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ABSTRACT

The motion of an unbalanced rotor during acceleration through its

critical speed is studied by numerical solutions obtained with a digi-

tal computer. The rotor is laterally restrained in two orthogonal

directions by linear springs and is accelerated by a constant applied

torque. It is found that, for a fixed combination of rotor unbalance

and lateral stiffnesses, the applied torque must exceed a limiting

value in order to accelerate successfully through the critical speed

region. With smaller applied torques, after initial acceleration from

rest the speed oscillates continually about the critical speed and the

lateral excursions grow steadily. The conditions necessary for a

successful acceleration are established and the maximum lateral ex-

cursions during successful accelerations are determined. The effects

of small amounts of viscous damping in the lateral directions are also

obtained. Finally, an example problem is solved to illustrate the

extension of the solution to those problems where applied torque is

a function of speed.
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NOTATION

c, = Damping in x di Ion

c )c
= Critical damping in x direction

c 2 = Damping in y direction

c zc = Critical damping in y direction

e = Eccentricity of mass center from center of rotation

I = Moment of inertia about a longitudinal axis through the center
of rotation

I = Moment of inertia about a longitudinal axis through the mass
center

k, = Combined shaft and bearing stiffness in the x direction

k 2 = Combined shaft and bearing stiffness in the y direction

lbf = Pounds force

lbm = Pounds mass

m = Mass of the system

M = Applied torque

2
P(l) = Eccentricity parameter me /I

P(2) = Torque parameter Mm/ Ik,

P(3) = Stiffness rati© k
2
/k

f

P(4) = Damping parameter (2c, /c ) = (2c2 /e )
I C ^ 2. C

P(5) = Modifying parameter for applied torque

R/e = Dimensionless resultant deflection

$ = Dimensionless deflection in the x direction

7i = Dimensionless deflection in the y direction

= Angle measured counter clockwise from x axis to radial axis

originating at the center of rotation and passing through the

mass center

]f
= Dimensionless time

x,y = Coordinates of center of rotation

x v = Coordinates of mass center
O > 'O





1. Introduction.

The maximum amplitude of vibration of an unbalanced rotor upon

acceleration through its critical speed is of real importance to design

engineers.

An analytic solution was obtained by Lewis [lj for the linear

single degree of freedom system having constant acceleration and con-

stant force amplitude, with and without damping. Baker |_2j obtained a

mathematical machine solution of a linear two degree of freedom system

with constant acceleration, also with and without damping. Meuser and

Weibel [3_j obtained a solution on the mechanical analyzer for a single

degree of freedom system having constant acceleration and linear plus

cubic elasticity, with and without damping. An analog computer solution

to the damped and undamped linear two degree of freedom system was ob-

tained by McCann and Bennett [4J . Here again a constant acceleration

was assumed. Dornig [_5j solved analytically the undamped single degree

of freedom system with constant acceleration.

Both Biezeno and Grammel [oj and Baker [2J mention the possibility

of an unsuccessful acceleration; that is, an acceleration to the vicinity

of but not through the critical speed. In this case, the energy supplied

is absorbed by the vibrations and damping, if present, rather than be-

ing absorbed by the rotor itself in the form of kinetic energy of ro-

tation.

In the material that follows, a system having two lateral degrees

of freedom is investigated. The rotor is accelerated by a constant

applied torque rather than having a constant angular acceleration. For

this system, the maximum amplitudes of vibration will be obtained for an

appropriate range of dimensionless parameters. Included will be the

damped and undamped cases, and those of equal and unequal spring con-

stants in the x and y directions. In addition, the areas of successful

* Square brackets refer to bibliography





and unsuccessful acceleration will be defined* Finally,, an example

will illustrate the extension of the solution to those problems where

torque is a function of speed.





2. Equations of Motion.

Figure 1 shows the idealized system. The rotating mass m has

moment of inertia I Q about the longitudinal axis through the mass

center which is displaced a distance e from the center of the support-

ing shaft S. Lateral displacement is resisted by the stiffnesses of

the shaft and its bearings, k and k_, and the associated viscous damp-

ing c and c_. A driving torque M accelerates the rotor.

Figure 2 shows the free body diagram of the system and includes

all real and D'Alembert forces. The origin of the coordinate system

is at point B, which is the location of the shaft center S when the

rotor is undeflected.

Summing forces and moments:

J X <*, —*- J., -b, ii — \rr\e Aaaa & — VY\P /

Taking the moment of inertia I about the shaft center S rather

than the mass center reduces Eq„ 3 to:

d
z9 d^N / Si

1*
1 jp, = M - roe( -—f- ) Oa © + rvie

|

—
j
A^ (4)

where X « 1 + m €~.

It is convenient at this point to reduce Eqs. 1 and 2 to dimension-

less form by dividing by ek , and Eq. 4 to dimensionless form by divid-

ing by e k.

