
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-06

OPTIMIZATION OF CUBESAT GROUND

STATIONS FOR INCREASED SATELLITE NUMBERS

Writt, Andrea J.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/59624

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

OPTIMIZATION OF CUBESAT GROUND STATIONS
FOR INCREASED SATELLITE NUMBERS

by

Andrea J. Writt

June 2018

Thesis Advisor: James H. Newman
Co-Advisor: Giovanni Minelli

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
OPTIMIZATION OF CUBESAT GROUND STATIONS FOR INCREASED
SATELLITE NUMBERS

5. FUNDING NUMBERS

6. AUTHOR(S) Andrea J. Writt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 This thesis contributes to the growing body of research concerned with the issue of the increasing
numbers of government small satellites (SmallSats) and the limited number of ground stations available to
support these missions. To understand this “many satellite, few ground station” problem, a Monte Carlo
simulation is used to identify the point at which a single ground station is expected to be overwhelmed,
specifically looking at the case of the Mobile CubeSat Command and Control (MC3) ground station at the
Naval Postgraduate School (NPS). Ground station saturation is defined in terms of data downlink
requirements and the increasing number of conflicting passes as the number of SmallSats grows. An
assessment of when one ground station becomes insufficient for a growing number of SmallSats is the
result. The MATLAB software tools created to generate these scenarios are generic and can be used to
extend this work to investigate other scenarios of SmallSats and multiple ground stations.

14. SUBJECT TERMS
small satellites, SmallSats, cube satellites, Cubesats, Monte Carlo simulation, Mobile
CubeSat Command and Control, MC3, satellite operations center, SOC, pass conflicts,
ground station optimization, ground station saturation

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

OPTIMIZATION OF CUBESAT GROUND STATIONS FOR INCREASED
SATELLITE NUMBERS

Andrea J. Writt
Captain, United States Marine Corps
BSME, University of Arkansas, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SPACE SYSTEMS OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
June 2018

Approved by: James H. Newman
 Advisor

 Giovanni Minelli
 Co-Advisor

 James H. Newman
 Chair, Department of Space Systems Academic Group

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This thesis contributes to the growing body of research concerned with the issue

of the increasing numbers of government small satellites (SmallSats) and the limited

number of ground stations available to support these missions. To understand this “many

satellite, few ground station” problem, a Monte Carlo simulation is used to identify the

point at which a single ground station is expected to be overwhelmed, specifically

looking at the case of the Mobile CubeSat Command and Control (MC3) ground station

at the Naval Postgraduate School (NPS). Ground station saturation is defined in terms of

data downlink requirements and the increasing number of conflicting passes as the

number of SmallSats grows. An assessment of when one ground station becomes

insufficient for a growing number of SmallSats is the result. The MATLAB software

tools created to generate these scenarios are generic and can be used to extend this work

to investigate other scenarios of SmallSats and multiple ground stations.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. PURPOSE AND OBJECTIVE ...3
C. LITERATURE REVIEW ...3
D. SUMMARY ..5

II. SCOPING THE PROBLEM ...7
A. INITIAL CONSIDERATIONS ..7
B. ASSUMPTIONS ...9
C. DEFINING SATURATION ..11
D. SUMMARY ..17

III. METHODOLOGY AND APPROACH ...19
A. SCENARIO DURATIONS ...19
B. MATLAB-STK INTERFACE ..22
C. MONTE CARLO OPTIMIZATION ...27

1. What Monte Carlo Simulations Do ..27
2. Why Monte Carlo is Beneficial for This Specific Problem28

D. SUMMARY ..29

IV. TEST SCENARIOS AND RESULTS ..31
A. SCENARIO FORMULATION...31
B. ANALYSIS AND OBSERVED TRENDS ...36
C. SUMMARY ..46

V. CONCLUSION ..47
A. APPLICATIONS ...47
B. RECOMMENDATIONS FOR FOLLOW-ON RESEARCH

AND POTENTIAL IMPLICATIONS ...48

APPENDIX . MATLAB SCRIPTS ..50
A. MONTE_CARLO_LOOP ...50
B. RANDOM_SATELLITE_GENERATOR ...51
C. CONFLICT_COMPILER ..53
D. PLOTTING SCRIPTS...54

1. Boxplot ..54
2. Downlinked Data ..55

 viii

3. Saturation Score ...57

LIST OF REFERENCES ..62

INITIAL DISTRIBUTION LIST ...64

 ix

LIST OF FIGURES

Figure 1. STK Simulation of Many Conflicting Satellite Contacts Over One
Ground Station ...2

Figure 2. Classical Orbital Elements. Source: [8]. ..8

Figure 3. Orbital Altitudes of CubeSat Missions Since 2000. Source: [9].10

Figure 4. Depiction of 10 Degree Elevation Angle ...11

Figure 5. Depiction of Overhead Time Vs. Mission Required Threshold Time13

Figure 6. Comparison of Same Scenarios with Different Time Intervals: 1 Day
(Top) Versus 1 Week (Bottom) ...20

Figure 7. Comparison of Same Scenarios with Different Time Intervals: 1
Month (Top) Versus 3 Months (Bottom) ...21

Figure 8. Monte Carlo Loop Input Variables ..22

Figure 9. MATLAB to STK Scenario Creation Code Snippet..................................24

Figure 10. STK Access Report for 1 Week Scenario of “20 Random Satellites”26

Figure 11. Slice of Overlapping Accesses in STK ..27

Figure 12. Chronological Satellite Access Conflicts...28

Figure 13. Average Satellites in View...36

Figure 14. Box Plot of 20 Iterations for One-Month Duration Scenarios37

Figure 15. Low Complexity Mission Downloaded Data ..39

Figure 16. Medium Complexity Mission Downloaded Data41

Figure 17. High Complexity Mission Downlinked Data ..42

Figure 18. Saturation Scores for Low Complexity Mission Scenarios44

Figure 19. Saturation Scores for Medium Complexity Mission Scenarios45

Figure 20. Saturation Scores for High Complexity Mission Scenarios46

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Reference Missions Data Downlink Requirements for One Week.
Sources: [7], [12], [13], [14], [15], [16]. ..14

Table 2. Pass Requirements for Data Downlink Capacity. Sources: [7], [12],
[13], 14], [15], [16]. ...15

Table 3. Increasing Conflicts Percentages for Various Satellite Numbers and
Time Periods ..33

Table 4. Total Unweighted and Weighted Percent of Satellites
Simultaneously in View ...34

Table 5. Interpolated Saturation Values for Low Complexity Missions40

Table 6. Interpolated Saturation Values for Medium Complexity Missions42

Table 7. Interpolated Saturation Values for High Complexity Missions43

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AOS acquisition of signal

APT average pass time

COM component objective model

CubeSat cube satellite

DoD Department of Defense

DR data rate

EF efficiency factor

GEO geostationary Earth orbit

GUI globally unique identifiers

LEO low Earth orbit

LOS loss of signal

MATLAB Matrix Laboratory

MBSE model based systems engineering

MC3 Mobile CubeSat Command and Control

NPS Naval Postgraduate School

ODD objective data download

OSF objective saturation factor

RAAN right ascension of the ascending node

RF radio frequency

ROT required objective time for data downlink

RTT required threshold time for data downlink

SmallSat small satellite

STK 10 Systems Tool Kit 10

TDD threshold data download

TSF threshold saturation factor

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor and co-advisor for their endless

positivity, tireless encouragement, and ruthless support.

To my family, friends, peers, and small fuzzy creatures who have kept me in high spirits

along the way, thank you.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

The population of small satellites in low Earth orbit (LEO) will continue growing

over the next several years due to falling development costs and increased launch

opportunities. The population increase may strain the communication capacity of these

satellites and terrestrial stations that support them. For users monitoring and utilizing data

from cube satellites (CubeSats) [1] and other very small satellites (SmallSats) [2] that can

be launched en masse, ground station operations will become significantly more difficult

as more satellites compete for limited resources. The innovative engineering focus has

been largely devoted to designing and launching these new satellites, but the ground

support systems have not yet received as much attention. This thesis examines how those

systems will be affected as the number of satellites each station must track increases

many-fold.

This increase in the CubeSat population quickly overwhelms the ground

infrastructure supporting them. Accommodating larger numbers of satellites with few

ground stations will consequently lead to conflicting contacts. The term contact is

synonymous with the terms access or pass throughout this thesis. It is defined as the

duration of time from the acquisition of signal (AOS) to the loss of signal (LOS) of a

satellite communicating to its corresponding ground station. All of these contacts assume

line-of-sight from the ground station to the satellite for radio frequency (RF)

communications. Consequently, AOS/LOS often overlaps with the time spent above the

local horizon. Satellites in a geostationary Earth orbit (GEO) would be an exception. This

research focuses on LEO satellites, which have fast-moving, low-altitude orbits. The

LEO regime will see the largest population increase of SmallSats.

It is assumed that each satellite has data to deliver to a ground station. A problem

arises when there are multiple satellites in view of this ground station, as it can only

service one satellite at a time. This creates a scenario where not every one of them may

be able to downlink its full-required data for an extended period of time. An example

 2

shown in Figure 1 depicts four satellites competing for ground station availability to relay

data to the ground and accomplish their missions. This simulation is generated through a

program called Systems Tool Kit (STK). Additionally, it is assumed that each ground

station only has one antenna available that can only service one satellite at a time.

Figure 1. STK Simulation of Many Conflicting Satellite Contacts Over
One Ground Station

Depending on how crowded LEO becomes, a single satellite may not have the

opportunity to deliver its data for multiple consecutive orbits, causing it to be out of

communication with the ground station for extended periods. Optimizing passes requires

allotting adequate attention and services for each satellite, based on capability, data rates,

and mission priority. Knowing the saturation point for a particular ground station network

can help determine the approach to utilize for maximizing its capacity.

 3

B. PURPOSE AND OBJECTIVE

This thesis determines the satellite population quantity likely to overwhelm a

ground station network, degrading it to a point where it is no longer able to guarantee

minimum dedicated communications passes to the satellites it is responsible for tracking.

Specifically, the intent of this thesis is to define what saturation looks like for a single

ground station. The process selected to conduct this analysis is a Monte Carlo method

that is general enough to be applied to multiple orbital constructs. A Monte Carlo

algorithm runs a simulation repeatedly, with random values, to demonstrate the wide

array of possible answers with minimal amounts of risk involved. The specifics of the

program will be discussed in further detail in Chapter III. Knowing when a ground station

is likely to saturate should help civil, commercial, and Department of Defense (DoD)

organizations be able to project the need for optimization of existing ground stations and

procurement of new ground stations.

C. LITERATURE REVIEW

Government, the commercial sector, and academia all agree on the issues posed

for the LEO orbital regime in the near future. The problem of excessive satellites per

ground station has become a topic of discussion among operators and planners within this

growing field of small satellite users. Aspects of this situation to include algorithms,

mission architecture design, and scheduling solutions have been investigated, but much

of the issue still remains unsolved.

Acknowledged in the joint university study on “Emergent Trends for CubeSat

Ground Systems” [3], the one-to-one correlation of a single satellite for a single ground

station will quickly disappear as we learn to juggle the complications of multiple

satellites operating on the same frequencies and communicating with the same ground

station. This work identifies commonly noted trouble areas and analyzes where machine

learning algorithms and further development of the architectures could be employed to

improve operations. Continuing work to expand upon the generic framework will

advance integration of new programs within the architecture to contribute to the

 4

development of common applications, similar to the ones we use daily on our phones,

seamlessly handling larger numbers of satellites.

