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PREFACE.

THE object of this work is to explain, illustrate, and apply
the fundamental principles of the Calculus, in such a manner
as to bring them within the comprchension of a student,
having merely a knowledge of ordinary Algebra and Trigo-
nometry, and to enable him to undertake the perusal of such
valuable practical works as ¢ Moseley’s Principles of En-
gineering,” “Navier’s L’Application de la Mécanique,”
“ Whewell’s Mechanics,” ¢ Hann's Treatise on the Steam
Engine,” &ec.

To a person merely acquainted with ordinary algebra, tle
Calculus must, at first, appear mysterious and metaphysical;
for he has to view abstruct quantities, not only in an iso-
lated form, but as admitting of continuous changes, and of
taking certain finite ratios as they approach zero or infinity.
The principle involved in a limiting ratio must, however, be
eventually understood by every student who wishes to make
a satisfactory progress in this branch of analysis. I have
adopted the method of limits almost exclusively in this work,
because it appears to be the most natural and consistent
foundation of the Calculus; and with the view to simplity
this method as much as possible, I have fully explained and
applied it in the preliminary portion of this treatise, apart
from the conventional and abstract notation by which the
condition of a limit is usually expressed.

It is highly desirable that Teachers and Practical Men
should possess some knowledge of this most important branch
of pure mathematics, in order to enable them to understand
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our best works on mechanical and experimental Iﬂliloséphy.
The great physical laws, by which it has pleased the Almighty
to govern the universe, must always form a lofty subject of
contemplation to his intelligent creatures; but these laws
can only be duly interpreted by the aid of the symbolic
language of the higher analysis.

As a complete knowledge of a great subject, like this,
cannot be obtained from the perusal of one book, those who
aspire to a further acquaintance with the higher parts of the
Calculus must study the works of De Morgan*, Moigno,
O’Brien, Hymers, Gregory, Pricet, Hall, Moscley}, and
Young.

T. TATE.
Battersea, Feb. 1849,

* « De Morgan's Calculus™ is the largest work on the subject in ous
language.
1 On the method 4f Infinitesimals.
ot On Decfinite Integrals, published in the « Encyclopedia Metropo-
litena,”
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THE

DIFFERENTIAL AND INTEGRAL
CALCULUS.

INTRODUCTORY PRINCIPLES, &c.

1. Toe quantities used in the following work are of two
kinds, constant and variable.

A constant quantity always preserves the same value
throughout an investigation, whereas a wvariable quantity
in general admits of taking any value we may please to give
it. Constants are expressed by the first letters of the
alphabet, and variables by the last letters: thus, in the ex-
pression a + bx? the letters @ and & are constant quantities,
and z is the variable.

2. When a quantity changes gradually, or passes from
one value to angther, by going through all the intermediate
values, we say that it varies continuously ; and, on the con-
trary, if the quantity changes abruptly in going from one
value to another, we say that it varies discontinuously. 1f
a body move in a curve, its distance from a tixed point will
vary continuously ; but if, on the contrary, the body should,
as it were, leap from one point of the curve to another, its
distance from the fixed point will vary discontinuously.
All quantities are supposed to vary continuously in the
differential calculus.

3. When a variable and constants are in any way com-

B



2 INTRODUCTORY PRINCIPLES, ETC.

bined in an expression, that expression is sald to be a
Sunction of the variable; thus vVa+bxr+cx?, (a+bx), as,
sin. (a@+ ), are all functions of . Functions are expressed
by placing the symbols f; r, &c. before the variable. Thus,
if y=a+bx—ca?, we say that y is a function of z, and we
should express this relation generally by writing y=£(2).
The letters f; ¥, used as the symbols of a function, denote
the way in which the variable is combined with the con-
stants which enter the expression. It is important to
observe that f{z) denotes an expression cifferent from ¥(x);
and, moreover, in the functions f{z) and fly + %), we arc to
understand that, whatever may be the form of the first ex-
pression with respect to x, the second will have the same
form with respect to y+ 4.

THE BINOMIAL THEOREM.

4. This theorem enables us to raise a binomial to any
power, without going through the process of multiplication.
The following is the simplest form of this theorem : —

n(n—1)(n
- 1.2.3

n(n
1.

a +.z')"=l+7{.z'+ _21).1:‘3+ ~2) 5 4 &
It will be afterwards shown that all other cases may be
reduced to this form. .
For the sake of conciseness, putting A, A, &c., for the

coeflicientsof z, x?, &c., we have
Q42 =144,2+A,224 .. .+AT, . ..
where the coefficient of the gencral term is

_n(n=1)...(n—r+1)
A= 1.2.8....0

5. To prove the binomial theorem when the index is a
positive integer.



THE BINOMIAL THEOREM.

[y

By multiplication we know, that

(14+7)2=1+42z+ 2%,

(1 +x)*=143x4 322+ a3,
where it will be seen that the coefficients are formed ac-
cording to the law in the preceding development.

We shall now show that if the law for the coefficients be
assumed to be true for any one power of 1+, it will also be
truc for the mext higher power, that is, if it be true for
(1 + 2y, it will also be true for (1 4x)".

Let us suppose that (1 +2)" '=14+ax+a.2?+&e. . . (1),
where a@,, a,, &c. have the same form in reference to n—1,
that A}, a,, &c. have to », that is,

)
ay=n~—1, az_————li—(—ﬁ-——Q &e.

Multiplying both sides of eq. (1) by 1+, we find

(L+z2)=141+a)r + (¢, +a)x®+ (ay;+ay)rd+ &e.,
where the coeflicient of 7 will obviously be ¢,_; +a..

But I+a,=l+ﬁ—l=n=A,,
-1 (n—2 n—2
a,+02=n—1+(7l ])(.': )=(n—1){1+” o }

1.

71( iz j-l_) =5n

and so on. Generally the coefficient of 27, or a,_, +«,

_(r=1(n-2).. (11—r+1) (r=D(n—=2)...(n—71)

T1.2.3 ¢y 1.2.8...7
(u— l)(n——‘)) . (n—r+1) n—r
1 =1 {1
n(n—l)(n—‘)) (n—r+l)
1.2.3...r "3

S (4 z)y=14+ax+a22+ ... +A2"+ &e.

Hence it appears that if this formula be true for any one
B 2



4 INTRODUCTORY PRINCIPLES, ETC.

power, it is also true for the next higher powkr; but we
know that it is true for the 2nd and 3rd powers, therefore it
is true for the 4th power, and therefore for the 5th power,
and so on by continued inductions we conclude that it is
true for the nth power.

6. To prove the binomial theorem, when the index ts frac-
tional or negative.

Mu]tlplymg together the developments of (1+z)" and
(1+z)™, established in the preceding article, we have,

(1+2) x(l+z)"‘—(l+z)"+’"—{l+ x4~ ( 2)a:2+&c}
{l+ +ﬂ(7{'—»l~)ﬂ+&c}

But (1+z)*m=1 +("+m) (n+m) (n+m_l)a:'+&c.

- +’i‘z+"—('i—llz'~'+&c} x 14+ 2+ Dan 4 g
[ 3

Mm@, e,

Now although z and m were, in the development of
(1+x)* &c., restricted to integer values, yet it is evident
that the expression for the above product, if true at all,
must be true for any values that may be given to » and m.
This result might be verified by actwal multiplication, but
the operation is tedious.

Let filn)=1+ 7{.1:-}- ﬂln_zl )

22+ &e. . .. (2),

whatever may be the value of # ; then

m(mzl) 2 4 &,

n+m (n+m) (n+m—1) ,
z+ .2

Fmy=1+Tz+

and f(n+m)=1+ %+, &ec.



THE BINOMIAL THEOREM. -]
Hence by eq. (1) we have,
S(n) xf(m)=f(n+m),
whatever may be the values of # and m. In like manner,
S() x f(m) < f(p)=f(n+m) X f(p)=Sf(n+m+p)
and so on to any number of factors; thus it appears that the

product of any number of series, such as that expressed by

J(n), will produce another series having the same form.
Hence we have,

LFOY =) f(2) xtoto m tactar.
=f (£+£ +&e. to m termS)

=f(n);
but when % is a plus integer f(n)=(1+2)";

@Y f)0erF

taking the mth root of both sides of the equality.

Hence the series symbolised by f(») is the development
of (1+x)", when 2 is a positive integer or fraction.

Let us now consider the case f( —n), where 2 may be in-
tegral or fractional.

J(n) xf(—n)=f(n—n)=/f(0)=1,

(because the series (2) becomes unity when 2=0),
1 1
s S(- ”>=_m)=(1—+;)'= (1+4+x)—.

Hence the series symbolised by f(n) is the development
of (1+4z)", when = is ne}ative and any integral or fractional
number.

Generally, therefore, whatever be the value of the index
n, we always have,

A +ay=fmy=1+T2+2 1= Dat 4 ge.
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Lastly, because

x
aj:m._a(l ia)’

- (atz) —-a"(l+ ) _a,.{1+ z n(;e—21)22+&c }

=a"+ T o'z 71(171 1 )a”—zx’ + &e.

which is the most general form of the binomial theorem
where

n(n—1)...(n—r+1) e
1.2. 3...

the (r+1)th term =

INDETERMINATE COEFFICIENTS.

7. If the equality a4+ dxr=A+Bx be true for every valu
of 3 then a=a, and b=mn.
« For as the equation holds true for any value that may b
given to z, let x=n,
s, a+bn=A+Bn;

subtracting this from the proposed equality,
b(x—n)=B(x—n);
» b=s, and .. a=A.

The equation @+ bx=A + bz, differs essentially from ord
nary equations where x admits of being determined in terir
of the constants; whereas in the equation here considered ¢
admitting of all values, is an indecterminate quantity ; thu
we find z= 2{-5, but since a=4a and é=g8, we have z=§
a result which, in the present case, is the symbol of an inde
terminate quantity.

In general, if a+4dx+cx?+ &e.=a+Br+cCca’+ &ec, L
true for every value of x; then a=a, b=s, c=c, &c., ths
is, the coefficients of the like powers of x are equal.



INDETERMINATE COEFFICIENTS. 7

As anywalue may be put for x, let 2=0; then a=a;
taking @ and A from the original eq., we have,

bx+ cx?+ &c.=Br+Ccx’+ &c.;

here x may take any value we please, hence we may now
consider it as some definite number ; therefore dividing each
side of the equality by z, we have,

b+ecx+ &c.=B+cr+ &c.;
here again as any value may be put for z, let z=0; then

b=g. Proceeding in this way, we find, c=c, d=p, and so
on.

. . 1-2¢
Ezx. 1. Required three terms of the quotient of 1Tz
Let 1222 24 &
et 1+_—4 _A+B.z+c:c + &c.;

where the coeflicients A, B, ¢, &c., remain to be determined.
Multiplying each side of the equality by 1+ 4x, we have,

1—2r=A+Br+cCcx?+ &c.
+4Axr+ 4224 &Ke.
=A+(4A+B)r+(dB+C)2?+ &e.
therefore equating the coeflicients of the like powers of «,
] A=1;444+B=—2, .-, B=—2—4a=—6;

4B+4+c=0, .. c=—4p=24; and so0 on.

. 1—23_ s o o
S m;—-l 61+2‘*1‘ &c.
1 . . .
e, 9, al frac- \
Ex. 2. Resolve GIDGETDED) into its partial frac
tions.
1 —_A c
(¢+1)(z+2)(z+3) Fritertoes

B 4
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‘where the coefficients A, B, and ¢ remain to be c'ietermiﬂed;
multiplying both sides of this eq. by (z+1) (z +2) (= +3),

1=4(2+2)(z+3)+B(x+1) (2 +3)+c(z + 1) (z+2).
Since any value may be put for z, let z=—1,
then 1=A(—1+4+2)(—143), .*. A=};
let z=—2, then 1=B(—2+1)(—2+8), ., B=~1;
let z=—38, then 1=c(—3+1)(—8+2), ... c=}.

. 1 1 1 + 1
D) (@+2)(2+38) 2(z+1) z+2 2(2+3)
A+Dx . . . .
Ez. 3. Resolve (Faz) (1 1 02) into its partial fractions.

A+ Bx N S Q .
(1+ax) (1+dxr) l+4axr 1+4ba’

Let

.multiplying both sides of this eq. by (1 + ax) (1+ bx),
A+Br=r(l+4 bx)+Q(1 + ax).

1
Since any value may be put for z, let z= —psoasto make

1 +ax=0, then A-E:P(l —é),
a a

., p=22"53.
o0 — a_b ?
1 B a
let Z=—3, 50 a8 to make 1+ bx=0, then A——b-=Q(l—Z),
. _Ab—B__ Ab—B
I e TPy
A4 Bx Aa—B Ab—B

“ UFax) 1 +02) (@=08) (A +ax) (a—b)(1+bz)

8. To expand a2, or to prove the truth of the exponential
theorem. -



INDETERMINATE COEFFICIENTS. 9
a*= {1+{a—1)}* (expanding by the binomial)
=1+2(a— 1)+z(z 1) a—1) +’("___1.‘))_(3___2)(a_1)a+&

P A2 (1) 4 e

--1+a:(a—l)+ —(a—1y2+

=1+ {(a—l)—g(a-l)2+3(a—1)3—&c., T+ 4,22+ &e.
=1+Az+4,224+ 45284+ &c.;
where A=(a—1)—}(a—1)?+}(«—1)3—&c.,
and Ay, A, &c. also depend upon powers of a—1.
‘We are therefore at liberty to assume that
a*=1+az+4,22+ 4523+ &c. . . . (1)
and putting 2x for z, we have,
a¥=1+42ax+ 44,22+ 84,83+ &e. . . . (2)
But by actually squaring both sides of eq.(1), we have, |,
a¥=1+2a0+(a%+24,)22+ (24;+244,)2% + &e. . . . (8),
Hence equating the coefficients of the like powers of x in

eq. (2) and (3), we have,

A2

4A,=A%3+424,, ", Ay=55

3
8a3=2A;+2A44, ., 6a3=244,=43, ., A3=~2i§;
and so on to the other coefficients.

A323 Adat i
“"123"'1 o 3at¥e |

4

..a-..l+ +1 3

Cor. 1 If e be put for that value of a which makes A=1,
then

z2 3
=1 +'+1—.§+i_.f2.—3+&°' \/
BS
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In order to find the numerical value of e, let 2=1, then
1 1

It is important to observe that e or 2-71828, &c. is taken
for the base of what is called the Napierian or hyperbolic
logarithms.

Throughout this work the logarithms of any number % to
the bases @ and e, are thus expressed, log,n, and log,n.
Hence log,a=1, because the exponent of the base @ to pro-
duce the number @ must be unity, or a=al.

. 1
9. In the general equation for a* let x=, or Ar=1, then

1
ar=l +1 +~:.l“2+1—.—;—‘—3-+&c.=2'71828, &c.=e.

1

Soe=at o oa=ét,
taking the logarithms of each side of these two equations,
viz., of the first when @ is the base, and of the second when e
is the base,

logac=§, and log.a=a . . . (1)
by multiplication,

1
log,e xlog.a=1, .-. log,,e:-l-—(;ﬂ--(; N ¢3)

ze

From eq. (1) we have,
log.a=a=(a—1)—}(a—1)*+3}(a—1)3—&c. . . . (3).

10. To find the sum of the series 124224324 , . . +n2

Let s, be put for the sum of the proposed series, and s,
for the sum of the arithmetical series 142+ . . 4n, then
in the expansion,

(x—1)3=23—32x%4+3x—1,
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take z successively equal to 1,2, 3, . . . », add the result-
ing equations, and cancel the common terms, and we shall
have,

0 =13-3.1243.1-1
13 =23-3%2243.2-1
23 =35-3.32+3.3-—1

.
.

(n—.-l)"=n3-—3 . 7;’+3 .a—1

0 =n'-3s, + 3.8,—n

n3 n_nd n n
S m=g s —g=y+tlTy

EQUATIONS TO CURVES,

11. We now proceed to treat of the eguations to the
straight line, the circle, and those other curves which are
of the greatest practical importance.

The position of a point is deter-
mined when its distance from two

given straight lines is known. Thus, Py "

let 0z, and oy be two straight lines,

perpendicular to each other, then = ¢ N =
the position of a point P will be

known, when the perpendicular dis- h " "

tances PN and PM, from the given
lines 0z, and oy are known. The lines oz and oy are called
azes, and ON (=MP) and PN, the ordinates of the point p.
The perpendicular PN is cailed the ordinate, and its length
is expressed by y; ON is called the abscissa, and its length
is expressed by « ; PN and ox taken together, are called the
coordinates of P; and the point o, the origin of coordinates.
Ez. If oN=4, and PN=:3, then to find the point p; from
=6
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a scale of equal parts take ON=4; draw NP perpendicular
to ox, and from the same scale of equal parts, take Np=3;
and r will be the point required.

12. If oN=a, and NP=), then x=a, and y=¥b, are the
equations to the point p.

z=—a, and y=», are equations of a point p,, situated in
the angle youx,.

2= —a, and y=—b, are equations of a point P, situated
in the angle ¥, ox,.

z=+a, and y=—>J, are equations of a point p; situated
in the angle y,0x. See the Principles of Geometry and
Mensuration, p. 94.

13. If in the curve PQR, the relation of
the ordinates to their corresponding ab- R
scissa be expressed by an equation, the
curve itself may be drawn by finding
different points in it. Thus, let y=2?—
3i1'+3 be the equation of the curve, or
the equation expressing the relation be-
tween any ordinate and its corresponding abscissa: then
taking xoroN=1, we have y or NP=12—3 x 1 +3=1, hence
the point r is determined. Taking z or oM=2, we have y
or MQ=22-3x2+3=1, hence the point Q is dctermined.
Taking z or 0s=3, we have y or skR=32—3x3+43=3,
hence the point R is determined. And so on to any number
of points.

In general the ordinate of a curve is always some function
of its abscissa, hence the equation of a curve is generally
expressed by the equation y =f (r). We propose to deter-
mine the peculiar form of this equation for various curves
having some given property or mode of generation.

O N M §#




EQUATION TO THE STRAIGHT LINE. 13

The Equation to the straight Line.

. 14. Let cP be the straight ’ /
line, and ox and oy the axes.
Put oN=2, NP=y, 0B=0,
and tan / c=a; then draw-
ing Bn parallel to oz, we = =
have

rn tan/ PBn=tan/ C=a
—= =tan =a.
B

But prn:=pPN—BO=y—b, and Bn=0N=ux,
. y=b_

e M=a

z
. y=ax+b,

Since P is any point in the straight line cp, the relation
of z and y, expressed in this equation, also contains the
relation of the co-ordinates of every point in CP; hence the
above expression is called the equation of the straight line.

Cor. 1. If the line be drawn through the origin 0, then
oBor b=0, and .". y=ax;

this is the eq. of a line drawn through the origin.

15. Given, the equation to a straight line to construct it.

For example, let y=ax—b, be y
the equation.

When 2=0,theny=a x0—b=—5, /’
that is, when the abscissa is 0, the 5 P —
ordinate 0B is —b. Or the line cuts »
the axis of y below the origin. /

When y=0, then ezx—56=0, and

b
T=-=0P.
a
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16. The equation to a straight line drawn through a give.
point.

Let y=az + b be the equation to the line, and 7, and z, the
co-ordinates to the given point; then, as y, and x, are co-
ordinates of a point in the straight line, we must have,

Y= a.z',-f-b
and y=azx+b
v y—y=az—a).

17. To find the equation to a straight line whick passe.
through two given points.

Let y=ax +b be the equation to the line, where @ and ¢
are to be eliminated by means of the given co-ordinates
z, and y, of the one point, and z,, and y,, of the other.

Soy,=axr,+b...(1)
and y,,=azx,, +b...(2)
<. y,—y,,:a(:r,—.r”);

et

z,—x

Since y=azx+b
and y,=ax,+b;

. — Y=Y,
.. y—y,-a(x—x,)—x”-_—j”(x—:c,),
by substituting the value of a.

Equation to the Circle.

18. Let op=a, DCc=fB, be thc co- ‘ ¥
ordinates of the centre ¢; and oN=ux,
and Np=y, the co-ordinates of the point
P in the circumference ;

then pn2+cn=cp? or 72; 0, N v
but PR=NP—DC=y—B,

and CR=0D—ON=a~—Z;
o (=B +(a—z)i=r%
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Cor. 1. If the centre ¢ be on the axis oz, and the cir-
cumference be on the origin o, then pc or =0, and oD or

= Sy (r—a)y= té‘

and ., yi= 2r:c—:c? -
Cor. 2. If the centre ¢ be in the origin o, then §=0, and
a=0;
S YR tat=rl

Egquation to the Parabola.

19. Let Qx be a given fixed
line called the directrix, F a fixed
point called the focus, and P any
point in the curve, then the cha-
racteristic property of the parabola *
is, that the distance PQ of the point
P from QK is equal to the distance
PF of this point p from the focus.

Through r draw AFx perpendicular to QK ; bisect FA in o,
then o will be a point in the curve.

Let oA=0F=a, oON=x, and NP=y.
Now FP2=FN24NP?;
but FP=QP=AN=0A+ON=a+2, FN=ON—OF=x—a,
and Np=y ; therefore, by substitution,
(a+ay=(z—a)'+y*;
s yi=4ax.

Now, as this equation is true for any point P in the curve,
it will express the relation of the co-ordinates of every point
in the curve; hence this relation is called the equation of
the curve.

Cor. Let rP=r, and /£ PFN=6,
then »r=FP=AN=AF+FN=2a+7rcos PFN=2a+47rcos §;
2a - i

1—cos 6
This is called the polar equation of the parabola.

Q.. r=

s

v
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Egquation to the Ellipse.

20. If two lines FP and F,P revolve about two fixed points
¥ and F, called the foci, in such a way that we always have

A

[ ]
FP+F,P=2a, a constant; the curve traced by the point of

intersection P is called an ellipse.

Bisect FF, in ¢, and take cA=cD=a, then the curve will
pass through A and p; through ¢ draw BoM perpendicular to
AD; with ¥ as a centre, and radius equal to a, describe an
arc cutting this line in the points B and M, then the curve
will pass through B and M, because FB=FB=ga, and ., FB
+FB=2a.

Let cN=2, NP=y, cB=), Fr=d, F\P=d,; and as CF
must be a certain part of cD, let CF or cF,=ae, which is
called the eccentricity. From the right-angled triangles,
FNP and F; NP we have,

FP? or *=NF'+NP'=(ae—a)' +y%,
F\P or d?=NF'+NP'=(ae+ ) +y
Hence we bave, by addition and subtraction,

P+ D=2+ +9") . o or . .. (1)
d}—d or (d,+d)(d,—d)=4aez . . (2)-
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But d,+d=2a . ...(3)
by substituting in (2), 2a(d,—d)=4aex,
o d,—d=2ex...(4);
adding and subtracting (3) and (4),
d,=a+ex, d=a—ex,
substituting these values in eq. (1),
2(a’e? + 22+ y?)=(a+ex)? +(a—ex)?
S YPP=(1—e?)a?—(1—e?)z?
=(1—e?) (a2—z?).
In order to eliminate e from this equation, we have,
CF2+4CB?=F B2, that is a%?+02=a?, and
32

S l—e?=—.

a?

2
and ¥ +% =1...(2)

Cor. 1. Let A be the origin, and put AN==z,; then
r,=AC+CN=a+z, ., v==x,—a. Substituting this value
of x in eq. (1), we find, after a little reduction,

=y 2
Y=, (2az, —x,?).

This is the equation to the ellipse for the co-ordinates AN
and NP, or when the origin is taken at A.

Cor. 2. Let a circle be described upon the major diameter
AD of an ellipse, ABDM, then putting z;=AN, and Np,=y,,
and Ap=2r=_2qa, we have by Cor. 1. to the equation of the
circle, Art 18,

yi=2rz, -z,
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but by the last Cor. the equation to the ellipse is

.
.'V'=E-j (2rzy—x,?),

NS
hence by division, ;’—:;[:, Or NP ! NP, ;! BC ; AC.
1
Cor. 3. Let ¢ be the pole; join ¢ and p; put cp=r, and
£rcp=6. Then ¢cN or =7 cos §, and NP or y=r sin §;
substituting these values in eq. (2) of the ellipse, we have,

72sin20  72cos?20

e T e =h .

. ab b

A/ 02¢0820 + ¢25in20 o/ 1 —¢2c0s28’

o b2 .
by substituting 1—e? for éf and reducing.
This is called the polar equation to the ellipse.

Equation to the Hyperbola.

21. In the Llyperbola
the difference between
Fp and F,r is a constant
quantity, F and F; being
the fixed foci. /

Let rip—¥P=2¢a. Bi- /D m PV

sect ¥,F in C, and take
CA=cCD=aea, then one
branch of the curve will
pass through A, and the
other through p. Put cx=x, NP=p, CF or CF,=e¢ times
ca=ea, Fr=d, and F\P=d,.
Then from the right-angled triangles NPF and NPF;, we
have,
d?=N¥F24NP2=(ea —x)?+y2
d2=NF 2+ NP2=(ea+x)2 432
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Proceeding in the same manner as in deriving the equa-
tion to the ellipse, we have,
d2+d2=2(a%?+22+y”) ... (1)
d2—d? or (d,+d) (d,—d)=4aex.
But d,—d=2a,
s d,4+d=2ezx;
hence by adding and subtracting,
d,=a+ex, and d=ex—a;
substituting these values in (1) and reducing, we find,
y*=(e—=1)(x2—a?)...(2)
Making (e2—1) =§, or b2=a?%(e?—1), in order to sustain

the analogy between the equations of the hyperbola and
ellipse, we find,

ye=f:_'i,. (22—a?) ... (3)

.2
Sy ‘-1—2_—1 (D

Cor. Let A be the origin, and put AN=x,, then x;,=c~

—AC=2—a, and ., x=x,+a. Substituting this value of

x in eq. (3),

b2
Y= = (2az,+ x,?).

Equation to the Witch.

22. If or’s be a semicircle, and NP be '
taken a fourth proportional to oN, ob, and |
NP/, then the locus of p is the witch. !

Put ox=z, Xr=y, 0B=27r, then by the
equation to the circle X¥' =~/ 2rz—a?;

14

but ON : OB:: NP : NP,
« thatic, x: 2r:: V2rx—a? . g,

/Oy —x2 Sr—=x
R e
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Eguation to the Cissoid.

23. If op,B be a semicircle, of
which p\M is any ordinate, take '
OoN=BM, and draw NPK perpen-
dicular to oB, and join oP, cutting
NX in r; then the locus of P is the .
cissoid. P
Put oN=MB=2z, NP=y, and OB »
=r, then from the equation of the
circle Mmpy= V2rzx—z%; but from o N N B
the similar triangles oNP and oMP,
we have,

ON: NPI1OM: MP,
thatis,  ; y:: 2r—z ; A 2rx— 23;

0 o

. R A P—y

Eguation to the Logarithmic Curve.

24. In this curve any abscissa ON is
always the logarithm of its correspond-
ing ordinate NP; thus, let oN=x, NP
=y, and a be the base of the system,
then

xz=log,y, .. y=a*.

If z=0N=0, then y becomes 0B, hence oB=a°=1; that
is, the ordinate at the origin is always unity.

Cor. If the abscissa increases arithmetically, the ordinate
increases geometrically ; thus, if z=1, y=a!; if £=2, y=a?;
if x=8, y=a?®; and so0 on.

Equation to the Cycloid.
25. If the circle PBD roll along the straight line OK, &
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point P in the circumference of the circle will describe a
curve OPK, called the eycloid.
D

Let ¢ be the centre of the circle, BcD a diameter perpen-
digular to 0k ; join PC, and draw PR perpendicular to BD,
and PN to OK. Asthe circle is supposed to have rolled from
O to B, the arc PB must be equal to oB. Put on=uz, NP=y,
BD=27, / PCB=06, or what is the same thing, arc of £ PcB
radius being unity =6 ; then we have

T=0B—NB==arc P B—PR,
but arc Pe=rad. x 6 =6,
and PrR=rad. sin =7 . sin 6. .
Hence by substitution we have,
z=rf—rsin b=r (6—sinf) ... (1) X |

=NP=BR=CB—CR, :
but cB=7, and CrR=r cos 6; .
& Yy=r—rcos b=r(l—cosh)... (2).>‘/‘ ;
Equations (1) and (2) express the equation of the cycloid.
The arc 8 cannot be eliminated between these equations.

Egquation to the Spiral of Archimedes.

26. If the line 04 revolve uniformly
round O as a centre, while a point P
moves uniformly from o along 04, then
the point P will describe the spiral of
Archimedes.

Let op=r, the radius vector, /Z PoA
=6, the angle described by the radius
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vector ; and let a be the value of », when the radius vector
has made one revolution ; then

a
0:2x: 7 a; ..r_é;.e.

ON THE LIMITING VALUES OF QUANTITIES.

27. Any definité quantity multiplied by O is equal to O.
For example, let us take the product 10 xx, then as we
decrease x the product will also be decreased; thus we find,
10x-1=1, 10x°01=-1, 10 x-001=-01, 10 x ‘0001 =001,
and so on; so that when x is taken 0, the product 10 x0=0.
And generally a x 0=0.

Any definite quantity divided by O is infinite or . For

. 10
example, let us take the fraction 2’ then as we decrease x

‘the fraction will be increased ; thus we have, l? =100,
10 10 10
1= 1000, 001= 10000, 0001= 100000, and so on; so that

. . 10 U
when z is taken O, the fraction o =® or infinite. And

generally g =

Any definite quantity muitiplied by a quantity infinitely
great, is infinite. Let us take the product 10 x z, then as
we increase z the product will also be increased; thus we
have 10 x 1=10, 10 x 10=100, 10 x 100=1000, and so on;
so that when z is taken oo, the product 10 x = . And
generally a x o= .

Any definite quantity divided by a quantity infinitely great

is equal to 0. Let us take the fraction i, then as we increase

x the fraction will be decreased; thus we have [J;=-1,
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r55="01, t5%o=="001, and so on; so that when z is taken
@ the fraction :5 =0. And generally %:O.

The magnitude of any algebraic expression depends upon
the value which we assign to the variable contained in it.
Thus the magnitude of the expression 3z +4, will increase
or decrcase with the value given to variable z. If z be
taken infinite, the expression will become infinite; and if x
be taken 0, the expression will be equal to 4.

28. Definition. The quantity towards which an expres-
sion continually approaches or converges, by making the

variable continually approach a certain value, is called the

limiting value of the expression.

llustrations and Applications.

1. Thus the limiting value of ax+b& is b, when z ap-
proaches O; because *as a decreases the value of ax ap-
proaches nearer and nearer to O.

Again the limiting value of az+ b is o, when x approaches
o ; because as z increases the value of ax also increases,
and when x becomes very great, or approaches infinity, ax
becomes very great or approaches infinity.

2. The limit of sin is O, when x approaches O; for as
is decreased the smaller and smaller its sine becomes. And
similarly the limit of tan « is 0, when z approaches O.

3. The limit of cosx is 1, when x approaches 0; because
as the arc x is decreased the nearer and nearer cosz ap-
proaches radius or unity.

4. In the curve PQR, the secant PQ ap- .
proaches nearer and nearer to the tangent
PT as the point Q approaches r; hence the ()
tangent rT is defined to be the limiting
position of the secant PQ, when Q ap-
proaches P, or what is the same thing, as the ZQPT ap-
proaches 0.

L
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5. If a regular polygon be inscribed in a circle, and if
another be inscribed having twice the number of sides, it is
evident that the surface of the second will approach more
nearly to the surface of the circle than that of the first. If
the number of sides be continually doubled, the polygon will
approach nearer and nearer to the circle, until at length
their difference must become less than any quantity that can
be assigned; hence the circle is the limit of the inscribed
polygon when the number of sides approaches .

6. The limiting value of -r_-‘:_—:—t is @, when x=0; because

for every value of x greater than O it is less than a, yet it is

also to be observed that the nearer x approaches to O, the
a

14z

Again the limiting value of 1‘%} is 0, when = o ; be-

nearer does approach to a.

cause as x increases the fraction becomes less and less, and
finally when x is greater than any finite quantity, the fraction
becomes less than any finite quantity.

a
l+x
when x=0, as well as the limiting value. In like manner

It will readily be seen that a is the actual value of

0 is the actual value of -ﬁ when x=w, as well as the

limiting value. In general the limiting value of any function,
when the variable approaches O or o, is nothing else, in
fact, than the actual value of the function when the variable
is taken O or . This being the case, it may be asked,—
why make any distinction between the limiting value of an
expression, and its actual value ? why say that an expression
approaches a certain value, when we might more simply
say that it takes that value? In answer to this, it may be
stated, that there are many expressions which assume inde-
terminate, if not illogical, forms, when the variable actually
takes & particular value; whereas, in such cases, the limit -
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mg values of the expressions would be perfectly intelligible.

. .2 2,
Thus, in the expression _a_.z':-_z, if we make =0, we find

. o ..
that the expression becomes —, which has no meaning what-

ee s 2ax + x?
ever; however we have by division, ——}i—=2a+x, for
all values of x;
o el 2azx + x?
. the limiting value of —T=2a, when z=0;

thus by resorting to the idea of a limiting value we are

enabled to avoid the indeterminate form g:.?n. which we

must otherwise have come to. However, for the sake of
conciseness, when no ambiguity can arise, we shall hereafter
sometimes speak of a limiting value as if it were an actual
value.

7. To find the limits of ‘”;”’”.
Here 2 +c‘”=z+c.

.% the limit of at}“:oo , when x=0.

If =00, then e =0,
r »

% the limit of a-;c.t: ¢, when r=w.
8. The limit of —~— is 1, when z=0.
x+a

C
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Her ———=———l—; and when 2=, g=o ; hence, &ec.

9. The limiting value of

z;:f:z-i-a, for all values of x, and .. as z approaches a,
the nearer and nearer does x+a approach 2a.

This example shows that, though the two terms of a ratio
may respectively approach O, yet the limiting value of that
ratio may be finite. This is quite in keeping with our most
ordinary notions of ratios; for the value of a ratio does not
depend upon the absolute magnitude of the terms composing
it, but upon their relative magnitude. Thus one line A may
be three times the length of another line B, without regard
to their absolute lengths. If the length of A is 3 fect, the
Iength of B will be 1 foot; if the length of A is 3 inches, the
length of B will be linch; in fact, if the length of A were
inconceivably small, the length of B would be still one-third
of that inconceivably small length.

x2—a?
is 2a, when x=a ; because
r—a ’

. C. . 1
10. Required the limiting value of l+‘;‘;+;2 +...ton
terms, when n=a0 .
Here (Alg., page 92.) the sum of this geometrical series is
1

1—__
1 1 . .
2" . but when n=m, —.=&=0, and heiicc the limit-
x

1—-
X
.
ing value becomes —‘—l = %, which is the sum of the
1

Z
proposed series continued iz infinitum. ,
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11. Required the limiting value ofy;]2 (1+4243+... +n)

when n=w.

Here (Alg.,page 89.) 1+2+3+...4n=(n+ 1);z ;

. 1 n_ 1 1
.*. the proposed expression=_3 X (r+1) 2=t 5, for

all values of %.

l

But when ==, 2 2—n !

1 1
§+E » which is the limit-
ing value required.

12. Required the limiting value of ;‘]3 (124224, .. 4+ n?)
when n=ow.

By Art. 10, 124224, . .+n"‘=-’§+:—2- ”.

.". the proposed cxpression

1 /e® n2 = 1
§+—2_+—6) ’n+(m,z

But when n=x, this becomes=3.

13. Required the limiting value of (1 +g)’7when k ap-
proaches O.

By the binomial theorem,

C.

(1+) x h & (h 1) h2+&

—1+7_I, et

() () 02

.2 1.2.3

o

=1+1+
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Now, when A=0, Zf 0—=O, and hence the limiting value

of this expression,

=1+1 1
=l+l+13 2+1 23 i2.3.4

=2'7182, &c.=e, by Art. 8. Cor. 1.

14. To find the area of the triangle ABC, by the method of
limits.

+ &c.

Put a=the base aB, and p c
=the perpendicular cp. Letcp RVANP
be divided into = equal parts, N ;

and upon each of these parts let r
circumseribed and inscribed rect- /"A————J N
angles be drawn; then the area :

a4 D B
of the triangle will be less than
the sum of the circumscribed rectangles, and greater than
, the sum cf the inscribed ones.

The height of each of these rectangles will be 2 g the base
ac of the first will be Z, the base ei of thé second-; , the base

s of the third >%, and so on; the base of the nth being ne,

.. the sum of the circumscribed rectangles

ap2ap3ap na;_z
Sacatw ata cnteo vy

1
=%§(lj-2+3+.. +n)_ (1+)

In like manner, the sum of the inscribed rectangles,

=04% P 22 p 3a p, (n-Da p
n n

=R +2484 ... +(r-1)} =2 (1-”
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Now the area of the triangle lics between these two areas,
whatever may be the value assigned to z. But when the
number of parts into which ¢ is divided is incrcased with-
out limit, or, what is the same thing, when n= w in the
above expressions, the areas of the circumsecribed and in-
scribed rectangles become equal to one another; that is,
=‘-g—). Therefore the area of the triangle:—ﬂ ;:A——B 2 cp

15. To find the space s described by a falling body in a
given time ¢

Gravity being a constantly acting force, it adds equal
increments of velocity to a descending body in equal inter-

"vals of time. Thus at the end of one second it is found
that the velocity acquired is 32} ft.; at the end of 2 secondx,
2 times 32} ft.; at the end of 3 seconds, 3 times 32} ft.; aud
so on, the velocity increasing with the time. Hence it © Le
put for the velocity acquired at the end of £ seconds, and ¢
be put for 32}, we have the general relation,

v=tg ... (D).