.

Then Eq. 1 becomes:

*Figures begin on page 23.
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^[7—

)

tOO & 4- /—7 I
£«*<- ^

Ui'
(5)

Eq. 2 becomes;

aVe -(-jri) ^Q
j

(6)

and Eq. 4 becomes

A29

M?
f j <tt ^)^~&)^\ (7)

e
Let: y = dimension less deflection in the x direction =

1
dimensionless deflection in the y direction

1
-X

§ = dimensionless time =

tion with respect to dimensionless time

Then Eq. 5 becomes:

where the dot denotes differentia-

J +
C,

aJ rhJti

- jr + J = (S)
x
CJ«L G 4- & a^- & (8)

Eq. 6 becomes:

(9)

and Eq. 7 becomes, after multiplication by
me

e =
7*T

+ T f /b*M* 9 - TO C^<9 (10)





Examining the da .. \ and 9, lets

Cic - critical damping in the x direction - Zy^^-i

Cac ss critical damping in the y direction = £l/^'^,2

Substituting, Eq. 8 becomes;

y +-(z ~^) ,/ f / = (e) ^ e t e a^ © (ID

and since

Cxc ^Z<(nJ£ = zfir)*? {—?
,

Eq. 9 becomes

Taking the damping ratios in the x and y directions to be equal

(i.e., c /c = c_/c« ) s
it is apparent from an examination of Eqs. 10,

11 and 12 that four independent dimensionless parameters define the

problem, name ly

:

p(i) - ^y^

P (2) = Mxn

P(3) =

1^,

where k
?

is equal to or less than k. „ Performing the above substitutions,

Eq. 10 becomes:





Eq. 11

f 4- P(4) f + J = (of^cm © 4 /^ © (14)

and Eq. 12 becomes:

•^ 4- P(4) ^ P(3) '

71 4- P(3)-n=(9)
1

/
0^e -fi <^j.9 (15)

Equations 13, 14 and 15 are the dimensionless equations of motion

which will now be arranged in suitable form for solution by numerical

methods.





3. Numerical Solution.

The Runge-Kutta fourth order method of numerical integration was

selected to solve the equations of motion. This choice was made on the

basis of several considerations, namely: it is applicable to non-linear

differential equations; it is "self-staring", i.e., only the functional

values at a single previous point are required to obtain the functional

values ahead; it is relatively simple to program; finally, since it is

4
essentially the Taylor series solution through terms of order h , it

offers an acceptable degree of accuracy for the solution of the problem.

Before proceding, however, two additional parameters will be defined in

order to provide the equations of motion with greater flexibility and to

reduce the computation time.

The torque parameter P(2) is a constant for most of the presenta-

tion. However, to provide for the case where it is a function of speed,

let P(2) be replaced by P(2)P(5), where P(5) is either unity for the

constant torque cases, or a function of speed for the variable torque

case.

Also, let:

A:

«0-<T« = /

\JT
In order to employ the Runge-Kutta method of numerical integration,

it is necessary to reduce the three equations of motion to a system of

six first order differential equations of the form:

iSf
= f(*, i>w, 'jj*>> > $~m)

Let:

Q = *< (16)

7|
=
P (17)

j = # (is)





Substituting these variables and the parameters P(2)P(5) and P(6)

in the equations of motion, Eq. 13 becomes:

U - PMP&) 4 P0)\ ft pu*-& i.
-j. &\ (19)

Eql 14 becomes:

/I 4_ p(4) # +- J = /^S 4-<^< A^- ° (20)

and Eq, 15 becomes:

£ 4- P(4)PO) £ 4 P(3)^ ><
z p^B -U QJn Q (21)

Equations 16 through 21 constitute the system of first order differ-

ential equations which must be reduced to the form:

§i=fK I'M, fUv), ••", 'h(r))

Appendix I contains this rearrangement. The resulting equations are:

U = [>(?-) P(s) + po)p(4) p(0 p<&> e 4- pc\)p(s)^cox &

K0 pc^ ^ W a - P(0 I ^- ©

/
/ [i-pco]

(16)

(17)

(18)

(22)

P -P(l)^ 2 0^a .aw^G f P(l)'c(4)^5m9 + (23)

PCO JT/wm.6 ^9 f^ou^ -PC*)P(0 |3 - P(3)-V; -

PW P(^)e-^ g - P0)o< i
/
^ 3 & -p P0)P(4)p(fc) |6 /^

z a +

pd)p(^i) ^iA
2
- g

\
r i-pco]





f ^[o( 2-
/U^Q P(4) tf - J - P(I)U z Aia<l-Q d&C & + (24)L

P(i) P(A) P(fe) p aUl G a»o Q ~h P(i) p(3) 7] AiAA^e auG -

P0)-<
x OkJb f PC0PC4) PCml2 & 4- PO) fd^2

- 9 +

P(2) p(£r) Auc ©j / f" J
- P(/)l

Having selected the integration method and reduced the equations

of motion to the proper form for solution by this method, the program

itself will now be considered.





