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Exact treatment of dispersion relations in pp and p p elastic scattering
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Proofs are given of exact analytical solutions for general principal value integrations of the dispersion relations
of pp and pp scattering amplitudes. The proofs are based on recent developments in the study of properties of
the Lerch’s transcendent of the mathematical literature. Dispersion relations for the slopes of the amplitudes are
mathematically defined and also solved exactly. The results are explicitly expanded, providing an important basis
for improvement in the phenomenology of the hadronic interactions.
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I. INTRODUCTION

Elastic scattering in the pp and pp systems is analytically
very simple: spin effects neglected, it is described by a single
complex function of two variables (s, t). This formal simplicity
hides the fact that elastic scattering is a coherent nonpertur-
bative process involving complicated dynamics. After four
decades of studies in the framework of the modern theory of the
strong interactions (QCD), still no fundamental microscopic
model is successful in the description of the imaginary and
real parts of the complex amplitude. Despite the essentially
complex fundamental dynamics, the experimental data and the
observables on the differential elastic cross sections show sim-
ple and regular dependencies on the energy s and on the trans-
ferred momentum t . It seems that the global simple behavior
is actually a consequence of the extreme internal complexity.

To build a bridge between data and microscopic models,
the differential cross sections in the forward range can be
represented in terms of a few parameters, with precision and
coherence. We present in this paper a formulation, based on
principles of dispersion relations (DR), that is appropriate for
the analysis of dσ/dt data. Our treatment uses two important
developments. One is the discovery of the exact solution of the
principal value (PV) integrals that occur in dispersion relations,
based on our recent work on properties of the mathematical
function called Lerch’s transcendent [1]. The second is the
application of the dispersion relations for slopes (DRS) [2],
based on the knowledge of the s dependence of the slopes of
the imaginary parts of the amplitudes. The real and imaginary
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parts of the amplitudes in the forward direction are treated
as independent functions, as required by quantum mechanics,
with connections determined by the causality and analyticity
foundations of the dispersion relation. The usual assumption
of equal real and imaginary slopes is here forbidden.

In the best explored forward region the analysis of pp
and pp scattering is affected by the comparatively small
magnitude of the real amplitude (usually expressed through
the parameter ρ that gives the ratio of the real to the imaginary
part at t = 0), whose sign and strength must be studied through
interference with the Coulomb interaction. The extraction of
precise information on the real part is very difficult, with
consequences on the determination of the optical point in the
imaginary part that leads to the total cross sections. Under
these conditions, it is essential to use the full potentiality of
theoretical controls, such as DRs and DRS.

The original forms of Cauchy PV integrals occurring in
DRs are not very practical in calculations. Local forms, called
derivative dispersion relations (DDRs), are more comfortable
and have been used in the analysis of the data. After a period in
which the knowledge of DDRs was limited to approximations
not valid for low energies, the connection between integral
and local forms has been put in exact terms [3–5], giving
mathematically correct relations between real and imaginary
parts of the complex amplitude. These local forms consist of
double [3] and single [4,5] infinite series of fast convergence
in the applications.

In the present work we introduce new results [1] for the
exact DR forms, written in terms of the function called Lerch’s
transcendent. From now on, terms of the input imaginary
amplitudes used in pp and pp phenomenology have their
real counterparts written in compact analytical expressions.
The new expressions for the exact forms of DRs have their
properties discussed and are used to draw consequences of the
input form of the imaginary amplitude (namely of the total
cross section) proposed by the Particle Data Group/Compete
Collaboration [6] (PDG). Because we write exact forms, we
call attention to the importance of the influence of the subtrac-
tion constant K , which cannot be ignored at low energies.
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We go one step further and explore, again in exact terms,
the idea of the DRS [2] that was introduced in the year 2007
and shown to be important for the analysis of pp and pp
scattering data. It is understood that the imaginary amplitudes
for small |t | have the exponential forms exp(BI (s) t/2) (with
different slopes for pp and pp). Derivation of the original
DR forms with respect to t leads to new relations. With given
energy dependence assumed for the BI slopes, explicit PV
calculations can be performed, leading to predictions for the
derivatives of the real parts at t = 0. If the energy dependence
of the imaginary slopes is constructed with a combination
of power and logarithm terms, similar to the PDG forms for
the total cross sections, the PV integrals are also solved in
terms of the Lerch’s transcendent. We thus arrive at analytical
exact forms for the derivatives of the real amplitudes in the
forward direction. This has enormous importance for the
phenomenological treatment of pp and pp scattering.

DRS can be used to investigate the structure of the real
amplitudes in the forward range. In accord with a theorem
by Martin [7], at high energies the existence of a zero that
approaches the origin as the energy increases is observed [8–
10]. This requires more than an exponential slope factor in the
real part. For example, assuming the t dependence of the real
amplitude with an exponential (BR t/2) times a factor linear
in the t variable, we may have the expected zero. DRS predict
a relation among the parameters, thus providing an important
theoretical control in the analysis of dσ/dt data.

We stress that we are here limited to the short-range strong
interactions. Coulomb interference is most important in the
phenomenology of pp and pp scattering and must be properly
taken into account, but it is not included in the concerns of the
present work.