If the body be projected vertically downwards with any
given velocity, it is evident that we must add this velocuty
to that which is due to gravity, to obtain the total velocity
of the body at any instant of its descent.

Let v be the velocity with which a body is projected
vertically downwards, and let ¢ be divided into 7z equal

intervals, each being equal to 1—5; then as v is the velocity
acquired in ¢ seconds, the velocity communicated to the body
by gravity in each interval will be the nth part of v=;.
Hence the velocity at the commencement of the motion will

. v
be v at the end of the st interval v +u; at the end of the

2v .
2d interval v+~ 5 and so on. Now let us suppose that
n

c 3
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the motion of the body is uniform betwecn each interval,
then taking the velocities at the beginning of each interval,
the space deseribed in the time ¢

t o\ ¢ 2v\ ¢
=V X}Z+ (v+h)72+(v+7)ﬁ+ . .. to n terms

te tv 1
=0v+ {14243+ ... t0 (n—1) terms} =tv+-§(l—”)

This result is evidently less than the actual space s which
the body will describe.

Now taking the velocities at the end of each interval, the
space deseribed in the time ¢

3
-_( )n (+ )n—f-(v-}- )+...tonterm=

=rv4 5 (1+ .

This result is evidently greater than the actual space s
which the body will describe.

Now the space s lics between these two spaces, whatever
may be the value assigned to ». But when the intervals
are increased without limit, or, what is the same thing, when
n= x, thesc two expressions for the spaces become equal to

. to
onc another, that is =¢v+ 9

g

tv
o s_tv+—2— cee (2.

Substituting the value of v given in eq. (1),
s=tv 4 xg eee (3

If v=0, or if the body fall from a state of rest, then we
have,
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16. To find the limiting relation of tan %2 to sin A&, when
the arc % approaches O.
tanhA__ 1
Here we always have, sin b —cos b
Now when % is indefinitely decreased, the value of cos A
=1;

.*. the limiting value of - ;1—2—1 when % approaches 0;

that is, sin 2 and tan % tend to an equality as & ap-
proaches 0.

17. To show that the arc of a circle is greater than its
sine and less than its tangent.

Let BF be any arc of a circle whose radius /’M
is A. Draw BC and rcC tangents to the \
points B and F; join Ac cutting the circle in // AN \1
the point 0; and join BF cutting Ac in 15 4 B
then BCc=Fc, BI=FI, and arc Bo=arc FO. -/

Now Art. 73. Geo.,
arc FOB>FILB<LFC+CB
S 2areo>2 BI<2 BC
S, arc Bo> BIKBOC
But B1 is the sinc of the arc Bo, and BC is its tangent:
therefore the arc is greater than its sine, and less than its
tangent ; or putting 4 for arc Bo,
o h>sinh<tan A.

Let us now enquire what this relation becomes when the
arc approaches 0,

Now it has been shown in the last problem, that sin & and
tan % tend to an cquality as £ approaches 0; but as & always
lies between sin 4 and tan &, we have for the limiting values
when % approaches 0,

h=sin A=tan %;
or the sine and tangent of an arc, in their limiting state, are
in a ratio of equality with the arc itself.
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18. To find the circumference of a cirele whose radius
is 7.

Lect A be the centre of the circle gBo, &ec., X
and rc the side of a regular circumscribed
polygon of » sides, touching the circle in the
point B. Let spv be another circle whose
radius Ap=1, and DT a tangent to the point
», cutting Ac in T; then, if we put 2«
for the circumference of this circle, the are

-
A1

2x 2¢ = o«
vDs="—, ,, arc Dv=} of -~=-,and DT=tan -. From the
n n n 7
similar triangles ADT and Apc, we have,
AD IDT::AL g, or
™ %
l:tan" 17 BCc=7rtan - ;
n n
™
S PC=2BC =2rtan -
n

.*. the perimeter of the polygon=2r tun T x n.
n

~ . . . w .
Now if z be continually increased, the arc - will be de-
”

creased, and the sides of the polygon will approach ncarer
and nearer to the circumference of the circle.

.~. Circum. circle=limiting value of 2r tanz:-' X n,
T .
when 7 = o, or ;a=0; but by the preceding problem tun;‘
L4 =
approaches ol approaches O;

. . A ele w
.*, Circum. circle=1limiting value of 2r R X n= 2rm,

where 27 is put for the circumference of a circle whose
radius is 1. Hence it follows that the circumferences of
circles are to one another us their radii.
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19. To find the area of a circle.
Adopting the notation and fig. of the preceding problem,
we have

. T
area triangle PAc=4ap.BC=72tan o
But there are » of these triangles making up the polygon,

k3
.. area polygon=nr?tan "
(2

w T . .
Now when n=w, tan ~=-, and then the polygon coin-
n n

cides with the circle, or, more strictly speaking, the limit of
the pelyzon is the circle, when n=x; .o, taking the limits
of both sides of the equality, we have,
. % d\? -
area circle=nr?-=r?zr= —) r=d>-.
n 2 1
Hence the arcas of circles are to one another as the
squares of their radii or diameters. 4

20. To find the solidity and surface of
a right cylinder, PG XN,

Let pcro be the side of a prism of »
equal sides, circumseribed about the cy-
linder ; put r=the radius A, and A=the
perpendicular height Ao ; then by prob-

. 3
lem 19, area triangle Apc=7? tan n’
% solidity prism ADCFHO=area base ADC X perpen. A0
k3
=72 tan — X A.
n

But the solidity of the whole circumscribed prism will be
n times this result ;

., solidity circum. prism=z7" tan ;—': x A

[\
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Now when n=wo, tan 5:2, and the limit of the circum-
.cribed prism is the cylinder ;

.~ solidity cylinder=limiting value of nr2? tan ;‘ xh

=nr? T x h=rxh.
n
That is, the solidity of the cylinder is equal to the area of
he base multiplied by the perpendicular height.
Again, the area of the face PCFE=DCXDH=2BCXAO

=27 tan = x k.
n

But there are » side faces in the whole circumscribed
yrism.

C . . . w
.*. Surface in the side faces of the prism=2n7 tan - x 4.
n
Hence we have, by taking the limits as before,
. v
convex surface cylinder=2nr ”/I.=27'1r,l.

Now, by problem 18., 27z is the circumference of the base;
hercfore the convex surface of a right cylinder is equal to
he circumference of the base multiplied by the perpendicular
weight.

21. To find the solidity and surface of a right cone puv.

Let pcv be one of the faces of a
wyramid of n equal sides, circum e
zribed about the cone ; put r=an, ’
ae radius of the base, and =AY,
ae perpendicular height ; then, pro-
2eding as in the last problem, we
ave,

. . n
area triangle DAC=7* tan w
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.*. solidity pyramid Apcv =" x area base x perpend. height
™
=172 tan - x k.
n

But the solidity of the whole circumscribed pyramid will
be » times this result;

. ye . . T
.~ solidity circum. pyramid=4}nr? tan PR k.

™ 3 . . .
Now when =1, tan W= and the limit of the circum-

seribed pyramid is the cone;

. e es P =
. solidity cone=limiting value of }nr? tan 2% h

=
=}inr? X h=3r’zh.

Hence the solidity of a cone is equal to one third the area
of the base multiplied by the perpendicular height. *

Aurain, to find the convex surface of the cone, put s=uv,
the slant height, then we have,

k4
area face PCV=JIDCXBV=BCXBV=r tan 5 XS5

.>. whole surface in the side faces of the circumseribed

pyramid =7 tan ’—’: Xs.
Therefore, taking the limit as before, we have,
) ©
convex surface cone=nr S S=Ts.

But 77 is equal to one half the circumference of the base;
therefore the convex surface of the cone is equal to one half
the circumference of the base multiplied by the slant height.
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INCREMENTS AND THEIR LIMITING RATIO.

29. When the variable in an expression undergocs an
increase, or takes an increment, the expression itself neces-
sarily undergoes a change, and the quantity by which it is
thus increased is called its increment.

Thus if x, in the expression ax, takes the increment 4,
then ax will become a(x+ %), and

.. the increment of ax=a(x +h)—ax=ahk,

that is, if = be increased by £, the function ax will be in-
creased by a times A.

x? " .
Let f(:r)..;l»-—l, then if' @ tukes the increment %, the
£

A . (v by
function f (x) will become el and

. s (s h)? x?
.. the increment of f (.z)-‘i-._—/li-l- o
In general, if 2. in the function f'(x), takes the increment
#, then f (x) will become f(x +h), and

., the increment of f(x)=f(z+h)—f(x).

In the following cxercises, &c. we shall invariably sup-
pose A to be the increment of the independent variuble; and,
for the sake of conciscness, we shall write “ Iner. f(x)” for
+ The increment of £(x),” and “ Iner. y” for « The increment
of y.”*

Ex. 1. If x receives the increment £, what will be the
increment or increase of y=ax*?

* In the calculus of finite differences, the symbol Ay is used for
expressing Incr. y, o, as it is called, the difference of y.
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Ilere when x becomes x+ A, the function ax? becomes
a(z4-h)?;
<. incr. y =a(x + k)? — ax? = 2azh+ak?.
2. What will be the limiting ratio of iner. y to incr. z, in
the last example, when % or incr. x approaches O?

Here, dividing each side of the last equality by 4,

inecr. 3 iner. 3
ner-y r .——-‘—/=2a.r+ ak.
h iner. =

Now this equation must hold true whatever may be the
value given to b If % be taken very smull, ¢k will also be
very small; in fact, if we suppose A to become smaller and
smaller the nearer and nearer will 2a.r + ak approach 2ax;

iner.y

% *the limiting value of , —--=2ax.
iner. @

3. If  receives the increment %, required the increment
of y=2?—3x+2. ’

Here when = becomes z+/%, the function v becomes
(x+h)2—3(x+h)+2;

o dner.y=(xz+A)2—3(x+h)+2— {22 —3x+ 2}
=(2x—3)h+ A2

4. Required the limiting ratio of incr. y to incr. z, in the
last example.

Dividing each side of the last equality by %, we have,

iner.y iner.y

. 2x—3+k.
h iner. @

When % approaches 0, we have,

* ]t must be observed that a limiting value of a ratio is not a mere
approximation; for while we speak of' A& approaching 0, or approaching
it as nearly as we please, we do this merely to aid our conception of the
terms of the ratio, yet we actually take 4 =0 in finding the value of the
limit of the ratio.
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limiting value of =¥ =22 3.
incr. z

5. Required the increment of y=;%%, when x becomes
xz+h.

3(z+h) 3z Gh
z+h+2 42 (x+lz+2)(.z+2)

6. Required the limiting ratio of the increments in the
last example.

Incr. y=—--

Dividing each side of the last equality by £,

incr. y or incr.y 6
& iner.x” (2 + A+2)x+2Y

Therefore when % approaches 0, we have,

iner.y 6 6
iner. (x+0+‘7)fr+‘)) (x+2)*

7. In the curve ArQ, let AN(=a). and Nr(=y) be the co-
ordinates of the point r; and let y=—=4x*
be the equation to the curve. Required
the limiting ratio of the increment of
NP to the increment of AN.

Let NP move parallel to it=elf until
it comes to the position MqQ. Draw rL
parallel to AN, then if NyM(=/) be the
increment of AN or z, LQ will be the
increment of NP or y. By the cquation to the curve, we
have,

limiting value of .

A

NP=4AN} and MQ=4 A ?
=4z’ =4(x+h)*;
oo LQ=MQ—NP=4(x+A)—42°=8rh +4A%.
Dividing each side of this equality by &,

LQ incr. N
% ° incr. Ah",s x+4h.
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Now these increments will have a definite ratio, however
small 2 may be taken, or, what is the same thing, however
near MQ may be taken to Nr. When % approaches 0, we
incr. NP

=8x.

1
bave the limiting value of ; inor. AN

. Let y=z-’—-£. Required the limiting ratio of incr. y

to iner. x, or the limit o mcr Ty,
incr.
Here, when z becomes z + %, then y becomes (x+ A4)2 — ;i »
&
2_ .__._ —— = .
s iner. y=(x+ k) {.1:' } 21h+h +( By A
. iner.y iner. y_
T “iner.z z+h+(m h)x

Therefore when A npproaches 0, we have,

limiting value of 2 iner =2x4+0+ ——

EXERCISES FOR THE STUDENT.

1. If x receives the increment of A, required the increments
of the following functions, 5a2+2, 7x2—6x, ax?—bx+ec,
axd—ec.

Answers. 10xk + 513, (14x—6)h + Th?, (2ax—b)h+ak?,
3ax2h + 3axh? + aks.

2. If the side of a square be z, and it be increased by 4,
by what quantity will the surface of the square be increascd?
Ans. 2vh + b3,

3. If the radius of a circle be a, and it be increased by 4,
what will be the increment of the circle? . Ans. (2xk + A2)=.
4. In Er.2., what will be the increment given to the
diagonal ? Ans. h a2,



40 DIFFERENTIAL CALCULUS.

5. Required the increments of the following functions,
l—a 2x
_— 2

T ar @ (142,
(a—1)h 2ah
2(z+4hY (a+z+k) (at+ax)

6. Required the limiting ratio of the increment of the
function to the increment of the variable, in the following
functions, 2x2, x3—ax, S52%2+4a, 3xr'+4c, P+2xi—ax+ec,
r+a 3

—y X— - -
xr x

Answers. 2(1 +x)h + 2%

) — 3
Answers. 4x, 3x?—a, 0x, 1223, 322 +20vr—a, |, 1 +-12.

I £
7. Required the limiting ratio of the increments in ex-
amples 2 and 3. | cAns. 20, 2uw.
8. Let y=a?—3xr-+e¢, be the equation of a curve, and @
receive the increment A, what will be the inerement of the

ordinate y ? e (20 =35k +h2
* 9. Required the limiting ratio of the increment of g to
the increment of @, in the last example. Ans. 2x—3.

DIFFERENTIAL CALCULUS.
NOTATION OF THE DIFFERENTIAL CALCULUS.

30. It now becomes desirable that we should have some
notation for expressing the limiting ratio of two simultancous
increments. It matters not what this notation is, provided
it expresses the thing signified without ambiguity, at the
same time that it admits of being readily extended to all
cases which can arise, without any restriction as to its
interpretation.

31 In Exs. 3. and 4., p. 37., it is shown that the limiting

incr. y

skl - S, YOS o 2 g W 3 e,
value Ofincr. 7>=2z—3, where y=a?- 3r+2. Now if dx
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be put for the incr. z or % in the limiting value; then, in
order to maintain the uniformity of notation, dy must be put

for incr. y. Thus d"/=2x—3, or, putting in the value of ¥,

dx
d(x?—3x+2) _ dy
- &—-—_2.1:-—.5. By Y g2

C iner. 3 s .
the limiting value of Sier ‘;, or the limiting value of the
ratio of the increment of 7 to the increment of x, when the

increment of « approaches 0. As y is here understood to be

therefore, we simply mean

a function of x, we also lmve-i(»—)—limiting value o{i
iner. fla D= f(r-{-h) ﬁl—) when 2=0. Now the limit nf'i
incr. -l'.

is in general a finite quantity, if the division

Sz ) —f(z)
h

by % is performed before Z is made O.

r 42

ner. f‘ a)

/.._

Geometrical representation o or the limiting value

iner. @ °

32. Let Ax=ux, and Npr=y, be the co-ordinates of the
point p in the curve pQ. Take
a point Q in the curve near
to r, its co-ordinates being
AM and MQ; from p draw rL
parallel to Ax; draw the chord
e r, and produce it to meet the

axis in R.

Let y=/{(2) be the equation to the curve, then when AN
or x takes the increment A=~M, NP or y will take the incre-
ment LQ.

S Ne=fla), and nQ=Hr+h);
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Se LQ=MQ—NP= fx+h)—f(x),

. Lo, L Lo _Sflz+i)—=Az)
** pr A h >

L
but —-9=tan LPQ=tan NRP;
PL

- tan NRP_j(t-}-h) f(:r) mcr /'.z)
lll( r x

Now this equality is true for all values of 4: when the
point Q approaches P, the value of 4 or incr. z approaches 0,
the sccant QPR approaches ncarer and nearer to the tangent
rT, and therefore the /Z QD approaches O, while the Z NRP
approaches nearer and nearer to an equality with the Z NTP;
hence we have, taking the limits of the above equation,

iner. fla

t  tan NTP=limiting value of - /( )
iner.

3

e _d)

. H (l)’

which equation in gencml gives us the geometrical interpre-

dy

ati 0 ial coefficient .
tation of the differential coefficie, e

33. This investigation leads us to the following definition
of a tangent to a curve. The line PT is said to be the tan-

- gent at P, when PT is the limiting position of the secant
. QPR, on the supposition that Q approaches r, or, what is the

l

! same thing, when the £ QpD approaches 0.

34. It is necessary that we should have names given to
these symbols, in order to speak of them with precision ;
thus dx is called the dg‘jfercn!ial of z, and dy the differen-

tial* of y. The symbol is called the differential coeffi-

dz'

® In the calculus of differences the increment of y is called the first
difference of y ; hence, in the differential calculus, this difference taken
indefinitely small, has been called the differential of y.
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cient, and the process by which Z— is obtained is called dif-

Jerentiution. The letter d, therefore, placed before any
expression or function, indicates that the function is to be
differentiated, so that d is a symbol of an operation, and not
of a quantity.

In the examples given in Art. 29,, the limiting ratios there
found are the values of the diﬂ'erential coeﬁicients of the

respective functions; thus, in Ex. 6. -, and so on.

(I.L' (e+ 2‘)
35. The first olject of the differentiul calculus is to dcter-

mine rules for finding —/-.( ), or the limiting value of

le+ 1y~ fla

f—~*—'/)—'-/—‘\—), when A approaches 05 and then to show the
(2

use of these limiting values in the solution of various
problems in pure and mixed mathematics,

RULES ¥OR THE DIFFERENTIATION OF FUXNCTIONS.

36. Rule 1. A constant quantity, connected with a func-
tion of z Ly the process of multiplication or division, remains
as a multiplicr or divisor after differentiation.

Let y=aad, then (-I‘I/»=3ax'-'.
* dx
Incr. y=a(x '+ )3 —aaxd=3ax*h+ 3axh?+ al?;

. iner.y

S =3ax?+ 3axh+akh?;
incr. y
.. limiting value of | Y —3ax?
incr.

that 1s, d: Y — 3az.

dy__2x
Let y_.-z’ then ds=o"
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3
Incr. y_.—(.z:+/a)’—lw’—2—x~,-'- +’L

Lner.y 2z A

** h c e

iner. ¥_ 2z
iner.z— ¢’

2.7:

*. limiting value of -
that is, Z’

Generally, let y=af{x), then P dﬂx)

Incr. y=aflz+ L) —af(z)=a {fz+ k) —fx)}
=a incr. f{(2).
Dividing by % or incr. z,

incr. y amcr J(x)
incr. x iner. x

This equation being true for all values of % or incr. z, it
will also be true when 2 approaches O ; therefore, taking
the limiting values, by putting the ratios of the differentials
for the ratios of the increments, we have,

dy_ M)
da™ " de”

37. Rule 2. A constant quantity, connected with a func-
tion of z by the sign of addition or subtraction, disappears
after differentiation.

dy
Let y=2a*+ ¢, then d:z'/ 2.

Iner. y=(x+ A +c—(2*+c)=2xh+/3;

. incr.p
oo h

=2x+h;
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o~ limiting value of ™Y 2,

nrz_

that is, %=2x.

dy

Let y=ax—c, then el
Incr. y=ea(zx+h)—c—(axr—c)=ak;
. inery | ‘iz—a

I B R
dy_ df(z)
Generally, let y=f{x) + ¢, then v e

Iner. y=Rz+h)+c— {f(x)+c} =Rx+h)—fAx);
iner.y flz+ k) —fx)
R I3 ’

Taking the limiting values when % approaches O,
Ay _df(x)
dr~  dx

38. Rule 3. To obtain the differential coefficient of any
constant power of x, multiply together the exponent, and z
with its exponent diminished by unity.

Thus if y=ua4, then 2—41“
Let y=a", then %: nx~t,
Iner. y=(x+ %)*—a*, by the binomial theorem,

-nz‘-'ﬁ-{-"(—.t”“’lz"’-)-&c.

. iner. y_ n(n—1) ,_
S .v_ua:"—‘-{-—————l — z*-*h + &ec.

.~ limiting value of 12 ¥ — pa=—i,
incr. z

that is, %: nx™,
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Multiplying by dz, we also have, dy=manz"'dz, which is an
expression for the differential of 2*. This form is convenient
for algebraic calculation ; strictly speaking, however, the dz
should not be separated from the dy.

This result is truc, whether % be a whole number, a frac-
tion, or a minus quantity.

ExawmpLEs.
1. Let y=38x7, then g':=3 X7 xx-1=21a8. (See Rulel.)
2. If y=3ax’+¢, required the differential coeflicient, or

the value of Z‘Z . (Seec Rulc 2.) Ans. Laxt.

3. What is the differential coefficient of 3(2x7—1)?
a

Ans. R -8«:51»-
a

s [ 1
4. Let y=2a then Z-Z=2 x§xx® =382 because Rule 3.
is true for fractional indices.

5. Required the diﬁ'crential coefficient of 4z%.

Here, d(4.z' )—4 x 3 x 2t~ —2:0—*:-2-.
dx 1
z')
2
3
6. Required the value of d—(ifix;,-—é-) Ans. .‘f
zr

d,
7. If y= zz_a:r’ then a‘Z:-—2ar’—‘ —2;; ; because

Rule 3. is true for minus indices.
8. &qwed the differential coeficients cf tke following

functions, az 6z ’l+c, — and 3a(b—_-)

Answers, —azi, 2 9—“,
oS &

5 and 2.

]
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9. What is the differential of ax"—2?
Let y=ax""? then %:a(n—mz"—’ ; multiplying each side

of the equality by dz, we have, dy=a(n—2)x"dx.
10. Required the differentials of the following functions,

.i‘” , 9F .

245, Tx’ }z a—

3 1, &dx 3dz
Answers. 4x°dx, z°dx, {-!:c‘dx QL o
g’ ¢ % 3

39. Rule 4. The differential cocfficient of the sum of any
functions is equal to the sum of the several differential co-
efficients of the functions; and the differential of the sum of
the functions is equal to the sum of the differentials of the
functions.

Let y=ax+ ba*, then §g=a+2bz, and dy=adx + 2bxdz.

Incr. y=a(x+4)+b(x+ 1) — (ax + b2)
=ah +2bxh + bA3,
R 2c;;'—‘—yza +2bx + bk

. limiting value of 1nﬁcr L.
ucr. x

=a+2bz,

that is, g:z:a +2bx;

o dy=adx+ 2bxdx.
Where adr is the differential of ax, and 2bxdr is the dif-
ferential of *; hence the rule as applied to this case.
Generally, let y=r(x)+F(x)+ &e.
Iner. y=f(x+4)L¥(z+A) L &c.— {f(x)1F(z) L &ec.}
=f(z+ k) —f(2)x (r(z+ k) —F(z)} +&e.
=incr. f(x)tincr. ¥(x)+ &c. ;
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. iner.y_ incr. f(x)_ iner. r(z)
e e -

This equation being true for all values of 4, it will also
be true when A approaches O; therefore taking the limiting
values, by putting the ratios of the differentials for the ratios
of the increments, we have,

dy_df(x)  dx(x)

T dr ¥ ap T¥C

or dy=df(z)+dr(x)+&e.
ExamrLES.

1. Let y=a"+ax™+e¢c, then % = na™' +max™', and

dy=nx""'dx +max™'dx.
« 2, What is the differential coeflicient of ax’—:ca?

2 3—1 :
Let y=ax*—z’, then %:2(1::’"—%:3 =2ax—3% . 55

3. What is the differential coefficient of w"i(mg—-a)?
Let y=x!'(z;—a)=z"——ax'i, then

dy - -1 a
Y =2z"—Yaxr =2x——.
dx P
4, What is the differential coefficient of aa®—z+ si?
Let y:ax’—w+zl_,=ax’—z+z-’;

. dy_ 21 - _2_
KA d——z_2az-l—2w =2ax—1 =
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5. What are the differential coefficients of the following
functions, }(2z°—6a?), 23+a?—zx+1, Jat—laa?, (22—1)

x (2z+1), (a—x)2+ax, %;aa:‘*—zli, z(1—x)%?

Answers. 22t — '$a?, 322+ 22— 1, 223 - ax?, Rz, 2x—a,

2a:v3+:?12, 3x2—4x+1.

6. What is the differential of (@ +x)*—a(822+a?)?
Let y=(a+z)*—a(32°+a*) =x3+ 3a’x ; R A

Zg =82°+3a%, ... dy==3a’dr+3a’dx.
7. What are the differentials of the following functions.
2(@—2ah), (a1 +1) (1), (a—z)3 + Ba'z

Answers. 2xdx— d—fv, gx%dz, 6axdx— 3x*dr. *
)

40. Rule 5. To find the differential of the product of two
functions, multiply each function by the differential of the
other, and add the produets.

Required the differential of y=(a+2)z.

This expression may be readily differentiated by multi-
plying the factors, and then applying Rule 4.; but we pro-
pose to go through the operation so as to illustrate the
method by which the ruleBere given is established.

Iner. y=(a+z+h)(x+h)—(a+x)x.
Subtracting and adding (@+z) (2 + %) and reducing,
incr. y = {(a+x+h)—(a+x)} (z+k)+ {(z+L)—a} (e +2)
=hk(x+h)+rk(a+zx)
e i!_l_‘_:_}}_.’_/_ =(@+h)+(ata)

D
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‘When % approaches O, we have,

d,
d%=x+(a+z)=a+2x,

< dy=drxz+(a+z)de=_(a+2x)d.
Let us now apply this method of demonstration to the
general formula, y=f(x) X F(x).
If x takes the increment %, we have,
incr. y=fx+k) x F(x+k)—f(x) < ¥(x).
Subtracting and adding f(x) x ¥(®+ %), and reducing,

iner. y = {z+ ) —f(x)} F(x+ L)+ {F(x+h)—F(zx)} f(x)
=incr. f(x) x ¥(x+ k) +incr. ¥(x) x f(x),

incr. incr. f(x incr. F(x
" 1——[-31:——,2&2 XF(x+h) +———}i——(——)— x f{x).

As this equation holds true for all values of £, it will also
“bhe true when A approaches 0, and then the limiting value of
iner.y _dy e incr. f(x) _df(x)
R the limiting value of — =g and so
on.
dy _dfix dr(x
R j%: %(w——) X F(w)+—dg—) x f(x),

and multiplying each side of this equality by daz,
dy=df{x) x F(x) + dr(x) x ().

41. It will now be easy to differentiate the product of
three or more functions of the same variable.

Let y=f(z) x1(x) x $(=),
then if @(x) be put for f{x) x (),
y=(2) x ().
Differentiating by the rule just proved,
dy=do(x) x ¢p(z)+dp(x) x B(x),
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but (x)=f(x) x ¥(x)
=~ do(x)=df(x) x F(x) + dr(x) x f(x),
therefore by substitution and reduction,
dy=df(z) x 7(x) x 9(x) +di(x) % fx) x 9(2)
+dg(x) X flx) x ¥v(x).
Where we multiply the differential of each factor by all the

. other factors, and add the results. 'The rule will obviously
apply to any number of factors.

ExAMPLES.

1. Let y=(ax+2*) (a+3), then by the rule,
dy=d(ax+x*) x (a+27) +d(«+-2%) x (azx+ 2*)
=(adr+2xdr) x (a+a2%)+ 32%dx X (ax+2°)
= (62t +4ax’ + 2ax + a®)dx, by reduction.
Dividing each side of this equation by dzx will give us
the value of the differential coefficient. .

2. Let y=(1+2°)(1+a?), then dy= (524 + 32°+ 2x)dx.
3. Let y=(a+ bx*) (ba®—a), then dy=60xdx.
4. Let y=(1+x 4 a3) (1 —a3%)+aS~—1, then

dy=(dz + Sa2de) (1 — 2%y —3a2dx x (1 + 2+ 2%) + 62°dx

. -y
=(1—4a")dx, and ., d;= 1—4a3.

5. Let y=(a+2x") (a—323)+ 625 then %:4aw——9aw‘-’.

6. Let y=x%(1—ax?) (1+4ax?), then %:23:— 6a2xs.

42. Rule 6. To find the differential of a fraction, mul-}
tiply the differential of the numerator into the denominator,
from this product subtract the differential of the denominator
multiplied by the numerator, and divide the remainder by

the square of the denominator.
D 2
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Let Y=g then when z takes the increment 4,

+a:
iner. y= z+h  x _(z+h)(a+2)—x(atx+h)
.y—'a+z+h atx (atz+Rh)(ata) .

Subtracting and adding x(a+z) to the numerator,
{(z+2)—z} (e +z)—z{(at+a+h)—(at+x)}

iner. y=

(e+z+h)(atz)
h(a+z)—zh B - L
(a+z+b)(a+a')’
. iner.y__ a dy a

“TE (atzth)(atzy " ds (ata)F
Let us now apply this method of demonstration to the
general formula, y:.f (=)

F(z)
Let » take the increment /%, then
S(@+h)_ f(2)

R =TT h) % (@)

_S+R(z) — f(a)e(z+h)
F(z+k)F(z) "

Subtracting and adding f'(2)F(), and reducing,

{f(z+h)—f(2)} ¥(x)— {r(z+ k) —F(2)} f(2)
¥(z + A)F(z)

_incr. f(z) X #(#)—incr. ¥(z) x f (.1:)
T F(z+A)¥(z)

Dividing both sides of this equation by £,
mcr.h f(=) x ¥(2) mcr.h ¥(z) X f(=)

iner. y=

iner. y
R ?(z +Ah)¥(x)

As this equation is true for all values of %, it will also be
truc when % approaches. O, and then the limiting value of
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T =da the limiting value of mcr']{—’@ =¢~1'!—(;§7’:—); and so

on.

gy B sne)-E D x @)

Ve {r(2)}*

Multiplying both sides of this equation by du,
dy df(z) X ¥(z) —dr(z) xf(x)

{¥(z)*
ExAMPLES.
e 2
1. Let y:-?:%—_*_—ll- ; then by the rule,
dy _d(8z2—1) x (.52—1— 1~d(z2+1) x (322—1)
=
@1y
G.zda: X (22 +1)—22dz x (322—1) _ 8Badz
GIFIP L
flg/ _ 8=
dz— (224 1)
_ 2 dy _ 2a%z
2. Let y= m, then EJ‘ m

3. Lety= #(z+1) then dy_ 2241

2+a+1’ dz” (a4 z+1)%
as x? dy 2z
4 Let y——xz 1 1, then d;—('?i_—r)z.

_ =B dy _o o, % \30—21)
5. Let y=aax?® P then 8;‘—3”‘2 (B—ato)

z dx
m, then dy_(l—+15_)2.
D3

6. Let y=
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dzdzx
=2y
43. Rule7. To find the differential of any power of a
function, multiply together the index of the power, the func-
tion itsclf with its index diminished by unity, and the dif-
ferential of the function or root.

7. Let y—- 2, then dy=

Let y=23, where z=a+ 2.
When z takes the increment %, let the increment of z be &,
then we have,

incr. y=(z+ k) — 23=(322 + 32k 4 A2l
=(322+ 32k +A?) (2xh +1?),

because £ or incr. z2=a+(z+A)2—(a +x2)=2uwh 4 A2.
o Y (322 4 82k + 1) (20+ ).

Now when % approaches 0, % or incr. ~ also approaches O,
since the magnitude of % depends upon the magnitude of 7 ;
hence, by making % approach O, we have,

dJ Y322 x 20=3(a-+a?)? x 22,

o dy or d(a+ax?)*=3(a+x?)? X 2zdz,
where 2zdr=d(a + x?).

Let us now consider the general case, y=2" where
> 2

z=f(x).
‘When x takes the increment £, let the increment of z be %,
then we have,

incr. y=(z+ k) —2"= { nz"1 4 —(n——}—)z"--2 k+&ec. } k.

Y e N T

Now when % approaches 0, % or incr. z also approaches 0,
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since the magnitude of incr. z depends upon the magnitude

of % ; then the limiting value of mc,r‘-. 4 -——‘%; and the limiting

k mcrz dz
valueof—li o an

dz’
- d:’/ n_ld ) ;1
Rl ke dy=nz""dz.
ExAMPLES.

1. Let y=(a+bx+cx?)", then z=a+ bx+ca?,
s dy=n(a+ bz + cx?) ' d(a+ bx + cx?)
=n(a+ bz + cx?)"' (b +2cx)dz.

N— 1
2. Let y= N/a2+w2=(a‘3+a:2)",

31— zdx
. —1(pn2 2 2 — T
oo dy—s(“ +&') d(a’ +w2) l‘/dz‘_i::;‘jga
oYy =
*dx 4\/,1".'__.:;5'

3. Let y=(1+z+x?)3, then ——=3(1 +z+x2)%(1 + 2x).

22
+af
5. Let y=(2+32?) (1—=2)3, then by Rule 3,
dy=d(2+3a%) x (1 —a2)3 +d(1 —22)® x (2+327)
= —6x(1 —x?)2(4a? 4 1)dx.
6. Let y=ax3(a+z)?, then dy=(3a+5z) (a+x)x’dz.
7. Let y=(1 +22)%(1 + )%, then

dy=(4+62+1022) (1 +a2)? (1 +2)%da.
D 4

d
4. Let y= v 1443, then Zzg =
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8. Let y—(1+w) then by Rule 6,

mz Hd
3(1 +x)’dx x (1 +2?)—2zdx x (1 +z)*
(I+a?2
_(1+x)X(8—2x+x%)dx
(A +a%)? )
Vaiz2 —a2dx
9. Let y—--—T——, then dy—m:——?;.
2
10. Let y=—"_ then dy=—2%% ,
V142t (1 +at)
x‘u "
11. Let y_(ﬁm—);:x"(l +x)~*, then by Rule 5,
dy=nz""'drx (1+z)"—n(l +z)"'dxxa"
_ nx™dz
"'"(—l _'_w)nﬂ‘
3dx
12. Let ‘7/—(1 Pk then dy_(l-—:c)“'
13. Let y= - then dy= 8dx -
(1—2)* 2(1 -2
14. Let y=(1+=z) (l-x)’l‘, then d_c/=—(-l—73x—)d:.
2(1—=)
dy__ 2nx™!
15. Let?/-.wa_‘_l, then dz (@1 I
T—=z 2 g — -
16. Let y=—2= _lL«/l T then dy__(a?+z—1)(2 x)

Vi-e % “ gp(1-a)}
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MAXIMA AND MINIMA.

44. The maximum state of a function, is that particular
value which is greater than any of the values which im-
mediately precede or follow it. On the contrary, a minimum
state of a function, is that particular value which is less than
any of the values which immediately precede or follow it.

When a railway train starts, its motion is very slow ; the
speed goes on increasing until it attains a certain limit, which
we call the maximum speed; and when the steam is being
turned off, the motion becomes gradually less and less until
it attains a minimum when the steam is being turncd on
again.

In the circle, the sine increases with the arc until it
arrives at 90°, when the sine = radius, and afterwards the
sine decreases as the arc increases until it arrives at 180°.
In this case the sine is a maximum when the arc = 90°.

In fig. 1. Art. 49., »I is the maximum ordinate; and ins
fig. 2., p1is the minimum ordinate.

These illustrations show, that just before a quantity attains
its maximum it is increasing, but just after it has passed the
maximum it is decreasing; and the contrary takes place
with respect to the minimum.

45. The following example shows that while x increases
continually, the value of the proposed function of x increases
only up to a certain value of #, and afterwards decreases.

Let f(x)=6x—ax? then we have, by actual calculation,

valuesofz....0, 1, 2, 8, 4, &ec.,
corresponding values of f(x), 0, 5, 8, 9, 8, &e.

Here 6z—2? is a maximum when 2=3.

46. The following example shows that while % increases
continually, the value of the proposed function of x decreases
to a certain value of x, and afterwards increases.

Let f(z)=22+(4—x)? then we have, by actual calcula-
tion,

DS
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valuesof z...0, 1,2, 3, &c,
corresponding values of f(z), 16, 10, 8, 10, &c.

Here 22+ (4 — x)? is a minimum when 2=2.

The differential calculus supplies us with the means of de-
termining the maximum or minimum value of any function.

47. If a quantity changes its sign it must have passed
through O or .

If a tradesman’s profit continually decreases from day to
day until it becomes minus, that is, until he loses by his
trade, then it is evident that his prolfit must have been zero
before it could change its sign from plus to minus.

The expression (x—2a)? is minus for all values of .z less
than 2a, and plus for all values of x greater than 2a. Now
if we suppose z at first very small and to increase continually,
this change of sign can only take place by x passing through
the value =2a, and then (z—2a)*=0.*

Let a point B move along the line 1:¢; then so long as the
,point is on the right of 4, its distance
from A is positive, when it arrives at A
its distance is O, and when it has moved
on to the left of A its distance from A -
becomes minus, that is, the distance in
passing from the plus to the minus state,
has gone through 0.

