 
such that Ψ = ΨΨ

ˆ ⁎U  can exist and below we explicitly construct such an operation for a system of qubits. To that 
end, one has to design a supersystem that is external with respect to the system of interest and which is capable to 
implement the purposeful manipulating on the given system. In nature, in the simplest case of a single particle, 
the role of such a supersystem can be taken up, for example, by the fluctuating electromagnetic field. To gain an 
insight into how this works, let us consider a wave packet corresponding to the particle with the square energy 
dispersion, ε = p m/22 , where p is the particle momentum and m is the particle mass, propagating in space, see 
Fig. 1. The electromagnetic field is assumed to be predominantly weak except for rare fluctuations. Thus, the 
spreading of the wave packet is coherent. At large times τ the wave packet spreads as
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where f(q) is a Fourier image of the initial spatial wave function. The phase of Ψ changes as a result of the action 
of the fast fluctuation of an external potential, i.e. with the potential that changes on the times much shorter than 
the characteristic time of the phase change. To set the fluctuation that complex conjugates Ψ, let us divide the 
coordinate space into a large number of the elemental cells δxn where a wavefunction’s phase ϕ τx( , ) changes 
slowly and look for a fast electromagnetic potential fluctuation V x t( , ) which is smooth on the cell’s scale and 
reverts the phase of the wavefunction: ∫ ϕ τ= −dt eV x t x( , )/ 2 ( , )n n . If during the τ  the wave packet (1) has 
spread from the size L0 to the size τ=τL mL/ 0, it would require ∼ τ

−N L L( / )1/2
0  elementary cells to approxi-

mately revert the quantum state τ τΨ → Ψ
∼⁎

x x( , ) ( , ) with the probability −1 : τ τ|〈Ψ |Ψ 〉| = −
∼⁎ ⁎x x( , ) ( , ) 12 , see 

Supplementary Information (SI). Then the probability of the spontaneous reversal, i.e. the probability of the 
appearance of the required electromagnetic potential fluctuation, estimates as 2−N. Now we determine the typical 
time scale τ on which the spontaneous time reversal of a wave-packet can still occur within the universe lifetime 

∼ . ×t 4 3 10U
17 sec. The latter is obtained from the estimate τ−

 t2 /N
U , where the number of cells 

τ∼ 〈 〉−N E( / )1/2ε �  is expressed through the average particle energy 〈 〉 =E mL/2
0
2. As a typical average energy of 

the wave-packet we take the energy corresponding to the current universe temperature 2.72 K, and arrive at 
τ × −
 6 10 11 sec. One thus sees that even in the discussed simplest possible example of a single quantum parti-

cle the time reversal is already a daunting task where even with the GHz rate of attempts, the required fluctuation 
is not observable within the universe lifetime. The above arguments reveal that, in quantum mechanics, time 
irreversibility emerges already on the level of a single evolving particle.

Now we consider a more complex example and demonstrate that a separable state

ψ ψ ϕ ϕΨ = | | +x x x x i x x( , ) ( ) ( ) exp[ ( ( ) ( ))] (2)1 2 1 1 2 2 1 1 2 2

of two particles can not be reverted by classical field fluctuations in the case where particle’s wave functions over-
lap. Let all particles have the same electric charge q and interact with a classical electric potential v(x, t). The 
potential fluctuations produce phase shifts ∫ dtqv x t( , )/ . Accordingly the proper fluctuations capable to reverse 

Figure 1.  Time reversal procedure for a Gaussian wave-packet σΨ ∝ −x x( , 0) exp( /2 )2 2 , σ = . .a u1( ). The wave-
packet spreads τΨ → Ψx x( , 0) ( , ) according to a quadratic Hamiltonian p̂ m/22  during the time interval 