The emerging technology of model based systems engineering (MBSE) is also a

new, useful way to look at the entire design trade space through multiple analysis tools,

design methods, optimization and verification of the systems [4]. Partners from the

academic, commercial, and government sectors are working together to create

frameworks to improve the mission design and operations of an individual satellite and

its individual ground station. A program that is commonly used in this field simulates

satellites’ orbits and their communication with supporting ground networks. Through this

tool and its interface with the aforementioned program, STK, specific extraction of a

portion of the system can be analyzed. STK is utilized as the orbital propagator while

MBSE helps to address the mission-specific design and parameters. This analysis is then

integrated back into the scenario to improve overall mission effectiveness.

Separately, Dr. Sara Spangelo investigated the common constraints experienced

by ground stations in her dissertation by identifying aspects such as mass, size, volume,

power and funding levels of these small satellite missions [5]. Through the dynamically

varying durations of CubeSat missions and their correlated ground stations, average

access time of the network is calculated. Her work created a scheduling formulation to

maximize satellites’ data relay to the ground, based on current mission parameters from

existing small satellites with varying downlink requirements.

Finally, the body of research being conducted at the Naval Postgraduate School,

related to the many satellite, few ground station problem, aims to contribute by framing

solutions to reconcile some of the known operating constraints. Doctoral candidate Mr.

Giovanni Minelli’s work [6] addresses the collection of aspects that define this

optimization problem and creates a formulation to best communicate with multiple

satellites concurrently in view of a ground station. His work inspired the basis for the

question this thesis is answering, as well as the work of another graduate student, Major

John Leone III. Leone’s thesis contains an in-depth analysis on how to quantitatively

assess PicoSats Realizing Orbital Propagation Calibrations Using Beacon Emitters

(PropCube) satellite passes as a function of initial azimuth and time during the pass based

 5

on historical pass data [7]. Leone identifies which satellite accesses provide the most data

downlink, and Minelli’s shows how to efficiently slew between the satellites in view.

This thesis characterizes the missing piece of determining when ground station saturation

occurs and optimization of passes needs to be considered.

The concerns outlined by each author are not unique to their separate locations,

sponsors, or missions, but rather pieces of a larger puzzle. Technologists worldwide aim

to solve this puzzle over the next few years as these issues are amplified by the increasing

numbers of small satellites used to perform novel scientific and technological research.

Together these efforts will help identify and mitigate the many satellite, few ground

station problem as the number of small satellites continues to increase for research and

operational purposes.

D. SUMMARY

Chapter I has discussed the issue of the increasing ratio of CubeSats to ground

stations, which should directly correlate to an increase in overlapping downlink contacts

these satellites have with the ground station. First, it provided the context for this

concern. It then described the purpose and intent of this thesis, which is to identify the

point at which increased numbers of satellites overwhelm a ground site. Finally, this

chapter covered the studies conducted by other researchers pertaining to the growing

interest in small satellites, which support and enable this work.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. SCOPING THE PROBLEM

This chapter describes in more detail the formulation of the assumptions that the

Monte Carlo simulation is based upon, and explores the preliminary thoughts of what

factors contribute to saturation. It provides the foundational concepts to understand the

methodology in the following chapters.

A. INITIAL CONSIDERATIONS

At first, the simulation of increasing numbers of satellites and determining their

behavior with respect to one ground station seemed rather straightforward. As the

investigation of the problem progressed however, many more variables presented their

impact on the issue of a ground station reaching its maximum capacity. Therefore, a

versatile program that can simulate a simple scenario initially, and build to more complex

models, was the best fit. The goal was to identify the range of where there is a slight

degradation, a more obvious degradation, and complete saturation to the ground station

capability, where it is impossible to meet mission objectives. Reference satellites are

utilized to look at the threshold and objective time-in-view of a ground station needed for

the satellite to complete its mission. Looking at the amount of time it takes for each

satellite to conduct a data transfer to a ground station, is there enough time for the task to

be completed before another satellite needs to conduct its data transfer?

Based on existing research, original simulation cases provide the data to perform

this analysis. Through studying comparable problems, their methods, and results, this

thesis intends to provide a solution for this specific facet of ground station network

optimization. A series of test scenarios with differing time periods collects the following

data shown in this report. Trends in scenarios become obvious through the numerous

iterations of this method. Giovanni Minelli, a researcher at the Naval Postgraduate School

(NPS) SmallSat lab, has been investigating this problem for the past few years and

produced the basis on which this thesis is written. The Matrix Laboratory (MATLAB)

scripts are his original work and create the foundation for the master Monte Carlo code

conducting these simulations. The in-depth description of the benefits of the Monte Carlo

 8

simulation, are explained in the Methodology and Approach section in Chapter III. Each

situation is conducted for a single facility, the NPS Mobile CubeSat Command and

Control (MC3) ground station, in Monterey, California. The different cases observed start

simple and grow more complex as the number of satellites is increased. Scenarios with

satellites in random orbits are modeled, but these issues are not unique to random,

disaggregated, individual satellites. The issues are shared with satellites communication

with one or many ground stations in diverse latitudes.

To create a scenario with random satellites, all of the orbital elements of each

satellite needed to be taken into consideration. Evaluating which parameters provide the

most realistically generated orbits leads to the conclusion that all of the six main orbital

elements had a significant influence on the outcome of the program. Figure 2 displays

these classical Keplerian orbital elements [8]. The six orbital parameters that were varied

include the eccentricity, semimajor axis, inclination, right ascension of the ascending

node (RAAN), argument of perigee, and the mean anomaly of each satellite’s orbit.

Figure 2. Classical Orbital Elements. Source: [8].

 9

The randomization of these variables was conducted through using a

preprogrammed function in MATLAB, known as the rand function. This function

randomly selects a uniformly distributed number between one and zero. Although the

regularity of the uniform distribution removes some of the randomness from the scenario,

it still provided the best fit for the problem. The rand function was used extensively to

create arbitrary numbers for each of the orbital parameters, within a certain range, for

each individual satellite created in the random scenarios.

As more time was invested in creating the script in MATLAB, which controls the

scenario in STK 10, a multitude of different factors surfaced that begged for further

consideration. It became clear that collection of data for different time intervals such as

one day, one week, one month, and one year produced very diverse results. The number

of satellites naturally had an impact on the number of conflicts recorded, as well as the

number of iterations performed by the Monte Carlo loop. Once selections were made for

which elements should remain constant, noticeable trends began emerging in the

collected data.

B. ASSUMPTIONS

This section describes the assumptions used to provide a baseline for the

scenarios. As other considerations were accounted for, these assumptions were adjusted

throughout the simulations and are noted in greater detail in the test scenarios, contained

in Chapter IV. Figure 3 depicts the altitude of the perigees for all recorded CubeSat

missions from the year 2000 through present day [9]. Based on this data, the LEO altitude

window that was selected for the purpose of this thesis was between 400 and 700

kilometers, since the vast majority of small satellite missions fall within that range.

 10

Figure 3. Orbital Altitudes of CubeSat Missions Since 2000.
Source: [9].

Eccentricity is calculated based on the perigee and apogee of an orbit, which are

the nearest and farthest points from Earth, respectively. With the set minimum and

maximum altitudes noted above, the most extreme eccentricity an orbit could have is

0.02. When the randomizing function from MATLAB is applied, orbits will be

constructed to have an eccentricity between 0.02 and zero, where an orbit with a zero

eccentricity is also referred to as a circular orbit.

Early in the scenario generation, another assumption was the number selected for

the maximum inclination of the orbits. The orbital inclination was initially set to 70

degrees. This was based on the fact that the majority of the world population lives

between 70°N and 70°S latitude [10]; therefore, a ground station monitoring satellite

missions would have a greater chance of being placed in a populated region. Later in the

course of the research, the inclination was modified to 98 degrees, to account for polar

and sun-synchronous orbits as well.

 11

Communication only happens when the satellite is within line-of-sight, above the

local horizon. Once the spacecraft is above the horizon, due to geographical

considerations and terrestrial noise, it is reasonable to mask the elevation angle at 10

degrees. Within the scenario, the elevation angle for the simulated ground station is

manually set at 10 degrees and saved in the base scenario. A pass begins when the

satellite is at 10 degrees above the horizon at AOS, it then proceeds through its maximum

elevation of the pass and concludes at LOS, 10 degrees above the local horizon. The

duration between when the satellite rises and sets at above 10 degrees is considered

overhead time. Figure 4 provides a representation that clearly shows the elevation angle

selected for the ground station.

Figure 4. Depiction of 10 Degree Elevation Angle

C. DEFINING SATURATION

The complexity of the term saturation became apparent as the test cases began to

provide useful data. To gain a better understanding of the depth of the issue, several

facets called for further investigation. First, it has been determined that a single number

or point cannot define saturation, but rather an average factor can be calculated to assess

the range in which saturation occurs. Larger numbers of satellites provide an obvious

correlated increase in conflicting accesses, but an interesting characteristic was the

 12

number of satellites that had zero accesses to the ground station for the entire scenario.

With the random orbit generator, a percentage of the satellites were put into orbits with

an inclination that would never pass within ten degrees elevation, line of sight of the NPS

ground station at 36.6°N, 121.9°W [11]. It was found that an average of approximately

23% of all randomly generated satellites for the 1000 satellite case did not have orbital

parameters permitting radio contact. The 500 satellite and 100 satellite cases fell within

one percent point of this value as well. Satellite scenarios discussed in this thesis will be

referred to by their simulated number of N satellites, but to provide meaningful results it

is important to note that these case will contain N*(1-.23) satellites that have at least

some contact time with the NPS ground station. Therefore, it is reasonable to conclude

that each N satellite case is actually a .77N satellite case and each “N satellite” scenario

will be placed in quotations to indicate that it is describing N random satellites, but only

.77N satellites that have contact with the ground station. This factor is discussed in

further detail in Chapter IV. Placing a ground station at a different latitude, would clearly

yield different results. Saturation of the station is caused by only those satellites whose

orbital geometry enables contact. When determining where to place a ground station,

operators are not typically looking at a random number of “N satellites,” but this factor

may be useful to know how many randomly distributed satellites a ground station could

service based on its latitude.

The next aspect of saturation worth considering involved the competing interests

of the conflicting satellites. All satellite owners and operators want the full access time

they were assured they would receive to conduct their missions, when overhead the

ground station. The term this thesis uses to describe this concept is required threshold

time. Required threshold time should be smaller than the previously mentioned overhead

time; if not, satellites would rarely, if ever, meet their threshold data requirements. As the

term hints, required threshold time is the absolute minimum time a satellite needs to

successfully complete its mission, in this case over the duration of one week. Therefore,

the required threshold time for a single pass is a fraction of that weekly requirement and

is dependent on the number of passes the satellite will make in that timeframe. Figure 5

 13

provides a clearer depiction of the relation between overhead time and required threshold

time.

Figure 5. Depiction of Overhead Time Vs. Mission Required Threshold
Time

To frame this idea, consider that when there is one satellite overhead, that satellite

has more than 100% of the time it requires to communicate with the ground. If there are

two identical satellites overhead simultaneously, the required threshold time is now

doubled, because each satellite still needs its full required time, but the ground station can

only communicate with one at a time. Therefore, the ground is only providing half of the

overhead time for each satellite, and that may be less than that required by each of the

two satellites. This, of course, continues as the number of conflicting satellites increases.