4. Computer Progran Design and Use,

Several factors governed the form of the computer program, In the

material that follows, the more important of these are discussed in de-

tail, while those of lesser importance are mentioned briefly. Details

can be found in the block diagram or in the program itself, Appendices

III and IV, respectively.

Failure to accelerate through the critical speed region can re-

sult from either of two closely related conditions, insufficient driving

torque or excessive unbalance of the rotor. An insufficient driving torque

results in a condition wherein the angular velocity of the rotor remains

in the vicinity of that corresponding to its natural frequency of vibration

for a long period of time. In this case the inertia forces, though initially

small, eventually produce large lateral deflections which in turn develop

counter torques opposing the driving torque. An excessive unbalance pro-

duces large inertia forces as a result of the greater eccentricity of the

mass center. The resulting lateral deflections also produce counter

torques opposing the applied torque. It follows, then, that the success

or failure of an attempted acceleration through the critical speed region

is dependent upon the applied torque and the eccentricity of the mass

center, other physical quantities remaining constant. Hence a plot of the

eccentricity of the mass center versus the applied torque for various accelera-

tion attempts will indicate points of either successful or unsuccessful

accelerations through the critical speed regions. A boundary line may

then be drawn to separate those points representing successful accelerations

from those points representing unsuccessful accelerations.

For a given system, the parameter P(l) is directly proportional to the

square of the eccentricity of the mass center, while parameter P(2) is

directly proportional to the applied torque. These parameters, the eccentri-

city parameter P(l) and the torque parameter P(2), are the ordinate and

10





abscissa, respectively, of the curve which is the boundary between the

areas of successful and unsuccessful accelerations. The boundary it-

self is defined by pairs of points. Each pair of points represents two

acceleration attempts, one successful, the other unsuccessful, differ-

ing by five per cent of the torque parameter P(2), all other parameters

being constant. It is now appropriate to define a successful and an un-

successful acceleration.

Referring to Eqs. 20 and 21, one of the natural circular frequencies

of vibration of the dimensionless system is unity and the other is the

square root of the stiffness ratio, /y -r— . The maximum value of the

latter is unity. On this basis, a successful acceleration was defined

as an acceleration in which a (dimensionless) angular velocity of two

(twice that corresponding to the higher natural circular frequency of

vibration) was reached. That is, if a dimensionless angular velocity of

two was reached, the acceleration through the critical speed region was

considered successful and the program terminated.

The possibility existed, however, that during the fluctuations in

the angular velocity of an otherwise unsuccessful acceleration a speed of

two might have been momentarily attained, upon which the program would

have terminated and the acceleration would have been erroneously termed

successful. To investigate this possibility, several random successful

and unsuccessful accelerations were initiated, and graphs of dimensionless

angular velocity versus dimensionless time were made. Two such curves can

be seen in Fig. 3. For the successful acceleration the torque parameter is

five per cent larger than for the unsuccessful acceleration, all other para-

meters being unchanged. It is apparent that the maximum angular velocity

for the unsuccessful acceleration is well below that value (2.0) which would

terminate the program and falsely indicate a successful acceleration.

11





An unsuccessful acceleration was defined essentially in terms of a

successful acceleration. Starting from a known successful acceleration

the torque parameter P(2) was decreased in five per cent increments, while

the time to reach a dimensionless angular velocity of two was recorded.

In regions far removed from the boundary between the successful and un-

successful acceleration regions, the time required for succeeding success-

ful accelerations increased by five per cent. In the vicinity of the

boundary, however, the additional time required for a successful accelera-

tion exceeded the expected five per cent, but in no case did it exceed

thirty per cent. On this basis, the time allowed for each successive

acceleration was twice that required by the previous successful acceleration,

If a dimensionless angular velocity of two was not achieved within this

period of time, the attempt was considered unsuccessful and the program

terminated. Figure 3 also illustrates this point. The upper curve re-

presents a successful acceleration in which a dimensionless angular velocity

of two was reached in time t. The lower curve represents an unsuccessful

acceleration in which a dimensionless angular velocity of two was not

achieved in time 2t. The torque parameters for these attempts differ by

five per cent, all other parameters being constant. Hence these two

attempts correspond to one of the several pairs of points which define

the boundary between regions of successful and unsuccessful accelerations.

For the undamped case
s
an energy balance affords a check on the valid-

ity of the results. At any given time the total energy supplied to the

system must equal the sum of the kinetic energies of rotation and trans-

lation, and the potential energy stored in the springs, or:

12





An equivalent statement in dimension less form is

PO)
pco a = -—

PO) (
/

\1 (26)

28(-T^ 5 - in Cjkl s)
J

For the undamped runs, this check was performed at the end of each

acceleration; i.e., employing the terminal values of the quantities

in Eq. 26.