Let the ordinate nc of the
curve CGF move from the point
A; then at B this ordinate has a
plus value, when it arrives at & LU
it becomes 0, and at D the ordi- * “\L
nate pF has a minus value, that ¥
is, in passing from plus to minus the ordinate has passed
through 0.

# In like manner —

1
G vay’ must pass through z=2a, in order to

change its sign, and then

7 o \9= ®.
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f()

48. If z increase continually, then “dn will be positive

or negative, according as f(x) is increasmg or decreastng.
In the function f(x), let = take the increment 4, then

USASORIL)

will obviously be positive or negative accord-

ing as f(x) is increasing or decreasing, and this will be the
case however small 2 may be taken, that is, the limiting

value ot LEHD@) )

will be positive or negative

according as f(x) is increasmg or decreasing.

49. Let the ordinate BG, of the curve GNIJK, move
uniformly from A towards ¥, and let the ordinate become a
maximum when it arrives at the position p1 in fig. 1., and a
minimum in fig. 2. Now as the ordinate of a curve is
always some function of its abscissa, let =45 the variable
abscissa, and f(z)=8G the corresponding ordinate.

In fig. 1., the ordinate is increasing before it becomes a
maximum, that is, f(x) is increasing, and therefore, by

dj -
Art, 48., —-,;(5—) will be positive before the ordinate arrives at

the maximum position. On the contrary, after the ordinate
has passed the maximum position, it is decreasing, that is,

dj
l;(m—”) will be
negative after the ordinate has passed the maximum position.

df ()

Thus it appears that = dz changes its sign from + to —

J(#) is decreasing, and therefore, by Art. 48.,

in passing through the maximum position of the ordinate;

* therefore by Art. 47., 5 LG ( )-0 when f(z) is a maximum.

D 6
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f( )

passing through the minimum position of the ordinate, there-

fore by Art. 47., df(‘”)_o, when f(z) is a minimum.

Similarly in fig. 2., changes its sign from — to + in

Hence we have the following rule for finding the maxi-
mum or minimum value of a function.

Rule. Find the differential coefficient of the func-

tion f{), and put the result equal to O; then the value of z,

determined from the solution of this equation, will be the

value of x, which will render the proposed function a max-

imum or minimum, should it admit of becoming so.* If, as

df(x)

a continually increases, = o changes its sign from +to—,

{ there is a corresponding maximum value ; and, on the con-
j . . . 0 Az
2trary, there is a corresponding minimum value if -—'%—5—)

i changes its sign from — to + : but if there is no change of
esign, the function does not admit of a maximum or mini-
mum.

51. The following considerations will frequently simplify
the operation in finding the maximum or minimum value of
a function. When a quantity is & maximum or minimum, it
is obvious that any power, root, multiple, or part of the
quantity, will also be a maximum or minimum.

ExAMPLES.

1. Divide a line, whose length AB=S8, into two parts, Ac
and ¢B, so that their product may be
a maximum. .

Leta=aAc, then 8—x=cp. Hence
we have to make

A C B

* Independently of the criterion here given, the peculiar nature of
certain geometrical as well as other kinds of problems will indicate
‘whether the proposed quantity admuts of a maximum or minimum state.
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Sx)=x(8 —x)=8x—a?, a max.

Differentiating and putting the result equal to O,

dzx

solving the equation, 8 —22=0,
we find z=§=4.

Hence it appears that the two parts must be equal to
one ancther. This result may be verified by arithmetic;
thus 8 X 5=15, 6 x 2=12, &c.; whereas 4 x 4=16.

2. To inscribe the greatest rectangle

1GFD in the semi-circle ABFG, whose 7

radius cF=r. ° Q N
Let DF=x, then ¢cp=+Vv7r*—z7, and

1D=2cD=2+r2—z?; 2l ¢ vou

*. area rect. IGFD=DF XID=2xV7r?—z?=3a max. ;

.

therefore, by Art. 51, omitting the constant factor 2, and
squaring, '

22(r? —a?)=r%? —z*=a max.

Differentiating and making the result equal to O,

2r2%p—428=0;
r? r
- U P _——
o wt=g mdx_Vz.

3. Given the hypothenuse (=c) of a right-angled tri-
angle ; to find the other sides, when the area is a maximum.

Let x=one of the sides, then the other side= v ¢2—za?;

°, area triangle= 5 A¢t - af=a max.,

x8( ¢* —x?) = c®r? — 2t =a max.
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. c ‘

Hence we find, as in the last ex., a?=7-2, and the other

side = v/ c’—z’=—€—2; therefore the required sides are
A

equal.

4. In the given triangle Anc, to in- ¢
scribe the greatest rectangle 1K vs.

K 3 v

Let AB=¢, the perpend. cp=>4, and :
IK=DF=x, then, by the similar tri- ¥ N
angles ABC and XV, we have, AL s E

CD: AB:.CF KV

b:c::b—-w:xv:i(b—w);

c
.. area rect.=KV X1 K=Z(])—- T)r=4a max.

Neglecting the constant multiplier, we have,
y=(b—x)x=>bx— x*=2a max.;

Ldy_ Y

e 3&—5—2&3—0 P w._é.

5. Required the length of the greatest roller 1svk

which can be cut out of the given right ¢
cone ABC. A
Let AB=a, cD=b, and cP==x ; then we / \
have, by similar triangles, = "~ W/ \
CD ; AB.:CP KV ’ J
b:a::x:xv:g;. A//F‘,_—:\ .

IANED
Solidity cy. 18VE=area base xlength
='7854 KvIXIK

"7854 a2

=g

X 2%(b—x)=1 max.
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Neglecting the constant factor, we have
y=x2(0—x)=0bax?—x*=a max.

. dy_ oy o a2
- Zh_2bm—3w =0, .. a:—-gb,

2. 1
and IK=CD-—-CP=[)-——36—3IJ.

6. The perimeter, or sum of the sides, of a rectangle is p,
required the sides when the area is a max.

Let #=the base, then the perpendicular=} p—u,
- Area=a(} p—x)=3pr—a?=a max.

Differentiating, &c., we find =1 p; hence it follows that
the greatest rectangle is a square.

7. A rectangular sheep-fold ABCD is to be built against an
old wall D¢, so as to enclose a given area, viz., @ square feet.
Required its dimensions, so that it may be built with the
least expense. .

Here the expense will be a
minimum when the length of the
walling ¢BAD is a minimum. 2 ¥ B

a
Let z=AB, then ABX AD=a, .. Ap=_,
. 2a .
.*. the length of the walhng=A3+2AD=x+—£‘ =a min.

2
Let y=x+ - =% min.

dy_,_20_ = v3q,

= wa_O, and x= V24,

but AD=‘E = _t.":=,‘} V2a.
x A 2a

I—‘:e it follows that the breadth must be half the length.
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8. Required the same as in the last example, when the
enclosed space is divided into two compartments by a
wall FQ.

Adopting the same notation as in the last example, we
have

the length of the walling =AB+3AD=.‘¢+§£.
Hence we find Ap=}aB.

9. A cistern, open at the top, having a square base, is to
be covered with a sup. ft. of lead ; required the dimensions
of the cistern when its content is a maximum.

Let x=the side of the base, and z=the perpend. height;
then the sup. ft. in the cistern = a2+ 4rz=a;
a—2x%

4z
and solidity of the cistern= area base x perpend. height

C.l z=

=x? x 2=}(ax—2*)=a max., then we have,

Yy=ar—x’= a max. ;

. ii_-?— 2 e | . — a
o0 dw_a_am_ 9 oo w_/\/?)’
a

a— a2 a—3 1 a

and z= iz /\/a_é 5
‘A 3

Hence the height must be half the side of the base.

10. To describe the least isosceles triangle Anc, about a
given circle, whose radius op=0Dn=r.
Let 2=co0, then cp= Vaz2—17% and
from the similar triangles cro and cpa,
we have
CP.OP:. DC ! AD
VA o=

gt
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2
>, Area A ABO=ADXDO=’-%w+—r)=a min.
1 3
and y=<z+r) =(Etrr a min.

x2—72 T—7

dy_3(z+r)? (z—r)— (w+r)
Cdr (z—r)?

o () (e—r)—(x+1)3=0,
S x=27, and cp=x+7r=3r.

11. Required the altitude of the greatest cone ABC, which
can be cut out of the given sphere ADBC, c
whoge diameter cp=2r. 5

Let x=cp, then PD=2r—z,
and A r?=cp X PD=2(2r—2x),

.. area base cone == X AP?=7x(2r —x), 4 % B
.. solidity cone=1 area base x perpend. i

=§w’(2r-—m)= a max.

Differentiating, &c., 4re—3x2=0, .-, x=4%r.
12. To bisect the triangle AB¢ by the shortest line pp,

Let so=a, Ac=b, cr=x, and cD=y,
then by the problem,
area )\ ABC=2 area » PDC,

< $ab sinc=2 x1lay sin ¢; P \D\
‘. 2zy=ab, and y=g§. A B

Now, by Trigonometry, page 125., we have

PD2=CP34CD?—2CP.CD.COS C

._.z"+——ab cos C= a min.
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Differentiating, &c., we have 2z — 2_:s 0,

ab
w o=/ Towir=g=A/T

Hence it follows that cP=c¢D.

13. Through a given point P within a given right angle
ABG, to draw the line pQ which shall cut off
the least triangle pBQ.

From p draw PR parallel to BC.
Let BR=a, Rr=4, Bp=x;

then DR=x—@a, and by the similar tri-

angles pBQ and PRP, we have

DR : RP:. BD  BQ

c

Q

z—a. b:: z:B b
Db mime=——.
Area A DBQ=1DD.BQ= ba? =g min.
z 2(z—a)
x? .
and y= o= & min.
. dy_2_____:c(x—a)—x;=0; s x=2a.

tdr (z—u)?

Hence it follows that the line pqQ is biseccted in the
point P.

14. The whole surface of a right cone is ¢ sup. ft.; re-
quired its dimensions when the content is a maximum.

Let z=the radius of the base, and z=the slant height;
then we have,

circum. base =2z ; area base ==x2;

convex surface=7} circum. base X slant height =2 X2}
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.. Total surface cone = mx2+xx x2=c;

oo z=—‘£—.z';

.. perpend. height cone= V22 _z?= o 2
qr2x2 L

Solidity cone = } area base X perpend. height

2 ¢z 2¢
=1 ax -5~ = a max.
TEL T

Squaring and neglecting the constant factor, we have,

:,/____za(éz)_z) =£.;;2—2x4= 2 max.;

o W2 sweo; '”=‘¥"\/?’
d.l: L4 = ™

c 3 ¢

and ﬂ_ié—z-—z/\/;.

Hence it appears that the slant height is 3 times the radius
of the base.

15. Let 7 be the radius of a circular sheet of tin; it is
required to find the dimensions of a sector cut out of it,
which will form a conical vessel of the greatest capacity.

Let # = the length of the arc of the sector.

Now when the sector is coiled up so as to form the cone,

x will be the circumference of the base, and r will be the

slant height ;

R z x
. diam. of the base ==, and rad. basc = 5y
w

.~ perpend. height of the cone= ,\/ (7“‘ ----- ).

LAUR .
\ =IxZ=—;
and area base ol v
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. content = } area base X perpend. = . 4”,\/:2 —in

= a max. Squaring and neglecting the constant factors,

y=x‘(r’—£)= a max. ;
4x? ’

o Wy
Y spas_ 2 w0 . w-2nr\/3

16. Of all triangles upon the same base @, and having the
same perimeter 2p, the isosceles has the greatest area.

Let = one of the sides, then the other side =Zp—a -u.
By Mensuration, prob. 3., we have,

area A= Vp(p—a) (p—=z) (p—2p—a—2x)=a max. ;
= y=(p—2)(a+z—p)= a max.

Hence we find, by the usual process, :c=p-—g, and the
other side =2p—a——z=p—g.

17. To inscribe the greatest parallelogram in a giver
parabola.

Let ABFG be the given parabola, and 16FD the requirec.
parallelogram. (See fig. to Ez. 2.)

Put the height cE=d, and x=EQ, then by the property
of the parabola, Art. 19,

GQ*=4ax, and .*. GF=2+4uz.
Again, 16=CQ=CE—EQ=b—u.
area IGFD=GF X 16=2V 4ax(b—x)=a max.

» y=z(b—x)?=2 max.

‘?Z—(z,_z)ﬁ —2u(b—x)=0,
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. b _2
RR w=§, and cQ=b—x=%b.

That is, the height of the rectangle must be two-thirds of
the height of the parabola.

18. To determine whether y=a2— 6x admits of a max. or
nin. value.

In the preceding examples the peculiar nature of the
figure has invariably indicated, with sufficient certainty,
whether the proposed quantity became a max. or min. ; now
in the following examples we shall find it necessary to em-
ploy the test of a max. or min. given in the Rule.

y=at—6zx; . %:2:0—6:0;

S =38,

In order to ascertain whether this value of x gives a max.
or min. value to y, we have to observe that 22 —6 will be
negative for all values of x less than 3, and positive for all
values of x greater than 3 ; that is, gz will be increasing as
z is continually increased ; hence we conclude that y admits
of a minimum. Or we may substitute 3 for z in the pro-
posed expressmn 23—6z, and ascertain, by an easy trial
whether this value of x renders the expression a max. or
min.

19. To determine whether y=ax—2? admits of a max. or
min. value.

a

di
Here 3—3:“_%:0’ R :L‘=§.

Now a—2x will be positive for all values of z less than g,

a . dy
and negative for all values of x greater than 5; that is, ,—,'f



70 DIFFERENTIAL CALCULUS.

" will be decreasing as x is continually increased, therefore

a
=5 makes y a max.

20. To determine the maxima and minima values of the
function y=38x*—z+-c.

d;
d_Z=9x2—1=o; oox=+1
Where =} makes the proposed function a min., and
= —1 a max.
_x Ly 1-a
2241’ " dx (x41)7
s 1—a?=0, and x=+1.

Let y=

In addition to the criterion of a max. or min., given in the
Rule, the following one may be advantageously used.

Now if the value of % be decreasing, then it follows by

Art. 48., that the differential coefficient of this quantity will
be negative, which will therefore indicate that the function
admits of a max.; and in like manner it may be shown that
if the result of the second differentiation is a positive quan-
tity, then the function admits of a min

In the above example, put '= -, then we find by

( +1)
differentiating,

dy _2x3—6x

dr~ (2+1)%
dy’ x

If 2= 41, d;, —3 Sy= ma_ﬁ=u}, a max.
dy .
r=-1, -dz‘{f-—-l-l,..‘/— 3> & min.

This process is equivalent to finding the second differential

Y (See Art. 59.)

~ coefficient of y, or the value of dot
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21. To divide a given number @ into two parts, such that
the third power of the one multiplied by the sccond power
of the other shall be a maximum.

Let = one part, then a —z=the other ;

s y=x%(a—x)?=a max.
- g‘:z:&z"(a —x)?—2x%(a—x)=0.

s 8a—5x=0, and x—%q

22, Let a ship sail from a given place 4, in the dircction
AX, at the same time that a boat scts
out from another place B to approach
the ship ; it is required to find the
direction 1n which the boat must €ail in _
order to come as near the ship as pos- L A
sible, the velocity of the ship being to that of the boat as m
to ».

B

r

Let p and P be the position of the two vesscls when
nearest to each other, then pPB must obviously be a straight
line. Draw Bc perpendicular to AX, and put Ac=a, Bc=b,
and cp=wx, then BD=+BC2+CD%= b2+ z? ; moreover,

AD:BP . m . n, .. Br="_(a_+i);

m
x
.. PD=BD—BP=+ b’ 2’— n(a+2) + )= =a min.
Hence we have by diffcrentiation, &c.,
> n nb

_—ee =0, ., x= s =z,
VoA m T T
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23. Within a given parabola AES, .
to inscribe the greatest parabola cFc
. . . e r
having its vertex ¢ in the middle of )
the base aB, - L

Let ce=b, and EQ=ux, then, A
Art. 19, ¢Q?=4ar, and ., GF
=2+4az.

.". area parabola GCF=2 GF.QC
=% x 2 V4azx x (b—z)=a max.

o y=a(b—zx)*=a max.

RS %:(b—x)2—2w(b—x)=0,

o xor EQ=%, and Qc=CE—EQ=%b.

24, The corner A of a leaf is turned over, so as just to
reach the edge of the page at ¢; it is required to find when
the length of the crease pD is a minimum. :

Let AB=a, and Ar=x. Join Ac, cut-
ting Pp in F; draw FQ parallel to BG; »
tl:en, since AD=cCD, and Ar=rc, there-

A a
fore AF=Fc, AQ:QB:—2-, and / Arr=

a right angle. Now from the similar tri-
angles APF and PQF, we have,

AP I PR !IPF; PQ,

o PF=VAP.PQ =\/‘”("'g)-

Again, from the similar triangles ArD and QPF,

AP [ PDIIPQ: PF;

V(=3)
xy /afz—=
_AP.PF_ 2/=a.min.
T PQ a

r——

2

&% PD
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x _ 248 .
S Y= T =8 min.
72
. dy_62*(2zx—a)—42?® =0:

“dzT T (2z—a)
"o 62(2x—a)—4x3=0, and x=3a.

25. Find when the area of the part turned down is a
minimum.

AFP=+ 1P’ —p¥i=+ laz,

/ Ta x x?
A
. area APD=3pD.ar=—"2%XT _, nin,
2 @
XX =— _
2
2a
R TES _=amin, .\, ¥="5.
2z — 3

26. If z=b—ax, represent the relation of the speed and
traction of a horse, where 2 is the traction in lbs., and x the
rate in miles per hour; required the rate x so that the horse
may perform the greatest amount of work. '

Work per hour = 5280x2=5280z(b—ax) = a max.

’

o y=z(b—axr)=bxr—axr?= a max.

Ldy_
"dm =b—2ax=0, . r=p
250
If =250, and a=41%, then =53 415"—3 (See Tates

Mechanics, Art. 6.)

EXERCISES.

1. Divide 15 into two parts, such that the product of the

less by the square of the greater, shall be a maximum.
Ans. 10 and 5.
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2. The greatest rectangle inscribed in a quadrant of a
circle is a square. Prove also that the same is true for the
whole circle.

3. Required the same as in FEz.9., when the cistern is
closed at the top.

Ans. The vessel must have the form of a cube.

4. Required the same as in Ex. 9., when the cistern has
the form of a right cylinder.

Ans. The height must be half the diameter of the base.

5. Supposing the vessel in Ez. 9., to be made of tin, and
that it is divided into two compartments, what will then be
its dimensions?

Ans. The height must be % of the side of the base.

6. Required the altitude of the greatest cylinder which
can be cut out of a sphere whose diameter is . Ans. D/ 3.

7. Given the same as in Ez. 13., to draw pQ so that BD+
BQ shall be a minimum. Ans. Rp= Vab.

Next show that BD=5(Q when the area of the triangle pnq
is & minimum.

8. To find a point in a semicircle, such that the sum of
the lines drawn from it to the extremities of the diameter
shall be a maximum. Ans. The point will bisect the arc.

9. Of all the cones whose convex surface is given (=¢) to
find that whose solidity is a maximum.

c

w3

10. At what point in the line (=D) joining the centres

of two spheres, whose radii are = and r,, can the greatest
#p

7 +r,g

11. The altitude of the least cone circumscribed about a
given sphere is equal to twice the diameter of the sphere.

12. If two bodies, A and ¢, move at the samec time from

two given points, A and ¢, in the directions Ac and ¢B, and

with the velocities m and % ; it is required to find the dis-

Ans. The radius of the base =

amount of both surfaces be seen? Ans. x=
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tance moved over by ¢, when they are at the least distance
from each other.
an(m+n cos C)

Ans. x=——>—"——"""_ where a=AC.
m2 +n+2mn cos ¢

18. The altitude of the greatest parabola tlat can be
formed by cutting a right cone is § of the slant height of
the cone.

14. Required the base of the greatest rectangle which
can be inscribed in a semiellipse, whose major axis is 2a, and
minor axis 2b. Ans. a /9.

15. Let y=a%2+3x2+42; to find when y is a max. or min.

Ans. x=—3 makes y a min.

16. y=3x>—4xis a min. when r=3%

x2—z+1. . v

17. Y=gy s 2 min. when =2, and a max. when

=0,

18. y=1+3x—2? is a max. when x=1, and a min. when
z=-—1.

RULES FOR THE DIFFERENTIATION OF FUNCTIONS.

[ Continued from page 56.]

52. Rule 8. To differentiate a compound function, or the
function of a function. If y=r(z), where z=f(x), then
dy__ dv/x(L
dx~ dz
found by t.;.l;mg the differential coefficient of y with respect
to z, and then multiplying this result by the differential
coeficient of = with respeet to .

that is, the differential coeflicient of y is

First, taking a particular case in order to illustrate the

process of reasoning, let y=-————;, or putting 2 for

x
+2) iy iz
y:Z". 3
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Now, when z takes the increment %, let z be increased by

k, then
. . o incr. 2%
iner. y=iner. 2?=—p—x ks

. . 2
. incr. y__iner. 2 xk

.o h —E—— 7; LR (l);
but incr. 22=(z+k)? —22=22k + 42,

. incr. 22

o =2z+k;

x
and z—m,

z+h T k .
1+z+h 14z (I+z+h)1+ay
oé—_____l___—_.
*r (A+z+rh)1+x)’

substituting these values in eq. (1),

.*. incr. z or k=

1ncr y_

=22+ Bz +w+h)(l+x)

which is true for all values of 2. Now when % approaches
0, % also approaches O, for the magnitude of 2 depends upon
the magnitude of A; hence, taking the limiting value of
incr. y

5 e have,
dy 1 dz?_dz
s _2zx(l+ ),,thatxs,dz =’
_ 2= 1 22,'

Generally, let y=r(2), where z=f(x).

Supposing, as usual, x to become z+4,
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-7
-1

. . __iner. ¥(2)
iner. y=incr. F(2)= = iner s xincr. z,

multiplying and dividing by incr. z;

, incr. y incr.¥(2) incr. z
** k7 incr. z kR

As this equality is true for all values of %, it will therefoge
be true when % approaches O, that is, it will be true when
the ratios are taken at their limiting values. But when £
approaches O, incr. 2z also approaches 0, since the magnitude
of incr. z depends upon the magnitude of %; and then the
incr. r(z) dr(z)
incr. dx

iner. 2or iner. fzx) _df(x )

A 7 =" and so on.

limiting value of , the limiting value of

dy__dr(z) d_/(:c) dyxdz
S dxT ds dz T & Ndr

Ex. Let y=a+2"— /q +z".*

Here, putting z for ¢+ 2", we have,

y=z—zi
/RS S S S
d{» 2z 2Va+ "
dz_d(a+a2™)_ ...
and =gy =T
dy dy dz__ 1 .
"d:c dz dl' 1—2J——=}Wo

In practice the operatmn may be conducted after the fol-
lowing manner :

dy—dz——- {1—— dz ;

* This may also be differentiated by rule 7.
E 3
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but z=a+z"; .° de=nx*'dr;

-1
iR dy_.{l W }my" dr;
. dy.. — :_l,_ n—1
o dr= {l 2«/3_—:— nx"1.

o Asexercises on this rule the student may work out any of
the examples under Rule 7., which is merely a particular
form of the one here given,

53. Rule 9. If y=f(x), then ‘ﬁ/ ;il

dy
First, as an exawple, let Y= 1 then solving this equa-~

1+y

tion for x, we find 2=— i thereby showing that if y be a

function of z, then z must be a function of y. When x takes
the increment £, let y take the increment £, then

: _1+y+k 14y k.
iner. x or kA= Y R e W
incr.y & —k
t = =k=
T Gy~ YR

Now when % approaches 0, % also approaches 0, hence we
have by taking the limiting values,

dy 1
de= Y Tax
dy

Let us now take the general function y=f(z). It will be
readily understood, since y is a function of z, that x may be
found in terms of y, or what is the same thing,  must be a
function of y. By simple algebra we have
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incr. y 1

——— U Se———

incr. z incr. &
incr. ¥

iner. Yy

Now as y is a function of z, the limiting value of o

or g—x’ may be found when incr. x or % approaches 0 ; and in
like mannet, as z is a function of y the limiting value of
incr.

incr v ’/ rJ 1/’ may be found when incr. y or % approaches 0,

which it does when % approaches O; therefore taking the
limiting values of both sides of the equality, we have,

dy_1 q%_1

dz dx’ dy—iz/'
dy dx
ExAMPLES.

. dx

—r2 -

1. Let y=22+43x+ a, required P

Here we might find the value of z in terms of y, and then

proceed to determine the differential coefficient by the pre-

ceding rules ; but the process, in gencral, will be much more
simple by the present rule.

dy Lde 1 1
P I N s
dzx

In practice the operation may be conducted in the follow-
ing manner ; differenting the proposed function,

dy=2x dz+ 3dx=(2z+3)dx ;
dividing each side by dy,
dr 1

dx N
a‘y(21'+3)=1, oo @_2—x+3' /

E 4
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dz

2. Let y=ax +c¢, then - =

=L

a

3. Let y=1—, then %’:(1—@&
4. Let y=a"—u, then Z_:znx'_:ll-——l
5. Let x:l—‘_y;!—/, then Z‘; ‘E/lz_-:‘é‘):

54. Rule 10. To find the differential of an exponential
function, multiply together the hyp. log. of the basc, the ex-
ponential itself, and the differential of the exponent.

If y=a7, then dy=log, a. a*dx.
Let x take the increment 4, then we have,
incr. y=a*tt—at=a*(a*—1) ... (1).

Developing by the binomial theorem, a*= {1+(a—1)}*

_1+h(a—1)+}l(h—21) a—1)2+&e.;
—1=i(a—-1)+*P2D (1) 4 &e.

Substituting this in eq. (1), and dividing by 4,
G102,

Cr.

R e — 1)+ e
Now when % approaches 0, the limit of mc,:' y =gi;

g‘g:—-a‘ {(a—1)—}(a—1)2+}(a—1)2—&ec.}.
But by Art. 9., (a— 1)—3(e—1)2+}(a—1)—&ec. =log, a;

o :L_log, a. a% and dy*da‘__log, a. a’dz

....... e e el o T it 1 e
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If y=a*, where z=f{z), then by Rule 8.,
dy da* dz__ dz
dz—dz "dz~ =% Tdx’®

oo dy=da*=log, a . a*dz. Z ;
¥
Cor. If e be put for a, then, since log, e=1, we have,
de*=edz,

that is, the differential of e is the product of & and the

differential of the exponent.

ExAMPLES.

1. Let y=e*, then dy=e*'d(2x?)=2xe*"dx.
2. Let y=e%, then dy=ne"*dx.
3. Let y=a® 17, then dy=log, a.a=**d(cx’*+x)
=log, a.a=**(3cz?+1)dx.
4. Let y=a"e%, then by Rule 5,
dy=nx"-'dx x &€+ e*dx X x*=x""le*(n + x)dx.
. Let y=e*(x—1), then dy=e-xdz.

S o

. Let y=e*(2?—2x + 2), then dy=e*z’dx.
e dy  ex

1+ dz™ (1 +.zc)2

8. Let y=(1+e%)*, then we have, by Rule 7.,

dy=n(l+e*)~! xd(1+e*)=n(l+ e*)*~ledx.

9. Let y=(z+¢%)? then dy=2(z+¢e*)(1 +e*)dx.

55. Rule 11. To find the differential of the logarithm of
a quantity, divide the differential of the quantity by the
hyp. log. of the base x the quantity itself.
If y=log, z, then d‘/—-l———g‘?

aa:

~7

. Let y= , then

£S5
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Let x take the increment %, then we have,

iner. y=log, (x+h)—log, z=log, _:c_-%»lz =log, (l +2) ;

mcr y“ (1 + h) == log,, (l +- )

_1
! =z IOg‘,l (1 +;'_) .

"Now when % approaches 0, the limit of

incr. /_dy

—5 and by

x

h\? 1
‘%\rt. 28. Ex. 13, log, ( 1 +;) =log, e= fog.a (see Art.9.),

. dy_dlog,x_ 1 B _
“tdrT dr  log.a.? and dy=d log, w—lz%-e-m.

Or thus : — From the nature of logarithms, x=a¥, there-

fore by Rule 10, dr=log,a.av dy; .. dy=

log,a.a
If y=log, z, where z=f(2), then by Rule 8,
dy_dlog,z dz_ 1  dz

dz~  dr " dax log,a.z dr
4
log,a .z

and dy=dlog, 2=

Cor. If the base be e, then log,e=1, and

L dlog,z=%;
[ p
that is, the differential of the hyp. log. of a quantity is equal
to the differential of the quantity divided by the quantity
itself.
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ExAMPLES.
d(cx?) 3dx
— 3 — — .
1. Let y=log, ca?, then dy—log, .o log,a.a
d(atz)_ dz_

2. Let y-‘=1083 (a+x)’ then dy_ a+x a+x

d(1+42%)__ 2xdx
1422 ~ 14a?

3. Let y=log, (1+2?), then dy=

dy__ 2z

and dr 142

dy_n
4. Let y=1log, ax*®, then iz

5. Let y=log, {a:+(a:’—1)%}, then

diz+ (22— 1)*} _dz+ ¥ (22— 1) 20dx
x4+ (x?— 1)‘I z+(:c’—l)’

dy=

_ {(w’—])l’-g-a:}dz dz

(@2—1){z s (@-1)} (2—1)t

6. Let y=log,-:/lL—W=log,z—§ log, (1+22), then

dr _xdx _ dx
z 14z z(1+a2)

2dzx
T1—a%

dy=

7. Let y—.log, then dy=+——

zﬁ+1_

1 then dy= 2dx
+1+71 YSrv/an

E 6

83
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1
9. Let y=2a* (log8 w——;—‘), then

1\ , dx
dy=nx""'dx x (logew—;‘) + 2 X
=na~"' log, x dx.
10. Let y=a(log,x)", then dy=(log, )"~ {log, =+ =} d=.

d
11. Let y=e*log, , then dy=e*dx xlog,z+ f X e*

=e’{log¢z+i}dz.

ol

(
12. Let y=e %=, then dy=e¢ %= dx

e—1
13. Let y=Ilog, &5 =log.(e*—1)—log (¢*+1),

e*dr _ e"dx __ 2¢%dx
-1 el el

\/ 14. Lety= e‘,\/1+x

A complicated product may often be conveniently differen-
tiated by first taking its logarithm,

log,y=x+4% log, (1 +x)—% log, (1 —2);

- dy dx de _2—a?
_gf_dx-h‘r 1+z+7 1—z 1—a?

LAy 22— 14z 2—a*
S dr Y2 T T

\ 15. Let y=:t’, then log,y ==z log,x,

then dy=-

dx;

%
i

dy dx dy
{ ;—d:c log.z+x . —» ™ dx—z’(log.z-{- 1)
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56. Rule 12. To find the differentials of the trigonome-
trical functions, sin @, cos z, tan x, &c.
d sin x=cos z dx, d cos x= —sin z dz,

d tan x=sec zr dz, &c.

(1.) Let y=sin @, then if z takes the increment 4,
incr. y=sin (x+A)—sin z==2 cos (z+g) sin z,
by Trigo. Art. 32. page 121.

.k

gin =

- Incr. Y cos (z_'_g)_h_?
2

Now when % approaches O we have at the limits (Art. 28
Ez. 17.),

. h

sin

2_ incr. y_ dy
—1, and -'—,l———%y

IR

. dy_dsinzx
“tdxT  dx

=tos z,

and dy=d sin x=cos x dx.
If y=sin z, where z=f (), then, by Rule 8,

dy dsinz dz eoszxfig
dx~ dz Zdz dz

and dy=d sin z=cos zdz.

(2.) Since cos z=sin 52—2:), v

o w k2 L4
.~ d cos x=d sin 5~ ):cos (-2— )d(z— )

—cin ry .dr— —sin »dr,
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And generally, d cos 2= —sin 2dz, where z=f ().
(3.) Since tan 2="27% then, by Rule 6,
cos

d sin x X cos z—d cos x X 8in =

d tan r= 2
cos 2z
cos 2z +sin %r) dx__
( + . ) z—=sec Zrdz.
cos 2x ~cos 2x

And generally, d tan z=sec?zdz, where z=f(x).

T dz

(4.) Similarly d cotz= —enis

From these cases the differential of any other trigonomes«
trical functions may be readily found.*

* The method of infinitesimals invented by Leibnitz enables us to
arrive at these results, as well as those in Art. 58., .
with great simplicity. Let c be the centre of the U
circular arc A p, of which N is the sine, and ¢~ the ¥
cosine, the radius ca being unity. Then, according
to this method, we may suppose @ to be taken so near S
to p that rQ may be regarded as a straight line, per-
pendicular to c. & M N A

Let aArp=s, PN=y, and cN=z; then rQ=ds, it : > M
being the indefinitely small increment of s; similarly LQ=dy, and M~
or Lr= —dz. By the similar triangles rLq and »xc we have

PQiLQilcricCN, ;
ords:dy:ilix, [ Voeml
= fﬂ”:dx .. dy=x x ds, that is, d sin, s=cos. s x da.
And rqQ:LrP::cCP PN,
ords: —dx::1:y,
"M‘dx *, dz=—y x ds, that is, d cos. s= —sin. s x ds.

Again, from the equation dy=2z x ds we have

Q= dy . il dy
dc=x —I—JT—},thatmdsln 'y @.

And from the equation dr= —y x ds we have

that is,d cos— r= — 71:;

A== -

dz
Py
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ExaAMPLES.

1. Let y=sin nx, then dy=cos nx x d(nx)=n cos nxdz.
2. Let y=sin®z, then by Rule 7.,
dy=3 sin’x dsin =3 sin? cos z dzr.
3. Let y=(cos )", then dy=n(cos x)*-!x d cos x
= —n(cos z)~! sin x dx.
4. Let y=sin 2z cos z, then, by Rule 5,

%:2 cos 2z cos x—sin x sin 2z

=cos 2x cos x + cos 2z cos x—sin 2z sin x
=cos 2z cos 2+ cos 3x.
5. Let y=x —sinz cos z, then dy=2 sin? x dx.
6. Let y=e®=, then dy=e® = d sin x=e¢"" = cos x dx.
7. Let y=log, sin 2z, then, by Rule 11.,

_dsin2x__2 cos2zdx

sin 2z~ sin 2z 2 cot 2z dx.
8. Let y=log,  / Ltsinz '
1—sinx

=1 log, (1 +sin #)—} log, (1 —sin z),

d(l+sinz) ,d(l—sinz)_ dz
14sinz 2 1—sinz cosx

s dy=1%

In a similar manner the other differentials may be obtained. It must,
however, be observed that the correctness of the results, obtained by this
method, arises from the principle of the compensation of errors. The
first error that we adopt is, that pQ is a straight line perpendicular to ce.
Now as this will be more and more nearly true as the arc rqQ approaches
0, we compensate for this error by taking the magnitudes depending
upon pq as if pQ were really 0. This method invariably leads to correct
results; and, with due care, it forms one of the most powerful instru-
ments in the application of the differential calculus.
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9. Let y=lo /l—cosx dy__ 1
y="08 1+cosz’ then dr sina

n—1
10. Let y=tan" z, then %=%

d;
11. Let y=tan x—, then ;iZ:taﬁ z.

12. Let y= ~/tan 2z, then Zz— :fg::x
13. Let y=cos?x—sin? z, then dy= —2 sin 2z dx.
14. Let y=sin z cos z tan x, then

log, y=log, sin z+1log, cos z+log, tan z ;

. dy_cosxdr sinmdx+ dz
ty sin cosr  cosirtana’

dy__ ¢ 2
'+ Zp=*5in z cos z tan w{cotx—tan z+m}.
15. Let y=a>=; ,*, log, y=sin zlog, x;

J %:cos. :z:da:xlog,:c+‘—i7—J sin x;

. Q.Z_ in. z . sin &
R dr_wn {cosm lomw+ p }

16. y=e** sin rz, -‘gy-=e°’ (@ sin r&+ 7 cos rz).

dr

17. y=¢* sin™, ‘—ﬁ=e" sin™! z(sin z+m cos x).
. . dy
18. Let y=sec x ; required g

=sec a:=—l—, then, by Rule6.,
cos T



DIFFERENTIATION OF FUNCTIONS. 89

dy sinx _sin 2 1
dz” cos?r ~ cosx " cos x

=tan x. sec .

After the same manner prove the following formule : —

d(versin .'l)
T dr

d cosec x
-— = —cosecC X.cot .
dx

sin x,

87. Notation of Inverse Functions. If y=¥(x) be called
he direct function, then x=F-'(y) is the notation expressing
he inverse function. Hence, if we have given the inverse
unction x=f"'(y), we immediately return to the direct
anction y=f{(z); thus if y=sin —'z, we have sin y=x;
herefore the expression sin—'x indicates an arc whose sine
§ X, and so on to other inverse functions.

