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This article studies correlated two-person games constructed
from games with independent players as proposed in Iqbal
et al. (2016 R. Soc. open sci. 3, 150477. (doi:10.1098/rsos.150477)).
The games are played in a collective manner, both in a
two-dimensional lattice where the players interact with their
neighbours, and with players interacting at random. Four game
types are scrutinized in iterated games where the players
are allowed to change their strategies, adopting that of their
best paid mate neighbour. Particular attention is paid in the
study to the effect of a variable degree of correlation on Nash
equilibrium strategy pairs.

1. Introduction
This paper considers the four two-person (A and B), 2×2 non-zero-
sum game types defined by the pay-off matrices given in table 1.
Namely, the Prisoner’s Dilemma (PD), the Hawk–Dove (HD),
the Samaritan’s Dilemma (SD) and the Battle of the Sexes (BOS),
whose interpretation is described below.

In the PD game, both players may choose either to cooperate
(C) or to defect (D). Mutual cooperators each scoring the reward
R; mutual defectors score the punishment P; and D scores the
temptation T against C, who scores S (sucker’s pay-off) in such an
encounter. In the PD, it is: T > R > P > S. In this study, the PD pay-
off values will be T = 5, R = 3, P = 2 and S = 1. The PD with these
pay-offs will be referred to as PD(5,3,2,1).

In the HD game, the structure of the pay-offs matrices is similar
to that in the PD, but in the HD it is P < S instead of P > S as in
the PD. In this study, the HD pay-off values will be T = 3, R = 2,
P = −1 and S = 0. The HD with these pay-offs will be referred to
as HD(3, 2, 0, −1).

In the SD game, the charity player A may choose Aid/No Aid,
whereas the beneficiary player B may choose Work/Loaf. The
Samaritan’s dilemma arises in the act of charity. The charity player
wants to help (Aid) people in need. However, the beneficiary may
simply rely on the handout (Loaf) rather than try to improve
their situation (Work). This is not anticipated by the charity
player. Many people may have experienced this dilemma when
confronted with people in need. Although there is a desire to help
them, there is the recognition that a handout may be harmful
to the long-run interests of the recipient [1–5]. Following the
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Table 1. Four game types. From left to right: Prisoner’s Dilemma (PD), Hawk–Dove (HD), Samaritan’s Dilemma (SD), Battle of the
Sexes (BOS).
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references [6–8], we adopt here the pay-off matrices given in its corresponding panel in table 1, and the
SD with these pay-offs will be referred to as SD(3, 2, 1, −1).

In the so-called BOS game, the rewards R > r > 0 quantify the preferences in a conventional couple
fitting the traditional stereotypes: The male player A prefers to attend a Football match, whereas the
female player B prefers to attend a Ballet performance. Both players hope to coordinate their choices, but
the conflict is also present because their preferred activities differ [9,10]. In this study, the BOS pay-off
values will be R = 3, r = 1. The BOS with these pay-offs will be referred to as BOS(5,1).

The PD and HD games are symmetric, i.e. the pay-off matrices of both players coincide after
transposition, whereas the SD and the BOS games are not symmetric. In symmetric games, the role of
both players are somehow interchangeable, whereas in asymmetric games every player has to be studied
separately. This issue is to be taken into account all across this study, but particularly in §5.

This paper studies the game-types under scrutiny interacting in a collective manner; either with
players connected in a spatially structured manner (§3) or with players randomly connected (§4).
Collective games on networks have long been studied previously [11,12]. The novelty of this study
lies in the consideration of the mechanism for correlating independent strategies given in [13], and
contextualized here in §2.

2. Independent players and correlated games
In the somehow canonical approach to game theory, both players choose their strategies independently
of each other. In an alternative approach, an external (probabilistic) mechanism sends a signal to each
player, so that, in principle, the players do not have any active role. Both approaches, as well as a
mechanism for combining them, are featured in this section.

2.1. Games with independent players
In conventional games, both players decide independently their probabilistic strategies x = (x, 1 − x)′ and
y = (y, 1 − y)′, which give rise to the joint probability distribution Π = xy′. As a result, in a game with PA
and PB pay-off matrices, the expected pay-offs (p) of both players are (� indicates element-by-element
matrix multiplication, 1′ = (1, 1)):

pA(x, y) = 1′PA � Π1 = x′PAy, pB(x, y) = 1′PB � Π1 = x′PBy. (2.1)

The strategy pair (x, y), referred to here as (x, y), is in Nash equilibrium (NE), if x is the best response
to y and y is the best response to x. In the PD game, mutual defection, i.e. x∗ = y∗ = 0, is the only pair
of strategies in NE. The HD game has three strategy pairs in NE, two of them are given by the pure
strategies (x∗ = 1, y∗ = 0 ≡ (D, H)) and (x∗ = 0, y∗ = 1 ≡ (H, D)), whereas the third NE in achieved with
mixed strategies, which in the particular case of the HD(3, 2, 0, −1) considered here becomes x∗ = y∗ =
1
2 , leading to pA,B = 1. Note that (x∗ = y∗ = 0 ≡ (H, H)) is not in NE in the HD game. The SD game has
only one NE, which in the particular case of the SD(3, 2, 1, −1) considered here becomes: (x∗ = 1