The choice of a suitable time increment was made on the basis of

a comparison of the results from several solutions of the same problem

employing various time increments. Details are given in Appendix II.

A (dimensionless) time increment of 0.10 was selected.

Since the objectives of this investigation included a determination

of the maximum amplitudes of vibration upon acceleration through the

critical speed region, this quantity, the resultant of the deflections in

the x and y directions, was computed each time increment and compared with

a stored maximum which had been determined earlier, the larger being re-

tained.

Provision was also made to terminate the solution at any point and to

resume the solution at this same point at a later date. This innovation

provided a considerable savings in computer time since any time period,

however small, could be completely utilized, and no solutions were lost

because of unexpected requests to release the computer. The termination

and resumption was executed by writing the values of the (dimensionless)

deflections and velocities in the x and y directions, the angular velocity

and displacement and elapsed time on magnetic tape in binary form, and

reading these same values back into the program by the setting of certain

selective jump switches.

By way of a check of the computer, the output tape unit and the tape

itself, the same short run was performed at the beginning of each period

of computer use.

13





The program output included the parameters employed, the results of

the energy balance, the maximum angular velocity and the time of its

occui rence, ind the final values of the deflections and velocities in the

x and y directions, angular velocity, revolutions, and elapsed time. Also

recorded were the maximum amplitudes of vibration in the x direction, y

direction and the maximum resultant amplitude . For each of the three

maximum amplitudes of vibration, the time of its occurrence, angular velo-

city and the x direction, y direction and resultant amplitudes of vibra-

tion were also recorded.

In general, the investigation proceeded as follows,, Selecting an

appropriate set of values for parameters P(l), P(3) and P(4), the torque

parameter P(2) was varied to define the boundary between the regions of

successful and unsuccessful accelerations. Having defined the boundary, P(2)

was then increased through an appropriate range of values to obtain the

corresponding maximum amplitudes of vibration. This procedure was then

repeated for different values of P(l), P(3) and P(4).

The following section presents the results of the investigation.

14





5. Discussion of Results.

The results of the investigation are presented as follows.

First, the boundary between the regions of successful and unsuccessful

acceleration is discussed for stiffness ratios of unity, 0.50, 0,75 and

0.25. Then the curves of the maximum dimensionless amplitudes of vibra-

tion are presented. Finally, the effects of added damping are considered.

A rotor having equal spring constants in the x and y directions (P(3)

= 1.0) and no damping (P(4) = 0) was investigated first. Figured indicates

the location of the boundary between the regions of successful and un-

successful accelerations as a function of the eccentricity parameter P(l)

and the torque parameter P(2). This curve is essentially a reference for

the boundary curves that follow since unequal stiffness and added damping

are more conveniently discussed in terms of their effects on this particu-

lar result.

Figure 4 shows that at successively smaller eccentricities, smaller

applied torques are required for successful accelerations, since the

smaller resultant inertia forces produce smaller counter torques.

Decreasing the stiffness ratio to 0.50, the undamped boundary curve

was found to be as shown in Fig. 5. For any non-unity stiffness ratio,

the system will have two critical speed regions; in this particular case

one is in the vicinity of a (dimensionless) angular velocity of
/f

0.50

and the other is in the vicinity of unity. It follows, then, that an

unsuccessful acceleration can result from an inability to accelerate

through either the lower critical speed region or the higher critical

speed region. Figure 5 illustrates both of these conditions, The bound-

ary between the regions of successful and unsuccessful accelerations is

seen to vary between two parallel limits. In the vicinity of the higher

limit, the unsuccessful acceleration points defining the boundary represent

failure to accelerate through the higher critical speed region. Similarly,

*Figure 4 can be found on page 26.
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those unsuccessful accelerations defining the boundary in the vicinity of

the lower limit represent failure to accelerate through the lower critical

speed region.

The limits mentioned above have a definite relationship to each other.

For a given eccentricity, the ratio of the lower limit to the upper limit

is very nearly equal to the stiffness ratio, k_/k
1

. This can be explained

M m
by examining the dimensionless torque parameter P(2) = —

,
-

.

I ^/

It is apparent from this dimensionless grouping that a system which has a

spring constant of, say, Ak will require a torque of AM for a given

eccentricity. In the vicinity of the lower critical speed region of the

system under consideration, the system behaves essentially as a single de-

gree of freedom system having a stiffness k~ = 0.50k . Hence the torque

required for acceleration is 0„50M„ Since the boundary curves are plotted

versus P(2), which is a function of k
1

, the substitution of 0.50M for M

results in a decrease of the torque parameter from P(2) to 0.5QP(2).