58. Rule 13. To find the differentials of inverse trigono-
aetrical functions.

—sin—% = g

‘ (1.) If y=sin g then dy= T
x z
For if y=sin - 1_1. o sin y= 25

. dsin y=(%; S COB Y dy:‘ff;

ol dy BT dx de  _ ax
ane y—a cosy a4/I;—51n2y =a/\/_l‘—:£.2— Vai—a%
u2
—dx
=cos % th d E—.
(2) if y=cos en dy=———
x . _dx
For cos y=g5 —sin y dy= >
sody= —dr ___—dv _ —d&x

asiny a+vl—cosly ~ai—at
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udx
(3.) If y=tan- 'w then dy= -, prpe
_‘? . . 2 _é‘s .
For tan.y_a, .~ osece? y dy= a5
dx adz
X “a sec2 a(l FtanZy) ~ @t
Similarly we have  versin '-‘2— _Eti%:ﬁ?
! O _ade
\}.\ “ and d sec PRIV waprs

In these formule the radius of the circle is a in reference
to the arc z ; but they are at once reduced to radius unity
by making a=1 ; hence we have.

dx

dy=d sin"'x=—:- e (1)

—dzx
T 2.)

dy=d cos'x=

. (3)

dx
—— -1
dy=d tan =T

ExXAMPLES.

1. Let y=sin—! , to find dy ;

x
V14a?

o~ 8in y=-;/i.—i_—;.2 ; differentiating we find,

m”dyd(«/ﬁ”zﬁ):(uxﬂﬁ;

o y___l_)( dw

COSY (1 42V
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e 2 1
But = 1—'2=,\/1_.L=___.
ut cos y=+/1—sin%y ) (1+.z-2)'5’

hence we have by substitution
dx_ _ dz
(1+a2)t 1+27

dy=(1+2%)} x

Or thus, by the immediate application of formula (1),

2
where we must put — 2 _ form and .5, —2_ for x?% thus
+a? 1422

A1
we have
x x x?
P in—1 —_—_=d(—‘7::‘:)+ —_—
dy=d sin Viia Vit /\/l a2
=9 :
1+a%
1 —x2 2dx
=sin—! -- =— .
2. Let y=sin T2 then dy 522

The following examples admit of concise forms of solution ;
at the same time it should be observed that they may all be
solved by the methods given in L. 1.

3. Let y =cos—' (42®—3x), then cos y=423—3x;
= ¥3Gn o,

hence by Trigo. Art. 3L, p.121., x=cos ‘;, and y=3 cos~'z,
—3dzx
. by formula (2), dy= -,
y @) dy=—r—;
3dx

4. Let y=sin—*(8x—4x3), then dy=

—ad
=3 At Vi-a
: 2z 2dx
—tan—1-2% _ —
5. Let y=tan == then dy= T

Vr—at

6. Let y=sin—'(2x—1), then dy=



92 DIFFERENTIAL CALCULUS.

SucCESSIVE DIFFERENTIATION.

59. In the preceding articles we have framed a system of
rules whereby the differential coefficient of the ordinary
, functions of x may be calculated ; this differential cocfficient
we have defined to be the limiting ratio of the increment of
the function to the increment of the variable x, and have

@)

designated it by the symbo! or % where ¥ is put for

dz
J(x). This symbol represents an operation, which is given
for each particular form of the function in the rules alrcady

established ; thus if y=2" we find Z—Z by decreasing the ex-

ponent by unity and multiplying by =, that is, %—‘Z:n@"",

and so on to other cases. But this operation may be re-
peated until the expression operated upon becomes zero. If

% represents one operation, then by an extension of the
2 ol

. d?y
or more concisely P

2 will

ddy
meaning of the symbol,—— az JZi—x
represent two operations; and generally %;‘Z will symbolise »
operations ; hence this symbol is called the nth differential
coeficient. For example, if y=2z" we have

2,
dy—nz“-‘ d‘/—n(n— 1)a*-2,

dx
% m(n - 1)(m—2)x"3, and so on.
2y, . o
(J iﬁ = v freg N -\7"/) % = L”..
.v‘ Y, ExAMPLES.

1. If y=aa®4 a2, then gz=3az'-’-r2x,
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2.

dy—Ga:c+2, Ty_

.’/
o a xa“‘G“’ and =0.

dxt

2. Let y=a—ba? then % —2b.

4.
3. Let y=24 + 23+ 22+ 2+ 1, then %%:1 .2.3.4.

4. Let y= %2::.:-2, then
g'yi 21-—,3:'2_2,31—4, %:—2.3.4;-—5,

4.
2y —5.5.4.56=2:328 ponce gonerally we have

Py (=1y2.83.4...(n+1)
Zxﬁ— T2 .

_ 1 Py 24x(1 —a?)
. 5. Let y——m, then zZz-’_ —m-
dy
6. Let y=c+b(x—a)", then o =n(n—1)...2.1.8

di
7. Let y=a?, then a‘%:log,a . a%,

jm'ﬁ =log.a . log.a . a*=(log, a)%a”, and so on,

d. .
%Zz(log,a)‘a'. 3/ :
8. Let y=e¢™, then %:m”e"’.
9. Let y=a"¢*, then

%:nm"-‘e‘+z"e‘=(z‘“+nx“")e',
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= {na* +n(n — )22} & + (2" + na"=1)e*
= {a" +2na + n(n—1)2""% ¢
10. Let y=xe", then Tai _(3 +x)e”, and gencrally

LAVE
o I oy

In Lagrange’s method of derived functions, the symbol
JS(z) is used in the place of ‘—l’;—(:—), and is called the first de-

rived function ; f”(x) is used in the place of /(2 z) , and is

called the second derived function, and so on, f*(x) being

the nth derived function, and equivalent to d—df—;—‘”)

MACLAURIN'S THEOREM.

60. If y=f(x) admits of being expanded in the ascending
positive powers of z, let

y=A+Br+cx?+prd+&c.

where A, B, ¢, &c. are called constants, the values of which
we proceed to determine.

By successive differentiation we have

%=B+2cz+3m:’+4m3+&c.
a2
at—‘,y=2c+2. 3.vx+8.4. Ba2+ &e.

&
3;{=‘2 .3.0+2.3.48z+&c.

&e.=&e.
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Now since A, B, ¢, &c. do not involve x, they must remain

the same whatever value may be given to . Make =0 in
2y

d
these several equations, and let (y)o, ( dZ ;o \az &c

represent the values of z, -d - dx"” &c. when x is taken O,

then we have

d; d?y
(y)o-_—A; (j%)o:}}; ) =2c,
o (T L. (d"y -
..C~(l2 0.1'2’ -_!-a< o_2l3.D’

. D._.(dwa) . 2 3,andsoon

Hence, by substituting these values of the constants in the
assumed equation, we have

- dy d?y dy
y=l )°+(E_-1‘)o (dﬁ} 2 (dx-’) 1.2, 3"'&c

This development is commonly known by the name of
Maclaurin's Theorem.*

.

Application of Maclaurin’s Theorem to the development of
JSunctions.

6l. Let y=(a+x)";
then making =0, (y),=a";

* Adopting the notation of Lagrange (see page 94. ), this theorem ;‘
may be written,

R)=FO)+1©) . T+5"(0) . i—2+ F'(0). m+&c. i
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dy
=n(a+z)~, .~ ((Tz) [0 o

2 2
%:n(n—l) (@a+z)=3, .-, (Z—g o=n(71 -1)a~=%;
&ec.=&e. y o &eo =&e.

Hence, by substituting these values in Maclaurin’s
Theorem, we have

n(n—

yor(a +w)‘=a'+¥a"‘ x4+ ~————-a" 222+ &c.,
which is the binomial theorem.*
62. Let y=log,(14+x);
then (7),=log,1=0;
differentiating by Rule 11,

L . ()=
7= (a),= 1

dy__ 1 . (P -y,
= T ray T \dar),T F
By_ 2 (d‘{y
s (A Fa)y ) =23

and so on. 'Therefore, by Maclaurin’s theorem,

22, 23 ot
yorlog, (14+x)=a—75+5—7 +&ec

8

log, #=(z—1)—} (z— 1)+ }(z— 1P —} (e — L) + &c.

Cor. Putting x—1 for z we have

.. * Although this theorem has been used in establishing the rules of
1ﬂ‘erentmtmn, yet it will be instructive to see how the differential cal-

&,Ps may be applied in proving the binomial theorem.
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63. Let y=a*;
then (y),=a’°=1;
differentiating by rule 10,

dy __ . (9 _ )
jz',"'logea Lar o, Ei,)."'logea H

& iy
ga=Cozayas, o (V) =(log.ay?;

dn ’ dr
dz.{= (logca )nar’ % (;ix“{ 0 = (lOg‘¢ a).

& az.._l_,_ a .Z’ (logca)2 m2+(1_0g_"£’)3__1?_a

1.2 1.2.8 T%

64. To expand sin « and cos z in terms of the arc z.
Let y=sin z, .*, (¥),=sin 0=0;
differentiating by rule 12,

dy
——cos x, . (d/) =cos 0=1

Ty _
= —sin @, .° (dﬁ) = —sin 0=0;

3
Z'Z —Cos T, % (d‘/) =—cos0=—1;
nd so on ; where it is obvious that all the even orders of
_ifferentiation will become O, and the odd ones alternately
Ins and minus,

3 b

T atTre s d s e

.. sin x=x—

Differentiating both sides of this equality,

-2 4% %
cosz=l—3 3t 2,374~
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65. Let y=sin—'z;
then by Art. 58., eq. (1), and expanding by the binomial,

d 1
===
1.3 1.3. (2”—1)1""4-&:: (1)

=141 z‘3+2 4 .o+ 5 4

Differentiating this equation for 2z times, and then making
=0, we shall obviously have,

d2n+l1/ 2n—1
dx%_(,l 2—4(—2} 2”(271—'1) . L
Hence the general term of Maclaurin’s theorem is

d2n+ly) 227t _1.8...(2rn—1) a1
dzeni I.2...@n+1)~ 2.4...20 “2n+0U

Therefore taking » successively = 1, 2, 8, &c., we obtain
the 8rd, 4th, &c. terms in the development. Moreover we

have (y),=sin—'0=0, and from eq. (1), (Z——‘Z) =1,

1 # 1.3 a 1.8.5 a7
- LR |
SosinTr=r4 g5 gty gt 7 &

Developments of this kind may often be obtained more
simply in the following manner.

Assume y=A,+4,x+ A2+ &e.

RS g—z—A, +2a,z+ 3A,x2+ &e. ,
=1 = 7_ B %" e
Equating the coefficients in thls expansion, with those in

eq. (1), we have,
ay=1; a4,=0; 3a;=3, .. 4;=}.3%; A,=0;

5A5—Zl, i, e A,—; 2 _15, and so on.
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Moreover when £=0, 4,=(¥),=sin"'0=0.

Substituting these values in the assumed equation, we find
the same expression for sin—'z as that above given.

Cor. The length of a circular arc may be readily found
by means of this series; thus, let the arc contain 80° then
sin—lz=arc 30°, and

. zorsin30=1;

.3
. are 30=1 +l 55 23+2 T 05+8¢c—-523598 &e.

But the arc 30° is %5 of the whole circumference, &
.. circumference to rad. 1="523598 x 12

.*. circumference to diam. 1=3-14159 &ec.
66. Let y=tan—lx;
then by Art. 58., eq. (3), and dividing,

dy 1

"—l—w=i‘—_'-—;2= 1 —a:2+w4—:u6+&c.

Hence we have by successive differentiation,

dz
‘ Ew'z=—-2w+4x3—6x5+&c.

d3y
%=—2+3 4x2—35 . 624+ &c.
‘a—xd'z ,2.3.41'--4.5.6.1'3-{-&(‘.

@:2 .83.4—38.4.5. 622+ &c.

&e.=&e.
Now make =0, then (y),=tan'0=0;

W oy, (¥ (J‘v _ (d‘y\
(?ix = \@s) =0 =25 \gw

¢o
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dZ_B 3.4; andso on. Substituting these values in Mac-
laurin’s theorem,

223 2.3.4x°
y=2-5 3t5.3.2.5 ¥
gyt B2
]Ertan =7 3+5 &ec.,

which is an exfaression for the length of an arc in terms of

its tangent.
This development may also be obtained, by differentiating
both sides of Maclaurin’s theorem, in order to derive the

d
value of di’ and then equating the coefficients of this series
ith those in the series f dy . .
with those 1n the series for 5 Just gn'ren.
67. By Art. 8. Cor. 1., we have,
22 xt
er=1 +x+§+23+2———. 3 4+&c.

In this expansion put v —1, and —z+ —1 successively
for x, then
— 2 a3V 1 zh
=l 15— gty gt e

v _z'__ew3«/l x4
e"‘lx«/l2+23+234&

first adding these equations, and then subtracting, &c.,
VIl 4 g2Vl — 2 _
eV e _2{1 ot ogg— e
=2cosz . . . (1), by Art. 64.

V3 aovhieoy—ife® 1 T _&
it 1{’” s 3ta a5 %
=2+ "1 sinz . .. (2), by Art. 64.
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Adding (1) and (2), and dividing by 2,
eV—T=cosz++ 1 sinz. .. (3)
Subtracting (2) from (1), and dividing by 2,
e=VFl=cosz— +/ —1 sinz .. . (4).
Cor. 1. Hence from (1) and (2), we have,
P G

cos z= ,

a8 VT _ e—z\’-j
and smzr=—————.
24 —1

Cor. 2. Dividing the latter cq. by the former,

1 VT _ V=1 1 P Vs B |
V1l VT qpeaV=1" /] V=141

tan r=

) These remarkable formulae were discovered by Euler.

; | Cor.3. In eq. (3) put nz for z,
' (r" cos nx+ v/ =1 sin ne=e"v=1=(eV-1)"

1'"\\{ “ =(cos z+ v/ —1 sin 2)", from (3).

.. This is called Demoivre’s Formula. *
i

TAYLOR'S TITEOREM.

68. Let f () = az" + bz™ + ca? + &c.,
where 7, m, p, &c. may represent any constant quantities,
whether integral, fractional, positive, or negative.
Let x become x4 A, then we have,
S(@+h)y=a(x+h) +bx+h)"+ c(x+k)P+ &e.,
expanding by the binomial theorem, and arranging the

terms according to the ascending powers of 2,
F3
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2
f(z+ h)=az* + nax*=" ’; + n(n—1)ax"? _1!‘_:‘2 +&e.
bx™  mbxm-1 m(m—1)bxm™2
ca?  peaP-l p(p—1)ear—2
&c.  &e. &e.

Here it will be observed that the first column in the
expansion is the proposed function f'(2) ; the second column
is derived from the first by differentiation ; the third column
is derived from the second by differentiation ; and so on,
any column in the series being derived from its preceding
column by the process of differentiation,

d L d? 2 3 £(: A3
o St y=f (o) DA B T EM0 Tk

This important deve]opment was first given by Dr. Taylor,
and hence it is called Zaylor’s Theorem.

The following proof is usually given by writers on the
differential calculus:

69. Let y=f(x+4), where z and - are independent of

dy

each other, then de Z/ ; the former being the differential
cocfficient of y on the supposition that  is the variable, and
4 constant ; and the latter that A is the variable, and x
constant.*

* Put s=x+#h, ./, y=f(s), then by Rule 8.

¢_i_z/ df(s) ds (If(x)
dr™ ds “dz ds’

ds d(z+h) dx
becausez;: e 1.

dJ_df(s) ds dfg)
Agnits = a5 =25’

ds d(r+h) dh

because BT

=1l

. Ay _dy

Sa=an cach being equal to

dft 3)
ds
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This principle depends upon the circumstance that x and
% are involved in precisely the same manner. The following
illustrations will render the truth of the principle sufficiently
apparent.

1. Let y=a(z+A)"+b(x+2)"+&e.;

oo Y —na(at kY1 mb(at -+ e

and /_na(:c+k)"-1 +mb(x+k)" + &e.

. dy_dy
tdz di
2. Let y=log, (x+*%) . sin (x+A).

- dy_dy_ 1

de=dh=zih sin (x+#4)+cos (x+h) . log, (x+7%).

Let us now assume,
S(@+h)=Ff(x)+ Nko+Phb+ Qe + &e.,

Where the quantities N, P, @, &c. are functions of x not
involving %, and a, b, ¢, &c. are constant indices which
remain to be found. None of these indices can be negative,
for if any one term werc of the form Rh‘e=;—;, that term
would become infinite when A=0, while the left hand member
of the equation is reduced to f(x). All the exponents there-
fore being positive, they may be supposed to be arranged in
an ascending order, that is, «>b, 6>¢, and so on. The first
term, as in the assumption, must be f(x), for when A=0 we
must have the equality f(z)=f(x).

Differentiating first with respect to x, and then with respect
to A,

df(z+h)_ df(x) AN, 49,
- - +d I+ 2kt &,

(lf(x+h)

aNha 4 bp R e QAo + &e.
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Now, by Art. 69. these two series are identical, whatever
may be the value of %, and therefore the exponents of the
several powers of %, as well as the corresponding coefficients,
must be the same in both series ; hence we have from the
identity of the exponents,

a—1=0, b—1=a, c—1=0, &ec.;
s o=l b=a+1=2, e=b+1=3, &c
and from the coeflicients, we have,

f(w) _de
bP_d Q= s &e

. dfw) I 1 1)

R " iat” Ml Ve R S
ydr_ 1 f()

Q= d_ T 93 ~—2_ and so on.

S EEREf @+ ()]; ch(%z) 1h22+%321.}§.3

aN=

.
Ce 5

Or adopting the notation of Lagrange (see page 94.), this
theorem may be written,
NN S h? 73
S+ By=f@)+5 @) |+ (@) { 5+ @) g+ e
Putting y =f (x), and y,=f (z+1£), this theorem may also
be written,
- dyh d?y k2 ddy i3
W YA T e T a TTE
Taylor’s theorem will give the expansion of f(z+£) in all
cases, so long as x retains its gencral value ; but particular
values may be given to z, in certain functions, which will
render some of the differential coefficients infinite ; in such
cases the theorem is said to fail in giving the development
according to the ascending integral powers of A.
Maclaurin’s theorem may be readily obtained from Tay-
lor's, by making =0, and then putting z for &,

f&e.

+¢
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Application of Taylor's Theorem.

70. To expand (z+/%)® by this theorem.

dy d?
Let y=a?, then Zl'/-_3.7c 3 d.c'/

3y
=6z Xy dw5=6.
Substituting these values in Taylor’s theorem,
dyh d¥ k2 d3% 73
=YY 1T @ T, 2 @ 1,23

2 3
ylz(m+lt)3=:c3+3x7,+6t i 5167 h

+ &c.

1.2.3
=a3 4 3x2h 4 Sxh? + h3.
71. To expand sin (z+F£).
. dy d%y_ &y
Let y=sin 2, then dr_cos x, = = —sin x, dx3=—cos x,

dy . ) S
dzz =sin z, after this the values recur. Substituting these

values in the theorem,

dy b d?y 12 By I3
=Yt 1tama 12 s 12,31 ¥

yy=sin (z+A)=sin 2+ cos wé—sin x——m —cos:c——hs—
! 1 1.2 1.2.3
It I

I
1.2.3.4 7% %15,
. h2 oM
"sm“{l m+1.2.3.4"&c'}

h®
vemaf b=yt s |-

—&e.

-+8in o

‘When 2=0 this expression becomes the same as that
given in Art. 64.

FS5
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Similarly cos (z+ %) may be expanded.

72. To expand log, (z+ k).

1/ 1d% 1 d%_2
T AT P drd o

ay__2.3

T A

Let y=log,, then

&ec.

b R2
* loge($+h)=1°g¢$+:r——272+g{s—&c

73. To determine a series for the calculation of loga-
rithms.

In the preceding series, let =1, then log,2=0, and

~ log, (14 2)= Iz—.l‘_ }"3_’.‘?-{-&& (1)

This series is of no practical use in the calculation of
Jogarithms, since it obviously becomes divergent when A
" exceeds unity.

Changing % into —£% in this series,

log,(1— )= —h—"* _.’g_"_+& (2)

Subtracting (2) from (1), we have,
log, l+k) 2{’+h +/ 4 & }

In order to render this equation convergent, put _1

2x+1
for A, then L+h_z+1 H
1=~ =z
o ““)_1« 1)—log,z=2 1 }
oge( og.(z+1)—log,x= 2x+l 3(2x+1)3 + &e.

1 1 1
o log,(z41)=log, 2{___, . }
o8t =g+ 2y g s s T
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A series of considerable convergency, which enables us to
calculate the logarithms of numbers by means of those which
immediately precede them. For example, if =10, then the
first four terms of the series will give the value of log,11
correct to ten decimal places. Other series have been deter-
mined which are still more convergent.

Vanisking Fractions.

74. The substitution of a particular value for «, in a frac-
tion, sometimes makes both the numerator and denominator

vamsh such fractions are called vamshmg fractions. Thus

w 0
becomes o when z=1; however, we have by division

.r-——l 1 1.
Y iy o b when z=1, thf?refore 5 is the true value of

the fraction when z=1. Here both numerator and denormi-
nator vanish when z=1, because they both contain the®
factor —1, which becomes O when z=1. In like manner

(a ——w*)"+(a :c)
(@—zp+(a2—a)

but dividing numerator and denominator by the common

= when r=a,

1
factor (¢ —x)?% we have

(a+w)’+(a—x)'5 ~V2a
l+(a+:c)* T 1+ V2

Thus by an easy algebraic process we may frequently find
the value of a vanishing fraction ; the method, however, de-
rived from the differential calculus is more general, and in
many difficult cases much more simple in practice.

Let u= f()

@) be a vanishing fraction which becomes g

-, when x=a.

when z=a.
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‘x; )

y S x '; .~ ur(x)=f(x); differentiating by rule 5, /
Fia p(@) B L@ _ ),

/

but #(2)=0 when r=a,

f af(z)
ol dF(w) df(x) = dx
N -~ “dr " “TTr(a)

ITence we have the following rule. To find the value of a
vanishing fraction, divide the differential coefficient of the
numerator by the differential coefficient of the denominator,

j and then substitute the given value for the variable. Should
m be found, after this process, that the fraction still vanishes

!  the process may obviously be repcated until the fraction
ceases to have the vanishing form.

. 3
Ex. 1. Find the value of u=——~ ! , when x=1.

22— —2
Here the differential coefficicnt of the numerator is 3x2;
and that of the denominator 3x2 +4x—1,

32 1
u=3i2_+‘4¢_:1 =y when z=1.
3 2_ 2
2. ”iﬁﬂ__%_l_—s, when z=2.
3. u___l—x":” when z=1.
l-2

4. Find the value of u-—%“:'%iﬁi;, when z=1.

Here it will be necessary to differentiate twice.

Sx?—2x—1
. The result of the first differentiations is s 6221 07"
6x—2
and that of the second ~————= T 12252 =2=u, when x=1. ,
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5. The sum of the series x+2x2+3x%+. . .+na" is

w _x—(n+1) 2P a7t
- (1—-=)? ’

By two differentiations we find u=g=n—@§l)
gl
6. u=§l—§—:2—=n, when z=1.

- 3x*—6x+3 3

7. U=y 0 4;{-_225’ when x=1.

a®—b*
T

8. Find the value of

, when x=0.

Here the differential coefficient of the numerator
a* log, a—b" log, b ; and that of the denominator is 1 ;

. u=a" log, a—0b% log, b=Ilog, g—, when z=0.

eT—es
r—a

9. u= =e" when z=a.

10. u=.l_mg=i =0, when z=1.

1—apt
33 .0
11. u=a_’i“Tx.=3a, when z=a.
a—a’z?
12. Find the value of u=.cls-%—z—§°§g, when z=1.
Diff. coeff. numr.= — & sin ax.
»» 5, denoT.=—2zx.
—a sinax_a sin a
S U= - = , when z=1.
—2x 2
1—cosa
. u=——— ", when 2=0.
13. w zlog, (1+zY .

After two differentiations we find 2==].

; required its value when z=1.

is



110 DIFFERENTIAL CALCULUS,

TANGENTS TO CURVES.

75. To draw a tangent to a given point P of the plane
curve ArQ referred to the
rectangular axes Az and Ay.

Let pT be the tangent,
cutting the axis of x in the
point T, then by Art. 32. we
have R

tan NTP—;—;Z. . (D

In order to draw the tangent PT it is only necessary that
we should find the point T, or the distance NT which is called
the subtangent; for this purpose we have

dy
tan NTP X NT=NP, Or ('l'—::XNT=$I,

. NT or subtangent=y+g'z. ... (2) N

The length of the tangent is found from the equation
pr=+/NP2+N12%...(3)

If pa be drawn perpendicular to the tangent at », and
cutting the axis in 6, then PG is called the normal, and N
the subnormal.

Since L NPG=/ NTP,

. NG or subnormal=NP Xtan NPG=y X tan NTP

—y W
_y'llm'”'(4)

The length of the normal is found from the equation.
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PG or normal=+vNp24NG2Z= «/y.,.w(%)e

=y/\/l+(g—g 2(5)

ExAMPLES.

1. To draw a tangent PT to any

point P in the parabola. ° r
From the equation of the curve v
Art. 19, A /
2 .
y=daz; T /A ofp ¥ N [
hence by differentiation we have
dy 2a
2y dy=4adx, .. E:%:? 5 K

substituting in eq. (2.) Art. 75.,
2a_y® _ 4ax

v 20 2a-—-2x—-20N

NT=y-+
Thus it appears that the subtangent NT is equal to twice
the abscissa oN; and ., OT=ON.
Again from eq. (4.) Art. 75., we have
NG=Yy. dy =y. —-=2a=20F
From this, we learn, that the subnormal is a constant
quartity, being always equal to twice the distance of the
focus from the vertex of the curve.
2. To draw a tangent P;T to any point P, in the circle
AP, DM;. (See fig. p.16.)
Let o be the origin of co-ordinates, AN=z, and NP, =y,
then by Art. 18. Cor. 1.

dy r—=zx
8—9pp—zg2 o I_TTZ%
yi=2rx—2a?, ., ; 7
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substituting this in eq. (2.) Art. 75.,

, r—x__ y? _2rz—ax® .
W, NT=y+—=

A y r—z r—x ()"‘“
3. To draw a tangent PT to any point I) in the ellipse
AnbM.  (See fig. p. 16.)
Taking A as the origin, AN=x, and Np=y, we have by
sCor. 1. Art. 20. i
vk b2 dy ¥ a—=x
o 2 —_2 = —
i .;‘A.;.ﬁ.;_ry—a.l@aw &) S =0 7’

“ubstituting in eq. (2.), Art. 75. Cota

NT=y+E a—z_ a2y? 2a.z'-—:c2. ;’ :
@ Ty " a—x) a—a
Here it will be observed that as the value of NT is inde-
. pendent of &, it will remain the same whatever may be the
magnitude of b or the migor axis; hence it follows that if a
.circle AP, DM,, or any ellipse, be described upon the major
diameter AD, and the ordinates Nrr; be drawn cutting the
'é curves in the points P and p,, then the tangents T and P, T
} will intersect the axis in the same point T. This property
gives us an easy geometrical method for drawing a tangen
to any point in a given ellipse.
4. To find the subtangent and subnormal in the cissoid.

Here by Art. 23. the equation to the curve is

-’/’=2:ix; hence by differentiation,

2} (6r—2x)dx | dy_x*(3r-zx),
2ydy= T (@r—azp Ut dn y@r—zp’

substituting in eq. (2.) Art. 75., we Have

. dy_ x¥3r—zx)_ y¥2r—x)?
subtangent =y e y(2r—2x)t" 2¥(3r—zx)

=£(2r—z)

F 7o by substituting for y>.
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dJ x2(3r— :t)

Subnormal=y. = (Sr—ap"

5. To draw a tangent to the point P in the cycloid. (See
Jeg. p. 21.)
Let oN =z, Np=y, and BD=27, then by Art. 25.,

- ) i Sen
x=arc PB—PR, £ = T j’, -
= v /-

but arc p=r versm“‘/ and PR= VBR.RD=V2r A
Y=y

e -
.. =7 versin~! ‘g—— V2ry—y?; V RAgen

differentiating by Rule 13, &c.,

over X
d rdy (r=y)dy __ ydy *
X =" —
«/2ry—_/2 '\/2"!/ P ‘/27‘2’/“./2
dx_ vy dy _ '2ry—y°
Sy Vg Ty 5 Art. 53. .'

which is the differential equation to the cycloid. Substi-
tuting this in eq. (4.), we have

subnormal=y. g%:—. V2ry —y*=PR=NB.

Hence the chord rB is perpendicular to the curve ; and
as the angle formed by the chords BP and PD is a right-angle,
pD is the direction of the tangent to the point P of the
cycloid.

6. The eﬁuation to the cubical parabola is, y°=pz.

2
Show that the subtangent=_3z, and subnormal= %

2ry — 22

7. In the witch (see Art. 22.) the subtangent= — e

4r3

and subnormalzs —-~ .
a
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8. In the curve whose equation is y=y fﬁ’ the sub-

(1 —w’)

" normal= ATy

Asymptotes to Curves.

76. Asymptotes are tangents
to the curve at a point which
is at an infinite distance from
the origin. Thus if ck be a
tangent to the curve APP, at
a puint mﬁmtdy distant from
the origin A, then CK is gn asymptote; which may be drawn
when the values of Ac or AD are finite when x and g, or
or y are infinite.

Ezx. 1. To draw an asymptote to the hyperbola.

dy_b w+x
Here Art. 21., _'I/=f—l v 2ax 422 ., 711“& Nz 2ax+.z°

Hence by eq. (2.), Art. 75., we have
b a+x _ 2azx+2®

NT=p e —— mo-
4 a «/2a.z'+m2 Ta+tax’
AT—NT—AN—»(]m:—"'f'f x 2 %ﬁ“
ta 1+ = {4

From the similar triangles TAv and TN P, we have

_NP.AT__ ax  20x+%° b
AV=E"Nr Y ata atx %4
=YX, —$—+l

o ne  NZOxAX
Now when z is infinite, AT=a, and Av=>5. Hence take
AC=a, Ap=b, and join cD, then ¢D produced is the asymp-
tote to the curve. In this case the asymptote passes &rough

the rentre ¢ of the cnrve. L KT
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2. Draw the asymptote to the curve. whose equation is

Y=
I=1¥a

(1 +a?) \j - o‘/y
1—2? )

Here we find NT="""—"-"3 R
Coapo®E®) %0 2
ot 1 —x2 11— 1 1
P
Np.AT_! M
and Av=

e +1)

Therefore, when = o, AT= o8, and Av=0. The latter
result shows that the asymptote must pass through the
origin A; while the former result shows that the asymptote
does not cut the axis of x; that is, it must coincide with this
axis.

The method, given in these examples, is sometimes diffi-
cult of application ; the following may be frequently used
with advantage.

Let (if possible) the equation of the curve be put into the
form y=ax+b+ 2 + %-{— &e., then as x increases the terms

N
'

after b decrease, and when x=oo they vanish, leaving the
equation y=ax+ b for the infinite branch of the curve. But
this is an equation to a straight line ck (see last fig.),
cutting the axis of ¥ at a point y=5, and forming an £ ¢,
such that tan c=a. (Sec Art.14.) Thus it appears that
the infinite branch of the curve coincides with the straight
line cx represented by the equation y=ax+6.

3. To draw the asymptote to the curve, g3=2x3 + x2

Taking the root, and expanding by the binomial,

...:r(l-f— ’—-x{1+ i §;'9+&c'}

i
.._x+3 x. 4 &c.
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When = o, we have y=z+1 for the eauation to the
asymptote. Taking x=0, in this equation, y=1 ; and taking
y=0, z=—1; hence it follows that the asymptote cuts th(,
axis at an angle of 45° at the distances Ap=ac=1} from the
origin.

4. Show that the extreme ordinate BC (see fig. page 20.)

®is an asymptote to the cissoid.
+]x , has
an asymptote which cuts the axis at an angle of 45°.

2
5. Show that the curve, whose equation is y—w

Equation to the Tangent.

77. Let T be the tangent (see fig. page 110.); Np=y,
AN=z, the co-ordinates of the given point P of the curve;
and z, and y,, the co-ordinates of any point in the straight
line pT; then we have, by Art. 16., for the equation of this

< line
y,—y=a(z,—x),

d
where a=tan NTP; but by Art. 32., a‘%:tan NTP,

Sooa= hence by substitution,

dx’
-—3/- (.z‘ —z)...(1),

which is the equation to the tangent PT.

Since the normal P& is drawn at right angles to the
tangent PT,

1 dx
.S tan PGr=—cot NTP= —-= —d——,

|

hence the equation to the normal pPa is

y,—y=—§j (@-2)...(2)
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ExXAMPLES.

1. To find the equation to the tangent P17 in the ellipse,
the centre ¢ being the origin.

g

Al
«

z? Ldy_ 8w L
Art-zo-,b2+ =1, ~\.; -d‘—r'——&i.!? A K
.J'z‘.u KA o
substituting this in eq. (1.) Art. 77. for the tangent,
b2

x
Y, —Yy= _Ez * g(z‘/—x)’
b2 , b2
,,. A yy,—y’:— x?— —wx,:b‘-—y"‘—‘;izz,.

t‘ 2 4 = Xy,
i ~ atyy,+bx,=a?b? . .. (1)
which is the equation to the tangent PT, where the variable
co-ordinates are y, and z,.

Cor. 1. Make y,=0 in this equation, then we find
2 2

a?_cp
z orCT=_=_m, & CT.CN=CD?
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Cor. 2. Make x,=a, then we find

e _a??—b%a__ b (a—2x)
A4 Y, ornb= azy ay 4
again, make #,—= — @, then in like manner,
_b(a4x),
»\/ Yy, or AL = ——07—‘ H

therefore, if A;N and DN be joined, the triangles AA,N and

pD,N will be similar, and thercfore the lines AN and p,~ will
form equal angles with the axis AD;

AA; AT AN__AT

also —-l=—; 0, —=—,

DD, DT DN DT

v+ AN.DT=DN.AT.

Cor. 3. The equation (1.) to the tangent may be written

__be B
Y= 52&‘”4""‘”'
2 4.2
Let m=—§7w; m’a‘l‘:..—-bz":2 ;
a‘y a‘y

bix? b? b
s m2a24-02= a7y -+ b2=@-2 {222 + a?y?} =::;2 ;

2
RS m2a2+b2=%; substituting these values,

y,=mz,+ Va1 52 ... 2);

where m must be the tangent of the angle which the line
makes with the axis of 2. This form of the equation to the
tangent is often convenient in the solution of problems. As
an illustration of its application, let us take the following
problem. ‘
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Prob. Pairs of tangents to an ellipse intersect each other
at right angles ; required the equation to the curve passing
through the points of intersection.

Here we have for the equation of one of the tangents

y=ma+~ mA 1B,
S P—2mry +mi=m2a?+82 . . . (1)

Since the other tangent is at right angles to this, we shall
obtain the equation to the former from the equation to the

latter by subsﬁtuting ——;—‘ for m,

1 a?
e Y= —;&-l"'*‘ /\/E:z'f'b'a

oo m2? 4 2may +at=a+mb? . . . (2)
ling (1) and (2) and reducing, we have
2+ y=a+ b,
which is an equation to a circle, whose radius = va?+ 8?7,

and centre the same as that of the ellipse.
2. To find the equation to the tangent PT of a parabola.

(See fig. page 111.)
2a

Here y?=4ax, .". le=T/’

substituting this ir® the general eq. (1.) of the tangent, we
have

‘.'/— (x ),

which is the equation to the ta.ngent pT; or eliminating 3,

we also have
yy,=2a(x,+z).
Also by the general eq. (2.), the equation to the normal is

Y,—~y= —.-;": (z,—x).
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3. Show that the equation to the tangent in a hyperbola
is, a%yy,—b%rr = —a2? taking the origin at the centre c.
4. Show that the equation to the tangent in a cissoid is
. pe

4 y'=-(2—r-——.r—)g {Br—=x) x,—rx}.

Irclination of Curves and Tangents.

78. The angle which a curve makes with its axis is ob-
viously the same as that which the tangent mbkes.

Therefore g:t'/

which the curve makes with the axis of ».

is also equal to the tangent of the angle

LEx. 1. Required the angle at which the parabola cuts the
axis of x at the vertex.

dy 2a . e . .
Here 27 =%% —tan inclination to axis x;
dr y

2a
but when y=0, b = oc =tan 90° thercfore at the vertex

the angle is 90°, that is, the curve at the vertex is perpen-
dicular to the axis.

2. At what point in the ellipse is the curve parallel to the
axis of x.

Here by Exz. 1., Art. 77,
dy_ _0

‘—1;= 2" §=tnn 0, when a=0;

that is, the curve at the extremity of the minor axis is parallel
to the major axis.

3. Let y= l_-f_a?’ be the equation to the curve. At what

angle does the curve cut the axis of *x?

d —x?
E‘Z=(il—_—*_—-;3-2=l=tan 45° when =0, and .°, y=0;
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therefore the curve cuts the origin at an angle of 45° to the
uxis.

Points of Contrary Flexure.
79. Definition. A point of inflexion or contrary flexure is
a point where a curve passes from concavity to convexity, or
from convexity to concavity.
et ASPQ be a curve, concave
from A to r, and convex from P to Q,
then p will be a point of contrary
flexure. Draw the tangents sk, P,
and Qv to the points 8, r, and Q;
then if the ordinate sk move from A
along AN, it is evident that the angle skr will be decrcusinis
until sR comes to the position rx, but after this the anusic
will be inereasing ; thus the angle PTN is less than either of
the angles sk or vy, Henee it follows, that at a point
r of inflexion the angle r1y, and consequently its tangent,
dy

or d‘t, must be a maximum or a minimum, that is, we shall

d2y
have 1' /=0 or =, at the same time observing the cntcrmn
o.r=

given in Art. 50.