2 , y∗ = 1
5 ),

leading to (pA = −0.2, pB = 1.5). The BOS game has three strategy pairs in NE, two of them are given by
the pure strategies (x∗ = y∗ = 1 ≡ (F, F)) and (x∗ = y∗ = 0 ≡ (B, B)), whereas the third NE in achieved with
the mixed strategies (x∗ = R/(R + r), y∗ = r/(R + r)), leading to pA,B = Rr/(R + r) < r.
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Social welfare (SW) functions may be envisaged as summarizing some particular conception of the

common good [14]. In its simplest form, SW solutions maximize the sum of the pay-offs of both players. In
the games studied here, only (1,1) is the SW solution in the HD(3, 2, 0, −1) and the SD(3, 2, 1, −1); in the
PD(5,3,2,1), (1,1), (1,0), (0,1) are SW solutions, although only (1,1) is pay-offs balanced; in the BOS(5,1),
both (1,1) and (0,0) are SW solutions.

2.2. Correlated games
In a different game scenario, that of correlated games, an external probability distribution Π = (

π11 π12
π21 π22

)
assigns probability to every combination of player choices [10], giving rise to the expected pay-offs
pA(Π) = 1′PA � Π1, pB(Π) = 1′PB � Π1.

Non-factorizable Π may be generated from independent strategies (x, y) as with the ad hoc method
based on an external parameter k ∈ [0, 1] given in [13], and shown as follows:

π11 = (2k − 1)2xy π12 = (1 − k)x(1 − y) + k(1 − x)y

and π21 = (1 − k)(1 − x)y + kx(1 − y) π22 = (1 − x)(1 − y) + 4k(1 − k)xy

}
(2.2)

Equations (2.3) give the values of the elements of Π from equations (2.2) for three relevant values
of k. Note that k = 1 interchanges the k = 0 values of π12 and π21, whereas those of π11 and π22 remain
unaltered. Also relevant is that if x = y = 1

2 , Π is uniform (all its elements equal to 1
4 ) for k = 0 and k = 1,

but for k = 1
2 , it is π11 = 0, π12 = π21 = 1

4 , π22 = 2
4 . As a result, in a balanced x = y = k = 1

2 scenario, the
player B is privileged in the KBOS game. Thus, following with the male–female stereotypes, a male
modeller would describe the BOS game assigning player B to the female, whereas the female modeller
would reverse such role assignments.

k = 0 : π11 = xy, π12 = x(1 − y), π21 = (1 − x)y, π22 = (1 − x)(1 − y), (2.3a)

k = 1
2

: π11 = 0, π12 = π21 = (x + y − 2xy)
2

, π22 = (1 − x)(1 − y) + xy (2.3b)

and k = 1 : π11 = xy, π12 = (1 − x)y, π21 = x(1 − y), π22 = (1 − x)(1 − y) (2.3c)

the following equations give the elements of Π from equations (2.2) for relevant values of x and y.

π
(1.0,1.0)
11 = (2k − 1)2, π

(1.0,1.0)
12 = π

(1.0,1.0)
21 = 0, π

(1.0,1.0)
22 = 4k(1 − k), (2.4a)

π
(1.0,0.0)
11 = 0, π

(1.0,0.0)
12 = 1 − k, π

(1.0,0.0)
21 = k, π

(1.0,0.0)
22 = 0, (2.4b)

π
(0.0,1.0)
11 = 0, π

(0.0,1.0)
12 = k, π

(0.0,1.0)
21 = 1 − k, π

(0.0,1.0)
22 = 0, (2.4c)

π
(0.0,0.0)
11 = π

(0.0,0.0)
12 = π

(0.0,0.0)
21 = 0, π

(0.0,0.0)
22 = 1 (2.4d)

and π
(0.5,0.5)
11 = 1

4 − k(1 − k), π
(0.5,0.5)
12 = π

(0.5,0.5)
21 = 1

4 , π
(0.5,0.5)
22 = 1

4 + k(1 − k). (2.4e)

From the joint probabilities given in equations (2.4), the pay-offs in a KPD(5,3,2,1) with pure strategies
and x = y = 0.5 are given in the following equations, and plotted in figure 3a:

p(1.0,1.0)
A = p(1.0,1.0)

B = 4k2 − 4k + 3, (2.5a)

p(1.0,0.0)
A = 1 + 4k, p(1.0,0.0)

B = 5 − 4k, (2.5b)

p(0.0,1.0)
A = 5 − 4k, p(0.0,1.0)

B = 1 + 4k, (2.5c)

p(0.0,0.0)
A = p(0.0,0.0)

B = 2 (2.5d)

and p(0.5,0.5)
A = p(0.5,0.5)

B = 1
4 (11 − k(1 − k)). (2.5e)

Figure 1 shows the best responses to pure strategies in the KPD(5,3,2,1). Figure 1a,b proves,
respectively, that the strategy pairs (0,1) and (1,0) are in NE in the (k�, k•) interval. The k�-threshold is
achieved in the intersection of p0,0

A,B = 2 and p1,0
A = p0,1

B = 1 + 4k, thus k� = 1
4 , whereas the k•-threshold is

achieved in the intersection of p0,1
A = p1,0

B = 5 − 4k and p1,1
A,B = 4k2 − 4k + 3, thus k• = 1/

√
2 = 0.707.