Lastly, to analyze the concept of saturation, low, medium, and high complexity

mission parameters were used to evaluate what a minimum required threshold time looks

like for varying CubeSat missions. Reference satellites were selected to give real-world

examples. Table 1 displays the satellites utilized to provide the baseline requirements and

an initial look at the required threshold rates. The data rates mirror current CubeSat

missions and the minimum and maximum data values were approximated based on the

size of the products each satellite type is downloading. The one-week period is used as a

benchmark to assess the absolute minimum amount of data needed within that period to

be considered a mission success. This timeframe was selected because a one-day analysis

period does not provide enough contact time for some of the lower complexity missions

 14

to achieve the possibility of adequate data attainment. One week provided enough data to

average out the daily variations in the pass schedule due to the differing orbital

geometries. From a Monte Carlo scenario of “100 random satellites” performed for 10

iterations at the NPS MC3 ground station, the average number of times each satellite

passes over the ground station was measured at 3.09 times per day or 21.65 per week. On

average, a satellite pass lasted 394.9 seconds. The intent of displaying the data in this

manner is to provide the requirements in tangible terms for mission planning. The low-

complexity mission is based on known historical data from one of the NPS PropCubes.

The medium and high-complexity missions are modeled after expected data usage for

geolocation missions and CubeSats providing high-definition streaming-video

capabilities.

Table 1. Reference Missions Data Downlink Requirements for One
Week. Sources: [7], [12], [13], [14], [15], [16].

Mission Complexity Low Medium High

Satellite Name/Mission Ex: PropCube-
Fauna

Ex: RF
Geolocation

Ex: CubeSat w/
Streaming Video

Threshold Data Download (TDD)
(bytes per week) 5 KB 50 MB 50 GB

Objective Data Download (ODD)
(bytes per week) 12.5 KB 200 MB 200 GB

Data Rate (DR)
(bits per second) 9.6 kbps 1 Mbps 100 Mbps

Average Number of Passes (per
week) 21.65

For each case, the threshold data download (TDD) and objective data download

(ODD) requirements were established. From the data rate capability, a minimum amount

of downlink time, per week, was established. If the simulation shows that the average

satellite does not receive its minimum required time, then the saturation point has been

reached. This problem becomes even more convoluted when higher complexity missions,

which have the ability to vary their data rate, are taken into account. Future work will

need to address aspects such as high complexity satellites with complex downlink

 15

capabilities. Such missions can transfer data in a more efficient manner by varying their

data rates throughout a pass, depending on the link margin. However, variable data

downlink rates are not addressed in this thesis.

Table 2 uses the information from Table 1 to scale the data requirements from

one-week, down to the threshold and objective data requirements per pass. A satellite

efficiency factor is utilized to calculate the amount of time it will take for a satellite to

downlink its minimum data. These efficiency factors differ based on the knowledge that

higher data rate communications systems are usually more sophisticated, enabling such

systems to use more of each pass over the ground station. Looking at the data rates and

the time required to achieve them, the required threshold time (RTT) for data downlink

and required objective time (ROT) for data downlink, provide values to calculate the

saturation factors for each mission complexity.

Table 2. Pass Requirements for Data Downlink Capacity. Sources: [7],
[12], [13], 14], [15], [16].

Mission Complexity Low Medium High

Satellite Name/Mission Ex: PropCube-
Fauna

Ex: RF
Geolocation

Ex: CubeSat w/
Streaming Video

Threshold Data Download (TDD)
(bits per pass) 1.27 kb 12.70 Mb 12.70 Gb

Objective Data Download (ODD)
(bits per pass) 3.18 kb 50.79 Mb 50.79 Gb

Data Rate (DR)
(bits per sec) 9.6 kbps 1 Mbps 100 Mbps

Efficiency Factor (EF) 0.001 0.3 0.5

Average Pass Time (APT) (sec) 394.9 394.9 394.9

Required Threshold Time (RTT)
for Data Downlink (sec per pass) 132.2 42.33 254

Required Objective Time (ROT)
for Data Downlink (sec per pass) 331.2 169.3 1015

Threshold Saturation Factor
(TSF) 0.33 0.11 0.64

Objective Saturation Factor (OSF) 0.84 0.43 2.57

 16

The following equations were used to calculate the numbers in Table 2. Equations

(1) and (2) were used to calculate the numbers for the RTT and ROT, based on the values

in Table 2 for the mission complexity. This equation is based solely on the mission

requirements and is not related to the orbital geometry.

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝐷𝐷 𝑥𝑥 𝐸𝐸𝐸𝐸

 (1) 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑂𝑂𝑇𝑇𝑇𝑇
𝑇𝑇𝐷𝐷 𝑥𝑥 𝐸𝐸𝐸𝐸

 (2)

The third (3) and fourth (4) equations display the method used to produce the

saturation factors for the threshold (TSF) and objective (OSF), which incorporates the

mission requirements and orbital geometry. The threshold saturation factor (TSF) is the

percentage of the 6.6-minute pass (on average) that a single satellite needs to be in

contact with the ground station to achieve its mission. The objective saturation factor

(OSF) is the percentage of the average pass needed to achieve the objective data

download. Table 2 shows these saturation factors.

𝑅𝑅𝑇𝑇𝑇𝑇 = 𝐷𝐷𝑇𝑇𝑇𝑇
𝐴𝐴𝐴𝐴𝑇𝑇

 (3) 𝑅𝑅𝑇𝑇𝑇𝑇 = 𝐷𝐷𝑂𝑂𝑇𝑇
𝐴𝐴𝐴𝐴𝑇𝑇

 (4)

A saturation factor of less than 1.0 says that the data download goal, either

threshold or objective, can be accomplished for a single satellite of that complexity using

that ground station. So, the PropCube and the Geolocation mission examples have data

download margin for both threshold and objective downloads for at least one satellite,

whereas the streaming video satellite can achieve its threshold for one satellite, but not its

objective data downloads. When a satellite has data download margin, it is clear that

more satellites of that complexity can be supported before the system becomes saturated.

Therefore, saturation is defined as occurring when the number of average satellites

increases to the point where the average satellite can no longer receive its threshold data

download. The Monte Carlo simulations are used to determine this quantity of satellites.

 17

D. SUMMARY

The consideration of overhead time and required threshold time with respect to

the selected reference satellites are each elements of determining ground station

saturation. These aspects begin to create a clearer understanding of the need for

optimization, providing the foundation of the problem this thesis addresses. This chapter

provided the initial considerations of what at first may have seemed a simple, one-to-one

correlation as the satellite-to-ground-station ratio grows. It described the early

assumptions of the stated problem, and the relevant variables based on these assumptions.

In summary, Chapter II defined factors that contribute to the definition of saturation.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. METHODOLOGY AND APPROACH

This section explores the logic behind the programming, scenario selection, and

data collection. Before fully automating the program, manually inputted test cases were

run. These initial scenarios were used to assess the most appropriate time period, number

of iterations, and different-sized cases with varying satellite quantities, to accurately

display meaningful data. Through these procedures, the hope was to be able to identify

when the communications capability went from being slightly degraded to completely

overwhelmed.

A. SCENARIO DURATIONS

The data collected for scenarios lasting one day and one week did not provide

enough contacts from the satellites to the ground station to allow for a statistically

consistent depiction of trends over time. However, at the one-month timeframe, the data

collected behaved in a more repeatable manner. Further tests were conducted at three

months and longer timeframes. The very slight deviations shown in these longer time

periods showed that statistical significance was achieved for scenarios run for one month.

The single-month scenario provided the information needed to begin observing trends.

For this reason, the scenario times for the bulk of the cases discussed in this thesis all

lasted one month to reduce the necessary processing time, but still provide enough data

for accurate analysis. Figure 6 shows two plots, where the graph on the top depicts a

scenario with a time interval of one day. The plot on the bottom shows the same scenario

with a time interval of one week. The following two plots in Figure 7 show that for the

same scenario shown in Figure 6, the plotted points appear to show less deviation

between the one-month scenario time on the top and the three-month scenario on the

bottom. Therefore, the selected timeframe is outlined red.

 20

Figure 6. Comparison of Same Scenarios with Different Time Intervals:
1 Day (Top) Versus 1 Week (Bottom)

 21

Figure 7. Comparison of Same Scenarios with Different Time Intervals:
1 Month (Top) Versus 3 Months (Bottom)

 22

A Monte Carlo algorithm of repeated random samplings generated these

simulations, which created the increasing number of satellites by varying orbital

parameters. This algorithm was implemented in MATLAB, which interfaces with and

opens a new scenario in STK, calculating the accesses of each satellite to the ground

station and relaying this data back to MATLAB to then create files that store the data

chronologically. The manipulation of the data for numerical and graphical analysis was

then conducted in MATLAB. The following sections describe how the two programs

interact and the user inputs required to vary parameters within the simulations.

B. MATLAB-STK INTERFACE

Before the user initiates the main code titled “Monte_Carlo_Loop.m,” included in

the appendix, there are a few variables that must be selected to create a scenario. The

script provides a generic platform to run N iterations of Y satellites, where the operator

can select both variables, N is the number of iterations, and Y is the number of random

satellites. Figure 8 displays the variables that must be set, as they appear in the MATLAB

script. The yellow highlighted portions show the values that the user must input and the

green text describes their purpose.

Figure 8. Monte Carlo Loop Input Variables

The first portion of the code allows the operator to select the maximum number of

satellites to be created for the scenario. The step size, which is the next input value,

determines the increments at which the satellite numbers grow within the scenario. For

example, if the step size is 10, with a maximum number of “100 satellites,” the program

 23

will create 10 satellites, followed by 20 new satellites, followed by 30, and so forth, until

it has reached the desired maximum. After this, the number of iterations of the Monte

Carlo loop is then set.

The next values the user must input are the minimum and maximum altitude, as

well as the maximum inclination desired for the creation of the randomly generated

orbits. The next three lines in the program allow the user to determine the desired start

and stop time for the scenario, as well as specify the name of the ground station that will

be observed. The script then allows the operator to type the desired location for the data

files to be stored on the computer.

At this point, the MATLAB script directly opens STK through a component

object model (COM) interface [17]. The commands used in the MATLAB code operate

as function calls that emulate button clicks in the graphical user interface (GUI), which

configures and runs the propagation software that drives STK. Code snippets are

provided to assist users with connecting and customizing through the programming

interface. Figure 9 shows an example of the MATLAB code samples provided online to

open STK, create a scenario, and define properties within the scenario. If there is a

separate, previously-saved scenario file the user desires to open and populate, instead of

creating a new one, that modification that can be done at this point in the program as

well.

 24

Figure 9. MATLAB to STK Scenario Creation Code Snippet

The main file script now calls on two subroutine files known as functions. These

files require no inputs from the user, but are solely there to support the overarching

Monte Carlo Loop script. The first file that is called upon is the

“Random_Satellite_Generator.m,” contained in the appendix. This script contains all of

the detailed commands to create the satellites in STK for the specified number of

iterations. Once the program has stored the data for each satellite’s pass over the ground

station, it deletes all of the satellites to make room for the next iteration of random

SmallSats. The data collected and stored contains the AOS, LOS, duration of each pass,

the satellite’s assigned number for tracking purposes, and the name of the ground station.

