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1,1

ABSTRACT

The process of finding an exact minimization for a multiple-valued logic (MVL)

expression requires an extensive search and enormous computation time. One of the heuristics

to reduce this computation time is the Neighborhood Decoupling (ND) Algorithm by Yang and

Wang. This algorithm finds near-optimal solutions for the given MVL expressions. The ND

algorithm is an extension of HAMLET (Heuristic Analyzer for Multiple-valued Logic

Expressions).

The primary goal of this thesis is to reduce the computation time of the ND algorithm

by using parallel processors. We developed a parallel version of the ND algorithm and tested

it on an iPSC/2 (Intel Parallel Supercomputer). The parallel version of the ND Algorithm

actually executes in parallel a portion of the ND algorithm known as the clustering factor

calculation. The number of nodes needed to run the programs is twice the number of input

variables of the expression. The results indicate that the parallel version ofND algorithm halves

the computation time compared to the sequential version.

A secondary goal of this thesis is to initiate the parallelization of HAMLET and the

study of parallel computers, i.e. iPSC/2. The experiences we obtained with iPSC/2 suggest an

alternative algorithm. The ND algorithm searches the first branch of the search tree assuming

that the optimum solution will be on that branch. We developed a Multi-branch Concurrent ND

(MCND) algorithm which concurrently searches multiple branches, hence increasing the

probability of reaching the optimum.

IV



TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. BACKGROUND 2

C. THESIS OUTLINE 4

II. NOTATIONS AND DEFINITIONS 5

A. DEFINITIONS FOR TRUNCATED SUM 5

B. THE PROPERTIES OF TRUNCATED SUM 9

C. DEFINITIONS USED IN ND ALGORITHM 10

III. iPSC/2 CONCURRENT SUPERCOMPUTER 14

A. SYSTEM DESCRIPTION 14

B. SYSTEM CHARACTERISTICS 14

C. PARALLEL PROGRAMMING 15

D. SUMMARY OF iPSC/2 SYSTEM CALLS 16

IV. PARALLEL NEIGHBORHOOD DECOUPLING ALGORITHM 19

A. ALGORITHM CF PAR: MINTERM SELECTION 24



B. ALGORITHM N: NEIGHBORHOOD RELATIVE COUNT . . 27

C. COMPARISON RESULTS 32

V. EXPERIENCES AND FUTURE DEVELOPMENTS 37

A. EXPERIENCES WITH iPSC/2 37

B. AN IMPROVED ALGORITHM 39

VI. SUMMARY AND CONCLUSIONS 49

APPENDIX A: PND ALGORITHM PROGRAM LISTINGS 51

APPENDIX B: MCND ALGORITHM PROGRAM LISTINGS 72

APPENDIX C: TIME COMPARISON TABLES 104

APPENDIX D: SOLUTION SETS FOR EXAMPLE 6 107

LIST OF REFERENCES 114

INITIAL DISTRIBUTION LIST 116

VI



ACKNOWLEDGEMENTS

In appreciation for their time, effort, and patience, many thanks go to my

instructors, advisors, and the staff and faculty of the Electrical and Computer

Engineering Department, NPS. A special note of thanks goes to my co-advisors,

Dr. Butler and Dr. Schoenstadt for their support and guidance. I would like to offer

special thanks to Dr. Yang for his guidance, encouragement and his world view.

vu





I. INTRODUCTION

A. MOTIVATION

Very-large-scale-integration (VLSI) technology has matured to a point where

large logic circuits are economically realized in silicon. However, two major

problems, bus connection and pin limitation, are bottlenecks to further integration.

Multiple-valued logic offers a solution to these problems. In recent years, multiple-

valued logic has been used in programmable logic arrays (PLA) based on charge-

coupled devices (CCD) or current-mode CMOS [Ref. 1, 2, 3, 4]. PLA's provide a

structured and modular approach to logic design. Consequently, there has been

considerable interest in computer-aided design and logic synthesis tools for multiple-

valued PLA's.

Several heuristic algorithms have been developed for the multiple-valued logic

minimization and each claims some advantages in specific examples, but none of

them is consistently better than the others [Ref. 5, 6, 7, 8, 9]. Heuristic algorithms

are important because the only known algorithms guaranteed to find a minimal

solution require an enormous search and are extremely time consuming. A heuristic

called the Neighborhood Decoupling Algorithm (ND) has been developed at the

Naval Postgraduate School (NPS)[Ref. 10]. This algorithm finds near minimal

solutions for given MVL expressions. However, for large PLA's, computation time

needed is also large.



This thesis shows how to reduce the computation time needed to minimize

multiple-valued logic expressions by using parallel computers. Specifically, a parallel

version of the Neighborhood Decoupling Algorithm is implemented by using

concurrent C and is run on iPSC/2 (Intel Personal Supercomputer).

B. BACKGROUND

With the computer software developed at NPS called HAMLET (Heuristic

Analyzer for Multiple-valued Logic Expression Translation), users can investigate

heuristics of their own [Ref. 12]. The HAMLET execution procedure of these

algorithms is abstracted as follows. Formal definitions will be covered in the next

chapter. Let / be a multiple-valued function, and let a be a minterm of /.

Input: let the M be the set of minterms of a function /;

Output: the minimized sum of product, S, of the original function;

S «-
<f>.

While (M * <f>) do {

pick one minterm a from M;

find an implicant Ia which covers a;

S - /„ u S-

subtract Ia from /;

}



TABLE 1.1: SUMMARY OF FOUR HEURISTIC ALGORITHMS

Heuristic Algorithm Choice of

Minterm
Choice of Implicant

Pomper and Armstrong [Ref.5]

(1981)

Random Drives Most Minterms to

or don 't-care

Besslich [Ref.6]

(1986)

Smallest Weight

(Most Isolated)

Drives Most Minterms to

or don 't-care

Dueck and Miller [Ref.7]

(1988)

Largest IF

(Most Isolated)

Largest BCR

Yang and Wang [Ref.10]

(1989)

Smallest CF
(Most Isolated)

Smallest NRC

TABLE 1.1 shows four previously proposed algorithms. They differ from each

other in the manner of picking the minterms (a) and finding the implicants (/a). The

Neighborhood Decoupling Algorithm developed by Yang and Wang is a modified

version of Dueck and Miller's. All of these algorithms initiate a search procedure

for a and evaluate the input function expression / at minterm a. Next, an implicant

Ia is chosen which covers a. Then, implicant Ia is added to output solution set 5, and

Ia is subtracted from function /.

The Pomper and Armstrong heuristic picks a randomly (as long as a is in the

set of minterms M) and finds an Ia (as long as Ia covers a) which drives the most

minterms to or don't-care when Ia subtracted from function / [Ref. 5]. In 1986,

Besslich presented an algorithm, using to weight transformations. The Besslich

algorithm picks a with the smallest weight (most isolated minterm) and finds Ia

which has a lowest cost per minterm covered (i.e., which drives the most minterms



to or don't care)[Rel 6]. In 1988, Dueck and Miller presented another algorithm

that picks a from M if a has the highest isolated factor (IF) and then finds the Ia

which directly covers a such that the break count reduction (BCR) is maximum

[Ref. 7]. The ND algorithm by Yang and Wang is an improvement to the Dueck

and Miller algorithm with revised decision rules for making selections of minterms

and implicants. The ND algorithm is characterized by adopting the advantage of

each algorithm and fully utilizing the properties of the truncated sums. Parallel

Neighborhood Decoupling (PND) algorithm is the parallel version of the ND

algorithm.

C. THESIS OUTLINE

A summary ofMVL definitions for truncated sum minimization are introduced

in Chapter II. The notations and definitions of Chapter II also help us in explaining

the algorithms in subsequent chapters. The computer system, iPSC/2, that is used

for developing the Parallel Neighborhood Decoupling algorithm is presented in

Chapter HI. Chapter IV and V discuss the computation times of the sequential and

parallel versions of the ND algorithm.
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II. NOTATIONS AND DEFINITIONS

The definition for truncated sum MVL minimization is given by Yang and

Wang algorithm [Ref. 10, 11], and we use them here.

A. DEFINITIONS FOR TRUNCATED SUM

Definition 1:

Let X = { x^,...,^ } be a set of n input variables where Xj takes on values

from R = { 0,l,...,r-l }. An n-variable r-valued function / is a mapping

/ : RB -+ R u {r}. [Ref. 9]

Here, r is a don't-care value; it can be chosen freely from any of the logic

values, 0,l,...,r-l.

Definition 2: MIN

The MIN [Ref. 9] function, is denoted as f(xvx2)
= x^, which evaluates to the

minimum value of its arguments. For example, ifR = {0,1,2,3}, then /(1,2) = 1 and

/(0,3) = 0. A minterm is an assignment of values to x^x^...^ such that /(x) * 0.

Definition 3: Literal

The literal operation of a variable x is defined as:

ax Jb = {
r-1 a±x<.b (2#1)

otherwise.



Definition 4: Truncated Sum (TSUM)

The truncated sum (TSUM) operation is defined as:

TSUM(x
1
,x

2)
= Xj + x

2
= min(x

1
+ x2,r

- 1). (2.2)

The two + signs in this expression are different. The leftmost denotes the

TSUM operation, while the rightmost denotes ordinary addition of two logic values

which are viewed as integers. For example, if R = {0,1,2,3}, then TSUM(1,2) = 3

and TSUM(2,2) = 3. The TSUM obeys the associative and commutative rules.

These definitions are inspired by the fact that CCD implementation supports

TSUM naturally [Ref. 9].

Example 1:

For example, l
x,

3
is a literal and takes value of 3 when 1 < x

t
< 3. However,

function 2 'x^ takes a value of 2 based on the definition of MIN.

Definition 5: Product Term

A product term p is the MIN of one nonzero constant c E R, and one or more

literal functions. In general, a product term is defined as:

ij. ix i2v J2 i D in J 1 k * Jk (2.3)p - c xx x2 . . . xn
I ^ ^ e R . ± ^ k ^ n ^

The constant or coefficient c, in a product term, effectively scales the term. For

each variable Xj, we say the window size of the literal
ik
xl* is jk

- ik
+ 1. We

use the terms product term and implicant interchangeably in this thesis.



Definition 6: Minterm

A minterm a is a product term in which all literals have a window size of 1.

For example, product term 2 3
x

t

3
°x

2
° is also a minterm. We say the coordinate of a

is < a1,a2,...,a >. We denote the value of minterm a, g(or), as the nonzero constant

c.

A product term p = c ilxf '

l2x2
2

. . .

la
Xn " can be decomposed into

Tn
(jk - ik + l) minterms. We say p generated those minterms. Given a

product term p, the set of minterms generated from p is denoted by MS
p

. If the

number of elements in MSpl is greater than that in MS
p2, we say p l

covers a larger

area than p2 . Given a function /, the set of minterms generated from its product

terms is denoted by MS^.

Definition 7: Sum-of-Products Expression

A sum-of-products expression is p l
+ p2

+ ... + pN for some integer N, where

Pi is a product term. For example, f = 3 xxl xx2
3 +2 °x° x2

°+3 xxl xx\ is

a sum-of-products expression.

Definition 8: Saturated Minterms (SAT)

Given a minterm a generated from the original function to be minimized, if

g(a) = r - 1, then a is a saturated minterm. Let SAT be the set of all saturated

minterms of a function.



Example 2:

If the input function to be minimized is expressed as follows,

l v 3 l v 3. o„o o v o lv l lv 1 4-0 Iv 1 2 v 2 + i V 2 Q__3.- 3„3 i„lf = 3 lx£ 1x2

J +2 Xi
U
°x2 +3 ^ ^2+2 x

Xi
2x2 +l ^ °x2

J
-H 3x£ xx

;

the MS
f
can be represented as 15 minterms in Figure 2.1. We mark a saturated

minterm with a dot in the figure.

X2

(3.
1*~ 1

]

1 3. 3. 3.

1 3. 3. 3.

I1 3. sj 3.

.X10 1 2 3

1

2

3

Figure 2.1: Map for Example 2, 3 ,4; Step 1 of Table 3.2

Lemma 1 Given a minterm a the maximum number of implicants which covers a is

0(r2n
).

Proof: Consider a variable (axis) x
;
of a. Any implicant (Ia ) that covers a may have

a range or "window size" w, such that 1 < w < r. With a window size w, we may

have w implicants that covers a. That is, for a given position a, within a window,

there are (a+1) ways to choose a lower bound on the window (0, 1,..., a) and r-1-

a+ 1 ways to choose the upper bound, for a total of (a+ l)(r-a) ways - which achieves

a maximum of about — when a ~ —
4 2
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B. THE PROPERTIES OF TRUNCATED SUM

There are two important properties of the truncated sum which are useful later

in developing the ND algorithm.

1. Saturated minterms can be generated by TSUM operation.

The truncated sum of two or more minterms may produce a

saturated minterm. By definition 4, the truncated sum of any saturated

minterm and a minterm identical except for the coefficient is a saturated

minterm. In other words, given two minterms a, (S such that g(/3) = r-1,

then TSUM(a,/3) = r-1. If value of y is r - 1, i.e., y is a saturated

minterm then for any other minterm 8, y + 8 = y.

As an example, in a 2-variable 4-valued function, three minterms add

in one position.

2 xxl 2x|+2 1xl 2x2

2
+ l 1xl 2x? = 3 xxl 2x2

2
+l xxl 2xl = 3

The first two terms form a saturated minterm, and this saturated

minterm absorbs the third term minterm.

2. Don't care minterms can be produced by saturated minterm.

In the minimization procedure, we may update a minterm a to a by

subtracting minterm y (a' = a ~ y), where y is the value of selected

implicant. If a E SAT, in a succession of updates, the value of a' may

reach the value 0. In that case, the algorithm will reset that minterm

coordinate to don't care, i.e., value r. In this way, additional values can



be subtracted, perhaps producing a set of fewer implicants than the case

where we require product terms to sum equal to the maximum value

(rather than equal to or greater).