From the joint probabilities given in equations (2.4), the pay-offs in a KHD(3, 2, −1, 0) with pure
strategies and x = y = 0.5 are given in the following equations, and plotted in figure 4a.

p(1.0,1.0)
A = p(1.0,1.0)

B = 12k2 − 12k + 2, (2.6a)
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Figure 1. Best responses to pure strategies in the KPD(5,3,2,1). (a) x = 0, (b) y = 1, (c) x = 1, (d) y = 0.

p(1.0,0.0)
A = 3k, p(1.0,0.0)

B = 3(1 − k), (2.6b)

p(0.0,1.0)
A = 3(1 − k), p(0.0,1.0)

B = 3k, (2.6c)

p(0.0,0.0)
A = p(0.0,0.0)

B = −1 (2.6d)

and p(0.5,0.5)
A = p(0.5,0.5)

B = 1 − 3k(1 − k). (2.6e)

From the joint probabilities given in equations (2.4), the pay-offs in a KSD(3, 2, −1, 0) with pure
strategies and x = y = 0.5 are given in the following equations, and plotted in figure 6a.

p(1.0,1.0)
A = 12k2 − 12k + 3, p(1.0,1.0)

B = 8k2 − 8k + 2, (2.7a)

p(1.0,0.0)
A = −1, p(1.0,0.0)

B = 3 − 2k, (2.7b)

p(0.0,1.0)
A = −1, p(0.0,1.0)

B = 1 + 2k, (2.7c)
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Figure 2. The KSD(3, 2,−1, 0). (a) Strategies and pay-offs in NE. (b) Pay-offs with (x = 0.5, y = 0.2).

p(0.0,0.0)
A = p(0.0,0.0)

B = 0 (2.7d)

and p(0.5,0.5)
A = 1

4 − 3k(1 − k), p(0.5,0.5)
B = 3

2 − 2k(1 − k). (2.7e)

In the KSD(3, 2, −1, 0) it is, pA = ((3(2k − 1)2 + 2)y − 1)x − y, pB = ((2(2k − 1)2 − 4)x + 1 + 2k)y + (3 −
2k)x. Consequently, the strategy pairs in NE in the KSD(3, 2, −1, 0) are given in (2.8), where the threshold
k∗ = 0.89 emerges from the x ≤ 1 restraint applied to x. Before k∗, it is

pA = − 1
2 + 3(2k − 1)2 , pB = (3 − 2k)(1 + 2k)

4 − 2(2k − 1)2 .

NE(k) :

(
x = 1 + 2k

4 − 2(2k − 1)2 , y = 1
2 + 3(2k − 1)2

)
k ≤ k∗ = 0.89

(x = 1, y = 1) k ≥ k∗ = 0.89

⎫⎬
⎭ . (2.8)

Figure 2a shows the strategies and pay-offs in NE in a KSD(3, 2, −1, 0) for variable k. Figure 2b shows
pay-offs in a KSD(3, 2, −1, 0) with (x = 0.5, y = 0.2). It is remarkable that the pay-offs in the latter scenario
do not differ very much from that in NE, particularly in the case of pA.

From the joint probabilities given in equations (2.4), the pay-offs in a KBOS(5,1) with pure strategies
and x = y = 0.5 are given in the following equations, and plotted in figure 7a.

p(1.0,1.0)
A = 16k2 − 16k + 5, p(1.0,1.0)

B = −16k2 + 16k + 1, (2.9a)

p(1.0,0.0)
A = p(1.0,0.0)

B = p(0.0,1.0)
A = p(0.0,1.0)

B = 0, (2.9b)

p(0.0,0.0)
A = 1, p(0.0,0.0)

B = 5 (2.9c)

and p(0.5,0.5)
A = 3

2 − 4k(1 − k), p(0.5,0.5)
B = 3

2 + 4k(1 − k). (2.9d)