τ σ= m3 /2 . At the moment τ the system is exposed to the fast step-wise electromagnetic potential fluctuation v(x) 
(second panel). The fluctuation approximately (with the precision corresponding to the density of partitioning points) 
conjugates the phase of the wave-function: ϕ τ ϕ τ ϕ τ τ δτ→ = +− + −


x x x ev x( , ) ( , ) ( , ) ( , ) /0 0 0  (third panel). The 

prepared time-reversed state τΨ
∼ x( , ) then freely evolves during the same time interval τ and arrives to the squeezed 

state τΨ
∼ x( , 2 ) (fourth panel). The resulting state τΨ

∼ x( , 2 ) has 86% overlap with the initial state Ψ x( , 0) shown as an 
empty envelope curve in the fourth panel.
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the quantum state should satisfy the condition ϕ ϕ+x x( ) ( )1 1 2 2  +  ∫ +dt qv x t qv x t[ ( , ) ( , )]/1 2  = 
ϕ ϕ− −x x( ) ( )1 1 2 2 . For =x x1 2 it implies ∫ ϕ ϕ= − −dtqv x t x x( , )/ ( ) ( )1 2 , and therefore at ≠x x1 2 one has to 

satisfy the condition ϕ ϕ ϕ ϕ+ = +x x x x( ) ( ) ( ) ( )2 2 1 1 2 1 1 2  which, in general, does not hold.
Quantum entanglement introduces the next level of complexity for the time-reversal procedure. Consider a 

two-particle state Ψ = |Ψ | ϕx x x x e( , ) ( , ) i x x
1 2 1 2

( , )1 2  with the non-separable phase function ϕ = +x x a x b x( , ) ( ) ( )1 2 1 1 1 2
a x b x( ) ( )2 1 2 2 . In this situation even for the non-overlapping particles with Ψ =x x( , ) 01 2  for =x x1 2 the two-particle 
state can not be reversed by an interaction with classical fields. Let one access the particles by different fields which 
induce separate phase shifts Ψ → Ψ φ φ+x x x x e( , ) ( , ) i x x

1 2 1 2
( ( ) ( ))1 1 2 2 . The induced phase shifts should satisfy the rela-

tion: φ φ ϕ+ = −x x x x( ) ( ) 2 ( , )1 1 2 2 1 2 , therefore for any three points ≠ ≠x x x1 2 3 the following conditions should 
hold

φ φ+ = − +x x a x b x a x b x( ) ( ) 2( ( ) ( ) ( ) ( )), (3)1 1 2 2 1 1 1 2 2 1 2 2

φ φ+ = − + .x x a x b x a x b x( ) ( ) 2( ( ) ( ) ( ) ( )) (4)1 1 2 3 1 1 1 3 2 1 2 3

Subtracting these relations one gets φ φ−x x( ) ( )2 2 2 3  = − −a x b x b x2 ( )( ( ) ( ))1 1 1 2 1 3  − −a x b x b x2 ( )( ( ) ( ))2 1 2 2 2 3  
where the left hand side does not depend on x1 and therefore one has to assume a1 and a2 to be constant. This, 
however, contradicts the non-separability assumption for ϕ x x( , )1 2 .

An entangled two-particle state with a non-separable phase function can naturally emerge as a result of scat-
tering of two localized wave-packets31. However, as we have seen, the generation of the time-reversed state, where 
a particle gets disentangled in the course of its forward time evolution, requires specific two-particle operations 
which, in general, cannot be reduced to a simple two-particle scattering.

The above consideration enables us to formulate important conjectures about the origin of the arrow of time: 
(i) For the time reversal one needs a supersystem manipulating the system in question. In the most of the cases, such 
a supersystem cannot spontaneously emerge in nature. (ii) Even if such a supersystem would emerge for some specific 
situation, the corresponding spontaneous time reversal typically requires times exceeding the universe lifetime.