This script also displays the number of satellites for an entire scenario, whose random

orbital elements never allowed for the spacecraft to pass over the ground station at all.

This output is called the number of misses.

The second subroutine file, additionally provided in the appendix, is called the

“Conflict_Compiler.m.” This is where the program compares the AOS and LOS from

one satellite to the AOS and LOS of another to look for overlapping time periods. The

term used for each period of time where there is at least one satellite in view is a slice.

These slices are separated by the time when there are no satellites in view, and each slice

contains anywhere from one satellite all the way up to dozens of satellites all in view of

 25

the ground station at the same time. This program then prints a few lines of text, the first

describing the total duration with at least one satellite in view. That output is followed by

a note that displays the duration in time, as well as percentage of total time, that there is

one satellite in view, two satellites in view, three, four, and so forth. This data is then

stored as a .mat file through MATLAB, and able to be accessed for later analysis.

In Figure 10, the access report shows a week’s worth of passes for a simulation

run with “20 random satellites.” Of the twenty satellites, fourteen satellites had passes

over the NPS ground station and Figure 10 shows that many conflicts can be seen for

these satellites. Figure 11 gives a closer look, showing a segment of time over the one-

week scenario period. The images depict the overlap of the satellites simultaneously in

view of the ground station. The box outlined in red focuses on the overlapping durations

of the satellite passes, for one set of conflicted passes.

 26

Figure 10. STK Access Report for 1 Week Scenario of “20 Random
Satellites”

 27

Figure 11. Slice of Overlapping Accesses in STK

 Figure 12 further displays the breakdown of the concept of these slices. It shows

three individual examples of slices of intersecting CubeSat access times with the ground

station. The Conflict Compiler script accounts for every new AOS by adding a one to the

number of conflicting satellites in that slice and subtracts the number one, at the next

chronological LOS, from the next slice. The first slice in the figure depicts two satellites

with overlapping durations. The second and third slices display increasingly more

complex scenarios, where conflicting accesses begin to pile up, ultimately creating more

and more scheduling issues. The Conflict Compiler script is designed so as not to double

count conflicts by accounting for two or more satellites-in-view separately and not

including one satellite-in-view in that number.

 28

Figure 12. Chronological Satellite Access Conflicts

Since these subroutines are contained within the Monte Carlo Loop code and

repeated continuously, run time was decreased by allowing STK to remain open for each

iteration, rather than completely closing the program to start a new scenario each time

after the satellites were deleted, however the time to run a large scenario is still not

insignificant. To further understand the capability of this program and the reasoning

behind the design, the simulation style is outlined below.

C. MONTE CARLO OPTIMIZATION

1. What Monte Carlo Simulations Do

According to Palisade, one of the leading software organizations in the risk and

decision making tools industry [18], a Monte Carlo simulation is defined as:

A computerized mathematical technique that allows users to account for
risk in quantitative analysis and decision making. Monte Carlo simulation

 29

furnishes the decision-maker with a range of possible outcomes and the
probabilities they will occur for any choice of action. Monte Carlo
simulation performs risk analysis by building models of possible results by
substituting a range of values—a probability distribution—for any factor
that has inherent uncertainty. It then calculates results over and over, each
time using a different set of random values from the probability functions.
Depending upon the number of uncertainties and the ranges specified for
them, a Monte Carlo simulation could involve hundreds or thousands of
recalculations before it is complete and capable of giving an accurate
assessment. Monte Carlo simulation produces distributions of possible
outcome values.

2. Why Monte Carlo is Beneficial for This Specific Problem

This type of simulation is advantageous for this particular topic because the

hundreds of iterations of randomly created scenarios produce a high confidence value in

the percentages calculated. Conversely, with only a few iterations, a program such as this

would not collect enough data to provide a reasonable mean value; there would be far too

much deviation between cases. For example, prior to utilizing the Monte Carlo simulation

to repeatedly loop the code, one scenario was created and saved, but this required the user

to manually input different parameters to observe if there were any drastic changes.

Rerunning the same program and detecting changes was still possible, but due to the

random nature, one random simulation could be very different from the next. This creates

a large range of uncertainty rather than statistical accuracy. Those initial scenarios were

still very useful, but once the concepts were folded into a Monte Carlo operation, a

different random scenario could be automatically generated for as many times as

specified, providing much more confidence in the average.

With the reliable percentages calculated through the Monte Carlo algorithm,

organizations or individuals can base decisions on whether or not to expand their ground

station network for their projected number of satellites for future years. Through this

simulation, the latitude of the additional ground station(s) can be evaluated.

 30

D. SUMMARY

Chapter III discussed the interface method used to communicate from MATLAB

script files, to scenario generation in STK, back to data storage through MATLAB. The

justification behind the selection of a Monte Carlo algorithm was also given in this

chapter, as well as a description of the benefits it provides to this type of analysis.

 31

THIS PAGE INTENTIONALLY LEFT BLANK

 32

IV. TEST SCENARIOS AND RESULTS

This chapter will discuss the reasoning for selecting scenarios to illustrate the

interesting nature of the many satellite, few ground station problem. The chapter will also

present the results, observed trends, and the analysis of how these findings relate to the

reference satellite missions outlined in Chapter II.

A. SCENARIO FORMULATION

The selection of scenarios began through trial and error to observe how the access

conflicts grew as the satellite numbers increased. Beginning with a single, randomly

generated satellite, and increasing by twos, tens, and eventually several-hundred-satellite

intervals, the scenarios produced enough information to shed light on the results. The

percentage of conflicted time was the first calculation for each scenario. This calculation

was a simple ratio, displayed in equation (5), of the time spent with multiple (more than

one) satellites overhead, compared to the duration where at least one satellite was

overhead the ground station.

% Time Conflicted = Total duration of multiple satellites in view
Total duration of at least 1 satellite in view

 (5)

Table 3 shows the twenty-satellite step-size used to investigate the growing

percentages of time spent with multiple satellites in view of the ground station. It also

shows the percentages of the total scenario time spent conflicted with two through six

satellites simultaneously in view, during each of the “10” to “70 random-satellite”

scenarios. Table 3 only considers the orbital geometry of having multiple satellites in

view, and the analysis does not yet incorporate the threshold data download requirements.

 33

Table 3. Increasing Conflicts Percentages for Various Satellite
Numbers and Time Periods

Table 4 illustrates a side-by-side comparison of unweighted and weighted contact

time percentages as broken out by number of satellites simultaneously in view and

satellite population quantities for one month (31 days). The average values for each

number of satellites in view were calculated from fifteen iterations of random-satellite

scenarios. The mean percent time of N satellites-in-view was then multiplied by N to

determine the weighted overhead time for the entire scenario. The sum of these numbers

resulted in a total weighted overhead time percentage, greater than the feasible one

hundred percent that the system can support. For example, with a total weighted

overhead time of 200%, any given satellite could expect half of the time overhead to be

available for communications, and the average number of satellites in view for the

duration of the scenario would be two. The analysis determines whether this is an

adequate amount of contact time based on mission needs. If not, the ground station has

reached saturation.

 34

Table 4. Total Unweighted and Weighted Percent of Satellites
Simultaneously in View

Number of
Satellites
in View

1 10 100 250 500 1000 1 10 100 250 500 1000

0 98.65 86.04 24.95 2.91 0.09 0.00 98.65 86.04 24.95 2.91 0.09 0.00
1 1.35 12.98 35.41 10.44 0.63 0.00 1.35 12.98 35.41 10.44 0.63 0.00
2 0.94 24.01 18.59 2.18 0.01 1.87 48.01 37.18 4.36 0.02
3 0.04 10.79 21.86 5.15 0.04 0.12 32.38 65.59 15.46 0.11
4 0.00 3.63 18.99 9.12 0.13 0.00 14.54 75.94 36.48 0.52
5 0.95 13.24 12.81 0.37 4.74 66.19 64.06 1.86
6 0.21 7.70 15.00 0.85 1.26 46.19 90.02 5.11
7 0.04 3.78 15.07 1.71 0.29 26.43 105.5 11.97
8 0.01 1.61 13.18 2.98 0.05 12.85 105.5 23.88
9 0.00 0.61 10.20 4.72 0.01 5.47 91.84 42.45
10 0.20 7.04 6.59 1.97 70.43 65.94
11 0.06 4.42 8.47 0.62 48.57 93.18
12 0.02 2.58 9.96 0.21 30.92 119.5
13 0.00 1.34 10.77 0.06 17.41 140.0
14 0.00 0.66 10.74 0.01 9.25 150.3
15 0.00 0.31 10.00 0.00 4.63 150.0
16 0.00 0.13 8.72 0.00 2.04 139.5
17 0.05 7.14 0.91 121.4
18 0.02 5.51 0.39 99.11
19 0.01 4.02 0.16 76.44
20 0.00 2.80 0.03 56.05
21 0.00 1.84 0.01 38.56
22 0.00 1.14 0.00 25.05
23 0.00 0.68 0.00 15.57
24 0.38 9.22
25 0.21 5.18
26 0.11 2.84
27 0.06 1.55
28 0.03 0.80
29 0.01 0.41
30 0.01 0.22
31 0.004 0.12
32 0.002 0.05
33 0.0007 0.02
34 0.0002 0.01
35 0.0001 0.005
36 0.0001 0.004
37 0.00001 0.0003

Total
Percent

100 100 100 100 100 100 100 101 162 352 699 1397

1.00 1.01 1.62 3.52 6.99 13.97

15 Iterations, 1 Month Scenario, Random Satellites

Average Number of Satellites in View

Satellite Scenario Number Satellite Scenario Number
WeightedUnweighted

 35

The left-hand portion of Table 4 displays the unweighted overhead time

percentages. For smaller satellite populations, the distribution trends towards fewer

satellites in view on average. For all multiple-satellite cases, there are rare instances

where a substantially larger than average quantity of satellites is immediately in view of

the station. Even in the “1000-satellite” case, there are approximately 14 satellites in view

at any one point in time but occasionally up to 37 satellites can be demanding the ground

station’s resources. Not too surprisingly, when the satellite population grows large

enough, the station experiences virtually no inactivity.

In contrast, the right side of Table 4 provides the weighted contact time

percentages. The total weighted overhead time percentage shows how over-subscribed

the ground station is, but this over-subscription does not mean that the ground station is

saturated. Saturation comes from whether or not the satellites can accomplish their

threshold mission in the time available (the RTT), as calculated in Chapter II, equation

(1). The total weighted overhead time percentage is a measure of how much capacity is

demanded of the ground station when multiple satellites are in view.

Table 4 also shows the average number of satellites overhead throughout the 31-

day scenario duration. For example, the scenario with “100 satellites” averages between

one and two satellites overhead, for the amount of time that there are any satellites in

view. Of the fifteen Monte Carlo iterations, the calculated average converged on 1.6

satellites always in view of the station. One interpretation of this result is that with all

other factors kept equal, each satellite could expect their total overhead time available for

communications contact to be divided by 1.6. If this amount of contact time were less

than the RTT, then saturation would have occurred. Figure 13 shows the average number

of satellites in view for the different Monte Carlo simulations.

 36

Figure 13. Average Satellites in View

To better visualize the rise in conflicting passes, Figure 14 displays conflict

quantities in the form of a box plot with scenarios containing “10, 30, 50, 70, 90, 110,

130, and 150 satellites.” It displays the increase in pass conflicts and the range of

deviation when evaluating 20 iterations.