Iqbal et al. [13] give a second method of constructing non-factorizable Π from independent strategies
(x, y). It departs from the fact that in factorizable Π it is π11 = xy, π12 = x − π11, π21 = y − π11, π22 = 1 +
π11 − (x + y). Then, it is proposed just to alter the form of π11 = xy, maintaining those of the other three
elements of Π as functions of π11. It is concluded in [13] that π11(x, y) < xy is the only restriction to be
imposed on π11(x, y) in order to make sure that all the elements of Π are in the [0, 1] interval and sum
to 1.0. The authors propose π11 = (xy)2 and π11 = x2y3 as examples. But π11(x, y) < xy does not suffice to
make sure that π22 = 1 + π11 − (x + y) is non-negative. To prove this, let us consider the particular case
of x = y, i.e. π22 = 1 + π11 − 2x: With π11 = x4, π22 is negative if 0.554 < x < 1.0, and with π11 = x5, π22 is
negative if 0.519 < x < 1.0.
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Table 2. A simple example in the spatial PD(5,3,2,1) scenario. Far left: The (A,B) chessboard. Centre: Initially every player cooperates,
except the defector player A located in the (3,4) cell. Far right: Probabilities and pay-offs at T = 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A B A B A B

B A B A B A

A B A B A B

B A B A B A

A B A B A B

B A B A B A

x, y x, ypT = 1 T = 2

1 11 11 1

1 1 1 1 1 1

1 1 0 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1 1

p

12 12 12 12 12 12

12 12 12 12 1210
12 10 20 10 12 12

12 12 10 12 12 12

12 12 12 12 12 12

12 12 12 12 12 12

1 1 1 1 1 1

1 0 1 0 1 1

1 1 0 1 1 1

1 0 1 0 1 1

1 1 1 1 1 1

1 1 1 1 1 1

12 10 12 10 12 12

10 20 6 20 10 12

12 6 20 6 12 12

10 20 6 20 10 12

12 10 12 10 12 12

12 12 12 12 12 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Spatial games
In the spatial version of the two-person games we deal with, each player occupies a site (i, j) in a two-
dimensional N × N lattice. The A and B players alternate in the site occupation in a chessboard form,
so that every player is surrounded by four partners (A-B, B-A), and four mates (A-A, B-B). The game is
played in the cellular automata (CA) manner, i.e. with uniform, local and synchronous interactions [15].
In this way, every player (i, j) plays with his four adjacent partners, so that his pay-off at time step
T, namely p(T)

i,j , is the sum over these four interactions. The evolution is ruled by the (deterministic)
imitation of the best paid neighbour, so that in the next generation, every generic player (i, j) will adopt
the probabilities of his mate player (k, l) with the highest pay-off among their mate neighbours. Table 2
shows a simple example with the PD(5,3,2,1) game where initially every player cooperates (x = y = 1),
except the defector (x = 0) player A located in the (3,4) cell. Thus at T = 1, the defector player A gets
the p = 20 pay-off instead of the common p = 12 pay-off. The imitation mechanism spreads the xA = 1
defection across the player A cells, whereas player B cooperation remains unaltered as no player B
defects.

All the simulations in this section are run in an N = 200 lattice with periodic boundary conditions
and initial random assignment of the probability values sampled from a uniform distribution in the [0, 1]
interval. Thus, initially: x̄ 
 0.5 and ȳ 
 0.5. As a rule, the results regarding player A are shown in red,
and those regarding player B are shown in blue. The computations have been performed by a double
precision Fortran code run on a mainframe.

Figure 3 deals with spatial simulations of the PD(5,3,2,1) with joint probabilities generated according
to (2.2). Figure 3b shows the mean pay-offs (p̄) and mean values of x and y at T = 200 starting from five
different random assignments of x and y. Mutual defection (x = y = 0) arises below the lower k� = 0.25
threshold and mutual cooperation (x = y = 1) beyond the higher k• = 0.707 threshold. In the (k�, k•)
transition interval, where both (1,0) and (0,1) are in NE, x̄ and ȳ are fairly similar, increasing their values
from 0.0 to 1.0 as k increases from k� up to k•; the mean pay-offs of both players in turn are fairly similar,
reaching values not far from R = 3. With the more sophisticated method of correlating independent
probability distributions presented in [16], referred to here as EWL, the transition interval from mutual
defection up to mutual cooperation in the PD is shorter and a strategy pair in NE providing the pay-off
of mutual cooperation appears with lower degree of correlation (entanglement in the quantum approach
implemented by the EWL method). In the PD(5,3,2,1) studied here, the thresholds of the correlation
parameter applying the EWL method (referred to here as kq) in a 0.0 up to 1.0 normalized scale are
k�

q = 0.333 and k•
q = 0.500 [17].

Figure 3b shows also the mean-field pay-offs (p∗) achieved in a single hypothetical two-person game
with players adopting the mean probabilities appearing in the spatial dynamic simulation, namely with
joint probability matrix

Π� =
(

(2k − 1)2x ȳ (1 − k)x(1 − ȳ) + k(1 − x)ȳ

(1 − k)(1 − x)ȳ + kx(1 − ȳ) (1 − x)(1 − ȳ) + 4k(1 − k)x ȳ

)
. (3.1)

The mean-field pay-offs (coloured brown for player A, green for player B) fully coincide with the
actual mean pay-offs out of the transition interval, but underestimate them in the transition interval.
The lack of coincidence of both mean-field and actual mean pay-offs is due to spatial effects that will be
illustrated here when addressing the BOS game (figures 9 and 8).