A matter-of-course supersystem of that kind is implemented by the so-called universal quantum computer. It 
is capable to efficiently simulate unitary dynamics of any physical system endowed with local interactions32. A 
system’s state is encoded into the quantum state of the computer’s qubit register and its evolution is governed by 
the quantum program, a sequence of the universal quantum gates applied to the qubit register. There exists a 
panoply of ways by which a quantum state of a system can be encoded into the states of the quantum computer. 
Indeed, choosing a proper dimension of the quantum computer register one can swap its state ψ| 〉0 reg with the 
system’s quantum state, |Ψ〉sys, by the unitary operation ψ ψ| 〉 ⊗ |Ψ〉 = | 〉 ⊗ |Ψ 〉ÛSWAP 0 reg sys reg 0 sys, where the map-
ping ψ|Ψ〉 → | 〉sys reg completes the encoding task. Such an encoding procedure is universal i.e. it does not require 
the knowledge of the system state |Ψ〉sys. However, non-physical encodings might be suggested which can not be 
accomplished by unitary transformation. One of the ways to do that was proposed in33 where the real and the 
imaginary components of the system’s wave function were separately mapped onto the different Hilbert subspaces 
of the auxiliary system, i.e. quantum computer. Within this representation of the initial quantum system, the 
complex conjugation can be formulated as a universal unitary rotation of the wave function of the auxiliary sys-
tem. However, the mapping itself is not a universal unitary operation as follows from the superposition principle 
arguments. This means that the approach of33 merely lifts the problem of the non-unitarity of the quantum con-
jugation hiding it in the non-unitarity of the mapping procedure. At variance, in what follows we address the time 
reversal of the original physical system without nonphysical mapping it on some completely different system 
unrelated to the original one. We start with formulating general principles of constructing time-reversal algo-
rithms on quantum computers and, in the next section, present a practical implementation of a few-qubit algo-
rithm that enabled experimental time reversal procedure on the public IBM quantum computer.

General Time Reversal Algorithms
Consider a quantum system initially prepared in the state Ψ =t( 0) and let it evolve during the time τ  into the 
state τ τΨ = − ΨiH( ) exp( / ) (0). Let us find a minimal size of a qubit register needed to simulate the dynamics of 
a system τΨ → Ψ(0) ( ) with a given fidelity −1 . Let us choose a finite set of time instances τ∈t [0, ]i , 

= … ′i N0,  subject to a condition |〈Ψ |Ψ 〉 | = −+t t( ) ( ) 1i i 1
2  with =t 00  for some small  > 0. Then at any time 

instant τ∈t [0, ] a state Ψ t( ) can be approximated by the discrete set of states Ψ = … ′t i{ ( ), 0, }i  with the fidelity 
−1 . The set of states Ψ t{ ( )}i  spans the Hilbert subspace   of the dimension ≤ ′  . Therefore,   basis vectors 

| 〉 ∈ei   can be represented by   orthogonal states of the qubit register, | 〉 → |
→

〉 ≡ | …〉e b b bi i 0 1 . The correspond-
ing qubit Hamiltonian Ĥ  which mimics the original Hamiltonian ̂ is then defined by the relation 

≡ 〈
→

| |
→

〉 = 〈 | | 〉ˆ ˆ ˆH b H b e e( )ij i j i j .
Below we introduce two encoding procedures | 〉 → |

→
〉e bi i . In the first, sparse coding approach, one assigns a 

separate qubit to each state | 〉ei , ∈ −i [0, 1]  and encodes the state ψ τ( ) into the  -qubit state 


ψ ψ| 〉 = ∑ | … … 〉=
−

−0 1 0i i i0
1

0 1 . The second approach is a dense coding scheme where one records the state ψ τ( ) 
into a state of = +n int [log ( )] 12  qubits ψ ψ| 〉 = ∑ | 〉=

− ii i0
1 , where int[x] is the closest upper integer to x: 

≤x xint[ ], | 〉 ≡ | … 〉−i b bn0 1  is a computational basis state corresponding a binary representation of the number 
= ∑ =

− − −i b 2k
n

k
n k

0
1 1 .