C. DEFINITIONS USED IN ND ALGORITHM

Definition 9: Direct Neighbors

Let a and /3 be minterms with coordinates < a
1
,a

2
,...,a

n
> and < b!,b

2,...,b n
>

respectively. If for all i we have ^ = bj except one position j such that
|

sl- - b
}

\

=

1 we say that a and /3 are direct neighbors. Given a minterm a, we use N(a) to

denote the set of its direct neighbors.

Observation 1: The maximum number of direct neighbors of a given minterm is 2n.

Definition 10: Directional Neighbors

Two minterms a and /3 are directional neighbors in the direction Xj, if a
;

= b
;

for all i E [l,n] such that i * j and aj ^ bj. When bj > aj we say that f3 is in the

positive direction of a, while bj < ^ we say that /3 is in the negative direction of a.

Observation 2: If /3 is a direct neighbor of a then /3 is a directional neighbor of a in

the direction of x, for some i E [l,n].

Definition 11: Connected Minterms

This is a recursive definition. Given a minterm a and a minterm 0, then we say

/3 is a connected term of a, if

1. p is a direct neighbor of a and either g(/3) < g(a) or a E SAT.

10



2. (3 is a directional neighbor of a in direction X; and /3's direct neighbor is

connected to a and either g(/3) < g(a) or a E SAT.

For example, in figure 2.2 minterms 2 2xl °x2° , 1 x° 1x£l xxl 1x^l 2xl 2x%

and 2 2
Xi

3x2
3

(pointed by arrows) are connected minterms of 2 2xl 1x2
1

(the minterm with @ sign).

X1
X2

12 3

3. 2.
f

1 1r-1-_2
d

I

3.

2 1 2 1
1

3 2. 3.

Figure 2.2: Example for Connected Minterms

Definition 12: Connected Minterm Count

CMCa is the connected minterm count of minterm a. It is the number of

minterms that are connected to minterm a.

Definition 13: Expandable Directional Count

EDCa is the expandable directional count of minterm a. It is the number of

directions (both positive and negative for each xj in which a has one or more

connected minterms.

Observation 3: < EDC. < 2n.

11



Definition 14: Clustering Factor

The clustering factor relative to a minterm a is defined as

CFa
= (r-l)*EDCa + CMCa . (2.4)

This is a measure of the weight of all connected minterms relative to a. The

(r-1) factor is the range, or maximum possible number of minterms, in a direction

12 3

m
2. 2. 3.

2. 2. 3.

\X1

X2\

1

2

3

Figure 2.3: Map for Example 3, Step 2 of Table 3.2

Example 3:

In Figure 2.1 the minterm 1 1x1

1
°x2 (the minterm with @ sign) is one

of 15 minterms and has only one connected minterm and so only one expandable

directional neighbor, i.e. its CMC and EDC values are 1 and 1, correspondingly.

Figure 2.3 shows that the circled implicant l °x} °x2

3 was subtracted from

Figure 2.1. We mark a minterm with a dot in the figure because it was a saturated

minterm in the original function map. (see Definition 8 and Figure 2.1). The

minterm 2 °x° °x2

°
(the minterm with @ sign) has no connected

12



minterms nor expandable directional neighbors and CMCa
= 0, EDC

ft
= 0. The

clustering factors of all minterms in Figure 2.3 are listed in TABLE 2.1.

TABLE 2.1: CFS FOR ALL MINTERMS IN FIGURE 2.3

Minterm 2 °x° °x2
°

2 ijcf ^ 2 Xi x2 3 X! X2

CF 10 13 10

Minterm 2 2x 2 2x2

2
3

3x 3 2x 2
2 Xi X2 2 X! X2

CF 16 13 10 13

Minterm 2 Xi x2 3 3x 3 3x2

3

CF 13 10

13



III. iPSC/2 CONCURRENT SUPERCOMPUTER

A. SYSTEM DESCRIPTION

In an iPSC/2 system, a large number of processors or nodes work concurrently

on parts of a simple problem. An iPSC/2 system consists of compute nodes and a

front end processor, called the host. A node is a 80386 processor/memory pair. Its

physical memory is distinct from that of the host and other nodes, i.e., distributed

memory system. Each node runs the NX/2 operating system, and can access both the

host file system and the iPSC/2 Concurrent File System. The host system runs UNIX

System V operating system.

A typical iPSC/2 application has a host program that runs on the host and a

node program that runs on a group of allocated nodes called a cube. The host

program executes in the UNIX environment as a process. It initializes the

application, provides any necessary human interface, and loads the node program

onto the nodes. Generally, a node program performs calculations, exchanges

messages with other nodes, and sends result back to the host.

B. SYSTEM CHARACTERISTICS

An iPSC/2 system consists of the following units:

• IBM 386 AT Host Server

• 1.5 Gigabytes(OACIS)/100 Megabytes(Math Dept.) Harddisk space

14



• 32 Nodes(OACIS)/8 nodes(Math Dept.) each with

- 80386 Processor

- Weitek 1167 (OACIS)/ 80387 (Math Dept.) Math Coprocessor

- 8 MBytes (OACIS) / 4 MBytes (Math Dept.) of Memory

Before loading the programs to the nodes, a cube must be allocated. The cube

may consist of all the nodes in an iPSC/2 system or a subset of the nodes, but the

number of nodes is always a power of two; that is a k-cube consists of 2
k
nodes.

C. PARALLEL PROGRAMMING

The degree of parallelism is different from program to program. A perfectly

parallel program is the one that requires no internode communication. In a perfectly

parallel program, if we double the number of nodes, we halve the computation time.

But most programs involve a mix of computation and internode communication.

One of the goals of parallel algorithm is to develop a communication strategy that

maximizes the time a node spends computing and minimizes the time it spends

communicating or waiting for another node to complete a computation.

Communication among processes in an iPSC/2 system is done with message

passing. Nodes do not share physical memory. Messages are characterized by a

length, a type and an ID:

• The message length is the length of the structure in bytes. The message

sending routines will send exactly the specified message length.

• The message type defines the message which a particular node is waiting for.

There are two types of messages that can be sent; synchronous and asynchronous.

15



Another way of communicating between the nodes is by global operations. The

global operations are high level constructs for communication among the node

processes [See Section D]. In global operations, the results are shared between the

nodes, so instead of sending messages from nodes to the host and then calculating

the results, only the result of the global operation is sent to the host by one of the

nodes. This may reduce the message traffic over the system.

D. SUMMARY OF iPSC/2 SYSTEM CALLS

The system calls that are used in the ND parallel algorithm and Multi-branch

Concurrent algorithm are as follows;

• Node identification : setpid(), myhost(), mynode(), numnodes()

• Clock : mclock()

• Program loading : load()

• Message Passing : csend(), crecv(), gisum()

• Concurrent File System : open(), cwrite()

System call setpid(HOST_PID) is used to assign the process id of the host

program. This id is needed for message passing between the host and the nodes. In

our program HOST_PID is defined in "pardef.h" [See Appendix A]. For message

passing purposes, the host is considered to have a node number, which is always one

more than the highest numbered node in the cube (or equal to the number of nodes

in the cube). For example, the host's node number in a 8-node cube is 8 while

through 7 are used to number nodes in the cube. The call myhost() returns host's

16



node number. The system call mynode() returns the number of the node on which

the program is executing. This call is useful to make decisions by using the node

number of a process [See Chapter V, Section Bj.The system call numnodes() returns

the number of the nodes in the allocated cube. This call especially useful to make

the programs general purpose. By using numnodes() the user does not have to enter

the cube size to the program.

The mclock() routine provides a simple mechanism to measure the time

intervals. The system call mclock() returns the value of a counter that reflects

relative time in milliseconds. We obtain an initial time value and interpret stop time

to this initial value. We use mclock() only in the MCND algorithm.

The system call \oad(filename, node, id) is used for loading the processes

(filename) to the nodes. As soon as a node is loaded, it starts the execution of the

program. The variable node is an integer which defines the node number on which

the process will be loaded. When node is set to -1 then the load() instruction

broadcasts to all nodes. The variable id is the process id of the program that will be

loaded. Each node can be loaded with upto 20 processes, but in our programs we

only used one process per node so the only process id is 0.

The system calls csend(type, buf, len, node, pid) and crecv(rype, buf, len) are

synchronous message passing instructions. The iPSC/2 provides the asynchronous

message passing also, but because the nodes start execution right after they are

loaded, we need to block the processes until the message that contains the Working

Expression Set and Coordinates of the minterm is received. With synchronous
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message passing the node resumes execution only after the message is received. An

asynchronous message passing could be used, but then another instruction msgwait()

is needed to block the process to wait for the message. The variable type assigns the

message id which that instruction is sending or waiting for. The variables buf and len

define the address and size of the message buffer. The variable node has the same

effect as in load(),i.e. it defines the node which the message will be sent. If it is -1,

it broadcasts the message to all the nodes. Lastly, pid specifies the process id which

is to receive the message. The system call gisum(x; n, work) is one of the global

operations. These operations accumulate data from the entire allocated cube, x is

the pointer to the input vector to be used in the operation, after the completion of

the operation it contains the final result. The variable n is the length of the vector

and work is a working array for the summation. All the nodes must call the same

routine (with their own x) for a specific operation, in our case, it is an integer

summation and the final result is distributed to all nodes. The system call gisum()

calculates the sum of each integer component of x across all nodes. The result is

returned in x to every node.

The system call open(fUename###,O_CREAT\O_RDWR\O_APPEND,0644)

opens a file and returns a file number that can be used later. The three "#" symbols

after the file name are replaced by the node number which opens the file.

cwrite(file_no, buf strlen(buf)) writes the data which is in the buffer to the file with

assigned filejio. To send formatted streams to the buffer, we used sprintf()

instruction. This buffer is then written to the file.
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IV. PARALLEL NEIGHBORHOOD DECOUPLING ALGORITHM

The parallel neighborhood decoupling algorithm is a parallel version of the

ND algorithm [Ref. 10]. The Parallel ND (PND) algorithm has two computational

phases: minterm selection and implicant selection. Minterm selection is based on the

clustering factor computation [See Chapter II Section C]. Implicant selection is

based on Neighborhood Relative Count (NRC) computation. From all implicants

which cover the selected minterm, the implicant that is the most loosely coupled

(isolated) with its neighbors is chosen. This decoupling process is based on the fact

that if we choose the most isolated implicant then we may minimize the negative

impact for future minterm selections as well as implicant selections.

In the ND algorithm, before selecting another most isolated minterm, the

implicant that is selected should be subtracted from the expression. The update of

the expression must be completed before the minterm selection of the next

computation phase. We searched for a part of the algorithm that we can minimize

the communication and maximize the time spent on computation and found that the

CF computation was a good candidate for parallelization. The other parts of the

algorithm, such as Neighborhood Relative Count, are not so amenable to

parallelization, because they need much communication time compared to the

computation which will be performed by a node. For example, in the NRC
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computation [See section B], much time is spent executing conditional branch

instructions. Even though, the NRC algorithm is a large static code, the dynamic

code is not large enough, so much communication time that will be spent sending

the data to the node where NRC procedure executes and this is not feasible. The

main idea to parallelize the CF computation is to perform the EDC and CMC

[Definitions 12 & 13] computations in each direction for a variable of a minterm.

The number of nodes that is needed depends on the number of the variables. For

each variable, we need two nodes, one for negative side of a minterm at the

corresponding coordinate and the other for the positive side. The EDC's and CMC's

that are calculated are summed using a global sum operation, where node #0 sends

the total EDC and CMC values to the host. The host then asks for another

minterm's CF value.

In the sequential version of the Yang and Wang algorithm, the main program

asks for the coordinates of a minterm which has the smallest clustering factor. The

sequential clustering factor procedure computes the EDC and CMC values for the

negative direction of the first coordinate and then computes those values for the

positive direction of the same coordinate. Then, the EDC and CMC values of the

second coordinate are computed for the negative and positive directions. This

procedure is applied to all consecutive coordinates,i.e. variables. The results are

summed up and CF is calculated. When the number of the variables is increased,

we have more coordinates to compute. This computation scheme is depicted in

Figure 4.1.
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Figure 4.1: Flowchart of Sequential ND Algorithm

The parallel version of the ND algorithm has a different approach to the

clustering factor computation. We still need the EDC and CMC values for the

negative and the positive directions of the coordinates of the selected minterm. The

parallel version loads the codes needed to calculate the negative and positive

directions of a coordinate to the nodes. For a 3 input variable expression, 6 nodes

are required. The allocation of the nodes is shown in the Figure 4.2. The dummy

nodes in Figure 4.2 are explained at the end of section A.

The main benefit from the parallel algorithm comes when we increase the

number of the variables. The time needed in the sequential computation is

proportional to the number of variables. Figure 4.1 shows that when we have more

variables, the algorithm will grow vertically requiring spend more computation time.
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Figure 4.2 shows that when we have more input variables, the algorithm can expand

horizontally (until we run out of nodes). Thus, the parallel algorithm will not spend

as much time as the sequential algorithm to compute a clustering factor.

Select Minterm

Nod«no

t-J

W

n « S 7

, SShmRI—«v

1

WAIVI

EDC.CMC

jjnm.

:dc,cuc. <^>
' *••

IEDC.ICMC

CF-£EDC + £CMC (HOST)

0)

Figure 4.2: Flowchart of Parallel ND Algorithm

The ND Algorithm is listed below. In this algorithm, / denotes the function

to be minimized.

/* ****************************************************************

MS
/

: Original Expression Set

WS : Working Expression Set

SS : Solution Set

/* ****************************************************************
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{

SS *- 0; /* SS = Solution Set */

WS = MS, = { a \a is generated by the function /; if a E SAT then mark its

coordinate }.

While WS * do {

1. Use algorithm CFPAR to select a minterm a from the WS.

2. Use algorithm N to select an implicant Ia that covers a.

3. SS ««- SS u Ia .

4. V0 G Ia do {

compute g(/3) «- g(/3) - g(a).

subtracted Ia from WS.

if /3 is originally marked and g(/3) = then g(/3) *- r.

