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ABSTRACT 

 This thesis contributes to the growing body of research concerned with the issue 

of the increasing numbers of government small satellites (SmallSats) and the limited 

number of ground stations available to support these missions. To understand this “many 

satellite, few ground station” problem, a Monte Carlo simulation is used to identify the 

point at which a single ground station is expected to be overwhelmed, specifically 

looking at the case of the Mobile CubeSat Command and Control (MC3) ground station 

at the Naval Postgraduate School (NPS). Ground station saturation is defined in terms of 

data downlink requirements and the increasing number of conflicting passes as the 

number of SmallSats grows. An assessment of when one ground station becomes 

insufficient for a growing number of SmallSats is the result. The MATLAB software 

tools created to generate these scenarios are generic and can be used to extend this work 

to investigate other scenarios of SmallSats and multiple ground stations. 
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I. INTRODUCTION 

A. BACKGROUND 

The population of small satellites in low Earth orbit (LEO) will continue growing 

over the next several years due to falling development costs and increased launch 

opportunities. The population increase may strain the communication capacity of these 

satellites and terrestrial stations that support them. For users monitoring and utilizing data 

from cube satellites (CubeSats) [1] and other very small satellites (SmallSats) [2] that can 

be launched en masse, ground station operations will become significantly more difficult 

as more satellites compete for limited resources. The innovative engineering focus has 

been largely devoted to designing and launching these new satellites, but the ground 

support systems have not yet received as much attention. This thesis examines how those 

systems will be affected as the number of satellites each station must track increases 

many-fold.  

This increase in the CubeSat population quickly overwhelms the ground 

infrastructure supporting them. Accommodating larger numbers of satellites with few 

ground stations will consequently lead to conflicting contacts. The term contact is 

synonymous with the terms access or pass throughout this thesis. It is defined as the 

duration of time from the acquisition of signal (AOS) to the loss of signal (LOS) of a 

satellite communicating to its corresponding ground station. All of these contacts assume 

line-of-sight from the ground station to the satellite for radio frequency (RF) 

communications. Consequently, AOS/LOS often overlaps with the time spent above the 

local horizon. Satellites in a geostationary Earth orbit (GEO) would be an exception. This 

research focuses on LEO satellites, which have fast-moving, low-altitude orbits. The 

LEO regime will see the largest population increase of SmallSats. 

It is assumed that each satellite has data to deliver to a ground station. A problem 

arises when there are multiple satellites in view of this ground station, as it can only 

service one satellite at a time. This creates a scenario where not every one of them may 

be able to downlink its full-required data for an extended period of time. An example 
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shown in Figure 1 depicts four satellites competing for ground station availability to relay 

data to the ground and accomplish their missions. This simulation is generated through a 

program called Systems Tool Kit (STK). Additionally, it is assumed that each ground 

station only has one antenna available that can only service one satellite at a time.  

 

Figure 1. STK Simulation of Many Conflicting Satellite Contacts Over 
One Ground Station 

Depending on how crowded LEO becomes, a single satellite may not have the 

opportunity to deliver its data for multiple consecutive orbits, causing it to be out of 

communication with the ground station for extended periods. Optimizing passes requires 

allotting adequate attention and services for each satellite, based on capability, data rates, 

and mission priority. Knowing the saturation point for a particular ground station network 

can help determine the approach to utilize for maximizing its capacity. 
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B. PURPOSE AND OBJECTIVE 

This thesis determines the satellite population quantity likely to overwhelm a 

ground station network, degrading it to a point where it is no longer able to guarantee 

minimum dedicated communications passes to the satellites it is responsible for tracking. 

Specifically, the intent of this thesis is to define what saturation looks like for a single 

ground station. The process selected to conduct this analysis is a Monte Carlo method 

that is general enough to be applied to multiple orbital constructs. A Monte Carlo 

algorithm runs a simulation repeatedly, with random values, to demonstrate the wide 

array of possible answers with minimal amounts of risk involved. The specifics of the 

program will be discussed in further detail in Chapter III. Knowing when a ground station 

is likely to saturate should help civil, commercial, and Department of Defense (DoD) 

organizations be able to project the need for optimization of existing ground stations and 

procurement of new ground stations. 

C. LITERATURE REVIEW 

Government, the commercial sector, and academia all agree on the issues posed 

for the LEO orbital regime in the near future. The problem of excessive satellites per 

ground station has become a topic of discussion among operators and planners within this 

growing field of small satellite users. Aspects of this situation to include algorithms, 

mission architecture design, and scheduling solutions have been investigated, but much 

of the issue still remains unsolved.  

Acknowledged in the joint university study on “Emergent Trends for CubeSat 

Ground Systems” [3], the one-to-one correlation of a single satellite for a single ground 

station will quickly disappear as we learn to juggle the complications of multiple 

satellites operating on the same frequencies and communicating with the same ground 

station. This work identifies commonly noted trouble areas and analyzes where machine 

learning algorithms and further development of the architectures could be employed to 

improve operations. Continuing work to expand upon the generic framework will 

advance integration of new programs within the architecture to contribute to the 
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development of common applications, similar to the ones we use daily on our phones, 

seamlessly handling larger numbers of satellites. 

The emerging technology of model based systems engineering (MBSE) is also a 

new, useful way to look at the entire design trade space through multiple analysis tools, 

design methods, optimization and verification of the systems [4]. Partners from the 

academic, commercial, and government sectors are working together to create 

frameworks to improve the mission design and operations of an individual satellite and 

its individual ground station. A program that is commonly used in this field simulates 

satellites’ orbits and their communication with supporting ground networks. Through this 

tool and its interface with the aforementioned program, STK, specific extraction of a 

portion of the system can be analyzed. STK is utilized as the orbital propagator while 

MBSE helps to address the mission-specific design and parameters. This analysis is then 

integrated back into the scenario to improve overall mission effectiveness.  

Separately, Dr. Sara Spangelo investigated the common constraints experienced 

by ground stations in her dissertation by identifying aspects such as mass, size, volume, 

power and funding levels of these small satellite missions [5]. Through the dynamically 

varying durations of CubeSat missions and their correlated ground stations, average 

access time of the network is calculated. Her work created a scheduling formulation to 

maximize satellites’ data relay to the ground, based on current mission parameters from 

existing small satellites with varying downlink requirements.  

Finally, the body of research being conducted at the Naval Postgraduate School, 

related to the many satellite, few ground station problem, aims to contribute by framing 

solutions to reconcile some of the known operating constraints. Doctoral candidate Mr. 

Giovanni Minelli’s work [6] addresses the collection of aspects that define this 

optimization problem and creates a formulation to best communicate with multiple 

satellites concurrently in view of a ground station. His work inspired the basis for the 

question this thesis is answering, as well as the work of another graduate student, Major 

John Leone III.   Leone’s thesis contains an in-depth analysis on how to quantitatively 

assess PicoSats Realizing Orbital Propagation Calibrations Using Beacon Emitters 

(PropCube) satellite passes as a function of initial azimuth and time during the pass based 
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on historical pass data [7]. Leone identifies which satellite accesses provide the most data 

downlink, and Minelli’s shows how to efficiently slew between the satellites in view. 

This thesis characterizes the missing piece of determining when ground station saturation 

occurs and optimization of passes needs to be considered. 

The concerns outlined by each author are not unique to their separate locations, 

sponsors, or missions, but rather pieces of a larger puzzle. Technologists worldwide aim 

to solve this puzzle over the next few years as these issues are amplified by the increasing 

numbers of small satellites used to perform novel scientific and technological research. 

Together these efforts will help identify and mitigate the many satellite, few ground 

station problem as the number of small satellites continues to increase for research and 

operational purposes.  

D. SUMMARY 

Chapter I has discussed the issue of the increasing ratio of CubeSats to ground 

stations, which should directly correlate to an increase in overlapping downlink contacts 

these satellites have with the ground station. First, it provided the context for this 

concern. It then described the purpose and intent of this thesis, which is to identify the 

point at which increased numbers of satellites overwhelm a ground site. Finally, this 

chapter covered the studies conducted by other researchers pertaining to the growing 

interest in small satellites, which support and enable this work.  
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II. SCOPING THE PROBLEM 

This chapter describes in more detail the formulation of the assumptions that the 

Monte Carlo simulation is based upon, and explores the preliminary thoughts of what 

factors contribute to saturation. It provides the foundational concepts to understand the 

methodology in the following chapters.  

A. INITIAL CONSIDERATIONS 

At first, the simulation of increasing numbers of satellites and determining their 

behavior with respect to one ground station seemed rather straightforward. As the 

investigation of the problem progressed however, many more variables presented their 

impact on the issue of a ground station reaching its maximum capacity. Therefore, a 

versatile program that can simulate a simple scenario initially, and build to more complex 

models, was the best fit. The goal was to identify the range of where there is a slight 

degradation, a more obvious degradation, and complete saturation to the ground station 

capability, where it is impossible to meet mission objectives. Reference satellites are 

utilized to look at the threshold and objective time-in-view of a ground station needed for 

the satellite to complete its mission. Looking at the amount of time it takes for each 

satellite to conduct a data transfer to a ground station, is there enough time for the task to 

be completed before another satellite needs to conduct its data transfer? 

Based on existing research, original simulation cases provide the data to perform 

this analysis. Through studying comparable problems, their methods, and results, this 

thesis intends to provide a solution for this specific facet of ground station network 

optimization. A series of test scenarios with differing time periods collects the following 

data shown in this report. Trends in scenarios become obvious through the numerous 

iterations of this method. Giovanni Minelli, a researcher at the Naval Postgraduate School 

(NPS) SmallSat lab, has been investigating this problem for the past few years and 

produced the basis on which this thesis is written. The Matrix Laboratory (MATLAB) 

scripts are his original work and create the foundation for the master Monte Carlo code 

conducting these simulations. The in-depth description of the benefits of the Monte Carlo 
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simulation, are explained in the Methodology and Approach section in Chapter III. Each 

situation is conducted for a single facility, the NPS Mobile CubeSat Command and 

Control (MC3) ground station, in Monterey, California. The different cases observed start 

simple and grow more complex as the number of satellites is increased. Scenarios with 

satellites in random orbits are modeled, but these issues are not unique to random, 

disaggregated, individual satellites. The issues are shared with satellites communication 

with one or many ground stations in diverse latitudes.  