This paper is organized as follows. In Sec. II we review the
connections of imaginary and real parts of the amplitudes as
given by general principles and write the forms of the disper-
sion relations for amplitudes and of the dispersion relations for
slopes in terms of principal value integrals of general forms.
In the Secs. II A and II B, the expressions for DRs and DRS
are fully expanded, using the given inputs. In Sec. III we
present the proof of the analytical solution of the principal
value integrations in terms of elementary functions and Lerch’s
transcendents. General properties are described, and explicit
forms written for cases of practical occurrence. Cases of
apparent singularities are analyzed, and their cancellations
explained and explicitly exhibited. In Sec. IV, with subsections
for amplitudes and for derivatives, we give explicit expressions
for the calculation of the real amplitude and of its derivative
at t = 0 in terms of the input parameters of the total cross
sections and of the imaginary slopes. In Sec. V the connection
of the mathematical results and the phenomenology of pp and
pp scattering is illustrated. In Sec. VI we list the purposes and
achievements of the present work.

II. DISPERSION RELATIONS FOR AMPLITUDES AND
SLOPES

The well-known DRs for pp and pp elastic scattering are
written in terms of even and odd dimensionless amplitudes:

ReF+(E,t) = K + 2E2

π
P

∫ +∞

m

dE′ ImF+(E′,t)
E′(E′2 − E2)

, (1)

ReF−(E,t) = 2E

π
P

∫ +∞

m

dE′ ImF−(E′,t)
(E′2 − E2)

. (2)

Here E is the incident proton energy in laboratory system. The
subtraction constant K accounts for the convergence control
in the one-subtracted DR.

In high-energy processes the center-of-mass energy
√

s is
most commonly used. For pp and pp scattering the connection
with the laboratory energy E is

s = 2mE + 2m2, (3)

where m is the proton/antiproton mass. To work with the
dispersion relations written above, the most useful quantity
is the dimensionless ratio

x = E/m (4)

and then
s

2m2
= x + 1. (5)

Approximate relations that are often used at high energies are
obviously s = 2mE and x = s/2m2.

The optical theorem informs the normalization of the
amplitudes by

σpp = ImFpp(x,t = 0)

2m2x
(6)

and similarly for pp.
The even and odd combinations of amplitudes are related

to the pp and pp systems through

Fpp(x,t) = F+(x,t) − F−(x,t), (7)

Fpp̄(x,t) = F+(x,t) + F−(x,t). (8)

Assuming for small |t | exponential t dependencies for the
imaginary parts of the amplitudes, we write

ImFpp(x,t) = 2m2xσpp(x) exp
(
B

pp
I (x)t/2

)
, (9)

ImFpp̄(x,t) = 2m2xσpp̄(x) exp
(
B

pp̄
I (x)t/2

)
, (10)

with input functions σ (x) and BI (x). We obtain in this way for
the even and odd inputs

ImF+(x,t) = m2x
[
σpp̄(x)eB

pp̄
I (x) t/2 + σpp(x)eB

pp
I (x)t/2

]
, (11)

ImF−(x,t) = m2x
[
σpp̄(x)eB

pp̄
I (x) t/2 − σpp(x) eB

pp
I (x)t/2

]
. (12)
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Substituting these expressions in Eqs. (1) and (2), written in terms of the dimensionless variable x, we obtain

ReF+(x,t) = K + 2m2x2

π
P

∫ +∞

1

1

x ′2 − x2

{
σpp̄(x ′) exp

[
B

pp̄
I (x ′) t/2

] + σpp(x ′) exp
[
B

pp
I (x ′)t/2

]}
dx ′, (13)

ReF−(x,t) = 2m2x

π
P

∫ +∞

1

x ′

x ′2 − x2

{
σpp̄(x ′) exp

[
B

pp̄
I (x ′)t/2

] − σpp(x ′) exp
[
B

pp
I (x ′)t/2

]}
dx ′. (14)

The Particle Data Group [6] gives parametrizations for the total cross sections of the pp and pp interactions in the well-known
forms

σ∓(s) = P ′ + H ′ log2 (s/s0) + R′
1(s/s0)−η′

1 ± R′
2(s/s0)−η′

2 , (15)

with parameters P ′, H ′, R′
1, and R′

2 in millibarns, s0 in GeV2, and η′
1 and η′

2 dimensionless. The upper and lower indices − and
+ refer to pp and pp scattering, respectively. The parametrization is assumed to be adequate for all energies s � s0.

