
t school:

NPS-55Gv55Lw74071

NAVAL POSTGRADUATE SCHOOL

Monterey, California

ANALYSIS OF EXCEPTION DATA

IN A STAGING HIERARCHY

by

Donald P. Gaver

Peter A. W. Lewis

Gerald S. Shedler

July 1974

Approved for public release; distribution unlimited.

Prepared for:

Chief of Naval Research
Arlington, Virginia 22217

FEDDOCS
D 208.14/2:

NPS-55GV55LW74071



NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder Jack R. Borsting
Superintendent Provost

The work reported herein was supported in part by the National Science
Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS-55Gv55Lw74071

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE fandSublil/e) 5. TYPE OF REPORT ft PERIOD COVERED

Analysis of Exception Data in a Staging
Hierarchy 6. PERFORMING ORG. REPORT NUMBER

7. AUTHORr*;

Donald P. Gaver
Peter A. W. Lewis
Gerald S. Shedler

8. CONTRACT OR GRANT NUMBER(a)

AG 476

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

National Science Foundation
Washington, D. C. 20550

12. REPORT DATE

July 1974
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, (of this report)

Unclassified

15a. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide II necessary and Identity by block number)

Computers
Probability
Stochastic processes

20. ABSTRACT (Continue on reverse aide It necessary and Identify by block number)

This paper is concerned with the analysis of program address trace data in
a demand paged computer system having a three level staging hierarchy. Our
primary objective is to explore the data both graphically and numerically,
using methods that may be useful when other data traces become available.
A secondary objective has been to fit plausible point-process type models
to the data.

(Continued next page)

DD ,^N
RM

73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014- 6601 |

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



UNCLASSIFIED
.LLIJWITY CLASSIFICATION OF THIS PAGEfWhen Data Entered)

It is believed that the present approach, combining data-analytic procedures
with probability modeling, will prove useful in understanding program
behavior and thus aid in the rational design of complex computer systems.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWTien Data Entered)



Reprinted from

Vol. 18 No. 5 September 1974

Ed Journal of

research and
development

D. P. Gaver

P. A. W. Lewis

G. S. Shedler

Analysis of Exception Data in a Staging Hierachy

TDlUf Copyright 1974 by International Business Machines Corp.

Printed in U.S.A.





D. P. Gaver

P. A. W. Lewis

G. S. Shedler

Analysis of Exception Data in a Staging Hierachy

Abstract: This paper is an analysis of program address trace data in a demand-paged computer system with a three-level staging hier-

archy. Our primary objective is to explore the data both graphically and numerically, using methods that may be useful when other data

traces become available. In addition, plausible point-process type models are fit to the data. Such an approach, combining data-analytic

procedures with probability modeling, should prove useful in understanding program behavior and thus will aid in the rational design of

complex computer systems.

1. Introduction

Although a number of stochastic (queuing) models for

the structure of multiprogrammed computer systems

operating under demand paging have been proposed and

studied, e.g., [1-4], the probabilistic representation of

the behavior of programs running in such systems has

received relatively less attention (however, see [5, 6]

for examples of two complementary approaches to the

formulation of program behavior models). In view of

the necessity of understanding the referencing patterns

of programs in order to improve the decision algorithms

in current and future systems, further studies of program

behavior leading to the mathematical characterization of

computer system workloads are appropriate.

This paper reports results of a study aimed at better

understanding program reference patterns in a demand-

paged computer system with a three-level staging hier-

archy. The approach taken is, first to represent the actual

program-address trace data and, second, to fit the latter

with plausible stochastic models. The point of view taken

is rather similar to that of [5] concerning the modeling

and analysis of page exceptions in a two-level memory.

However, in this paper we have emphasized the use of

simple graphical methods of statistical data analysis

and modeling rather than more formal and complex sta-

tistical techniques such as spectral analysis (cf. [7]).

Throughout this study we have used an interactive

APL/360 computing system, a tool which we have found

well suited to this type of statistical analysis and modeling.

The stochastic processes studied here occur in a

three-level staging hierarchy. A description of the hier-

archy that we assume and of the stochastic process

models of interest that suggest themselves therein are

given in section 2. The sense in which the exception

process in the staging hierarchy can be viewed as a bi-

variate point process (see [8]) is discussed briefly in

section 3, and section 4 contains a description of the

data available for analysis. The data analysis and model-

ing of exception processes are given in sections 5-8.

Estimates of values of the parameters in the exception

process model are presented in section 9. Section 10

contains an assessment of the fit of the model, and sec-

tion 1 1 gives a summary of the results and conclusions.

2. Description of the staging hierarchy

The data sequences studied in this paper occur in a de-

mand-paged computer system having as a storage struc-

ture a three-level staging hierarchy, as described in [9].

In such a system all information that is explicitly ad-

dressable is divided into units of equal size called blocks,

each of which is further divided into units of equal size

called pages. Level 1 of the hierarchy (the execution

store) is similarly divided into page-size sections called

page frames and levels 2 and 3 of the storage hierarchy

are divided into block-size sections called block frames.

In such computer systems it is possible to execute a

program by supplying it with only a few page frames and

block frames of storage. When the page containing the

first executable instruction has been loaded into a page

frame, execution begins and continues until some re-

quired information is not in the execution store. An

attempt to reference information not currently contained

in level 1 is termed an exception. When a "demand" for 423
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Figure 1 Staging hierarchy.

a page occurs, the page containing the required informa-

tion is staged through adjacent storage levels up to the

execution store in accordance with a prescribed regime

for hierarchy management. Thus the hierarchy is linear,

i.e., there are data paths only between adjacent levels,

and data in level 3 must pass through level 2 before going

into level 1.