The fact that a portion of the boundary curve is in the vicinity of

the lower limit shows that, in this region, a successful transit of the

lower critical speed region will result in a successful transit of the

higher critical speed region also. This condition may be due to a

favorable phase relationship between those vibrations induced at the lower

and higher critical speeds. That is, those vibrations remaining in the

system as a result of the transit of the lower critical speed region exert a

forward torque opposing that developed by the vibrations induced in the

higher critical speed region to the extent that a smaller torque parameter

suffices for a successful acceleration.

For a stiffness ratio of 0.75, the undamped boundary curve was found

to be as shown in Fig. 6. The general shape of the curve is comparable to

that of the stiffness ratio previously discussed, 0.50; however, some dif-

ferences do exist.

16





The boundary is seen to vary between two limits much the same as

the boundary of the 0.50 stiffness ratio case; however, for a given eccentri-

city, the ratio of the torque at the lower limit to that at the upper limit

is influenced considerably by the close proximity of the two natural fre-

quencies of vibration. In the higher torque regions, this influence is

quite apparent, and as a result, the limit ratio differs somewhat from the

stiffness ratio. In the lower torque regions, agreement between the stiff-

ness ratio and the limit ratio is quite good since there are many revolu-

tions of the rotor separating the critical speed regions and their inter-

action is reduced considerably.

For a stiffness ratio of 0.25, the critical speeds of 0.50 and unity

are sufficiently displaced from each other that little or no interaction

of vibrations is experienced. The counter torques developed in the higher

critical speed region are larger than those induced in the lower critical

speed region due to the larger angular velocity. It follows that an un-

successful acceleration represents a failure to accelerate through the

higher critical speed region. The unsuccessful acceleration points defining

the boundary curve shown in Fig. 7 represent just such a failure.

By way of a brief summary, the undamped boundary curves described

above, i.e., for stiffness ratios of 1.00, 0.50, 0.75 and 0.25, are

plotted on a single graph, Fig. 8.

Except as noted below, the starting phase 0=0 was used. When the

lateral stiffnesses are equal (P(3) = 1), the resulting circular symmetry

assures that neither the location of the boundary nor the maximum vibra-

tion amplitude will be affected by starting phase. Even with unequal

stiffness ratios, it is reasonable to expect that the effect of starting

phase is negligible if the rotor completes a large number of revolutions

before reaching the lower critical speed. This condition is met for

small values of the torque parameter.

1?





An anomalous behavior in the higher torque region did result in a

limited study of the effect of starting phase. With a stiffness ratio

-3
of 0.50, it was found at P(l) = 2.30x10 ' that the minimum value of P(2)

for successful acceleration was 46.0 per cent less than at immediately

adjacent higher and lower values of P(l). Further runs were made at

-3
P(l) = 2.30x10 ' with starting values of = 45, 90 and 135 degrees and

it was found that the minimum P(2) for successful acceleration approached

the results obtained for neighboring values of P(l). Because the principal

engineering interest in these results is in selecting a combination of

parameters that will assure a successful acceleration, regardless of start

-

-3
ing phase, the "stray" point at P(l) = 2.30x10 " obtained with 9=0 was

ignored in plotting the boundary curve of Fig. 5.

Figures 9 through 12 are the undamped maximum amplitude curves for

the stiffness ratios investigated. These curves indicate that, for a

given eccentricity, successively larger applied torques result in de-

creasing amplitudes of vibration. These smaller amplitudes are to be ex-

pected since the larger torques result in a shorter period of time in the

critical speed regions.

These curves further show that in regions of successful accelerations

removed from the boundary between the regions of successful and unsuccessful

accelerations, the maximum dimensionless amplitudes of vibration are in-

dependent of the eccentricity parameter P(l) ; or, for a given torque para-

meter P(2) :

R/e = Constant

from which:

R = (e) (Constant)

Therefore, the maximum amplitude of vibration is directly proportional to

the eccentricity e of the mass center. This is to be expected since these

vibrations are a consequence of the inertia forces which, in turn are direct-

ly proportional to the eccentricity of the mass center.

18





The unusual variations in the amplitude curves of Figs, 10 and 11

are a result of the transition of the boundary curve from one of its

limits to the other limit.

Figures 13 through 20 indicate the effects of the addition of one

per cent of critical damping on the boundary and amplitude curves. With

one exception, shown in Fig. 15
s
these curves reveal a decrease in the

maximum amplitudes and a decrease in the torque required for a successful

acceleration. The decreased amplitudes result in smaller counter torques,

hence acceleration through the critical speed region is achieved with a

smaller applied torque. The larger shift of the boundary in the lower

torque regions is a result of the larger number of cycles during which

the damping has acted.