However, dispersion relations are defined with respect to the laboratory system energy, and, for low energies, terms like
log2(E + m) and (E + m)−η appear and spoil the simplicity of DRs preventing one from obtaining closed forms. We then rewrite
(reparametrize) the above values for the total cross sections in terms of the dimensionless variables x = E/m and x0 = E0/m,
with x > 1, writing

σpp(x) = P + H log2(x/x0) + R1(x/x0)−η1 − R2(x/x0)−η2 , (16)

σpp̄(x) = P + H log2(x/x0) + R1(x/x0)−η1 + R2(x/x0)−η2 , (17)

and we obtain new parameters, with slight changes. Numerical values are given in Sec. V. For mathematical simplicity, from
now on we use in this paper the variable x to represent the energy of the collision, with the use of the center-of-mass energy

√
s

in some places.
In terms of the x variable, the slopes B

pp
I (x) and B

pp̄
I (x) are written in the following Regge-like forms:

B
pp
I (x) = b0 + b1 log x + b2 log2 x + b3x

−η3 − b4x
−η4 , (18)

B
pp̄
I (x) = b0 + b1 log x + b2 log2 x + b3x

−η3 + b4x
−η4 , (19)

with symmetry in the coefficients for pp and pp. The suggested numerical values are given in Sec. V.
The even and odd inputs are given by Eqs. (11) and (12). Then the DR for the PDG forms, Eqs. (16) and (17), become

ReF+(x,t) = K + 2m2x2

π
P

∫ +∞

1

{
P + H log2(x ′/x0) + R1(x ′/x0)−η1

x ′2 − x2

(
eB

pp̄
I (x ′)t/2 + eB

pp
I (x ′)t/2)

+R2(x ′/x0)−η2

x ′2 − x2

(
eB

pp̄
I (x ′)t/2 − eB

pp
I (x ′)t/2

)}
dx ′, (20)

ReF−(x,t) = 2m2x

π
P

∫ +∞

1
x ′

{
P + H log2(x ′/x0) + R1(x ′/x0)−η1

x ′2 − x2

(
eB

pp̄
I (x ′)t/2 − eB

pp
I (x ′)t/2)

+R2(x ′/x0)−η2

x ′2 − x2

(
eB

pp̄
I (x ′)t/2 + eB

pp
I (x ′)t/2

)}
dx ′. (21)

A. Dispersion relations for amplitudes

Taking t = 0 in Eqs. (13) and (14) we have

ReF+(x,0) = K + 4m2x2

π
P

∫ +∞

1

P + H log2(x ′/x0) + R1(x ′/x0)−η1

x ′2 − x2
dx ′, (22)

ReF−(x,0) = 4m2x

π
P

∫ +∞

1

x ′R2(x ′/x0)−η2

x ′2 − x2
dx ′. (23)
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In a glance at the integrands in these equations, we observe that both ReF+(x,0) and ReF−(x,0) result in linear combinations of
PV integrals of the form

I (n,λ,x) = P
∫ +∞

1

x ′λ logn(x ′)
x ′2 − x2

dx ′. (24)

Exact values of these integrals, based on recent developments in our study of the Lerch’s transcendent [1], can be given.
Collecting terms, we have the following for the even and odd parts:

ReF+(x,0) = K + 4m2x2

π

[
I (0,0,x)(P + H log2 x0) + I (1,0,x)(−2H log x0) + I (2,0,x)H + I (0, − η1,x)R1x

η1
0

]
, (25)

ReF−(x,0) = 4m2x

π
I (0,1 − η2,x)R2x

η2
0 . (26)

Equations (25) and (26) are known DRs relating imaginary and real parts of the complex amplitude for pp and pp elastic
scattering.

B. Dispersion relations for slopes

For small |t | we extend the imaginary amplitude of the PDG representation introducing factors exp[Bpp
I (x) t/2] and

exp[Bpp̄
I (x) t/2], for all terms in the input form, as written above in Eqs. (9) and (10). The parametrizations of the imaginary

slopes as functions of the energy allow us to obtain, from the dispersion relations, information on the derivatives of the real parts
at |t | = 0. This has essential importance for the construction of the forward real amplitude, with determination of the forward
scattering parameters.

Taking derivatives of Eqs. (13) and (14) with respect to t , we obtain

∂ReF+(x,t)

∂t
= m2x2

π
P

∫ +∞

1

1

x ′2 − x2

{
σpp̄(x ′)Bpp̄

I (x ′) exp
[
B

pp̄
I (x ′)t/2

] + σpp(x ′)Bpp
I (x ′) exp

[
B

pp
I (x ′)t/2

]}
dx ′, (27)

∂ReF−(x,t)

∂t
= m2x

π
P
∫ +∞

1

x ′

x ′2 − x2

{
σpp̄(x ′)Bpp̄

I (x ′) exp
[
B

pp̄
I (x ′)t/2

] − σpp(x ′)Bpp
I (x ′) exp

[
B

pp
I (x ′)t/2

]}
dx ′, (28)

which, with the parametrizations Eqs. (16) to (19), give the following for the dispersion relations for the derivatives [2] of the
real amplitudes at the origin:

∂ReF+(x,t)

∂t

∣∣∣∣
t=0

= 2m2x2

π
P

∫ +∞

1

{
P + H log2(x ′/x0) + R1(x ′/x0)−η1

x ′2 − x2
[b0 + b1 log(x ′) + b2 log2(x ′) + b3x

′−η3 ]

+R2(x ′/x0)−η2

x ′2 − x2
b4x

′−η4

}
dx ′, (29)

∂ReF−(x,t)

∂t

∣∣∣∣
t=0

= 2m2x

π
P

∫ +∞

1
x ′

{
P + H log2(x ′/x0) + R1(x ′/x0)−η1

x ′2 − x2
b4x

′−η4

+R2(x ′/x0)−η2

x ′2 − x2
[b0 + b1 log(x ′) + b2 log2(x ′) + b3x

′−η3 ]