In the three-level staging hierarchies we consider (see

Fig. 1 ), information is transmitted between levels 1 and

2 of the hierarchy in page-size units. The size of a page,

in bytes, is denoted by b
x
and the page capacity of level

1 is denoted by cv Thus b^c^ is the total number of bytes

of information which can be contained in level 1. Sim-

ilarly, information is transmitted between levels 2 and 3

of the hierarchy in block-size units, consisting of an in-

tegral number of pages. The byte size of a block is de-

noted by b
2

. The block capacity of hierarchy level 2 is

denoted by c
2 , and thus b

2
c
2

is the byte capacity of level

2. Level 3 of the hierarchy is considered to be of sufficient

capacity to contain all information that is explicitly

addressable in the computer system.

The staging hierarchy is assumed to be managed under

the least recently used (LRU) replacement policy in

which reference is broadcast to all levels of the hierarchy.

Specifically, if the page containing the required informa-

tion is currently in level 2 of the hierarchy, the page is

fetched (page pull) from level 2, overwriting some page

currently in level 1. In general, this replaced page must

be written down into level 2 (page push). The page se-

lected to be overwritten is the page in level 1 which has

been referenced the least recently of those in this ex-

ecution storage level i.e., the least recently used page.

An instance of an exception of this type, in which the

required page is found at level 2 of the hierarchy, is

termed a "hit to level 2."

Upon an attempt to reference information neither in

level 1 nor in level 2, the page containing the required

information is staged up from level 3 as follows. The

block containing the desired page is fetched (block pull)

from level 3, overwriting the least recently used block

in level 2. Again, in general, this replaced block must be

written down into level 3 (block push). Now that the

block containing the required page resides in level 2, the

required page can be transmitted to level I (via a page

pull and a LRU page push) and the reference can be

executed. An instance of an exception of this type, in

which the required page is not found at level 2 but only

at level 3, is termed a "hit to level 3." In the sequel, we

shall use the term staging hierarchy to mean a three-level

staging hierarchy managed under the LRU replacement

policy.

There are many related (but not necessarily equiva-

lent) data sequences that describe page reference pat-

terms in a staging hierarchy; important examples are

listed below.

1. References {/?,(/>)}, i.e., sequences of page refer-

erences for pages of size b, where /?.(/>) is the name

of the page referenced at (discrete) time i.

2. Distances {D. (/?)}, i.e., sequences of stack distances

for LRU replacement, as defined in [10], where D
t
(b)

is the total number of distinct pages (of size b) refer-

enced since the last reference to R
t
(b).

3. Sequences corresponding to exceptions to either level

for various capacities at levels 1 and 2. We denote

such a sequence by {TAcv c
2

. b„ b2)}, where

TAcv c
2

; bv b
2

) is the time (in references) of thej'th

exception in a three-level staging hierarchy in which

level 1 contains c, pages of size b
x
and level 2 contains

c, blocks of size b
2

.

4. Sequences corresponding to exceptions of two types.

We denote such a sequence by {TAcv c
2

; b v b
2 )\

hAcv c
2

\ b v b
2 )}, where TAcv c

2
: b v b

2 ) is the time

of the /th exception and hAcv c
2

; b v b
2

) equals 2 if

the/th exception is a hit to level 2 and hj(c v c
2

; b v b
2 )

equals 3 if the 7th exception is a hit to level 3. This is

a complete description of the pattern of exceptions.

We note here that this last sequence of exceptions of

two types is related to distance sequences by the follow-

ing result (derived in [9]). The relationship facilitates

the collection of data on the sequence of exceptions of

two types. The bivariate sequence of exceptions of two

types can be obtained from two distance sequences

{D. (/>,)} and {D>2 )}.

Proposition 1

Provided that c
2
> cv if TAcv c

2 ; bv b2 ) = i, then

(2 ifD.(/>,) > c, and D,{b
2 ) 5 c

2

hj(cv c
2

: b v b2 ) = \

[3 if £,(*,) > c, and D
t
(b

2 ) >c2
.(l)
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Table 1 Sample characteristics of the exception process for tape H with I Kll replacement. Page size />,

b., = 32,768 bytes; number of references is 34,723,105.

256 bytes; block size

Parameters

c, = 32 ,
,

= 32 64

c, = 32 i :, = 64 64

Number of exceptions 983,596 983,596 475.920

Number of hits to level 3 598 380 380

Number of hits to level 2 982,998 983,216 475.540

Estimated mean time

between hits to level 3 58,138.5 91,552.8 91,552.8

Estimated variance of times

between hits to level 3 2.564 x 10'° 3.898 x l()"' 3.898 x 10"'

Estimated coefficient of

variation of times between

hits to level 3 2.754 2.156 2.156

Minimum time between

hits to level 3 2 2 i

Maximum time between

hits to level 3 1.631,3 17 1,631,317 1,631,317

Estimated mean number of

hits to level 2 between

hits to level 3 1,645.3 2,617.1 1,252.8

Estimated variance of

number of hits to level 2

between hits to level 3 6.396 x 10
u

1.472 x l()
7

3.81 1 x 10"

Estimated coefficient of

variation of number of hits

to level 2 between hits to

level 3 1.537 1.466 1.558

Minimum number of hits to

level 2 between hits to

level 3

Maximum number of hits to

level 2 between hits to

level 3 27,898 29,019 16,578

3. Exception processes and point processes

This paper is concerned with the derivation, via the

statistical analysis of actual program traces, of empiri-

cally valid stochastic models for sequences of exceptions

in a three-level staging hierarchy as described in the pre-

vious section. The point of view taken in the analysis

and modeling is that the exception processes are bivariate

point processes [8]. Assuming that the page size /?, and

block size b
2

in the hierarchy have been fixed, and given

capacities r, and c
2
for levels 1 and 2 of the hierarchy,

along with a sequence of page references, an exception

can occur on any of the successive page references. If

these references are considered to occur at equidistant

time points and the interval of time between successive

references is taken to be the unit of time, the exceptions

constitute a (univariate) point process (series of events)

in discrete time, and the exceptions along with their type

( hit to level 2 or hit to level 3 ) constitute a bivariate point

process [81. A realization of this bivariate point process

of exceptions is illustrated in Fig. 2, where exceptions

that are hits to level 2 are indicated by a dot denoted 2,

and exceptions that are hits to level 3 are indicated by

a cross denoted 3. Throughout, this bivariate point pro-

cess of exceptions is termed the exception process. The

length (in references) of the generic interval between

successive hits to level 3 is denoted by Y. We take >

to be the number of references following a hit to level 3

until the next hit to level 3 ( including this next hit ) ; thus

Y > 1. The number of hits to level 2 in the interval >'

is denoted by N, or by N(Y) when we wish to emphasize

the dependence on Y: necessarily for all Y, 0< N(Y) < Y.