Figure 4b shows the results in five spatial simulations of the HD(3, 2, 0, −1) at T = 200. Spatial effects
arise before k� so that the mean-field approaches underestimate the actual mean pay-offs as in the spatial
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spatial simulations at T = 200.

simulations of the PD. After k�, the spatial simulations detect (1,1) as the unique NE, so that both pay-
offs increase their values according to p = 12k2 − 12k + 2 up to p = 2.0 at k = 1.0. The k� threshold appears
from the intersection of p(1.0,1.0) and p(1.0,0.0)

B , given in equations (2.6a) and (2.6b), thus k� = 0.848.
No results on the spatial simulations of the HD using the EWL correlation method have been reported

elsewhere, so figure 5 is included in this article. Again, as stressed above regarding the PD, the outcome
of mutual cooperation (Dove in the HD) emerges before with the EWL method: k�

q = 0.392 < k�
c = 0.848.

Note in figure 5a that spatial effects also arise in spatial simulations using the EWL method before k�
q, so

that the mean-field estimates (p�) also underestimate the actual mean pay-offs (p) in the QHD before the
k�

q threshold.
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Figure 6b,c show the results in five spatial simulations of a KSD(3, 2, −1, 0) at T = 200. As the SD has
only one NE regardless of k, (i) the results shown in the spatial simulation mimic those corresponding to
NE in two-person games shown in figure 2a, and (ii) no spatial effects arise so that both mean-field and
actual pay-offs coincide for every k. In spatial simulations of the SD using the EWL correlation method [6]
it is k•

q = 0.500 > k•
c = 0.890.

Figure 7b,c show the results in five spatial simulations of the KBOS(5,1) at T = 200. Owing to the
particular structure of the BOS game, where both π12 and π21 are irrelevant, the graphs in these panels
are symmetric around k = 0.5. The general form of the pay-offs (figure 7b) correspond to that of x = ȳ = 1,
diminishing close to k = 0.5 (figure 7c) where notable spatial effects arise, and particularly close to the
extreme values of k, both 0.0 and 1.0. The output of the spatial simulations of the BOS using the EWL
correlation method notably differ from that shown in figure 7 [18]. Let us say that the BOS game proves
to be a highly challenging game.

Figures 8 and 9 deal with simulations of the KBOS(5,1). The former with k = 0.0, the latter with k = 0.5.
In panel a of both figures, the dynamics up to T = 200; in panels b and c, the patterns of pay-offs and
probabilities at T = 200 and in panels d and e, zooms of the 20 × 20 central region of the full patterns.
In both scenarios, the dynamics induced by the imitation of the best paid neighbour implemented here
actuates in a straightforward manner, so that the permanent regime is achieved very soon. This applies
not only to the BOS game but in a general manner, regardless of the game under scrutiny.

The patterns of the pay-offs and probabilities shown in figure 8b,c are enhanced by the zooms of a
small central region in figure 8d,e. The general patterns are featured by regions of black-marked clusters
where x = y = 1.0 and white-marked clusters where x = y = 0.0. The emergence of these well-defined



9

rsos.royalsocietypublishing.org
R.Soc.opensci.4:171361

................................................
pB

0,0

pB

pB
0.5,0.5

pA
0.5,0.5

pA
0,0

pA
1,1

pA
1,0 pA

0,1

pB
1,1

pB
0,1pB

1,0

p

k0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

p*B

p*A

k

xA yB

k

x, y

1.0

0.5

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

p, p*

pB

pA

pA

(a) (b)

(c)

Figure 7. The KBOS(5,1) with variable k. (a) Pay-offs in two-person games. (b,c) Five spatial simulations at T = 200. (b) Mean pay-offs
and mean-field approaches, (c) mean values of x and y.

k = 0 BOS(5, 1)-CA

p

0.2
0.4
0.6
0.8
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

200100
T

(x, y)200 p200 x, y p

x

p

p*

y

p*

(a)

(c)(b) (d) (e)

Figure 8. The spatial KBOS(5,1) with k = 0.0. (a) Dynamics up to T = 200. (b,c) Patterns of the full 200 × 200 lattice at T = 200.
(d,e) Zooms of the 20 × 20 central area.

spatial structures explain why the mean-field pay-off fails to estimate the actual mean pay-off, as shown
in figure 8a. The pattern of probabilities at T = 200 shown in figure 9 for k = 0.5 turns out particularly
surprising as two horizontal compact bands with (x = y = 0.0) (figure 9a, upper and lower panels) and
one with (x = y = 1.0) emerge. This dramatic spatial structure lies in the origin of the discrepancy between
the mean-field and the actual mean pay-offs shown in figure 9a. In figures 8 and 9, the (x = y = 0.0)
and (x = y = 1.0) clusters are separated by borders where either (x = 0.0, y = 1.0) or (x = 1.0, y = 0.0) and
consequently the pay-offs of both players are zero, which causes white cell lines in the pay-offs patterns.
These clear (almost white) border lines are clearly noticeable in figure 8b–e, whereas in figure 9 they are
only two not-so-apparently clear horizontal lines, one of them enhanced in the zoom which has been
located in the upper transition from x = y = 0.0 to x = y = 1.0.