A time-reversal operation ̂  of the qubit register can be presented as a product =ˆ ˆ ˆURT K of the complex 
conjugation operator ̂,  ψ ψ| 〉 ≡ | 〉ˆ ⁎i i( )i i , and some unitary operator ÛR, whose form is defined by the 
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Hamiltonian Ĥ , =ˆ ˆ ˆ† ⁎
U U UR H H , where = …ˆ ˆ ˆ†

H U E E Udiag{ }H n H1  see SI. Therefore, ?in order to implement the 
time-reversal operation ̂  one needs to know the Hamiltonian Ĥ explicitly. Note, that quantum computer is able 
to simulate unitary dynamics governed by an arbitrary Hamiltonian including those that do not correspond any 
physical system (for example, some non-local Hamiltonian). It is known, that the joint transformation of the 
charge conjugation, parity inversion, and time reversal is considered as an exact symmetry of all known laws of 
physics, and, therefore, the qubit Hamiltonian Ĥ, which corresponds to a real physical system, has to honor this 
symmetry as well. Therefore, the unitary operation describing evolution of the physical system ÛR is generally 
known and represents a transformation which is inherited from the time-reversal symmetry of the original 
Hamiltonian ̂. In particular, if the qubit Hamiltonian ̂ is real, then the corresponding evolution operator τÛ( ) 
is symmetric that entails =Û 1R .

In the following we assume the unitary ÛR to be known and focus on the unitary implementation of a complex 
conjugation operation ̂,  → ψ

ˆ Û . In particular, we quantify a complexity of such implementation as a number 
of elementary quantum gates or/and auxiliary qubits needed to implement ψÛ . For a sparse coding scheme, the 
complex conjugation of the  -qubit state 

ψ ψ| 〉 = ∑ | | | … … 〉ϕ
=

−
−e 0 1 0i i

i
i0

1
0 1i  can be accomplished by the uni-

tary operation ϕ= ∏ ⊗ −ψ =
−ˆ ˆU T( 2 )i i i

(1)
0

1  where ϕT̂( )i  is the single qubit operation: ϕ | 〉 = | 〉T̂( ) 0 0i i i  and 
ϕ | 〉 = | 〉ϕT̂ e( ) 1 1i i

i
i . Consequently, the sparse coding scheme does not require the most “expensive” two-qubit 

gates at all but do require a large number   of qubits. For the dense coding scheme the situation is the opposite: 
this scheme involves only a logarithmically smaller number n of qubits but instead requires implementation of 2n 
n-qubit conditional phase shift operations:  → = ∑ | 〉〈 |ψ

ϕ
=
− −ˆ Û j j ej

i(2)
0

2 1 2n
j which add proper phases to each com-

ponent of the state ψ| 〉: ψ ψ| 〉 = | 〉ψ
ˆ ⁎U

(2)
. Therefore, ψÛ

(2)
 must involve two-qubit gates, i.e. conditional-NOT (CNOT) 

gates. We quantify the complexity of the dense coding scheme by a number ⊕N  of CNOT gates needed to imple-
ment it. Each phase shift operation ϕΦ ≡ | 〉〈 | ϕˆ i i e( )i

i  can be build with the help of −n 1 ancillary qubits and 
−n2( 1) Toffoli gates, as shown in Fig. 2A. In total, it requires = − ∼ψ⊕

ˆN U n[ ] 12( 1)2 12 log ( )n(2)
2   CNOT 

gates. However, such an arrangement is non-optimal as it involves an excess usage of Toffoli gates. Indeed, let us 
consider two states, | 〉 = | … 〉−j b b bn0 1 1  and | ′〉 = | ′ ′ … ′ 〉−j b b b n0 1 1 , with coincident two older bits = ′b b0 0, = ′b b1 1. 
The separate usage of phase shifts ϕΦ̂ ( )j j  and ϕΦ ′ ′