Figure 2 Realization of the process of exceptions of two types:

N. is the number of hits to level 2 and > , is the number tit ref-

erences, both counted between the (/ l)th and ith hits tit

level 3.

425

SEPTEMBER 1974 EXCEP1 ION l)\l \



175

150

125

100 h

75

50 h

(a)

^^'
' I L

(ID

C*k*^ l ' :

'\
| L

5 10 15

/VX10" 3

25 30 5 10 15 20 25 30 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 3 Scatter diagrams of points in the [Y, N(Y)] plane for b, = 256, b
2
= 32,768, and (a) c, = 32, c, = 32: (b) c, = 32,c

2
= 64;

(c) c, = 64, c =64.

426

4. Data and preliminaries

Although data from several programs have been exam-

ined, results displayed in this paper are for a particular

address trace referred to as tape B. From the sequence of

addresses traced, the sequence of LRU distances were

derived by stack processing techniques [ 10] for various

page sizes b in the range 256 to 32,768 bytes. Also, for

various choices of pairs of capacities c
1
and c

2
in the range

16 to 64, sequences of exceptions were obtained from

pairs of distance sequences by the techniques described

in [9]. Results are given here for three pairs of capacities

c, = 32 pages, c
2
= 32 blocks: c, = 32, c

2
= 64; and c, = 64,

c
2
= 64, all for the case b

x

= 256 bytes and b
2
= 32,768

bytes. The trace data consisted of 34,723,105 references

to 166 distinct 32,768-byte blocks.

In a staging hierarchy encountered in practice, the

number of hits to level 2 is typically several orders of

magnitude larger than the number of hits to level 3. This

is, in fact, the case for the data obtained from tape B (see

Table 1 ) for which there are several hundred hits to level

3, but hundreds of thousands of hits to level 2 (over the

range of b r b
2

, cv and c
2
considered). Thus hundreds of

thousands of intervals and point-type pairs would be re-

quired for a complete description of the exception pro-

cess. Such a voluminous amount of data is not only diffi-

cult to comprehend, it is also expensive to manipulate.

As a result, the statistical analysis and modeling de-

scribed in this paper was based solely on the {Y} and

{N(T)} sequences — respectively, the intervals between

successive hits to level 3 and the counts of hits to level

2 between successive hits to level 3. Much potentially

informative data can be obtained by display and analysis

of the time positions of level 2 hits.

Some sample characteristics of the data obtained from

tape B are displayed in Table 1. Sample characteristics

for four non-overlapping sections of the data were ex-

amined. No indication of gross departure from station-

ary was observed. Accordingly, the assumption of

stationarity was made in our analysis, details of which

are given in the next three sections.

5. Graphical study of points in the [ Y, N ( Y ) ] plane

Our analysis of the available data began with a set of

scatter diagrams of points in the [Y, N{Y)] plane (see

Fig. 3). These three scatter diagrams reveal the apparent

existence, in the material under scrutiny, of two distinct

kinds of referencing behavior. For each of the three

pairs of capacities (c, = 32, c
2
= 32; c, = 32, c

2
= 64: and

c
1
= 64, c, = 64) there is a striking two-line relationship

in the graphical display of the observed values of Y and

the corresponding values of N(Y). By this we mean that

points in the [Y, N(Y)] plane appear to be of two types,

and in each of the two types, points of that type seem to

be clustered about a straight line (through the point Y= 1,

N(Y) = 0) in the plane. The data analysis that has been

done proceeds from this observed double linearity of

points in the [Y, N(Y)] plane. The discovery of this

empirical relationship suggested the probability models

that we formulated. Work remains to explain the phe-

nomenon in terms of program peculairities and to estab-

lish its generality, or lack thereof. The existence of a two-

state phenomenon is not surprising in view of the data-

analytic results of [5]: the linearity in the two states, is,

however, quite striking.

As a further step, for each pair of capacities, the in

observed points (y,, n.) in the [Y, N(Y)] plane were

GAVER, LEWIS AND SHEDLER IBM J. RES. DEVELOP.



partitioned into two disjoint sets by means of a separation

line J/ . One method for separating the points is by a

least-squares line through the point ( 1, 0). It is easily

shown that the slope s of the least squares line is

(2)

Alternatively, we can take as the separation line the line

determined by the points (1,0) and ( yr
. n

r
) where ( yr , n r )

is the vector sum resultant of the set of observed points

{()>., «,)}. The latter method is equivalent to taking

as the inverse of the slope of the separation line the

maximum likelihood estimate of the rate of occurrence of

events for a Bernoulli process model of the hits to level

2 of the hierarchy as described in Section 7. This esti-

mate for the rate of occurrence is simply

i-iVs^-"- (3)

The resulting classification of the points is somewhat

sensitive to the method of separation because of the

relatively large number of points that are close to the

origin (see Table 2). On purely empirical grounds, we

chose as the separation line SC the Bernoulli process

maximum likelihood (vector sum resultant) line. The

equation for this separation line / is

Y = sN(Y) + 1. (4

The resulting separation of points is summarized in

Table 3.

6. Properties of the intervals between successive

hits to level 3

In this section we study the sequence of Y intervals be-

tween successive hits to level 3. In the next section,

based on this analysis, we consider models for the counts

of the number of hits to level 2 occurring in an interval

between successive hits to level 3.