Box plots provide a visualization of summary statistics for data samples [19],

allowing the study of a single group of measurements. The horizontal line across the

width of the box indicates the median value from the data set. The bottom and top

horizontal lines depict the 25th and 75th percentiles of the data, respectively. A variation

of the box plot, the notched box plot, used in Figure 14, accentuates the varying locations

of the medians, for the purpose of comparison.

 37

Figure 14. Box Plot of 20 Iterations for One-Month Duration Scenarios

All of the values contained within the box are defined as the inter-quartile range,

since they fall between 25% and 75%, which shows the spread of the observation cases

[20]. The brackets that extend vertically beyond the box account for the extreme cases, or

outliers. This plotting method shows that since the medians in Figure 14 do not fall

reliably at the center of each box, scenarios with many more iterations could be run to

increase confidence in the results.

B. ANALYSIS AND OBSERVED TRENDS

The aspects of saturation identified in Chapter II are revisited in this section and

come together to provide the definition of saturation. One characteristic of saturation

comes from including current small satellite mission data requirements and weighing

them against the required threshold time to complete a full data downlink versus the total

 38

overhead time a satellite is physically in view of a station. If data requirements are

minimal, multiple overlapping satellites may not pose serious resource conflicts for the

station. However, data-intensive missions may more readily lead to saturation of the

ground resources, compounded if there are additional overhead spacecraft. The low,

medium, and high complexity mission parameters defined the minimum time requirement

for each CubeSat, providing a useful parameter for mission planning.

It should be noted that contact windows used to generate the analysis in this

section are missing a fraction of the satellite population in the scenario as mentioned in

Chapter II. A percentage of the randomly generated satellites were placed into orbits that

never had access to the ground station due to their orbital inclinations and the latitude of

the station. This number seemed less significant for the smaller scenarios, but after

creating “1000 satellite” scenarios it was observed that an average of 23%, or 230

satellites, would never see the ground station. The case of “1000 satellites,” in reality,

becomes approximately 770 satellites that were able to contact the ground site based on

line-of-sight visibility. Although labeled as “N satellite” scenarios in the subsequent

figures, only 77% of satellites in each scenario can access the ground station from above

ten degrees elevation angle. And moving the ground station to a different latitude would

produce different results. Of course, mission planners must seriously consider both the

location of their station(s) and expected orbital geometries when seeking to maximize the

network’s performance.

To analyze the different mission sets outlined in Chapter II, the same Monte Carlo

runs were applied to varying mission complexities. To reduce the number of variables in

this initial analysis, it was assumed that the entirety of the satellite population

corresponded to the same performance parameters presented in Table 2. Figure 15

displays the total data that can be collected at the ground station from the low complexity

missions over one month. The accumulated data (red) represents the total possible data

that the ground station can download for a particular scenario and is shown in equation

(6). It was then compared to threshold (green) and objective (blue) totals for the 31-day

duration, which were calculated using equations (7) and (8). These equations incorporate

 39

the previously discussed .77N to account for the satellites that do not make any contact

with the station.

Figure 15. Low Complexity Mission Downloaded Data

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴𝑈𝑈𝑈𝑈ℎ𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑈𝑈𝐴𝐴𝐴𝐴 𝑈𝑈𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝐶𝐶𝑈𝑈𝐴𝐴𝑆𝑆) ∗ (𝐷𝐷𝑅𝑅) ∗ (𝐸𝐸𝑇𝑇) (6)

𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑈𝑈𝑅𝑅𝐴𝐴𝐴𝐴 𝑅𝑅ℎ𝑅𝑅𝐴𝐴𝑆𝑆ℎ𝐶𝐶𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 = (.77) ∗ (#𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆 𝑈𝑈𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝑅𝑅𝑈𝑈𝐶𝐶) ∗ (𝑅𝑅𝑅𝑅𝑅𝑅) ∗ �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 # 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃
𝑇𝑇𝐴𝐴𝐷𝐷

� ∗ (31 𝐷𝐷𝐴𝐴𝐷𝐷𝑆𝑆) (7)

𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑈𝑈𝑅𝑅𝐴𝐴𝐴𝐴 𝑅𝑅𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑂𝑂𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 = (. 77) ∗ (#𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆 𝑈𝑈𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝑅𝑅𝑈𝑈𝐶𝐶) ∗ (𝑅𝑅𝑅𝑅𝑅𝑅) ∗ �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 # 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃
𝑇𝑇𝐴𝐴𝐷𝐷

� ∗ (31 𝐷𝐷𝐴𝐴𝐷𝐷𝑆𝑆) (8)

The threshold and objective data requirements for these low complexity missions

are limited and it is possible to meet RTT at the NPS ground station until approximately

143 satellites that have contact with the ground station. The objective data requirements

become unattainable with approximately 11 satellites, indicating either a need for

additional ground stations or a reduction of required data. The red line depicting the

10 0 10 1 10 2 10 3

"Number of Satellites"

10 5

10 6

10 7

10 8

10 9

D
ow

nl
in

ke
d

D
at

a
(b

its
)

Low Complexity: Downlinked Data, 31 Day Period, Random Orbits,15 Iterations, NPS

Data

Threshold

Objective

 40

accumulated data in Figure 15 steadily increases until reaching an upper limit. Total

overhead time initially increases thus accruing more downlinked data from the satellites.

Eventually, there is always at least one satellite over the station, thus placing an upper

boundary on accumulated data regardless of satellite population, hence the behavior of

the total possible data to be downlinked, when multiplied by the data rate and efficiency.

Also worth noting, the available portion of overhead time per satellite begins decreasing

due to the larger number of satellites competing for downlink slots, and causing the

overhead time to be split amongst them. Table 5 displays the values calculated by linear

interpolation to understand the location at which the above scenario of low complexity

satellite missions reaches threshold and objective saturation. The total and adjusted

values correlate to the number of satellites; the total is the value including all cases in the

scenario, the adjusted value takes into consideration the 23% of satellites that do not

make contact with the ground station. The downlinked data in the right hand column

corresponds with the number of satellites at which saturation occurs.

Table 5. Interpolated Saturation Values for Low Complexity Missions

Figure 16 displays data collected from the medium complexity mission

requirements. All other values pertaining to the scenario generation remain constant,

aside from the data rate and download requirements. The improved downlink rate

provides more total data from the satellites and the corresponding threshold and objective

values remain attainable for a larger population than that of the low complexity missions.

Table 6 shows the corresponding saturation points for this set of mission parameters.

The high complexity missions downlink the greatest quantities of data, due to

their increased capabilities (higher data rates and better efficiency). However, as shown

of Satellites Downlinked Data
"Total" 185 ̴23 Mb

Adjusted by .77 ̴143
"Total" 14 ̴4 Mb

Adjusted by .77 ̴11

Low Complexity Saturation Point

Threshold

Objective

 41

in Figure 17, the objective requirement is never met and a threshold saturation point is

reached at a reasonably large satellite population greater than “1000 satellites.” Table 7

parallels these values by showing the unattainable objective requirement, while

displaying their impressive capacity to sustain the threshold requirement.

Mission planners should evaluate ground station performance as shown in

Figures 15, 16, and 17 to determine a balance between the number of satellites, mission

requirements, and the location (particularly the latitude) of the ground stations.

Figure 16. Medium Complexity Mission Downloaded Data

10 0 10 1 10 2 10 3

"Number of Satellites"

10 9

10 10

10 11

10 12

10 13

D
ow

nl
in

ke
d

D
at

a
(b

its
)

Medium Complexity: Downlinked Data, 31 Day Period, Random Orbits,15 Iterations, NPS

Data

Threshold

Objective

 42

Table 6. Interpolated Saturation Values for Medium Complexity
Missions

Figure 17. High Complexity Mission Downlinked Data

of Satellites Downlinked Data
"Total" 660 ̴803 Gb

Adjusted by .77 ̴508
"Total" 132 ̴641 Gb

Adjusted by .77 ̴102

Medium Complexity Saturation Point

Threshold

Objective

10 0 10 1 10 2 10 3

"Number of Satellites"

10 11

10 12

10 13

10 14

10 15

10 16

10 17

D
ow

nl
in

ke
d

D
at

a
(b

its
)

High Complexity: Downlinked Data, 31 Day Period, Random Orbits,15 Iterations, NPS

Data

Threshold

Objective

 43

Table 7. Interpolated Saturation Values for High Complexity Missions

A real-world consideration using the data presented in this section is that ground

stations will likely service satellites of varying complexity. The analysis performed in

this thesis assumed one type of mission at a time, thus simplifying the problem, but

removing some of the practical aspects. In reality, a mix of low, medium, and high

complexity spacecraft will be leveraging a ground station of potentially modest

efficiency. This assumption would result in a shifted point of saturation. Knowing the

details of their application, mission planners can use the tool developed in this research to

scale the complexity level of each satellite, and take into consideration the differing time

needed to achieve the minimum requirement for data download. Future work to analyze

scenarios with a random mixture of low, medium, and high complexity missions in a

Monte Carlo simulation would be able to add even more accuracy. Incorporating this

realism into the scenarios provides a more precise assessment of when a ground station

handling a multitude of satellites, with differing capabilities, reaches capacity.

Assessing ground station capacity is possible by incorporating the saturation

factor, discussed in Chapter II. Saturation of a single ground station is determined in

equation (9) using the following logic; if the average-number-of-satellites-in-view from

Table 4, multiplied by the threshold saturation factor (TSF) from Table 2, results in a

value greater than 1, then that ground station is saturated. This term is referred to as the

saturation score. This method can be used for each mission complexity to assess the

range between the threshold and objective data requirements by using the TSF and

objective saturation factor (OSF). This determines whether those requirements are

feasible with the satellite’s data rate and ground station efficiency. The saturation score

of Satellites Downlinked Data
"Total" >1000 >1.2e5 Gb

Adjusted by .77
"Total" N/A N/A

Adjusted by .77 N/A

Threshold

Objective

High Complexity Saturation Point

 44

provides the link between the geometry of the overhead time, and the data needs of the

required threshold time, to give a value that grades the capacity of the ground station.

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈𝐶𝐶𝑈𝑈 𝑇𝑇𝐴𝐴𝐶𝐶𝑅𝑅𝐴𝐴 = (.77) ∗ (𝐴𝐴𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑈𝑈𝐴𝐴 # 𝐶𝐶𝑜𝑜 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆 𝑈𝑈𝑈𝑈 𝑉𝑉𝑈𝑈𝐴𝐴𝑈𝑈) ∗ (𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈𝐶𝐶𝑈𝑈 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑅𝑅) (9)

Examples of the saturation score for the NPS ground station are shown in Figures

18, 19 and 20. Low, medium, and high complexity missions are illustrated in individual

plots, displaying each satellite population scenario. The RTT and ROT are the bounds for

the downlinked data required for each of the scenarios, displayed in red. The vertical blue

line depicts the point at which the ground station is considered saturated.

Figure 18. Saturation Scores for Low Complexity Mission Scenarios

By looking closely it is possible to tell where the low, medium, and high missions

may meet their threshold and objective requirements. For example, the low complexity

 45

missions in Figure 18 do not reach saturation for threshold requirements for the “10” and

“100” cases, but reaches saturation only for the objective at “100 satellites,” and

completely exceeds both levels starting at the “250-satellite” mark.