}
dx ′. (30)

The right-hand sides of these equations are also linear combinations of PV integrals of the form I (n,λ,x) defined in Eq. (24).
Collecting terms in these equations, we obtain the following for the even and odd parts:

∂ReF+(x,t)

∂t

∣∣∣∣
t=0

= 2m2x2

π

{
I (0,0,x)(P + H log2 x0)b0 + I (1,0,x)[(−2H log x0)b0 + (P + H log2 x0)b1]

+ I (2,0,x)[Hb0 − 2H log x0b1 + (P + H log2 x0)b2] + I (3,0,x)[−2H log x0b2 + Hb1]

+ I (4,0,x)Hb2 + R1x
η1
0 [I (0, − η1,x)b0 + I (1, − η1,x)b1 + I (2, − η1,x)b2 + I (0, − η1 − η3,x)b3]

+R2x
η2
0 I (0, − η2 − η4,x)b4 + [(P + H log2 x0)I (0, − η3,x) − 2H log x0 I (1, − η3,x)

+HI (2, − η3,x)]b3

}
, (31)

∂ReF−(x,t)

∂t

∣∣∣∣
t=0

= 2m2x

π

{
R2x

η2
0 (I (0,1 − η2,x)b0 + I (1,1 − η2,x)b1 + I (2,1 − η2,x)b2 + I (0,1 − η2 − η3,x)b3)

+[
(P + H log2 x0)I (0,1 − η4,x) − 2H log x0I (1,1 − η4,x) + HI (2,1 − η4,x)

+R1x
η1
0 I (0,1 − η1 − η4,x)

]
b4

}
. (32)
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These equations, here called dispersion relations for slopes,
control quantities observed in forward scattering and should
be used as basic information for phenomenological and the-
oretical description of forward pp and pp̄ scattering. In
their introduction [2], they were shown to be important for
the analysis of forward scattering, determining structure and
parameters of the real amplitude.

The next section shows our procedure for calculating the
PV integrals of the type I (n,λ,x) entering Eqs. (25), (26),
(31), and (32).

III. PRINCIPAL VALUE INTEGRALS AND LERCH’S
TRANSCENDENT

The PV integrals have always had a protagonist role in
the application of the principles of DRs to pp and pp
scattering, requiring much work and concern. Integrands with
singularities were not easy to deal with, especially before
powerful numerical computation methods became accessible.
Dynamical details, such as resonances and thresholds, were
mixed up in the efforts to obtain the real part of the amplitude.
It was not easy to separate the physical details from the
mathematical difficulties.

Nowadays we can show that in high-energy pp and pp
scattering, analytically very simple inputs, treated with direct
exact mathematics, can account for all observation, with high
precision. The simplified mathematics helps us to show that the
phenomenology of the physical structure is also very simple.
Existing physical complications are not visible in the analysis
of the data, within the existing experimental precision.

First, the input form of the imaginary amplitude, containing
only powers and logarithms, was treated by the DDR, avoiding
the need for numerical integrations through singularities.
These relations allowed the identification of some global
properties of the observable quantities. The limitations of the
first DDR forms, restricted to high energies, were solved with
exact expressions [3], using double series. The difficulties with
proofs on convergence of double infinite series required numer-
ical proofs comparing principal value integrations with series
summations. Further progress came with the reduction of the
representations to single infinite series, of proved convergence
[4]. The convergence of the series is both mathematically sure,
and fast and comfortable in practice. Later, another construc-
tion of the representation of the PV integrals was introduced
[5], identifying the treatment and cure of singularities that
occur for certain values of parameters, showing clearly their
cancellation. Very recently, further formal progress came with
the study of properties of the Lerch’s transcendent. The proof
given in Ref. [1] for a new representation of the so-called
Lerch’s transcendent allows one to express the PV integrals of
hadronic phenomenology in compact and closed form, in terms
of these well-studied functions of the mathematical literature.
The theorem is reproduced below, together with the proof that
it contains the method to write the solutions of the PV that
appear in DRs and DRS.

The Lerch’s transcendent �(z,s,a) [11, Chap. 25,
Sec. 25.14], also called the Hurwitz-Lerch ζ function, is

defined by its series representation

�(z,s,a) =
∞∑

m=0

zm

(a + m)s
, (33)

with

a �= 0, − 1, − 2, . . . ; |z| < 1; |z| = 1; Re(s) > 1.

The restriction on the values of a guarantees that all terms
of the series in the right-hand side are finite. Obviously, the
series is convergent if |z| < 1, independently of the value of s,
or if |z| = 1 and Re(s) > 1. For other values of its arguments,
�(z,s,a) is defined by analytic continuation, which is achieved
by means of integral representations. Characteristics of the �
function are the identities

�(z,s,a + 1) = 1

z

(
�(z,s,a) − 1

as

)
, (34)

�(z,s − 1,a) =
(

a + z
∂

∂z

)
�(z,s,a), (35)

�(z,s + 1,a) = −1

s

∂

∂a
�(z,s,a), (36)

stemming from the series representation in Eq. (33).
A new representation of �(z,n,a) that establishes its con-

nection with the PV integrals of the theory of DRs was recently
proved [1] with the following theorem.