4. Games on random networks
In the simulations of this section, every player is connected at random with four partners and four mates,
so that any spatial structure is absent in such random networks. To compare the simulations presented
in this section to those based in spatially structured lattices in §3, also 200 × 200 players interact in the
games on networks studied in this section, half of them of type A, the other half of type B.

Figure 10 deals with the KPD(5,3,2,1) game with variable k in network simulations. Figure 10a shows
the mean pay-offs of both players and their mean values of x and y at T = 200 in five simulations.
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Figure 10b shows the dynamics in one of such simulations up to T = 20 for k = 0.0 (i), k = 0.4 (ii) and
k = 1.0 (iii).

The overall structure of the graphs in figure 10a coincides with that in figure 3b. The k� and k• remain
unaltered, with x = y = 0 before k� and x = y = 1 after k� in both scenarios. At variance with this, the
behaviour of the system in the (k�,k•) interval varies significantly in figure 10 compared to that in figure 3,
as in the network simulation the (1,0) and (0,1) NE emerge with no spatial effects masking them. Panel b
shows that also in network simulations the dynamics induced by the imitation of the best paid neighbour
implemented here also actuates in a straightforward manner, so that the permanent regime is achieved
almost immediately for k = 0.0 and k = 1.0, and as soon as just passed T = 10 for k = 0.4.

Figures 11–13 show the results with the KHD(3, 2, 0, −1), KSD(3, 2, 1, −1) and KBOS(5,1) games with
variable k in five network simulations at T = 200. Panel a of these figures shows the mean pay-offs of
both players, and panel b, the mean values of x and y.

In figure 11, the k• threshold and the permanent x = y = 1 regime after k• remain unaltered compared
to those in figure 4. But before k•, the KHD system behaves much as the KPD in its transition interval in
network simulations: the (1,0) and (0,1) NE emerge with no spatial effects masking them.
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In figure 12, the k• threshold and the permanent x = y = 1 regime after k• remain unaltered compared
to those in figure 6. But before k•, the KSD system shows a kind of helter-skelter oscillations particularly
pronounced around k = 0.5.

The overall structure of the graphs in figure 13 coincides with that in figure 7, so that x = ȳ = 1 prevail,
except close to the extreme values of k, both 0.0 and 1.0. The absence of spatial structure in the network
simulations of figure 13 produces crisp pay-offs (and probability) graphs, with no relevant alterations
around k = 0.5 , although in one of the simulations it is x = ȳ = 0 rendering p(0.0,0.0)

A = 1, p(0.0,0.0)
B = 5 close

to k = 0.5, coincident with p(1.0,1.0)
A (k = 0.5) = 1, p(1.0,1.0)

B (k = 0.5) = 5. In the graphs of pay-offs in figure 13a
player B overrates player A in the wide interval (k� = 0.5 − √

2/4, k� = 0.5 + √
2/4) (with k� and k• defined

at the intersection of the pay-offs given in equations (2.9a)). This indicates a kind of bias of the proposed
correlation mechanism that favours player B (already pointed out when commenting on equations (2.3)
in §2.2), a characteristic that is also found in the EWL model regarding the BOS game [18]. It is relevant
to point out that π

(1.0,1.0)
11 (k�) = π

(1.0,1.0)
11 (k•) = π

(1.0,1.0)
22 (k�) = π

(1.0,1.0)
22 (k•) = 1

2 , leading to the maximum

attainable equalitarian pay-off in the BOS: p(1.0,1.0)
A (k�) = p(1.0,1.0)

B (k�) = p(1.0,1.0)
A (k•) = p(1.0,1.0)

B (k•) = 3 =
(R + r)/2. Note that the maximum attainable equalitarian pay-off in the BOS with independent players
is half the previous one, i.e. pA = pB = 3

2 = (R + r)/4, achieved with x = y = 1
2 , which leads to π11 = π12 =

π21 = π22 = 1
4 .
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5. Partial strategy updating
In this section, it is assumed that only one player type updates his strategies in the manner indicated
in §3. Thus, in figures 14 and 15 only player A updates strategies in the symmetric games of PD and
HD. The asymmetric games of SD and BOS are studied in figures 16–19, where both players are treated
separately.

In all the figures of this section, panels a and b deal with spatial simulations and games on networks,
respectively, with the initial strategy probabilities assigned at random. Panel c, the probability of the
player that does not update his probability strategies is fixed at 0.5, instead of being assigned as random
as is done with the player that updates probability strategies. Thus, panel c provides a kind of the
theoretical reference of what is to be expected in the collective behaviour, both in spatial simulations
and in games on networks.