To create a scenario with random satellites, all of the orbital elements of each 

satellite needed to be taken into consideration. Evaluating which parameters provide the 

most realistically generated orbits leads to the conclusion that all of the six main orbital 

elements had a significant influence on the outcome of the program. Figure 2 displays 

these classical Keplerian orbital elements [8]. The six orbital parameters that were varied 

include the eccentricity, semimajor axis, inclination, right ascension of the ascending 

node (RAAN), argument of perigee, and the mean anomaly of each satellite’s orbit.  

  

Figure 2. Classical Orbital Elements. Source: [8]. 
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The randomization of these variables was conducted through using a 

preprogrammed function in MATLAB, known as the rand function. This function 

randomly selects a uniformly distributed number between one and zero.   Although the 

regularity of the uniform distribution removes some of the randomness from the scenario, 

it still provided the best fit for the problem. The rand function was used extensively to 

create arbitrary numbers for each of the orbital parameters, within a certain range, for 

each individual satellite created in the random scenarios.  

As more time was invested in creating the script in MATLAB, which controls the 

scenario in STK 10, a multitude of different factors surfaced that begged for further 

consideration. It became clear that collection of data for different time intervals such as 

one day, one week, one month, and one year produced very diverse results. The number 

of satellites naturally had an impact on the number of conflicts recorded, as well as the 

number of iterations performed by the Monte Carlo loop. Once selections were made for 

which elements should remain constant, noticeable trends began emerging in the 

collected data. 

B. ASSUMPTIONS 

This section describes the assumptions used to provide a baseline for the 

scenarios. As other considerations were accounted for, these assumptions were adjusted 

throughout the simulations and are noted in greater detail in the test scenarios, contained 

in Chapter IV. Figure 3 depicts the altitude of the perigees for all recorded CubeSat 

missions from the year 2000 through present day [9]. Based on this data, the LEO altitude 

window that was selected for the purpose of this thesis was between 400 and 700 

kilometers, since the vast majority of small satellite missions fall within that range.  
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Figure 3. Orbital Altitudes of CubeSat Missions Since 2000.  
Source: [9]. 

Eccentricity is calculated based on the perigee and apogee of an orbit, which are 

the nearest and farthest points from Earth, respectively. With the set minimum and 

maximum altitudes noted above, the most extreme eccentricity an orbit could have is 

0.02. When the randomizing function from MATLAB is applied, orbits will be 

constructed to have an eccentricity between 0.02 and zero, where an orbit with a zero 

eccentricity is also referred to as a circular orbit.  

Early in the scenario generation, another assumption was the number selected for 

the maximum inclination of the orbits. The orbital inclination was initially set to 70 

degrees. This was based on the fact that the majority of the world population lives 

between 70°N and 70°S latitude [10]; therefore, a ground station monitoring satellite 

missions would have a greater chance of being placed in a populated region. Later in the 

course of the research, the inclination was modified to 98 degrees, to account for polar 

and  sun-synchronous orbits as well.   
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Communication only happens when the satellite is within line-of-sight, above the 

local horizon. Once the spacecraft is above the horizon, due to geographical 

considerations and terrestrial noise, it is reasonable to mask the elevation angle at 10 

degrees. Within the scenario, the elevation angle for the simulated ground station is 

manually set at 10 degrees and saved in the base scenario. A pass begins when the 

satellite is at 10 degrees above the horizon at AOS, it then proceeds through its maximum 

elevation of the pass and concludes at LOS, 10 degrees above the local horizon. The 

duration between when the satellite rises and sets at above 10 degrees is considered 

overhead time. Figure 4 provides a representation that clearly shows the elevation angle 

selected for the ground station.  

 

Figure 4. Depiction of 10 Degree Elevation Angle 

C. DEFINING SATURATION 

The complexity of the term saturation became apparent as the test cases began to 

provide useful data. To gain a better understanding of the depth of the issue, several 

facets called for further investigation. First, it has been determined that a single number 

or point cannot define saturation, but rather an average factor can be calculated to assess 

the range in which saturation occurs. Larger numbers of satellites provide an obvious 

correlated increase in conflicting accesses, but an interesting characteristic was the 
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number of satellites that had zero accesses to the ground station for the entire scenario. 

With the random orbit generator, a percentage of the satellites were put into orbits with 

an inclination that would never pass within ten degrees elevation, line of sight of the NPS 

ground station at 36.6°N, 121.9°W [11]. It was found that an average of approximately 

23% of all randomly generated satellites for the 1000 satellite case did not have orbital 

parameters permitting radio contact. The 500 satellite and 100 satellite cases fell within 

one percent point of this value as well. Satellite scenarios discussed in this thesis will be 

referred to by their simulated number of N satellites, but to provide meaningful results it 

is important to note that these case will contain N*(1-.23) satellites that have at least 

some contact time with the NPS ground station. Therefore, it is reasonable to conclude 

that each N satellite case is actually a .77N satellite case and each “N satellite” scenario 

will be placed in quotations to indicate that it is describing N random satellites, but only 

.77N satellites that have contact with the ground station. This factor is discussed in 

further detail in Chapter IV. Placing a ground station at a different latitude, would clearly 

yield different results. Saturation of the station is caused by only those satellites whose 

orbital geometry enables contact. When determining where to place a ground station, 

operators are not typically looking at a random number of “N satellites,” but this factor 

may be useful to know how many randomly distributed satellites a ground station could 

service based on its latitude.  

The next aspect of saturation worth considering involved the competing interests 

of the conflicting satellites. All satellite owners and operators want the full access time 

they were assured they would receive to conduct their missions, when overhead the 

ground station. The term this thesis uses to describe this concept is required threshold 

time. Required threshold time should be smaller than the previously mentioned overhead 

time; if not, satellites would rarely, if ever, meet their threshold data requirements. As the 

term hints, required threshold time is the absolute minimum time a satellite needs to 

successfully complete its mission, in this case over the duration of one week. Therefore, 

the required threshold time for a single pass is a fraction of that weekly requirement and 

is dependent on the number of passes the satellite will make in that timeframe. Figure 5 
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provides a clearer depiction of the relation between overhead time and required threshold 

time.   

 

Figure 5. Depiction of Overhead Time Vs. Mission Required Threshold 
Time 

To frame this idea, consider that when there is one satellite overhead, that satellite 

has more than 100% of the time it requires to communicate with the ground. If there are 

two identical satellites overhead simultaneously, the required threshold time is now 

doubled, because each satellite still needs its full required time, but the ground station can 

only communicate with one at a time. Therefore, the ground is only providing half of the 

overhead time for each satellite, and that may be less than that required by each of the 

two satellites. This, of course, continues as the number of conflicting satellites increases.  

Lastly, to analyze the concept of saturation, low, medium, and high complexity 

mission parameters were used to evaluate what a minimum required threshold time looks 

like for varying CubeSat missions. Reference satellites were selected to give real-world 

examples. Table 1 displays the satellites utilized to provide the baseline requirements and 

an initial look at the required threshold rates. The data rates mirror current CubeSat 

missions and the minimum and maximum data values were approximated based on the 

size of the products each satellite type is downloading. The one-week period is used as a 

benchmark to assess the absolute minimum amount of data needed within that period to 

be considered a mission success. This timeframe was selected because a one-day analysis 

period does not provide enough contact time for some of the lower complexity missions 
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to achieve the possibility of adequate data attainment. One week provided enough data to 

average out the daily variations in the pass schedule due to the differing orbital 

geometries. From a Monte Carlo scenario of “100 random satellites” performed for 10 

iterations at the NPS MC3 ground station, the average number of times each satellite 

passes over the ground station was measured at 3.09 times per day or 21.65 per week. On 

average, a satellite pass lasted 394.9 seconds. The intent of displaying the data in this 

manner is to provide the requirements in tangible terms for mission planning. The low-

complexity mission is based on known historical data from one of the NPS PropCubes. 

The medium and high-complexity missions are modeled after expected data usage for 

geolocation missions and CubeSats providing high-definition streaming-video 

capabilities.   

Table 1.   Reference Missions Data Downlink Requirements for One 
Week. Sources: [7], [12], [13], [14], [15], [16]. 

Mission Complexity Low  Medium  High 

Satellite Name/Mission Ex: PropCube-
Fauna 

Ex: RF 
Geolocation 

Ex: CubeSat w/ 
Streaming Video  

Threshold Data Download (TDD) 
(bytes per week) 5 KB 50 MB 50 GB 

Objective Data Download (ODD)  
(bytes per week) 12.5 KB 200 MB   200 GB  

Data Rate (DR) 
(bits per second) 9.6 kbps 1 Mbps 100 Mbps 

Average Number of Passes (per 
week) 21.65 

 

For each case, the threshold data download (TDD) and objective data download 

(ODD) requirements were established. From the data rate capability, a minimum amount 

of downlink time, per week, was established. If the simulation shows that the average 

satellite does not receive its minimum required time, then the saturation point has been 

reached. This problem becomes even more convoluted when higher complexity missions, 

which have the ability to vary their data rate, are taken into account. Future work will 

need to address aspects such as high complexity satellites with complex downlink 
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capabilities. Such missions can transfer data in a more efficient manner by varying their 

data rates throughout a pass, depending on the link margin. However, variable data 

downlink rates are not addressed in this thesis. 

Table 2 uses the information from Table 1 to scale the data requirements from 

one-week, down to the threshold and objective data requirements per pass. A satellite 

efficiency factor is utilized to calculate the amount of time it will take for a satellite to 

downlink its minimum data. These efficiency factors differ based on the knowledge that 

higher data rate communications systems are usually more sophisticated, enabling such 

systems to use more of each pass over the ground station. Looking at the data rates and 

the time required to achieve them, the required threshold time (RTT) for data downlink 

and required objective time (ROT) for data downlink, provide values to calculate the 

saturation factors for each mission complexity.  

Table 2.   Pass Requirements for Data Downlink Capacity. Sources: [7], 
[12], [13], 14], [15], [16].  