Figure 15, however, shows that the effects of added damping are un-

favorable for a considerable range of values of eccentricity and torque

parameters. It is possible that the added damping^ though reducing the

individual amplitudes of vibration induced in the lower and higher critical

speed regions, could have also resulted in a particularly unfavorable phase

relationship between these vibrations. As a consequence the resulting

amplitudes and counter torques could have been particularly large and a

larger applied torque would be required for successful acceleration.

As was the case with Figs. 10 and 11, the unusual variations of the

amplitude curves of Figs. 18 and 19 are a result of the transition of the

boundary "curve from one of its limits to the other.

19





6. Sample Problem,

The computer program is not limited to accelerations with constant

applied torques. The following is a sample problem illustrating the ex-

tension of the solution to a system having a variables rather than a

constant, applied torque.

An unbalanced rotor
9 its supporting shaft and drive sheave have a

combined mass m = 12 o lbm, and a moment of inertia about the mass center

2
I = 48.0 lbm-in . The mass center of the system is displaced a distance
o

e = 0.02 in. from the center of rotation. The stiffnesses of the shaft and

its supports are the same in the x and y directions and are k = k = 100

lbf/in. The drive motor for this system has a starting torque M = 40.0 lbf-

in- which decreases linearly with angular velocity to a value of zero at

55.2 rpm, or twice the critical speed of the system. If damping is negli-

gible, determine the maximum amplitude of vibration.

The axis of the moment of inertia must be translated from the mass

center to the center of rotation. Since:

1 = la + axe 2-
,

t=. (48.o ib^ - Ln
L

) + (a.o !U)(o.02. ^--V
2, = 4?.o ikr».;<^

Defining the parameters:

Similarly

P(0 =

PC\) =
I

(12.0 ib^Y-02 /a.)
2-

>(2) =

(4.8. o lb* \*?r)

Mm

_ 4— I-OO X 10

148.0 Ibm-^y l0o /bf//^-)

This value of torque decreases linearly to zero at a (dimensionless) angular

velocity of 2.00 (twice critical speed)
9
therefore the modifying parameter

P(5), which has been unity for the constant torque case, now becomes:

m-> = (i- 4-)

and the dimensionless torque terms in the equations of motion become:
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4a

P(i) i (s-) =1 o.ioo( i- -|)

Also :

and, since damping is negligible:

Inserting these parameters into the computer program, the resulting solution

indicates

:

e

from which:

where R is the maximum resultant amplitude of vibration,
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Fig. 5 Location of the boundary between the regions of
successful and unsuccessful accelerations for a

stiffness ratio P(3) o 50, P(4) m (undamped





P(2)

Figo 6 Location of the boundary between the regions of
successful and unsuccessful accelerations for a

stiffness ratio P(3) = 0.75, P(4) = (undamped
case).
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Fig. 8 Location of the boundary between the regions of successful
and unsuccessful accelerations for stiffness ratios of
1.00, 0.75, 0.50 and 0.25, P(4) =0 (undamped cases).

30





- (J) h <0 Ifl t

w
w
cu

. U-i c
o U-l

U-l

CO •H
C U
o to

•H
4J e e%

O ,*-\

e CM
3 <*»•

• »w P-.

to h
« <D

W
fi (U

o g
•H «J •

4J S-« >—

>

SB «o tu

H a. to

.fi «
•1-1 a» o
> 3

cr to
(1-1 ^ <y

O o a.
*j E

TO «
(U T3 "O
T) c c
3 S3 3
4J !««<•

•H <»">

»—

<

«-< o
Pu "fca^

E a, ii

«-N ea
CM M <«^N
^» (0 0) <f
SX to 4J W

0? a) P-f
5—1 S
e »0 *
G W o
•H CD •

to a, h
C
Qi >» ii

e 4J
•h •H ,<"N

-a O c>
•HI *»•

E ^l Ph
3 4J

E c o
•h 0J »H
X V ZJ

iS u «fl

g Of *<

•HI

fa'

Oo

—— uof^B^qtA jo spn^iiduiB sssxttoisuauixp uinuijxew
a

31





* I

S3 C
U 3
03

"<—

'

cu o
>>
*j 11

4-1 CM
G
CD «
O O
o m
<u »

o
O II

03 /-N

C ro
O ^

°i-l Cu
4J

o
"1-1

4J
U-l «

M
CO

W to

CO

C <U

O {3
..-( iw
4J U-l

fQ •!-)

5-1 4-1

> -
t—

\

u-< csi

O **-*

CU
to

<3J u

3 4J
4-t <yH E
f-4 to

Cu H
£ (0

«0 Cu

to tu

to 3
o) a*
i-i u

o
4J

c
o
•H

c p
tu nj

E

O
a)

CO

Rj

O
E CU
3 T3
E M <U

«.-< <y cuXu E
ra tu «o

s: e *o

60

uo-prjeaq-iA go apn^i^diuv sssxuoTsuannQ umanxew

32





J«MMli« *

33





a Si

r-

10

•

IA

-

<t 1

pi w o
in

II

N

Ctl

in 4i m
"

3 O
n M=>

- SO

0)
»H

00
v-l »<

r*
Eg 10

;, SB
to e as

10 tM

* tt!