Note that for fixed page size b
t
and block size b

2 , the

sequence of Y intervals is determined by the value of cr
For c

2
= 32 as well as c

2
= 64, the sequences of Y inter-

vals have been examined. (Sample characteristics of

the Y intervals are given in Table 1. In both cases, the

marginal distributions of >' are quite positively skewed,

having estimated coefficients of variation in excess of 2

(see Table 1). Moreover the sequence of Y values is

correlated; the three estimated first serial correlation

coefficients p, all differ significantly from zero under the

normal approximation. [Asymptotically, p, is normally

distributed with E[p,] ~ and Varfp,] ~ (/; — 1)
_1

un-

der fairly general conditions when p, = 0; cf. [7], p. 92.]

In view of the two types of behavior suggested by the

observed double linearity in the [V, /V(V)] plane and

the point classification we have made, it is reasonable

Table 2 Slopes of fitted separation lines in the [
}'. /V(V)]

plane for tape B with LRU replacement. Page size b
t

= 256
bytes; block size h., = 32,768 bytes.

Parameters

', 32 r, 32 c, = 64
C, = 32 64 < .,

= 64

Least-squares fit 36.875

Maximum likelihood In

(Bernoulli process) 35.336

29.474

34.982

48.922

73.078

Table 3 Separation of points in the [ Y, N(Y)\ plane tor tape

B with LRU replacement Page size /', = 256 bytes; bloc! size

/>, = 32,768 bytes.

Parameters

c, = 32 c-, = 32 c, = 64

C, = 32 c, = 64 c, = 64

Total number of points

Number of upper points

(Bernoulli maximum likelihood

separation)

Number of lower points

(Bernoulli maximum likelihood

separation)

Proportion of upper points

597

65

532

379

60

3 19

379

56

323

0.1089 0.1583 0.1478

to examine the sequence of Y components, conditional

on point type. We consider two sequences of intervals,

Kj and Y
2
intervals, derived from the original sequence of

Y components. Sample characteristics of the marginal

distribution of these two sequences are given in Table 4;

corresponding characteristics of the counts of hits to

level 2 between hits to level 3 are given in Table 5. Evi-

dently, the marginal distributions of )',, the type 1 Y

components, and of Y
2 , the type 2 Y components, are

quite different, with the mean of V, being approximately

ten times larger than the mean of Y.,.

Histograms of the distributions of the K, intervals

suggest a mixture of random variables. Plots of the log-

arithm of the empirical survivor function R
Y (

y ) . w here

R
Y (y) =

number of V, intervals greater than y

number of T, intervals

v= 1, 2,-- (5)

are generally convex with a linear tail. This suggests

the use of a mixture of two geometric (plus one) distribu-

tions as a model for the marginal distribution of >',: i.e.,

to assume that for < tt
x

< 1 and < </,,. qn < I,

Pr{}' yi = "Y/, '/,, i 1 -7T, ></,;

v= 1. 2

(!-</,,

427
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Table 4 Sample characteristics of intervals between successive hits to level 3 conditioned on point type for tape H with LRU replace-

ment Page size h
t

= 256 hytes; block size b
t
= 32,768 bytes.

Parameters

', = 32 '•, = 32 c, = 64
<'-, = 32 '• = 64 '

.

= 64
Type 1 Type 2 Type 1 Type 2 Type 1 / ype 2

Number of hits 65 532 60 319 56 323

Estimated mean time

between hits 323,256 25,746 350.378 42,871 376,424 42.163

Estimated variance of

times between hits 1.196 x 10' 1.32 x 10" 1.311 x 10
11

3. 126 x 10" 1.410 x 10" 3.049 x 1

Estimated coefficient

of variation of times

between hits 1.145 1.98 1.068 1.701 0.995 1.715

Maximum time between

hits 1,631,317 850,172 1,631,317 850,172 1,631,317 850.172
Minimum time between

hits 2 27 2 27 2 27

Table 5 Sample characteristics of number of hits to level 2 between hits to level 3 conditioned on point type for tape B with LRU re-

placement. Page size b = 256 bytes; block size b = 32,768 bytes.

Parameters

f, = 32 <', = 32 '•, = 64

C; = 32 c
-z

= 64 c, = 64

Type 1 Type 2 Type 1 Type 2 Type I Type 2

Estimated mean 2,797.5 1,504.5 3.078.2 2,530.4 1,048.1 1,288.3

Estimated variance 8.842 x 10" 5.931 x 10" 9.120 x 10" 1.576 x 10' 8.742 x 10
5

4.315 x 10"

Estimated coefficient

of variation 1 .063 1.619 0.9810 1.59 0.892 1.612

Maximum number 9.940 27,898 9,940 29,019 3.724 16,578

Minimum number 2 2 2

428

Denoting by Yn and Y
12
random variables having these

geometric (plus one) distributions, we have for 7 =1,2,

K[Y
13 \

= (1 - qXJ
)~\ Var[y

xj ] = qtJ
~ <?„)"*, and

C (Yy) = q tj
. Similar considerations suggest taking a

mixture of two geometric (plus one) distributions as a

model for the marginal distribution of Y
2

; i.e., to assume

that for < 77
2
< 1 and < q21 , q22

< 1

,

Pr{Y
2
= y} = ir

2q21
y- 1(\-q

2l )

+ (\-7T
2 )q2

.

2

u - x {\-q
22 ). (7)

Geometric (plus one) random variables with parameters

q21
and q22 , respectively, are denoted by Y

21
and Y

22
.

The V, and Y
2
sequences has been examined by es-

timating serial correlation coefficients (see Table 6). In

the case of the Y
2
intervals, the first two estimated serial

correlation coefficients do not differ significantly from

zero. In fact, no indication of dependence in the Y
2

se-

quences has been found.