The medium complexity missions shown in Figure 19 remain below the threshold

saturation up through “100 satellites.” The “250” and “500 satellite” cases meet the

threshold but not the objective requirements. Finally, the “1000 satellite” case does not

meet any.

Figure 19. Saturation Scores for Medium Complexity Mission Scenarios

The high complexity missions displayed in Figure 20 only meet the threshold

requirement for the “10-satellite” case. All other simulations fail to meet threshold and

 46

objective requirements for this single ground station. Clearly, a high complexity, multi-

satellite mission with sizable data requirements will need more than one station to satisfy

its objectives.

Figure 20. Saturation Scores for High Complexity Mission Scenarios

Depending on the mission data requirements, the orbits simulated, and the ground

station latitude, the exact values in such a plot will differ. However, the saturation score

is an objective way of grading the ability of the ground station to support these missions.

Due to the generalization inherent to such an analysis, approaching a saturation score of

one should be treated as an indicator of potential saturation and mission planners should

allow adequate margin in their mission design.

 47

C. SUMMARY

Chapter IV discussed the process behind the scenario selection and the data

created from the Monte Carlo simulation. Plots were used to analyze trends in the data.

Finally, the understanding gleaned from the simulation was applied to the reference

satellite missions to provide context and validity to the conclusions drawn about when a

ground station’s capacity becomes saturated.

 48

V. CONCLUSION

Chapter IV discussed the data and analysis supporting the findings to the initial

question of: at what point does a ground station experience saturation. This final chapter

will cover the implications of this research for varied solutions based on the Monte Carlo

simulation. Such an analysis can help optimize mission planning for ground station

operators and satellite owners. Finally, suggested areas of research are discussed for

carrying these pursuits forward.

A. APPLICATIONS

Discussed at the beginning of this thesis, as the population of LEO CubeSats

increases, the communication capacity of the terrestrial stations supporting them becomes

strained. Ground station operations become considerably more challenging as higher

numbers of satellites compete for finite resources. This thesis has explored how those

systems are affected as the number of satellites proliferates.

Saturation was defined as the point at which satellite missions are, on average, not

meeting their minimum data download requirements. These data requirements were

determined from current, known CubeSat mission types. Figures 18 through 20, in

Chapter IV, are the visual representation of the saturation data. With the known average

number of satellites overhead and imposed data requirements, the point of saturation can

be evaluated for any ground station.

The result of this thesis is a tool that could be developed further to help

understand when there will be a significant decrease to the ground station’s ability to

effectively communicate with its satellites. At this threshold, an organization will be able

to visualize the trends as the numbers of satellites and ground stations are changed. This

provides planners with more information on when to consider adding more ground

stations to their network, reallocating assets, or reducing data requirements by flying

fewer satellites or collecting less data. The broad nature of the code should be useful for

applications of interest to ground station program offices.

 49

B. RECOMMENDATIONS FOR FOLLOW-ON RESEARCH AND
POTENTIAL IMPLICATIONS

This thesis has covered the general issues associated with this challenging puzzle.

Modifications could be made to the MATLAB code to consider different constructs. The

next logical progression in analysis would be to consider scenarios such as “one ground

station, one constellation,” “multiple ground stations, many random satellites,” and

“multiple ground stations, multiple constellations.” Data from varying constructs such as

these would provide simple comparisons to the results collected in this thesis. Other

factors such as latitude could be varied to assess the benefits to ground station contacts.

For an added level of realism, one could incorporate the orbital parameters more

commonly used for CubeSats today, for example the many small satellites deployed from

International Space Station, to provide a weighted value that produces more satellites

with those parameters within the randomly selected orbital elements. These

considerations for continuing research all play a significant role of the larger-scale

challenge of scheduling these small spacecraft. Knowing the saturation point for a

particular ground station network can help determine the approach to utilize for

maximizing its capacity.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

APPENDIX . MATLAB SCRIPTS

A. MONTE_CARLO_LOOP

clear all; close all; clc;

% Main loop that calls Random_Satellite_Generator function
T1 = now;
MAXSATS = 1; % Set number of randomly generated satellites
MAX_ITERATIONS = 5; % Set numer of iterations for Monte Carlo Loop to run
SAT_STEP =1; % Set the step size to increment number of sats to change
altlow = 400000; % Set minimum altitude in m
althigh = 700000; % Set maximum altitude in m
max_incl = 98; % Set maximum inclination in degrees
start_time = ‘19 Jul 2017 02:00:00’;
end_time = ‘20 Jul 2017 02:00:00’;
GS = {‘NPS’}];

filepath = ‘\\special\ssagcommon$\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3
Optimization Threshold)\Results\’; % add/change “Day” to “Week” or “Month” depending on
scenario time
folderpath = strcat(filepath,int2str(MAX_ITERATIONS), ‘Iterations_’,
char(datetime(‘now’,’TimeZone’,’local’,’Format’,’y-M-d_HH-mm-ss\’)));
mkdir(folderpath);

disp(‘Starting STK10’)
app = actxserver(‘STK10.application’);
root = app.Personality2;
root.Children.Import(‘\\special\ssagcommon$\Projects\Student Theses\Thesis - Writt, Andrea
(2018 MC3 Optimization Threshold)\Scenario\Monte_Carlo_MC3.sc’);
sc = root.CurrentScenario;
station = root.GetObjectFromPath(‘/Facility/NPS’)];
sc.SetTimePeriod(start_time, end_time);
root.ExecuteCommand(‘Animate * Reset’);

for NUMSATS = MAXSATS:SAT_STEP:MAXSATS
 fprintf(‘starting: NUMSATS = %d at %s\n’,NUMSATS, char(datetime(‘now’)))
 for iteration = 1:MAX_ITERATIONS
 fprintf(‘Starting iteration: %d at %s\n’, iteration, char(datetime(‘now’)));
 Random_Satellite_Generator(iteration, NUMSATS, altlow, althigh, max_incl, start_time,
end_time, GS, app, root, sc, station, MAX_ITERATIONS, folderpath);
 end
end

T2 = now;
Runtime = T2 - T1; % In days
Run_min = (Runtime * 86400) / 60; % In minutes
Run_hrs = Run_min / 60;
fprintf(‘Program ran for %6.2f minutes, or %6.2f hours, or %6.2f days\n’,Run_min, Run_hrs,
Run_hrs/24)
clear app % closes STK 10

 52

B. RANDOM_SATELLITE_GENERATOR

function Random_Satellite_Generator(iteration, NUMSATS, altlow, althigh, max_incl, start_time,
end_time, GS, app, root, sc, station, MAX_ITERATIONS, folderpath)

earthrad = 6378000; % Earth radius in m
 for i = 1:NUMSATS
 radlow = altlow + (althigh - altlow).*rand();
 radhigh = altlow + (althigh - altlow).*rand();
 R1 = radlow + earthrad;
 R2 = radhigh + earthrad;
 Rp = min(R1 R2]);
 Ra = max(R1 R2]);
 ecc = (Ra - Rp)/(Ra + Rp);

 satname = ‘‘,int2str(i)];
 sma = int2str((Ra+Rp)/2);
 rand_incl = int2str((max_incl)*rand());
 raan = int2str((360)*rand());
 mean_anomaly = int2str((360)*rand());
 arg_perigee = int2str((360)*rand());
 eccentricity = num2str(ecc);
 sat_create = sc.Children.New(‘eSatellite’,satname);
 cmd = ‘SetState */Satellite/’,satname ‘ Classical HPOP “‘, sc.StartTime,’ “ “‘, sc.StopTime,
‘“ 60 ICRF “‘, sc.StartTime, ‘“ ‘, sma, ‘ ‘, eccentricity, ‘ ‘, rand_incl,’ ‘, arg_perigee,’ ‘, raan, ‘ ‘,
mean_anomaly,’ “‘];
 root.ExecuteCommand(cmd);
 sat(i) = root.GetObjectFromPath(‘/Satellite/’, satname]);
 sat(i).Propagator.Propagate;
 satellite(i) = {satname};
 end

 accesses = 0;
 % For each satellite
 aos =];
 los =];
 gs =];
 satnum =];
 num_of_misses = 0;

 for i = 1:length(satellite)
 for j = 1:length(station)
 access = station(j).GetAccessToObject(sat(i));
 dp =];
 AOS =];
 LOS =];
 duration =];
 access.ComputeAccess;

 try
 dp = access.DataProviders.Item(‘Access Data’).Exec(sc.StartTime, sc.StopTime);
 AOS = dp.DataSets.GetDataSetByName(‘Start Time’).GetValues;
 LOS = dp.DataSets.GetDataSetByName(‘Stop Time’).GetValues;

 53

 duration = dp.DataSets.GetDataSetByName(‘Duration’).GetValues;
 catch
 AOS = {start_time};
 LOS = {start_time};
 duration = {0};
 num_of_misses = num_of_misses +1;
 disp(strcat(‘AOS/LOS lists not generated_’, satellite(i)))
 continue
 end

 % Datenum units are in days
 tempaos = datenum(AOS, ‘dd mmm yyyy HH:MM:SS’);
 lengthaos, y] = size(tempaos); % lengthaos(1,1) = length of aos
 aos = cat(1, aos, tempaos);
 templos = datenum(LOS, ‘dd mmm yyyy HH:MM:SS’);
 los = cat(1, los, templos);

 for k = 1:lengthaos
 gs = cat(1, gs, j);
 satnum = cat(1, satnum, i);
 end
 accesses = accesses + lengthaos;

 end
 end
 sorted, durations, num_passes, num_slices, num_conflicts] = Conflict_Compiler(aos, los, gs,
satnum);

 filepath = ‘\\special\ssagcommon$\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3
Optimization Threshold)\Results\’; % change “Day” to “Week” or “Month” depending on scenario
time
 filename_mat = strcat(folderpath, int2str(NUMSATS), ‘_Rand_Sats_’, int2str(iteration),
‘Iteration’, ‘.mat’);

 total_duration = sum(durations) - durations(1);
 save(filename_mat, ‘sorted’, ‘durations’, ‘total_duration’, ‘num_passes’, ‘num_slices’,
‘num_conflicts’, ‘NUMSATS’, ‘num_of_misses’);
 fprintf(‘num_of_misses: %d\n’, num_of_misses)
 fprintf(‘total duration of slices: %10.3f \n\n’, total_duration)
 num_durations = length(durations);
 for i = 1 : num_durations
 fprintf(‘duration of %d sats in view: %10.3f \n’,i-1,durations(i))
 if i > 1
 fprintf(‘percentage of pass time with %d sats: %10.3f\n’, i-1,
durations(i)/total_duration*100)
 end
 end

 for i = 1:NUMSATS
 sc.Children.Unload(‘eSatellite’,cell2mat(satellite(i)));
 end
end

54

C. CONFLICT_COMPILER

%% ~~
function sorted, durations, num_passes, num_slices, num_conflicts] = Conflict_Compiler(aos, los,
gs, satnum)
%%
% This function computes the conflicts in a series of passes given:
% aos - list of aos’s
% los - list of los’s
% gs - list of gs number
% satnum - list of the satnum for each access
%
% The function makes a list of all the aos’s and los’s in time order
% with the attribute of aoslos_index of 0 for AOS and 1 for LOS.
%
% The smusher flattens the aos and los and sorts and then walks through
% the list, compiling a conflict_index for every bin, where a bin is the
% space between every aos and los time. The bin total starts at 0 and
% every AOS adds 1 and every LOS subtracts 1. So the number in the
% conflict_index list is the number of sats currently accessing that gs.
% E.g. A simple overlap would look like:
% aoslos: aos1 aos2 los1 los2
% conflict_index: 1 2 1 0
%
% 0 is a gap with no access. 2 signifies 2 sats able to access the gs
% at the same time.