Mission Complexity Low  Medium  High 

Satellite Name/Mission Ex: PropCube-
Fauna 

Ex: RF 
Geolocation 

Ex: CubeSat w/ 
Streaming Video  

Threshold Data Download (TDD) 
(bits per pass) 1.27 kb 12.70 Mb 12.70 Gb 

Objective Data Download (ODD) 
(bits per pass) 3.18 kb 50.79 Mb   50.79 Gb  

Data Rate (DR) 
(bits per sec) 9.6 kbps 1 Mbps 100 Mbps 

Efficiency Factor (EF) 0.001 0.3 0.5 

Average Pass Time (APT) (sec) 394.9 394.9 394.9 

Required Threshold Time (RTT) 
for Data Downlink (sec per pass)  132.2 42.33 254 

Required Objective Time (ROT) 
for Data Downlink (sec per pass) 331.2 169.3 1015 

Threshold Saturation Factor 
(TSF) 0.33 0.11 0.64 

Objective Saturation Factor (OSF) 0.84 0.43 2.57 
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The following equations were used to calculate the numbers in Table 2. Equations 

(1) and (2) were used to calculate the numbers for the RTT and ROT, based on the values 

in Table 2 for the mission complexity. This equation is based solely on the mission 

requirements and is not related to the orbital geometry.  

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝐷𝐷 𝑥𝑥 𝐸𝐸𝐸𝐸

 (1)  𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑂𝑂𝑇𝑇𝑇𝑇
𝑇𝑇𝐷𝐷 𝑥𝑥 𝐸𝐸𝐸𝐸

  (2) 

 

 

The third (3) and fourth (4) equations display the method used to produce the 

saturation factors for the threshold (TSF) and objective (OSF), which incorporates the 

mission requirements and orbital geometry. The threshold saturation factor (TSF) is the 

percentage of the 6.6-minute pass (on average) that a single satellite needs to be in 

contact with the ground station to achieve its mission. The objective saturation factor 

(OSF) is the percentage of the average pass needed to achieve the objective data 

download. Table 2 shows these saturation factors. 

      

𝑅𝑅𝑇𝑇𝑇𝑇 = 𝐷𝐷𝑇𝑇𝑇𝑇
𝐴𝐴𝐴𝐴𝑇𝑇

  (3)    𝑅𝑅𝑇𝑇𝑇𝑇 = 𝐷𝐷𝑂𝑂𝑇𝑇
𝐴𝐴𝐴𝐴𝑇𝑇

  (4) 

 
 

A saturation factor of less than 1.0 says that the data download goal, either 

threshold or objective, can be accomplished for a single satellite of that complexity using 

that ground station.   So, the PropCube and the Geolocation mission examples have data 

download margin for both threshold and objective downloads for at least one satellite, 

whereas the streaming video satellite can achieve its threshold for one satellite, but not its 

objective data downloads. When a satellite has data download margin, it is clear that 

more satellites of that complexity can be supported before the system becomes saturated. 

Therefore, saturation is defined as occurring when the number of average satellites 

increases to the point where the average satellite can no longer receive its threshold data 

download. The Monte Carlo simulations are used to determine this quantity of satellites. 
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D. SUMMARY 

The consideration of overhead time and required threshold time with respect to 

the selected reference satellites are each elements of determining ground station 

saturation. These aspects begin to create a clearer understanding of the need for 

optimization, providing the foundation of the problem this thesis addresses. This chapter 

provided the initial considerations of what at first may have seemed a simple, one-to-one 

correlation as the satellite-to-ground-station ratio grows. It described the early 

assumptions of the stated problem, and the relevant variables based on these assumptions. 

In summary, Chapter II defined factors that contribute to the definition of saturation.  
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III. METHODOLOGY AND APPROACH 

This section explores the logic behind the programming, scenario selection, and 

data collection. Before fully automating the program, manually inputted test cases were 

run. These initial scenarios were used to assess the most appropriate time period, number 

of iterations, and different-sized cases with varying satellite quantities, to accurately 

display meaningful data. Through these procedures, the hope was to be able to identify 

when the communications capability went from being slightly degraded to completely 

overwhelmed. 

A. SCENARIO DURATIONS  

The data collected for scenarios lasting one day and one week did not provide 

enough contacts from the satellites to the ground station to allow for a statistically 

consistent depiction of trends over time. However, at the one-month timeframe, the data 

collected behaved in a more repeatable manner. Further tests were conducted at three 

months and longer timeframes. The very slight deviations shown in these longer time 

periods showed that statistical significance was achieved for scenarios run for one month. 

The single-month scenario provided the information needed to begin observing trends. 

For this reason, the scenario times for the bulk of the cases discussed in this thesis all 

lasted one month to reduce the necessary processing time, but still provide enough data 

for accurate analysis. Figure 6 shows two plots, where the graph on the top depicts a 

scenario with a time interval of one day. The plot on the bottom shows the same scenario 

with a time interval of one week. The following two plots in Figure 7 show that for the 

same scenario shown in Figure 6, the plotted points appear to show less deviation 

between the one-month scenario time on the top and the three-month scenario on the 

bottom. Therefore, the selected timeframe is outlined red.  
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Figure 6. Comparison of Same Scenarios with Different Time Intervals: 
1 Day (Top) Versus 1 Week (Bottom) 
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Figure 7. Comparison of Same Scenarios with Different Time Intervals: 
1 Month (Top) Versus 3 Months (Bottom)  
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A Monte Carlo algorithm of repeated random samplings generated these 

simulations, which created the increasing number of satellites by varying orbital 

parameters. This algorithm was implemented in MATLAB, which interfaces with and 

opens a new scenario in STK, calculating the accesses of each satellite to the ground 

station and relaying this data back to MATLAB to then create files that store the data 

chronologically. The manipulation of the data for numerical and graphical analysis was 

then conducted in MATLAB. The following sections describe how the two programs 

interact and the user inputs required to vary parameters within the simulations. 

B. MATLAB-STK INTERFACE 

Before the user initiates the main code titled “Monte_Carlo_Loop.m,” included in 

the appendix, there are a few variables that must be selected to create a scenario. The 

script provides a generic platform to run N iterations of Y satellites, where the operator 

can select both variables, N is the number of iterations, and Y is the number of random 

satellites. Figure 8 displays the variables that must be set, as they appear in the MATLAB 

script. The yellow highlighted portions show the values that the user must input and the 

green text describes their purpose.  

 

Figure 8. Monte Carlo Loop Input Variables 

The first portion of the code allows the operator to select the maximum number of 

satellites to be created for the scenario. The step size, which is the next input value, 

determines the increments at which the satellite numbers grow within the scenario. For 

example, if the step size is 10, with a maximum number of “100 satellites,” the program 
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will create 10 satellites, followed by 20 new satellites, followed by 30, and so forth, until 

it has reached the desired maximum. After this, the number of iterations of the Monte 

Carlo loop is then set.   

The next values the user must input are the minimum and maximum altitude, as 

well as the maximum inclination desired for the creation of the randomly generated 

orbits. The next three lines in the program allow the user to determine the desired start 

and stop time for the scenario, as well as specify the name of the ground station that will 

be observed. The script then allows the operator to type the desired location for the data 

files to be stored on the computer. 

At this point, the MATLAB script directly opens STK through a component 

object model (COM) interface [17]. The commands used in the MATLAB code operate 

as function calls that emulate button clicks in the graphical user interface (GUI), which 

configures and runs the propagation software that drives STK. Code snippets are 

provided to assist users with connecting and customizing through the programming 

interface. Figure 9 shows an example of the MATLAB code samples provided online to 

open STK, create a scenario, and define properties within the scenario. If there is a 

separate, previously-saved scenario file the user desires to open and populate, instead of 

creating a new one, that modification that can be done at this point in the program as 

well.   
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Figure 9. MATLAB to STK Scenario Creation Code Snippet  

The main file script now calls on two subroutine files known as functions. These 

files require no inputs from the user, but are solely there to support the overarching 

Monte Carlo Loop script. The first file that is called upon is the 

“Random_Satellite_Generator.m,” contained in the appendix. This script contains all of 

the detailed commands to create the satellites in STK for the specified number of 

iterations. Once the program has stored the data for each satellite’s pass over the ground 

station, it deletes all of the satellites to make room for the next iteration of random 

SmallSats. The data collected and stored contains the AOS, LOS, duration of each pass, 

the satellite’s assigned number for tracking purposes, and the name of the ground station. 

This script also displays the number of satellites for an entire scenario, whose random 

orbital elements never allowed for the spacecraft to pass over the ground station at all. 

This output is called the number of misses.  

The second subroutine file, additionally provided in the appendix, is called the 

“Conflict_Compiler.m.”  This is where the program compares the AOS and LOS from 

one satellite to the AOS and LOS of another to look for overlapping time periods. The 

term used for each period of time where there is at least one satellite in view is a slice. 

These slices are separated by the time when there are no satellites in view, and  each slice 

contains anywhere from one satellite all the way up to dozens of satellites all in view of 
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the ground station at the same time. This program then prints a few lines of text, the first 

describing the total duration with at least one satellite in view. That output is followed by 

a note that displays the duration in time, as well as percentage of total time, that there is 

one satellite in view, two satellites in view, three, four, and so forth. This data is then 

stored as a .mat file through MATLAB, and able to be accessed for later analysis.  