Although the Y
2

s can apparently be considered as in-

dependent, identically distributed, random variables

having a mixture distribution, there is evidence that the

y,'s are a dependent mixture. In the case of the Y
t
se-

quences, the sample sizes may be too small to justify

the use of the normal approximation for the estimated

first serial correlation coefficients. On the basis of this

approximation, however, only for the sequence cor-

responding to c, = 64, c
2
= 64 is there evidence that the

first serial correlation differs from zero. Note (in Table

6) that estimates of second-order correlation coefficients

indicate dependence in the Y
l
sequences, although the

nature of the dependence is difficult to assess from the

available data. Accordingly, in our model we consider

the K,'s to be an independent mixture.

7. Models for counts of hits to level 2

In Section 5, a double-line relationship between Y and

N(Y) was observed by means of a scatter diagram in the

GAVER, LEWIS AND SHEDLER IBM J. RES. DEVELOP.



[Y, N(Y)
]
plane, this observation leading us to partition

the set of data points into two disjoint sets: those of type

1, the points clustered about the upper line, and type 2,

the points clustered about the lower line. In this section

we concentrate on the phenomenon of linearity in the

[y, N(Y)] plane, with the aim of postulating a point

process model that accounts for the observed linearity.

Recalling that for i = 1, 2 we denote the generic >'

component of a type i point by Yr we denote the cor-

responding N component by N(Y
{
). Then, for y = I,

2, 3, • • •, the observed linear relationship for type i points

can be summarized as

E[N{Y
i
)\Y

i
= y] =p

t
(y- 1), (8)

where < p i
< 1 : / = 1 , 2.

We ultimately seek a plausible stochastic mechanism

for generating a bivariate series of events corresponding

to the hits to level 2 and hits to level 3. We begin by con-

sidering the interval between successive hits to level 3.

Consideration of models for the sequence of intervals

between hits to level 3 and its relationship to the two

point types is deferred to later sections of the paper. Per-

haps the simplest way to account for the observed linear-

ity is to assume that the hits to level 2 occur "at random"

in the interval between hits to level 3. More specifically,

given a point in the [Y, N{Y)] plane of type /, within an

interval Y
t
between successive hits to level 3, hits to

level 2 occur according to a Bernoulli process. Thus the

number of hits to level 2 between successive hits to level

3 is conditionally binomial; i.e., for v — 1 and < p < 1,

Pr{N{Y
t
) = n\Y

i

-

5 n

P (
(I -Pt )

1

(9)

It is quite easy to show that under this assumption,

E[N(Y
i

)\Y
i

= v] =p
t
(y- 1).

In view of our finding (in section 6) that the marginal

distributions of >', and >
'., are mixtures, it seems plausible

to consider a mixed Bernoulli process model in which the

parameter of the process depends on the distribution

from which the interval between hits to level 3 is gen-

erated. The number of hits to level 2 is conditionally

binomial, i.e., for I 5 /',./ — 2,

Pr{N(Y,,) = n\Y
li
= y P« (1

< p fj
< I ; n = 0, I

.

\ v I. (10)

(Recall that Y
t
is a mixture of Yn and Y

i2
.) It is easy to

show that linearity in the [Y, N(Y)] plane is retained.

Proposition 2

Let y >: 1, If for I
< i,j 5 2 and some < p.. < 1,

Table 6 Estimated serial correlation coefficients for intervals

between hits to level 3 for tape H with I RI replacement

Normalized values are given in parentheses. Page si/e /», 256
bytes: block size b, 32,768 bytes

Parameters

', 32 c, = 32 <
,

64
Coefficient / points '2

First/ all 0.228 0.201 0201
(5.5651 i ! 902) (3.902)

Second/ all 0.633 0.592 0.592

( 15.432) ( 1 1.486) ( 1 1.486)

First/ type 1 0.165 -0.241 0.307

1 1.849) ( 1.849) ( 2.275)
Second/ type 1 451 0.459 0.492

(3.419) (3.500) (3.612)
First/ type 2 -0.046 0.016 0.001

(-1.049) (0.282) (0.174)
Second/ type 2 -0.0075 O.02I 0.001

(-0.172) ( 0.377) (- 0.205)

Table 7 Estimated transition probabilities for Markov chain

models for the sequence of point types for tape B with I HI re

placement. Page size /', = 256 bytes; block size b„ = 32,768
bytes.

Parameters

c, = 32 c, = 32 c, = 64

c
2
= 32 c, = 64 ( , = 64

Zeroth-order model
/id) 0.1089 0.1583 0.1478

/'(I) 0.89 1 1 0.8417 0.8522

First-order model

/'(l. 1) 0.5231 0.5667 0.6250

/id. 2) 0.4769 0.4333 0.3750

nil, i) 0.0565 0.0786 0.0621

/>(2, 2) 0.9435 0.9214 0.9379

Second-order model
/id, 1, 1) 0.8529 0.8824 0.8571

p( 1. 1. 2) 0.1471 0.1 176 0.1429

p(l,2, 1) 0.3548 () 5462 0.1905

Pi 1, 2. 2) 0.6452 0.6538 0.8095

/i(2. 1. 1) 0.1667 0.1600 0.2500

p(2, 1. 2) 08333 0.8400 0.7500

p(2, 2. 1) 0.0380 0,(|s4X 0.0532

/i(2. 2.2) 0.9620 0.9452 0.9468

p r {N{Y,
i

)
= n\Y

ii
= y}=-(

V

_
'

)/;,"< 1 P„)i) ' o

n = 0. I . . v 1

.

and for < tt. < 1

,

Pr{V'
i

= y} = 7r,.Pr{r,.
1

= y} + I I
-

77, iPi'U',, = v}.

then

E[N(Y
i
)\Y

i

= y] = [7r.p.
1
+ (I -ir

(
)pa ](3 I)

= Pi(y- I). (II) 429
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Table 8. Estimated serial correlation coefficients p. of lag /

for process of runs of point types for tape B with I.RLJ replace-

ment. Page size b
t

= 256 bytes; block size b., = 32,768 bytes.