85

<0

10
<«=* eu

N
g 0)

IM 0)
se g
CO sS

If)

1

"

0)

o

^

o

©o I

uot^'g.iqiA j© apn^i

i4





10

10
-3

P(D

10

10

Fig. 13 Effect of K00 per cent of critical damping on the location
of the boundary between regions of successful and unsuccess-
ful accelerations, stiffness ratio P(3) - l o 00 s P(4) - 0,02.
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Fig. 14 Effect of 1.00 per cent of critical damping on the
boundary between the regions of successful and un-
successful accelerations, stiffness ratio P(3) =

0,50, P(4) - 0.02.
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Fig. 16 Effect of 1.00 per cent of critical damping on the boundary
between the regions of successful and unsuccessful accelera-
tions, stiffness ratio P(3) = 0.25, P(4) = 0.02.
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APPENDIX I

CONVERSION OF EQUATIONS FOR NUMERICAL INTEGRATION

The system of first order equations to be rearranged is restated

for convenience,

e = ol (i6)

Tj - p (17)

= ^ (18)

U =- PO-)P(S) + PCt) I . .9 -^ mel (19)

Y f P(4)^ + J = of en 9 + k aUc & (20)

j6 4- P(4) P(fe) jB f fife) 7^ = ^ 2
4^<- © -i ^^L ©

Equations 16, 17 and 18 have the required form:

H1
- «f(*, j,W, ^(*), • , ^oo)

It remains, thereto reduce Eqs* 19
s

20 and 21 to this same form e

Rearranging these equations:

k + PCO cs^ e p - Pd) ^ 9 ip = A

- pW© i -f ^ = B

c^©^ -f- £ = C

where:

A- PU)P(S-)

B ^ ^^ e - p(4) # - f

C- * z W.e - P(3) Y» - P(4)P((o)
/
5
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Employing Cramer's Rule,

c<

-

-
I

c

i 90) an e

o

- © l

B

n

PCi) iCU-^l ©

O

Thus

oC - C p£0 /texb 9-3 P(l) <^ e - A

Ji/uy* 9 t-iV tf - J] PO) auc © - PC2) P(srV

or

L I

P(0 PC^P(fc) p ccrd B - P(0<^ 2 Au*. 9 ,^^ £

P(i) Pt4) &
1 am. & +- PCO J •'

' & -

ttO

PC -)P(s)l /fPCO-/]
—

' / L —I

"J

Finally:
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^) n CML 9 + PO) P(4) PClo) £ CM. & - (22)

pcopgOji /Wo - po)J/i^6 i p(z) p(r)

[,-PO)J

=

/H4A. 9

Co-4- ©

A

B

C

[pa') -n

po) a^ e

o

Thus:

or:

p
-

,U»e + c pa) &u* z e + B PCO a«<- © t-^ & -

V L J

— J

^ Z
AM*. 8 + P(3) >j -f- P(4) P(4) M / [ PCO -/I

Finally

p =Pp(2)PC5")£^© -P0)<?< Vu*"
3
© f PC) P(3) -m A^ 2

94- (23)

P(') P(4^ p(6) ^ ^ 2
<9 - P(/)<^" /W 8 fito?Q- -f-

PO) P(4) <P ^^ e £*? 9 -f P(/) J* a^l £ />a 9 +
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<A^ cu P(2>) -n - PC4)P(0/6l /fl- Pl

If

1 =

—
- /M/<A

casi- ©

p(i) c^l> ©

o

[PO)-l]

A

B

C

Thus

yi =f BP(i) ,e*a
2 8 - A a<V a - 3 4- C PO) a^a e*j £>"] /

J
/

PCI}-

1

or:

<H ^ p, l ^e- RO yi - n PO) /u^s - Pte) PCs-) xu^ ©

^ 2 ^^e +- P(4)^ + f 4- [^ 2-^^ © -PC3)i|

-

pW p(t)
p ] PO) ^o /^^l / [ PCO -i"]

Finally

:

X\ =.

PCO PC^) A^ S + C^
2
- £** £ - PC*) J* - J" - PO)a(

L
•

A^9 jC02 9 + PCO KB) -k /Uw 9 /C^l^Q 4-

p(/)p(4) pte)/2, /^e /^fil /f i- P(0
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APPEND

SELL OF TIM REMENT

The selection of the time increment h was made by selecting several

representative sets of parameters and obtaining the corresponding solu-

tions for various h. This afforded two comparisons, one of the energy

balances and another of the resultant deflections,, Then the torque para-

meter was varied until the boundary between the regions of successful and

unsuccessful accelerations was defined. This afforded a third check. Re-

presentative results for one set of parameters are presented in the accompany-

ing table. The time increment of 0,1 was selected as the reference since

smaller time increments produced no change in any of the three comparisons

made for each set of parameters.