In the mean-field analysis with partial updating, the player that does not update his probabilities will
have his mean probability equal to the middle level 1

2 . In this scenario, the joint probability matrices,
when player B is fixed to y = 1

2 and player A is fixed to x = 1
2 , become, from equations (2.3),

Π(y = 1
2 ) = 1

2

(
(2k − 1)2x k − (2k − 1)x

(1 − k) + (2k − 1)x 1 − (2k − 1)2x

)
(5.1)

and

Π(x = 1
2 ) = 1

2

(
(2k − 1)2y (1 − k) + (2k − 1)y

k − (2k − 1)y 1 − (2k − 1)2y

)
. (5.2)

In the KPD context of figure 14, it is p(x,y=1/2)
A = 1

2 (4k2 + 4k − 3))x + 7 − 4k), where (4k2 + 4k − 3) = 0 →
k� = 1

2 . Consequently, p(x=0,y=1/2)
A = 1

2 (7 − 4k) before k�, and p(x=1,y=1/2)
A = 2k2 + 2 after k�. As a result, the

general form of the pay-off of player B, p(x,y=1/2)
B = 1

2 (4k2 − 12k + 5)x + 4k + 3) becomes p(x=0,y=1/2)
B =

2k + 3
2 before k�, and p(x=1,y=1/2)

B = 2k2 − 4k + 4 after k�. At k = 1
2 , it is p(x=0,y=1/2)

A = p(x=1,y=1/2)
A =

p(x=0,y=1/2)
B = p(x=1,y=1/2)

B = 2.5. The spatial and network simulations in figure 14 agree fairly well with
these theoretical results. The discrepancies rely on the smooth transition around k� = 1

2 and on the not-
exact convergence to x = 0 and x = 1 before and after k∗ = 1

2 . As a result of the latter, at k = 0, pA slightly
exceeds its theoretical value 1.5 and pB slightly undervalues its theoretical value 3.5. Only small spatial
effects emerge in the spatial simulations of player A (panel a) close to k�.
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In the KHD context of figure 15, it is p(x,y=1/2)
A = 3(2k − 1)kx + 1 − 3

2 k, where 2k − 1 = 0 → k� = 1
2 .

Consequently, p(x=0,y=1/2)
A = 1 − 3

2 k, p(x=1,y=1/2)
A = 6k2 − 9

2 k + 1. As a result, the general form of the pay-

off of player B, p(x,y=1/2)
B = (6k2k − 9k + 3)x + 1

2 (3k − 1) becomes p(x=0,y=1/2)
B = 1

2 (3k − 1), p(x=1,y=1/2)
B =

6k2 − 15
2 k + 5

2 . At k = 1/2 it is, p(x=0,y=1/2)
A = p(x=1,y=1/2)

A = p(x=0,y=1/2)
B = p(x=1,y=1/2)

B = 0.25. As reported on
the PD, moderate spatial effects emerge in the spatial simulations of player A close to k� in figure 15a.

The strong effect that the absence of updating capacities from one of the players exerts on the
collective dynamics studied here is remarkable. Thus, figure 14a,b are to be compared to figures 3 and 10
regarding the PD, respectively, and figure 15a,b are to be compared to figures 4 and 11 regarding the HD,
respectively. In any case, the intrinsic symmetry of both the PD and HD games ceases to be operative in
this section, favouring player A, i.e. the player allowed to find a best response to the fixed strategies of
the other player, player B, so far.

In the KSD context of figure 16, it is p(x,y=1/2)
A = (6k2 − 6k + 3

2 )x − 1
2 , where (6k2 − 6k + 3

2 ) ≥ 0 → x =
1, so that p(x=1,y=1/2)

A = 6k2 − 6k + 1 and p(x,y=1/2)
B = (4k2 − 6k + 2)x + k − 1

2 becomes p(x=1,y=1/2)
B = 4k2 −

5k + 5
2 . Note that the intrinsic unfairness of the SD game impedes the charity player A to overrate the

beneficiary player B, even in the favourable to A scenario of figure 16. A common feature of all the
simulations of this section is the non-dependence of the permanent regime of the initial configuration:
The five simulations run in every frame cannot be distinguished. Thus, in the particular case of the KSD
in figure 16 the outputs of the five CA and NW simulations are superimposed, so that it seems that
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Figure 16. The SD(3, 2, 1,−1)with variable kwhenonly player A updates strategies. Five simulations at T = 200. (a) Spatial simulations,
(b) games on networks and (c) games on networks.
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Figure 17. The SD(3, 2, 1,−1)with variable kwhen only player B updates strategies. Five simulations at T = 200. (a) Spatial simulations,
(b) games on networks and (c) y = 0.5.

only one has been implemented. This contrasts with the results shown in figures 6 and 12 where the five
simulations may be identified before k�, although their outputs are qualitatively similar.