Theorem. Let z be a complex number belonging to the open
disk of radius 1, excluding its center at the origin, and cut along
the negative real semiaxis, that is,

z ∈ C, 0 < |z| < 1, − π < arg(z) < π. (37)

Let us denote

ϕ = arg(− log z). (38)

Then, for positive integer values of n = 1,2, . . . and for com-
plex a such that Re [(a − 1)eiϕ] < 0, the Lerch’s transcendent
admits the representation

�(z,n,a) = (−1)n−1

(n − 1)!

{
P

∫ ∞eiϕ

0

tn−1eat

zet − 1
dt

+π
∂n−1

∂an−1
[z−a cot(πa)]

}
, (39)

where the symbol P stands for the Cauchy principal value of
the path integral along the ray arg(t) = ϕ.

With specifications for particular cases, the theorem is
applied to obtain the expressions for the general PV integrals in
Eq. (24) that we need. Assuming that z and a are real, one has
ϕ = 0. Changing the integration variable with t = 2 log(x ′),
we may write

�(z,n + 1,a) = (−1)n

(n)!

[
P
∫ +∞

1
x ′(2a−1) 2(n+1) logn(x ′)

z x ′2 − 1
dx ′

+π
∂n

∂an
[z−a cot(πa)]

]
. (40)
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Putting z = 1/x2 and a = (1 + λ)/2 we finally obtain the general form for the PV integrals, defined by Eq. (24),

I (n,λ,x) = π

2x

∂n

∂λn

[
xλ tan

(π

2
λ
)]

+ (−1)nn!

2n+1x2
�

(
1

x2
,n + 1,

1 + λ

2

)
. (41)

Thus, using the recent developments [1], we have obtained general exact forms of the PV integrals I (n,λ,x) with non-negative
integer n, complex λ such that Re λ < 1, and real x > 1. Under these conditions, the function � provides elegant exact
representations for the PV integrals of the DRs. Equation (33) allows us to write for the function � in the right-hand side
of Eq. (41) the expansion

�

(
1

x2
,n + 1,

1 + λ

2

)
= 2n+1

∞∑
j=0

x−2j

(2j + 1 + λ)n+1
. (42)

For its derivative with respect to λ, use can be made of Eq. (36) to write

∂

∂λ
�

(
1

x2
,n + 1,

1 + λ

2

)
= −n + 1

2
�

(
1

x2
,n + 2,

1 + λ

2

)
. (43)

In the applications to pp and pp̄ scattering, the sums converge rapidly and are easily included in practical computations, requiring
only one or a few terms of the series.

We remark that I (n = 0,λ = 0,x) can be written in terms of elementary functions:

I (0,0,x) = P
∫ +∞

1

1

x ′2 − x2
dx ′ = 1

2x2
�

(
1

x2
,1,

1

2

)
= 1

2x
log

x + 1

x − 1
.

We may write a simple combination that eliminates the denominator in the PV integrals to obtain

I (n,λ,x) − x2I (n,λ − 2,x) =
∫ +∞

1
x ′(λ−2) logn(x ′)dx ′ = (1 − λ)−1−n�(1 + n), (44)

which does not depend on x. On the other hand, using the property of periodicity of the tangent function in Eq. (41), the
combination eliminates the terms with derivatives and can also be written as

I (n,λ,x) − x2I (n,λ − 2,x) = (−1)n

x2
2−(n+1)�(1 + n)

[
�

(
1

x2
,n + 1,

1 + λ

2

)
− x2�

(
1

x2
,n + 1,

1 + λ − 2

2

)]

= (1 − λ)−1−n�(1 + n), (45)

where in the last step use has been made of the property of the Lerch’s transcendent in Eq. (34). This confirms the expression for
the general formula in Eq. (41) for the PV integration. The combination free of derivatives can be used for noninteger n and can
also be useful for computational purposes, because full calculations of integrals need to be made only for λ ∈ (−1, 1).

Specific values for the PV integrals used in this work (values of n = 0,1,2,3,4) are given as follows:

I (0,λ,x) = π

2
xλ−1 tan

(
πλ

2

)
+ 1

2x2
�

(
1

x2
,1,

1 + λ

2

)
, (46)

I (1,λ,x) = π

2
xλ−1

{
log(x) tan

(
πλ

2

)
+ π

2
sec2

(
πλ

2

)}
− 1

4x2
�

(
1

x2
,2,

1 + λ

2

)
, (47)

I (2,λ,x) = π

2
xλ−1

{
log2(x) tan

(
πλ

2

)
+ π sec2

(
πλ

2

)[
log(x) + π

2
tan

(
πλ

2

)]}
+ 1

4x2
�

(
1

x2
,3,

1 + λ

2

)
. (48)

I (3,λ,x) = π

2
xλ−1

(
log3(x) tan

(
πλ

2

)
+ π

2
sec2

(
πλ

2

){
3 log2(x) + 3π log(x) tan

(
πλ

2

)
+ π2

2

[
1 + 3 tan2

(
πλ

2

)]})