ˆ ( )j j  involves the double check of b0 and b1 values. The better 
implementation checks b0 and b1 only once and conjugates phases of all states within a set | … 〉−b b b bn0 1 2 1  within 
a separate circuit block. In fact, such optimization can be done for all subsequent junior bits b3, b4, see Fig. 2B, that 
can minimize the usage of Toffoli gates and reduce the reversal complexity to be linear in  :  ∼⊕ 24 , see SI. 
We thus arrive at the conclusion that The number of elementary operations needed for the exact time reversal pro-
cedure of the dynamics of a quantum system which in the course its evolution sweeps a Hilbert space of a dimension 
  is bounded from above by some number ( )O N . If now we consider typical systems emerging in nature, then the 
entanglement generates the dimensionality,  , that is exponentially large with respect to the number of particles 
involved.

Time Reversal Experiment
Now we are equipped to carry out an experiment implementing two- and three-qubit time-reversal procedures uti-
lizing the public IBM quantum computer. We model a one dimensional particle scattering on a two-level impurity 
(TLI). The dynamics of the impurity is governed by a Hamiltonian, ω α σ α σ= +ˆ ˆ ˆH (cos sin )z xi  . The scattering 
potential seen by the particle depends on the state of the TLS. The corresponding scattering operator has the form 

= | 〉〈 | ⊗ + | 〉〈 | ⊗ˆ ˆ ˆS S S0 0 1 1i 0 1, where Ŝ0 and Ŝ1 are symmetric unitary scattering matrices of the TLI in a state | 〉0  or 
| 〉1 . This scattering problem is modeled by the evolution of the qubit register | 〉 ⊗ | 〉 ⊗ ⊗ | 〉Û q q q( )n i nbit 1 , where 

Figure 2.  Complex conjugation circuits. (A) Quantum circuit implementation of the conditional phase shift 
operation Φ =

ˆ
k 6 for a component | 〉0110 . The circuit involves three types of gates: 1-qubit NOT gate 

| 〉 = | ⊕ 〉X̂ b b 1 , 1-qubit unitary rotation ϕ− | 〉 + | 〉 = | 〉 + | 〉ϕ−T̂ a ae( 2 )[ 0 1 ] 0 1k
i2 k , and 3-qubit Toffoli gate 

which reverts the state of the last target qubit if and only if two first control qubits are both set to | 〉1 : 
Λ | 〉 ⊗ | 〉 = | 〉 ⊗ | ⊕ 〉ˆ b b11 11 12 . The first three Toffoli gates set the ancillary qubit c2 into | 〉1  if and only if the 
qubit register is set to the | 〉0110  state and the last three Toffoli gates restore the original state | 〉 ⊗ | 〉b b b b 0000 1 2 3 . 
(B) The quantum circuit with the optimal Toffoli gate arrangement which conjugates four components: | 〉1111 , 
| 〉1110 , | 〉1101  and | 〉1100 . The circuit is partitioned into several nested blocks (subroutines) ⊃A A11?? 111?, the 
question marks standing for an unknown bit value. The first-level block (blue) A111? conjugates only 
computational states where three senior qubits | 〉b b b0 1 2  are all set to | 〉1 . The next-level block (red) A11?? contains 
as a subroutine the block A111? and conjugates all components | 〉 = | 〉b b 110 1 .
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| 〉qi  qubit describes the state of the TLI and the remaining qubits describe the state of scattered particles. The basis 
states | 〉0i  and | 〉1i , = …i n1,  correspond to the left and right incoming/outgoing state of the ith particle. We con-
sider the processes in which one or two incoming particles are scattered on the freely evolving TLI. We assume that 
both particles incident from the left being in a well localized ballistically propagating states and arrive at the impurity 
where they experience instantaneous respective scatterings at separate time instants τ=t  and τ=t 2 . The corre-
sponding evolutions are described by unitary rotations τ⋅ˆ ˆS U( )i