The curve is concave from A to p, and here we observe
that the angle sKR is decrcasing, and consequently its tan-
gent, or dv is deereasing ; that is Ly is nezative; and this

dv =2 > da? = ’
takes place throughout the coneave curve Ar. (See Art. 48.)
In like manner, it may be shown that ‘:’;‘y is positive from
P to Q, where the curve is convex to the axis of 2. This
change of sign from + to —, or — to 4, is the most direct
indication of a point of inflexion.

Ez. 1. Required the point r of contrary flexure in the
curve ApQ, whose equation is 1/.—_ .‘2(.r—a)3

_G(r a)?, and -_12(:1: a);



122 DIFFERENTIAL CALCULUS.

o 12(x—0)=0, and .. x=a;

.~ take AN=a@, and the ordinate NP will cut the curve in the
point P, which may be that of contrary flexure. To assure

ourselves of this, we observe that %, or 6(x—a)? is de-

. d;
creasing as we augment x up to @, and on the contrary ‘—1'—”-
is increasing as we augment z above a; thercfore the curve
is concave from A to P, and convex from P to Q, and hence p
is the point of contrary flexure. Or we may also obscrve

that for all values of x less than a, the value of ¢ d 2, or
12(x—a), is minus, and, on the contrary, for all values of x
greater than e it is plus; hence, &c.

Also tan PTN=£1'1/=6(.‘I:—a)’=0, when z=a,

dx

therefore the tangent at the point of contrary ﬁexure is
parallel to the axis AM.
2. The equation to the cubical parabola is a?y=2x3.
dy _ 3.1‘- d’y_6x

“dn o M I e

g‘::O, gives x=0,

hence the contrary flexure, if any, must take place at the
origin,

In the equation a2y=az3, when
x is plus, y is also plus; and
when x is minus, y is also
minus ; therefore the curve con-
sists of two identical branches,
as shown in the annexed cut.
Now g:i’; is increasing as  /
is being increased, therefore the

wiocht hransh mn~t ha annirac: ¢a
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the axis of x; and from the identity of the two branches,
the left branch must also be convex to the same axis;
therefore the curve has a point of contrary flexure at the
origin.

Or we may arrive at the same result, by observing that

d¥y . . I
the value of ng is minus when z is minus, and plus when x

is plus; that is, d;é changes its sign as x passes through O

80. TRACING OF CURVES.

Fz. 1. Required the form of the curve, whose cquation is
y=z(x+1) (r+2)=2a3+32?+2x.

(1.) To find where the curve
meets the axis Ax.
When y=0, we have
x(xz+1)(x+2)=0
S x=0, —1,0or —2;

therefore the curve must pass through the origin a, also
through o, and x ; where A0=1, and AR=2.

(2.) To find y for particular values of x.

For all positive values of z, the values of y will be posi-
tive (which will be shown by substitution in the proposed
equation); hence the curve extends to infipity in the right
branch AG.

For all minus values of a less than A0 or 1, the values of
- y will be minus; hence the curve from A to 0 lies delow the
% axis of x.

i For all minus values of z greater than 40, and less than
| AK or 2, the values of y will be positive; hence the curve
} from o to K lies above the axis of .
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For all minus values of x greater than AK or 2, the values
of y will be negative ; hence the remainder of the curve xE
extends indefinitely below the axis of z.

(3.) To find the inclination of the curve at the points
A, 0, and K.

tan 2 1n(,hnatlon- d.;: =3x2+6x+2;

when 2= 0, tan £ at A:EZ: 2, . / at A=63° 26’;

dy
when a=—1, tan 2 ato (—l- -1, .. £ at0=135°;
dy o opr
when x=—2, tan £ at K== 2, . £ at K=63° 26",

(4.) To find the points in the curve which run parallel to

the axis of x.
In this case, the angle which the direction of the curve

d,
makes with the axis of x must be 0, therefore ;IZ must be O,

.~ 3224 64 2=0, whence x=—1+ 1/}

. take AN=1—4/3}, and AT=1+4 +/}; and the ordinates

~p and TV will cut the curve in the points required. At
% these points the ordinates obviously attain their maximum

values.

(5.) To find the points of contrary flexure.
Here —-- —-6:1:+6 0, ..z=-1,

therefore therc is a point of contrary flexure at o.

2. Required the form of the curve whose ¢quation is

_.’i((;’-‘i‘—})): ce (1)
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(1.) To find where the curve
meets the axis of z.

This is readily done by finding
the values of x corresponding to
y=0; thus we have

(x+1)*=0, ., x=0,0r —1;
hence the origin is a point in the
curve ; take Ar=1, then 1 is
another point.

(2.) To find y for particular values of .

For all minus values of , the values of ¥ are minus;
thercfore the left branch lies entirely below the axis of .

For all positive values of z, the values of y are also
positive ; thercfore the right branch lies entirely above the
axis of x. Moreover when x=1, y= o« ; hence take Ap=1,
and draw G perpendicular to Az, then the curve tends
continually towards BG. But when z is tuken greater than
1 or AB, the curve reappears in the form rx; and when
r= ®», we also have y= o, that is, the curve here branches
off to infinity.

(3.) To find the asymptote to the curve.

:r(x+1)
[CEV

.. y=x+4, is the equation to the asymptote.

r+4 +g+ &ec., by division;

To construct this line. Take x=0, then y=4; take y=0,
then x=—4; .-, take AD=4, and Ac=41; join DC, then this
line produced is the asymptote to the two branches 1r and
PK.

(4.) To find the inclination of the curve at the points A
and L.

Differentiating the proposed equation to the curve,

dy x3—3x®—5x—1__ s
= (x:1 )3-—- =tan £ inclination

63
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when x=—1, tan /£ at 1=‘%=0, S Loat 1=0),

that is, the curve touches the axis of x at 1; -

when =0, tan / at A =Z‘Z= 1, »°. 2 at A=45°,

(5.) To find the points of contrary flexure.

Differentiating the value of Z‘Z above found,

----- which must be taken O or @

then 8(2z+1)=0, .°, z=—1;

therefore a point of contrary flexure takes place between a
and 1 at the distance § from A. To assure ourselves of this,

. )
we observe that minus values of x less than } render ;l.z‘;
plus, whercas minus values of z greater than } render it
minus.

3. Let y:(x’—-l)” be the cquation to the curve.

Then when =0, =41
lience take Ap=1, and ac=],
then B and ¢ are points in the
curve. When x is less than +1,
the value of yis impossible ; there-
fore the curve does not approach the origin A ncarer than n
or ¢. But for all + or — values of x greater than 1, the
values of y are possible, and are cither plus or minus; henee
the curve extends indefinitely above as well as below the
axis of . When the curve runs parallel to the axis of ,
we have

W _ore vy o maq.
1, =3@=1)'=0, ~ z=+1;

therefore the right hand branches touch ax at B, and the left
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hand ones at ¢, that is, they meet in a common tangent, &c,
without intersecting. Singular points of this kind are called
cusps.

4. Show that the witch has two branches symmetrical with
respect to the axis of z, that the axis of  forms an asymptote
to the curve, and that there are two points of contrary flexure

. 3r . .
at the distance x= ;- from the origin.

TIIE INTEGRAL CALCULLUS.

INTEGRATION.

81. Integratwon is the converse of Differentiation; thus s
the diffcrential of aa3 is 3ax?dx, so the integral of Saa?d: is
w3, The primary object of the Integral Calculus, therefors,
is from a given differential expression to find the function
from which it has been derived; this procuss is called In-
tegration, and the symbol (/) by which it is represvnted, is
consequently the converse of the symbol (d) which represents
differentiation; thus f(dy) =y, and generally if df(x) is the
differential of f{x), then f{df(x)} =f(x) is the integral of
df(x).

Since 4axddr is the differential of either ax! or ax!+c,
where ¢ is a constant, it follows that the integral of 4aa’d«
is generally expressed by

Jtarddr=axt+c,

where ¢ is called an arbitrary constant, the value of which
remains to be determined from the peculiar nature of the
problem.

Since the integral of any given differential expression
is the function from which the given expression is ob-
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tained by differentiation, it follows that we can integrate
those functions only to which we are led by differentiation.
The method to be pursued in integration may be resolved
into two divisions:—I. To derive certain elementary rules
or forms of integration from a simple inspection of the results
of differentiation. II. By various artifices to bring the fornis
of other functions to be integrated within those so de-
termined.

Elementary Rules of Integration.

82. Rule 1. A constant multiplicr is not changed by in-
tegration ; and hence, in a differential expression, it may be
written without the sign of integration : thus jux?dr=a;x?d

axrd

_—3—

Since d {af (x)} =adf(x);
-~ Jadf(x)=af (x).
83. Rule 2. To integrate ax"dr, where the index =» may

be any number except —1; add unity to the index, divide
by the index so increased, and the differential of the variable.

Since d{ +c} =axr’dx

ax™t!
..fa.r'dz_——»+l +c.

ExaMPLES.,

1. jSzadz__ o " e=2rite.

2. [6ax? dr=5 2 +c_2az-'+c.

+1
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8
3. ﬁ%l’r: 3 +C.

2zt
—- +C-.

3
4 [VExde=ful dz=T + o=
z

2
5 i?:fm-é dx=3—‘—ri+c.
x3 2

dzx Fan ) 3 1

6 [ = ‘1_—4+1 Ty T T e

7. Required the integrals of the following expressions,

3 2dx
Sidx, axdx, ‘/ -, 2z dx, 5

1 Sx 1
Answers, x3, ax?, 2ax?,- o

84. 'Rule 3. The integral of the sum of any number of
functions is equal to the sum of the integrals of the several
functions.

Since df{x) + dr(z) + &e.=d { f(x) +¥(r) 1 &e.}
. [ldf (x) + dr(x) + &e.} =f(x) + F(x) + &e.

ExavypLEs.
1. f(6ax?+ x3)dx=[6ax*dx + [ x3dr=2a23 +1—_:- +cC.

2. f z"——)dx_fw'dx— [ 2r—3dr= +c.

+l+ﬂ

* In all the examples hereafter given, it must be understood that the
arbitrary constant ¢ is always to be added, although it may not in all
cases be printed.

[- 3]
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3. Required the integrals of the following expressions : —e
1 +803)dx, (a+be+ca®)dz, (1+b+/5)dz, (25 —ad)dx,

(x~2+ 2r)d, %&_:_Gr;cfz. Answers, x+ 224,

ba?  cat 21):::'g x‘—3w§ g | 6ax—2
Gttty T Ty A

L]
1. [(a+2?)x?dr=/(a®+ 3a’x? + 3ax* + b )xdx
=3a%x3 + Ja2x5 + 2ax? + Jad.
5. f(1 +a)2x3dr=1at + §25 4 Lab.
i 85. Rule 4. To integrate a{ f(z)}"df (x), where df (z) is

ithe differential of the root. Add unity to the index, divide
‘by the index so increased and the differential of the root.

KBS
Since, by Art. 43., d %: a{fla)"dfiz);

f AR T3
o Fa (A=

ExAMPLES.
(x4ax?)*! o it wi
P it here it will be

observed that (1+2ax)dx = d(x +«a?), or the differential of
the root.

1. j(x+ax?) (1 +2ax)dx =

. agmeigp= {1 @™ e lde (14am !
2. J(Atamya dr-'in-y-l) x ma"dx~ m(n+1)"°

3. f(a+ bxcx®)*(b+ 2cx)d1'=n—_:_l-(a +bx 4 cx?)rH,

xdx 1+ 2% hede
\4- 71 +;‘.,=-’f(l+z"‘)’;.rdx=£-{; 22‘ d;—:(l-&—z’)*.
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(1—x4)ga:¢h'
5 f(1— v)izadz_m

dr ‘ 1
e

1
7f(a4_14)1 4(“‘—&’.‘4)‘

8. Integrate the following expressions, (1 +x‘)i(u,
(1+43z2)yzdr, (14 22+ 32%)%(2 + 62)dz, (1—2z)-"dz.

1 4 3x2)m+1
Answers, 3(1+2), GEEIT

3 §

1(1+42x+ 3x2),

1
2 =1 1=y

Expressions which do not appear in the form for the
direct application of this rule, may sometimes be brought to
that form by an easy reduction.

& ___ dz —4—t
9'./;3(1+z-3)*_:/‘z4(z4 : ])§—f(r3+l) r-tdz

_(@+ Dlrtde_ (-1 (1+2)
$(—3a—1)Az —2 o3

' dx x
loi/(lixz)%_ V1tat
»~l
' dx Q4am)y~
11. =

dx 4/2@1_3‘3
l . e .
2 ‘/‘z«/zax_za —; the proper form for

integration, in this case, is (2¢¢-—1_1)-lx_gd¢.
6
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13. / "7~——-5]"£'—‘=2«/ l-i. LT
/' f x-3dx (1_za)b
14. __ (=2
a(l-a2) J (21— 1)& z

86. Rule 5. When the numerator of a fraction is the dif-
ferential of the denominator, the integral of the fraction is
the logarithm of the denominator to the base e.

. dz
Since d log,z= S

. [z
o ;:logcu-c.

ExaMpLEs.

12“"11“ =log, (14 ax?)+c;

here 2azdr is the differential of 1 + ax?.

v-idr 1 nx™'dr 1
= log, (1+2*).

T ) 13a
3 /"_a_(_liv_ —a ['bdr _ ‘d(a +br)
“Sarbz b a+bx 1) a+br
7 log.(a+ bx).

. } ‘/‘dz
J a+a b+.r I+z

=log, (e+z)~log, (b +z)=1log,

z3—-1
S /{x«ﬂ - x+3}dz"l°g‘z+3'

a+x
bt
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U +ade_ frd(z+20h) —log, ;
b'f z+224 -/z+2 = (z+2z)

2
7. g:—-})i‘?—2 log, (23 —2+1)=log, (x¥—z+1)%

fod =log, Vai—as.

xridx
N Ta=log, (1 +2%)h

10. Required the integral of z’dz

Here the index of x in the numerutor being greater than
that in the denominator, we first divide as follows :

o 1
T+z =27 — z+l—l+z
j&-! _‘/'(zz z+l—l+z)da:- ~Z ta—log (1 +2).

ll.f-:—d—z—£+x+log, (z—1).

114 nt1
12. f (1+log, z) ;‘f —&"—‘—E—. Here the differen-
_ tial of the root, or d(1+log, z)= -3 hence Rule 4 applies.
The following examples are important logarithmic forms.
13 dx _‘/' T4 V:c‘+_a!_ i’___-ta’)'lzdx+dx
"/:s/xi’;ta' Vadtad T+ 23+ a? T+ \/z?+a?

=log, (z+ v+ a?), the num". being the dif-
ferential of the denom™.

Cde 1 faride _ 1 [ d(az)
14‘./.z(a’ix’)* a) (a%-t1p @ {12+ 1}
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=-1 log, {az—' 4+ (a®x-?+ 1)}, by Ex. 13.,

s
=_ 1 0g, —— ~ -}
a+ (a’+x’)ﬂ
de _ 1 r—a
1 Jo—a™ 2 8

Fop L _1f 1 1
T @@ 2 {a: a x+a}

. dr _ 1 dr 1 fde _ 1 log £
“Jai—a* 2a)z—a 2 Jxta 2a “zva

16 dx —_ dx —_— 1_ log .’l’:_g
‘J = Jat—ar 2« °‘z+d
1 1 T+a
‘x—a’

P 2dr  _{* d2z+1)
17. = == ;
_/(‘H“,e)a «/('4+4.t+4x'-’)5 -/{(2x+1)2+(34)’}"

=log, {2x+1+42(1 +x+a?)}}, by Ex.13.
For a general formula of integration, sec Exz. 4. Art. 91.

Code
(:mz—a':—l)'i
19. 2241 *, . .o
1+3z+2zz g sy~

87. To mtegrate elementary exponential ex, prc S80S,
By Art. 84. de*=log.a . ad:,

=log, {2e—1+42(23—z—1)3}.

ego_ 1 .
..jad._‘—og'-d.a +c.

¢ It must be always understood that the symbol log indncutes the hyp
log., or the log. to the basc ¢. _
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If a=e, fe*dz=¢*+c,

where z is any function of 2. The rule expressed in this
formula admits of immediate application when thc differ-
ential factor in the proposed integral is the diffcrential of
the variable index, or bears some constant ratio to it.

o
-,

ExaMPLES. T -

.

1 e
1. [e“”zdx=§afe°"xd(az:")= 5a"

2
2. fbe”dx:b—;:.
3. fadz=L [ avd(nz)= -2 _.
) n nlog a

Differcnting by Rules 5. and 10., we have,

* d(e’z):e‘{g:+z}dx, - C e

- _/‘ex{g+z}dz=e’z,

where the factor of e*dx is composed of two parts, one of
which is the differential coefficient of the other.
4. [fe*(3x?+2*—1)dr=e"(x®—1), where 3x2? is the dif-
ferential coefficient of 23—1.
5. J 5 (2x + a?)dx=€"x3.
6. [ (1 +elerde=3(1 + &) by Rule 4, p. 130.
88. 7o integrate elementary trigonometrical expressions.
(1.) Since d sin z=cos zdx,
% Jcos zdz=sin z +C.
(2.) Since d cos z=—sin zdz,
o [8in zdz=—cosz+cC.



186 INTEGRAL CALCULUS.

dz
1 r— ]
(3.) Since d tan z=sec?zdz or vl

o Ssecd zdz o:;/-.aadsi,;:tanz-{-c.

dz

(4-) Since d cot z=—ﬁ—,?

dz

o= —Cot 2.
sin?z

ExaMpLES.
1 1.
1. fcos nz ><d.~c=;_/cos nx X d(nx):; sin na.

cos (m+ n)r

JSsin (m+ n)zdr=— min
2. ftanzdt?/'s—“-‘fq‘f_ —doosz_¢ —log cos =,
cosx coszx

3. [fcotadz=log sin .

dx _ [d(}x)
“-f Treosz -/ (cos } ayp =120 % by (3)-

sinadr _ f*—d(1 +cosx)__
8. 1‘—'———'+ cos z ‘——-i:':—c?s}“ = log (1 4 CO08 .1:).
f /‘ sec’zdx 'd tan x
=f ————==log tanz.
8lnx cosx tanz tanx
1 _(sec}x :r)2

7. As-

sin 2 2sm§z cosjz Ztan}z’

(sec} z)d(yz)__ fdtan}zx
tan} tanjz

dz ':/‘ dz =log tan -l-r .‘l)
cosz J sin (Jx+z) g (4 t3)

=log tan}z.
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9. ftan? .ula::_/' (sec?z—1 )d:c=tan z -z

10. { + }dr—tan x—cot .
cos*x =m2 costz ' sin‘z

Ssinmz cos nx dx={"} {sin (m + n)x+sin (m—n)r) dr

_ 1{cos(m+'n).p sih(m-—n)z}
- m+n m—n )

By c¢xpressing the product of sines and cosines of angles
in terms of the sums and differences of sines and cosines of
angles, as we have here done, various other formule may
readily be found.

89. To integrate elementary circular functions.

dr

(1.) Since dsin—1% =T Art. 58.
2 g?

2

adzx
a a1+:c-

(3.) Since d tan -2

d.r l T
=" tan—-1%
N ra? a +C'

dzx
A/ %_:;"

- =versin -1% + C.
‘/:/ ar—zi

. Y.
(4.) Since d versin ~!-=
. a
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. x ade
X -2 G
(5.) Since d sec P
dx 1 z
. == gec—1 2T
o ._’:‘/55_?—-(z sec a-I-O.

ExaMrpLES.
"/' adz _aJ” dx
&1 _——T ————
(a-ba?)t & ;_z_x,)i
=2 gin-1—=2 =-€sin“w\/é
o /a4 a
b

by form (1), where we putg for a2,

dr 1 dz
2 fotia=s Jams vy form ),
—5+12

1 ,
=;- 1 tan =1 —s =~-l; tan“z,\/--,?.
NV A ’
b b
3 ‘/‘ xdr d(«?) | sin -1 a?
J(at—rtyp S fa —(s ? «
‘zdr 1 a?
A o -1
4. J B 242 tan o

5‘/'___4.1: ‘__‘_/'___2dz_h___ *d(2r—1)
S 1224227 ) 2—4x+ 422 ) (2x—13+1

=tan-!(2x~1); by form (3).

For a general method of integrating expressions of thia
form, see Ex. 3. Art. 91.
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2 l+2x
6f+a:+:c’ tnn 73

dz—-1) . a2=1
(1+2x zz)& ./l{z EERTTY ! /o,b y (1)

[s. /—-——i—-——sm"l 2—:52'}
e (l-—:c—a:?)* NE
Fundamvtal Formule.

90. Collecting the results of the preceding articles, we
have

+1
(u.)/’x"d.r:f_{_ i except when n=~1, and then
dx
1 a7
(c.) a"’+:c- atan b2
1 r—a
(d) .:.’—-u’ =5a Cz7a
(e.) -—————sm—l ,and —.d;r—,=cos"“—t.
(a2— 2?)} a (a3—2z2)s a

) / (a:‘2+ Fary =108 {z+ (@t a)}.

e _1 .a%

(9) z(.z-?—a’)i—“ a’
(}l.) -—*—-ﬂ-—'l‘=1 lOg __3_—.
z(a?+22py @ a+(a’+z.")!

(i) fa’d.r——:;, and fe~dr=
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(j.) [ sin mxda::-—;—‘ €08 m.
(k.) fcos ma:dx:;l’—l sin ma.

(L) fsec? m.tdx:;i tan mz.

All other integrals are reduced to some one of these
forms.

91. By certain easy algebrmic processes, many integrals
may be brought to some one of these elementary forms.

1. By various modes of transformation.

dr d(z+a)
LJ;::" +2ar)5 {(x+ a)*—a’}*
=log{(2?+ 2ax)! + z + a}, by form (}').
9, v rdx — d(:v’—-n_'—'}'i o
./ (2 —a?) (b2—z2)}? «/{‘b’—-a’—(z?-—a’ )}

i
vy

-~

. (x?—a?\} .
=sin- (b’-:a‘*) , by form (e).

3 de 2 ’ 2cdx
‘Ja+bxtex J dac + dbex + 4t

=9 T dQ2cx+))
- (Cex+b)*+ tac—b?
which is integrated by (¢) or by (d), according as 4ac—5? is

positive or negative. See examples, Art. 89. and 86., for this
and the two succeeding formulee.

dx 1 2cdx

4. =
(a+bz+cat)h b (d4ac+4bex +4c327))
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_1 d(2cx+0b)
{(2cx+b)3 +4ac— b2}

1
=alog {2cx+b+(4e X a+bx+cr?)}},
by (f).

dx _1 d(2cx—0b)
(a+bx—car)p ! dac+b2—(2cx—b):

5. Similarly

2cx—b

=l.sin-'———— by (e).
a

6 j‘ dr - a—2dr
x(a+bz+cx?)t ,/(.ax-’ + b +c)-'1’

— _./‘ d(r")
. (ax— +ba—' + c)%’

which has the same form as Example 4. Thus we have.

‘/' drx - d(z-"
(1+z4a2p  J (et+a41)

=—log {22~ '+ 14+ (4 x I+zT+2)}}
x
2+r+°(l+z+w-)’1

=log-
II. By splitting an expression.

(c+bx)dr _ dx xdx
l‘/‘az_“,z = 2+,,2+b iyt

x b ,,
=Z tan"-&+ 5 log (a*+a?)

g [ xdx __fadef 1

(#*+a) (z°+2) J b-a {x‘-’+a z3+b
—-_._L.- loo E?:t‘a
9% =a) ° xi+b
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2,

dz ST, e 1, =
8 (a:’+a’)(x2+b’)—b-’—a2{5tan a b 17} :

(w+l)“ ./.{z'+l (:c-l-l)?} dr=log (+1)+57

5f a1 2
‘J Hatba®) 3a ga+bx3'

Here — 1 1 1_ ba?
(+lw3) alz a+ba®

e*xdx i
6f1+.r)2‘/:{1+.r (l+w)2} edz= 1+

since the second term within the brackets is the differential
coeflicient of the first. See Ex. 4., Art. 87.

II1. By adding and subtracting the same quantity.

a -ﬁ&w a:?)f J {(2ax—.rz)" (;Z;i?i;}

=a versin —! ;—(2a:c—a:2)5.

2. [(a+baYado=] f(a+0a—a) (a+ba)ida

l L3
=3/ (a+ba)de—3 f(a+be)do= o (a+02) — Sf(a+bolh

3. f(1+z)a?de=(1+z) (1+z—1)%dzx
=/(1+ay*dz—2/(1 +zy*+'de+/(1 +z)dr

_d+z)*_ 2(1 4oyt (14z)™
= n+3 7n+2 | n+l

2
f 4‘/21_.. )‘—{ z?— }3(1+ );
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6 f(z+1)idz_ (z41)dz de dx
] wz—1) J a@—1) J (@—1) J par-1)
=log {x+(w’—l)5} +sec' .
‘7. —(—]ﬂm—x}mn“w— (1 —:t:’)g See Art. 93.
(1—z)
8 f(zm-w‘-’)’edx___ (20 —z)dx
’ z (2az —22)%
(a—-x)da: dz ., o N
f a.'c—.za)'z (2a.z'—.r2)%—(~ax @) +aversin w

z+a *(z+a)dz

o ./(T) w2+ax)5
(@ztayde o 1 dr
‘if.(x2+aw)l+ (x‘+a.1) ,;/ ;

=(a? + ax)} +2 3 log {(? + ax)t +  + 1a}.

(See Ez. 1. p. 140.)

(1—a2)idr x
10. f =lo 1—a22}h,
| x g 1+(1—z2)%+( ik

V. By substitution.

1
1=2
1—as3

1. Let the integral be u=

Let =26, where the exponent of z is equal to the pro-
duct of the denominators of the exponentsof x, ., dr=~62%dz;
hence we have, by substitution and division,

1—28
u'—ffl— 3 - Gﬂdzz‘(ﬂzs-}-z‘—z"-;-z? l-l}-z

sof i A ]
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2. Let the integral be u—_‘-/—.—————'—]w———,
@C+z)(1+a)

Assume (1 +x)5=z, So 14 a=22 dr=2z2dz, and 2+a
=222+ 1; therefore, by substitution, u= —%»1-—2 tan-1z=
2 tan—! (1 +:c)'}.

dx
After the same method J——————— is found.
(c+ex)(a+bx)
f — 3 let c+ex=z; taking the log
(c+ex) (a + bw2)
edx dz
of each side and differentiating, el

and a+ b.::’=a+l:72 (z—c)*:ii (ac?+ be?—2bez + b2?) ,

.. by subst., u-_‘-/ dz o
z(ac? +bet—2bez + b2?)t

which is integrated as in Ex. 6, Art. 91

" f dx f( ax~? + b)r—3dx
(c+ex?) (a+ ba ) cx+te

WAL
= [z +”)—=—.f o, by making

a(cx—?+e) c22+ae—cl’

(aa:"+b)*‘l=z. This will be integrated by form (c) or (d)
according as eae—cb is + or —.

If ae=cb, then u=— _j—iz _1,=__ﬁ____.
cz¢ ¢z c(a+b:v‘)5
dz _ =

For example = .
(1+22%) (2 +422)t (2442

H
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' 5 f dx 1 (1 +22)h+ 2k
(1—-a2)(1+a2)* 2% 8 (1—22)} ’
heree=1, e= — 1, a=1, b=1; then by (d) and reducing.

2
6. Similarly adz S= “d(a+ba%)? &32 ok
(c+ex?)(a+ba?): o b(c +ex?)

* dz 2—
./cz-+[)c ) , by making (a+bx) z.

NS¢ +z2)§}ﬂdz : let o4 (1+a%)=a;
(l+x’)‘!

e —-—é':————‘=7—léf by taking the log of each side, and then
Q+a?f @
! differentiating. Hence by subst., &c.

u=[nz" 'dz=:—;z"'= —’%{;H-(l +w’)%}=.

dx ..
8. ; this integral may be broucht
./(.a+bw)(cw2+ex+f)§ g Y =
dz
to the form f-——————— by making z=—+, and pro-
A(P—2Pztyys D S FE gy D

ceeding as in the foregoing examples.

RATIONAL FRACTIONS.

92. In a rational fraction the indices of x are all positive
integers. Expressions of this kind may be integrated by
resolving them into a series of simpler fractions, called
partial fractions. This can always be done by the method
of indeterminate coefficients explained in (Art. 7.), Ens. 2.,
3., 4.
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EXAMPLES.

1st. When the factors in the denominator are all different.

N E
‘J =2z ) x(z—2)

Here by decomposition, ;(;}:g)zé{
Y A, { dz _ du
"._/z(a:—2)-2 z—2 z

1 1 z—2

=§{log(:c—2)—loga: =5 log 3

z
adx r—a
f 2. ‘/;T_—a-x__log =

3f zdr zdx
‘S 22+ 6x+8) (x+4)(x+2)

1 _1
x—2 =z

Let x A B
© (x+4)(x+2) z+4 xz+2°

z=A(x+2)+B(x+4);
to find A, let z=—4; then —4=A(—4+2), .. A=2;
to find B, let x=—2, then —2=28B, .*, B==—13

+ clearing of fractions,

substituting the values of A and B, we have

z _ 2 1
(z+4)(z+2) z+4 z2+2

) adz 2de [ da
S (@+4)z+2) Ja+4 Jxz+2

= —1oaZt4)
=2log(x+4)—log(z+2)=log P
i dx 1 x+2
l4’ 16752 %8 ;7
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6. f (22 +2)dz f (z*+2)dz .
B+ T2t 4142 +8 J (x+1)(z+2)(2+4)
2242 A B
D@12 @+ 4) x+l+x+2+x+—4'
tlearing of fractions, by multiplying by (z+1)(z+2)(z+4),
224 2=A(z+2)(z+4)+B(z+ 1) z+4)+c(z+1)x+2);
tofind A, let t=—1,then 3 = 34, ., A= 1;
to find B, let £=-—2, then 6 =—28B, ., B=—3;
to find ¢, let t=—4, then 18= 6¢, ... ¢ = 3;

substituting these values of 4, B, and c,

#4213 3
@+ z+2)z+4) z+1 z+2 z+4°
.‘/' (22 +2)dz *dr ”:_Si.z'_i_ 3dx

(:c+l)(w+2)(:c+4) a+1 Jz+2 Jx+4
=log(xz+1)—3log(z+2) +3log(z+4)
1o (@ 1)@+ 4)?
=log @roF
[ —— G
P62+ 11z +6 (z+2

Herc the factors of the denominator are (z+ 1), (z +2),(x + 3).

f’ 8-_/.(14'3’2)-@_1
{ x—a3 g (1= ac’)z

Obs. In like manner, if the denominator contains tour
factors, we should resolve the expression into four partial
fractions ; and so on to other cases.
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2d. When some of the factors are equal.

When the denominator has the form of (z—a)"(z—b)
{z—c)...&c., we may readily decompose the fraction into
its partial fractions by assuming it equsl to

Q

r—c

A B
(a:—a)"+(w——a

. N (% +x)dx 7
1. Requu‘ed the mtearal Of:/(.;‘_—-mm)- V

+&e.

N r
yathe to it

x4z A LI
@—2P@—1) (=23 a2 a=1’

2 t+z=A(z—1)+Bx—2)(xz—1)+c(z—2)2...{1);

to find A, let z=2; then 22+2=4...(2).

Subtracting eq. (2) from (1) we have,

22242 —2=a(x—2)+B(x—2)(z—1) +c(z—2)%
and dividing by z—2,

z+2+1=a4+B(x—1)+0(x—2);

substituting the value of A(=6) derived from (2), and re
ducing,

Let

r—3=8(z—1)+c(xz—2);

to find B, let =2, then B=—1

to find c, let =1, then c=2;
x4z 6 1 2

“ @2 a—1) (@—2) &—2Ta=1
. (2*+2)dx _ (*6dx dx '2dx
"‘/(.x—2)2(x—1)‘ (x—2) 5;-‘245/517

6
=—~——5—log(z—2)+2log(z—1)
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"The method emplc;yed in this investigation will apply to
all similar cases.

h.f zdx 2 16 ®t2
! (x+2)’(z+l) Tzr2 %y
’ * dr _ 1 g T
| 3;/@-»2)% @) 3@+ TV BaFe

2__
4. To mtegrate( _233dm (@*—2)dz

r 'a:'”(m—-l) :
?2—-2 _A_ B C, D
Let (x— ) w2+w+w r

22 —2=A(z—1)+B2(z—1)+caX(x—1)+Dpad ... (1);
to find A, let x=0, then A=2;
substituting this value of 4 in (1), transposing and dividing
by x,
z=2+B(x—1)+cx(z—1)+D2?...(2);
to find B, let x=0, then B=2 ;
substituting this value of B in (2), reducing and dividing
by x,
1=2+c¢(z—1) ~p2 ... (3);
to find ¢, let =0, then c=1;
to find p, let =1, then p=—1;
Lo@-2 2. 2.1 1
(*—2)dz__ (*2dzx 2dz [ dx /'dx
(x—1) 28 z? = Ja=1

=—————+log z—log (x—1)=— :22’:-}-103 w—iT

(+10)dz_10 N
‘5' 25— 32 __+ €\ "z ) :
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8rd. When there is a quadratic factor having impossible
roots.

22dx _ x%dx
‘Ja+ata+1l S (@+1) @2+1)
quadratic factor whose roots are impossible.

1 ; where 2241 is a

x? __ A MX+N
Let D@D 251 241

clearing of fractions,
x?=a(2?41)+(2+1) (Mx+N) ... (1),
to find A, let z=—1, then A=1;

substituting this value of A in (1), and transposing,

2 —
(z+1) (m+N)=m2_‘”_+_l.=”_2__!;
2 2
dividing by z+1,
z—1
m+N=' ——2—-‘,
x? 1 z—1

 GFD@F) 2@+ NIy

. a2dx _:/' dx + (x—1)dz
"./:;3+a:2+z+1_ 2z+1) 2(23+1)
xdx dx
=tlog@+D+i Jo i~ an

- =1log (z+1)+1 log (x2+1)—1} tan-1 2.

dz - &/x2+1_1 —1 . ’_r
2.‘/1—;:7,—_-}_—171-._-—%10‘%' s—1 ¥ tan~lz

(e?—z+1)dz _ on (z+1)3
" B+t r+1" "(xz_,_l)-l
H 4

—3 tan-la,

3
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2dz
(z*+1) (#*+2)
\ quadratic factors having impossible roots.

4. To integrate where there are two

Here we must assume
a? =AT+B 024D
(z2+1) (22+2) 2241  2242°

clearing of fractions and arranging the terms, in the left
hand member, according to the powers of z,

?2=(a+c)®+(B+D)x’+(24+C)z+2B+D;

hence we have, by equating the cocfficients of the like powers
of a,

A+c¢=0, and 2o 4¢=0, ", A=0, and c=0;
B+4D=1, and 284+ D=0, ., B=—1, and p=2;

. x? -1 .2
(@41 (@t+2)” a2+l a?+2’

. x2dx - ~a_iz:__+2 dz
@+1)(2%+2)° x2+1 x2+42

= —tan-! 24 4/2 tan—! —

4/2, by form (¢).

» dx 1 ol 1 a1z
x

Gf o ds lo ‘/2t -
sF D) @D @12)"*¢ gl+w 3 My

/ Here we must assume

/ x2 —__A B Cr+D,

B (z+1)(z—1)(224+2) x+1 x—1 a2+2
and then determine the cocfficients by the method followed
in Example 4, or in Example 1.




RATIONAL FRACTIONS.

rdx
[CESVIEE=Y)

hd = A _.]i, +(_3:_t_-+_—g
(+1) (22+4) (z+12 z+1 a*+4

o 2=A(x?+4)+B(x+1) (22+4)+(cx+D) (x+1)2;

7. To integrate

Assume

to find 4, let z=—1, then —1=354, *, A=—1;

ubstituting this value of 4, and adding 1 to each side of the
«quality, in order to render the equation divisible by z+1,

z+1=3(1—a?)+B(x+1) (22+4)+(cx +D) (z+1)%
s 1=3(1—2)+8(2®+4) + (cx+D) (x+1);
to find B, let z=—1, then 1=%+53, .*. B=3%;

ubstituting the value of e in the last equation and reducing,

3 —5x—8 )
T = (8a—8)

. > zdr *(8x—8)dx
@1 E@+4) J(a+1)2 2’5 a:—*—l 7?/ 2+
(w+ )
=&
+1
x?dx (z=1)2_ 1
{8’./(.a,—])2(z24—1) log_agi:l Ax—1)

4th. When the highest index of x in the numerator ex-
eeds that in the devominator.

Cx+D= —glg-

3 log +4 tan—1; } See Ex. 1.

Fractions of this class (as well as some others) may be
rought to a form admitting of integral by actual division.

. ridx
1. To integrate atie
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Here, by actual division, we have

2 x a a® 1

Im+a=5—172+b—3 ‘a+bx

. aidx _ [xdz adx+ Pa? dr
**Ja+bx )] b b2 0 a+bx
22
=5~ ‘;::+Z3 log (a + bx).
o, [(Pds _ob_at

xdx
atia— '% B2 log (a+bx).

1

Here

*x2dx dx z—1
w2_1=x-}‘-/:;2_1=w+,}log .