− 3

8x2
�

(
1

x2
,4,

1 + λ

2

)
, (49)

I (4,λ,x) = π

2
xλ−1

(
log4(x) tan

(
πλ

2

)
+ π sec2

(
πλ

2

){
2 log3(x) + 3π log2(x) tan

(
πλ

2

)
+ π2 log(x)

[
1 + 3 tan2

(
πλ

2

)]

+π3

2
tan

(
πλ

2

)[
2 + 3 tan2

(
πλ

2

)]})
+ 3

4x2
�

(
1

x2
,5,

1 + λ

2

)
. (50)

The use of Eq. (41) is straightforward, except that care must be taken for odd negative integer values of λ = −(2N+1), with
N being zero or a positive integer, when singularities occur in both trigonometric and � function parts of the expression, with
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cancellation in a limit procedure that has been explained before [5]. Examples of the calculation of the limits are given below:

I [0, − (2N + 1),x)] = x−2N−2

[
− log(x) − 1

2

N∑
k=1

x2k

k
+ 1

2
Li1(x−2)

]
, (51)

I [1, − (2N + 1),x] = x−2N−2

[
− 1

2
log2(x) + π2

12
− 1

4

N∑
k=1

x2k

k2
− 1

4
Li2(x−2)

]
, (52)

I [2, − (2N + 1),x] = x−2N−2

[
− 1

3
log3(x) + π2

6
log(x) − 1

4

N∑
k=1

x2k

k3
+ 1

4
Li3(x−2)

]
, (53)

I [3, − (2N + 1),x] = x−2N−2

[
− 1

4
log4(x) + π2

4
log2(x) + π4

120
− 3

8

N∑
k=1

x2k

k4
− 3

8
Li4(x−2)

]
, (54)

I [4, − (2N + 1),x] = x−2N−2

[
− 1

5
log5(x) + π2

3
log3(x) + π4

30
log(x) − 3

4

N∑
k=1

x2k

k5
+ 3

4
Li5(x−2)

]
, (55)

where Lim represents the polylogarithm of order m. We recall that the polylogarithm functions that appear above are defined by
the simple series

Lim(x−2) =
∞∑

k=1

x−2k

km
. (56)

IV. REAL PARTS OF AMPLITUDES AND DERIVATIVES FROM DR AND DRS

Based on the inputs of total cross sections σ (x) for pp and pp, DRs determine the real amplitudes at t = 0 as functions of the
energy. The subtraction constant K is required (obtained from data), with a unique energy independent value. On the basis of
the input of the imaginary slope BI (x) for pp and pp, DRS determine the derivatives of the real amplitudes at t = 0 as functions
of the energy.

With terms of the general form xλ logn(x) in the inputs, exact solutions are written for all PV integrals that appear in DRs and
DRS. Thus exact forms, valid for all energies, are written for the real amplitudes and for their derivatives in the forward direction.
Because it is known that the real part has important structure in the forward range, these results give essential contributions to
the analysis of the dynamics governing elastic processes. Below we provide practical expressions for the results of DRs and
DRS, keeping the dominant terms of the Lerch’s transcendents. In Sec. V we illustrate the use of these results in the analysis of
scattering data.

A. Real amplitudes at t = 0

For practical use, taking the low-energy corrections to first order, we write below the expressions for the ρσ products obtained
with the PDG (imaginary amplitude) input. We have for the even part

1

2
[(σρ)(pp̄) + (σρ)(pp)] = 1

2m2x
ReF+(x,0) = T1(x)+T2(x)+T3(x), (57)

with

T1(x) = Hπ log

(
x

x0

)
, (58)

T2(x) = K

2m2x
+ 2

πx
(P + H [log2 (x0) + 2 log(x0) + 2]), (59)

T3(x) = R1x
η1
0

[
−x−η1 tan

(πη1

2

)
+ 2

πx

1

1 − η1

]
, (60)

and for the odd part

1

2
[(σρ)(pp̄) − (σρ)(pp)] = 1

2m2x
ReF−(x,0) = R2x

η2
0

[
x−η2 cot

(
πη2

2

)
+ 2

πx2

1

2 − η2

]
. (61)

Additional terms are of the order O(x−4).
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B. Derivatives of real amplitudes at t = 0

We can learn more about the |t | dependence of the amplitudes through the investigation of the DRs for slopes, DRS. For practical
purposes we give below explicit expressions for the DRS including only the first term of the expansion of the transcendents. We
have

1

2m2x

∂ReF+(x,t)

∂t

∣∣∣∣
t=0

= 1

π
[(P + H log2 x0)G1(x) + HG2(x) + R1G3(x) + R2G4(x)], (62)

where

G1(x) ≡ b0 − b1 + 2b2

x
+ b1π

2

4
+ b2π

2

2
log x + b3

[
− π

2
x−η3 tan

(πη3

2

)
+ 1

x

1

1 − η3

]
, (63)

G2(x) ≡
[
π2

4

(
3 log2 x + π2

2

)
− 6

x

]
(b1 − 2b2 log x0) − 2b0 log x0

(
π2

4
− 1

x

)
+ (b0 − 2b1 log x0)