In Figure 10, the access report shows a week’s worth of passes for a simulation 

run with “20 random satellites.”  Of the twenty satellites, fourteen satellites had passes 

over the NPS ground station and Figure 10 shows that many conflicts can be seen for 

these satellites. Figure 11 gives a closer look, showing a segment of time over the one-

week scenario period. The images depict the overlap of the satellites simultaneously in 

view of the ground station. The box outlined in red focuses on the overlapping durations 

of the satellite passes, for one set of conflicted passes.  
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Figure 10. STK Access Report for 1 Week Scenario of “20 Random 
Satellites” 
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Figure 11. Slice of Overlapping Accesses in STK 

  Figure 12 further displays the breakdown of the concept of these slices. It shows 

three individual examples of slices of intersecting CubeSat access times with the ground 

station. The Conflict Compiler script accounts for every new AOS by adding a one to the 

number of conflicting satellites in that slice and subtracts the number one, at the next 

chronological LOS, from the next slice. The first slice in the figure depicts two satellites 

with overlapping durations. The second and third slices display increasingly more 

complex scenarios, where conflicting accesses begin to pile up, ultimately creating more 

and more scheduling issues. The Conflict Compiler script is designed so as not to double 

count conflicts by accounting for two or more satellites-in-view separately and not 

including one satellite-in-view in that number. 
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Figure 12. Chronological Satellite Access Conflicts  

Since these subroutines are contained within the Monte Carlo Loop code and 

repeated continuously, run time was decreased by allowing STK to remain open for each 

iteration, rather than completely closing the program to start a new scenario each time 

after the satellites were deleted, however the time to run a large scenario is still not 

insignificant. To further understand the capability of this program and the reasoning 

behind the design, the simulation style is outlined below. 

 

C. MONTE CARLO OPTIMIZATION 

1. What Monte Carlo Simulations Do 

According to Palisade, one of the leading software organizations in the risk and 

decision making tools industry [18], a Monte Carlo simulation is defined as:  

A computerized mathematical technique that allows users to account for 
risk in quantitative analysis and decision making. Monte Carlo simulation 
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furnishes the decision-maker with a range of possible outcomes and the 
probabilities they will occur for any choice of action. Monte Carlo 
simulation performs risk analysis by building models of possible results by 
substituting a range of values—a probability distribution—for any factor 
that has inherent uncertainty. It then calculates results over and over, each 
time using a different set of random values from the probability functions. 
Depending upon the number of uncertainties and the ranges specified for 
them, a Monte Carlo simulation could involve hundreds or thousands of 
recalculations before it is complete and capable of giving an accurate 
assessment. Monte Carlo simulation produces distributions of possible 
outcome values. 

 

2. Why Monte Carlo is Beneficial for This Specific Problem 

This type of simulation is advantageous for this particular topic because the 

hundreds of iterations of randomly created scenarios produce a high confidence value in 

the percentages calculated. Conversely, with only a few iterations, a program such as this 

would not collect enough data to provide a reasonable mean value; there would be far too 

much deviation between cases. For example, prior to utilizing the Monte Carlo simulation 

to repeatedly loop the code, one scenario was created and saved, but this required the user 

to manually input different parameters to observe if there were any drastic changes. 

Rerunning the same program and detecting changes was still possible, but due to the 

random nature, one random simulation could be very different from the next. This creates 

a large range of uncertainty rather than statistical accuracy. Those initial scenarios were 

still very useful, but once the concepts were folded into a Monte Carlo operation, a 

different random scenario could be automatically generated for as many times as 

specified, providing much more confidence in the average.  

With the reliable percentages calculated through the Monte Carlo algorithm, 

organizations or individuals can base decisions on whether or not to expand their ground 

station network for their projected number of satellites for future years. Through this 

simulation, the latitude of the additional ground station(s) can be evaluated.  
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D. SUMMARY 

Chapter III discussed the interface method used to communicate from MATLAB 

script files, to scenario generation in STK, back to data storage through MATLAB. The 

justification behind the selection of a Monte Carlo algorithm was also given in this 

chapter, as well as a description of the benefits it provides to this type of analysis.  
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IV. TEST SCENARIOS AND RESULTS 

This chapter will discuss the reasoning for selecting scenarios to illustrate the 

interesting nature of the many satellite, few ground station problem. The chapter will also 

present the results, observed trends, and the analysis of how these findings relate to the 

reference satellite missions outlined in Chapter II. 

A. SCENARIO FORMULATION 

The selection of scenarios began through trial and error to observe how the access 

conflicts grew as the satellite numbers increased. Beginning with a single, randomly 

generated satellite, and increasing by twos, tens, and eventually several-hundred-satellite 

intervals, the scenarios produced enough information to shed light on the results. The 

percentage of conflicted time was the first calculation for each scenario. This calculation 

was a simple ratio, displayed in equation (5), of the time spent with multiple (more than 

one) satellites overhead, compared to the duration where at least one satellite was 

overhead the ground station.   

 

% Time Conflicted =  Total duration of multiple satellites in view
Total duration of at least 1 satellite in view

      (5) 

 

Table 3 shows the twenty-satellite step-size used to investigate the growing 

percentages of time spent with multiple satellites in view of the ground station. It also 

shows the percentages of the total scenario time spent conflicted with two through six 

satellites simultaneously in view, during each of the “10” to “70 random-satellite” 

scenarios. Table 3 only considers the orbital geometry of having multiple satellites in 

view, and the analysis does not yet incorporate the threshold data download requirements.  
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Table 3.   Increasing Conflicts Percentages for Various Satellite 
Numbers and Time Periods 

 
 

Table 4 illustrates a side-by-side comparison of unweighted and weighted contact 

time percentages as broken out by number of satellites simultaneously in view and 

satellite population quantities for one month (31 days). The average values for each 

number of satellites in view were calculated from fifteen iterations of random-satellite 

scenarios. The mean percent time of N satellites-in-view was then multiplied by N to 

determine the weighted overhead time for the entire scenario. The sum of these numbers 

resulted in a total weighted overhead time percentage, greater than the feasible one 

hundred percent that the system can support. For example, with a total weighted 

overhead time of 200%, any given satellite could expect half of the time overhead to be 

available for communications, and the average number of satellites in view for the 

duration of the scenario would be two. The analysis determines whether this is an 

adequate amount of contact time based on mission needs. If not, the ground station has 

reached saturation.  
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Table 4.   Total Unweighted and Weighted Percent of Satellites 
Simultaneously in View 

 

Number of 
Satellites 
in View

1 10 100 250 500 1000 1 10 100 250 500 1000

0 98.65 86.04 24.95 2.91 0.09 0.00 98.65 86.04 24.95 2.91 0.09 0.00
1 1.35 12.98 35.41 10.44 0.63 0.00 1.35 12.98 35.41 10.44 0.63 0.00
2 0.94 24.01 18.59 2.18 0.01 1.87 48.01 37.18 4.36 0.02
3 0.04 10.79 21.86 5.15 0.04 0.12 32.38 65.59 15.46 0.11
4 0.00 3.63 18.99 9.12 0.13 0.00 14.54 75.94 36.48 0.52
5 0.95 13.24 12.81 0.37 4.74 66.19 64.06 1.86
6 0.21 7.70 15.00 0.85 1.26 46.19 90.02 5.11
7 0.04 3.78 15.07 1.71 0.29 26.43 105.5 11.97
8 0.01 1.61 13.18 2.98 0.05 12.85 105.5 23.88
9 0.00 0.61 10.20 4.72 0.01 5.47 91.84 42.45
10 0.20 7.04 6.59 1.97 70.43 65.94
11 0.06 4.42 8.47 0.62 48.57 93.18
12 0.02 2.58 9.96 0.21 30.92 119.5
13 0.00 1.34 10.77 0.06 17.41 140.0
14 0.00 0.66 10.74 0.01 9.25 150.3
15 0.00 0.31 10.00 0.00 4.63 150.0
16 0.00 0.13 8.72 0.00 2.04 139.5
17 0.05 7.14 0.91 121.4
18 0.02 5.51 0.39 99.11
19 0.01 4.02 0.16 76.44
20 0.00 2.80 0.03 56.05
21 0.00 1.84 0.01 38.56
22 0.00 1.14 0.00 25.05
23 0.00 0.68 0.00 15.57
24 0.38 9.22
25 0.21 5.18
26 0.11 2.84
27 0.06 1.55
28 0.03 0.80
29 0.01 0.41
30 0.01 0.22
31 0.004 0.12
32 0.002 0.05
33 0.0007 0.02
34 0.0002 0.01
35 0.0001 0.005
36 0.0001 0.004
37 0.00001 0.0003

Total 
Percent

100 100 100 100 100 100 100 101 162 352 699 1397

1.00 1.01 1.62 3.52 6.99 13.97

15 Iterations, 1 Month Scenario, Random Satellites

Average Number of Satellites in View

Satellite Scenario Number Satellite Scenario Number
WeightedUnweighted
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The left-hand portion of Table 4 displays the unweighted overhead time 

percentages. For smaller satellite populations, the distribution trends towards fewer 

satellites in view on average. For all multiple-satellite cases, there are rare instances 

where a substantially larger than average quantity of satellites is immediately in view of 

the station. Even in the “1000-satellite” case, there are approximately 14 satellites in view 

at any one point in time but occasionally up to 37 satellites can be demanding the ground 

station’s resources. Not too surprisingly, when the satellite population grows large 

enough, the station experiences virtually no inactivity.   

In contrast, the right side of Table 4 provides the weighted contact time 

percentages. The total weighted overhead time percentage shows how over-subscribed 

the ground station is, but this over-subscription does not mean that the ground station is 

saturated. Saturation comes from whether or not the satellites can accomplish their 

threshold mission in the time available (the RTT), as calculated in Chapter II, equation 

(1). The total weighted overhead time percentage is a measure of how much capacity is 

demanded of the ground station when multiple satellites are in view.  

Table 4 also shows the average number of satellites overhead throughout the 31-

day scenario duration. For example, the scenario with “100 satellites” averages between 

one and two satellites overhead, for the amount of time that there are any satellites in 

view. Of the fifteen Monte Carlo iterations, the calculated average converged on 1.6 

satellites always in view of the station. One interpretation of this result is that with all 

other factors kept equal, each satellite could expect their total overhead time available for 

communications contact to be divided by 1.6. If this amount of contact time were less 

than the RTT, then saturation would have occurred. Figure 13 shows the average number 

of satellites in view for the different Monte Carlo simulations. 
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Figure 13. Average Satellites in View 

To better visualize the rise in conflicting passes, Figure 14 displays conflict 

quantities in the form of a box plot with scenarios containing “10, 30, 50, 70, 90, 110, 

130, and 150 satellites.”  It displays the increase in pass conflicts and the range of 

deviation when evaluating 20 iterations.  