N —2rx)dx__x?
[5.t/( o, l) =5 —3 log (22—1).

INTEGRATION BY PARTS.

93. Since d(2v)=2dv + vdz (Art. 40.), where 2z and v are
functions of the variable z,

o zv=/zdv +fvdz,
s [rdv=zv—[vdz.
This is called the formula of integration by parts; by it

i b
| we are enabled to integrate any function zdv, provided the
{ function vd> admits of integration.
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EXAMPLES.
1. fa3(1 + 2?)de=f2*1 + x?)*zdz.

Here we must put (1+a2?)4xdr=dv, since it is obviously
“he differential of a known function.

Let 2=z, and (1 +22)'edz=dv, - .
s 2zdr=dz, and (1 +22)°=v0;
o SB3(1 4 2?) de=[zdv
=zv—[vdz
=a® X {5 (1 +22)° — /1% (1 + 22)° x 2zdx
=g(1 +22)5(522 —1).

2. f(w’+a’)*d¢=§(z2+a2)*+§ log {z+(2+a?)}}.

Let (x2+ a?)t=z, and dr=do,
. xdx
& (22 + a®)bde=(zdv

=zv—/vdz

=dz, and x=v,

zdz
(z2+a?)t

_ _ (2?4 a*)dx—a’dx
_a:(a:2+a2)* f (z2+ a?)t

=x(a? +a’)‘ —f(x?+ az)ﬁdxc + af/%;%;b;

by transposition and form (f), Art. 90., we have
2 [(x? + a?)bde= w(:cz+a’)b+ a?log {x+(a®+ a’)i} ,
by dividing by 2, the proposed integral is found.
H 6

=(z’+a’)‘ x—fx.
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3. f(a?-zﬂ)&dz— (az—zz)* o gin l:

Proceeding exactly as in the last example, we find,

‘ 2/ (a? —a2)de=2a(a? -a:“)* +a? (az—:ﬂ)ﬁ

. whence by form (¢) and dividing by 2, the integral is found.
4. f(2?+2ax)tde=[{(z+a)*—a} d(z+a)

2
=ﬂ’(wﬂ +2az) -% log {z+a+(a?+2a2)¥,

by making o? minus in Ex. 2. and then substituting z+a
for .

: 5. f(2a:c—'x2)§dx—f{a2—(z-—a)21*d(a:—-a)
j

2 —
=% f(2a:c—m°)*+‘-l2— sin—! i—gﬁ,
by substituting —a for z in Ez. 3.
.
6. J Ty _ 120, (1422) Y.
(14a%)
Let 22=2z, and (1 +.7:2)—3xdx=d'v,

o~ 2zdr=dz, and =v;
(l+w2)*
x3dx
P
=zv—fvdz
- [ 2udr
Q1 +a:2)* (1422t

2

+2(l4atyh=212
a+ =>* =y
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7J'x‘*dx —_ 8a?42
A+a2)t  8(14a2)f

8. 1-3 = —22%(2a—z)} +3 /(2ax—a)bda.
(2a—x) (See Ez. 5.)

|
|

2
9. fz log zdx:'-zé-( log x—3%).

Let log =2, and zdz=dv ; .’ %:dz, and Ef?:v 3

< S log xde={zdv
=zv—fvdz
w? Wt dr

&
=logw.~§—- 52
x2 2
=l0gz.—2-—‘—}—_.&(.
lofa:"logzdz._ /log:c ! )
+1\ n+1)°
11. weﬂdz:e«z(”f——z).
a a

Let x=2, and e**dz=dv; .°, dr= dz, and %=v;

o Jwedr = zdv
_zv—fva'z
S
=r.——
xe® e**
= @

* The student should endeavour to acquire the power of writing down
this equality without going over the intermediate steps given in these
examples ; thus

1" d.r

Srlogrdz=flogxxrdr=logz. 2 g
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12. fsin=! zde=x sin—' z+(1 —2>)},
Let sin—! 2=z, and dx=dv ;

o dx ‘=dz, and x=v;
() —a?)
. Sein— xdr={"zdv

=zv—/vdz
»

=sin~! x . 2-- wde =&e.
(1—a2

Iin—1
1; 13. S—111——;':—'—:"’0@::::—(1 —a?)} sin— 2

(1—a2)t
‘14. ftan~ zdr=x tan—* z—log (1 +x2)%.

Rationalization.

94. Functions of the form /' a:"'"(a+bx")‘;dz may be ra-

tionalized when % or %+§ is an integer.
y o™

w zd-a
(1.) Assume a+ba"=2?; x= - /T"

(= i

m .
2—q)n . . .
R :c"‘=( ,,»,—)—n- ; then by differentiation,
. r..tq ia-v b
e Y Rl
e - . m
R .z"'“dx:—q;zq“(z'—a)ﬁ" dz,
v nbn

multiplying by (a -l-b:l:")fzD or 2°, and integrating,

td q m
S a+bx")e dz= ?fzf’*"*'(zq— a)ndz.
nbn

, ™
Now, when % is an integer, the binomial (22— a)*"! can be

expressed in o finite series of powers of z, and hence the
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intcgral .can be obtained in finite terms. The condition
5 = 2 positive integer, is called the first criterion.

. 4 r_ r
(IL) Again, z™Y(a+ba*)edz=a™¢ '(ax—™+b):; now,
from what has just been shown, this latter expression is

integrable if { m+2£} +(—n)=a positive integer ; that

N [ s —_ e .
is, if - +§ =a negative integer. This condition is called

the second criterion.
In this case, therefore, we must first put the expression
under the form above given, and then assume ax—"+b==2".

ExAMPLES.
1. Let f23(1 +2?)ldz be required.

Here n=2,m—1=3; .", m=4, and —Z—l=§=a positive

integer ; hence the first criterion is satisfied. Since p=3
and ¢=2,

. assume 14-22=22; ., 2'=(2?—1)%;

(1+22)} =28, and @¥de=(z2—1)zdz;

. V1 — (22— Vpdda—? 2
o So¥(1 a2 ide= [(2 l)zdz...,‘, z

dz

2. _ = 41+?-§d.
(1 +a2)b S 1) e

Here n=2, m—1=-4; ., m=-3, and ﬂn= —% ; there-
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fore the first criterion does not apply ; but g=2, }q—7=..%,

and 742 =—§—1_~2 3 which shows that the second
n g 2 2
criterion applies.
r . dz M -1
Then f—————=fz5(x-2+1) *dr;
241 +22 3

. assume w-2+l=z’- s xt=(zt—1)% z%de= —2(2*

.. _ade fz(zi__l_)dz _ 2 4z
(a:-’ + l)% 3

(21‘2— N1 +z")
343

—1)dz

3. [ 22(1 +z)tdz.

Here &"1_1 =3, therefore the first criterion applies;

oo let l4a=z, o 2¥=(2—1)3, ... 2dr=(2—1)%dz;
s S22 (1+ w)*dx:fz%(z—- 1)%dz,
=2 (522 — 1424+ )= 51 +2R(522 — 4z +3)-

1+27%)
this comes under the first criterion.

a2 . 25‘ Dy
5.‘/’(1 ;) dz_ _(1-#)(3+22%) by 2nd criterion.

» 5(1.1:
4. /ii_.ﬂ=4(1+xlr)i{%(1+x~’-‘)2—;§.(1+x5)+1};

1525
6. fz(a+z)dr=2(a+x)}(5z—2a).
g [2dz 30 +2)+6(+a)—1
‘/(.l St (1+z)}

1
2¥de  2(a+bz” ) (8b%2" —4aba™ + 8a.)
(a+bz,.)l 15n83
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-@—'-‘— D+1 -~——=23; hence we must assume

2
—_—2 e n—} p— . 2 __ .
a+bxr=2z2 ., a3 dz—'nlﬂ 2(22—a)dz ;

*r3*=dx 2 . - {z5_2uz3 2 }
) -/(a+bz")x ] (F—ayrdz= l;J Ty ez

= 1—52,—711—3(3%_ 10222+ 15a?)=&ec.

amdx _ ("—Il )m(l
(a4 by =T - assuming ¢+ 0=

When m is positive, this can be expanded and integrated.
dr

10- a"(a+ba)y = e a4 by de

Elm B \m 127
=—Ehzli-'§n-_1'./ (~__b2. : d“, by making ax '+4=z.

Wlich can be expanded and integrated when m+n—2is a
positive integer.

Method of Reduction.

95. This method consists in making the proposed integral
lepend upon another of the same form, in which the indices
are diminished. o that by repeating the process, we at length
arrive at an integral which can be determined by forms
already established.

(L) To diminish 2 in the formula w,=/a"(a + ba" ) dx,
where 7 may be either positive or negative.

Integrating by parts, Art. 93., we have
tp=fa™"*1, (a +ba")x—dx

. Tm_u-% l(a+b'ﬁ)r+l " — 7'+1 e )
bk 1) b1yl T e by tidr . (4)
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Now fzm*(a+ bx*)*+dx=f2™"(a+ bx") (a + ba*)dr
=afz™"(a+bx"ydx+bfx™(a + bx")dx
=au, ,+bu,,.
Therefore, by substituting this in eq. (4), and solving the
resulting equation for «,,, we obtain
(a4 byt a(m—n4 1)
b(nr+m+1) b(m'+m+l) s
where #,, is made to depend on w,,_,, that is f2™(a+ bx" )y dx
on fa™"*(a+ bx")dx.
By repeating this process, #,,_, may be made to depend on
%, .., and so on.

In the formula (o) the mtegral is made to depend on
another of the same form, in which 7 is diminished by n,
and r is increased by unity.

U=

(I1.) To diminish the index » in the formula
u,=fax™(a+ bx")dz,
where m may be either positive or negative.
u,.=afx"(a+ba")'de+bja™ ' "(a+ba")—'dz;
but by integrating by parts, we have ’
Jrm(a+bary-de=fa™ . (a+ b)) —'a\dx

mt | h r
=z (th ) " ! fam(a y bary des

substituting this in the preceding equation,

' Y a+bar)y m+1
u,=au,_ ,+ ('", ) - 7;‘; %,y

2™ a+ba") anr
“wr4m+l T nr4m3F1%-n

C o U=
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where %, is made to depend upon u,_,, that is
Jx™(a+ba~yde on fx™(a+bx)'dx.
By repeating the process, »,_, may be made to depend on

%, _,, and so on.

) g . _ dr
(II1.) To diminish m in the formula um-:/;m@;m,
where r may be either positive or negative.

Multiplying num". and deno"., by @ +bx", and splitting,

dr _ arlz bdx .
a™(¢ Fbrr Yy am(a+bxry  x—"(a+ba")’

by integration and transposition, we have

wo=Lf dr b
"~a ) e (a+ by a ™"

now integrating hy parts, we have

dx _ 1 i:zz
"(a+bxry—" ) (a+bamy 1" ™

. 1 __nb(r=1) dx .
T (m—Dax-Va+bx*y! m—1) am—(a+bar)’

substituting this in the expression for u,, and reducing,

1 n(l—r)—7_13+_1_[m

" T g = DN @ bty T a(meTy

where #,, is made to depend upon u,,_,, and hence, by re-
peating the process, m may be reduced by any multiple of 2.
(IV.) To diminish the index r in the formula

= [z
U= (a+bamy’

where m may be either positive or negative.
Multiplying numerator and denominator by a+ bz* and
splitting,



164 INTEGRAL CALCULUS.

a"dx _ ax™dx + ba™rdr
(a+bay-1" (a+ba")y ' (a+bx")’

by integration and transposition, we have,
b [xmirde
=g ) @Fvary ta Mt}
now integrating by parts, we have,
xmtrdx z—\dx
(a+be~ ) “(a+bay
— amtl + m+1 ' atde
2b(r—1)(¢ + b)Y 1" nb(r—1)J (a+ bx"y—i’

substituting this in the expression for #,, and reducing,

w= 2™t _1 { m+1 ] } .
"= na(r—1)at by aln(r—1) S

where %, is made to depend upon u,_,, and by repeating the
process, r may be reduced by any number of units.
a"dx
66. Let the function be w,= f ———.
=y
Here method (1) applies; a=1,0=—1,r= -1, und n=2.
Therefore the formula of reduction becomes
=Y 1—2?)t m—1 "zt
m=— T T T T 1"

m m ) () —q2)!

It will be highly instructive to the student to apply the
general method to each particular case.

"l » ord-
Here u,= / vdx -_-.‘-/ P I __.‘?fi‘?__'.,
(1—a2y: (1—z2)t

hence we have by the formula for integration by parts,
(Art. 93.),

tp=—2" (1 —2?)! + (m—1) fam¥(1 —a?)dz,
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m—2dx x™dx
oz e

Now fz™3(1 —x2)ide=

by multiplying and dividing by (1 —22) and splitting

a2

—(m 1 )um 5

Sou =-—a:"'-’(1-ac2)’+(m—1fl

(1 ——:r?)é_’_ m—1 'x’"’Z(!z
m m J (11— 1.2)&'

S U= —

By putting m—2, m —4, &c., for m, this integral is finally
reduced to

* dx
J -—— =sin—'x when m is even,

(1 —at)k
d "
and tof——f«f—A: — (1—22) when m is odd.
(1—a?)
Ezx. 1. Let atdz be required. Here m=3.
(1—a2)}
. 23dx x2(1 —.1'2)5 b xdx .
RS = 3 +3 3
(1—2?) (1—a?)
2(1 — 22)% .
= _L(_g_ﬂ —3(1 —atb= — (1 —a?)h(a? +-2)
2. Let‘/ " atde be required. Here m=4.
(—an
zdz a?(1 —aryt /‘ a?de
- —3 + é
(-atp 4 (1—a?)
ther; substituting »=2 in the formula,
x?dx ___.1;(1}— a~2)*+% dr
(1—az2) 2 (1—a2)t

—3z(1 —x’)’ + 4 sin -1z,
'
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substituting and reducing, we have
ridx 2 3r
T=—(1—g2)i ] 4 2% 3 gin~lz.
(—z2p= 1 x){4+8}+gsm x

| dx .
97. Let w,= J%IW)T be required.

Here method (IV.) applies; a=1, b=1, =2, and m=0
Therefore the formula of reduction becomes,

de x 2r—3 dx
(T+a3y 2r—D) (1 a2y T o=y ) Tz

By this formula the integral is finally reduced to

f dx =tan-x.
T+ .

Er. 1. Letj(‘l fr2)d be required. Here r=3,

. dr z +3 dx
S AFEpT 4(1+z2)2 (1+x=)3’
then making »=2 in the formula,

dzx x dr

(1+1—‘)_; 2(l+.z")+ I+a%
=% 1 ¢an-!
_2(1+x2)+,tan &,

therefore substituting this value, and reducing,

dr x 3 x
_ + ‘ -1
ﬂl +x'~’)3 4(1 +a?)* "T+ax? tam B

98. Let f _dz be required. .
an(at— 1)

Here method (ITL) applies; e=—1, 4=1, n=2, and
r=1. Hence the formula of reduction becon:es,

f (If 1 (}f_—:l)-‘_}_m-—" f_ dr
ln(m2__ 1)5 m-—-] ™! m—1 (a2 1)!
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By this formula the integral is finally reduced to

——-d":——-=se(:“l « when m is odd.
(22— 1)}
2
and to dz ‘=('t D when m is even.
x?(x2—1)2 z

Y1 Ezx. 1. Let m=3; then
dx (r-—l)b

} sec-!
e 1)5 5 sec™! z.

2. Let m=5; then

Cdx_(a2=1)t dr
z.S(x2 l)& 42t +f(:c2—l)§

dr___ (-1}
ad(a?—1 )&— 222

L dx (22— <—1>* _
S o= S s

- but

+} see~ly,

99. Let [ (a’—xz);dw:, n being odd.
Here method (IL.) applies; e=a® b=—1, n=2, r-:.g,
and m=0. Hence the formula of reduction becomes,

x(a2—x-) na?
n+1 n+l

Ez. 1. Let n=1, and a=1, then

J(1—atide =12 i f =y

e —a’)’

S(a?— .rz)gd.z-= S(a? z*):”%i.r.

+ 4 sin- ta.

100. Let be required.

*xmdx
a+a7y
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Here formula (A) of method (L) applies; @ =1, A=:1,

r=—r, n=2. Hence the formula of reduction becomes
f x™dx _ 1 ™! +?ﬂ—- 1 "2
I+ 2r—2 (T+a?)~ " 2r—2) (T +aty-"

Ez.1. Let m=4, r=2;

xidx — 3 x2dx
(1+4a2) 2(1+x2) 14a?

. *® 3z 3
i+a7) g g0

101. Sometinies it is requisite to (,mploy a combination of

the methods of reduction. Thus l(_t -, be required.

(l+a )
Here we shall first reduce the cxpom.nt of the denominator
by the general formula (Art. 100.); where m=3, and r=73;

. ‘/ "_a:idf ‘/ .13(14‘& )
(1+az)i (1”2)*t (1+a2)t

In order to obtain a formula of reduction for this last ex-
pression, we have, by the general formala of method (1),

making a=1, b=1, =2, and r=—1;
- J x"dxr :c"'—‘(l +z ,)g m—1 (*a"-*dr
(+a) S ()t

let m=3, then,
» 3
(1+.v2) (1 +.12)§
=1(1+a?)(a?—2);

hence we have by substitution,

xbdx __ \ Voo
“/(.1+12)i— (l+z'2)‘+3(.l+z’)(32 2).
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102. Let u,,.= [-.———— be required.
SO amat by

.

Here method (Iil.) applies; =1, and r=}; hence the
formula of reduction becomes
1 (a+bx)t  B(2m—3) dz
Ta(m—1) a1 2a(m—1), """"'l(a'*'bz)i'

U,

By means of this expression the integral is reduced to

f -—;d't——i See Ewx. 2. p. 145.
z(a+bx):

Ex.1. Let m=2, a=1, and b=1, then
dx ____(l-{—:r)}_1 dx
22(1 +x) Y a1+t
__(1+z)?_11 (1+z)t—1
¢ By

103. Let u,,,_—:/(. T andr be required.

2(1&'—.7."")fl
- am—tdx
This expression is the same ai/ 3 to which method
(2a—a)
(1) applies ; a=2a, b=—1, n=1, r=—}, and m=m—};

hence the formula of reduction becomes,

v o 3 (fm—T)‘s a("m— l)‘/':r’"_gd.r

2a—x)
- _g""-'("am-—a")i_t_a("m— 1) ™ \dr
m m (’ax—-.‘c“’)#

By means of this expression the integral is finally reduced
to

t_dr

(2ax—2)}

1

T
=vers—! -,
a
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Ex. 1. Let m=1, then

P wdr  __ ogp—any
'/(‘ - (az—2%) + o __—‘(2” =

ax — a2 )&
=—(2ax— w’)b +a vers“':;—.

2. Let m=2, then

2 dx
‘/:-—”’—’i’x—;_—-(zax zﬁ)*+ ——i”———i
(2ax—x2) (2ax—2a?)
— —ae (% 3a 3a? .
= —(2ax—2?) ( +5- vers '

by substitution and reduction.

104. 7o integrate exponential and logarithmic functions.
Integrating by parts, we have,
ez

fe'“z"dz'—-————- Se=x"dx.
! Ex. 1. If n=1
Jerdn=C2 0
2. fn=2;

2
J e“’.r’dr:f—x— -2 j e*xdx

e‘“x’ 2 fe*x o~

al a a?

_e"‘{ =FRELY

423 .32 4.8.2x 4.3.2.
§3 fe"‘z‘dr:e"’{z:—i+l—1—agic——*————d. z 28211
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EXPONENTIAL AND LOGARITHMIC FUNCTIONS. 1
In like manner, we have,
e**dx dx
————fe".

e 4% e*dx
(m—1)z'  n—1 =1’

which finally reduces the integral to f ;e‘:;__dz

4. If n=2, and a=1;

® X X x
5. If n=3, and a=1;

edr e’dx

== x2+% , by subst.,
_ e’dz'
= zz -|-,‘r -

edx

_.———(l +x)+3 -

To integrate e'—zf we have, by multiplying the develop-
ment of e by %,

e’dxdxdxwdz: xdx

= —zti1treti 2. st &

edx x? 3
- f 7 gt ymty g gt &
105. Integrating by parts,

m+1 l o n
‘/a.r"'(log ryde=" "S_t"l—{)- - + 7./%"(log 2)*—dz.

1 2
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Ez. 1. If m=4, and n=1;

ﬁ‘ log xdx:wu lgg w—-}j‘:c‘da::%H {log x--3}.

. 2. fa3log zdx:%s {log z—1}.

2
3. f2? (log w)’dx:wa—(h?’g—z)- —3/x*(log z)dz

_(logx)? {x"' logz__, .3_3}
-3 3 3 38

a3
=3 {(og x)2—% log z+ 3} .

1. f¥(log aYde=" ((log 2)*—}log z+1}

Integration of Circular Functions.

106. Functions of the form sin™x cos"rdr may be inte-
grated by methods similar to those applied in the preceding
sections.

(I.) When one of the indices is an odd positive integer,
as m=2r+1.

Since sin™z=(sin?x)" sin x=(1— cos?x)" sin x,

. Jfsin™x cos"wdx= [ cos"x(1— cos’x)" sin xdx
= [cos"x(1—cos?x)dcos .

Since r is an integer, by expanding the binomial, the
expressior will consist of a finite number of terms, each of
which may be integrated by rule 3. This will of course
apply to fsin?"lxdx.

. Ex. 1. fsin®z costzdr= fcost 2(1 — cos? x)? sin xdx

- cos®z  2cosTx cosdw
= = fcos* 2(1— cos?x)?d cos == S =g
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cosbx cosix
3

3. [sin® adz=(1— cos?x)? sin zdx

‘ 2. [sin’z cos®rdzr=

2 cos®x cos®x

==f(1—2cos?z+ cos*z)d cos z= — cos x + 3 e

cos3x

4. [sindzxdr= 3

-—CO08 .

5. [sin*z cos"xdr= _goshiz cosz
n+1 n+3
Similarly, when n=2r-+1, we have,
Jsin™x cos*zdzr= [sin™z(1— sin%x)" cos xdz
= fsin™x(1 —sin?x)'d sin z,

which is integrated as in the last case.

Ez. 1. fsin?x cosbedr=[sin?2(1 —sin%x)? cos xdx

=/ {sin?x —2 sin*z +sinfx} d sin z

sindxr 2 sinfzx sin’x

=3 5 T

. sinx sinTx

2. [sintz cosdrdr=—-——— —.
S5 7

sin"tlx  sin"t3x

n+1 n+3 °

3. fsin"x cosd xdr=

(IL) When m+n=—2r, an even negative integer,
sin™z cos"z=tan™x cos™*"x = tan™x sec’x
=tan™z(1l +tan? )™ seclx;
s’ Ssin™x cos"rdr=tan™a(1 4+tan?z)~' sec?wdr
=/tan™xz(1 +tan®z)"'d tan z,

which is integrable as before.
13
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dxz seclOxdx (1 +tan2z)'d tan &
Ex. % . 3 =f - § -
sin°x costx tan®x tan®z

' 24
=Jll+7i)——d—z, putting z for tan z,

(IIL.) The expressions fsin"xdx and [cos"xdx can always
be integrated when » is'an integer, by developing the power
of sin x or cos z, as the case may be, in a series according
to the multiples of the arc x.

Lx. 1. jcos‘:vdx/{cosm: 5c10;3a:+-_5_(_:g_51'}dr

sin 5x+5 sin 3r Ssinx

80 48 8 -
i3 _cos3x 3cosz
2. [sindzde= 9 PR
g _x_sin 2x
3. fsin .z'd.r_z 1

sin 4x sin 22 3z

4 e — e
. [sin® xdx=— 39 1 tg

.1‘

107. When neither of the conditions of Art. 106. is satis-
fied, we must proceed by the method of reduction.

(1.) Toreduce m in u,=/sin"x cos"xdr, where n is either
positive or negative.

Integrating by parts, we have,

u, = —/sin™'z cos"xd cos x

m—1 g 41 m_
_.in ::(;s L+ n+l‘/ gin™-2x cos™ *xdr . .. (a).
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But fsin™x cos***adzr= [sin™*z cos*r (1 —sin3z)dx
=Up_g— Umnm
Therefore, substituting this in eq. (a), and solving for #,,

_ _sin™'zcos™'z m—1
= —

U
m+n m+4n ™

After the same method the index # is reduced, supposing
it to be positive, and m either positive or negative.

Ex. 1. Let m=3, and n=—8; then
sinfzdr__ sintz 2 sin xdx
cosBx ~ Scos’x 5 cos®x
_ sin%:‘_ 2
T&5cos'x 5.7cosTx

sind xdx 1 .
2. —_— —=———(8in?x—2%).
costx cos3z( s

i 3. Let n=0, then

um—:v

‘ - sin™'x cosz m—1
m=j sin™xdr=— '-“——;n—-—"' +

a formula by which fsin™xdr is reduced to—cos z or z,
according as m is odd or even.

sindxdr
4. — —, —=C0s Zz+sec x.
cos*z

. sin™ xdx .
(IL.) To reduce = in u,,=~[‘ ———— where m is either
cos” &
positive or negative.

Multiplying by cos?zx+sin?x=1, and splitting, we have,
f sin™ x(cos®x + sin®xr)dr ‘/‘ Sin™ pdz
U= =u, ;+ _—

cos"r cos®x

14
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Now, integrating by parts, we have,
sin™**xdy . d cosx
—— =iy, -
f cos™x S cos"z
_ sin™Hy _m+1
T(r—T1)cos=z m—1"*
Substituting this in the equation for u,, and reducing,

sin™tx n—m—2

¥ "“m=1)cosz ' -1 ln¥

After the same method m is reduced in the formul
cos” xdx
Tsinmz
Ez. 1. Let m=0, then

* dx —y— sin +n—2u
cose” " (n—1l)cos™'z  m—1 "%’

.’ dx o sin x +4u
“*J oSz 8T Scosdw 5 P

sm 1 & +2
3 cosz T3 Yar
u dr ¢
=J ---,-=tan x;
2 cost ’
* dx sin x 4nin;v+-l.2t
A —— = tan .
° cosbx 5 cosa  3.5cusde T 5.3

2 _ﬂi_ sin 2 lo tan {
) Pz Toosta T2 8 3 +y 2
(IIL) Since d tan x=(1 +tan?a)dr ;
& Stanmrde= [tan™-2r(] +tan?x—1)dr

= ftan” -2ud tan w— ftun™2zdc

= tan™-2rdz.
m—1 "
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Ex. 1. ftant zdr=} tan3x— [tan®zdz

y =1 tandz—tanz+z. (Ezx. 9., p. 137.)

% 2. [tandzdxz=} tan2z+log cos z.

In like manner, we have,

— 1 +tan’z— tan2x)dx
ta.n'” tan™

~ dr
=m—1 )tan’"-‘ z J tan™2z
i de -1 1 .
7 tanx” 4 tant z o tan’z +log sin z.
14

108. Functions of the form a* cosx and 2* sinz may be
integrated, by repeating the operation of integration by
parts.

FEzx.1. [z .sin xdx = —x cos x + [ cos xdx
= —2x cos x+sin x.
2. fa?. cosxdr=a? sin z—2 /% sin xdx
=2a? sin £+ 2(x cos x—sin z).
3. fz cosxdx=2x sin x + cos 2.
4. [ cos xdr=a" sin x+ 322 cos x —6x sin £—6 cos x.
109. To integrate e** sin nxdx, &c.

By a double integration by parts, we have,

. . 1 . n
Je** sin n.rd.r:(-l €** sin nx—(;fe" cos nxdx

1 . nfl » .
==-e% sin nx—- § - € cos nx+ - [€** sin nxdzx ¢ .
a ala a*

Solving this eq. for the value of fe** sin nxdz, we obtain

a sin nx—n cos nx

‘e*r sin nrdr=e**
J n2 + a?

15
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a cos nr+n sin nx

Similarly, fe®* cos nxdr=e** 7+ a?

110. By substituting for cos*x and sin"a, their develop-
ments in sines and cosines of multiple arcs, the integrals of
e~ sin*xdx and e** cos®xdr may be obtained.

Ezx. fersin?x={e*(3—1 cos2x)dx
=3[e*dx—4 [e* cos 2xdx
e e cos2x+2 sin2x

2 2 5

DEFINITE INTEGRALS.—INTEGRATION DY SERIES.

111. In order to determine the value of the arbitrary con-
stant C in an integral expression, we must first ascertain,
Jrom the problem proposed, what particular value of the
variable # makes the integral O; by this means we shall
have obtained two equations, cach containing ¢, from which

¢ may therefore be eliminated. Thus we have /: x’dx=§+c

tor the gemeral value of the integral: now suppose the
problem indicates that the integral becomecs O when z=a,

at .
then 0= 40 therefore, by subtraction, we find the corrected

z  at rx
integral to be /1 a'3dw=-4—— i Here the symbol / is now
' 8 a

prefixed to indicate that the integration is taken from the

limit x=a, that is, the value of the integral commences when

w=d«. This form is called the corrected integral, which, as

we have seen, assumes the commencement of the integral,

but does not assign any particular value to 2, so as to fix the

final limit of the integral ; now if we suppose z to tuke some
?

particular value, say &, we have J bwadxz.-%f—%d, which is
a

called the definite integral taken between the limits x=a

and x=0; where @ is called the inferior limit, and & the
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superior limit. Generally, let [f(x)dz=F(x) +C; now if the
integral is O when x=a, then O=¥F(a)+cC; therefore, by
subtraction,

I Tf(w)dx =r(x)—F(a), which is the corrected integral
If x now takes the particular value b, then

b
f S(@)dr=rF(b)—¥(a), which is the definite integral.

Hence it follows, that the definite integral of an expression
is equal to the difference of the values assumed by the general
integral, when b and « (the limits) are successively substi-
tuted for the variable 2. Moreover as every function of x
may be supposed to represent the ordinate of a curve,
the abscissa being x, the problem of finding the value of

33
/ JS(x)dx, is equivalent to finding the area of a curve in-
e

cluded between the ordinates corresponding to x=a, x=0.
(See examples on the area of curves.)

ExAMPLES.

*
1. To find the value of the definite integra}/ (1 +z)dx.
0
Hex e the general mtegral is
_{(l+a,)"d.z:.._ (1+x)"+’+c,

therefore making successwely 2=1, x=0, and subtracting
the results, we find

' n j— l ntl ___ 1 m+l __
‘[ (aydemr) 290 = (21— 1),

Tgm
2. To find the value ofJ cos xdx.
0

The general integral is fcosxdr=sinx+C; therefore,
making successively 2=} =, £=0, and subtracting the results,

we find
16
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i' 3 .
cos zdx=sin {=—sin 0=1.
[ »

1
3. To find the value off (1—a2)tde.
L]

Here, by Ex. 1., Art. 99., the general valuc of the integral

w(l—-x)

is f(1— :c"’)*dx +3 sin—lz+c,

1 . . w
.'.f (1-22)t=} sin—11—} sin-10=}. 5
0
1 xndy
(1—ayt
In the formula of reduction, Art. 96., put 2» for m, then
we have

4. To find the value of the definite integral
[

Uy =

avde _aa —a:’)?é 2n- /
(-t 2n (1—12)5
1 2n—1
~ 5y Pon +W Usn—
by putting, for the sake of conciseness, g,, , for 2**~'(1 —at)h.

Let n—1, n—2, ..., 1, O be put successively for », in the
above equation, then we have
l 2n— 1
u2n= qm-l'f' 2IL u?n-’

_ 2n—3
Upne= "5 5 Qs t ) Uns

1 2n—35
Upnt="5,—2 an_s'l’g;;‘:_l Ugp_
uy=—3 ¢1+4 up
ug==sin-1 z,
In order to eliminate all the u’s, excepting the first, mul-
tiply the second equation by the coefficient of u,, , in the
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first, the third by the resulting coefficient of w,, , in the
second, and so on; then add the equations thus obtained, and
strike out the terms common to both sides of the resulting
equation ; hence we find

[ (@Cn—1)gu s } (Zn=1)...3.1 . |
M= on T 2n(2n—2) +&e f+ n(2n—2)...4.2 " G
which is the general value of the integral.
Now if the integral becomes 0, when #=0; then c=0,

for ¢,, =2 (1—2?) =0, when x=0, and so on to all the
other ¢'s.

‘When z=1, all the ¢'s become 0, and sin-! x=g;

.‘/'1 zde  (2rn—1)(2n—3)..3.1 «
i (1—a?) 2n(2n—2)...4.2 "2

This result may be more readily obtained by the method
employed in the following examples.

2 4
5. To find the value of q,..-—:/ sin™xd.
[]

Here, by Ez. 8. p. 175., the general formula of reduction is,

sin®'x cosx  m—1
- 0 )

" m m

in which, if we make successively x={}r, =0, and subtract
the results, (or, what is the same thing, tuke the integral
of both sides between the same limits,) we shall find that the
integrated part vanishes by both substitutions, and then we
have

m—1
In= —;n. 2

where ¢,, is the definite integral, u,, being the general one.
Now, making m successively 2, 4, 6. .. m, we have
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i x
92=%90=%/‘ de=}. >
)

94=%q21
6=%9p
© m—3

971-2:;”?2' Qs>

m—1

In= “m qm—25

multiplying all these equations together, and striking out the
factors common to both sides, we have, when  is even,

e _1.3.5...(m—=3)(m—1) =
9"-0{/0 e B W ¢ ) P

When m is odd, the first integral in the above series is
i
7:=29, =‘2/ sin zdr=3%(—cos } = 4 cos 0)=2,
0

e _2.4.6.. (n—l)
..j sin™ xdx= 35 T

6. To find the value of q,,=‘£1 (a2 —x%)%, n being odd.

Here the general formula of reduction is given in Art.99.
If we make successively z=a, =0, in this formula, we shall
find that the integrated part vanishes by both substitutions;
hence, by taking the integration on both sides betwecn the
same limits, we find

a n nal a "2
2 2\dp— 2 _ 22y E dyp -
I(a a?)'dx n-}-l[ (a?—x?) * dx;

making » successively 1, 3, 5, &c., we find
J (a—a)hdz=2 / (=) ~hdw=}. %5,
S @@= [ (@,
[} (]
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e (a*—w*)vdz— e (a‘—.ﬂ)‘dz

(a’—:ﬂ)?_(lm— f (az——w‘-‘)_rd:c;
o

multiplying these equations together, and then striking out
the factors common to both sides, we find

ta 1.3.5...n T
2__ —_
/ (@—a?Yde=5 4 g ns1)" 2

L0

112. When a proposed differential expression cannot be
integrated by any of the ordinary methods, it must be ex-
panded in an infinite series, and then each term can be sepa-
rately integrated. There are also many important expansions
which may be obtained from the integration of a series.

ExAMPLES.

1. Let tan "”:"/{%2'*‘0 be required in a series.

By division, we have

[ (=t at =t + B da,
4 3
T S

but when =0, tan—! x=tan-10=0, .. ¢=0;

». tan ’:z—§f+?— &c.

2. Let sin—! z= 2 dz -+ C be required in a series.

(1—amh
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By the binomial theorem,
- 1. 32
(1—2?) !dz_(l+2 + &c.)d:c,
s sinle=f(1—2?) ~ide

1.3  1.3.50
""”*’2 sto 4,512 4.6.71 &3 (0=0).

3. Let log, (1+2)= ld: +¢ be required in a series.

By division, ldz =(l—z+a?—a2+ &ec.)dx,

dix
m +3 &c. +cC H
but when =0, log, (1+x)=log,1=0, .. c=0;

s log, (1+2)=

x?
*. log, (1 +w)—w-—2~+g— &ec.

4. Toﬁm%/.a &

By division, l——%:l +z+a?+ & ... (1)
also by Art. 63.

2 .2
ax__l_'_loga .x (logla)2 x + & ... (2);

multiplying (1) and (2)

a® log a | (log a)?
l_le +(1+log a)z+ (l +—gl—-+(—l—g'——2—)—)w2+ &e. 3

multiplying both sides by dz, and integrating,
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gt
/ia-(—»_:c+(l+loga) +(1+l°g" (-I-O‘ZL) 5+&+c

dz

5. To find f—o———,
(c—x)(2ax—a2):

By the binomial theorem,
1 = 1. x?
c_x), cg( D ;( *3rtai At se)

- -/(lc —x)‘l(2ax-—x2)’t_

1 * dx { 1 .z 1.3 22 }
o (2a.z-—x2)4 +2 1 2+ &ec.

where the integrations evidently depend upon the general
formula of reduction given in Art. 103.

APPLICATION OF THE INTEGRAL CALCULUS.

TO FIND TIIE AREAS OF PLANE SURFACES.

113. Differential of arcas. Let AN and NP be the co-
ordinates of the point P in the plane

curve ArQC; AM and MQ those of r—= 2 €

the point . Draw Q7 and rl parallel 7 £

to AB, and produce NP to meet Q7 in

R. Purt aAN=x, NP=y, NM=£A, and >)

ar-a ANP=A. Now, conceiving the A s

ordinate NP to move from N to M, we |
A x N . M B

shall bave Incr. x=A, Incr. y=qL,
Incr. A=area NPQM ; and since the magnitude of A depends
upon r (for as x changes A also changes), it follows that A
must be some function of .

area NRQM__ NM . MQ MQ y-{-ll’lCI‘ y__ 1_‘_l“(:l‘ y

arca NPLM NM.NP NP y
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Now. as A approaches O, Incr. y approaches 0; hence, by
taking the limiting values of both sides of this equality, we
have,

area NRQM
= 9

imit =
li area NPLM
but Incr. A, or area NPQM, is always greater than area NPLM
and less than area NrRQM, .. & fortiori,

. . area NPQM
limig 2R NTRM 1 ...(0)
area NPLM

Now area NpQM=Incr. A, and area NPLM=Yy . &,

. .1 dner.Aa_ . 1 da_
.o hmlt:; . h———-—l, ..y.d—z'.—l,

A %zy, orda=ydz ... (2), '\"‘
which is the differential expression of the area of any plane
curve. By taking the integral, we have,

A= fydz ... (3).

