If You Wish Upon A Star: Chiemite: An Anthropocene Pseudo-Impactite

Brogan Smith1, Anais Pagès1, Robert Huber2, Robert Darga3, and Jens Klump1

(1) Mineral Resources, CSIRO, Kensington WA, Australia, (2) MARUM, Universität Bremen, Bremen, Germany, (3) Naturkunde- und Mammut-Museum, Stegeldorf, Germany

Summary

Since the beginning of the Anthropocene, mankind has produced a variety of artificial materials in large quantities which now contribute to the composition of modern sediments. Some of these materials may closely resemble natural rocks or minerals and transported and weathered anthropogenic matter is particularly hard to distinguish from natural materials. Coal products, when taken superficially, may be mistakenly identified as exotic natural materials. In recent years, samples taken by non-specialists from the Lake Chiemsee area, Germany, have been misdiagnosed as meteorite impact matter and have caused controversial discussions about their cosmic origin. In our study, we investigate carbonaceous samples from southern Bavaria which have recently been claimed to represent a new type of impactite, the so-called ‘Chiemite’. ‘Chiemite’ samples were analysed using a combination of microanalytical techniques and compared against a coking coal reference sample. The absence of minerals and microfeatures related to meteorite impacts in the Chiemite samples, as well as the high degree of similarity to the coal reference material, indicate that the site did not experience any cosmogenic activity.

Meteorite impacts and Chiemite material

Meteorite impacts are identified using a specific combination of minerals and microfeatures including coesite, shock laminations and planar deformation features in relation to the geological setting and anthropogenic history of the area — in short, they must be identified using a multidisciplinary approach.

Over the past few years, a group of non-professional geologists, the CIRT (Chiemgau Impact Research Team), discovered an exotic material (nicknamed ‘Chiemite’) near Lake Chiemsee, in the South East of Bavaria, Germany and proposed a cosmic origin for this unusual material. The location where the material was found is dominated by Mesozoic carbonates, Quaternary sediments from the last ice age and over 400 years of coal mining and industrial process history. The group has published articles and reports attesting to the exotic material’s extra-terrestrial origin, however, none of their research has been verified by a comprehensive comparative study.

Aim

The present study wishes to identify whether the chiemite samples show evidence for the presence of a meteorite impact, and compare features of this “exotic material” with a reference coking coal sample. Two types of chiemite were investigated – the pumice-like carbonaceous chiemite (‘Rauschberg Chiemite’ and ‘Mauerkirchen Chiemite’ samples) and the tough vesicular glass matter chiemite (‘Glassy Carbon’), in addition to the coal reference material. All samples were analysed by XRD, FTIR and SEM analysis.

Chiemite Samples and Coal Reference Material

No meteorite related minerals or microfeatures were detected in chiemite samples. However, pumice-like chiemite demonstrated a high degree of similarity with the reference coking coal material, as highlighted by XRD (presence of quartz and graphite), SEM (aluminosilicate clays, pyrite and an organic carbonaceous matrix) and FTIR analyses (spectra indicative of high maturity, i.e. anthracite stage [Chen et al., 2012]).

Glassy Carbon

The glassy coal sample showed no similarities with the coal reference material, however it also showed no indication of being related to a hypervelocity meteorite impact. This sample seems to be either amorphous industrial oven melt or amorphous organic matter.

Conclusion

The results presented a strong case for the Mauerkirchen and Rauschberg chiemite samples to be coking coal. The glassy carbon is an amorphous organic material related to coal processing such as an amorphous oven melt. The absence of minerals and microfeatures related to meteorite impacts in the Chiemite samples, as well as the high degree of similarity to the coal reference material, indicate that the site did not experience any cosmogenic activity.

REFERENCES

[References are not included in this response, but they are typically included in the full document.]

ACKNOWLEDGEMENTS

B. A. Smith would like to recognize the support given by A. Pagès, A. White, J. Stromberg, M. Verring, B. Pagès and C. Heath. Acknowledgement and thanks are also extended to J. Klump, R. Darga, the CIRT team and CSIRO, all of whom have assisted in completing this project.

FOR FURTHER INFORMATION

Jens Klump

Jens.Klump@csiro.au

www.csiro.au/MineralResources

Figure 1: Samples analysed: Coking Coal reference material, Mauerkirchen Chiemite, Rauschberg Chiemite, Glassy Carbon.

Figure 2: (A) Top: Mauerkirchen Chiemite XRD Spectra. Below: Mauerkirchen Chiemite SEM graph and elemental map. (B) Top: Rauschberg Chiemite XRD Spectra. Below: Rauschberg Chiemite SEM micrograph and elemental map. (C) Top: Coal Reference XRD Spectra. Below: Coal Reference SEM micrograph and elemental map. (D) FTIR-ATR spectra for the Mauerkirchen Chiemite, Rauschberg Chiemite and coal reference.

Figure 3: (A) The XRD results for the Glassy Carbon sample. (B) The SEM micrograph and elemental map for the Glassy Carbon sample. (C) The FTIR-ATR spectrum for the Glassy Carbon. (D) Spectra from deconvoluted rock material in post (Glehn et al., 1984). (E) The spectrum of a cellulose char heated to 310°C (Pastorelli et al., 1984). (F) Spectra from unaltered ACM in marine sediment (Vidal et al. 2006).