Box plots provide a visualization of summary statistics for data samples [19], 

allowing the study of a single group of measurements. The horizontal line across the 

width of the box indicates the median value from the data set. The bottom and top 

horizontal lines depict the 25th and 75th percentiles of the data, respectively. A variation 

of the box plot, the notched box plot, used in Figure 14, accentuates the varying locations 

of the medians, for the purpose of comparison.   
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Figure 14. Box Plot of 20 Iterations for One-Month Duration Scenarios  

All of the values contained within the box are defined as the inter-quartile range, 

since they fall between 25% and 75%, which shows the spread of the observation cases 

[20]. The brackets that extend vertically beyond the box account for the extreme cases, or 

outliers. This plotting method shows that since the medians in Figure 14 do not fall 

reliably at the center of each box, scenarios with many more iterations could be run to 

increase confidence in the results. 

B. ANALYSIS AND OBSERVED TRENDS 

The aspects of saturation identified in Chapter II are revisited in this section and 

come together to provide the definition of saturation. One characteristic of saturation 

comes from including current small satellite mission data requirements and weighing 

them against the required threshold time to complete a full data downlink versus the total 
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overhead time a satellite is physically in view of a station. If data requirements are 

minimal, multiple overlapping satellites may not pose serious resource conflicts for the 

station. However, data-intensive missions may more readily lead to saturation of the 

ground resources, compounded if there are additional overhead spacecraft. The low, 

medium, and high complexity mission parameters defined the minimum time requirement 

for each CubeSat, providing a useful parameter for mission planning. 

It should be noted that contact windows used to generate the analysis in this 

section are missing a fraction of the satellite population in the scenario as mentioned in 

Chapter II. A percentage of the randomly generated satellites were placed into orbits that 

never had access to the ground station due to their orbital inclinations and the latitude of 

the station. This number seemed less significant for the smaller scenarios, but after 

creating “1000 satellite” scenarios it was observed that an average of 23%, or 230 

satellites, would never see the ground station. The case of “1000 satellites,” in reality, 

becomes approximately 770 satellites that were able to contact the ground site based on 

line-of-sight visibility. Although labeled as “N satellite” scenarios in the subsequent 

figures, only 77% of satellites in each scenario can access the ground station from above 

ten degrees elevation angle. And moving the ground station to a different latitude would 

produce different results. Of course, mission planners must seriously consider both the 

location of their station(s) and expected orbital geometries when seeking to maximize the 

network’s performance. 

To analyze the different mission sets outlined in Chapter II, the same Monte Carlo 

runs were applied to varying mission complexities. To reduce the number of variables in 

this initial analysis, it was assumed that the entirety of the satellite population 

corresponded to the same performance parameters presented in Table 2. Figure 15 

displays the total data that can be collected at the ground station from the low complexity 

missions over one month. The accumulated data (red) represents the total possible data 

that the ground station can download for a particular scenario and is shown in equation 

(6). It was then compared to threshold (green) and objective (blue) totals for the 31-day 

duration, which were calculated using equations (7) and (8). These equations incorporate 
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the previously discussed .77N to account for the satellites that do not make any contact 

with the station.  

 

Figure 15. Low Complexity Mission Downloaded Data   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴𝑈𝑈𝑈𝑈ℎ𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑈𝑈𝐴𝐴𝐴𝐴 𝑈𝑈𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝐶𝐶𝑈𝑈𝐴𝐴𝑆𝑆)  ∗ (𝐷𝐷𝑅𝑅) ∗ (𝐸𝐸𝑇𝑇)     (6) 

𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑈𝑈𝑅𝑅𝐴𝐴𝐴𝐴 𝑅𝑅ℎ𝑅𝑅𝐴𝐴𝑆𝑆ℎ𝐶𝐶𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 = (.77) ∗ (#𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆 𝑈𝑈𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝑅𝑅𝑈𝑈𝐶𝐶)  ∗ (𝑅𝑅𝑅𝑅𝑅𝑅) ∗ �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 # 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃
𝑇𝑇𝐴𝐴𝐷𝐷

� ∗ (31 𝐷𝐷𝐴𝐴𝐷𝐷𝑆𝑆)       (7) 

𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑈𝑈𝑅𝑅𝐴𝐴𝐴𝐴 𝑅𝑅𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑂𝑂𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 = (. 77) ∗ (#𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆 𝑈𝑈𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝑅𝑅𝑈𝑈𝐶𝐶)  ∗ (𝑅𝑅𝑅𝑅𝑅𝑅) ∗ �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 # 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃
𝑇𝑇𝐴𝐴𝐷𝐷

� ∗ (31 𝐷𝐷𝐴𝐴𝐷𝐷𝑆𝑆)        (8) 

 

The threshold and objective data requirements for these low complexity missions 

are limited and it is possible to meet RTT at the NPS ground station until approximately 

143 satellites that have contact with the ground station. The objective data requirements 

become unattainable with approximately 11 satellites, indicating either a need for 

additional ground stations or a reduction of required data. The red line depicting the 
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accumulated data in Figure 15 steadily increases until reaching an upper limit. Total 

overhead time initially increases thus accruing more downlinked data from the satellites. 

Eventually, there is always at least one satellite over the station, thus placing an upper 

boundary on accumulated data regardless of satellite population, hence the behavior of 

the total possible data to be downlinked, when multiplied by the data rate and efficiency. 

Also worth noting, the available portion of overhead time per satellite begins decreasing 

due to the larger number of satellites competing for downlink slots, and causing the 

overhead time to be split amongst them. Table 5 displays the values calculated by linear 

interpolation to understand the location at which the above scenario of low complexity 

satellite missions reaches threshold and objective saturation. The total and adjusted 

values correlate to the number of satellites; the total is the value including all cases in the 

scenario, the adjusted value takes into consideration the 23% of satellites that do not 

make contact with the ground station. The downlinked data in the right hand column 

corresponds with the number of satellites at which saturation occurs.  

Table 5.   Interpolated Saturation Values for Low Complexity Missions 

 
 

Figure 16 displays data collected from the medium complexity mission 

requirements. All other values pertaining to the scenario generation remain constant, 

aside from the data rate and download requirements. The improved downlink rate 

provides more total data from the satellites and the corresponding threshold and objective 

values remain attainable for a larger population than that of the low complexity missions. 

Table 6 shows the corresponding saturation points for this set of mission parameters.  

The high complexity missions downlink the greatest quantities of data, due to 

their increased capabilities (higher data rates and better efficiency). However, as shown 

# of Satellites Downlinked Data
"Total" 185 ̴23 Mb

Adjusted by .77 ̴143
"Total" 14 ̴4 Mb

Adjusted by .77 ̴11

Low Complexity Saturation Point

Threshold

Objective
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in Figure 17, the objective requirement is never met and a threshold saturation point is 

reached at a reasonably large satellite population greater than “1000 satellites.” Table 7 

parallels these values by showing the unattainable objective requirement, while 

displaying their impressive capacity to sustain the threshold requirement. 

Mission planners should evaluate ground station performance as shown in  

Figures 15, 16, and 17 to determine a balance between the number of satellites, mission 

requirements, and the location (particularly the latitude) of the ground stations.  

 

Figure 16. Medium Complexity Mission Downloaded Data 
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Table 6.   Interpolated Saturation Values for Medium Complexity 
Missions 

 
 

 

Figure 17. High Complexity Mission Downlinked Data 
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Table 7.   Interpolated Saturation Values for High Complexity Missions 

 
 

A real-world consideration using the data presented in this section is that ground 

stations will likely service satellites of varying complexity. The analysis performed in 

this thesis assumed one type of mission at a time, thus simplifying the problem, but 

removing some of the practical aspects. In reality, a mix of low, medium, and high 

complexity spacecraft will be leveraging a ground station of potentially modest 

efficiency. This assumption would result in a shifted point of saturation. Knowing the 

details of their application, mission planners can use the tool developed in this research to 

scale the complexity level of each satellite, and take into consideration the differing time 

needed to achieve the minimum requirement for data download. Future work to analyze 

scenarios with a random mixture of low, medium, and high complexity missions in a 

Monte Carlo simulation would be able to add even more accuracy. Incorporating this 

realism into the scenarios provides a more precise assessment of when a ground station 

handling a multitude of satellites, with differing capabilities, reaches capacity. 

Assessing ground station capacity is possible by incorporating the saturation 

factor, discussed in Chapter II. Saturation of a single ground station is determined in 

equation (9) using the following logic; if the average-number-of-satellites-in-view from 

Table 4, multiplied by the threshold saturation factor (TSF) from Table 2, results in a 

value greater than 1, then that ground station is saturated. This term is referred to as the 

saturation score. This method can be used for each mission complexity to assess the 

range between the threshold and objective data requirements by using the TSF and 

objective saturation factor (OSF). This determines whether those requirements are 

feasible with the satellite’s data rate and ground station efficiency. The saturation score 

# of Satellites Downlinked Data
"Total" >1000 >1.2e5 Gb

Adjusted by .77
"Total" N/A N/A

Adjusted by .77 N/A

Threshold

Objective

High Complexity Saturation Point
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provides the link between the geometry of the overhead time, and the data needs of the 

required threshold time, to give a value that grades the capacity of the ground station.  

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈𝐶𝐶𝑈𝑈 𝑇𝑇𝐴𝐴𝐶𝐶𝑅𝑅𝐴𝐴 = (.77) ∗ (𝐴𝐴𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑈𝑈𝐴𝐴 # 𝐶𝐶𝑜𝑜 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆 𝑈𝑈𝑈𝑈 𝑉𝑉𝑈𝑈𝐴𝐴𝑈𝑈) ∗ (𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈𝐶𝐶𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑅𝑅)    (9) 

Examples of the saturation score for the NPS ground station are shown in Figures 

18, 19 and 20. Low, medium, and high complexity missions are illustrated in individual 

plots, displaying each satellite population scenario. The RTT and ROT are the bounds for 

the downlinked data required for each of the scenarios, displayed in red. The vertical blue 

line depicts the point at which the ground station is considered saturated.  