Parameters

r, = 32 c, = 32 c, = 64

j <, = 32 c
2
= 64 c, = 64

1 -0.2374 -0.2404 -0.2383

2 0.2464 0.2198 0.0501

3 -0.2410 -0.2234 -0.2330

4 0.0804 -0.0345 0.0493

5 -0.2078 -0.1763 -0.0887

6 0.1426 0.0817 0.3482

7 -0.1421 -0.0952 -0.1949

8 0.1781 0.3332 0.0257

9 -0.1706 -0.1642 -0.1192

10 0.361 1 0.2759 0.1 129

11 -0. 1 964 -0.1508 -0.1099

12 0.0393 -0.0745 0.0641

13 -0.2272 -0.1799 -0.2142

14 0.1394 0.1467 0.3451

15 -0.2107 -0.1626 -0. 1318

16 0.4173 0.4035 0.0532

17 -0.1853 -0.1229 -0. 1415

18 0.2284 0.2683. -0.0617

19 -0.203 1 -0.1851 -0.0849

20 0. 1 05 1 -0.0374 0.3043

21 -0.
1 549 -0.121

3

-0.1155

22 0.0008 -0.0228

23 -0.1508 -0.0388

24 0.0370 0.1765

25 -0. 1 304 -0.1708

26 0.1644 0.2118

27 -0.1009

28 0.1350

29 -0.1428
30 0.0701

31 -0.1326

Thus, a mixed Bernoulli process model for the hits to

level 2 between successive hits to level 3 is consistent

with the examination of the data that we have made so far.

Such a mixed Bernoulli process model for the type /'

hits to level 2 is attractive since it is specified by but two

parameters which, as we show in section 9, can be es-

timated conveniently by the method of moments. To
complete the formulation of a model for the exception

process, it remains to examine the sequence of point

types. This is the topic of the next section.

8. Analysis of the process of point types

In seeking a model for the process of point types, a nat-

ural choice (by virtue of its simplicity) is a two-state

( Markov ) chain, including independent trials as a special

case. Estimates of conditional probabilities of transition

for zeroth-, first-, and second-order chains have been

obtained and are given in Table 7. Denoting the process

of point types by {tJ, / > 1, where

430

1 if the /th point is of type 1

2 if the /th point is of type 2.

we let, in the case of the zeroth-order (independent

trials) chain,

P(i) = Pr{rm = /}./= 1,2.

For the first-order chain we let

p(i,j) = Pr{x„
(

=j\rm _
l

= /}, 1 5 iJS 2;

and for the second-order chain we let

(13

(14)

pUJ, A) = Pr{r„ J> T
„

1 /, j, k < 2. (15)

Evidently, the estimated conditional probabilities in-

dicate gross departures from an independent trials model,

and give little support for a first-order Markov chain

model.

An alternative to a Markov chain for the process of

point types is an interval model, i.e., one based on the

sequence of runs of points of the same type. We now
consider this process of intervals, the alternating se-

quence of lengths L, of runs of points of type 1 and

lengths L
2
of runs of points of type 2. Estimates of the

serial correlation coefficients p]
of lag j have been com-

puted for the sequence of runs and appear in Table 8.

The striking feature of these estimated correlation coef-

ficients is the almost strict alternation of signs, suggesting

an alternating renewal process model for the sequence

of runs of point types. For an alternating renewal process

the serial correlation coefficient of lag ,/ [7, p. 196] is

a{— 1 )', where

(cr, + cr
2 )

:<M2 -M,r
+ i (16)

(12)

and p.
i

and cr~ are, respectively, the mean and variance

of the marginal distribution of the lengths of runs of type

/. Estimates of these quantities along with estimates of

a are given in Table 9. Note, however, that the estimated

serial correlation coefficients are consistently smaller

in magnitude than the estimated a. Estimates of the serial

correlation coefficients have been computed for the

sequence of lengths of runs of type 1 points and the se-

quence of lengths of runs of type 2 points. Although

interpretation of these estimated correlation coefficients

is difficult because of the small sample sizes involved,

there is no strong indication of dependence. Accordingly,

we adopt an alternating renewal process model of the

sequence of runs of point types.

With respect to appropriate forms for the distributions

of the lengths of runs, note (Table 9) that the runs of

type 2 points have relatively large estimated means and

estimated coefficients of variation close to one. Runs

of type 2 points have much smaller estimated means,

but larger estimated coefficients of variation.
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Plots of the estimated log-survivor functions In /\, (x)

and In R, (v) have been examined. From the general

shape of these plots we are led to entertain as the dis-

tribution of the length /., of runs of type 1 points a neg-

ative binomial (plus one) distribution with scale param-

eter/ - and shape parameter t ; i.e..

< r, < I: /, > 0; / = 1, 2, (17)

For the distribution of the length L., of runs of type 2

points, we also assume a negative binomial (plus one)

distribution with parameters r, and / .,; i.e..

< /•„ < I; /., > 0; /= 1, 2. (18)

9. Estimates of parameters

In the proposed model of the exception process, using

(17) and (18) a sequence of point types (type I or 2)

is generated according to an alternating renewal process

for the lengths of runs of point types. Given a point of

type / in this sequence, an interval K. between successive

hits to level 3 of the hierarchy is generated from the

appropriate mixture distribution. The distribution from

which the interval between hits to level 3 was sampled

(y„ or Ya ) determines a Bernoulli process and N(Y
t
)

hits to level 2 are generated within the interval Y
i

accord-

ing to Eq. (10).

There are thus 14 parameters to estimate:

Bernoulli processes of hits to level 2

pn for type 1 hits to level 2 [N(YU )]

IK, " 1 2 [/V(KJ]

Pn

IK,

2 [N(Y
21 )]

2 [N(Y
2.,)]

Renewal processes ofintervals between hits to level 3

c, n for intervals Yu (geometric (plus one))

'/„ " r«
tt

i

mixing probability for >'
r

intervals

q2i
for intervals >'.