In the KSD context of figure 17, it is pB(x = 1/2, y) = (4k2 − 2k)y + 3
2 − k, were 2k2 − k = 0 → k� = 1

2 .

Consequently, p(x=1/2,y=0)
B = 3

2 − k, p(x=1/2,y=1)
B = 4k2 − 3k + 3

2 ; and the general form of the pay-off of
player A pA(x = 1/2, y) = (6k2 − 6k + 3

2 )y − 3
2 turns out pA(x = 1/2, y = 0) = − 3

2 , pA(x = 1/2, y) = (6k2 −
6k + 1. In figure 17, the beneficiary player B overrates the charity player A, greater compared to figure 16,
albeit not to a very large extent.

In the KBOS context of figure 18, it is p(x,y=1/2)
A = (8k2 − 8k + 2)x + 1

2 , where 16k2 − 16k + 4 ≥ 0, and

consequently the best response of player A is x = 1, which leads to p(x=1,y=1/2)
A = 8k2 − 8k + 5

2 . For

player B it is p(x,y=1/2)
B = (−8k2 − 8k − 2)x + 5

2 , that for x = 1 renders p(x=1,y=1/2)
B = −8k2 + 8k + 1

2 . Fairly
surprisingly, these pay-offs are exactly half of those reported in the simulations of figure 13 with k not
in its extreme values so that x = y = 1, i.e. those given in equation (2.9a). In figure 18c, it is x = 1 for all k,
also for k = 1

2 , but in the CA and NW simulations (figure 18a,b) it is x = 1
2 for k = 1

2 . Remarkably, for k = 1
2

it is 8k2 − 8k + 2 = −8k2 − 8k − 20, so that it is p(x,y=1/2)
A = 5

2 and p(x,y=1/2)
B = 1

2 regardless of x. As a result,
there is no repercussion of being x = 1

2 instead x = 1 at k = 1
2 on the actual pay-offs in the NW simulations

(figure 18b) or in the mean-field pay-off approaches in the CA simulations (figure 18a). Nevertheless, in
the CA simulations, spatial effects induce the increase of the actual mean pay-off of player A up to nearly
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Figure 18. The BOS(5,1) with variable k when only player A updates strategies. Five simulations at T = 200. (a) Spatial simulations, (b)
games on networks and (c) y = 0.5.
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Figure 19. The BOS(5,1) with variable k when only player B updates strategies. Five simulations at T = 200. (a) Spatial simulations, (b)
games on networks and (c) x = 0.5.

pA = 3. Anyhow, again in the context of this section player B overrates player A in the same wide interval
of k of figure 13, i.e. the studied correlation mechanism favours player B in the KBOS, even if the latter is
unable to update his strategies.

In the KBOS context of figure 19, it is pB(x = 1/2, y) = (−8k2 + 8k − 2)y + 5
2 , where −8k2 + 8k − 2 ≤ 0

and consequently the best response of player B is y = 0, which leads to pB(x = 1/2, y = 0) = 5
2 and

pA(x = 1/2, y = 0) = 1
2 . As pointed out when dealing with figure 18, for k = 1

2 it is = −8k2 − 8k − 2 = 0,

so that now it is p(x=1/2,y)
B = 5

2 and p(x=1/2,y)
A = 1

2 regardless of y so that there is no repercussion for y = 1
2

at k = 1
2 on the actual pay-offs in the NW simulations or in the mean-field pay-off approaches in the

CA simulations of figure 19. The spatial simulations show an odd aspect of the pay-off graphs with no
explanation. Player B notably overrates player A regardless of k in the KBOS simulations of figure 19.
This is highly expected, when in addition to the structural bias favouring player B in the KBOS, only
player B is allowed to search for best responses.

6. Conclusion
This article studies correlated two-person games constructed from games with independent players. The
games are studied in a collective manner, both in a spatially structured two-dimensional lattice and with
players connected at random. Iterated games are analysed where the players interact with their nearest
neighbours, and after every round each player adopts the strategy of his best paid mate neighbour for
the next round. The implementation of such imitation of the best evolving rule proves to be a very useful
tool to analyse the collective behaviour of two-person games via simulation.



16

rsos.royalsocietypublishing.org
R.Soc.opensci.4:171361

................................................
How high correlation enables the emergence of new Nash equilibria is described. In three of the

game types studied here (Prisoner’s Dilemma, Hawk and Dove, Samaritan’s Dilemma), the new Nash
equilibria achieved with highly correlated games maximize the sum of the pay-offs of both players,
i.e. they provide its (unique) so-called SW solution. The case of the fourth game type studied here, the
Battle of the Sexes, appears to be the most challenging one in this respect because it has two SW solutions
and the correlation mechanism adopted in this study tends to favour one of the players.

Data accessibility. The Fortran code (qgames.f) used to produce all the simulations in this article as well as the makefile to
run it in a Unix environment are available from the Dryad Digital Repository http://dx.doi.org/10.5061/dryad.722sg
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