 

Figure 18. Saturation Scores for Low Complexity Mission Scenarios 

By looking closely it is possible to tell where the low, medium, and high missions 

may meet their threshold and objective requirements. For example, the low complexity 
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missions in Figure 18 do not reach saturation for threshold requirements for the “10” and 

“100” cases, but reaches saturation only for the objective at “100 satellites,” and 

completely exceeds both levels starting at the “250-satellite” mark.  

The medium complexity missions shown in Figure 19 remain below the threshold 

saturation up through “100 satellites.” The “250” and “500 satellite” cases meet the 

threshold but not the objective requirements. Finally, the “1000 satellite” case does not 

meet any.   

 

Figure 19. Saturation Scores for Medium Complexity Mission Scenarios 

The high complexity missions displayed in Figure 20 only meet the threshold 

requirement for the “10-satellite” case. All other simulations fail to meet threshold and 
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objective requirements for this single ground station. Clearly, a high complexity, multi-

satellite mission with sizable data requirements will need more than one station to satisfy 

its objectives.  

 

Figure 20. Saturation Scores for High Complexity Mission Scenarios 

Depending on the mission data requirements, the orbits simulated, and the ground 

station latitude, the exact values in such a plot will differ. However, the saturation score 

is an objective way of grading the ability of the ground station to support these missions. 

Due to the generalization inherent to such an analysis, approaching a saturation score of 

one should be treated as an indicator of potential saturation and mission planners should 

allow adequate margin in their mission design.  
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C. SUMMARY 

Chapter IV discussed the process behind the scenario selection and the data 

created from the Monte Carlo simulation. Plots were used to analyze trends in the data. 

Finally, the understanding gleaned from the simulation was applied to the reference 

satellite missions to provide context and validity to the conclusions drawn about when a 

ground station’s capacity becomes saturated.  
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V. CONCLUSION 

Chapter IV discussed the data and analysis supporting the findings to the initial 

question of: at what point does a ground station experience saturation. This final chapter 

will cover the implications of this research for varied solutions based on the Monte Carlo 

simulation. Such an analysis can help optimize mission planning for ground station 

operators and satellite owners. Finally, suggested areas of research are discussed for 

carrying these pursuits forward. 

A. APPLICATIONS 

Discussed at the beginning of this thesis, as the population of LEO CubeSats 

increases, the communication capacity of the terrestrial stations supporting them becomes 

strained. Ground station operations become considerably more challenging as higher 

numbers of satellites compete for finite resources. This thesis has explored how those 

systems are affected as the number of satellites proliferates.  

Saturation was defined as the point at which satellite missions are, on average, not 

meeting their minimum data download requirements. These data requirements were 

determined from current, known CubeSat mission types. Figures 18 through 20, in 

Chapter IV, are the visual representation of the saturation data. With the known average 

number of satellites overhead and imposed data requirements, the point of saturation can 

be evaluated for any ground station. 

The result of this thesis is a tool that could be developed further to help 

understand when there will be a significant decrease to the ground station’s ability to 

effectively communicate with its satellites. At this threshold, an organization will be able 

to visualize the trends as the numbers of satellites and ground stations are changed. This 

provides planners with more information on when to consider adding more ground 

stations to their network, reallocating assets, or reducing data requirements by flying 

fewer satellites or collecting less data. The broad nature of the code should be useful for 

applications of interest to ground station program offices.  
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B. RECOMMENDATIONS FOR FOLLOW-ON RESEARCH AND 
POTENTIAL IMPLICATIONS 

This thesis has covered the general issues associated with this challenging puzzle. 

Modifications could be made to the MATLAB code to consider different constructs. The 

next logical progression in analysis would be to consider scenarios such as “one ground 

station, one constellation,” “multiple ground stations, many random satellites,” and 

“multiple ground stations, multiple constellations.” Data from varying constructs such as 

these would provide simple comparisons to the results collected in this thesis. Other 

factors such as latitude could be varied to assess the benefits to ground station contacts. 

For an added level of realism, one could incorporate the orbital parameters more 

commonly used for CubeSats today, for example the many small satellites deployed from 

International Space Station, to provide a weighted value that produces more satellites 

with those parameters within the randomly selected orbital elements. These 

considerations for continuing research all play a significant role of the larger-scale 

challenge of scheduling these small spacecraft. Knowing the saturation point for a 

particular ground station network can help determine the approach to utilize for 

maximizing its capacity. 
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APPENDIX . MATLAB SCRIPTS  

A. MONTE_CARLO_LOOP 

clear all; close all; clc; 
  
% Main loop that calls Random_Satellite_Generator function  
T1 = now; 
MAXSATS = 1;                         % Set number of randomly generated satellites 
MAX_ITERATIONS = 5;             % Set numer of iterations for Monte Carlo Loop to run 
SAT_STEP =1;                         % Set the step size to increment number of sats to change 
altlow = 400000;                       % Set minimum altitude in m 
althigh = 700000;                      % Set maximum altitude in m 
max_incl = 98;                          % Set maximum inclination in degrees 
start_time  = ‘19 Jul 2017 02:00:00’; 
end_time    = ‘20 Jul 2017 02:00:00’; 
GS = {‘NPS’}]; 
  
filepath = ‘\\special\ssagcommon$\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 
Optimization Threshold)\Results\’; % add/change “Day” to “Week” or “Month” depending on 
scenario time 
folderpath = strcat(filepath,int2str(MAX_ITERATIONS), ‘Iterations_’, 
char(datetime(‘now’,’TimeZone’,’local’,’Format’,’y-M-d_HH-mm-ss\’))); 
mkdir(folderpath); 
  
disp(‘Starting STK10’)  
app = actxserver(‘STK10.application’); 
root = app.Personality2;             
root.Children.Import(‘\\special\ssagcommon$\Projects\Student Theses\Thesis - Writt, Andrea 
(2018 MC3 Optimization Threshold)\Scenario\Monte_Carlo_MC3.sc’); 
sc = root.CurrentScenario; 
station = root.GetObjectFromPath(‘/Facility/NPS’)]; 
sc.SetTimePeriod(start_time, end_time);  
root.ExecuteCommand(‘Animate * Reset’);  
  
for NUMSATS = MAXSATS:SAT_STEP:MAXSATS 
    fprintf(‘starting: NUMSATS = %d at %s\n’,NUMSATS, char(datetime(‘now’))) 
    for iteration = 1:MAX_ITERATIONS 
        fprintf(‘Starting iteration: %d at %s\n’, iteration, char(datetime(‘now’))); 
        Random_Satellite_Generator(iteration, NUMSATS, altlow, althigh, max_incl, start_time, 
end_time, GS, app, root, sc, station, MAX_ITERATIONS, folderpath); 
    end 
end 
  
T2 = now; 
Runtime = T2 - T1;                                  % In days 
Run_min  = (Runtime * 86400) / 60;          % In minutes 
Run_hrs  = Run_min / 60; 
fprintf(‘Program ran for %6.2f minutes, or %6.2f hours, or %6.2f days\n’,Run_min, Run_hrs, 
Run_hrs/24) 
clear app                                                % closes STK 10 
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B. RANDOM_SATELLITE_GENERATOR 

function Random_Satellite_Generator(iteration, NUMSATS, altlow, althigh, max_incl, start_time, 
end_time, GS, app, root, sc, station, MAX_ITERATIONS, folderpath) 
  
earthrad = 6378000;                     % Earth radius in m 
     for i = 1:NUMSATS 
            radlow = altlow + (althigh - altlow).*rand(); 
            radhigh = altlow + (althigh - altlow).*rand(); 
            R1 = radlow + earthrad; 
            R2 = radhigh + earthrad; 
            Rp = min(R1 R2]);  
            Ra = max(R1 R2]);  
            ecc = (Ra - Rp)/(Ra + Rp); 
  
            satname = ‘‘,int2str(i)]; 
            sma = int2str((Ra+Rp)/2); 
            rand_incl = int2str((max_incl)*rand()); 
            raan = int2str((360)*rand()); 
            mean_anomaly = int2str((360)*rand()); 
            arg_perigee = int2str((360)*rand()); 
            eccentricity = num2str(ecc); 
            sat_create = sc.Children.New(‘eSatellite’,satname); 
            cmd = ‘SetState */Satellite/’,satname ‘ Classical HPOP “‘, sc.StartTime,’ “ “‘, sc.StopTime, 
‘“ 60 ICRF “‘, sc.StartTime, ‘“ ‘, sma, ‘ ‘, eccentricity, ‘ ‘, rand_incl,’ ‘, arg_perigee,’ ‘, raan, ‘ ‘, 
mean_anomaly,’ “‘]; 
            root.ExecuteCommand(cmd); 
            sat(i) = root.GetObjectFromPath(‘/Satellite/’, satname]); 
            sat(i).Propagator.Propagate; 
            satellite(i) = {satname}; 
     end 
  
    accesses = 0; 
    % For each satellite 
    aos = ]; 
    los = ]; 
    gs = ]; 
    satnum = ]; 
    num_of_misses = 0; 
  
    for i = 1:length(satellite)  
        for j = 1:length(station) 
            access = station(j).GetAccessToObject(sat(i)); 
            dp =]; 
            AOS = ]; 
            LOS = ]; 
            duration = ];      
            access.ComputeAccess; 
  
            try 
                dp = access.DataProviders.Item(‘Access Data’).Exec(sc.StartTime, sc.StopTime); 
                AOS = dp.DataSets.GetDataSetByName(‘Start Time’).GetValues; 
                LOS = dp.DataSets.GetDataSetByName(‘Stop Time’).GetValues; 
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                duration = dp.DataSets.GetDataSetByName(‘Duration’).GetValues; 
            catch 
                AOS = {start_time}; 
                LOS = {start_time}; 
                duration = {0}; 
                num_of_misses = num_of_misses +1; 
                disp(strcat(‘AOS/LOS lists not generated_’, satellite(i))) 
                continue 
            end 
             