/* don't care terms */

}

}

}

The search space of the algorithm can be represented as a tree where each

node represents the current working expression set and each edge corresponds to

an implicant selection. The root of the search tree is the original expression set or

MS^

23



A. ALGORITHM CF_PAR: MINTERM SELECTION

The ND Parallel algorithm computes the clustering factor for all minterms in

a working expression set. The number of nodes that is actually needed is (2
*

number of variables in the expression), and the system allows only power of 2

number of nodes to be allocated. For example, even though we need only 10 nodes

for 5 input variables, we have to allocate 16 nodes.

The host program NDPARQ loads the first half of the allocated nodes with

the program which computes the negative direction of a coordinate (cf_left) and the

second half with the program for the positive direction (cf_right). For each Working

Expression Set the most isolated minterm's coordinates are requested. The host

program loads the current working set onto an message array. This array is defined

by "pardef.h" and consists of the expression and the coordinates of the selected

minterm. A minterm is selected from the working set and its coordinates are

assigned to the message array. The message is broadcasted to the nodes by using

synchronous message passing. The host program then blocks on a receive instruction

waiting for the results.

After the nodes are loaded, the node programs start execution. Nodes block

on a receive instruction and wait for the message from the host. After they receive

the message from the host, they compute their assigned coordinates using the system

call mynodeQ. For example, for a 4 input variable expression, 8 nodes are allocated.

The nodes from to 3 compute the negative direction of the coordinates (XI

through X4) while nodes 4 to 7 compute in the positive direction for the
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coordinates. If the number of nodes needed is less than the allocated nodes, then

the extra nodes become dummy nodes. All nodes checks their allocated coordinates,

and if the coordinate is larger than the number of variables in the expression, they

return for both EDC and CMC values. All EDC and CMC values computed on

the nodes are summed by using global summation gisum(). The result is available

to all the nodes. Node #0 has a special assignment of sending the result to the host.

The host calculates the CF using EDC and CMC that are reported by node #0. The

host then selects another minterm from the working expression set. The above

algorithm is applied recursively until the CF values of all minterms in the working

expression set are computed.

The computation of CF is as follows:

/* ***************************************************************+

WS: Working Expression Set

X^ Coordinates of a minterm a

/* ****************************************************************

Host Program

get the coordinates of the minimum CF minterm

messagetonode *- WS

Va G WS do {

message_to_node *- Xj
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send (message_to_node to all nodes)

recv (message_from_node from node 0)

CF *- message_from_node.dea * (radix -1) + message_from_node.ea

if (Cur_CF > CF) {

Cur_CF «- CF

Savecoord *- Xj

}

}

return the coordinates of the minimum CF minterm

Node Program (CFJeft)

EDC «-0

CMC «-0

recv (message_from_node from host)

variable_number *- mynode() /* assign node number as coordinate */

if (variable_number < message_to_node.nvar) { /* if the node number is bigger than

the number of variables do not compute */

Compute EDC and CMC to the left of the coordinate

}

globalsum (Add EDC and CMC values for all nodes)

if (mynode = 0) {

26



send (messagefromnode to host) /* Total EDC and CMC values From all

nodes */

}

Node Program (CF_right)

EDC —

CMC —

recv (message_to_node from host)

variable_number *- mynode() - numnodes/2 /* corrects and assigns the coordinate

V

if (input_variable < message_to_node.nvar) {

Compute EDC and CMC to the right of the coordinate

}

globalsum (Add EDC and CMC values for all nodes)

B. ALGORITHM N: NEIGHBORHOOD RELATIVE COUNT

The purpose of Algorithm N is to choose the most "isolated" implicant (Ia) and

update the working set WS. It computes the neighborhood relative count (NRC) for

all implicants that cover the minterm a. The implicant with the smallest NRC is

chosen. In other words, NRC is a measure if the coupling strength of an implicant

with its neighbors. To select an implicant (which is equivalent to breaking the

coupling between that implicant with its neighbors), the candidate implicant should
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have the smallest coupling strength with its neighbors. Therefore, the ND algorithm

tends to choose the most "isolated" implicant. If there is a tie in selecting the Ia, the

ND algorithm chooses the one which covers the largest area. The computation of

NRC for a given implicant is described as follows:

1. Initialize the NRC to zero.

2. Check all neighboring minterms of the implicant and increment or

decrement its NRC according to the following (intuitively stated) rule, which is, if

the coupling strength between covered and uncovered area is weak (good for further

decoupling), Algorithm N decreases NRC, otherwise increases NRC.

/* **********m********* ********************************************

a: the chosen minterm from algorithm CF_PAR

M: the set of minterms which was covered (generated) by the chosen implicant

(U

N(/3): the set of direct neighbors of minterm /3.

******************************************************************* */

{

NRC «-0;

V/3 G M and/3 * ado {

tfteO3) " g(«) * 0) then NRC «- NRC - 2;

}

V^GM and Vy G N(0) do {

if(y € M and y * and (y * SAT or $ SAT)) then {
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if (g(P) - g(«) > g(Y)) then {

if (y e SAT) then NRC — NRC - 1;

else NRC *- NRC + 2;

}

if (g(0) - g(«) < g(Y» then {

if (g(0) = g(Y» then NRC ««- NRC + 2;

if (y G SAT and g(y) - g()3) < 0) then

NRC *- NRC + 2;

else {

if (g(0) > g(«) and g(/3) * g(Y)) then {

if (0 G SAT) then NRC «- NRC - 1;

else NRC «- NRC + 2;

} /* end if */

} /* end else */

} /* end if */

if (g(P) - g(«) - g(Y» then {

if (g(Y) > or G SAT) then

NRC «- NRC - 1;

else NRC — NRC - 2;

}

}/* end if */
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if (M = {a}) then {

if (a G SAT) then NRC «- 2;

else if (NRC < 0) then NRC

}

else NRC ««- NRC + 2;}

l;

X1

X2
12 3

1

2

3

4.
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Figure 4J: Third Step of minimization for the function in Example 4

Example 4:

The input function to be minimized is expressed as:

f = 3 *xl lx|+2 °x1
° °x2°+3

lj£ 1x2
1 +2 lx} 2x|+l X!

2
°x2

3
+l 3xx

3 lj%*

The working set, WS, is initialized to MSy and is represented in Figure 2.1. The

clustering factors of all minterms in WS are calculated, and the first minimum CF

is selected as a; in this case it is l 1x1

1
°x° . The ND algorithm computes the

NRC for each implicant I which covers a using Algorithm N. For the WS in Figure

2.1, implicant l °x
2

°xi is selected. This implicant is added to the solution set,

SS, and subtracted from working set, WS. The result can be seen in Figure 2.3. The

minterm and implicant 2 °x° °x2° is selected, (see Example 3). This implicant is
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also added to the solution set and subtracted from working set. Because this

implicant is a SAT, it is shown as don't care "4." in the working set. Figure 4.3 shows

a recent WS. The clustering factor computations that is performed by different

nodes are shown in TABLE 4.1. The minimum CF is found as 10 and it belongs to

minterm 2 lxJ 1x2
1 The implicant selected is 3 lxf xx| with an NRC (-16).

Finally, the working set should contain value (empty square) or A.(don't care) as

shown in Figure 4.4.

X1

X2
12 3

4.

ZA~4^
4. 4. 4.

4. 4. 4.

1

2

3

Figure 4.4: Final Working Set

The final minimized result which is kept in solution set (SS), g, is expressed as:

V 2 o v 3 o o o v o lv3 l v 3g = 1 °xf °X2 + 2 °xi °X2 + 3 xx£ Ax2
-

As can be seen by comparing the original function and the function resulting

from the ND algorithm we have a 50% reduction.
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TABLE 4.1: CMC AND EDC COMPUTATIONS FOR FIGURE 4.3

Node No 1 2 3 CF

dea*

(r-1)

+ ea

Radix(r) 4

XI left XI right X2 left X2 right

dea ea dea ea dea ea dea ea

2 Xi x2 1 2 2 10

2 Xi X2 1 1 1 2 13

3
3
*i

lxi 2 2 10

2 Xi X2 1 2 1 1 13

2 2x 2 2x2

2
1 1 1 1 1 16

3 3x 3 2x2

2
2 1 1 13

2 ^ 3x2

3
1 2 2 10

2 2x 2 3x2

3
1 1 1 2 13

3
3x 3 3x2

3
2 2 10

C. COMPARISON RESULTS

In this thesis all testing results were obtained by running the test function on

the iPSC/2 computers that were available to us at NPS Math Department and

Oregon Advanced Computer Information Systems (OACIS), Oregon. Both

computers are the same except that the iPSC/2 at NPS has 8 nodes with 80387

Math-coprocessor and iPSC/2 at OACIS has 32 nodes with Weitek 1137 Math-

coprocessor. The choice of which computer to use depended the size of the

functions we chose to minimize. For example, the iPSC/2 at OACIS was used for

computing five-variable four-valued functions which needs 10 nodes, while the
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iPSC/2 at NPS was used for smaller functions. For test purposes, the following

functions are generated by using HAMLET's test generator:

1. Two-variable four-valued with 5 to 50 input product terms.

2. Three-variable four-valued with 5 to 70 input product terms.

3. Four-variable four-valued with 5 to 35 input product terms.

4. Five-variable four-valued with 5 to 35 input product terms.

All input functions were generated randomly. Notice that for three-variable

four-valued expressions the number of test functions were more than the others. For

a two-variable four-valued function after 30 input product terms, it tends to saturate

and minimizes to one implicant. The three-variable four-valued test functions are

used to see if the computation time is still exponentially increasing while the number

of input terms are increased. For each case the same expression set is used to be

minimized by both the sequential and parallel version. The minimization results are

the same in all cases.

For the testing of 2 variable 4 valued expressions, we used 10 different

expression stes of 30 expressions each consisting of 5 to 50 terms. Figure 5.1 shows

that the parallel algorithm is faster than the sequential one. It can be seen that when

the number of terms in the expression is increased, the computation time also

increased, but the rate of increase is less for parallel algorithm. This is especially

true after saturation, which occurs at about 30 terms. In this case, the parallel

computation time drops dramatically and the rate of climb decreases. The main

reason for this decrease is that minterm selection is done only for the first working
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set (WS) because all the minterms are saturated and one implicant covers the whole

working set. But even for computing the first working set, all the terms in the

expression should be added according to their coordinates. The sequential program

does this sequentially, and while we increase the number of implicants in the

expression, computation time also increases. The parallel algorithm works the same

way, but the computation is divided between the nodes so the rate of increase is not

high.

Figure 5.1: Comparison between Sequential and Parallel Algorithms for

2 variable 4 valued expressions

For 3 variable 4 valued expressions, we minimized expressions which consists

of 5 to 70 terms. Again, each set has 30 different expression in it. Figure 5.2 shows

that after 45 terms, computation time levels out with the parallel program

proceeding at twice the speed the sequential program. Comparing Figure 5.1 and

Figure 5.2 shows similarity between the two graphs. We expect that if we continue

to increase the number of terms in the, expressions we will obtain a similar curve

shape for 3 variable 4 valued expressions.

34



.3 VARIABLES
BO

7D -

«o -

SO -

4-0 -

30 -

20 -

1 o

o

SEQUENTIAL ALGOFtrTHM

PARALLEL ALGORITHM

30 A-O

NUMBER OF" TERM

Figure 5.2: Comparison between Sequential and Parallel Algorithms for

3 variable 4 valued expressions

For 4 and 5 variable 4 valued expressions, we used expressions consisting of

5 to 35 terms. As can be seen from the vertical axes of Figure 5.3 and Figure 5.4,

there is a large difference between the computation times (which is more for 5

variable expressions). It is easy to notice that these curves are also similar to the

beginning of the curves for 2 and 3 variable expressions. Saturation needs a large

number of terms for 4 and 5 variables. A 5 variable expression has a 5 dimensional

space, and the number of terms we used was not enough to obtain significant

saturation because the terms are randomly spaced. We expect the curves for 4 and

5 variables to be similar to Figure 5.1 if we increase the number of terms in the

expressions.
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Figure 5.3: Comparison between Sequential and Parallel Algorithms for

4 variable 4 valued expressions
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Figure 5.4: Comparison between Sequential and Parallel Algorithms for

5 variable 4 valued expressions
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V. EXPERIENCES AND FUTURE DEVELOPMENTS

The experiences with iPSC/2 and an improved algorithm are reported in this

chapter.

A. EXPERIENCES WITH iPSC/2

We encountered a number of problems in using the system or adapting the

sequential programs to a parallel system. For example, some of the instructions in

the HAMLET are system specific and required a change to iPSC/2.

1. Size of the Messages

One of the problems encountered while running the ND parallel

algorithm on the iPSC/2 was the size of the messages to be used. Pointers in the C

language are by indirect addressing to a shared memory location. The iPSC/2 system

is a distributed memory system, and we cannot use pointers when we need to pass

expressions and coordinates for the minterms to the nodes. Instead, we must use

arrays which should be predefined at the compile time. The size of the arrays are

defined in "pardef.h" file[see Appendix A]. The array sizes are very important

because they define the size of the messages that will be sent from host to the

nodes. We want to keep the array sizes as small as possible to minimize the

communication time. The structure in the program requires the number of variables

and the number of terms in the expression to be defined in "pardef.h" file. The size

of the terms should be twice the actual number of terms because, while the program
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is processing the minimization, the implicants that are found are added to the

working set with a negative coefficient for subtraction purposes. Assuming that there

will be no minimization in the worst case, another set of terms which has the same

size as the original set will be added to the working set. As in traditional C,

whenever there is an alteration in the pardef.h file, the program should be

recompiled to realize the changes. This procedure did not allow us to use script

programming and we had to run all the tests one by one.

2. Debugging

There are two ways to debug a program: application checkpointing,

system debugger. Application checkpointing is to place print instructions at different

points within the source code and monitor the values of the variables and the flow

of the program. For iPSC/2 this is infeasible. All the nodes and the host use the

screen as standard output device. All the nodes are running concurrent processes,

sometimes nodes send print messages to the screen at the same time and the screen

is unreadable. We use this debugging method only for the host programs.