This integral, after being corrected, by means of the limits
in the proposed problem, gives the expression for the arca of
a plane curve related to rectangular co-ordinates. When
the equation to the curve is given, the value of y may, in
general, be found in terms of # ; and then ydx, the differen-
tial of the area, may be integrated by means of the rules
given in the preceding articles.

In order to show the connection between an area and its
differential, let us take a simple illustration. If the base of a
right-angled triangle be x, and its perpendicular y=_2z, then

the area A=J}ary=a2;
differenting this, we find the differential of the area to be

expressed by v

x, or ydx;
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hence, by integration,
A=(2xdr=a?,

which we already know to be the case.

ExAMPLES.

1. To find the area of
the right-angled triangle y P/
CNP.

LeteN=b,NP=I] co=n0,
and o=y ; then, by simi- .
lar triangles, -

Ix
riybil o, Y=y

. _ f(lede _Ix?
. A—Jyd.’l}— -—b——%—i—(}.
In order to find ¢, let =0, then arca=0, and this equa-
tion becomes 0=0+¢, .*. ¢=0.

It .
Hence a= T?Z' which is the expression for the area of the

triangle coB. When £=25, that is when co becomes equal
to CN, we have

4 I
22 CNP= dr=_,=- *
arca [ Y %=

2. To find the area of the parabola. (Sce fig. p. 15.)
Let oN=z, and NP : ¥, then
y*=4azx, .. y=2a5a:5,

* The area included between the ordinates os and N of any curve, is

found from the general integral fydz by making successively r=cN=0),
r=co=a, and subtracting the latter result from the former; but this is
equivalent to taking the integral between the limits z=a, 2 =b;

. »h
.',/ ydr=area OLNP.
a
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~. area oNP=/ydr=/2d'rddx=3%atd +c.

Here, as in the last example, c=0, since area =0, when

=0,
- area oNp=[ ydr=%aid=2xy,
0 .

substituting the value of y. Hence the area of a parabola is
equal to ¢ of the circumscribed rectangle.

3. To find the area of the circle.

Let cN=x, NP=y, cP or radius
=a; then y:(a'—’-z?ﬁ,
~. area CNPD=/ydr=/(a?—a?)tdx
a?
2
See Ex. 3. p. 156.

Here ¢=0, since area = 0, when x=0.

sin™! 'E+.2 (a?=a2)t + ¢
a 2 ?

The value of sin—! ?—; can only be calculated by approxima-
tion from an infinite series. See Art. 65.

If x=a, the area CNPD becomes the quadrant Acp,
e a? wa?
.. quadrant ACD ="f (@?—a?)=- sin—'1=—",
o 2 4
». area whole circle ADBQ = na?.

Cor. 1. If An=xz, NP=y=(2am—-z")5,
.. area ANP=‘/‘ ¢(2am~':c’)5dx. (See Ex. 5. p. 156.)
o

Obs. It should be remembered that f(a?—x?)} dz expresses
the circular area CNPD, where x is the cosine to radius «,
and j’(2ax—w2)5dx the circular area ANP, where x is the
versine to radius «.
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4. To find tne area of the ellipse. (See fig. p. 16.)

Let cN=x, Np=y, then y=g (a’—w’)’s,
areacnrn:fydx:?‘f(aﬁ—w?)’!dz

b .
=, circ. area CNP; By,

where A, DM, is a circle described upon the major axis.

. b .
.~ elliptic quadrant pCB=_ cire. quadrant DCB,

_bma®_mab

a4 4
.* area whole ellipse=mn«ud.
5. To find the area of the hyperbola. (Seefig. p. 114.)

Taking the centre ¢ for the origin, cx=z, NP=y,

b
S Y= (2% —a®)i,
.-, area ANP=fyd:c=%j(x2—a2)idr. (See Ex. 2. p. 155.)
bfx , a? —
=-13 (22 —a?):— 3 log (2 + «/a.x__az)} +c.
Now, whenz=ca=a, area ANP=0, .-, 0= -—‘—{; log a+c,

ab e . .
Soe=5 log @; substituting this value of c, and reducing,

we have

_xy_ab z+(a2—at)
area ANP= s 3 log —_.
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Cor. Let the points ¢ and P be joined, then

area sector CAP=ACNP —area ANP

2__ 2}k
=¢;-—b log *—-————‘m_*-(z a )

e {541}
6. To find the area of the witch. (See fig. p. 19.)
Let oN=2, NP=y¥, 0B=2r, then

2r(2rx a:’)%

p (See Art. 22.)

(2rx —2?)hdx
—

.. area =[ydr=2r (See Ez.8. p. 144.)

=2r { (2rx—a?)i4r versin—! g} +c,

and ¢=0, since area =0, when x=0.
Let x=2r, then the whole area 0BPD=2r X rx
=272 = 2(area semicircle op!B).

7. To find the area of the cissoid. (See fig. p. 20.)

3

=2 t. 23,
Here y (2r—x)§ (See Ar )

iz

.. area oNP=/ydr= (See Ez. 8. p. 157.)

(2r—2z) (2r—a)
=—223 (2r —x)'+3 f(2re—a)idx
= —2z (2rz — a?)} + 3 (circ. area ONK).

(Sec Obs. to Ez.3. p.188.) Let 2=2r then the whole
area 0 BCP contained between the curve and its asymptote =
8 (area semicircle ok B).
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8. To find the area of the logarithmic curve.
Here y=a®. See Art. 24.
.~ area 0NPB=fydx=f a*dx

ar
log logat®
now when z=0, area=0, ., 0--l ga+c,
«®
S C= —Eg—a’
.. area ONPD= 1 {a*—a% =——(NP—0B)
log a 10(r a

=subtan. to P X (N> —0B).

9. To find the area of the catenary, the equation being
a, z z
y=g(e+e=);
a,z =
o area=fydr= E(eﬂ-{—e‘a)dm

=‘i2f(ef—e 2)+¢(=0).

10. Tofind the areas of the spaces 0VEKO and APoA in
Ez. 1., page 123.
Here y=x3+3x%+2x; hence we have the following
general expression for the area,

A=[ydr=f (a3 + 3%+ 2z)dx
=lrt+a3t+a?+c.. . (1)

In order to find the area0VEO,let AT and TV be the
co-ordinates limiting the area 0TV ; then whenr=4a0=-1,
the area=0; ., O0=1—14+1+4+c, .\, c=—1};

il
Soareaniv= ydz=}at - +a2—];

-1
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and when 2=AK=2, we have,
-2
area ovxo_—:-/. ydr=}.16—-8+4—}=—}.
-1

This result is minus, because  and y in the curve ovk
have different signs. Irrespective of position the arca is 1.
To find the area AP0OA; let AN and PN be the co-ordi-
nates limiting the area APN; then in eq. (1, <=0, since
=0, when area =03
o 3
.. area APN= yde=1Lxt—ad3 4 2?;

o

and when x=A0=1, we have,
area APOA= yde=}—-1+1=1
0

This result is plus, because z and y throughout the curve
Aro have the same sign.

TO FIND THE LENGTHS OF CURVES.

114. Lemma. Tf s’ be the length of the arc rq, and ¢ the

4
length of the chord PQ, then '—Z—:l, when s and ¢ approach

0. (See fig., page 41.)

Let TPD be the tangent to the point r; draw QD perpen-
dicular-to pD, and put £ Qpp=0 ; then, Geo. Art. 73., we
have,

arcrQ >chord PQK PD+QD}

but from the right-angled triangle rDQ, we have,
PD=c cos 0, and Q=c sin 0;

S ¥>c<ecos 6+csin 63

oo %’>1 < co8 0+Sin oo



TO FIND THE LENGTH OF CURVES. 193

Now, by the definition of a tangent, Art.33.,, when s’ ap-
proaches O, the limiting value of 8 is 0, and therefore the
limiting value of cos 6+sin is 1 ;

4 .
.~ limit %’ >1 < 1, that is, limit fc-=1.

115. To find the differential of the arc of the curve. Let
AN=2z, NP=y, NM=PL=A or incr. x, arc AP=s; then
LQ=incr. y, and arc PQ=incr. s.

Now, since the magnitude of s depends upon =, it follows
that s must be some function of .

From the right-angled triangle PLQ, we have,

(chord PQ)2=PL24LQ? or

3 1 2
et=h1+ (iner. y)t; . p=1+ (= -") ;

c

iné;. s) '= (inc:. s) { 1+ (inclll'. y) a}.

multiplying by (mcr. s) ,, we have,

Now when % approaches O, the limiting value o EI:—‘S
=Z—;, that of mc:. f=1, by Art. 114., and that of‘ '———mc;;' ¥

=%; hence we have,

ds\2 _ dy\*
=) =1+(2)"

29} ) -
- ds= { 1+ (%i) } “dz, or ds?=da? + dyi.*

* 1If, according to the method of infinitesimals, we may be allowed to
consider an infinitely small arc rq as a straight line coinciding with its
chord, and to put pr=dz, Lq=dy, and arc rQ=ds, which conditions
really obtain at the limits, then we readily find

PQ'=rL' +LQ", that is, ds® =dz* + dy’.

w
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Hence we have by integration,
i
=1+ (@)}
ExawmrLEs.

1. To find the length of an arc of a parabola.
Here . the equation of the curve is y*=4ax ;

. dy 2a ( 4112 a

ARl }"”-f(” )
=(a? +az) +§log {(z’+aw)’+z+%a} +c. Ez 9, p. 144,

And $=0, when =0; .., O=g logg+c ; hence, eli-

minating ¢ between these two equations, and reducing,

2 2 }
s=(a:’+az)*+a§ log a+“w+2‘§w taz)’

2. To find the length of the arc of the semicubical para-
bola, whose equation is y?=a2a?.

i
Herey:azi, <o %—-3“ H

o [ () Y [

4+ 9a?z)}
27a*

+c.

8

8
If s=0, z=0; .- 0=2_7‘E£+C; .. C=—§’7‘;5
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s— (4 +49a%z)1—8
o 8= 27 a? :

This was the first curve which was rectified. The honour
of the discovery is due to W. Neil.

3. To find the length of a circular Ar. See fig. p. 188.

Let AN=x, PN=y, AC the radius =a, and arc AP=s;

a—x ;
dw (2am—a,’ »

- ds={ (a—x)? ’h_ adx

- y=(2ax—a2)t; .-,

Zaz—z” (2‘”_1.,);5
»Ss=a (rdi:-);-a versin—! -—+C (See Art. 89.)
ax—x

and ¢=0, since s=0, when x=0.

When x=a, the length of quadrant AD=—- 2“, and the
whole circumference =2=a.

Obs. The various expressions for the differential of a
circular arc whose radius is a, should be carefully remem-
bered ; as for example,

___adx _adx
(2az—a2)i ¥
4. To find the length of the arc of an ellipse.
b =z
22—, =2 % .
Here y=; (a %)t .., dz a (@)l 3
. dy\*_ b%? al—ela?
<14 (d_Tc _1+a’(a“—-z2)_ -z’

b!

L .
by putting e* for Z o
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*fad— H —piz?
s—_:/ {%} dz:cf{ 1 e,‘: } dz (putting az for 2
f _e2' el 1. 36020 — & }
_zs)g 2 2.4 2.4.6
expanding (1 —e*2%)} by the binomial theorem.
2n
Here the integration depends on ——iii‘i; Let the
(1—=")
length of the quadrant be required ; then we must integrate
from =0 to x=a, that is, since az=z, from 2=0 to z=1;
hence we have, by Ez. 4., p. 180.,

I/" 2dz _1.3. (2n—1) i
A (l—z’)i— 2.4 T9n "2}
hence making successively z=1, 2, 3, &c.,

f‘z’dz_l x Ll 1.8 w
A (l—z’)5_2.2’ 0(1_z2)=‘; 3.4 2 %%

therefore the length of the quadrant of the ellipse

1 3, 1.3.5
{1 ¢ 5 22.42.629"8‘“}’

a series which converges rapidly when e is a small fraction.

TO FIND THE VOLUMES AND SURFACES OF SOLIDS.

Differential of the Volume of a Solid of Revolution.

116. Let v=the volume of the solid generated by the
revolution of APN round the axis ANM;
AN=z; NP=y; NM=A=Incr. z; then
QL or rRp =Incr. y, and Incr. v=the
solid generated by the revolution of
NpQM. Now the solids generated by
the revolution of the rectangles rm and
RM, are the cylinders rLIp and RQgr,
whose solidities may be found by Fx. 20. p. 33.
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solidity cyl. RQgr_ 7z .RN2.NM_RN?
solidity cyl. PLlp = .PNZ.NM PN?
_(y+Incr. y)? (1 Incr. y) 2
= 3 = <+ .
Y Yy
Now as % approaches 0, Incr. y also approaches O,

o

solidity cyl. RQg7r _
solidity cyl. pLip —

.. limiting value of ;

But the solid PQgp is always intermediate between the
two cylinders, .. a fortiori,

solidity PQgp

limit solidity cyl. pLip =

now solidity PQgp=Incr. v, and solidity cyl. PLIp=mny?%,

1 Incr.v__ 1 dv

o hmlt ;,? . % —l, o ’72 . Fm=l,

KR %:Wyﬂ, or dv=1ry2dx .« (1)

which is the differential expression of the volume of any
solid of revolution. By taking the integral we have

v=a/ydzr ... (2)
Differential of the Surface of a Solid of Revolution.

117. Let S=the surface generated by the revolution of
the arc Ar(=s) round the axis AB;

and Incr. S=the surface generated LR 0 c
by the arc rQ or Incr. s, due to the 7 ‘
increment NM given to z. DI

On pL and QR produced take pl
and Q7 each equal to the length of the
arc pQ; then P/ and Q7 will generate _l_
cylindrical surfaces: therefore by 4 N M B
Ezx. 20. p. 33., we have

xS



198 : INTEGRAL CALCOLUS.

surf. gen. by Qr_ 2r.QM.Qr__ QM
surf. gen. by vl 2w .PN.PL

=y+Incr. Y14 Incr. y;
y Yy
surf. - gen. by Qr
., limiting value of — surf. gen. by vl

But the surface generated by the arc PQ is obviously

greater than the surface generated by r/, and less than that
generated by Q7 ; therefore a fortiori

limiting value of — surf. gen. by rQ

surf. gen. by pl =1, that is,

Incr. S
limiting value of ;— 2 7" Tnor. s —

Now since S is some function of s, at the same time s is
some function of z, therefore when % or NM approaches O,

Incr.s as well as Incr. § approaches 0; hence the limiting
Incr. §. dS

is
ner. s - ds’

L L dS_, o dS_,.
ozwy-&‘s'-— or-—er,

- ds_2W{1+( ) } dz .

by substituting the value of ds.

value of

Hence by integration, we have

—2x y{l+( ) }d

118. The differential expressions contained in the two
preceding articles admit of taking the following forms.

Thus in eq. (1) Art., 116. since =y°=area section rp,

.*» dv or element of the solid=arca section Pp x dz.
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And in eq. (1) Art. 117, since 2zy=perimeter section pp,
.. d8S or element of the surface=perimeter section »p x ds.

Now it is important to observe, that the reasoning, em-
ployed in establishing these results, holds true whatever may
be the form of the section Pp of the solid, provided that all
the sections parallel to Pp are similar figures, or otherwise
that they may be expressed by the same general equation.

ExaAMPLES.

1. To find the volume and surface of an c
upright cone. :
Let AD=7, DC=a, CP=2, and KP=¥;
then
AD : DC:: KP : CP, that is

. [N ] rx
rially iy ly=_3

2.2 2
- _ﬁzdz_frwdz T;afa“f‘c’

and ¢ =0, since v=0, when x=0;

2
Let z=a ; .". whole cone caB= "Z‘?’E=% cylinder of the

same base and altitude.

To find the convex surface, we have y= %z',

@y
S=2:,/y‘{1 "'(dfy)'}*a:?_"_’ﬁi;i!“_)‘ -
_mr(@ e

a2

and ¢=0, since §=0, when z=0.
x4
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Let z=a; .. convex surface cone ¢ AB=wr(a? 4 ri)i
=1 circum. base x slant height Ac.
2. To find the volume and surface of a sphere.

Let cn=w, An=y, and the radius of
the sphere =7, then

y2=2rz—2a?... (1)
o V= fylde=n[(2rx—a*)dx
=n(re?—}2*)+c, and ¢=0,

......

=~ solidity segment A ¢B=wz(r—3x).

Let z=27r ; then whole sphere =4nr¥(r—3r)=4=r%
But the solidity of the circumscribing cylinder=2wr3;
.~ solidity sphere =2 the circum. cylinder.

To find the surface, we have by dlﬁ'erentlatmo‘ (l)

(h/ 7'— . 1+( ('r——.’l")g —
dx— (2,%._‘2,)9 : tora—a? yz’

. S= 2ﬁ{1+( ) }dx_fz« y. ydx =2erz4c,

and ¢=0; .-, surface segment ACB=2xrx.
Let =2r; then surface whole sphere =4x72
Hence the surface of the sphere is equal to the convex
surface of the circumscribing cylinder. (See Er. 20. p. 33.)
3. To find the volume and surface of a paraboloid ABD,
generated by the revolution of the para-
bola ADB about its axis mDp.
Let pm=uz, and am=y ;

then y2=4az ... (1),

.~ volume ABD=m=/¥y*dr=n [4oxdr
=2zax?+c, and ¢c=0,

% volume A BD=2rax?=}=y’r=1 area
base x perpendicular height.
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To find the convex surface, we have by differentiating (1),
dy . ( 4(1.2 _Zta

,-. Z;

o S=2a y{1+( ) }dz—4mnf(x+a)%dx

,-\,

=4ra(z+a)i+o,
and §=0, when £=0; .°, c=—§nalal;
.*. surface ABD=gqrai {(=+ a)%—ag} .

4. To find the volume of a prolate spheroid, formed by
the revolution of an ellipse AcBD about

Y F
its major axis A B. Pl AN
Let GE=2x, and EF=y; AQ B
2 D Q
then y2=2—2(a2-—1'2);
IX]
- v=x fgadx=f (@ —anaz
2
=’—:;b§ ( :c——) +¢, and ¢=0,
2
o volume gen. by (!I-*QD_—é—'73 aﬂ_‘% ;

when 2=aGB=a, then volume cpPB=3%rb%e, and whole solid
=4xb%a
31{ .

Cor. 1. Comparing this with the expression in Ez. 2,
sphere on major axis : prolate spheroid :: a2 ; b2

5. To find the volume of an oblate spheroid, formed by
the revolution of an ellipse ACBD about its minor axis cp.

(See last fig.)

| 3
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In this case, let GE=y, and EF=x; then

. b2 . a?
=5(*—9), = Y= (00 —2%);

a? wa? x3
. = — (02— =—( b22x—"--
KA v_f/‘b‘-’(b 2?)dx 5 (b r—z )
taking £=¥5, and doubling the result, we have the whole solid
=202
3 wa2b.

Cor. 2. Comparing this with the expression of the last
example, we find

prolate spheroid : oblate spheroid :: & : a.
6. To find the surface of a prolate spheroid.

Adopting the notation and figure of Ex. 4., we have

diN\?2 a?—e’x?
1+ (d‘;) = g See Ezx. 4., p.195.;

N\ 27 3 2 3

by L. 3., page 156. This is the expression for the surface
included by the ordinates ¢p and rqQ.

Making x=a, and doubling the result, we obtain
surface whole spheroid= 2%@ {e(1 —e2)5+sin-' el.

7. To find the volume of a cir-
culur spindle, formed by the revo-
Jution of the arc HLQ about its
chord nqQ.

From o, the centre of the cirele,
draw OIE perpendicular to the AN
chord HQ; let OE=r, O1=¢, 1m o
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=GD=2x, Dm=GI=Y; then 0D?=GD2+0G? that is,
r’=x? 4+ (y+c)?;
oo YP=rt—ct —22—2cy ;

o vErfipde=nf(r?—c?—a?—2cy)dx
= { (r’—c’)z—§—2cfyda: }

= { (r’-cﬁ)m—?;-—-% (gen. area ImDE)} +¢,

and ¢=0; which is the volume of the Frustum generated by
the revolution of 1 DE, and this being doubled will give the
expression for whole frustum aABcp. When z=1H, the
volume of the semispindle HEF=2= {{18%—01 X area 1HE}.

8. To find the volume of a parabolic spindle, formed by
the revolution of a parabola HEQ about its ordinate HQ,
taken perpendicular to the axis Fo of the curve. (See last
fig.)

Let 1m=c¢p=a, pm=G61=y, 1E=H, and 1H=I; then
GD*=4a X EG, that is, 22=4a(b—y¥);

o Y= (4ab—2? 2-.—-— L—z?)2;
16a‘

T
e V=:fy"’dx= 1_67175‘/(.[2 —2?)%dx

=1§Eﬂ{l4 ..2—@'—3-}-55} +c, and c=o0,

which is an expression for the volume of the frustum gene-
rated by the revolution of 1 pE. When 2=/, this expres-’
sion gives the volume of the half spindle HEF ; hence volume

half spindle HEF = (1 ~3+3)=1y%r1b? eliminating a?

16 2
by means of the equation to the curve.
x 6
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9. To find the volume of a conical solid, the base being
any given curve. (See fig. p. 199.)

Let cP=x, CD==a, A==area base AB whatever may be its
form, and A,=area section KV; then, from the similar
figures, we have

A_aB?_cp?_a® | _ ax?
2, Ev? opt ap tMT gl
Aridrx

.~ Art.118., dv or element solid=a,dz= Z

when z=a, volume ABC=} Aa=area base x } altitude.

10. To find the volume and surface
of a groin, formed by the intersection
of two semicircular arches with each
other.

Here all horizontal sections, such as
cDNP, will be squares; the vertical
section, APQMG, parallel to the line
KR, will be a semicircle; and if aM
be a vertical line, ArQwu will be a quadrant.

Let AN=a, NP=y, AM=MQ=a; then the genecrating arca
CPDN==CD?=4y?; therefore, Art. 118., dv or clement solid
=generating area x dr=4y?dr=4(2ax—2z%)dx ;

o v=4/(.2aa:—:c’)da:=4 (axt_.:g),

which expresses the volume of the part Acp. When x=q,
the whole volume =3a3.

To find the surface. Perimeter section CDN=8Nr=8y.

. d 8 or element surface=perimeter section CDN x ds

=8y x a—%”: 8adz, see Lx. 3. p. 195.
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. 8=[8adr=8ax + (const.=0),
when x=a, the whole curved surface =8a2.

11. To find the volume and surface |,
of the solid oMBL, cut off from a right [
cylinder, by a plane omMB passing
through the centre x of the base, and
inclined at an angle « to the plane of
the base omL.

From x draw XL perpendicular to
oM, and let CDEF be a section perpen-
dicular to the base, and parallel to oM ; then ¢cpEF will be
a rectangle, and we may regard the solid as being generated
by the motion of this rectangle parallel to itself.

Let X6=z, X0=XL=XM=7r; then CF=ZCG=2(1"—’—-J:2)*’
and GH or CD=x tan « ;

1
.*. area gen&. rect. CDEF==CF . CD=2(r?—x2)2r tan « ;

.~ dv or element solid=2 tan a(r’-—x’)gxdz-,
>3
.~ v=2 tan fu/(.r’—wz)"lxdz= -‘—t—gn—?(ﬂ-—mﬂ)%-i» c;

2 tana 13

and v=0, when =0, .°, O0=— 3 +c,

o o=2tanart

3
2 tan «

S (= (=)}

.. vV or volume OCDEM=

2tana.rd

When x=7r, the whole solid oLBM= 3 .

To find the convex surface. Here the generating line is
b : putting s, therefore, for the arc oc,
rdr

ds or element surface=cp xds=x tan a X ——— . ;
(=)
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s 8=r tan :c/.(—;d;)*= —r tan a(r?—z2)i 40,
Pé

and s=0, when =0, .*, c=72 tan a;

.*. 8 or surface 0CD=7r tan e {r—(r2—.1:2)'5} 5
taking =7, and doubling the result, we find the whole con=
vex surface OLBM=2r* tan a.

12. To find the volume of a cylindri-
cal ring, formed by the revolution of a
circle, whose diameter is A B, round o
as an axis.

Put 2r=AB, the diameter of the re-
volving circle, and b=the distance of
the centre of this circle from o.

Conceive a horizontal section to be made, passing through
the centre of revolution o, and dividing the ring into two
equal parts. Parallel to this plane, and at the distance z
from it, let another section be made; then this section will
form a plane ring, whose half-breadth we shall represent by
¥, and therefore its area=n(b+ y)? —w(b—y)?>=4-by ;

.. dv=gen?&. area X dr=4=bydx,
r 2
s v=4nbf ydr=4xbx Ez— =n?r?b,
(4

which is the volume of the half ring; therefore the volume of
the whole ring =2x2r"b. ’
13. To find the volume of the
sulid formed by the revolution of
the cissoid about its asymptote 1 cC.
Taking B as the origin, let
BQ=NP=x, QP=BN=y¥, OB=2r.
The equation of the curve, given
in Art. 23., may be thus expressed:

oN3_(on—BN)3
\p2=— — — .
Npl=_— ;

BN
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—_)3
that s, zﬂ=(2Ly_3/)_...(1).

By the formula of parts,
v=ufyldr=nye—2x fxydy ;
but from eq. (1), zy=(2r—y) (2ry—y*)},
= Jeydy=[(2r—y) (2ry—y*)idy
=/f(r—y) (2ry—y )y +r/(2ry —y2 pdy
=¥2ry—y2)} +r(cir. arca BNK);
S v=m {y’z—§(2ry—-y’)3—2r(cir. area BNK)} 4+,
and v=0, when y=27, .*, 0= — 2z (cir. are.a BKO)+ C;
o v=n {§(2ry—y?) ¥+ 2r (cir. area NEO)};
when y=0, the whole solid =2xr(area semicircle B ko)

2
=27 X % =273,

POLAR CO-ORDINATES.

119. Let ArQ be a curve referred
to polar co-ordinates, the origin being
at s; on s as a centre describe the
circular arcs re and Q¢

Let sp the radius vector =7, Z ASP
=4, area ASP=A, and AP=s,
then Qe =incr. r, £ P8Q=incr. 6, area
spPQ=incr. A, and PQ = incr. s.

area sqQ_ 8q?__ {r+incr. r}'-’_ { ] +incr. r}2
—msre s 1l f T —— (>

area S¢Q_,
area sre

’

.. limiting value of
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now area SPQ is greater than area spe, and less than area
59Q; therefore, @ fortiori,

limit aSP&—-I or limit ~"»1—c A ,
area SPe yréi iner. 6
. 1 da 7 a'0
o do"'l’ or da=——...(1),

which is the differential of the area Asp.
By Art. 115, ds=+'dz? + dy? ;
but sN=sP. cos 6, and Np=sP.sin §;
that is, =7 cos 6, and y=r sin 6;
differentiating these two equations, we have
dx=dr cos 8—r sin 6 d§,

dy=dr sin 6+ 7 cos 6d6,
squaring and adding dx? + dy’=dr?+r2d¢?,
s ds=driyrideT . . (2).
This result may also be proved after the method of limits.

120. These, as well as other important formule, may be
readily derived by the method of infinitesimals.

Let, as in Art. 56., p. 86., PQ=ds, Qe=dr, pe=7d§; then

da=area sPQ=1sP.Pe=}r.rdf=1r2ds,

ds=pPQ=+ Qe+ Pe=~drt 4 r2db%

Let fall sy perpendicular to Qr produced, and draw sk
perpendicular to sp; then, when PQ is infinitely small, Px
becomes the tangent to the point P, and sk is called the
polar subtangent. Put sy=p, and £ 8QP or £ 8SPK=p; then

. re_rdf
gin ¢=Pq= ds 1),
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tan ¢='——"—' . (2)’

p=8Y=r sin ¢=%€ .o (3),

2d §
polar subtangent =8K=r tan ¢-—t—7 ce.(4).
ExAMPLES.
Polar Areas, §c.

1. To find the area of OFP in the common parabola, the
focus F being the origin. See fig. p. 15.

2a

a
By Cor. Art. 19, r=l—+cTo=——-2—0; then by (1)Art.119.
cos?
2
*1d6
A:%fr’deza“‘/ 2
v cost 2
_a:f(l +tan?- ) -z—d—a = f(l+tan--)dtau
cos? 2

=a? (tan g+% tan3 %)
2. To find the area of the spiral of
Archimedes.
By Art. 26, 'r=;;
A=} fr”tl 6

jaw_

.6,

@ _wr,
24z 3a’

when the radius vector oP has made one revolution, r=04

wa?
=a; .. thearca oPQA= .

o
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3. To find the area of the lemniscata of Bernoulli.

Here the equation to the curve is 72=a2 cos 26;

2 2
o a=Y/rde=G feoszodo=';i sin 2 6+ (const.=0).

i 2
If §=45°, then sin260=1, ., ;}lemniscata,:%, and whole
area =a?2

4. To find the length of the spiral of Archimedes, the
equation being r=a#.

By eq. (2), Art. 119.

dr\21* 1 ;
s=f{ 24 (1-1—9) } d0=af(r"+a2)§dr
=T (r2+a")3+-a log {r+ (72 +a?)}} +¢
" 2a 27° ’
by Ex.2. page 155. When r=0, s=0, ." 0=g log a+c,
.~ the length of the arc from the origin is

r(rP+ad)t  a.  r4(ri+a?)h
. Tgg o Tl

5. The equation to the hyberbolic spiral is 7 =a.

Show that the area swept out by the radius vector from
Otoris i ar

6. In the logarithmic spiral r=ae™ ; show that
= m2,
s=(14m ).m

7. The curve represented by the equation r=asin 36, has
six identical loops formed about the centre of a circle whose
radius is @ ; show that the area of one of these loops is

1 2
Yg ®ac.
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Polar Tanrgents, &e.
8. To draw a tangent to the spiral of Archimedes,

Here r_.2 .6, and by (4) Art. 120.

< 2
polar subtangent =r2. 9!?:7" . 2z 2ar

When r=0A=a (see fig. to Ex. 2), the subtangent at

A=2ra=the circumference of a circle described with the
radius OA.

9. In the logarithmic spiral r=ae™;

». dr=mae™’d6, and Ei—g=i;
dr  mr

(]
polar subtangent =72 . a_r

dr—m
ds_ 1,
By (2) Art. 120, tanp=r. r=m’

hence in this curve the tangent always makes the same angle
with the radius vector.

By (3) Art. 120,
r2df _ r2d6
P=gs TV drt + ride? /\/ ((lr

72

TN miri e «/m- +1

10. In the hyperbolic spiral r6=a;

ds ]
.~ drf+4 rd§=0, and H=—r

.*» polar subtangent=r2. dr = —Ti=—¢
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a constant quantity ; hence the locus of the extremity of the
subtangent is a circle whose radius is a.

11. Show that the subtangent to the lituus is 27:-1; the

equation of the curve being r20=a.
12. In the lemniscata of Bernoulli, the perpendicular p

.7
upon the tangent is o

RADIUS OF CURVATURE.

1z1. Conceive a fine cord, fixed at one extremity, to be
gradually unwound from the
convex curve BOO, then the v L 1
extremity B will describe a N
curve BPV, in which every
successive portion will be swept
by continually increasing radii NP
op, or, &c. Ilere opis called
the radius of curvature to the point p, and 0 the centre of
curvature. The curve Boo, which forms the locus of the
centres of curvature, is called the evolute; and it is obvious
that the radii of curvature are all perpendicular to the curve,
and at the same time form tangents to the evolute; hence
the direction of the curve at P is always perpendicular to
the direction of the evolute at 0. Hence, also, if any two
points be taken, on the curve BV, infinitely near to each
other, then the lines drawn perpendicular to the curve at
these points will intersect in the centre of curvature.

As a further geometrical illustration of the principle of
curvature; let different circles be swept so as to touch the
ellipse ABA’B’ in the point B (see fig. p. 216.); tthen so
long as the circles fall within the curve of the ellipse on
each side of B, the radius of curvature at B must be greater
than the radius of any of these circles; and, on the contrary,
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when these circles fall without the ellipse, the radius of
curvature at B must be less than the radius of any of these
circles. Hence the circle of curvature is that circle which
is intermediate between those circles which fall within the
curve and those which fall without it.

122. Let Pc and Qc be two normals to a curve at the
points P and Q; PT and QT’ tangents
to these points. Let AN=z, NP=y,
s= the length of the arc BP, c= the
chord joining P and Q, L PT x=1,
/. QT =4/, and R= the radius of
curvature at P, which, from what has
been explained, is the limiting value
of pc as pQ approaches o.

N c
Y R= —
(1) r= the limiting value of 7o

For by simple algebra and trigonometry, we have

c ¢ sinc

¢ sinc’ ¢
PC sinc
sinPQC~ C
Now as the point Q approaches p, the / pQc will approach
nearer and nearer to 90° or ;—; as its limit; therefore the
limiting value of sinPQc is 1: and moreover, by (17)

Art. 28,, the limiting value of s‘%"=1 ; therefore the Limit-
ing value of %: the limiting value of PC=R.

(2) Conceiving the point P to move to Q, then

PQ= incr.s, and ' —= incr.y.
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Since £ P and £ Q are right angles,
2C=/T3T,but ¢/ —p=2T3IT,
S L o=y —y=incr.¢;
hence, by simple algebra, we have

iner.y_ ZC _ ¢ c
incr.s incr.s  imer.s /C

Now as PQ or incr.s is diminished, the limiting value of

incr. \p dxp <
nor.s d.f ; from what has just been proved, that of L G is
E, and that of —— is 1, by Art. 144.; hence we have
dy_1
 reaRE (1).

Let us now proceed to find R in térms of z and y. By
Art. 32., we have

t =% % P=tan-! g‘g;
therefore, by form (3) Art. 58.,
a¥

(N @y
1+(3)

=% (),
=z (@)

therefore, substituting in (1) we have
1_dy
R ds

=g.d(%)...(2).
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If z be the independant variable in this expression, then

1_dz? d% dztﬁy @);
R d® "dz ds V)

ds _ (de’+dy?)®

o Ri=

da?(dPyy?— dr*(d)* .
dy {/ +§H'Z¥
{1+§lr;x) } .. (4. €= 5"
da?

‘When the equation of the curve is given, the radius of
curvature, to any point in the curve, may be found from
any of the last three formule. In the following examples,
formula (4) is only employed.

ExamrLES.
1. To find the radius of curvature of the parabola.

Here y2=4ax, snd y=2a*z*;

.« Wb, _“_*
..dt wi
d’y b3 at
a.ndd—xi=—%a:c =—2x3’
o 1+( x d( 2 4”3’

substituting these values in formula (4), we have

B‘_(a+w)3_'_~ a _4a+tx)P
T ad  4a8 a °

o n=ata)l
a

Cor. When =0, R=2a; that is, the radius of curvature
at the vertex is equal to twice the distance of the focus.
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2. To find the radius of curvature of the ellipse ABA’B.
Taking the centre ¢ as the origin,

Z

=t -

SHB_ bz
daT a(gr—a)¥
dy__ ab
and o dr?™ (a2— zz)i
2,52 az —e2x? a?—bt
a?b?
and ( dw’) == 2)3 ;3 substituting these values in the

general formula (4), we have

(ax_eawa)a a?b? ( a?— elzl)ﬂ'.
(a®— wz)a T(a“— xz)a a*h? ?

'B‘—
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. _(a’—e’w’)*
e RETT

Let x and y be the co-ordinates of the point P in the ellipse ;
draw PO’ perpendicular to the curve, or, what is the same
thing, perpendicular to the tangent to the point p; take off
ro’==to the value of R above found; then o’ will be the
centre of the circle of curvature to the point P, and will
consequently be a point in the evolute 00’z. In this way
we may obtain any number of points in the evolute; how-
ever, it should be observed, that its equation may be gene-
rally expressed.

Cor. 1. When 2=0, r=2 b b ; that is, the radius of cur-

a!
vature at B=zB = s

((,2 — ‘,2”2)1 b2
e

Cor. 2. When 2=a, R= =i =—; that is, theradius

2
of curvature at A=0A=—.

Cor. 3. Since zBis equal to the length of the evolute
20’0 added to 04, therefore the length of the evolute zo’0
a? b ad3— b3

=ZB—O0A=j — —==——
b a ab

The Cycloid.
3. As this curve is not only interesting in itself, but im-
portant in its application to mechanical science, we shall
here notice some of its most remarkable properties.

P
SR
I, 2\ )
T
'Y AIZZ 4 B \&

Let B»’PB be the cycloid ; L»’0 the position of the gene-
L
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rating circle, Lo being the diameter perpendicular to B'B;
ApP the position of the generating circle when it has rolled
over one half its circumference ; then AP is the diameter of
the generating circle and perpendicular to BB”; hence B'B
and AP are the axes of the curve; from ¥’ let fall "M per-
pendicular to AP cutting L0 in Q, and the circle ApP in p.