(1)
i  and τ τ⋅ ⋅ ⋅ˆ ˆ ˆ ˆS U S U( ) ( )i

(2)
i i

(1)
i  for one- and 

two-particle situation, where τ τ= −ˆ ˆU iH( ) exp( / )i i  describes the free evolution of the TLI between the particles 
arrivals and Ŝ

i
i
( )

, =i 1, 2 is the scattering operator for the i-th particle. Next, in both cases we let the system freely 
evolve during a time τ that makes the resulting 2-qubit and 3-qubit evolution operators: τ τ= ⋅ ⋅ˆ ˆ ˆ ˆU U S U( ) ( )2bit i i

(1)
i  

and τ τ τ= ⋅ ⋅ ⋅ ⋅ˆ ˆ ˆ ˆ ˆ ˆU U S U S U( ) ( ) ( )3bit i i
(2)

i i
(1)

i  more symmetric, that simplifies the form of ÛR unitary rotation enter-
ing in the time-reversal procedure. The 2-qubit scattering model is endowed with the symmetric evolution operator 
Û2bit and, therefore, its time reversal requires only the complex conjugation operation T K=ˆ ˆ . At variance, the evo-
lution operator Û3bit of the 3-qubit model is non symmetric and its time reversal requires an additional unitary 
r o t a t i o n  =ˆ ˆ ˆURT K .  I t  f o l l o w s  f r o m  t h e  r e l a t i o n  ⋅ ⋅ =ˆ ˆU USWAP SWAP

t
12 3bit 12 3bit ,  w h e r e 

| 〉 ⊗ | 〉 = | 〉 ⊗ | 〉q q q qSWAP12 1 2 2 1  is the swap operation, that the required unitary operation =Û SWAPR 12. The cor-
responding quantum circuits realizing Û2bit and Û3bit are shown on Fig. 3A and C, see the detail in SI.

According to the results of the Section 2, the unitary implementation of the complex conjugation for a 2- or 
3-qubit register will require 48 or 144 CNOT gates. These numbers are beyond of the present capability of the 
IBM public quantum computer due to the finite error rate 1.5–2.5% of its CNOT gates. Here we utilize an alter-
native to the Section 2 approach (see SI for details), which is based on the arithmetic representation of the n-bit 
AND Boolean function34,
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where ∧ ∧ …b b0 1  is 1 if and only if all = = =b b 10 1  and ⊕ ⊕ …b b0 1  is modulo 2 addition. Consider, for 
instance, a 2-qubit situation. The complex conjugation ϕ= ∑ Φψ =

ˆ ˆU ( )k k k0
3  can be alternatively represented as

Figure 3.  A time-reversal experiment. (A and B) The quantum circuits which model the scattering process of one or 
two particles (qubit lines q0 and q1) on the two level impurity (qubit line q2). Unitary operations Ûi (red boxes) describe 
free evolution of the TLI during the time τ. Remaining operations simulate the particle’s scattering: the group of 
1-qubit gates (blue or yellow boxes) combined with the two CNOT gates implements the scattering operator ψŜ  for the 
q1 or q0 particle. The parameters of the gates are adjusted in the specific way: σ σ| 〉 ⊗ | 〉 = | 〉 ⊗ | 〉ˆ ˆ ˆ ˆ ˆ ˆ ˆ †T U U T q S S q1 1x x2 2 1 1 2 1  
and | 〉 ⊗ | 〉 = | 〉 ⊗ | 〉ˆ ˆ ˆ ˆ†