M (geometric (plus one))

q22
" Y

22

7r
2

mixing probability for Y
2

intervals

Alternating renewal processes ofruns ofpoint types

scale parameter

shape parameter

scale parameter

f
.,_
shape parameter

for lengths L, of

runs of points of

type 1 (negative

binomial (plus one)

)

for lengths L, of

runs of points of

type 2 (negative

binomial (plus one)

)

Table 9 Sample characteristics of sequence of runs of point

types for tape B with LRU replacement. Page si/e />, 256
bytes; block si/e h, - 32,768 bytes.

Parameters

c, = 32 •
,

32 64

i c, = 64 c
2
= 64

<r 0.5087 0.5058 0.4787

Mean of runs of

points of type 1 2.097 2.308 2.667

Variance of runs

of points of type 1 1 1.49 17.66 21.43

( oefficient of

variation of runs

of points of type 1 1.617 1.82 1.74

Maximum of runs

of points of type 1 17 17 17

Minimum of runs

of points of type 1 1 1 1

Mean of runs of

points of type 2 17.13 12.23 15.38

Variance of runs

of points of type 2 424.9 174.7 330.5

Coefficient ol

variation of runs

of points of type 2 1.203 1.081 1.18

Maximum of runs of

points of type 2 81 42 63

Minimum of runs of

points of type 2 1 1 1

Parameters of the model were estimated from the data

in an ad hoc manner. The parameters </
(1
were estimated

from the slopes of the linear tails of the log-survivor

functions of Y.\ this involved a visual judgment of where

the linearity set in. For c, = c, = 32 these points were

taken to be 350,000 for >
,
and 75,000 for >

'._,
(cf. [5,

p. 95] ). The parameters n. and </,., in the geometric (plus

one) distribution mixture were then obtained by match-

ing the estimated mean and variance of the marginal

distribution of )',. This was accomplished by using the

following construction for a mixture of this kind.

Let p. > and a > be given such that a
2 > p.

1 + p.

It is easily verified that for < p < p, if

and
,
a — p-

p

p ,,
= p + -,, —

V

2(p-p/
77
=— " a

a - p- p- + 2(p- p

(191

(20)

then < 77 < 1, p < p < p , -rrp + ( I
— TT)p

q
= p. and

TT(2pJ + p ti
) + (1 - Tr)(2p,

q
+ pq

) = (T + p
1

. Thus the

mixture of two geometric (plus one) distributions spec

ified by

Pr{A- = a-} = np
r

'( 1 - p) + ( 1 - 77 u/' ( I

x= 1, 2.

q),

121 431
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Table 10 Estimated parameters for exception process model

for tape B with LRU replacement. Page size /?, = 256 bytes;

block size />., = 32,768 bytes; level I capacity c, = 32 pages;

level 2 capacity c
2
= 32 blocks. The raised number indicates

how many times the preceding digit is repeated.

Parameter Value

Pu
Pa
P-n

Mm (

A,,

qu

Ajl (

conditional

mean > 350.000)

conditional

mean > 75.000)

•-•

77,

0.00728

0.0409
0.0461

0.1208

386,788

66,750
0.9

5
74

0.9
J

85

0.801

74,801

5,982

0.9
4
86

0.9
:l

83

0.287

0.90

0.12

0.96

0.64

with p and q determined by p, = (1 — p)~ and p =

( I
— q)~ , has mean EfA'] = p. and Var[A'] = a2

. The

estimated parameters were obtained according to (19)

and (20) using p = E[Y
t
] and cr

2 = Vart^], q i2
being

chosen such that log qn is equal to the estimated slope of

the linear tail of the log-survivor function of Yv
We now consider the estimation of the parameters in

the Bernoulli processes of hits to level 2. It can be shown

that if Y„ has a geometric (plus one) distribution with

parameter q„ and the number of hits to level 2 is con-

ditionally binomial with parameter /;.., then /V(V,,) has

a geometric distribution with p^Al — qu (\ — P«)]
'

as a parameter. Using this fact, estimates of the p
t

. can be

obtained by matching the first moment of the marginal

distribution of N( Y.) and the first moment of the product

N(Y
t
)Yv Specifically, having values for ttv qtl

and qa ,

estimated parameters pu and pi2
were obtained as the

solution of the simultaneous equations

E[/v(y,)] = 7r,
Ptfln

(1

+ (1 -77,.)

e[n( r.) y.] = 77,.

"
Pil(?il

, + ( 1

Pnla
(1--««)'

TT \
?P«*«

77,.)

(\~q.

(22)

(23)

432

For the runs L, and L., of point types, the scale and

shape parameters of the assumed negative binomial (plus

one) distributions were obtained by the method of mo-

ments, i.e., r and /
,
were obtained, for i= 1 , 2, as the solu-

tion of the simultaneous equations

H|/.,]= 1 +^r
(

./( I
-/-.):

Var[L,] =//,/(! ~r
t
)\

(24)

(25)

The estimates of the parameters in the exception process

model are given in Table 10 for c, = 32, c
2
= 32. We

denote by p if
the quantities ( 1

— qr
)'.

10. Tests of the fit of the model

We now consider the fit of the proposed model by ex-

amining computed and estimated characteristics of the

model for c, = c, = 32. The marginal distribution of in-

tervals Y between successive hits to level 3 in the model

can be easily obtained. For y = I, 2, • • •,

Pr{Y = y}=p[ir
lqu

'-l(l-q
11 )

+ (1~ 77, )</,.,"-'( l- (/] .j]

+ (1 -p)[Tr
2
q.,»-\l-q

2l )

+ (l-77
2 )92

/- 1

(l-^J],

where

E[LJ

(26)

i8
E[L,] + E[LJ

(I — r, ) ( 1 -r
2

) + (1 -/-
2
)/,r

t

2(1 -/-,)(! -r, I -/"J/./-. + (1
(27]

is the stationary probability in the alternating renewal

process of point types that a point is of type 1.

In Fig. 4(a) the empirical log-survivor function (dots)

for the intervals Y is shown with the corresponding the-

oretical log-survivor function (solid line) computed from

(26) using the estimated parameters in Table 9. Note

that we are validating or testing using the same data that

were used for fitting parameters. Although this procedure

is convenient, it is questionable and provides a relatively

weak measure of goodness-of-fit. It would be desirable

to validate the model using other data.