(1.) Since rm=o0¢q, &c., the triangles rymp and oQr’ are
identical ; therefore 0P’ is equal and parzllel to Pp; and
similarly P’L is equal and parallel to p a.

(2.) It has been shown (Ez. 5., page 113.) that r’L is the
normal to the point P, and therefore or’r forms a tangent
to the curve at P.  Hence we have the following casy rule
for drawing a tangent to any point ¥’ in the cycloid: from
?” draw PM perpendicular to the axis AP, and from the point
> where that line cuts the generating circle on the axis,
draw the chord pr, and through »’ draw or’R parallel to
pL, and it will be the tangent required.

(3.) Let T1” touch the gencrating circle oP’LA’ in the
point ¥’, then, from an obvious property of the circle, the
tangent RP 0 will bisect the £ MmP'1’.

(4.) To find the cquation to the eycloid, taking the
vertex P as the origin.

Since circuin. semicircle Apr=aB, and arc Ap=arc LP’
=1L, therefore, by subtraction, arc Pp=AL=P'p.

Let pM=x, MP'=y, Ar=2r; then
“y=Mp+P p=Mptarcrp;

but arc pp=r versin—! i: , and Mp= VA . up=(2rz—a?)}
y=(2rx—w’)i+r versin—! ;,

(r—2z)dz rdz___(2re—atyde

@rz—a?)! (2re—a2)t x ’

d_y___:(2rw——x’)§ (),

ox X

o dy=

.
*e



THE CYCLOID. 219

which is the differential equatlon of the cycloid, taking the
vertex P as the origin.

(5.) To find the length of the cycloid.
dy\?_ | | Zre—a®_ 2r
@) == =%}

x

2r\} R
RN s=1>P’=./l(-w—) dx=2v%rz+c;

and ¢=0, since s=0 when x=0;
»oare PP =242rz=2rp;

that is, the arc of a cycloid is equal to twice the chord of
the corresponding arc of the generating circle.

When z=2r, the arc of the semicycloid =4r=twice the
diameter of the generating circle.
The rectification of this curve was discovered by Wren.
(6.) To find the area of the cycloid.
Here, by integration of parts,
area rP'M= [ydr=yx—/[ xdy
=yx— [(2rz—a?)¥dz, by eq. (1),
=yx—cir. area PpM.
When z=2r, y=AB=n7, and cir. area PpM becomes area
semicircle Ppa=1%wr?; therefore area of the scmicycloid

PBA=2nr?—Lwr?=3%nr% and area of the whole cycloid=
3rr2=three times the area of the generating circle.

(7.) To find the radius of curvature of the cycloid.
By Ez. 5., p. 113., we have,
g’y_(2ry—y’)’ w14 (Y22
dzr— _‘_y > e dr =3
L2
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differentiating this latter result, we have,

2% ﬂ/—-—a‘;'%—_gﬂ dy
dz * da* ¥ ¥ dz’
i
oo dx’_ y’,

substituting these values in the formula for =, we

have,
27r\3 r\2
RZ= (——) —(—-—— =8ry;
v )=
<. R=2+2ry=2+BD.BR=2PB (see fig. p. 21.).

Hence it appears that the radius of curvature to any point
in the cycloid is double the normal to the same point. Thus,
in fig. p. 212, if BvB  be the cycloid, and the lines po the
radii of curvature, then the axis BB’ will bisect all these
radii. From this property it may readily be proved by
common geometry, that the evolute Boo is a cycloid precisely
the same as the semicycloid BPv.

4. In the cubical parabola, 3a%y=a3, and the radius of
(at+ah)}

curvature R= -
2a'x

5. In the rectangular hyperbola referred to its asymptotes,

@i+

ry=m?, and R= ot

& {3
6. In the catenary, y= g (£ +¢ ©),

g -5 9% < n¥
dz_—}(e"-—e ), 2= "2 and .°, R—-2-;-
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To express the limiting Value of the Sum of a Series in the
Form of a definite Integral.

123. The sum of a series may be expressed by placing the
symbol X before its general term. Thus, if Az be put for
the increment of the variable z, and f(z) Ax for the general
term of a series, we have

Sarevief poyax} =f(a)dx+f(a+Ax)Ax+f(a+20x)Ax
+ .. +f(a+n—1Az) Az...(1),

where X symbolises the word sum, and the general term
f(xz)Az is the fype of a scries of terms, conuccted by the
sign of addition, taken from z=a to x=a+(n—1)Ax, the
increment of x in passing from one term to the next suc-
ceeding one being Az; hence we say that the whole symuol
indicates the sum of a series taken between the limits 2=«
and z=a+(n—1)Az. With the view of leaving the limits
indefinite, in offer that they may be assigned to suit the
peculiar conditions of a problem, the sum of a series is
sometimes simply expressed by = f(z)Ax.

In the curve AQP let AM=a, AN=z, NP=y=F(a).
Let MN be divided into n equal parts, viz., Mr=rt= &c.
=Az; and on these bases let rect- v,
angles be constructed as in the an- 7
nexed figure. Then MN=z—a; 4

z—a
M7 Or M:T, S rAr=x—a.

Also from the equation to the curve,
y=f(z), MQ=f(a), rs=f(a+ax), ,
tv=f(a+2Azx), and so on, the N7 ERE Ne

(n—1)th ordinate gp=f(a +n—1Az) ; hence area rectangle
Qr=MQ.M7=f(a)Axr, area rectangle st=rs. ré=f(a+Ax)Ax,
and so on; the area rectangle pN=gp . gN=f(a +n— 1 Ax)Az.
Hence it appears that series (1) expresses the sum of all

-3
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the rectangles inscribed in the curved space MQPN. DBut
since @ + (n—1)Ax=AN—gN=x—Aux, this series may also
be expressed by 22°*§ f(z)az}.

Now, Art. 113. eq. (1.), the sum of these rectangles ap-
proaches nearer and nearer to the area of the curve MQrn
as Ax is diminished, or, what is the same thing, as the
number of parts = is increased. DBut, by Art. 113., area

MQPN= z_/'(.z)d:p:;

/ uf(w)dz:limit of X[ f(x)ar}...(2).

This theorem is very important as it regards the applica-
“tion of the calculus to mechanics, and indeed to almost every
branch of general physics.

The indcfinitely small rectangles (or other portions into
which we suppose the integral quantity to be divided) are
called elements ; thus the limit of f(x)Ax or f(x)dx is the
element. Py

124. As a geometrical illustration of this theorem, let
AQP be a straight line (sce the last fig.), and y==x its equa-
tion ; then we have for the sum of all the rectangles inscribed
in MQPN,

S e ar =abdz+(a+Ax)Ax+ ... +(x—Ax)Ar

niAx . .
=(e+z—Ax) 5 by summing the series,
—z—a®_(z—ap since ax=2"2

2 2n — n’
22 —a?

which is the area of the trapezoid MQPN.

Now we have also by integration
22— a2

9 H
which verifies the theorem in this particular case.

e
area M QPN:/ xdr=
e/ a
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125. The method of dividing a quantity into elements, and
then taking their sum, may be readily employed for finding
expressions for areas, length of arcs, &c. For example, lct
it be required to find an expression for the volume of the
solid generated by the revolution of the curve arqar about
the axis am. (Sece fig. page 196.) Here, taking as our cle-
ment the eylinder generated by the revolution of the rect-
angle NMLP; then assuming that the solid AQ ¢ is the limit

- of the sum of all the infinitely small cylinders into which we
supposc it divided, and of which =y2ax is the type or general
form, we have

limit 2:—“ {1:]/2_‘.1} =‘7J 'zyfd.rz:v,
0

or the volume of the solid Aqg. .

In all formule connected with the application of the cal-
culus, it is important to observe, that the second, as well as
all higher powcrs of Az, may be neslected, since, when the
limiting value of such formule is taken, any error arising
from this source must vanish.

APPLICATION OF THE CALCULUS TO MECIIANICS, & .
Centre of Gravity of Plane Surfaces.

126. The property of the centre of gravity of any plaue
surface MQPN(=m) is as follows (see fig. page 221.) : Let the
whole area be divided into any number of parts; then, sup-
posing the surface to turn about Ay as an axis, the sum of
the moments of these parts is equal to the moment of the
whole area considered as acting in its centre of gravity .
From this property the distance, G m(=x), of the centre of
gravity G from the axis Ay is determined; and in like
manner the distance, G n=yY, from the axis sx is determined.

Let the surface MQr~N be divided into elements or indefi-
nitely small rectangles, as in Art. 123. ; then the moment of
any one of these rectangles will be its area multiplied by its

14
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distance from the axis of motion Ay : hence, adopting the
notation there given, we have
moment element Np=area Np X AN*=2xyAxz,
.*. the sum of the moments of all the rectangles Qr,
86, .+« o Np=3207 {zyax}, where xy is some function of ;

but moment area MQPN=arca MQPN X Gm=m.X,
. . . x
. m.X= limit of Sz Az {zryAx}:tf‘ zyd.,
a

by theorem (2) Art.123.;
./ ﬂ/dx ()

).

A similar expression may be found for the value of v;
but one more convenient for calculation is determined as
follows : —

Conceive the surface ANP to turn about Az as an axis;
then the moment of any one of the rectangles Qr,st, ..., Np,
will be its area multiplied by the distance of its centre of
gravity from Ax: hence, if 0 be the centre of gravity of the
rectangle Np, we have

moment Np=area Np X 0g=yAx X } y=1y%Ax,

>
< m. Y= limit of 347 {1 42Ax} =% y2dx,
a

/ T;z/’d;c
=% Sim— <. (2

When AM=a=0, then we have for the centre of gravity

of APN,
f zydx
0
m

Gm or xX==

e

* Here AN may be taken as the distance of tl e centre of gravity ot
the element np from the axis Ay, since wien the limits are taken any
error from this assumption vanishes.
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fyzdz ces (4

FEzx. 1. Let AQP be a pa.rabola; required the centre of
gravity of ANP.

Here y?2=4ax, and by Ewx. 2., Art. 113.,

m= area APN= Zxy=1% atzl,

and 67 or Y= }*“"——

therefore by formula (3),

3,
/ Ixydzz “dbaidz
/0

0

Gm or X= = ——
m .;_ aix?
18
r
=fa—]—=§z= $AN.
Bawxi

Also from formula (4),
f yde_ /' daxds
0
L .

=3 at ‘}_%y_ ANP.

Gn or Y=4%.

2. Let ANP be a portion of a circle, AN being a line pass-
ing through the centre.

Here y=(2ax - xz){’ is the equation to the circle,

KR J ua'ydz::J zx(?aw-—aﬂ)g'dx
o ()
= -‘-/ )z(a—.z:) (2ax—w2)§dx-i.-/ ra(.‘za.z:—:t:")"dz'
A (]

= —}(2m—x9)3+ a. circ. area ANP;

xydx
f 4 _—,}(2az——x*)‘1+ a. Cir. area ANP
m cir. area ANP

L5

o X=
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_ —(2ux —a?)}
8 circ. area A1~{P+”'

/ uy?dx J z(2a:c—:::’)d.’!'
Also y=4.%° pos =10 poo

_ ax®—}a?
T2 cir. area ANP

When z=a, ANP becomes a quadrant; then x=a—§g,
4a
and Y= 3.

Centre of Gravity of a Solid of Revolution.

127. Conceive APN to revolve about the axis ax, then
the solid that will thus be formed will obviously have its
centre of gravity somewhere in the axis Ax; let 2 be the
centre of gravity, put Az=X, and volume solid =m. Now
regarding the solid to be made up of a series of cylindrical
lamine, formed by the revolution of the infinitely small
rectangles Q7, s¢ ..., NP; the moment of the whole solid,
supposed to turn upon Ay as a fulerum, will be cqual to the
sum of the moments of these cylindrical laminw. But the
moment of the cylindrical lamina formed by the revolution
of NP = solidity lamina X AN==ny?Axr X x=my2rAx;

.~. sum of all the moments of these lamina
=2:’“ {ry?xaz}, where y2z is some function of z;

T—AX i
SJe m.X = Za ¢ {mytrax) =:r/ yxdzx,
a

32
‘,J y2adz
". x-_:_"___—
m

cee (D)
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Ez. 1. Let the body be a segment of a sphere:
y2=2ax—a?;

shen, integrating between =0, and x=x, we have

x z 3
yxde= (2aw—a:2)wdx=?1w— —zf,
o o 3 4

and Ez. 2, p. 200., m==(ax?—Lx3);

o
Z’[ Y2 aaat—yat) _x(8a—32)
T a(a?—%x®) T 4(3a—zx)"

S X=AN==

When the segment becomes a hemisphere, then r=a,

S5a
and x_—g—.

2. Let the body be a paraboloid :

y*=4ax,

x =
R ‘[ y’wdz=‘/ 4ax’dr=4ard,
0

and Ez. 3. p. 200., m=1iny’*r=2rax?,

'z
2,
wf yiadx o
. o 3 TAL 2
X= = —,3_1.

T T m T 2zaa?

Centre of Gravity of a Curved Line.

128. Let arc QP=s, arc pr=Ax (sec fig. p. 221.), the
sther notation being the same as in Art.123. Supposing
the curve to turn upon Ax as an axis or fulcrum, then the
moment of the whole arc QP will be equal to the sum of the
moments of the arcs qs, sv,..., pp. Now the moment of the
arc Pp=PN.Pp=YyAs;

.*. sum of all the moments of Qs, sv, ..., pP=3yAs;
L6
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.~ 8. y=limit of SyAs=/yds,
J ){=‘£‘%‘Zf eee (D

.e

Similarly, x=L% ___ (2).
Ez.1. To find the centre of gravity
of the circular arc pP.

Let cN=x, NP=y, CP or CA=a,
and pP=s; then a
adzx alr
y2=a?—ax?, and ds= —= -3

(a*—a%) Y

f Lr_yds——“/l madx:aa:, . byeq.(1) ¢
0 0

If px be taken equal to pp, then the centre of gravity 6
of the arc PDK must obviously lic in the line cp,

ar aXxX2r radius.chord PK

S Y=CG=——= — T

2s arc P

Acceleration of Motion by given moving Forces.

129. When a body descends freely by the foree of gravity,
the moving force is measured by the weight of the body, or,
what is the same thing, by the pressure which it would exert
upon any obstacle. If the resistance of the air be taken into
account, then the moving force, at any instant, is measured
by the weight or pressure of the body minus the opposing
pressure or resistauce of the air. Thus, therefore, moving
forces are measured by the wabulanced pressure exerted on
the moving body. In the case of gravity, the moving foree,
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- or pressure producing motion, being constant, the descending

body acquires equal increments of motion in equal times.

Let P and P, be the moving pressures exerted on two
equal bodies, and f and f, the increments of velocity which
these moving pressures respectively produce in the same in-
terval of time (P and », being supposed constant during this
interval), then it is determined by observation and experi-
ment, that P, :. ff, that is, the moving forces or
pressures are measured by the increments of motion they
communicate in the same time.

Let the pressure P, be the weight w of the body, then £,
will be equal to g (=382}), the incrcment of velocity com-
municated by gravity in one second,

SLEIWILSIgs o =3’-.f... 1).

For example, if f=1g, then p=}w, that is, the moving
force is one-half that of gravity. Now regarding the incre-
ment of motion, communicated to a body by a moving pres-
sure in one second, as the measure of that moving pressure ;
let v be the velocity of the body acquired in ¢ seconds, the
moving pressure at the end of that time being measured by
f; and let Av and Af be the corresponding increments of o
and f in the increment of time A¢; then if the force f were
acting uniformly for At seconds, f'x Af would be the incre-
ment of velocity, and if the force f'4+Af were acting uni-
formly for At seconds (f+4f) At would be the increment of
velocity ; and it is obvious that Av is intermediate between
these. Hence as A¢ approaches O, we have

. ofFAf)AE ( AN
limit Of ——Tf;F— mit of l+—-jr)_l,

ST Av R
.. @ fortiori, limit of FxoF =1, that is,

1 dv

dv
7"7t=1’ "f=5lt e e (2)

N
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Substituting this value of fin eq. (1)

P=— f‘; Z:(%)

Let s be the space described in  seconds, and » the velocity
acquired in that time ; and also let As and Av be the incre-
ments of space and velocity in the increment of time AZ
The space which would be described in Af seconds with the
uniform velocity v is vA#4 and that which would be de-
scribed in the same time with the uniform velocity v+ Av is
(v+Av)At. It is obvious that As is intermediate between
these.

Hence, as At approaches 0, we have,

(tav)at_ . it of (1 +A—v’f =

limit of Y

- ST As .
.~ @ fortiori, limit of PR t—l’ that is,

W

s ds
t——l; o 'D=‘dt e (4)-

Q-
I

Y

Differentiating this equation with respect to ¢ we have,
dv _d?
T=an’ therefore by eq. (2),

dv__ds
S= G=ap e (5).

Multiplying (2) and (4),

Sds=uvdv, orf_@ . (6).
Substituting this value of fin (1),
W ovdy

—f y " ds (7)'

Equations (6) and (7) are generally most easily applied
to the solution of problems.
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ExAMPLES.

1. Let the accelerating force be constant, as in the case of

gravity.
Here, putting g for f, we have, by eq. (2),
dv=gdt ; therefore by integration,
v=gt+C ;
if £=0 when »v=0, that is, if the motion commences with
the time, then ¢==0, and
v=gt.

By eq. (4), ds=vdt=gtdt, by substituting the value of v ;

hence by integration,

These results are the same as those derived in (135) page
29.

2. A body falls towards the centre of the earth ; it is re-
quired to find the motion of the body, assuming the force of
attraction to vary inversely as the square of the distance
from the centre.

Let r=the radius of the earth, g=the force of attraction
at its surface, a=the distance of the body from the centre
at the commencement of its motion, and x=its distance at
the end of ¢ seconds ; then

2
fg9: :%, : ;lg; .'.f=%fq;
substituting this value of fin eq. (6), observing that in this
case s=a—u, and ., ds=—dx, we find
._Zfi?d‘? =edv ;

.
therefore by integration and reducing,

2 =g7_‘::£_7 + C-
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The constant ¢ depends upon the initial veclocity of the
body, that is, upon the velocity which it has at the com-

mencement of the motion. Let »=0 when z=a, then 0
_2rg .
=Ta TO
2219 _2r%g_2r°g(a—m)
X a ax

When the body arrives at the surface of the earth, then
x=r, and
o= /\/ 2rg(a —r).
a

If @ be infinite, then w_-‘-l-_rz 1, and
~ v=+2rg.

Supposing, thercfore, that there is no resisting medium,
if a body be projected vertically upwards with this velocity,
it would never return to the earth. Taking the radius of
the earth to be 4000 miles, this velocity will be about 7 miles
per second.

3. To find the vertical motion of a body near the surface
of the earth, supposing the resistance of the air to vary as
the square of the velocity.

‘When the velocity of the body is unity, let the resistiig
force of the air be m, the accelerating force of gravity being
¢ 5 then the resisting force of the air, when the velocity is v,
will be represented by me?; therefore the force accelerating
the body when its velocity is v, will be

f=g—mv?;
therefore by eq. (2) we have,

2 —
g— mv dt .

dv 1 1 1
o dt= =— ( . ) dv;
g—mv* " 943 g+ miv + gi—m'v
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L1 gitmiy
.e t—-ét\—/y_n—;logg*— §v+c’

where the constant is O, since v=0 when ¢=0.

This expression determines the time in terms of the
velceity acquired ; and by an casy algebraic artifice, we can
find, from this equation, the velocity in terms of the time.

To find the space s, we have by eq. (6),
vdv= fds=(g—muv?)ds;

vdv

s ds =g__ ="

vdv 1
S §= pr—— log (y—mv*)+o,

1
and v=0, when s=0, .- 0=-—_27n. log g+¢,

1 : 1 g
- = og— loo (g— 2 = PR A
ceos=yo {loc g— log (9 —mv )} =5 logg

—mv?

Formule relative to Work done by a Variuble Pressure.

130. Let rlbs. be the variable pressure applied to the
body when it has moved over z feet, and U the work done
over that space ; then du=rdx.

Let Ax be the increment of space, corresponding to Au
and AP the increments of work and pressurc respectively;
then AU will obviously be greater than » x Az, and less than
(P+APr)Ax; but we have

.. o(P+ar)axr_ . . IS AW
limit of P.A;—._hmlt of (1+? =1,

- e oy e AT .
K ¢ S =
a fortiori, limit o A2 1, that is,

1 du
; ,—d—‘—z=l, s du=pdr ... (l)-
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Or thus: suppose the piston of a steam engine to be
moved from EF to DC under any variable pressure.

Let I=AD the total length of the stroke;

. s
a=AE the space through which the steam ‘
acts with a uniform pressure; P, = the |
pressure at EF, where the steam is cut off »{—
from the boiler; x=AK the height of the
piston at KQ when P is the pressure of the pl—u0— |r
steam; Azx=xXn where nm is the position |
of the piston indefinitely near to xq; and

= the work done from & F to vC.

Now suppose the pressure P to act unilormly through the
small space Ax, then PxAx will represent the work done
through this space, and 2rAx will represent the sum of all
the elements of work done from EF to bc¢; moreover since
r is always some function of x, we have by theorem Art. 123.

e
U= limit of erxf/ rdr ... (2),

which is the same as the preceding expression.

The work done from A to EF will obviously be rcpre-
sented by aP,, hence for the total work we have

1]
U,=ar,-|f rdr ... (3).
Cor. 1. Let w be the weight of the mass moved,

2
then U=E2-;—v. (See « Exercises on Mechanics,” p. 89 )

Differentiating this equation, we find
w
dU=;o vd’v ce e (4),
therefore by equating with (1)

de:‘gvdfo .. (8),
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which is the same relation as (7) Art. 129.

Substituting in this equation the value of ds or dz ob-
tained from (4) Art. 129, we find

w dv
P——g. (_lt .o e (6),

which is the same relatiomas (3) Art. 129,

EXAMPLES.

1. To find a general expression for the work done upon 1
inch of the piston of a steam cngine, when tlie steam acts
expansively ; assuming that the law of Mariotte applies to
the cxpansion of steam.

Here, using the notation and figure of the preceding
article, we have

Yar,dz
R dez:J ——a'”l-—-=a1>‘log z+C,

hence by formula (3), we have

1
U|=aI’1+f de:ap1{1+ log 5—1}

2. Let w Ibs. be the weight of a railway train, - its ve-
locity in feet per second at the moment the steam is turned
off, g the coefficicnt of the friction of the rail, p Ibs. the re-
gistance of the atmosphere to the whole train when the speed
is 1 foot per sccond. Required the space which the train
will move over before it stops, &e.

In this case we shall employ forinule (5) and (6). Let v
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be the velocity of the train when it has passed over z feet,
then the retarding force or pressure at this point is

P=—qW—po?
therefore by formula (5)

—(gw+ pv’)d«::E . vdv,

hence by integration, we find
. - i
= ~Zng log (g w+pv?) +c,
and since *=0, when v=v,,
= 0= - log (gw +pv,2) +c,
2pg

l loc qw+p_r’2,
2pg " gw+pv?

S X=

which is an expression for the space moved over when the
velocity is . When v=0, that is, when the train comes to
a state of rest, we find the whole space moved over to be

W pv ,_2} .
éz_)g IOD { l + qw .
To find the time £, we have by eq. (6)

—qw—pv’:y . ﬂ’
g dv

T gt gwapet pgtgw g
7+

by forms (¢) page 139.
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‘When ¢=0, v=v, and

.} Y

w 1 p

— tan “—v, +
p*gw5 gw e

o ot= tan—«/ -—v-tan-l,\/-—v}

which expresses, the time corresponding to the velocity v.
- When v=0, that is, when the train comes to a state of rest,

we find the. whole time to be —— tan—! ,\/ i
p’gq’ 7w

<& 0=

Centre of Gyration.

131. Tt is shown in the Author’s * Exercises on Me-
chanies,” &c., p. 92., that the work accumulated in a rotating
body is not altered when the whole mass is collected in its
centre of gyration; and moreover that the work in any
rotating particle is equal to its weight in Ibs. multiplied by
the square of its distance from the axis of rotation divided
by- 29, the velocity of a particle at 1 foot from the axis
having a velocity of 1 foot per second. Let m be put for
the volume of the body, w the weight of each vunit, % the
distance of the centre of gyration from the axis, Am the
volume of any small particle at the distance 7 from the axis;
then the weight of the whole body =wm, the weight of the
particle Am=wAm, the accumulated work in this particle

2
=w27‘;”‘, and the accumulated work in the whole body

2
=g therefore the work accumulated in all the particles

composing the body may be represented by ; Z- =r2Am,
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2
o R it of 2 srtam
29 29
now since r is always some function of m, therefore by
theorem, Art.123., and striking out the common factors,
we find

mk2=:1imit of 2r*Am=[r*m ... (1),
- / ;/'20 I
- m

R (2)

where the limits of the integration are left to be assigned by
the nature of the problem whick may be proposed.

The moment of inertia of a body is equal to its volume
multiplied by the square of its radivs of gyration. Thus
if 1 be put for the moment of inertia, then 1=mk? ; and
eq. (1) shows that the inertia of a body is equal to the sum
of all the moments of inertia of the particles composing it.

Hence if » be put for the velocity of a point 1 foot from
the axis, the work accumulated in the rotating body
_ weight x velocity? _wm x (vh)?__we?

=0 2g T 29 T 2g77

ExaAMPLES.

1. To find the radius of gyration of a uniform rod AB
revolving about its extremity A.

Let us first solve the question without the aid of the
calculus.

Put a=the cross section of the rod,

{=AR; and let AB be divided into = .-
al “.h B
small equal portions, then ” will be the

‘20

mass of each, and their distances from A will be 7

31 nl . .
PR et therefore the sum of their moments of inertia

will be represented by
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(4 al 21 al (31\N2 al nl\? al
() ) 7#(71)-7#--"“(;) s
=al3.13{12+2’+ e +n2}=ﬂ3, when n = «,

" 3

by (12) page 27.

Now this is equal to the moment of inertia of the whole
rod, supposing its matter collected in its centre of inertia,
hence we have

1=mk?=alk? ... (1)
o ae=", . gl _ 2"
»oalk= g k_«/3._«/3,

which is the radius of gyration.

Let the rod extend to the left of A, making AD=AB; then
if £, be put for the radius of gyration of the rod pe, rotating
upon its middle point A as an axis, we have the moment of
inertia of the two parts Ap and Ab=2alk? by eq. (1);

and moment of incrtia of the whole rod pp=2alk?;

= 2alk2=2alk?,
{ _bpp
V8T 248

Again, let AN=ux, and the length of an indefinitely small
portion at N—=Az; then the volume of this small por-
tion =aAwx, and the volume of the rod AN=az, hence by
formula (1), _

ax x k2=limit of S(22 x aldx)

=‘a/ za:”dz: 23:51
(]

2

o kh=h=

l AB
when x=I, then k“:/_g—73'



240 INTEGRAL CALCULUS.

2. To determine the radius of gyration, &c. of a circle
cDQ revolving about its centre 0 as an axis.

In order to illustrate the process of 5
reasoning pursued in this subject, we
shall solve the problem independently
of the general formula (2). .

Here let us suppose that the circle
is made up of a series of concentric R 2
ringsas ABFGR; put OA=2, A=Az,
and oc=a; then the volume of the ring ABFG=m(.r+ Ar)?
— mx®=2xxAz, neglecting (Az)? according to Art. 125.; hence
the moment of inertiu of this ring =22 < (vol. ring) 2madar;
and as this may be regarded as the general type of the
moments of every ring in the serics making up the circle,
the sum of the moments of all the concentric rings may be
represented by 2z3x3Ax,

o I=limit of 2zx3Ax
=2nfidde=" +o,
taking this between the limits of x=x, x=aq, that is, making

successively z=a, =2, and subtracting, we find

w0t wrl_ =«

1= — =g (e a) ... (1),

which is an expression for the moment of inertia of the cir-

cular ring BCDFQ. Let % be the radius of gyration of tlus
ring, then

1= area ring X k2=xz(a%—a?)k?;

A w(a’—w’)k’;:% (at —at),

k= @+ .. @)
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which is an expression for the radius of gyraticn of the cir-
cular ring BCDGF.
Making #=0, we obtain

=2

Vo A (3)
which is an expression for the radius of gyration of the
whole circle cpQ.
Making z=a in (2), we obtain
k=a...(d)

It is obvious that these formulee will not at all be altered
by supposing the circle to have any given thickness ; hence
formula (2) is an expression for the radius of gyration of
the rim of a fly wheel, (3) that of ‘a circulur wheel of
uniform thickness, (4) that of a circular hoop revolving on
an axis passing through its centre and perpendicular to the
plane of the hoop.

If & be put for the thickness of a hollow cylinder, whose
external radius is @, and interior radius &; then by eq. (1)
we have the moment of inertia

1=?’.2" (tt—84). .. (5).

If 5=0, then we have for the moment of inertia of a
cylinder,

4
=f';—’~‘. .. (6)

3. To determine the radius of gyration, &c. of a sphere
revolving about its diameter.

Let 2abe the thickness of a thin lamina, formed by planes
perpendicular to the dianeter, x being put for its distance
from the centre of the sphere ; also let a= the radius of the
sphere, and y= the radius of the thin lamina. Now, since
this lamina may be considered as a thin cylinder, its moment
of inertia =}=y' 2z, by eq. (6), £x. 2. DBut the moment of
inertia of any zone of the sphere is equal to the sum of the
moments of all such thin laminae making up that zone,

M
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. I=limit of 2(1‘;«y4Am)=§.f yidx.
[
Now by the equation of the circle y?:=a?—a?,

'z
s 1= ) (@?—a?)de=tn(atr— Fa*xd + Lxt),
0
which is an cxpression for the moment of inertia of a zone,
whose breadth, measured from the centre of the sphere, is .

When xz=a, we have the moment of the semi-sphere

wa®; and therefore the moment of the whole sphere
as.

¢l| ::-

1
1"
Strength of Mateical.

132. When a beam A B undergoes a transverse strain, by
the pressure of a weight w placed

. . w
upon it, the material on the upper I
. N . a d
side @ d is compressed, while that ~=;
on the under side ¢’ ' is extended. | X n .
That imaginary point z within the & P w
section of rupture a d , which nei- -

ther undergoes compression nor
extension, is called the newtral axis of rupture.

When the lower fibres of a beam are upon the point of’
yielding to the force of extension, at the same time that the
upper fibres are upon that of yielding to the force of compres-
sion, then (supposing the beam to remain nearly horizontal)
the sum of the forces cxtending the fibres on the under side
of the neutral axis are cqual to the sum of the forees cow-
pressing the fibres on the upper side.

Let d=the depth of the beamn;
b=its breadth ;
a, a,=the respective distances of the neutral axis » from
the top and bottom of the beam
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JSof,=the compressive and tensile forces respectively
exerted by a sq.in. of the material at the dis-
tances @ and a, from the neutral axis;

l=AsB, the distance between the supports;
Z=mnv, a variable distance from 7.

To find the Position of the Neutral Axis in Rectangular
Beams.

Assuming that the force with which a fibre resists com-
pression or extension, as the case may be, is in proportion
to the extent of compression or extension of that fibre, hence
we have

. . xr
compressive foree per sq. in. at 'u='£ H

area of the element of surface at v=">5Ar;

. v
.*. compressive force of the element of surface:": x bAr
«

::'-(7,-.1‘_\-1‘,
a
.~ sum of all the compressive forces.—:f—/: 3o xrAr
a
__—‘_f_?_z_ a*dx-—fﬁ)".
aJ, 2
Similarly we have
a b
sum of all the tensile forces ='§' bf :cd.r:'-f")"’.
/e/0 -

But these arc the only horizontal forces acting upon the
fibres;

Sba _f,ba ,

3 v
. ) -
2 2
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< Ja=fa, ... (1),

which expresses the relation of the distances of the neutra
axis from the upper and under sides of the heam.

Conditions of Rupture.

Now when rupture is about to take place, the heam turns
upon the necutral axis », as a fulerum; hence the tendeucy

. . w .

of any fibre to resist the moment of the furce 59 tending tc
rupture the beam, is the moment of the force of that fibre
referred to » as the centre of motion.

.. Moment of the element undergoing compression =
force of the clement undergoing compression X its distance

. b b
from the neutral axis ="; TAX X &= '~a)w‘Am H

.*. sum of all the moments of the forees of compression
b ., b e Des?
s ey [ g SV
a aty 3
Similarly we have
sum of all the moments of the forces of extension

_fb / "'ﬁdx:-—ﬁ-'g"' e (3).

a

s

3ut the moment of the pressure tending to rupture lhe

. w_ i .
beam, is expressed by 5 X ;. Now this moment must be

equal to the sum of the two moments expressed by eq. (2)
and (3),

. Wl fba® fha?_b, 2
S T= 3-+ -5——3{ a +f,a,,,

but by eq. (1), fa=fu,
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o Wby =L a) =TT
dfabd _4fabd
oo w=g S or Fges . (8,

Now fbd is the direct tensile strength of the beam, there-
fore the transverse strength of a beam, loaded in the middle
and supported at the extremities, varies as the direct tensile
strength, multiplied by the depth of the neutral axis divided
by the distance between the points of support.

Cor.1. When the force f with which the fibres resist
compression is equal to the force f, with which they resist
extension, we have, by eq. (1),

fa=fa, - a=a=}d,
therefore eq. (4) becomes
2fbd?
W= —j—gl——- ... (85)

Cor. 2. If the beam is absolutely incompressible, or f=oo0,
then @=0, and @,=d. In this case eq. (4) becomes

4f,bd?
w=- Jf:}_l— ...(6).

On this important subject, the student may consult Mose-
ley’s ¢ Mechanical Principles of Engineering,” and Hodg-
kinson’s edition of ¢ Tredgold on the Strength of Materials.”

THE END.
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A GRADUATED SERIES of NINE COPY-BOOKS ................each
SIMPLE TRUTHS from SCRIPTURE .............. ter rasesienens
EXPLANATORY ENGLISH GRAMMAR, 9d. . DEFINITIONS,
HISTORY of the ENGLISH LANGUAGE
The CHILD'S FIRST GEOGRAPHY ....coiiveniniiiieninnnnn,
GEOGRAPHY of the BRITISH LMPIRE
GENERAL GEOGRAPHY, 9d......... QUESTIONS OV GENERAL
GEOGRAPHY ..........
HAND-ATLAS of GENERAL GE()(:RAPHY 29 fu\l-coloured Mups,
sewed, 25.6d. ............. [P half-bound
CLASS-ATLAS of PHYSICAL GF()GRAPHY 30 full-c loured Maps,
Sections, and Diagrams, sewed, 2¢.6d4. .................... half-bound
BOWMAN?’S Questions on M‘Leod’s Physical Atas .................. seee
PHYSICAL ATLAS of GREAT BRITAIN and IRELAND, fcp. 4to.......
SACRED HISTORY, 2s.; or in Two Parts ........... veeressseecas.each
HISTORY of ENGLAND, 2. ; or in Two Parts .. v....each
HISTORY of the BRITISH COLONIES............. ceene
HISTORY of BRITISH INDIA ... T T
HISTORICAL QUESTIONS, PaRT 1. on the above Four Histories .
HISTORY of FRANCE ........... eedereennaenes
HISTORY of GREECK, 94... cerecnnvenses HISTORY of BOME,
BOOK of BIOGRAPHY .. .ciininiiiieiteriancnctnsaesssessoniosenonens
ASTRONOMY and the USE of the GLOBES ......ccoviiiiiianinanienne
NAVIGATION and GREAT CIRCLE SAILING......cootviie tuneinnas
ELEMENTS of EUCLID, 9d................. PRACTICAL GEOMETRY,
ORTHOGRAPHIC PROJECTION and ISOMETRICAL DRAWING ....
ELEMENTS of MENSURATION, 9d. .ceovvceeerinnsnceneienss. . KRy,
ELEMENTS of PLANE TR.IG()NOMETRY. 18 ceeancrenenens... KEY,
TREATISE on LOGARITHMS, with TABLES, 1s. ................KEY,
A MANUAL of ARITHMETIC c...ivvievenniciianensnsenssnrcesnionnes
BOOK-KEEPING by SINGLE and DOUBLE ENTRY ....cocciiaieaann.
A Bet of Eight AccounT-BooKS, adapted to the above, price 6d. each.
ELFFI\:RIIH;I{TS of ALGEBRA, 9d. ANSWERS to PROBLEMS in ditto, 3d.
BY eevecaconnnnse
HYDROSTATICS, HYDRAULICS and PVEUMAT]CS ceeereasnenennns
The BOOKof HEALTH .......iviiviiiivinincennnns cesriacesicsenaan
BOOK of DOMESTIC ECONOMY . csescsesasesercnsassvsrnne
ELECTRICITY, 9d...00eivenaane .... LIGHT and HEAT,
MAGNETISM, VOLTAIC ELECTRICITY, and ELECTR(\-DYNAMICS,
EXPERIMENTAL CHEMISTRY ....ccoivienerdoanenennans
MECHANICS and the STEAM. EX\GINE...................
NATURAL HISTORY for BEGINNERS, 24.; orin 2 Parts.......... earhr
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