For debugging purposes, iPSC/2 offers a debugger which is called as

decon "Concurrent Debugger". This debugger allows users to trace the host and

node codes. Decon was found to be very useful. However, there are two flaws that

we encountered in using the decon.

The debugger is not complete. Some commands are not implemented yet.

For example, while tracing the program it is not possible to step through more than

one line. This incapability of skipping multiple lines causes inconvenience when
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loops are encountered. Another problem is the debugger does not display the values

of the external variables which are widely used in ND algorithm. For example, the

working expression set and original expression set are external variables and used

by different procedures.

B. AN IMPROVED ALGORITHM

The development of PND algorithm helped us to understand the structure of

HAMLET and to have experience on iPSC/2. This work lead us to developed

another method, called Multi-branch Concurrent ND algorithm (MCND) as an

alternative to the recursive sequential algorithm.

Searching for an exact solution by using a recursive algorithm needs a large

amount of computation time. A recursive algorithm keeps track of the minterms

which have equal minimum clustering factors. The program saves the coordinates

of those minterms and compute other branches to find a better solution.

There are two flaws in the parallel version of the ND algorithm; it searches

only one branch [See Chapter IV Section A] and uses excessive amount of message

passing. The primary purpose of MCND algorithm is to overcome these problems.

The MCND algorithm searches every branch of the search tree, and it only needs

a message passing for sending original expression at the beginning of the program.

All nodes are independent of each other and make decisions according to the rules

in Chapter VI Section B. This may provide the fastest computation, because no

synchronization between nodes are needed.
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1. The Multi-Branch Concurrent ND Algorithm

Exact optimal solution searches the entire tree space. On the other hand,

ND searches only one path leading to a leaf in the tree space. The MCND lies

between ND and exact solution in its operation. Its effectiveness is limited only by

the number of computational nodes available. MCND does not guarantee an exact

optimal solution. On the other hand, MCND is not ND nor PND. It is an extension

of PND, since it relaxes the search tree.

The MCND algorithm is loaded to all nodes by host. After the node

programs are loaded, all processes start to execute and then block on a synchronous

receive instruction, waiting for the host to send the message which contains the

original expression set. The host program (which is a part of the HAMLET)

converts into arrays the pointers which point to the expressions to be minimized.

The message array contains the expression and the flags for printing the implicants

and maps by the nodes. The host program broadcasts this message to all nodes and

blocks itself waiting for the results from the nodes.

The nodes which are blocked on a receive instruction continue the

program after the message containing the original expression set is received. The

original expression set and a working expression set are created from the

information in the message array. The algorithm that nodes execute is the same

algorithm as the algorithm in Chapter IV, but the CF_PAR algorithm is replaced

with Multi-CF (MCF) algorithm.
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The MCF algorithm groups the nodes. At the beginning, all nodes in a

cube are in one group with group size numnodes(). The clustering factors are

computed for each minterm and the coordinates of the minterm which has the

smallest CF is saved. If the program encounters a tie, then the first and the last

minterm's coordinates are saved, i.e. even if there are more than two minterms only

the first and the last one's branches will be searched. The first and last minterms are

selected instead of intermediate ones, because when two minterms are far apart in

coordinate or evaluation sequence, they may have less chance to share the same

destiny. The reason for choosing only two branches of the tree is the expectation of

further branching on the branches and the limited number of nodes available,

because each node will follow another branch of the tree.

Each node knows its node number by using system call mynode(). If there

is only one minterm with the smallest CF, then the group stays the same and MCF

returns the coordinate of the minterm to the main algorithm, and all nodes follow

the same branch. If there are two or more minterms with the same smallest CF,

then the group is divided into two. The nodes in the first group return the

coordinates of the first minterm, while the second group returns the last one. All

nodes arrange their group start, end, and size variables accordingly. After the

implicant is subtracted in the main algorithm, the main algorithm requests another

most isolated minterm coordinate, and the nodes compute the new working

expression set. If there are more than two minterms with the same smallest CF, for

the first group, it divides into two groups again and returns the coordinates of the
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minterms, which are different on half of the group. The same procedure is applied

to the other half of the first group which follows another branch. A group size of

1 indicates that we do not have nodes for further division. At this point, the

algorithm returns the first minterm's coordinates to the main algorithm of node

program.

/* ****************************************************************

MSy : Original Expression Set

WS : Working Expression Set

SS : Solution Set

MAX_INT : Maximum Integer Number

/* ****************************************************************

{

SS *- 0; /* SS = Solution Set */

CURCF *- MAXINT

CURCF2 «- MAXINT

mygroupstart «-

mygroupsize *- numnodes()

mygroup_end *- mygroup_size - 1
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WS = MS
/
= { a \a is generated by the function /; if a € SAT then mark its

coordinate }.

While WS * do {

1. Use algorithm MCF to select a minterm a from the WS.

2. Use algorithm N to select an implicant Ia that covers a.

3. SS ^ SS u Ia .

4. V0 e Ia do {

compute g(/3) «- g(/3) - g(a).

subtracted Ia from WS.

if is originally marked and g(0) = then g(0) *- r.

/* don't care terms */

}

}

}

ALGORITHM MCF

V a E WS do {

Compute CF /* Compute the CF for minterm a

if (CF < CUR_CF) { /* if CF of minterm a is less than current CF, then

CURCF <- CF /* assign the CF to CURCF and save minterm a's

savecoordl *- X^ /* coordinates to savecoordl

}
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elseif (CF = CURCF) {/* if CF of minterm a is the same with current CF

CURCF2 *- CF /* then assign it to CURCF2 and save its

savecoord2 *- X^ /* coordinates

}

}

if (CURCF * CURCF2) /* if saved values of Cfs are not the same then

return(savecoordl) /* there is only one smallest CF and return its

/* coordinates

/* if two CURCfs are the same then we have a tie

/* each node get its node number and calculates the first half of the group

/* if the node number is in the first half it returns the first coordinates

/* and reassigns the group variables

elseif (mynode() > (mygroup_start+mygroup_size/2)) {

mygroup_start •*- (mygroup_start+ mygroup_size/2)

mygroupsize *- mygroup size/2

return(savecoordl)

}

/* if the node is not in the first half it returns the coordinates of the

/* second minterm a and reassigns the group variables for that node

else {

mygroupend «- mygroupstart +(mygroup_size/2-l)

mygroup_size *- mygroup_size/2

44



return(savecoord2)

}

}

In the command line used to invoke the program, there are three flags

that can be set, "-m", "-i" and "-o". These flags allow the user to print the Karnough

maps (-m), and the CF of the minterm and NRC of the implicant. The iPSC/2 uses

a concurrent file system which allows each individual node to open its own files with

node number as suffix. The "-o" flag specifies the name of the output file. These files

provide the execution trace to the user.

The main algorithm of each node sends a message to the host program.

This message includes the number of the node which sends the message, the number

of implicants which is minimized, the ratio of the minimization and the time spent

for computation. The host program sorts the results and picks the result, which has

the maximum ratio as the solution. The computation time is defined as the

computation time of the node which spent the maximum time.

Example 5:

Assume we have a 8-node cube. Let the original expression be sent to all nodes

by message passing from the host. At the beginning, all nodes are assigned as one

group. The MCF algorithm on the nodes finds two minterms with equal smallest Cfs

[See Figure 6.1]. The nodes #0-#3 assign themselves as first group and searches for

a loosely coupled implicant for CF
t
and the nodes #4-#7 search for CF2 .
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Nodes #0-#3 compute three equal smallest Cfs (CFn , CF12 and CF
13 ) and

select the first and third ones for searching. They divide into two groups again, and

the first group which consists of node #0 and #1 computes two more CFs (CFU1 ,

CF 112).Node #0 follows the CFni and finds a solution after finding the CF11U . This

solution is the same as the solution that is computed by ND algorithm. Node #1

searches for the CF 112 and computes another CF (CF1112), the group is out of nodes

so even though it finds more than one CF it will only follow the first one.

Nodes #4-#7 compute CF21 and C22 , CF21 leads the algorithm to an optimum

solution. Node #4 and #5 compute CF2n and reaches a solution. After all nodes are

finished their tasks, they all report their solution and computation results to the host

program. The host program selects the minimum result as a solution and the

maximum computation time as the computation time of the expression.

Example 6:

We tested 100 2 variable 4 valued expressions using the ND algorithm and the

MCND algorithm. For four expressions, the MCND algorithm did better than the

ND algorithm. One of them is selected as an example. The input expression to be

minimized is expressed as:

f = 2 2xl 2x2
3 +3 °xl

xxl+l lxl 3x|+3 2xl lx2
3
+l °x} °x2

3 +2 °xf W2

1 l*£ lx2
2
+l 2xl ijtf+i 2xl °x2°+l

2xl °xl

The working expression set is initialized to MSy and the original expression is

represented in Figure 6.2. The CF values of all minterms in the working set are

computed. CF value 4 is found for minterms 2 3x 3 2x2

2
and 1 °x1

° 3x2 . The
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1 2 3. 2

1 2 3. 2

X10 1 2 3
X2

1

2

3

Figure 6.2: Original expression map for Example 6

nodes are divided into two groups. The first group follows the first minterm and the

second group follows the second. The first group finds only one smallest CF and

computes the same implicant. WSU has a tie again and the nodes in the first group

are divided into two. Nodes #0 and #1 find a solution consisting of 6 implicants.

This solution is the same solution as ND and PND algorithms [See Appendix D].

The nodes #2 and #3 find a solution which consists of 5 implicants. The second

group of nodes is not divided, i.e. no ties. Nodes #4 - #7 find the optimum solution

with 4 implicants. The search space and the group selections are shown in Figure

6.3.

The solution set for ND and PND algorithms;

f = 2 xxl l*£+i x° °x|+l 2xl °x2
3
+l lxf °*J+l **£ °*£+3 °xl

xxl

The optimal solution which is found by MCND;

f = 2 °xl °x2

3
+l lxx

3 l
*J+3

2xl i-xl+3 °xl
xxl

As can be seen, the MCND algorithm finds a better solution than the PND and ND

algorithms. The selected minterms and implicants are reported in Appendix D.
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SEARCH TREE FOR EXAMPLE 6

OPTIMUM SOLUTION

SOLUTION

> ND SOLUTION

. WS1111 ("*-*—} WS1121
0.17 V2.S

CF1111

CF11111

WS11111

CF1121

CF11211

JcFllllll

6IMPUCANT
SOLUTION

5IMPLIGANT

SOLUTION

WS2

WS211

CF2111

4IMPLICANT

SOLUTION

Figure 63: Search tree for Example 6

48



VI. SUMMARY AND CONCLUSIONS

As can be recalled from Chapter III Section C, in order to derive full benefit

of parallel processing, certain requirements must be met. Two nodes should halve

the time needed by a single node. But this is possible only for node programs that

are running completely independently on different nodes provided that no

communication time is required.

The ND Algorithm runs sequentially. Only until the selection and subtraction

of an implicant from the working expression set, can the algorithm proceed to

compute another implicant. The updating of the working expression set should be

completed to continue the computation. Only the clustering factor computation was

amenable to parallel execution, but this brought in the problem of communication.

Our system was a distributed memory system; nodes cannot access the data for the

expressions from a shared memory location. All of the information about the

expression and the coordinates of the implicant should be passed to the nodes by

using messages and this should be done for each and every one of clustering factor

computation requests. Clustering factor computation does not consist of a large part

of the dynamic code and the communication time is increased, while the number

of terms and inputs are increased.
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We obtained a speed-up of two in all cases. This speed-up gives us an

advantage in computing the MVL expressions compared to all other heuristics.

The PND Algorithm is a faster ND algorithm. The ND algorithm is a

heuristic,i.e. it finds a near minimal solution, not an exact solution. Improving the

ND algorithm can be done in two ways; a recursive ND algorithm or a concurrent

ND algorithm. We chose the concurrent algorithm, because a recursive algorithm

would need too much computation time. The Multi-branch Concurrent ND

Algorithm is expected to spend less time to compute the solution compared to a

recursive sequential algorithm. We expect the recursive algorithm will have a

computation time of

numnodes { ) -1

^ computation_time{nodeno)
nodeno=0

The MCND algorithm uses only two message passing instructions; the first one

broadcasts the expression to the nodes and the second one collects the results from

the nodes. Because all results come in different times, the time spent for receiving

the messages for the nodes is small. The MCND algorithm realizes the minimum

communication time and maximum computation time. Even though the MCND

algorithm is still a heuristic, the results are very close to the exact solution.
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APPENDIX A: PND ALGORITHM PROGRAM LISTINGS

PARDEF.H

This file provides additional structures which is defined

in pardef.h file. The structures defined in this file are

only used by ndpar.c, cfleft.c and cf_right.c.