(
π2

2
log x + 2

x

)

+ b2

[
π2 log x

(
log2 x + π2

2

)
+ 24

x

]
− πb3x

−η3

{
log x tan

(πη3

2

)(
− log x0 + 1

2
log x

)

− π

2
sec2

(πη3

2

)[
log

(
x

x0

)
− π

2
tan

(πη3

2

)]}
+ 2b3

x(1 − η3)2

(
log x0 + 1

1 − η3

)
, (64)

G3(x) ≡ x
η1
0

(
b0

[
π

2
x−η1 tan

(
−πη1

2

)
+ 1

x

1

1 − η1

]
+ b1

π

2
x−η1

[
π

2
sec2

(πη1

2

)
− tan

(πη1

2

)
log x

]

− b2
π2

2
x−η1

{
sec2

(πη1

2

)[π

2
tan

(πη1

2

)
− log x

]
+ 1

π
tan

(πη1

2

)
log2 x

}

+ b3

[
− π

2
x−η1−η3 tan

(
π (η1 + η3)

2

)
+ 1

x

1

1 − η1 − η3

]
+ 1

x

1

(1 − η1)2

(
− b1 + 2b2

(1 − η1)

))
, (65)

G4(x) ≡ x
η2
0 b4

[
− π

2
x−η2−η4 tan

(
π (η2 + η4)

2

)
+ 1

x

1

1 − η2 − η4

]
. (66)

For the odd combination we have

1

2m2x

∂ReF−(x,t)

∂t

∣∣∣∣
t=0

= 1

π
[(P + H log2 x0)F1(x) + HF2(x) + R1F3(x) + R2F4(x)], (67)

where

F1(x) ≡ b4

[
π

2
x−η4 cot

(πη2

2

)
+ 1

x2

1

2 − η4

]
, (68)

F2(x) ≡ b4

(
π

2
x−η4

{
π csc2

(πη4

2

)[
log

(
x

x0

)
+ π

2
cot

(πη4

2

)]

+ cot
(πη4

2

)
log x(−2 log x0 + log x)

}
+ 2

x2

1

(2 − η4)2

(
log x0 + 1

2 − η4

))
, (69)

F3(x) ≡ b4x
η1
0

[
π

2
x−η1−η4 cot

(π

2
(η1 + η4)

)
+ 1

x2

1

2 − η1 − η3

]
, (70)

F4(x) ≡ x
η2
0

(
π

2
x−η2

{
cot

(πη2

2

)
(b0 + b1 log x + b2 log2 x) + π

2
csc2

(πη2

2

)[
b1 + π cot

(πη2

2

)
b2 + 2 log xb2

]

+ x−η3 cot
(π

2
(η2 + η3)

)
b3

}
+ 1

x2

1

2 − η3

[
b0 − b1

2 − η2
+ 2b2

(2 − η2)2
+ (2 − η2)b3

2 − η2 − η3

])
. (71)

V. RELATION WITH PHENOMENOLOGY

We are here concerned with the strong interaction part
of pp and pp scattering, with no treatment of the Coulomb
interaction, but stressing that the proper treatment of the real

part is essential for a correct account of the interference. The
determinations of the total cross section, through its connection
with the optical point of the imaginary amplitude, and of the ρ
parameter of the ratio of real to imaginary amplitudes at t = 0,
through analysis of dσ/dt data, are affected by the structure
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(namely the t dependence) of the real part and its interference
with the Coulomb amplitude. DRs and DRS determine values
of the real amplitude and its derivative at the origin, controlling
parameters of the real and imaginary parts.

In this paper we prove that, in DRs and DRS, terms of
the general form xλ logn(x) with integer n in amplitudes and
slopes of the imaginary part can receive exact treatment,
through analytic solution of the intervening PV integrals.
Luckily, the well-known and well-accepted parametrization of
the pp and pp total cross sections made by the PDG/Compete
Collaboration [6] is a linear combination of such terms. With
parametrization of the imaginary slopes BI also made with
such terms, the DRS also come with the exactly calculable
forms. Thus, we obtain the new results presented in this work.
With knowledge of exact explicit forms for DRs and DRS,
we have powerful support for the analysis of forward dσ/dt
data.

The parametrization for the total cross section for pp and
pp interaction in the form of Eq. (15) with functions of s

has parameter values P ′, H ′, R′
1, and R′

2 in millibarns, s0 in
GeV2, and η′

1 and η′
2 dimensionless. The parametrization is

considered adequate for all energies s � s0. Because disper-
sion relations are written with the laboratory system energy,
we reparametrize the above form, writing similar Eqs. (16)
and (17) in terms of the variable x and find parameter values
P = 34.37 mb, H = 0.2704 mb, R1 = 12.46 mb, R2 = 7.30
mb, η1 = 0.4258, η2 = 0.5458, and x0 = 8.94.

Similarly, the experimental BI slopes are represented by
the forms of Eqs. (18) and (19), with suggested parameter val-
ues b0 = 13.03 GeV−2, b1 = −0.3346 GeV−2, b2 = 0.042 55
GeV−2, b3 = −6.94 GeV−2, b4 = 17.31 GeV−2, η3 = 0.5154,
and η4 = 0.960. The symmetries in the expressions for pp

and pp simplify the algebra, without loss in the quality of the
representations of the data.