% returns an array of # of aos, # of dim]
num_passes = length(aos) ;
ones = zeros(num_passes, 1);
ones(:) = 1;
minus_ones = zeros(num_passes, 1);
minus_ones(:) = -1;

% do the actual smushing and sorting
list1 = cat(1, aos, los);
list2 = cat(1, ones, minus_ones);
aosloslist = cat (2, list1, list2);
sorted = sortrows(aosloslist);
num_lines = length(sorted);

% now adds up the aos’s and los’s in turn to get the # of sats in view
% for each slice of time, make that the third column
summ = 0;
for i = 1 : num_lines;
 summ = summ + sorted(i,2);
 sorted(i,3) = summ;
end

if ~isempty(sorted)
 % find the max # of sats in view for adding up the durations in each slice
 % 0 sats in view in the first column, then 1 sat, 2 sats,
 max_sats = max(sorted,],1);
 num_durations = max_sats(3) + 1;

55

else
 max_sat = 0;
 num_durations = 1;
 sorted = 0 0 0];
end

% now add up the durations in each slice and put in the durations list
durations = zeros(1, num_durations);
for ii = 1 : num_lines - 1;
 jj = sorted(ii, 3);
 slice_duration = sorted(ii+1,1) - sorted(ii,1);
 durations(jj+1) = durations(jj+1) + slice_duration;
end

num_slices = sum(sorted(:,3)==0);
num_conflicts = sum(sorted(:,3)>1);
total_duration = sum(durations) - durations(1);

end

D. PLOTTING SCRIPTS

1. Boxplot

clear all

MAX_ITERATIONS = 10;
filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization
Threshold)\Results\’;
% filefolders = dir(filepath)
filenames = dir(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, ‘*.mat’));
num_mats = length(filenames);

figure
hold on
index = 1;
col_index = 1;
for i = 1:num_mats
 load(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, filenames(i).name));
 conflicts(index, col_index) = num_conflicts;
 if ~mod(i,MAX_ITERATIONS)
 num_sat_vec(col_index) = NUMSATS;
 index = 1;
 col_index = col_index + 1;

else
 index = index + 1;

 end
end

boxplot(conflicts, num_sat_vec, ‘Notch’ , ‘on’ , ‘Whisker’ , 3)
xlabel(‘Number of Satellites’)
ylabel(‘Number of Conflicts’)

56

title(strcat(‘31 Day Period, Random, ‘, int2str(MAX_ITERATIONS),’ Iterations, NPS’))
hold off

2. Downlinked Data

clear all;

% % high complexity rates
data_rate = 100000000; % bps
efficiency = .5; % fluff factor
min_data_req = 1270000000; % minimum data required in bits, per satellite, per pass
max_data_req = 507900000000; % maximum data required in bits, per satellite, per pass
%
% % medium complexity rates
% data_rate = 1000000; % bps
% efficiency = .3; % fluff factor
% min_data_req = 12700000; % minimum data required in bits, per satellite, per pass
% max_data_req = 50790000; % maximum data required in bits, per satellite, per pass

% % low complexity rates
% data_rate = 9600; % bps
% efficiency = .001; % fluff factor
% min_data_req = 1270; % minimum data required in bits, per satellite, per pass
% max_data_req = 3180; % maximum data required in bits, per satellite, per pass

MAX_ITERATIONS = 15;
filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization
Threshold)\Results\’;
filenames = dir(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, ‘*.mat’)); % read in
each .mat
num_mats = length(filenames);

index = 1;
iteration_index = 1;
for i = 1:num_mats
 load(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, filenames(i).name)); % load in all
data from .mat

 % Keep track of iteration number
 iteration = iteration_index;
 iteration_index = iteration_index + 1;
 if iteration_index > MAX_ITERATIONS
 iteration_index = 1;
 end

 num_durations = length(durations);
 num_lines, num_cols] = size(sorted);

 % now add up the durations in each slice and put in the durations list
 weighted_durations = zeros(1, num_durations);
 accumulated_data = zeros(1,num_durations);

 57

 dropped_data = zeros(1,num_durations);

 for ii = 1 : num_lines - 1;
 jj = sorted(ii, 3); % number of sats in view at a time
 slice_duration = sorted(ii+1,1) - sorted(ii,1);
 weighted_durations(jj+1) = weighted_durations(jj+1) + jj*slice_duration;
 accumulated_data(jj+1) = accumulated_data(jj+1) +
slice_duration*3600*24*data_rate*efficiency;
 dropped_data(jj+1) = dropped_data(jj+1) + (jj-
1)*slice_duration*3600*24*data_rate*efficiency;
 end

 for j = 1 : num_durations
 if j > 1
 weighted_conflict_time_days(index,1:7) = weighted_durations(j), j-1,NUMSATS, iteration,
total_duration, accumulated_data(j), dropped_data(j)]; % sorts from first to third columns by
NUMSATS
 index = index + 1;
 end
 end
end

sorted_conflict_time_days= sortrows(weighted_conflict_time_days, 3, 2, 4]); % sorts three
times, first column 3 (number of iterations), then column 2 (sats in view)
sat_scenarios = sorted_conflict_time_days(1,3); % Seeded with
initial value
iteration_values = sorted_conflict_time_days(1,4);
max_conflicts = max(sorted_conflict_time_days(:,2));
sat_scenarios = unique(sorted_conflict_time_days(:,3)); % Find number of
satellites for all cases
iteration_values = unique(sorted_conflict_time_days(:,4)); % Find all iteration
numbers used

legend_vec =];
plotting_array_index = 1;
for i = 1:length(sat_scenarios)
 for j = 1:length(iteration_values)
 x = find(sorted_conflict_time_days(:,3)==sat_scenarios(i)); % identifies where
3rd column of sorted_conflict_time_days moves from one scenario to next
 y = find(sorted_conflict_time_days(:,4) == iteration_values(j)); % identifies
where the 2nd column equals the number of conflicts
 z = intersect(x,y); % find common
indicies where conflicts and sat scenario number intersect
 sum_weighted_conflict_time_percent(j) =
sum(sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5)); % sum of durations that
have the same NUMSATS and same iteration number
 sum_accumulated_data(j) = sum(sorted_conflict_time_days(z,6));
 sum_dropped_data(j) = sum(sorted_conflict_time_days(z,7));

 end
 avg_weighted_conflict_time_percent = mean(sum_weighted_conflict_time_percent); %
takes average of a single NUMSAT case across all available iterations
 avg_accumulated_data = mean(sum_accumulated_data);
 avg_dropped_data = mean(sum_dropped_data);

58

 sat_scenarios(i);
 plotting_array_desired_time(plotting_array_index, 1:2) = sat_scenarios(i),
avg_weighted_conflict_time_percent];
 plotting_array_accumulated_data(plotting_array_index, 1:2) = sat_scenarios(i),
avg_accumulated_data];
 plotting_array_dropped_data(plotting_array_index, 1:2) = sat_scenarios(i), avg_dropped_data];
 plotting_array_min_data(plotting_array_index, 1:2) = sat_scenarios(i),
sat_scenarios(i)*min_data_req*4.5*31]; % in bits
 plotting_array_max_data(plotting_array_index, 1:2) = sat_scenarios(i),
sat_scenarios(i)*max_data_req*4.5*31]; % in bits

 plotting_array_index = plotting_array_index + 1;
end

% figure
% semilogx(plotting_array_desired_time(:,1), plotting_array_desired_time(:,2), ‘r-’)
% hold on
% xlabel(‘Number of Satellites’)
% ylabel(‘Average Number of Satellites in View’)
% title(strcat(‘31 Day Period, Random Orbits, ‘, int2str(MAX_ITERATIONS),’ Iterations, NPS’))
% hold off

figure
loglog(plotting_array_accumulated_data(:,1), plotting_array_accumulated_data(:,2), ‘r-’)
hold on
loglog(plotting_array_desired_time(:,1), plotting_array_min_data(:,2), ‘g*’)
loglog(plotting_array_desired_time(:,1), plotting_array_max_data(:,2), ‘b*’)
xlabel(‘Number of Satellites’)
ylabel(‘Downlinked Data (bits)’)
title(strcat(‘High Complexity: Downlinked Data, 31 Day Period, Random Orbits, ‘,
int2str(MAX_ITERATIONS),’ Iterations, NPS’))
legend(‘Data’, ‘Threshold’, ‘Objective’, ‘Location’, ‘northwest’)
hold off

% figure
% semilogx(plotting_array_dropped_data(:,1), plotting_array_dropped_data(:,2)./(8*1000), ‘r-’)
% hold on
% xlabel(‘Number of Satellites’)
% ylabel(‘Dropped Data (bits)’)
% title(strcat(‘Low Complexity: Dropped Data, 31 Day Period, Random, ‘,
int2str(MAX_ITERATIONS),’ Iterations, NPS’))
% hold off

3. Saturation Score

clear all;
data_rate = 100000000; % bps

% PICK complexity level here, low, med, or high
low_TSF = 0.33; med_TSF = 0.11; high_TSF = 0.64;
low_OSF = 0.84; med_OSF = 0.43; high_OSF = 2.57;

 59

TSF = high_TSF;
OSF = high_OSF;

plotting_param = ‘r-.o’;
figure

MAX_ITERATIONS = 15;
filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization
Threshold)\Results\’;
filenames = dir(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, ‘*.mat’)); % read in
each .mat
num_mats = length(filenames);

index = 1;
iteration_index = 1;
for i = 1:num_mats
 load(strcat(filepath, int2str(MAX_ITERATIONS), ‘_Iterations\’, filenames(i).name)); % load in all
data from .mat

 % Keep track of iteration number
 iteration = iteration_index;
 iteration_index = iteration_index + 1;
 if iteration_index > MAX_ITERATIONS
 iteration_index = 1;
 end

 num_durations = length(durations);
 num_lines, num_cols] = size(sorted);

 % now add up the durations in each slice and put in the durations list
 weighted_durations = zeros(1, num_durations);
 unweighted_durations = zeros(1, num_durations);
 accumulated_data = zeros(1,num_durations);
 dropped_data = zeros(1,num_durations);

 for ii = 1 : num_lines - 1;
 jj = sorted(ii, 3); % number of sats in view at a time, including 0, 1, 2...
 slice_duration = sorted(ii+1,1) - sorted(ii,1);
 unweighted_durations(jj+1) = unweighted_durations(jj+1) + slice_duration;
 dropped_data(jj+1) = dropped_data(jj+1) + (jj-
1)*slice_duration*3600*24*data_rate*efficiency;

 % if no sats in view, don’t accumulate data, otherwise...accumulate!
 if jj ~= 0
 accumulated_data(jj+1) = accumulated_data(jj+1) +
slice_duration*3600*24*data_rate*efficiency;
 weighted_durations(jj+1) = weighted_durations(jj+1) + jj*slice_duration; % indexed as
jj+1 because sometimes there are 0 sats in view and you can’t have a 0 index
 else
 accumulated_data(jj+1) = 0;
 weighted_durations(jj+1) = weighted_durations(jj+1) + slice_duration; % count
accumulated time for zero sats without actually multiplying by zero