•7

#define MSG_TYPE1 1/* This msg type is for sending

messages to the nodes */

#define MSG_TYPE2 2/* This msg type is for receiving

messages from the nodes */

#define HOST_PID 10/* process id for the host */

#define NODEPID 0/* process id for the node process */

#define NVAK 3/* number of variables in expr */

#define NTERM 100/* 2*number of terms in expr */

typedef short msgcoord; /*buffer for coord of minterm */

typedef struct { /* buffer for upper and lower */

short lower,/* limits of terms*/

upper;

}msg_bound;

typedef struct { /* buffer for implicant*/

msg_bound B[NVAR];
short coeff,

rbc;

}msg_implicant;

typedef struct { /* buffer for expression*/

msgimplicant I[NTERM];
short radix,
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nvar,

nterm;

}msgexpression;

typedef struct { /* buffer for whole data to be */

msg_expression E; /* sent to nodes */

msg_coord X[NVAR+2];
int nodeno,

radix,

nvar,

AllTrun,

value_msg[2];

}msg_to_node;

typedef struct { /* buffer for msg from the node */

int ea,

dea;

}msg_from_node;
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NDPAR.C (HOST PROGRAM)

#include "defs.h"

#include <cube.h>
#include "pardef.h"

/* Parallel Neighborhood Decoupling Algorithm by Oral & Yang */

ND_PAR()
/*

:function:

- Perform the Parallel Algorithm on the input expression

ralgorithm:

Start with a working copy Ework of the original

function E_orig;

Initialize a final function Efinal;

While (there are still minterms to pick) {

Pick a minterm X from Ework;
Pick the best implicant I for X;

Subtract I from E_work;

Add I to Efinal;

}

rglobals:

E_orig

e_flag

mflag
q_flag

G_flag

FO_ratio

:side_effects:

STAT
HEUR
Ework
E_final[]

xalledby:

main()
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:calls:

dealloc_expr()

dup_expr()

print_terms()

print_map()

mim()

pick_implicant()

subtract_implicant()

print_source()

*/

register i;

int numimpl = 0,

better_found;

int *X;

Implicant *I;

float ratio;

if (E_final[N_P].I != NULL)
dealloc_expr(&E_final[N_P]);

# ifdef ANALYZER
STAT = &NP_stat;

# endif

HEUR = N_P;
dup_expr(&E_work,&E_orig);

E_final[HEUR].nterm = 0;

E_final[HEUR].radix = E_orig.radix;

E_final[HEUR].nvar = Eorig.nvar;

E_final[HEUR].I = NULL;

if(!load_flag) {

setpid(HOST_PID);

for (i=0 ; i < (mimnodes()/2) ;i++) {

load(7usr/oral/onurpar/mvlq)ar/cf_left",i,0);

load("/usr/oral/onurpar/mvlcpar/cf_right",

i+ (mimnodes()/2),0);

}

loadflag = 1;

}

# ifdef ANALYZER
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if (e_flag)

print_terms(&E_orig);

if (m_flag) {

printf(" Orig map (ND_PAR):\n");

print_map();

}

# endif

betterfound = 0;

resource_used(START);

for (;;) {

if ((X = mim(&E_work)) == NULL) {

if (num_impl < Eorig.nterm)

better_found = 1;

break;

}

I = pick_implicant(X);

num_impl++;
subtract_implicant(I);

# ifdef ANALYZER
if (i_flag)

print_implicant(X,I);

if (m_flag)

print_map();

# endif

if (Sm_flag) {

if (numimpl > = Eorig.nterm)

break;

}

}

resource_used(STOP);

if (!better_found) {

num_impl = E_orig.nterm;

dup_expr(&(E_final[N_P]),&E_orig);

}

ratio = ((double)num_impl/(double)E_orig.nterm);

ifdef ANALYZER
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if (!q_flag && !G_flag) {

if (!better_found)

printf("%-4d ND_PAR: %4d/%-4d %4.2f %61d:%3.31d\n",

expr_seq,num_impl,num_impl,0.0,secs_used(),tsecs_used());

else

printf("%-4d ND_PAR: %4d/%-4d %4.2f %6d:%3.31d\n",

expr_seq,num_impl,E_orig.nterm,ratio,

secs_used(),tsecs_used());

}

# endif

dealloc_expr(&E_work);

}

static int *mim(E)
Expression *E;

I*

rfunction:

- Find the Most Isolated Minterm in the expression pointed to by E, and

return its coordinates as a

vector.

- Local to ndpar.c

:globals:

radix

nvar

:side_effects:

STAT
:called_by:

ND_PAR()
xalls:

next_coord()

eval()

vcopy()

:returns:

- A vector of integers representing the coordinate of the

most isolated minterm, or NULL if no more minterms.

- The value at that location is also returned as the last

integer in the vector.

*/

{

register i,j,k;

int curval = E-> radix,

cur CF = MAX INT,
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X_orig[MAX_VAR+ 2],

R_l = radix - 1,

Not_all = 0,

Alljrun = 0,

TRUN = 2*R_1,

last = 0,

value [2],

cf,

ea,

dea,

term;

int *X,*next_coord();

static int

coord[MAX_VAR+2],
save_coord[MAX_VAR+ 2];

msg_to_node

msg_to_node_cf;

msg_£rom_node
msgfromnodecf;

# ifdef ANALYZER
STAT->calls_mim+ +

;

# endif

for (i=0;i < E_work.nterm;i++) {

msg_to_node_cf.E.I[i].coeff = E->I[i].coeff;

msg_to_node_cf.E.I[i].rbc = E->I[i].rbc;

for (J=0;j < nvar;j++) {

msg_to_node_cf.E.I[i].B[j].upper=E->I[i].B[j].upper;

msg_to_node_cf.E.I[i].B^'].lower=E->I[i].B[j].lower;

}

}

msg_to_node_cf.E.radix = radix;

msg_to_node_cf.E.nvar = nvar;

msg_to_node_cf.E.nterm = E_work.nterm;

msgtonodecf.AllTrun =All_trun;

for (term=0; term < E_orig.ntenn; term-l-+) {

k= 1;

while ((X=next_coord(coord,&(E->I[term]),k)) != NULL) {

vcopy(value,eval(E_work,X));

if (value[EVAL] && value[EVAL] < radix) {
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cf = 0;

dea = 0;

ea = 0;

if (!value[HLV])

Not_all = 1;

msg_to_node_cf.AllTrun= All_trun;

for (i=0;i < nvar+2;i+ + ) msg_to_node_cf.X[i]= X[i];

vcopy(msg_to_node_cf.value_msg,value);

csend(MSG_TYPEl,&msg_to_node_cf,sizeof(msg_to_node_cf),-l,0);

crecv(MSG_TYPE3,&msg_from_node_cf,sizeof(msg_from_node_cf));

cf = (msg_from_node_cf.dea * R_l) +
msg_from_node_cf.ea;

if (!(value[HLV] && cf > TRUN)|
|
All_trun) {

if (cf < cur_CF) {

cur_val = value[EVAL];
curCF = cf;

for (i=0; i < nvar; i+ + ) save_coord[i] = X[i];

}

}

}

k = 0;

}

if (Mast && (term == (E_orig.nterm - 1)) && INotall) {

All_trun = 1;

cur_CF = MAX_INT;
term = -1;

last = 1;

}

}

if (cur_CF == MAXJNT)
return(NULL);

"

save_coord[nvar+l] = curCF;
savecoordfnvar] = curval;

return(save_coord);

static int validimplicant(I)
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Implicant *I;

r
ifunction:

- Decide upon the validity of implicant I

- Local to ndpar.c

:globals:

Ework
Eorig

:side_effects:

STAT
:called_by:

pick_implicant()

xalls:

next_coord()

eval()

vcopy()

ireturns:

1 if a valid implicant

if not
*/

int *X;

int init = 1;

int R_l = radix - 1;

int value = I->coeff;

int Vo[2],Vw[2];

static int

coord[MAX_VAR+2];

# ifdef ANALYZER
STAT-> calls_valid_implicant+ +

;

# endif

while ((X = next_coord(coord,I,init)) != NULL) {

init = 0;

vcopy(Vw,eval(&E_work,X));

vcopy(Vo,eval(&E_orig,X));

if (((Vw[EVAL] < value) &&. !Vw[HLV]) && (Vo[EVAL] < R_l))

return(O);

}

return(l);
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static int compute_rbc(I)

Implicant *I;

/*

:function:

- Compute the RBC for the given implicant

- Local to ndpar.c

:globals:

radix

nvar

:side_effects:

STAT
xalledby:

pick_implicant()

xalls:

next_coord()

eval()

vcopy()

:returns:

- an integer RBC

int *X;

int lvalue = I->coe£f;

register i;

int value[2],

R_l = radix - 1,

neighbor_value[2],

good,

bad,

diff,

equal,

neigboun,

first,

rbc = 0,

init = 1;

static int

coord[MAX_VAR+2];

# ifdef ANALYZER
STAT-> calls_compute_rbc+ +

;

# endif

/* for each coordinate in the implicant ... */

7
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while ((X = next_coord(coord,I,init)) != NULL) {

ink = 0;

equal = 0;

vcopy(value,eval(&E_work,X));

if (value[EVAL] = = radix)

continue;

diff = value[EVAL] - Ijvalue;

first = 1;

/* for each direction ... */

for (i=0; i < nvar; i++) {

good = 0;

bad = 0;

if ((diff <= 0) && first) {

good = 2;

first = 0;

}

/* if there is a left neighbor, examine it */

if (X[i] != && X[i] == I->B[i].lower) {

X[i]~;

vcopy(neighbor_value,eval(&E_work,X));

neig_boun = neighbor_value[EVAL] - value[EVAL];

X[i]+ + ;

if (neighbor_value[EVAL] != 0) {

if (!neighbor_value[HLV]
1

1 !value[HLV]) {

if (neighbor_value[EVAL] < diff) {

if (neighbor_value[HLV])

good +=1;
else

bad +=2;
}

if (neighbor_yalue[EVAL] > diff) {

if (Ineigboun)

bad +=2;
if (neighbor_value[HLV] && neigboun < 0)

bad +=2;
if (diff >0&& neig_boun) {

if (valuefHLV])

good +=1;
else

bad +=2;
}

}

else {
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if (neighbor_value[HLV]
1

1 value[HLVj)

good +=1;
else

good +=2;
}

}

}

}

/* if there is a right neighbor, examine it */

if (X[i] != R_l && X[i] == I->B[i].upper) {

X[i]++;
vcopy(neighbor_value,eval(&E_work,X));

neig_boun = neighbor_value[EVAL] - value[EVAL];

if (neighbor_value[EVAL] != 0) {

if (!neighbor_value[HLV]
1

1 !value[HLV]) {

if (neighbor_value[EVAL] < diff) {

if (neighbor_value[HLV])

good + = 1;

else

bad + =2;
}

if (neighbor_value[EVAL] > diff) {

if (Ineigboun)

bad +=2;
if (neighbor_value[HLV] && neig_boun < 0)

bad +=2;
if (diff > && neig_boun) {

if (value[HLV])

good +=1;
else

bad +=2;
}

}

else {

if (neighbor_value[HLV]
1

1 value[HLV])

good +=1;
else

good +=2;
}

}

}
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}

/* update the rbc */

rbc = (rbc - good) + bad;

}

}

return(rbc);

}

static Implicant *pick_implicant(X)

int *X;
/*

:function:

- Pick the best implicant for minterm X
iglobals:

radix

:side_effects:

STAT
xalledby:

ND_PAR()
xalls:

init_implicant()

gen_bounds()

next_implicant()

eval()

vcopy()

compue_rbc()

copy_implicant()

validimplicantQ

:returns:

- A pointer to a term representing the best implicant.

*/

{

int cur_rbc = MAX_INT,
rbc = 0,

I_value,

i,

init = 1,

first = 1;

Implicant *I;

static int

coord[MAX_VAR+2];
static Bound I_bound[MAX_VAR+2];
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static Implicant I_best;

Bound *B;

int V[2],

value [2];

# ifdef ANALYZER
STAT-> calls_pick_implicant+ +

;

# endif

Ibest.B = Ibound;
initimplicant(X);

B = genbounds(X);
vcopy(V,eval(&E_orig,X));

while ((I = next_implicant(B)) != NULL) {

if (V[HLV]) {

for (I->coeff=X[nvar]; I->coeff < radix;

(I->coeff)+ + ) {

if (valid_implicant(I)) {

rbc = compute_rbc(I);

if (first)

rbc = 2;

else

rbc +=2;
if (rbc < = currbc) {

cur_rbc = rbc;

I->rbc = rbc;

copy_implicant(&I_best,I);

}

}

}

first = 0;

}

else {

I->coeff = X[nvar];

if (valid_implicant(I)) {

rbc = compute_rbc(I);

if (first) {

first = 0;

if (rbc < )

rbc = 1;

else

rbc +=2;
}
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else

rbc +=2;
if (rbc < = currbc) {

currbc = rbc;

I->rbc = rbc;

copy_implicant(&I_best,I);

}

}

}

}

return(&I_best);

NODE PROGRAM LISTINGS

CF_LEFT.C (NODE PROGRAM)

#include "defs.h"

#include "pardef.h"

#include <cube.h>

main() {

int

expanded,

var_no,
"

vall[2];

long ea[2],

workl[2];

msg_to_node

msg_to_node_cf;

msg_from_node

msg_from_node_cf;

for (;;) {

ea[0] = 0;

ea[l] = 0;

expanded = 0;

crecv(MSG_TYPEl,&msg_to_node_cf,sizeof(msg_to_node_cf));

var_no=mynode();
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if (varno < msgtonodecf.E.nvar) {

while (msg_to_node_cf.X[var_no] > 0) {

msg_to_node_cf.X[var_no]--;

vcopy(vall,eval(msg_to_node_cf.E,msg_to_node_cf.X));

if (vall[EVAL] && (vall[EVAL] < =

msg_to_node_cf.value_msg[EVAL]

I

msg_to_node_cf.value_msg[HLV])) {

expanded=l;

ea[0]+ + ;

}

else break;

}

if (expanded) ea[l]+ + ;

}

gisum(&ea[0],2,&workl [0]);

if (mynode() == 0) {

msg_from_node_cf.ea = ea[0];

msgfromnodecf.dea = ea[l];

csend(MSG_T^TE3,&msg_frorn_node_cf,sizeof(rnsg_from_node_cf),

myhost(),HOST_PID);

}

}

}

int *eval(E,X)

msgexpression E;

short X[NVAR];
/*

rfunction:

- Evaluate the expression at X, where X is a vector of

coordinates

ireturns:

- A vector with the value of the expression at the

specified coordinate as its first element, and a flag

set if this value has attained the highest logic value

(HLV)
•/

{

register i,j,k;

int outofbounds;
static int V[2];
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register rml = E.radix-1;

VfEVAL] = 0;

V[HLV] = 0;

/* for each term ... */

for (i=0; i < E.nterm; i++) {

/* for each variable ... */

for (j=0,out_of_bounds=0; j < E.nvar; j++) {

if(

(X[j] < E.I[i].B[j].lower)
1

1

(X[j] > E.I[i].B[j].upper)

){
outofbounds = 1;

break;

}

}

if (out_of_bounds)

continue;

/* if this is a don't care, return the radix */

if (E.I[i].coeff == E.radix) {

V[EVAL] = E.radix;

return(V);

}

V[EVAL] += E.I[i].coeff;

if (V[EVAL] >= rml) {

/* set a flag which means Eorig was saturated at this X */

V[HLV] = 1;