Proceeding, similarly, we can obtain the marginal dis-

tribution of counts N(Y) of hits to level 2 between hits

to level 3. For n = 0, 1, 2,- ••,

Pr{N(Y) = /;)

= P
Pn<iu

l-*i,0

+ (1 -77,)

+ (1 -j8)

77.,

Pllflll

1 -1u
1 -<?„(] -pu )

1-4,

I - q12 ( 1 - pn

1-«„(1

p22q22

P«)

1 "fed -Pn" ^ "fed

\
~ q rl

{\ - P l2

n
1 _

1-<7
21 (1

-p
21 )

1 - fe \

(28)
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Figure 4 Log-survivor functions for (a) intervals >' between hits to level 3 and (b) counts N{ >') of hits to level 2 between hits to level

3: />, = 256, b
2
= 32,768, c, = 32, c, = 32.

The empirical log-survivor function for the counts N(Y)
is shown in Fig. 4(b) with the corresponding theoretical

log-survivor function.

To get some idea of the extent to which the dependence

structure of the model is consistent with the observed

dependence between > and N (>'
) , we consider the cross-

correlation between the variables defined by

p{N(Y) Y) - E[N(Y)Y]-E\N(Y)]E\Y]

{Var[/Vm]Var[V]}'
(29)

We sketch the computation of this quantity for the pro-

posed exception process model. Expressions for the first

and second moments of N(Y) are given by

E[/V(>'|] =/3
KiPnVu

,

O ~ ^
i )Pn<ln

Jrjf
21qZi .

(1 ~ n
2 )p.22q.22

+ (1-/3; +
( 1
- c/

2l
I (I - q.

E[N'UY)}=(5 Pn</i, ~i\:«u
+

1 - qu ) ( 1
- q u )

(I - </,, ) ( 1

-

L
2
V(1 -q

lx
) II qu )

2
>

+ (1 -77.,)
P"^"

+
,

" y\ ~q
22 ) I I

i.3|

433
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Table 11 Cross correlation between Y and N(Y) for tape B.

Page size b
x

= 256 bytes; block size b,, = 32,768 bytes. Estimated

variances ofp[N(Y), Y] are given in parentheses.

Parameters

c, = 32 c, = 32 c, = 64

c
2
= 32 c

2
= 64 c

2
= 64

Computed pL/V(>). Y\

Estimated pLN(K), Y]

0.62

0.59

(0.01)

0.55

0.52

(0.05)

0.38

0.38

(0.07)
:

'Values obtained from four sections of the data.

An expression for Var[yV(F)] is obtained from (30)

and (31 ). The corresponding expression for Var[F] is

obtained from (26) via

E[Y]=f3 +
I -77,)

L( 1
" <?,,) U ~q

l2

(1 -j8) +
( 1 - 7T„ )

l(\-q.,.) {\-q.,,)\
(32)

E[Y2]=£
77

1
(t/

11
+l) (1 -7r,)(g

12
+ 1

(\-cln r (l- 9u

TT.,(q.n +1) (1 -77
2
)U/.,

2
+ 1

+ (1-/3
(!-«„) (i-<?„r

:33:

Finally

E[yV(F), y] = /3
"^Pu^n +

(1 -TT,)2p
i2q i2

(l-qnY d-912 r

+ (1 -/3)
TT,,2p.n q.n (1 - 7T.,)2p

22q22

la-q2i y (1 -<7
22 )

(34)
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and p[/V(F), F] is obtained from (30) -(34) according

to (29).

The computed values of p[N(V), V] along with the

estimated values p[jV(y), F] are given in Table 11.

Estimates of the variance of the p[N(Y), F] obtained

from four sections of the data are given in parentheses.

11. Summary and concluding remarks

0. We have shown how the process of exceptions in a

three-level LRU staging hierarchy may be represented

graphically in the [Y, N{Y)] plane. For the particu-

lar program analyzed an unexpected two-line config-

uration appeared.

1

.

A tentative model has been proposed for the bivariate

point process of exceptions in the staging hierarchy,

based on the observation for realizations of the pro-

cess of intervals between hits to level 3 of the hier-

archy and counts of hits to level 2. The graphical dis-

play of 0. above was instrumental in suggesting the

model.

2. Parameters of the model have been estimated from

the available data in an ad hoc manner.

3. The fit of the model has been examined by comparing

the empirical log-survivor functions of intervals be-

tween hits to level 3 and counts of hits to level 2

between hits to level 3 with the computed theoretical

log-survivor functions and also by comparing the

estimated cross-correlation of intervals between hits

to level 3 and counts of hits to level 2 with the com-

puted theoretical value. On the basis of these mea-

sures, the fit is reasonably good.

4. A striking indication of the existence of two types of

paging behavior was observed — a double linear re-

lationship between intervals between hits to level

3 of the hierarchy and counts of hits to level 2.

Several limitations of the study should be mentioned.

1. It would be desirable to formalize the procedure for

estimating parameters and also to obtain estimates

of parameters from sections of the data in order to

examine the sensitivity of the estimation procedure.

Error estimates, such as rough confidence limits, for

the parameters are also needed.

2. The study should be done for more page and block

sizes, as well as capacities, to yield more information

on how the parameters change.

3. Relatively weak measures of goodness-of-fit have

been used. For example, the marginal distribution of

intervals between hits to level 3 does not depend on

detailed assumptions about the distributions of runs

of point types of the conditional process of hits to

level 2.

4. More program tapes should be examined to confirm

(or deny) double linearity (or multiple linearity) of

intervals between hits to level 3 and counts of hits

to level 2. Explanations for this behavior should be

deduced in the hope that they will lead to improved

hierarchy designs.

5. It would be desirable to relate the parameters of the

model directly to the basic hierarchy design pa-

rameters (page size, block size, and capacities) . Some
work has been done on this problem and will be re-

ported elsewhere.
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