 60

 end
 end

 total_duration_recalc = sum(unweighted_durations);
 total_duration = total_duration_recalc;

 for j = 1 : num_durations
% if j > 1 % if you don’t want to consider 0 satellite cases
 weighted_conflict_time_days(index,1:8) = weighted_durations(j), j-1, NUMSATS, iteration,
total_duration, accumulated_data(j), dropped_data(j), unweighted_durations(j)]; % sorts from
first to third columns by NUMSATS
 index = index + 1;
% end
 end
end

sorted_conflict_time_days= sortrows(weighted_conflict_time_days, 3, 2, 4]); % sorts three
times, first column 3 (number of iterations), then column 2 (sats in view)
sat_scenarios = sorted_conflict_time_days(1,3); % Seeded with
initial value
iteration_values = sorted_conflict_time_days(1,4);
max_conflicts = max(sorted_conflict_time_days(:,2));
sat_scenarios = unique(sorted_conflict_time_days(:,3)); % Find number of
satellites for all cases
iteration_values = unique(sorted_conflict_time_days(:,4)); % Find all iteration
numbers used
sats_in_view_times =];

legend_vec =];
plotting_array_index = 1;
for i = 1:length(sat_scenarios)
 for j = 1:length(iteration_values)
 x = find(sorted_conflict_time_days(:,3) == sat_scenarios(i)); % identifies where
3rd column of sorted_conflict_time_days moves from one scenario to next
 y = find(sorted_conflict_time_days(:,4) == iteration_values(j)); % identifies
where the 2nd column equals the number of conflicts
 z = intersect(x,y); % find common indicies where
conflicts and sat scenario number intersect
 sum_weighted_conflict_time_percent(j) =
sum(100.*sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5)); % sum of
durations that have the same NUMSATS and same iteration number
 sum_weighted_conflict_time(j) =
sum(sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5)); % sum of durations that
have the same NUMSATS and same iteration number

 sats_in_view_times(1:length(z), 1:3, j) =
100.*sorted_conflict_time_days(z,1)./sorted_conflict_time_days(z,5),
sorted_conflict_time_days(z,2),
100.*sorted_conflict_time_days(z,8)./sorted_conflict_time_days(z,5)];

 sum_accumulated_data(j) = sum(sorted_conflict_time_days(z,6));
 sum_dropped_data(j) = sum(sorted_conflict_time_days(z,7));
 end

 61

 % Compensate for divide by 0 NaN (happens when no satellites in view of
 % GS so total duration is 0)
 sats_in_view_times(isnan(sats_in_view_times)) = 100;
 sum_weighted_conflict_time(isnan(sum_weighted_conflict_time)) = 0;

 avg_sats_in_view_times_temp = mean(sats_in_view_times,3, ‘omitnan’);

 max_sats_in_view = max(max(sats_in_view_times(:,2,:)));
 sat_scenarios(i);
 avg_sats_in_view_times = avg_sats_in_view_times_temp(:,1), 0:1:max_sats_in_view]’,
avg_sats_in_view_times_temp(:,3)];
 adj_avg_sats_in_view = sum(avg_sats_in_view_times_temp(:,1))/100;

 filepath = ‘Z:\Projects\Student Theses\Thesis - Writt, Andrea (2018 MC3 Optimization
Threshold)\Results\’;

 avg_weighted_conflict_time_percent = mean(sum_weighted_conflict_time_percent); %
takes average of a single NUMSAT case across all available iterations
 avg_sats_in_view = mean(sum_weighted_conflict_time);
 avg_accumulated_data = mean(sum_accumulated_data);
 avg_dropped_data = mean(sum_dropped_data);

 plotting_array_desired_time(plotting_array_index, 1:2) = sat_scenarios(i),
avg_weighted_conflict_time_percent];
 plotting_array_accumulated_data(plotting_array_index, 1:2) = sat_scenarios(i),
avg_accumulated_data];
 plotting_array_dropped_data(plotting_array_index, 1:2) = sat_scenarios(i), avg_dropped_data];
 plotting_array_min_data(plotting_array_index, 1:2) = sat_scenarios(i),
sat_scenarios(i)*min_data_req*3.09*31]; % in bits
 plotting_array_max_data(plotting_array_index, 1:2) = sat_scenarios(i),
sat_scenarios(i)*max_data_req*3.09*31]; % in bits
 plotting_array_avg_sats_in_view(plotting_array_index, 1:2) = sat_scenarios(i),
avg_sats_in_view];
 plotting_array_adj_avg_sats_in_view(plotting_array_index, 1:2) = sat_scenarios(i),
adj_avg_sats_in_view];

 plotting_array_saturation_score(plotting_array_index, 1:3) =
avg_weighted_conflict_time_percent*TSF, avg_weighted_conflict_time_percent*OSF,
sat_scenarios(i)];
 plotting_array_index = plotting_array_index + 1;
end

for i = 2:length(sat_scenarios)
 xaxis = plotting_array_saturation_score(i,1:2)./100;
 yaxis = plotting_array_saturation_score(i,3), plotting_array_saturation_score(i,3)];
 loglog(xaxis, yaxis,plotting_param, ‘LineWidth’,2,’MarkerSize’,5)
 hold on
end

grid on
loglog(1 1],5 2000])

62

xlim(.5 44])
ylim(5 2000])
xlabel(‘Saturation Score (from RTT to ROT)’)
ylabel(‘“Number of Satellites” Scenario’)
title(‘Ground Station Saturation Prediction for High Complexity Missions’)

63

LIST OF REFERENCES

[1] S. Loff, “CubeSats overview,” NASA, February 14, 2018. Online]. Available:
https://www.nasa.gov/mission_pages/cubesats/overview

[2] E. Mabrouk, “What are SmallSats and CubeSats?” NASA, August 6, 2017.
Online]. Available: https://www.nasa.gov/content/what-are-smallsats-and-
cubesats

[3] C. Kief, N. Buonaiuto, M. Louie, J. Aarestad, B. Zufelt, R. Mital, R. Monical, R.
Sivilli, and A. Bhopale, “Emergent Trends for CubeSat Ground Systems – A
University View,” in Conference on Small Satellites, SmallSat 2017. Online]
Available: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article
=3756&context=smallsat

[4] S. C. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse, B. S.
Gilbert, L. Hartman, T. Kahn, and J. Cutler, “Applying Model Based Systems
Engineering (MBSE) to a Standard CubeSat,” in Aeropsace Conference, 2012
IEEE. Online]. doi: 10.1109/AERO.2012.6187339

[5] S. C. Spangelo, “Modeling and Optimizing Space Networks for Improved
Communication Capacity,” Ph.D. dissertation, Aero. Engr., Univ. of Michigan,
Ann Arbor, MI, USA, 2013.

[6] G. Minelli, M. Karpenko, M. Ross, and J. H. Newman, “Autonomous Operations
of Large-Scale Satellite Constellations and Ground Station Networks,” presented
at the AAS/AIAA Astrodynamics Specialist Conf. 2017, Columbia River Gorge,
Stevenson, WA, USA, Aug. 24, 2017.

[7] J. J. Leone, “CubeSat Pass Quality Analysis and Predictive Model,” M.S. thesis,
Space Systems Academic Group, NPS, Monterey, CA, USA, 2018.

[8] “Remote Sensing Glossary,” Reference Information for Virtual Nebraska,
University of Nebraska-Lincoln, 2005. Online]. Available:
http://www.casde.unl.edu/glossary/k.php

[9] M. Swartwout, “CubeSat Database,” AENG 3150 (Astrodynamics), Saint Louis
University, April 26, 2018. Online]. Available:
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database

[10] Woensdag, “World Population Distribution By Latitude and Longitude – 2015,”
DATAGRAVER, September 21, 2016. Online]. Available:
http://www.datagraver.com/case/world-population-distribution-by-latitude-and-
longitude-2015

64

[11] “Monterey, CA, USA Geographic Information,” LatLong. Accessed April 29,
2018. Online]. Available: https://www.latlong.net/place/monterey-ca-usa-
2833.html

[12] H. J. Kramer, “DICE (Dynamic Ionosphere CubeSat Experiment), DICE-1 and
DICE-2,” EO Portal, Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/d/dice

[13] H. J. Kramer, “AeroCube 7-OCSD (Optical Communication and Sensor
Demonstration,” EO Portal, Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/a/aerocube-ocsd

[14] “Flock 1 Imaging Constellation, Planet – Flock Imaging Constellation,” eoPortal
Directory, Accessed May 21, 2018. Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-
/article/flock-1-imaging-constellation#ground

[15] HawkEye 360, Inc., Pathfinder Cluster, “Exhibit 2 – FCC Form 442 (Technical
Information).” Online]. Available:
https://apps.fcc.gov/els/GetAtt.html?id=186546&x

[16] D. CaJacob, N. McCarthy, T. O’Shea, and R. McGwier, “Geolocation of RF
emitters with a formation-flying cluster of three microsatellites,” HawkEye 360,
Inc., Herndon, VA, USA, Rep. SSC16-VI-5, 2016. Online]. Available:
https://digitalcommons.usu.edu/smallsat/2016/TS6NextOnPad/5/

[17] “MATLAB Interface, Integrating with STK,” STK Help. Accessed May 5, 2018.
Online]. Available: http://help.agi.com/stk/index.htm#matlab/matlab.htm

[18] “Monte Carlo Simulation,” Palisade. Accessed April 20, 2018. Online].
Available: http://www.palisade.com/risk/monte_carlo_simulation.asp

[19] “Box plots,” MathWorks Documentation. Accessed May 21, 2018. Online].
Available: https://www.mathworks.com/help/stats/box-plots.html

[20] “Chapter 152: Box plots,” NCSS Statistical Software. Accessed May 21, 2018.
Online]. Available: https://ncss-wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/.../Box_Plots.pdf

 65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Jun_Writt_Andrea_First8
	18Jun_Writt_Andrea
	I. INTRODUCTION
	A. BACKGROUND
	B. PURPOSE AND OBJECTIVE
	C. LITERATURE REVIEW
	D. SUMMARY

	II. SCOPING THE PROBLEM
	A. INITIAL CONSIDERATIONS
	B. ASSUMPTIONS
	C. DEFINING SATURATION
	D. SUMMARY

	III. METHODOLOGY AND APPROACH
	A. SCENARIO DURATIONS
	B. MATLAB-STK INTERFACE
	C. MONTE CARLO OPTIMIZATION
	1. What Monte Carlo Simulations Do
	2. Why Monte Carlo is Beneficial for This Specific Problem

	D. SUMMARY

	IV. TEST SCENARIOS AND RESULTS
	A. SCENARIO FORMULATION
	B. ANALYSIS AND OBSERVED TRENDS
	C. SUMMARY

	V. CONCLUSION
	A. APPLICATIONS
	B. RECOMMENDATIONS FOR FOLLOW-ON RESEARCH AND POTENTIAL IMPLICATIONS

	APPENDIX . MATLAB SCRIPTS
	A. MONTE_CARLO_LOOP
	B. RANDOM_SATELLITE_GENERATOR
	C. CONFLICT_COMPILER
	D. PLOTTING SCRIPTS
	1. BOXPLOT
	2. DOWNLINKED DATA
	3. SATURATION SCORE

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