            % Datenum units are in days 
            tempaos = datenum(AOS, ‘dd mmm yyyy HH:MM:SS’);  
            lengthaos, y] = size(tempaos);  % lengthaos(1,1) = length of aos 
            aos = cat(1, aos, tempaos); 
            templos = datenum(LOS, ‘dd mmm yyyy HH:MM:SS’);  
            los = cat(1, los, templos); 
  
            for k = 1:lengthaos 
                gs = cat(1, gs, j); 
                satnum = cat(1, satnum, i); 
            end 
            accesses = accesses + lengthaos; 
  
         end 
    end 
    sorted, durations, num_passes, num_slices, num_conflicts] = Conflict_Compiler( aos, los, gs, 
satnum ); 
  
    filepath = ‘\\special\ssagcommon$\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 
Optimization Threshold)\Results\’; % change “Day” to “Week” or “Month” depending on scenario 
time 
    filename_mat = strcat(folderpath, int2str(NUMSATS), ‘_Rand_Sats_’, int2str(iteration), 
‘Iteration’, ‘.mat’); 
    
    total_duration = sum(durations) - durations(1); 
    save(filename_mat, ‘sorted’, ‘durations’, ‘total_duration’, ‘num_passes’, ‘num_slices’, 
‘num_conflicts’, ‘NUMSATS’, ‘num_of_misses’); 
    fprintf(‘num_of_misses: %d\n’, num_of_misses) 
    fprintf(‘total duration of slices: %10.3f \n\n’, total_duration) 
    num_durations = length(durations); 
    for i = 1 : num_durations 
        fprintf(‘duration of %d sats in view: %10.3f \n’,i-1,durations(i)) 
        if i > 1 
            fprintf(‘percentage of pass time with %d sats:   %10.3f\n’, i-1, 
durations(i)/total_duration*100) 
        end 
    end 
  
    for i = 1:NUMSATS 
        sc.Children.Unload(‘eSatellite’,cell2mat(satellite(i))); 
    end 
end 
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C. CONFLICT_COMPILER 

%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function sorted, durations, num_passes, num_slices, num_conflicts] = Conflict_Compiler(aos, los, 
gs, satnum) 
%% 
%   This function computes the conflicts in a series of passes given: 
%   aos - list of aos’s 
%   los - list of los’s 
%   gs  - list of gs number 
%   satnum - list of the satnum for each access 
%  
%   The function makes a list of all the aos’s and los’s in time order 
%   with the attribute of aoslos_index of 0 for AOS and 1 for LOS.   
%    
%   The smusher flattens the aos and los and sorts and then walks through 
%   the list, compiling a conflict_index for every bin, where a bin is the  
%   space between every aos and los time. The bin total starts at 0 and  
%   every AOS adds 1 and every LOS subtracts 1. So the number in the  
%   conflict_index list is the number of sats currently accessing that gs. 
%   E.g. A simple overlap would look like: 
%   aoslos:           aos1   aos2   los1   los2 
%   conflict_index:     1      2      1      0 
%  
%   0 is a gap with no access.  2 signifies 2 sats able to access the gs 
%   at the same time. 

% returns an array of # of aos, # of dim] 
num_passes = length(aos) ;        
ones    = zeros(num_passes, 1); 
ones(:) = 1; 
minus_ones    = zeros(num_passes, 1); 
minus_ones(:) = -1; 

% do the actual smushing and sorting 
list1 = cat(1, aos, los); 
list2 = cat(1, ones, minus_ones); 
aosloslist = cat (2, list1, list2); 
sorted = sortrows(aosloslist); 
num_lines = length(sorted); 

% now adds up the aos’s and los’s in turn to get the # of sats in view 
% for each slice of time, make that the third column 
summ = 0; 
for i = 1 : num_lines; 
    summ = summ + sorted(i,2); 
    sorted(i,3) = summ; 
end 

if ~isempty(sorted) 
    % find the max # of sats in view for adding up the durations in each slice 
    % 0 sats in view in the first column, then 1 sat, 2 sats,  
    max_sats = max(sorted,],1); 
    num_durations = max_sats(3) + 1; 
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else 
    max_sat = 0; 
    num_durations = 1; 
    sorted = 0 0 0]; 
end 

% now add up the durations in each slice and put in the durations list 
durations = zeros(1, num_durations); 
for ii = 1 : num_lines - 1; 
    jj = sorted(ii, 3); 
    slice_duration = sorted(ii+1,1) - sorted(ii,1); 
    durations(jj+1) = durations(jj+1) + slice_duration; 
end 

num_slices = sum(sorted(:,3)==0); 
num_conflicts = sum(sorted(:,3)>1); 
total_duration = sum(durations) - durations(1); 

end 

D. PLOTTING SCRIPTS 

1. Boxplot

clear all 

MAX_ITERATIONS = 10; 
filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization 
Threshold)\Results\’; 
% filefolders = dir(filepath) 
filenames = dir(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, ‘*.mat’)); 
num_mats = length(filenames); 

figure 
hold on 
index = 1; 
col_index = 1; 
for i = 1:num_mats 
    load(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, filenames(i).name)); 
    conflicts(index, col_index) = num_conflicts; 
    if ~mod(i,MAX_ITERATIONS) 
        num_sat_vec(col_index) = NUMSATS; 
        index = 1; 
        col_index = col_index + 1; 

else 
     index = index + 1;

    end 
end 

boxplot(conflicts, num_sat_vec, ‘Notch’ , ‘on’ , ‘Whisker’ , 3) 
xlabel(‘Number of Satellites’) 
ylabel(‘Number of Conflicts’) 
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title(strcat(‘31 Day Period, Random, ‘, int2str(MAX_ITERATIONS),’ Iterations, NPS’)) 
hold off 

2. Downlinked Data

clear all; 

% % high complexity rates 
data_rate = 100000000;            % bps 
efficiency = .5;      % fluff factor 
min_data_req = 1270000000;            % minimum data required in bits, per satellite, per pass 
max_data_req = 507900000000;        % maximum data required in bits, per satellite, per pass 
%  
% % medium complexity rates 
% data_rate = 1000000;            % bps 
% efficiency = .3;               % fluff factor 
% min_data_req = 12700000;              % minimum data required in bits, per satellite, per pass 
% max_data_req = 50790000;             % maximum data required in bits, per satellite, per pass 

% % low complexity rates 
% data_rate = 9600;            % bps 
% efficiency = .001;             % fluff factor 
% min_data_req = 1270;               % minimum data required in bits, per satellite, per pass 
% max_data_req = 3180;              % maximum data required in bits, per satellite, per pass 

MAX_ITERATIONS = 15; 
filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization 
Threshold)\Results\’; 
filenames = dir(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, ‘*.mat’));      % read in 
each .mat 
num_mats = length(filenames); 

index = 1; 
iteration_index = 1; 
for i = 1:num_mats 
    load(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, filenames(i).name)); % load in all 
data from .mat 

    % Keep track of iteration number 
    iteration = iteration_index; 
    iteration_index = iteration_index + 1; 
    if iteration_index > MAX_ITERATIONS 
        iteration_index = 1; 
    end 

    num_durations = length(durations); 
    num_lines, num_cols] = size(sorted); 

    % now add up the durations in each slice and put in the durations list 
    weighted_durations = zeros(1, num_durations); 
    accumulated_data = zeros(1,num_durations); 
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    dropped_data = zeros(1,num_durations); 
     
    for ii = 1 : num_lines - 1; 
        jj = sorted(ii, 3);                         % number of sats in view at a time 
        slice_duration = sorted(ii+1,1) - sorted(ii,1); 
        weighted_durations(jj+1) = weighted_durations(jj+1) + jj*slice_duration; 
        accumulated_data(jj+1) = accumulated_data(jj+1) + 
slice_duration*3600*24*data_rate*efficiency; 
        dropped_data(jj+1) = dropped_data(jj+1) + (jj-
1)*slice_duration*3600*24*data_rate*efficiency; 
    end 
     
    for j = 1 : num_durations 
        if j > 1 
            weighted_conflict_time_days(index,1:7) = weighted_durations(j), j-1,NUMSATS, iteration, 
total_duration, accumulated_data(j), dropped_data(j)];      % sorts from first to third columns by 
NUMSATS 
            index = index + 1; 
        end 
    end 
end 
  
sorted_conflict_time_days= sortrows(weighted_conflict_time_days, 3, 2, 4]);     % sorts three 
times, first column 3 (number of iterations), then column 2 (sats in view) 
sat_scenarios = sorted_conflict_time_days(1,3);                                              % Seeded with 
initial value 
iteration_values = sorted_conflict_time_days(1,4); 
max_conflicts = max(sorted_conflict_time_days(:,2)); 
sat_scenarios = unique(sorted_conflict_time_days(:,3));                                    % Find number of 
satellites for all cases 
iteration_values = unique(sorted_conflict_time_days(:,4));                                  % Find all iteration 
numbers used 
  
legend_vec = ]; 
plotting_array_index = 1; 
for i = 1:length(sat_scenarios) 
    for j = 1:length(iteration_values) 
        x = find(sorted_conflict_time_days(:,3)==sat_scenarios(i));                         % identifies where 
3rd column of sorted_conflict_time_days moves from one scenario to next  
        y = find(sorted_conflict_time_days(:,4) == iteration_values(j));                     % identifies 
where the 2nd column equals the number of conflicts 
        z = intersect(x,y);                                                                                    % find common 
indicies where conflicts and sat scenario number intersect 
        sum_weighted_conflict_time_percent(j) = 
sum(sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5));       % sum of durations that 
have the same NUMSATS and same iteration number 
        sum_accumulated_data(j) = sum(sorted_conflict_time_days(z,6)); 
        sum_dropped_data(j) =  sum(sorted_conflict_time_days(z,7)); 
         
    end  
    avg_weighted_conflict_time_percent = mean(sum_weighted_conflict_time_percent);        % 
takes average of a single NUMSAT case across all available iterations 
    avg_accumulated_data = mean(sum_accumulated_data); 
    avg_dropped_data = mean(sum_dropped_data); 
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    sat_scenarios(i); 
    plotting_array_desired_time(plotting_array_index, 1:2) = sat_scenarios(i), 
avg_weighted_conflict_time_percent]; 
    plotting_array_accumulated_data(plotting_array_index, 1:2) = sat_scenarios(i), 
avg_accumulated_data]; 
    plotting_array_dropped_data(plotting_array_index, 1:2) = sat_scenarios(i), avg_dropped_data]; 
    plotting_array_min_data(plotting_array_index, 1:2) = sat_scenarios(i), 
sat_scenarios(i)*min_data_req*4.5*31];      % in bits 
    plotting_array_max_data(plotting_array_index, 1:2) = sat_scenarios(i), 
sat_scenarios(i)*max_data_req*4.5*31];    % in bits 