}

if (V[EVAL] > rml) {

V[EVAL] = rml;

}

else if (V[HLV] && (V[EVAL] <= 0)) {

V[EVAL] = E.radix;

return(V);

}

}

return(V);
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vcopy(d,s)

int *d,*s;

{

d[0] = s[0];

d[l] = s[l];
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CF_RIGHT.C (NODE PROGRAM)

#include "defs.h"

#include "pardef.h"

#include <cube.h>

main() {

int

expanded,

var no,

vall[2];

long ea[2],

workl[2];

msg_to_node

msgtonodecf;
msg_from_

msg_from_node_cf;

for (;;) {

ea[0] = 0;

ea[l] = 0;

expanded = 0;

crecv(MSG_TYPEl,&msg_to_node_cf,sizeof(msg_to_node_cf));

var_no=mynode() - (numnodes()/2);

if (var_no < msg_to_node_cf.E.nvar) {

while (msg_to_node_cf.X[var_no] < ((msg_to_node_cf.E.radix)-l)) {

msg_to_node_cf.X[var_no]+ +

;

vcopy(vall,eval(msg_to_node_cf.E,msg_to_node_cf.X));

if (vall[EVAL] && (vall[EVAL] < =
msg_to_node_cf.value_msg[EVAL]

|
msg_to_node_cf.value_msg[HLV])) {

expanded=1;
ea[0]++;

}

else break;

}

if (expanded) ea[l]+ + ;
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gisum(&ea[0],2,&workl[0]);

}

int *eval(E,X)

msg_expression E;

short X[NVAR];
/* ^function:

- Evaluate the expression at X, where X is a vector of

coordinates

:returns:

- A vector with the value of the expression at the

specified coordinate as its first element, and a flag

set if this value has attained the highest logic value

(HLV)
*/

{

register i,j,k;

int out_of_bounds;

static int V[2];

register rml = E.radix- 1;

V[EVAL] = 0;

V[HLV] = 0;

/* for each term ... */

for (i=0; i < E.nterm; i++) {

/* for each variable ... */

for (j=0,out_of_bounds=0; j < E.nvar; j++) {

(X[j] < E.I[i].B[j].lower)
1

1

(X[j] > E.I[i].B[j].upper)

){
out_of_bounds = 1;

break;

}

}

if (out_of_bounds)

continue;
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/* if this is a don't care, return the radix */

if (E.I[i].coeff == E.radix) {

V[EVAL] = E.radix;

return(V);

}

V[EVAL] += E.I[i].coeff;

if (V[EVAL] >= rrnl) {

/* set a flag which means Eorig was saturated at this X */

V[HLV] = 1;

}

if (VfEVAL] > rrnl) {

V[EVAL] = rrnl;

}

else if (V[HLV] && (V[EVAL] <= 0)) {

V[EVAL] = E.radix;

return(V);

}

}

return(V);

vcopy(d,s)

int *d,*s;

{

d[0] = s[0];

d[l] = s[l];

}
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APPENDIX B: MCND ALGORITHM PROGRAM LISTINGS

PARDEF2.H

#define MSG_TYPE1 1

#define MSG_TYPE2 2

#define HOST_PID 10

#define NODE_PID
#define NVAR 2

#define NTERM 10

typedef short msg_coord;

lower,

B[NVAR];
coeff,

typedef struct {

short

upper;

}msg_bound;

typedef struct {

msg_bound
short

rbc;

}msg_implicant;

typedef struct {

msg_implicant I{NTERM];
short radix,

nvar,

nterm;

int

i_flag,

m_flag;

char of_file[MAX_PATH+ l];

}msg_expression;

typedef struct {

float ratio;

int numimpl,
node_no;

long sees,

msecs;

}msg_from_node;
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MCND Algorithm Host Program Listings

#include "defs.h"

#include <cube.h>
#include "pardeO.h"

/* Multi-branch Concurrent Algorithm (Host) by Oral & Yang

OPT_ND()
/*

ifunction:

- Perform the MCND Algorithm on the input expression

V
{

register i,j;

int num_impl = 0;

float ratio;

msg_expression

msg_to_node;

msgfromnode
msg fromnodefirst;

if (E_final[0_N].I != NULL)
dealloc_expr(&E_final[0_N]);

# ifdef ANALYZER
STAT = &ON_stat;

# endif

HEUR = 0_N;
E_final[HEUR].nterm = 0;

E_final[HEUR].radix = Eorig.radix;

E_final[HEUR].nvar = Eorig.nvar;

E_final[HEUR].I = NULL;

if(!load_flag) {

setpid(HOST_PID);

load(7usr/oral/onurpar2/mvlcpar/opt_nd_n",-l,0);

loadflag = 1;

}

# ifdef ANALYZER
if (e_flag)
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print_terms(&E_orig)

;

# endif

msg_to_node.nvar = Eorig.nvar;

msg_to_node.nterm = E_orig.nterm;

msg_to_node.radix = E_orig.radix;

msg_to_node.i_flag = i_flag;

msg_to_node.m_flag = m_flag;

strqDy(msg_to_node.of_file,of_file);

for (i=0;i < E_orig.nterm;i++) {

msg_to_node.I[i].coeff = E_orig.I[i].coeff;

msg_to_node.Ijij.rbc = E_orig.I[i].rbc;

for (j=0;j < E_orig.nvar;j++) {

msg_to_node.I[i].B[j].upper = E_orig.I[i].B[j].upper;

msg_to_node.I[i].B[j].lower = E_orig.I[i].B[j].lower;

}

}

csend(MSG_TYPEl,&msg_to_node,sizeof(msg_to_node),-l,0);

for (i=0;i < numnodes();i+ + ) {

crecv(MSG_TYPE2,&msg from_node_first,sizeof(msg_from_node_first));

printf("%-4d OPT_PAR: %4d/%-4d %4.2f %6d:%3.31d From node: %d\n",

expr_seq,msg_from_node_first.num_impl,E_orig.nterm,

msg_from_node_first.ratio,msg_from_node_first.secs,

msg_from_node_first.msecs,msg_from_node_first.node_no);

}

}

dealloc_expr(&E_work);
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MCND Algorithm Node Program Listings

#include "defs.h"

#include "pardef2.h"

#include <cube.h>
#include <fcntl.h>

/* Global data structures */

/* Logic expressions:

E_orig

- holds the original input expression as parsed

Ework
- a copy a Eorig
- implicants are subtracted from this expression as terms

during the coures of optimization

E_final[]

- the result expression (starts out empty)
- each term is one implicant found during optimization

- each heuristic has its own E_final (for comparison)

Expression

E_orig = { 0,0,0,NULL },

E_work = { 0,0,0,NULL },

E_final[5] = {

{ 0,0,0,NULL },

{ 0,0,0,NULL },

{ 0,0,0,NULL },

{ 0,0,0,NULL },

{ 0,0,0,NULL }

};

int HEUR; /* Current heuristic

* HEUR indexes into E_final[]

* depending upon the currently

* active heuristic

•/

int FINAL; /* Index of the selected final

75



* expression

•/

long mygroup_start,

mygroup_end,

mygroup_size;

int fd;

char msg[100];

/* Multi-branch Concurrent ND algorithm for a node by Oral & Yang
/*

function:

- Performs the MCND algorithm on a node

algorithm:

Receive original expression set from host

Start with working copy E_work of the original function E_orig

Initialize a final function E_final

While (there are still minterms to pick) {

Pick a minterm X from E_work

Pick the best implicant I for X
Subtract I from E_work
Add I to E final

"

}

•/

main()

{

register i,j;

int numimpl,
betterfound,

exprseq = 0;

static char cfs[4] = "###";

int *X;

Implicant *I;

double ratio;

unsigned long T1,T2,

time;

msgexpression

msgtonode;
msgfromnode

msg_from_node_first;

for (;;) {
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expr_seq+ + ;

num_impl = 0;

mygroup_start = 0;

mygroupsize = numnodes();

mygroupend = mygroupsize - 1;

crecv(MSG_TYPEl,&msg_to_node,sizeof(msg_to_node));

if ((msg_to_node.i_flag
|
msg_to_node.m_flag) ) {

strcat (insg_to_node.of_file,c£s);

fd = open(msg_to_node.of_file,OCREAT
|
ORDWR

| OAPPEND, 0644);

}

dup_expr(&E_orig,&msg_to_node);

if (E_final[0_N].I != NULL)
dealloc_expr(&E_final[0_N]);

HEUR = 0_N;
dup_expr(&E_work,&msg_to_node);

E_final[HEUR].nterm = 0;

'

E_final[HEUR].radix = Eorig.radix;

E_final[HEUR].nvar = Eorig.nvar;

E_final[HEUR].I = NULL;
if (msg_to_node.m_flag) {

sprintf(msg," Orig map(OPT_ND):\n");
cwrite(fd,msg,strlen(msg));

print_map();

}

better_found = 0;

Tl = mclock();

for (;;) {

if ((X = mim(&E_work)) == NULL) {

if (num_impl < Eorig.nterm)

better_found = 1;

break;

}

I = pick_implicant(X);

mim_impl++;
subtractimplicant(I);

if (msgtonode.iflag)

print_implicant(X,I);
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if (msg_to_node.m_flag)

print_map();

}

T2 = mclock();

time = T2 - Tl;

if (Ibetterjound) {

numimpl = Eorig.nterm;

dup_expr(&(E_final[0_N]),&E_orig);

}

ratio = ((double)num_impl/(double)E_orig.nterm);

if (ratio = = 1) ratio = 0;

msg_from_node_first.ratio= ratio;

msg_from_node_first.node_no=mynode();
msg_from_node_first.num_impl= num_impl;
msg_from_node_first.secs= time / 1000;

msg_from_node_first.msecs = time - (msg from_node_first.secs * 1000);

csend(MSG_TYPE2,&msg_from_node_first,sizeof(msg_from_node_first),myhost()

,HOST_PID);
if (msg_to_node.i_flag

|
msg_to_node.m_flag) {

sprintf(msg,"%-4d OPT_PAR: %4d/%-4d %4.2f %6d:%3.31d From node:

%d\n",

expr_seq,num_impl,E_orig.nterm,ratio,msg_rrom_node_first.secs,

msg_from_node_first.msecs,mynode());

cwrite(fd,msg,strlen(msg));

}

dealloc_expr(&E_work);

close(fd);

}

}

static int *mim(E)
Expression *E;
/*

:function:

- Find the Most Isolated Minterm in the expression pointed to

by E, and return its coordinates as a vector.

- Local to opt_nd_n.c

:globals:

radix

nvar
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:side_effects:

STAT
xalledby:

main()

:calls:

next_coord()

eval()

vcopy()

ireturns:

- A vector of integers representing the coordinate of the most

isolated minterm, or NULL if no more minterms.

- The value at that location is also returned as the last integer

in the vector.

- if there is a tie (more than one smallest CF value) it returns

first and last, and divides the nodes into two groups.

*/

{

register i,j,k;

int curval = E-> radix,

cur_va!2 = E-> radix,

cur_CF = MAXJNT,
cur_CF2 = MAXJNT,
X_orig[MAX_VAR+2],
R 1 = E_orig.radix - 1,

Not_all = 0,

Alljrun = 0,

TRUN = 2*R_1,

last = 0,

expanded,

value[2],

vall[2],

val2[2],

cf,

ea,

dea,

term;

int *X,*next_coord();

static int

coord[MAX_VAR+ 2],

save_coord 1[MAX_VAR +2],

save_coord2[MAX_VAR+ 2];

for (term=0; term < E_orig.nterm; term++) {
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k= 1;

while ((X=next_coord(coord,&(E->I[term]),k)) != NULL) {

vcopy(value,eval(E,X));

if (value[EVAL] && value[EVAL] < E_orig.radix) {

if (!value[HLV])

Not_all = 1;

if (All_trun) {

cf = 0;

dea = 0;

ea = 0;

for (j=0; j < E_orig.nvar; j++) X_orig[j] = X(j];

/* for each variable (direction)... */

for (j=0; j < E_orig.nvar; j++ ) {

expanded = 0;

/* If not on a left hand edge, move left */

while (X[j] > 0) {

vcopy(vall,eval(E,X));

if (vall[EVAL]) {

expanded = 1;

ea+ + ;

}

else break;

}

X[j] = X_orig[j];

if (expanded) {

expanded = 0;

dea++;

}

/* if we didn't start on a right hand edge, move right */

while (X[j] < R_l) {

vcopy(val2,eval(E,X));

if(val2[EVAL]) {

expanded = 1;

ea++;

}

else break;

}

X[j] = X_orig[j];

if (expanded)

dea+ + ;
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/* compute the clustering factor */

cf = (dea * R_l) + ea;

if (cf < cur_CF) {

curval = value[EVAL];

curCF = cf;

for (i=0; i < E_orig.nvar; i++) save_coordl[i] = X[i];

}

else if (cf = = curCF) {

cur_val2 = value[EVAL];

cur_CF2 = cf;

for (i=0; i < Eorig.nvar; i++) save_coord2[i] = X[i];

}

}

else {

cf = 0;

dea = 0;

ea = 0;

for (j=0; j < E_orig.nvar; j++) X_orig[j] = X[j];

/* for each variable (direction)... */

for (j=0; j < Eorig.nvar; j++ ) {

expanded = 0;

/* If not on a left hand edge, move left */

while (X[j] > 0) {

vcopy(vall,eval(E,X));

if (vallfEVAL] && (vallfEVAL] <= value[EVAL]

1
1 value[HLV])) {

expanded = 1;

ea++;

}

else

break;

}

Xffl = X_orig[j];

if (expanded) {

expanded = 0;

dea++;

}

/* if we didn't start on a right hand edge, move right */

while (X£j] < R_l) {

XB1++;
vcopy(val2,eval(E,X));
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if (val2[EVAL] && (val2[EVAL] <= value[EVAL]

1
1 value[HLV])) {

expanded = 1;

ea+ + ;

}

else

break;

}

X[j] = Xorigffl;

if (expanded)

dea++;