T U U T q q1 12 2 1 1 , see SI. (C) and (D) The 2- and 3-qubit quantum circuits realizing the exact 
complex conjugation procedure. A single qubit gate ϕ ϕ ϕ σ ϕ σ≡ ˆ ˆ ˆ ˆT TTXTX( , ) ( ) ( )x x performs a phase shift of a qubit 
components: ϕ ϕ | 〉 + | 〉 = | 〉 + | 〉ϕ ϕa b ae beTXTX( , )( 0 1 ) 0 1i i

i
i

i
i

, =i 0, 1, 3. The gates TXTX combined properly 
with the CNOT gates perform the controlled phase shifts associated with the single-qubit (bi, bi, =i 0, 1, 2) (green 
boxes), two-qubit ( ⊕b bi j, ⊕b bi j, =i j, 0, 1, 2, <i j) (blue boxes) and three-qubit ( ⊕ ⊕b b b0 1 2, ⊕ ⊕b b b0 1 2) 
logical term (red box) in the Eq. (5). (E) Realization of the 2 or 3-qubit time reversal experiment performed on the 
IBM public quantum computer. The histogram shows (in percents) the appearance rates of the computational basis 
states obtained by the 8192 independent runs of the experiment.
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ϕ ϕ ϕ ϕ= − ∧ − ∧ − ∧ − ∧ψÛ i b b i b b i b b i b bexp[ 2 2 2 2 ], (6)00 0 1 01 0 1 10 0 1 11 0 1

where bi denotes a negation of the bit value. Summing up all four components in the exponent according to the 
Eq. (5) one decomposes ψÛ  operator into a product of 1-qubit and 2-qubit phase shifts operations:

α β α β α β= − − − − − ⊕ − ⊕ψÛ i b i b i b i b i b b i b bexp[ ]exp[ ]exp[ ], (7)0 0 0 0 1 1 1 1 01 0 1 01 0 1

where ai, βj are linear combinations of the phase shifts ϕk. The modulo 2 addition ⊕b b0 1 can be effectively imple-
mented with only two CNOT gates. This approach can be generalized for arbitrary number of qubits and turns 
out to be more efficient at small n since it does not need an ancillary qubits at all and requires − −n( 1)2n 1 CNOT 
gates for the complex conjugation of an arbitrary n-qubit state that wins over the approach discussed in Section 2 
for ≤n 48. In particular, at =n 2 and 3 one needs only two or eight CNOT gates, respectively. The corresponding 
2- and 3-qubit quantum circuits are shown on Fig. 3B and 3D.

The time-reversal experiment runs in several steps: (i) The qubit register that is initially set into the state 
ψ| 〉 = | … 〉(0) 0 0  accomplishes the forward time unitary evolution ψ ψ ψ| 〉 → | 〉 = | 〉Ûn0 1 bit 0 . Next, (ii′) the unitary 
complex conjugation operation  = ψ

ˆ Û  is applied ψ ψ ψ| 〉 → | 〉 = | 〉ψ
ˆ⁎ U1 1 1  followed by (ii″) the unitary transfor-

mation ÛR, ψ ψ ψ| 〉 → | 〉 = | 〉ˆ ˆ⁎ ⁎UR1 1 1 . As a result, the time-reversed state ψ| 〉ˆ
1  is generated. Finally, at step (iii) 

one applies the same forward time unitary evolution ψ ψ| 〉 → | 〉ˆ ˆ ˆUn1 bit 1   and measures the resulting state of the 
register in the computational basis. In practice, the step 2″ is only needed for the 3-qubit model where 

=Û SWAPR 12 requires three additional CNOT gates. In order to save this number of CNOTs we replace the for-
ward evolution operator Û3bit at step (iii) by the new evolution operation obtained from Û3bit via the physical 
interchange of two particle qubits, rather than to implement the SWAP12 operation at step (ii″). Generally, to 
arrive to the same initial state one has to apply the inverse time-reversal operation T K=− ˆ ˆ †

UR
1  to the final state 

 ψ| 〉ˆ ˆUnbit 1 . However, if the initial state ψ| 〉(0)  was a product state | … 〉0 0  this operation is in fact not needed. 
Indeed, the complex conjugation just changes the overall phase of the qubit register while ˆ