Per cent difference as
with results for h

compared
- 0.1

h Resultant Energy Boundary

0,1 0.00 0,00 0.00

0.2 0.00 0.00 5,00

0,3 Q # g | 0,00 0,00

0,4 2.23 2.40 0.00

0,5 1,82 7,20 0.00

Effect of time increment h on resultant
deflection, energy balance and location
of the boundary between regions of

successful and unsuccessful accelerations,





SLOC I I ' RAM

Start

bet parameters
for test run

1
-D>| Set initial values

No

©

Evaluate integrals

Compute resultant
deflection R <^

Yes Replace vdth
larger r^
store R, 6 , f , J
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j^J
Replace with

*| larger t ,

store R, ?i , f

Replace with
larger R,

store 7^, X , § , ©
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AP . V

TABULATED DATA

POINTS DEF] • 5A1 -ESSFUL
AND UNSUCCESSFUL ACCELERATIONS
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APPENDIX V

MAXIMUM AMPLITUDES OF VIBRATION FOR SUCCESSFUL
ACCELERATIONS THROUGH THE CRITICAL SPEED REGIONS

: PfB) « I.OO p(4.) B Q.OO

PC/) PM R/e
I.OO * /o" 2- &-30 */0~ z 9-5-9

9.4€ b-28
3.00 x 10

~ 3 2-14 I&B

4.U 9./0

k/£> 1,01

<?.25" S-78

l.oo y /o~3 A 31 x 10
~ 2 23-7

h9b J2.8
2.?5" q.93

4-42. 8,00

&^3 (o.bO

q.9£~ S.S4
3.00 a /o
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6. 00 a ;o~ 2 30,9

9.00 /f.S"

/.3£" X/o' 1-
M.2

2,02. 11.4

3,Of 9- 55"

4-5£> 1.1 (a

C.83 t>.43

I.OO x/o ~4 2.92 Y/o~s 42.1

438 2.CJ

6>;*7 20.0

W5" llo.O
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PC*)«. l.oo p(4) e o-oo
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~S /.BO x /o ~~ 3
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2,/3 55-(o

3>/i 21.2.
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Maximum Amplitudes of Vibration (Comt„)
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Maximum Amplitudes of Vibration (Coat )
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Maximum Amplitudes of Vifcratio.
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Maximum -Amplitudes of Vibration
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3. DO X/O'3 I.S6 xiD' 2- 23.2

2.3q I6.S"
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7>S<? 7. so

5-00 X/O' 4 2.?9 X/0~3 (co.3

4.3r 55.7

U.-S3 24-.S?
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5.19 7.92.

6.27

&.?3 n-4
1 ,0^ X to-?- 14,7

h$4 13,1.

2.3/ //.£>
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2L.J





Maximum Amplitudes

PC>)

\

/,Z7 x/o~ z nn
2,i /o,3

4.Z2. ?.

33 0.67
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4 r
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Maximum Amplitudes of Vibration (Cont.)
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-
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, >
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2.IO 11-3
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4.13
|

Ifio
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/S.¥

A. /:-•

2- /0.6"
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-7 /~i
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-

fts) ^0,^-r
—

—

1 = 0. oz

PO) P(2) */e
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JI.&
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Maximum Amplitudes i i n (Cant

P(3) = 0.25 P( . . o-oz

PC /?/e

3.0Q x /o~ 3 i

!

t

2, 4S~ .

"- /^•7

j- to /
P ?<—

S.SI 7A3
£27 r.9/

J,do X/D' 3

|

74/ ;r/0"
- 2A2

A/^ • /*- 2 14- 1?

'A 7/ //S~

2.<T6 cf.(oO

3,?S~ £2?
€17 &.3/

\

(J -
o 5.1?

3.6 o Xio-4 5.2^ j(/o
m 29.1

4. fl.7

7: I&.2-.

/. #r ^ /#
— 2. /?.*>

A^2 //4

2,^3 3,40

£. Z-3Z.

'5^47 11
?.2<3 S.%?

\ f,DO X/0-4 A47 **s>
_ 3 4

2,?0

?.30 2/'4

4 q<~ 17,3

€/€0 l?.0
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1.&Z 1.-

?. Q€ z.u





Maximum A* ies of Vi

PCs) - d'2<T PC4) ~ 2.DZ.

Pd) PCx) f?/e

l.oo xio'4- Coo x io' 2- 6.33

^.00 S.te
3-06 XlO'^ z,no x/o~4 4l-sr

7,?£~ 33. \

A 33 x/o"^ 27, 2_

l.w 2*4
3,oo 2hl
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