}

/* compute the clustering factor */

cf = (dea * R_l) + ea;

if (!(value[HLV] && cf > TRUN)) {

if (cf < cur_CF) {

curval = value[EVAL];

curCF = cf;

for (i=0; i < E_orig.nvar; i+ + ) save_coordl[i] = X[i];

}

else if (cf = = cur_CF) {

cur_val2 = valuefEVAL];

cur_CF2 = cf;

for (i=0; i < E_orig.nvar; i+ + ) save_coord2[i] = X[i];

}

}

}

}

k = 0;

}

if (!last && (term = = (E_orig.nterm - 1)) && !Not_all) {

All_trun - 1;

cur_CF = MAXJNT;
term = -1;

last = 1;

}

}

if (cur_CF == MAXJNT)
return(NULL);

"

save_coordl[E_orig.nvar+l] = cur_CF;

save_coordl[E_orig.nvar] = curval;

save_coord2[E_orig.nvar+l] = cur_CF;
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save_coord2[E_orig.nvar] = cur_val2;

if (cur_CF != cur_CF2) return(savecoordl);

else if (mynode() > = (mygroupstart + mygroupsize/2)) {

mygroup_start = mygroup_start +mygroup_size/2;

mygroup_size = mygroup_size/2;

return(save_coord2);

}

else {

mygroupend = mygroupstart + (mygroup_size/2 -1);

mygroup_size = mygroupsize/2;

return(save_coordl);

}

static int validimplicant(I)

Implicant *I;

r
:function:

- Decide upon the validity of implicant I

- Local to opt_nd_n.c

iglobals:

E_work
E_orig

:side_effects:

STAT
xalledby:

pick_implicant()

xalls:

next_coord()

eval()

vcopy()

:returns:

1 if a valid implicant

if not

{

int *X;

int init = 1;

int R_l = E_orig.radix - 1;

int value = I->coeff;

int Vo[2],Vw[2];

static int
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}

coord[MAX_VAR+2];

while ((X = next_coord(coord,I,init)) != NULL) {

init = 0;

vcopy(Vw,eval(&E_work,X));

vcopy(Vo,eval(&E_orig,X));

if (((Vw[EVAL] < value) && !Vw[HLV]) && (Vo[EVAL] < R_l))

return(O);

}

return(l);

static int compute_rbc(I)

Implicant *I;

/*

:function:

- Compute the RBC for the given implicant

- Local to opt_nd_n.c

:globals:

radix

nvar

:side_effects:

STAT
xalledby:

pick_implicant()

xalls:

next_coord()

eval()

vcopy()

:returns:

- an integer RBC
*/

{

int *X;

int lvalue = I->coeff;

register i;

int value[2],

R_l = E_orig.radix - 1,

neighbor_value[2],

good,

bad,

diff,

equal,
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neigjboun,

first,

rbc = 0,

init = 1;

static int

coord[MAX_VAR+2];

/* for each coordinate in the implicant ... */

while ((X = next_coord(coord,I,init)) != NULL) {

init = 0;

equal = 0;

vcopy(value,eval(&E_work,X));

if (value[EVAL] = = E_orig.radix)

continue;

diff = value[EVAL] - I_value;

first = 1;

/* for each direction ... */

for (i=0; i < E_orig.nvar; i++) {

good = 0;

bad = 0;

if ((diff <= 0)&& first) {

good = 2;

first = 0;

}

/* if there is a left neighbor, examine it */

if (X[i] != && X[i] == I->B[i].lower) {

X[i]~;

vcopy(neighbor_value,eval(&E_work,X));

neigboun = neighbor_value[EVAL] - value[EVAL];

X[i]++;

if (neighbor_value[EVAL] != 0) {

if (!neighbor_value[HLV]
1

1 !value[HLV]) {

if (neighbor_value[EVAL] < diff) {

if (neighbor_value[HLV])

good +=1;
else

bad +=2;
}

if (neighbor_value[EVAL] > diff) {

if (Ineigboun)

bad +=2;
if (neighbor_value[HLV] && neig_boun < 0)

bad +=2;
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}

if (diff > && neig_boun) {

if (value[HLV])

good +=1;
else

bad + =2;

}

}

else {

if (neighbor_value[HLV]
1

1 value[HLV])

good + = 1;

else

good + =2;
}

}

}

/* if there is a right neighbor, examine it */

if (X[i] != R_l && X[i] == I->B[i].upper) {

X[i]+ + ;

vcopy(neighbor_value,eval(&E_work,X));

neig_boun = neighbor_value[EVAL] - value[EVAL];

X[i]~;

if (neighbor_value[EVAL] != 0) {

if (!neighbor_value[HLV]
1

1 !value[HLV]) {

if (neighbor_value[EVAL] < diff) {

if (neighbor_value[HLV])

good += 1;

else

bad +=2;
}

if (neighbor_value[EVAL] > diff) {

if (Ineigboun)

bad +=2;
if (neighbor_value[HLV] && neigboun < 0)

bad +=2;
if (diff > && neig_boun) {

if (value[HLV])

good +=1;
else

bad +=2;
}

}
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else {

if (neighbor_value[HLV]
1

1 value[HLV])

good +=1;
else

good + =2;

}

}

}

}

/* update the rbc */

rbc = (rbc - good) + bad;

}

}

}

retum(rbc);

static Implicant *pick_implicant(X)

int *X;
/*

:function:

- Pick the best implicant for minterm X
rglobals:

radix

:side_effects:

STAT
xalledby:

Wang_Yang()
:calls:

init_implicant()

gen_bounds()

next_implicant()

eval()

vcopy()

compue_rbc()

copy_implicant()

valid_implicant()

:returns:

- A pointer to a term representing the best implicant.

*/

{

int currbc = MAX_INT,
rbc = 0,
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I_value,

i,

init = 1,

first = 1;

Im plica nt *I;

static int

coord[MAX_VAR+2];
static Bound I_bound[MAX_VAR+2];
static Implicant I_best;

Bound *B;

int V[2],

value[2];

I_best.B = I_bound;

init_implicant(X);

B = gen_bounds(X);

vcopy(V,eval(&E_orig,X));

while ((I = next_implicant(B)) != NULL) {

if (V[HLV]) {

for (I->coeff=X[E_orig.nvar]; I->coeff < E_orig.radix; (I->coeff)+ + ) {

if (validimplicant(I)) {

rbc = compute_rbc(I);

if (first)

rbc = 2;

else

rbc +=2;
if (rbc < = currbc) {

cur_rbc = rbc;

I->rbc = rbc;

copy_implicant(&I_best,I);

}

}

}

first = 0;

}

else {

I->coeff = X[E_orig.nvar];

if (valid_implicant(I)) {

rbc = computerbc(I);

if (first) {

first = 0;

if (rbc < )
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rbc = 1;

else

rbc + =2;
}

else

rbc +=2;
if (rbc < = currbc) {

currbc = rbc;

I->rbc = rbc;

copy_implicant(&I_best,I);

}

}

}

}

return(&I_best);

}

int *eval(E,X)

Expression *E;

int *X;
/*

:function:

- Evaluate the expression at X, where X is a vector of coordinates

:globals:

nvar

radix

:side_effects:

STAT
xalledby:

mim() - pa.c

valid_implicant() - pa.c

pick_implicant() - pa.c

mim() - dm.c

valid_implicant() - dm.c

pick_implicant() - dm.c

computerbcQ
gen_bounds()

print_map()

rreturns:

- A vector with the value of the expression at the specified

coordinate as its first element, and a flag set if this value

has attained the highest logic value (HLV)
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int nterm = E->nterm;

register i,j,k;

int out_of_bounds;

static int V[2];

register rml = E_orig.radix- 1;

V[EVAL] = 0;

V[HLV] = 0;

/* for each term ... */

for (i=0; i < nterm; i++) {

/* for each variable ... */

for (j=0,out_of_bounds=0; j < E_orig.nvar; j++) {

if(

(X[j] < E->I[i].B[j].lower)
1

1

(X[j] > E->I[i].B[j].upper)

)<

}

outofbounds = 1;

break;

}

if (out_of_bounds)

continue;

/* if this is a don't care, return the radix */

if (E->I[i].coeff == E_orig.radix) {

V[EVAL] = E_orig.radix;

return(V);

}

V[EVAL] + = E->I[i].coeff;

if (V[EVAL] >= rml) {

/* set a flag which means E_orig was saturated at this X */

V[HLV] = 1;

}

if (V[EVAL] > rml) {

V[EVAL] = rml;

}

else if (V[HLV] && (V[EVAL] <= 0)) {

V[EVAL] = E_orig.radix;

return(V);

}
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}

return(V);

}

int *next_coord(coord,I,first)

int *coord;

Implicant *I;

int first;

/*

:function:

- Compute the next possible coordinate for term *I

- If first = = 1, initialize the coord vector

xalledby:

mim()
valid_implicant()

compute_rbc()

rreturns:

- An integer vector containing the coordinates.

V

static i;

/* if the first time through, load the vector */

if (first) {

for (i=0; i < E_orig.nvar; i++) {

coord[i] — I->B[i].lower;

}

}

else {

i = 0;

coord[i]++;

for (;;) {

if (coord[i] > I->B[i].upper) {

coordfi] = I->B[i].lower;

i++;
if (i > = E_orig.nvar)

return(NULL);

coord[i]++;

}

else {

break;

}

}
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}

return(coord);

}

Bound *gen_bounds(X)

int *X;

/
*

:function:

- Generate the permissible bounds around location X in the

working expression

:globals:

radix

nvar

E_work
E_orig

:side_e£fects:

STAT
:called_by:

pick_implicant()

xalls:

eval()

vcopy()

rreturns:

- A bounds array

*/

static Bound B[MAX_VAR+2];
int nterm = Ework.nterm;

register i,j,k;

int value,Vw[2],Vo[2];

int Xp[MAX_VAR+2];

value = X[E_orig.nvar];

/* for each variable (direction)... */

for (i=0; i < E_orig.nvar; i++ ) {

/* dup the coordinate */

for 0=0; j < E_orig.nvar; j++) Xp[j] = X[j];

B[i].lower = X[i];

/* while not on a left hand edge, move left */

while (Xp[i] > 0) {

XP[i]~;
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vcopy(Vw,eval(&E_work,Xp));

vcopy(Vo,eval(&E_orig,Xp));

/* if can't expand to left .... */

if (!((value > Vw[EVAL]) && (Vo[EVAL] < (E_orig.radix-l)))) {

B[i].lower = Xp[i];

}

else

break;

}

/* dup the coordinate */

for 0=0; j <= (E_orig.nvar+l); j++) Xp[j] = X[j];

B[i].upper = X[i];

/* while not on a right hand edge, move right */

while (Xp[i] < (E_orig.radix-l)) {

Xp[i]++;

vcopy(Vw,eval(&E_work,Xp));

vcopy(Vo,eval(&E_orig,Xp));

/* if can't expand to right ... */

if (!((value > Vw[EVAL]) && (Vo[EVAL] < (E_orig.radix-l)))) {

B[i].upper = Xp[i];

}

else

break;

}

}

return (B);

/* Working structures for picking the next implicant within bounds */

static Bound IB[MAX_VAR+2];/* Current bounds */

static Implicant I; /* Implicant */

static int

I_var,

I_first,

I_val;

int X_orig[MAX_VAR+2];/* Where we start */

initimplicant(X)

int *X;
/*
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:function:

- Initialize the static term structure above from which successive

implicants will be returned

- X is the starting minterm

:side_effects:

- The structures above

:called_by:

pick_implicant()

*/

{

int nterm = Ework.nterm;

register i;

/* initialize the implicant */

LB = IB;

I.coeff = X[E_orig.nvar];

I.rbc = X[E_orig.nvar+l];

for (i=0; i < E_orig.nvar; i++) {

I.B[i].upper = X[i];

I.B[i].lower = X[i];

}

I_var = 0;

I_first = 1;

Ival = X[E_orig.nvar];

for (i=0; i <= (E_orig.nvar+l); i++) X_orig[i] = X[i];

Implicant *next_implicant(B)

Bound *B;

/*

:function:

- On each call, return the next implicant within bounds B
:side_effects:

STAT
xalledby:

pick_implicant()

ireturns:

- An implicant as a term structure

*/

{

int nterm = Ework.nterm;
int Xp[MAX_VAR+2];
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}

if (IJirst) {

Ifirst = 0;

return(&I);

}

while (I_var < E_orig.nvar) {

/* expand left */

I.B[I_var].lower--;

/* if we can't go further left, then ... */

if (I.B[I_var].lower < B[I_var].lower) {

/* move back and go right */

I.B[I_var].lower = X_orig[I_var];

I.B[I_var].upper+ +

;

/* if we can't go further right, then ... */

if (I.B[I_var].upper > B[I_var].upper) {

/* reset and go to the next higher dimension */

I.B[I_var].upper = X_orig[I_var];

I_var++;

continue;

}

}

Ivar = 0;

return(&I);

}

return(NULL);

int copy_implicant(dest,src)

Implicant *dest,*src;

/*

rfunction:

- Copy the implicant pointed to by src to dest

:called_by:

pick_implicant()

*/

{
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register i;

dest->coeff = src->coeff;

dest->rbc = src->rbc;

for (i=0; i < Eorig.nvar; i++) {

dest->B[i].lower = src->B[i].lower;

dest->B[i].upper = src->B[i].upper;

}

subtractimplicant(I)

Implicant *I;

/*

rfunction:

- Add implicant I to the working expression as a negative term

(negated coefficient)

- Add implicant I to tthe final expression

rglobals:

HEUR
nvar

:side_effects:

E_work
E_final[]

., */

{

register i,term;

term = Ework.nterm;
E_work.nterm+ +

;

E_work.I = alloc_implicant(E_work.I,-(I->coeff),E_work.nterm);

for (i=0; i < E_orig.nvar; i++) {

E_work.I[term].B[i].lower = I->B[i].lower;

E_work.I[term].B[i].upper = I->B[i].upper;

}

term = E_final[HEUR].nterm;

E_final[HEUR].nterm+ +

;

E_final[HEUR].I =

alloc_implicant(E_final[HEUR].I,I->coeff,E_final[HEUR].nterm);

for (i=0; i < Eorig.nvar; i+ + ) {

E_final[HEUR].I[term].B[i].lower = I->B[i].lower;

E_final[HEUR].I[term].B[i].upper = I->B[i].upper;
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}

}

/* vcopy()

- copies the value vector from s to d

7
vcopy(d,s)

int *d,*s;

{

d[0] = s[0];

d[l] = s[l];

}

/* memory allocation functions */

Implicant *alloc_implicant(p,coeff,n)

Implicant *p;

int coeff,n;

/*

:function:

- Allocate space for a term array, initializing the last element
- If p is NULL, allocate new space

- If p is not, realloc

:returns:

- A pointer to the Implicant

*/

{

char *malloc(),*realloc();

Bound *alloc_bound();

if (p == NULL) {

if ((p= (Implicant *)malloc(sizeof(Implicant)*n)) == NULL)
fatal("alloc_implicant(): out of memory\n");

p->coeff = coeff;

p->B = alloc_bound();

}

else {

if ((p= (Implicant *)realloc(p,sizeof(Implicant)*n)) == NULL)
fatal("alloc_implicant(): out of memory\n");

p[n-l].coeff = coeff;

p[n-l].B = alloc_bound();

}



return(p);

}

Bound *alloc_bound()

/*

.function:

- Allocate space for E_orig.nvar bounds entries and initialize

each bound to -l,E_orig.radix- 1.