A. The subtraction constant and the parameter ρ

The determination of the dimensionless subtraction con-
stant K , which is particularly important at low energies, uses
experimental information on the real part of both pp and pp̄
systems. In Fig. 1, values K = 0 and K = −300 enter as
examples to show the influence in the predictions of the real
amplitudes for t = 0 for low energies.

B. Structure of the real part

We can learn more about the |t | dependence of the real
amplitudes through the investigation of the dispersion relations
for slopes. From studies at high energies [8–10] it is known
that the real part has a nontrivial structure in the forward
range, presenting a zero that approaches |t | = 0 with increasing
energy, in agreement with a theorem by Martin [7]. Because
the pure exponential form cannot have a zero, the real part must
be described by a more sophisticated structure. Thus we may
assume for the real parts the forms

(1/2m2x)ReFpp(x,t) = σpp[ρpp − μppt]e−B
pp
R |t |/2, (72)

(1/2m2x)ReFpp̄(x,t) = σpp̄[ρpp̄ − μpp̄t]e−B
pp̄
R |t |/2. (73)
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ρ(
pp

) ,
 ρ(

pp– )

ρ (pp) and ρ (pp
–
)

pp

pp
–

dashed : K = 0

solid :  K = - 300

FIG. 1. Energy dependence of ρ(pp) = ReFpp(x,0)/ImFpp(x,0)
and ρ(pp̄) = ReFpp̄(x,0)/ImFpp̄(x,0) predicted by DRs, with illus-
trative values 0 and −300 for the subtraction constant K .

The derivatives with respect to t at the origin give

(1/2m2x)
∂ReFpp(x,t)

∂t

∣∣∣∣
|t |=0

= σpp

[ρpp

2
B

pp
R −μpp

]
, (74)

(1/2m2x)
∂ReFpp̄(x,t)

∂t

∣∣∣∣
|t |=0

= σpp̄

[ρpp̄

2
B

pp̄
R −μpp̄

]
. (75)

Terms with higher powers do not contribute to the derivative
at t = 0.

We may observe particularly the combination of parameters

ρ BR/2 − μ, (76)

which together with ρ for the pp and pp systems, are the
predictions of DRs and DRS for the description of dσ/dt data
in the forward range. These quantities are shown in Fig. 2.
The asymptotic (high energy) values are ρ ≈ π/ log(x) and
ρBR/2 − μ ≈ πb2 log(x). The quantities ρ, BR , and μ must
be extracted from the analysis of the dσ/dt data and compared
with these predictions.

VI. FINAL REMARKS

The paper presents advances in the formulation and use of
dispersion relations in the treatment of pp and pp scattering.
The main points of our results are reviewed below.

First, we give the proof of the solution of the general form
of principal value integrals, arising from terms of the form
xλ logn x in the imaginary amplitudes. The sum of such terms
form the established representation for the energy dependence
of total cross sections [6], so that the proof is of fundamental
importance for the area, closing a long period in which the
solution of the singular integrals of the dispersion relations
was the main technical difficulty.
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FIG. 2. With σ and BI (for pp and pp systems) given as inputs,
the combinations of parameters ρBR/2 − μ (for pp and pp) are
predicted by the DRS, offering efficient control in the analysis of
dσ/dt data.

The solution is obtained from the study of a new property
found by the present authors [1] for the Lerch’s transcendent,
which is a well-defined function of mathematical analysis. In
Sec. III we start from the theorem proving the new integral
representation of Lerch functions and construct the analytic
solution for the required integrations.

To investigate new consequences of the DR principles, t-
dependent extensions are written for the imaginary amplitudes,

with exponential factors of energy-dependent slopes. These ex-
tensions are obvious and universally adopted in the description
of the forward peak of the elastic differential cross section
(the famous diffraction peak). Their use in the framework
of dispersion relations was first introduced [2] in 2007 and
shown to be an important tool in the control of parameters of
forward elastic scattering. Parametrizations are introduced for
the energy dependence of the imaginary slopes B

pp
I and B

pp̄
I ,

describing well the known data, with the analytical structure
formed with the combination of terms of the same basic form
xλ logn x.

Derivatives with respect to t of the DR expressions with the
t dependencies give origin to new connections between real
and imaginary amplitudes. Taking t = 0 in these expressions
we obtain the derivatives of the real parts in terms of PV
integrals that we know how to solve. The novel expressions are
here called dispersion relations for slopes. Full expressions are
written for these relations in terms of the given inputs of the
imaginary parts, using the exact PV solutions.

It is stressed that DRs and DRS together form an important
frame for the analysis of elastic scattering, totally based on
consequences of the principles of analyticity and causality that
are the basis of the theory of dispersion relations.

The relation of these results to the phenomenology of
forward elastic scattering is explored, exhibiting the evaluation
of observable quantities. Particularly interesting is the study of
the behavior of the real amplitudes in the forward range, with
identification of constraints that are determined by DRs and
DRS and point to controls of the scattering parameters.
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