    plotting_array_index = plotting_array_index + 1; 
end 

% figure 
% semilogx(plotting_array_desired_time(:,1), plotting_array_desired_time(:,2), ‘r-’) 
% hold on 
% xlabel(‘Number of Satellites’) 
% ylabel(‘Average Number of Satellites in View’) 
% title(strcat(‘31 Day Period, Random Orbits,  ‘, int2str(MAX_ITERATIONS),’ Iterations, NPS’)) 
% hold off 

figure 
loglog(plotting_array_accumulated_data(:,1), plotting_array_accumulated_data(:,2), ‘r-’) 
hold on 
loglog(plotting_array_desired_time(:,1), plotting_array_min_data(:,2), ‘g*’) 
loglog(plotting_array_desired_time(:,1), plotting_array_max_data(:,2), ‘b*’) 
xlabel(‘Number of Satellites’) 
ylabel(‘Downlinked Data (bits)’) 
title(strcat(‘High Complexity: Downlinked Data, 31 Day Period, Random Orbits, ‘, 
int2str(MAX_ITERATIONS),’ Iterations, NPS’)) 
legend(‘Data’, ‘Threshold’, ‘Objective’, ‘Location’, ‘northwest’) 
hold off 

% figure 
% semilogx(plotting_array_dropped_data(:,1), plotting_array_dropped_data(:,2)./(8*1000), ‘r-’) 
% hold on 
% xlabel(‘Number of Satellites’) 
% ylabel(‘Dropped Data (bits)’) 
% title(strcat(‘Low Complexity: Dropped Data, 31 Day Period, Random, ‘, 
int2str(MAX_ITERATIONS),’ Iterations, NPS’)) 
% hold off 

3. Saturation Score

clear all; 
data_rate = 100000000;            % bps 

% PICK complexity level here, low, med, or high 
low_TSF = 0.33; med_TSF = 0.11;  high_TSF = 0.64; 
low_OSF = 0.84; med_OSF = 0.43; high_OSF = 2.57; 
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TSF = high_TSF; 
OSF = high_OSF; 
  
plotting_param = ‘r-.o’; 
figure 
  
MAX_ITERATIONS = 15; 
filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization 
Threshold)\Results\’; 
filenames = dir(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, ‘*.mat’));      % read in 
each .mat 
num_mats = length(filenames); 
  
index = 1; 
iteration_index = 1; 
for i = 1:num_mats 
    load(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, filenames(i).name)); % load in all 
data from .mat 
     
    % Keep track of iteration number 
    iteration = iteration_index; 
    iteration_index = iteration_index + 1; 
    if iteration_index > MAX_ITERATIONS 
        iteration_index = 1; 
    end 
         
    num_durations = length(durations); 
    num_lines, num_cols] = size(sorted); 
     
    % now add up the durations in each slice and put in the durations list 
    weighted_durations = zeros(1, num_durations); 
    unweighted_durations = zeros(1, num_durations); 
    accumulated_data = zeros(1,num_durations); 
    dropped_data = zeros(1,num_durations); 
     
    for ii = 1 : num_lines - 1; 
        jj = sorted(ii, 3);                         % number of sats in view at a time, including 0, 1, 2... 
        slice_duration = sorted(ii+1,1) - sorted(ii,1);         
        unweighted_durations(jj+1) = unweighted_durations(jj+1) + slice_duration; 
        dropped_data(jj+1) = dropped_data(jj+1) + (jj-
1)*slice_duration*3600*24*data_rate*efficiency;               
         
        % if no sats in view, don’t accumulate data, otherwise...accumulate! 
        if jj ~= 0 
            accumulated_data(jj+1) = accumulated_data(jj+1) + 
slice_duration*3600*24*data_rate*efficiency;             
            weighted_durations(jj+1) = weighted_durations(jj+1) + jj*slice_duration;    % indexed as 
jj+1 because sometimes there are 0 sats in view and you can’t have a 0 index 
        else 
            accumulated_data(jj+1) = 0; 
            weighted_durations(jj+1) = weighted_durations(jj+1) + slice_duration;      % count 
accumulated time for zero sats without actually multiplying by zero 
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        end 
    end 
     
    total_duration_recalc = sum(unweighted_durations); 
    total_duration = total_duration_recalc; 
     
    for j = 1 : num_durations 
%         if j > 1                  % if you don’t want to consider 0 satellite cases 
        weighted_conflict_time_days(index,1:8) = weighted_durations(j), j-1, NUMSATS, iteration, 
total_duration, accumulated_data(j), dropped_data(j), unweighted_durations(j)];      % sorts from 
first to third columns by NUMSATS 
        index = index + 1; 
%         end 
    end 
end 
  
sorted_conflict_time_days= sortrows(weighted_conflict_time_days, 3, 2, 4]);     % sorts three 
times, first column 3 (number of iterations), then column 2 (sats in view) 
sat_scenarios = sorted_conflict_time_days(1,3);                                              % Seeded with 
initial value 
iteration_values = sorted_conflict_time_days(1,4); 
max_conflicts = max(sorted_conflict_time_days(:,2)); 
sat_scenarios = unique(sorted_conflict_time_days(:,3));                                    % Find number of 
satellites for all cases 
iteration_values = unique(sorted_conflict_time_days(:,4));                                  % Find all iteration 
numbers used 
sats_in_view_times = ]; 
  
legend_vec = ]; 
plotting_array_index = 1; 
for i = 1:length(sat_scenarios) 
    for j = 1:length(iteration_values) 
        x = find(sorted_conflict_time_days(:,3) == sat_scenarios(i));                       % identifies where 
3rd column of sorted_conflict_time_days moves from one scenario to next  
        y = find(sorted_conflict_time_days(:,4) == iteration_values(j));                     % identifies 
where the 2nd column equals the number of conflicts 
        z = intersect(x,y);                                                                  % find common indicies where 
conflicts and sat scenario number intersect 
        sum_weighted_conflict_time_percent(j)   = 
sum(100.*sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5));       % sum of 
durations that have the same NUMSATS and same iteration number 
        sum_weighted_conflict_time(j)           = 
sum(sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5));       % sum of durations that 
have the same NUMSATS and same iteration number      
  
        sats_in_view_times(1:length(z), 1:3, j) = 
100.*sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5), 
sorted_conflict_time_days(z,2), 
100.*sorted_conflict_time_days(z,8)./sorted_conflict_time_days(z,5)]; 
         
        sum_accumulated_data(j)                 = sum(sorted_conflict_time_days(z,6)); 
        sum_dropped_data(j)                     = sum(sorted_conflict_time_days(z,7));    
    end 
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    % Compensate for divide by 0 NaN (happens when no satellites in view of 
    % GS so total duration is 0) 
    sats_in_view_times(isnan(sats_in_view_times)) = 100; 
    sum_weighted_conflict_time(isnan(sum_weighted_conflict_time)) = 0; 
     
    avg_sats_in_view_times_temp = mean(sats_in_view_times,3, ‘omitnan’); 
  
    max_sats_in_view = max(max(sats_in_view_times(:,2,:))); 
    sat_scenarios(i); 
    avg_sats_in_view_times = avg_sats_in_view_times_temp(:,1), 0:1:max_sats_in_view]’, 
avg_sats_in_view_times_temp(:,3)];   
    adj_avg_sats_in_view = sum(avg_sats_in_view_times_temp(:,1))/100; 
     
    filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization 
Threshold)\Results\’; 
     
    avg_weighted_conflict_time_percent = mean(sum_weighted_conflict_time_percent);        % 
takes average of a single NUMSAT case across all available iterations 
    avg_sats_in_view = mean(sum_weighted_conflict_time); 
    avg_accumulated_data = mean(sum_accumulated_data); 
    avg_dropped_data = mean(sum_dropped_data); 
     
    plotting_array_desired_time(plotting_array_index, 1:2) = sat_scenarios(i), 
avg_weighted_conflict_time_percent]; 
    plotting_array_accumulated_data(plotting_array_index, 1:2) = sat_scenarios(i), 
avg_accumulated_data]; 
    plotting_array_dropped_data(plotting_array_index, 1:2) = sat_scenarios(i), avg_dropped_data]; 
    plotting_array_min_data(plotting_array_index, 1:2) = sat_scenarios(i), 
sat_scenarios(i)*min_data_req*3.09*31];                % in bits 
    plotting_array_max_data(plotting_array_index, 1:2) = sat_scenarios(i), 
sat_scenarios(i)*max_data_req*3.09*31];              % in bits 
    plotting_array_avg_sats_in_view(plotting_array_index, 1:2) = sat_scenarios(i), 
avg_sats_in_view]; 
    plotting_array_adj_avg_sats_in_view(plotting_array_index, 1:2) = sat_scenarios(i), 
adj_avg_sats_in_view]; 
     
    plotting_array_saturation_score(plotting_array_index, 1:3) = 
avg_weighted_conflict_time_percent*TSF, avg_weighted_conflict_time_percent*OSF, 
sat_scenarios(i)]; 
    plotting_array_index = plotting_array_index + 1; 
end 
  
for i = 2:length(sat_scenarios) 
    xaxis = plotting_array_saturation_score(i,1:2)./100; 
    yaxis = plotting_array_saturation_score(i,3), plotting_array_saturation_score(i,3)]; 
    loglog(xaxis, yaxis,plotting_param, ‘LineWidth’,2,’MarkerSize’,5)  
    hold on 
end 
  
grid on 
loglog( 1 1],5 2000]) 
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xlim(.5 44]) 
ylim(5 2000]) 
xlabel(‘Saturation Score (from RTT to ROT)’) 
ylabel(‘“Number of Satellites” Scenario’) 
title(‘Ground Station Saturation Prediction for High Complexity Missions’) 
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