- If p is NULL, allocate new space

:globals:

Eorig
:returns:

- A pointer to the Bound array

*/

{

Bound *p;

char *malloc();

register i;

if ((p=(Bound *)malloc(sizeof(Bound)*(E_orig.nvar))) == NULL)
fatal("alloc_bound(): out of memory\n");

for (i=0; i < E_orig.nvar; i+ + ) {

p[i].lower = -1;

pfij.upper = Eorig.radix- 1;

}

return(p);

init_expr()

r
:function:

- Initialize Ework, Eorig and E_final
:side effects:

Ework
Eorig
E final

{

E_work.I = NULL;
E_orig.I = NULL;
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}

Eorig.nvar = 0;

Eorig.nterm = 0;

E_orig.radix = 0;

E_final[0].I = NULL;
E_final[l].I = NULL;

dealloc_expr(e)

Expression *e;

/*

:function:

- Deallocate the expression pointed to by e

*/

Implicant

register i;

*p;

if (e->I != NULL) {

for (p = e->I,i=0; i < e->nterm; i++)
if (p[i].B != NULL) {

free(p[i].B);

p[i].B = NULL;
}

free(p);

e->I = NULL;

e->nvar =
e->nterm =

e-> radix =

0;

= 0;

0;

dup_expr(E_dest,E_src)

Expression *E_dest;

msgexpression *E_src;

/*

ifunction:

- Duplicate the expression pointed to by Esrc by allocating as

necessary and copying into the expression pointed to by Edest.
- If Edest can contain Esrc, no reallocation is performed (this

test is made by comparing nvar and nterm parameters, and by testing

pointers against NULL)
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:calls:

alloc_bound()

{

Implicant *I;

Bound *B;

register i,j;

char *malloc();

int

ntenn = E_dest->nterm,

nvar = E_dest->nvar;

if (nterm != E_src-> nterm) {

if (E_dest->I != NULL)
dealloc_expr(E_dest);

}

E_dest-> radix = E_src-> radix;

E_dest->nvar = E_src->nvar;

E_dest-> nterm = E_src-> nterm;

if (E_dest->I == NULL) {

if ((I= (Implicant *)malloc(sizeof(Implicant)*(E_dest->nterm)))

NULL)
fatal("dup_expr(): out of memory\n");

for (i=0; i < E_src-> nterm; i++)
I[i].B = NULL;

E_dest->I I;

}

else

I = E_dest->I;

for (i=0; i < E_src-> nterm; i++) {

I[i].coeff = E_src->I[i].coeff;

if ((E_orig.nvar != E_src->nvar)
1 1

(I[i].B == NULL)) {

I[i].B = alloc_bound();

}

for (j=0; j < E_src->nvar; j++) {

I[i].B[j].lower = E_src->I[i].B(j].lower;

I[i].B[j].upper = E_src->I[i].B[j].upper;

}

}
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static struct tms

Tl,T2,Tla,T2a;

resource_used(op)

{

static call = 0;

if (op == START)
times(call= =0?&Tl:&Tla);

else

times(call= = l?&T2:&T2a);

if (++call > 1)

call = 0;

}

#ifndef HZ
#define HZ 60

#endif

long secs_used()

{

return((T2.tms_utime-Tl.tms_utime)/HZ );

}

long tsecs_used()

{

return((((T2.tms_utime-Tl.tms_utime) %HZ) * 10001) /HZ);

}

fatal(s)

char *s;

{

fprintf(stderr,"%s\n",s);

exit(l);

}

print_map()

{

register i,j;

int X[MAX_VAR+2];
int *V;

for (i=0; i < E_orig.nvar; i++) X[i] = 0;

for (i=0; i < E_orig.nvar;) {

101



V = eval(&E_work,X);

sprintf(msg/
,%s%3d%c",X[i]==0?" ":"",V[EVAL],V[HLV]?'.':' ');

cwrite(fd,msg,strlen(msg));

X[i]++;

for (;i < E_orig.nvar;) {

if (X[i] > = E_orig.radix) {

X[i] = 0;

if (i < 2)

sprintf(msg,"\n");

cwrite(fd,msg,strlen(msg));

i++;
X[i]++;

}

else {

i = 0;

break;

}

}

}

print_implicant(X,I)

int *X;

Implicant *I;

/*

rfunction:

- Print the Most Isolated Minterm X and the implicant selected

to cover it I.

xalledby:

main()
*/

{

register i;

if (X != NULL) {

sprintf(msg," MIM: (%d) %2d",X[E_orig.nvar+l],X[E_orig.nvar]);

cwrite(fd,msg,strlen(msg));

for (i=0; i < E_orig.nvar; i++) {

sprintf(msg,"*X%d(%2d)",i+l,X[i]);

cwrite(fd,msg,strlen(msg));

}

sprintf(msg,"\n");

cwrite(fd,msg,strlen(msg));
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}

}

sprintf(msg," Imp: (%d) %2d",I->rbc,I->coeff);

cwrite(fd,msg,strlen(msg));

for (i=0; i < Eorig.nvar; i++) {

sprintf(msg,
M
*X%d(%2d,%2d)",i+l,I->B[i].lower,I->B[i].upper);

cwrite(fd,msg,strlen(msg));

}

sprintf(msg,"\n\n");

cwrite(fd,msg,strlen(msg));
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APPENDIX C: TIME COMPARISON TABLES

TABLE C.l: TWO VARIABLE FOUR VALUED TIME COMPARISON

Number of

Input Terms
Computation Time

for Sequential

Algorithm(secs.)

Computation Time
for Parallel

Algorithm (sees.)

Ratio

5 0.3293 0.2510 1.3120

10 1.0167 0.6420 1.5836

15 1.6253 0.9933 1.6363

20 2.0710 1.1357 1.8235

25 3.0437 1.6083 1.8925

30 3.4947 1.3793 2.5337

35 3.4890 1.2433 2.8062

40 4.6900 1.7583 2.6673

45 5.7493 2.0900 2.7509

50 6.7473 2.4200 2.7881

104



TABLE C.2: THREE VARIABLE FOUR VALUED TIME COMPARISON

Number of

Input Terms
Computation Time

for Sequential

Algorithm (sees.)

Computation Time
for Parallel

Algorithm (sees.)

Ratio

5 1.5587 1.0906 1.4222

10 7.1123 4.5500 1.5631

15 14.2383 9.2657 1.5367

20 22.6060 14.4527 1.5641

25 34.0607 20.3773 1.6715

30 40.5067 24.3210 1.6655

35 50.4833 30.2620 1.6682

40 61.6193 37.3053 1.6518

45 69.1513 41.3650 1.6717

50 73.1720 42.9803 1.7025

55 75.3140 43.4327 1.7340

60 76.6263 42.5230 1.8020

65 78.4003 41.2967 1.8985

70 79.2020 40.8500 1.9388
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TABLE C.3: FOUR VARIABLE FOUR VALUED TIME COMPARISON

Number of

Input Terms
Computation Time

for Sequential

Algorithm (sees.)

Computation Time
for Parallel

Algorithm (sees.)

Ratio

5 6.3707 4.8860 1.3039

10 28.5067 17.9700 1.5863

15 67.2783 40.4720 1.6623

20 130.1080 72.9250 1.7841

25 208.7533 114.6147 1.8213

30 311.2900 183.1463 1.6997

35 400.2017 234.6913 1.7052

TABLE C.4: FIVE VARIABLE FOUR VALUED TIME COMPARISON

Number of

Input Terms
Computation Time

for Sequential

Algorithm (sees.)

Computation Time
for Parallel

Algorithm (sees.)

Ratio

5 145 112 1.3

10 796 518 1.5

15 2111 1207 1.7

20 4298 2257 1.9

25 7876 3998 2.0

30 12048 5857 2.1

35 16406 7447 2.2
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APPENDIX D: SOLUTION SETS FOR EXAMPLE 6

SOLUTION FROM ND ALGORITIHM

Orig map (W&Y):
1111
•J* J« w» w«

1 2 3. 2

1 2 3. 2

MIM: (4) 2*X1( 3)*X2( 2)

Imp: (-9) 2*X1( 1, 3)*X2( 1, 3)

1111
3. 1. 1. 1.

1 1.

1 1.

MIM: (4) 1*X1( 0)*X2( 2)

Imp: (-2) 1*X1( 0, 0)*X2( 0, 3)

111
2. 1. 1. 1.

1.

1.

MIM: (6) 1*X1(2)*X2(3)
Imp: (-2) 1*X1( 2, 2)*X2( 0, 3)

10 1

2. 1. 4. 1.

4.

4.

MIM: (4) 1*X1( 1)*X2( 0)

Imp: (-2) 1*X1( 1, 1)*X2( 0, 1)

1

2. 4. 4. 1.

4.

4.
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MIM: (4) 1*X1( 3)*X2( 0)

Imp: (-2) 1*X1( 3, 3)*X2( 0, 1)

2. 4. 4. 4.

4.

4.

MIM: (6) 2*X1( 0)*X2( 1)

Imp: (0) 3*X1( 0, 3)*X2( 1, 1)

4. 4. 4. 4.

4.

4.

1 W&Y: 6/10 0.60 0:640
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SOLUTION FROM MCND NODE #0 AND #1

Orig map(OPT ND):

1111
*? • W* W* «J«

1 2 3. 2

1 2 3. 2

MIM: (4) 2*X1( 3)*X2( 2)

Imp: (-9) 2*X1( 1, 3)*X2( 1, 3)

1111
3. 1. 1. 1.

1 1.

1 1.

MIM: (4) 1*X1( 0)*X2( 2)

Imp: (-2) 1*X1( 0, 0)*X2( 0, 3)

111
2. 1. 1. 1.

1.

1.

MIM: (6) 1*X1( 2)*X2( 3)

Imp: (-2) 1*X1( 2, 2)*X2( 0, 3)

10 1

2. 1. 4. 1.

4.

4.

MIM: (4) 1*X1( 3)*X2( 0)

Imp: (-2) 1*X1( 3, 3)*X2( 0, 1)

10
2. 1. 4. 4.

4.

4.

MIM: (4) 1*X1( 1)*X2( 0)

Imp: (-2) 1*X1( 1, 1)*X2( 0, 1)
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2. 4. 4. 4.

4.

4.

MIM: (6) 2*X1( 0)*X2( 1)

Imp: (0) 3*X1( 0, 3)*X2( 1, 1)

4. 4. 4. 4.

4.

4.

1 OPT_PAR: 6/10 0.60 11:915 From node: 0,1
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SOLUTION FROM MCND NODE #2 AND #3
Orig map(OPT ND):

1111
J* «J« *?• w«

1 2 3. 2

1 2 3. 2

MIM: (4) 2*X1( 3)*X2( 2)

Imp: (-9) 2*X1( 1, 3)*X2( 1, 3)

1111
3. 1. 1. 1.

1 1.

1 1.

MIM: (4) 1*X1( 0)*X2( 3)

Imp: (-2) 1*X1( 0, 0)*X2( 0, 3)

111
2. 1. 1. 1.

1.

1.

MIM: (6) 2*X1( 0)*X2( 1)

Imp: (0) 3*X1( 0, 3)*X2( 1, 1)

111
4. 4. 4. 4.

1.

1.

MIM: (5) 1*X1( 3)*X2( 0)

Imp: (-4) 1*X1( 1, 3)*X2( 0, 1)

4. 4. 4. 4.

1.

1.

MIM: (5) 1*X1( 2)*X2( 3)

Imp: (-2) 3*X1( 2, 2)*X2( 1, 3)
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4. 4. 4. 4.

4.

4.

1 OPT_PAR: 5/10 0.50 11:241 From node: 2,3
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SOLUTION FROM MCND NODE #4 THROUGH #7
Orig map(OPT ND):

1111
w* «?• w« w*

1 2 3. 2

1 2 3. 2

MIM: (4) 1*X1( 0)*X2( 3)

Imp: (-10) 1*X1( 0, 3)*X2( 0, 3)

2. 2. 2. 2.

1 2. 1

1 2. 1

MIM: (4) 1*X1( 1)*X2( 2)

Imp: (-6) 1*X1( 1, 3)*X2( 1, 3)

2. 1. 1. 1.

1.

1.

MIM: (5) 1*X1(2)*X2(3)
Imp: (-4) 3*X1( 2, 2)*X2( 1, 3)

2. 1. 4. 1.

4.

4.

MIM: (6) 1*X1(3)*X2(1)
Imp: (-4) 3*X1( 0, 3)*X2( 1, 1)

4. 4. 4. 4.

4.

4.

1 OPT_PAR: 4/10 0.40 10:014 From node: 4,5,6,7
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