†
UR  swaps the same qubit 

states in 2-particle scattering experiment.
The above time reversal experiment sets the qubit register again into the initial state | … 〉0 0  with the probabil-

ity unity, provided all quantum gates are prefect and no decoherence and relaxation processes are present. The 
exemplary outcome probabilities ψ= |〈 | 〉|

∼P b bij i j 0
2 and ψ= |〈 | 〉|

∼P b b bijk i j k 0
2, =i j k, , 0, 1 obtained in a real experi-

ment for the 2- and 3-qubit models are shown on the Fig. 3E. One can see that the probability for observing the 
correct final state | … 〉0 0  is less than 100% and for 2- and 3-qubit experiment are given by . ± .85 3 0 4% and 

. ± .49 1 0 6% correspondingly. This considerable distinction from the perfect scenario comes from the three main 
sources: (i) The finite coherence time T2 of qubits; (ii) The errors of CNOT gates and (iii) The readout errors of the 
final state of the qubit register.

The observed outcome probabilities were obtained after 8192 runs of each experiment at the same state of the 
‘ibmqx4’ 5-qubit quantum processor, see details in SI. For the 2-qubit experiment two processor’s qubit lines q1 and 
q2 with the coherence times 41.0 μs and 43.5 μs and readout errors  = .3 3%r1  and  = .2 9%r2  were involved. For the 
3-qubit experiment, the additional q0 qubit line with μ= .T 39 4 s2  and the readout error = .4 8%r0  was used. The 
2-qubit experiment requires six CNOTq2,q1 gates with the gate error = .2 786%g 21 , while the 3-qubit experiment 
acquires, in addition, six CNOTq q2, 0 and four CNOTq q1, 0 gates with the corresponding gate errors = .2 460%g 20   
and = .1 683%g10 . This numbers give us a rough estimate of the net error rates:  1 (1 )g2bit 21

6= − −
 (1 )(1 ) 15 6%r r1 2− − ≈ .  a n d  = − − − −1 (1 ) (1 ) (1 )g g g3bit 21

6
20

6
10

4      − − −(1 )(1 )(1 )r r r0 1 2
≈ .34 4%. One can see, that while this estimate agrees with an observed error of a 2-qubit experiment, the error 
probability for the 3-qubit experiment is underestimated. We argue that a time duration of a single 3-qubit exper-
iment is about 7.5 μs is comparable with T2 times, while a single 2-qubit experiment takes less time about 3 μs. 
Hence, the decoherence effects are more prominent in a 3-qubit case that might explain the underestimated value 
of the error rate. The more experimental data for the different system parameters and processor states are dis-
cussed in SI. We note, that at the present date the more accurate computation can be made within NMR quantum 
computation paradigm35, where much more accurate two-qubit gates can be achieved.

Conclusion
Our findings suggest several directions for investigating time reversal and the backward time flow in real quan-
tum systems. One of the directions to pursue, is the time dependence of the reversal complexity   of an evolving 
quantum state. In our work, we have shown that an isolated d-dimensional quantum particle with quadratic 
spectrum exhibits a polynomial complexity growth τ τ=( ) d . Uncovering the  τ( ) dependence for realistic 
situations, accounting for the interactions will establish a mechanism and the corresponding time-scale on which 
time-reversed states can spontaneously emerge. Another fundamental question is whether it is possible at all to 
design a quantum algorithm that would perform time-reversal more efficiently than using ( )O N  elementary gates. 
So far, our time-reversal schemes were scrolling one by one through the state components but did not exploit a 
quantum parallelism in its full power. On a practical side the time-reversal procedure might be helpful for the 
quantum program testing. Having in hands a multi-qubit quantum computer it is hard to verify that it really has 
computed the desired result. Indeed, the full tomography of the computed state is an exponentially hard task. 
Alternatively, making the time-reversal of the anticipated computed state and running the same evolution drives 
the computer back to its initial state if and only if the computer really made a correct computation. The initial 
state is typically non-entangled and therefore its verification is an easy task.
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Data Availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information file.
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