LOCATIONS and DATES for the TRADITIONAL MARCH EQUINOX - Twelve hours both Sun and night time!Atomic clocks are assumed to be 8.0 min in advance of Sun....Quoted values are reliant on an Equatorial extra time of 7.0 min .

DATE MARCH 2007	PLACE	LAT/LONG	Sun Times (ESTIMATE) UTC / GMT	COSINE(lat)	EXTRA SUN TIME MARCH EQUINOX March 20/21 2007	(ESTIMATED) DELTA EQUILUX during the year
SAT 11 / 12	ROVANIEMI, FINLAND	66.5 N.... 2540 E	04:26/16:25	0.3987	$2 \boldsymbol{x} 8.8$ min	$202 d y$
MON 13	ARCHANGEL, RUSSIA	64.5 N.... 4040 E	0 3: 2 1...15:21	0.4305	2×8.13	201
TUE 14	OSLO, NORWAY	6000 N.... 1100 E	05:24...17:24	0.5000	2×7.00	199
TUE 14	S.PETERBURG RUSSIA	$5956 \mathrm{~N} . . .3020 \mathrm{E}$	04:07...16:07	0.5012	2×6.98	199
TUE 14/15	STOCKHOLM SWEDEN	5920 N.... 1800 E	04:57...16:56	0.5100	2×6.86	198
WED 15	EDINBURGH SCOTLAND	$5555 \mathrm{~N} . . .0310 \mathrm{~W}$	06:20...18:20	0.5605	2×6.25	197
WED 15	MOSCOW RUSSIA	5545 N.... 3740 E	03:37...15:37	0.5625	2×6.23	197
WED 15	COPENHAGEN DENMARK	5540 N.... 1230 E	05:18...17:19	0.5640	2×6.21	197
WED 15 / 16	CALGARY CANADA	5100 N 11400 W	13:44...0 1:43	0.6293	2×5.56	196
WED 15	CAMBRIDGE ENGLAND	$5212 \mathrm{~N} . . .0010 \mathrm{E}$	06:09..18:09	0.6130	2×5.71	196.5
THU 16	CAMBRIDGE MASSACHUS.	4222 N.... 7104 W	10:53... 2 2:53	0.7390	2×4.74	194.5
THU 16	PARIS FRANCE	4850 N.... 0220 E	06:00..18:00	0.6583	2×5.32	195
THU 16	LYON FRANCE	$4545 \mathrm{~N} . . .0440 \mathrm{E}$	05:49...17:49	0.6975	2×5.02	195
WED 15/16	PORTLAND OREGON	$4530 \mathrm{~N} . .12240 \mathrm{~W}$	14:19... 0 2:19	0.7009	2×5.00	195
THU 16	HALIFAX NOVA SCOTIA	4430 N.... 6330 W	10:21... 2 : 21	0.7133	2×4.91	195
THU 16	VLADYVOSTOK RUSSIA	4300 N... 13200 E	21:20...09:20	0.7300	2×4.77	194.5
THU 16	DETROIT MICHIGAN	$4230 \mathrm{~N}8300 \mathrm{~W}$	11:40...23:40	0.7373	2×4.73	195
THU 16 / 17	BARCELONA SPAIN	4122 N.... 0210 E	06:00... 17 : 59	0.7505	2×4.67	194
THU 16	NEW YORK NEW YORK	$4174 \mathrm{~N} . . .7400 \mathrm{~W}$	11:05...23:05	0.7547	2×4.64	194.5
THU 16 / 17	ISTANBUL TURKEY	4100 N.... 2900 E	04:12...16:12	0.7547	2×4.64	194
THU 16 / 17	SALERNO ITALY	4040 N... 1500 E	05:09...17:08	0.7585	2×4.60	194
THU 16	PITTSBURGH PENNSYLVANIA	$4040 \mathrm{~N} . \ldots .8000 \mathrm{~W}$	11:38... 2 : 38	0.7585	2×4.60	194.5
FRI 17	BEIJING CHINA	$3950 \mathrm{~N} . . .11625 \mathrm{E}$	22:22...10:22	0.7679	2×4.56	194
FRI 17	CADIZ SPAIN	$3630 \mathrm{~N} . . .0620 \mathrm{~W}$	06:33...18:33	0.8039	2×4.35	194
FRI 17	TOKYO JAPAN	3535 N... 13945 E	20:49...08:49	0.8133	2×4.30	194
FRI 17	OSAKA JAPAN	3440 N... 13946 E	20:49...08:49	0.8230	2×4.26	194
THU $16 / 17$	LOS ANGELES CALIFORNIA	3400 N... 11815 W	14:01...02:01	0.8299	2×4.22	194
FRI 17 / 18	CAIRO EGYP T	3000 N.... 3115 E	04:03...16:03	0.8660	2×4.04	193
FRI 17 / 18	MUMBAI INDIA	1900 N.... 7240 E	0 1: 2 1... 1 3: 21	0.9455	2×3.70	191.5
FRI 17	PUEBLA MEJICO	$1800 \mathrm{~N} . \ldots .9430 \mathrm{~W}$	12:26...00:26	0.9511	2×3.68	192.5
SAT 18	PORTof SPAIN TRINIDAD	$1140 \mathrm{~N} . . .6130 \mathrm{~W}$	10:13...22:13	0.9793	2×3.58	192.5
SAT 19	SINGAPORE SINGAPORE	0120 N... 10350 E	23:17...1 1:17	0.9997	2×3.50	190
SAT 18	QUITO ECUADOR	0025 S 7830 W	1 1:22...23:22	1.0000	2×3.50	191
SAT 18	NAIROBI KENIA	0120 S ... 3700 E	03:41...15:40	0.9997	2×3.50	191
SAT 18	BRASILIA BRASIL	$1600 \mathrm{~S} . . .4800 \mathrm{~W}$	09:20...2 1: 20	0.9613	2×3.64	192.5
SAT 18 / 19	SUVA FIJI	1800 S ... 17850 E	18:13... 6 6: 13	0.9511	2×3.68	192
FRI 17 / 18	DURBAN STH AFRICA	3000 S 3100 E	04:04..16:04	0.8660	2×4.04	193
THU 16	SYDNEY AUSTRALIA	3352 S 15115 E	20:03...08:03	0.8300	2×4.22	193.5
FRI 17	BUENOSAIRESARGENTINA	3437 S 5822 W	10:01...22:01	0.8230	2×4.26	193
THU 16	AUCKLAND N. ZEALAND	3650 S ... 17445 E	18:29...06:29	0.8000	2×4.35	193
THU 16	WELLINGTON N. ZEALAND	4120 S.... 17450 E	18:29... 06 : 29	0.7505	2×4.67	193
THU 16	DUNEDIN N. ZEALAND	$4252 \mathrm{~S} \ldots .17050 \mathrm{E}$	18:45...06:45	0.7400	2×4.75	193
WED 15	PUNTA ARENAS CHILE	$5310 \mathrm{~S} \ldots . .7100 \mathrm{~W}$	10:53... 2 : 52	0.5967	2×5.90	196

Origin: Hostal Centro Sol, Manzanares 7, 11005 CADIZ,
Spain, 10 February, 2007.

THEFIRSTDAYOFSPRING ANDAUTUMN.

The "EQUINOX DAY" no longer occurs on the day with the Sun appearing for exactly twelve hours 00 minutes (and that has been so for about 400 years!).

The definition of the Equinox Date by the astronomers is suitable for viewing only on those occasions when there is NO atmosphere. (It is the time defined for the Sun to be overhead (at zenith) when appearing to pass over the Equator).

The atmosphere behaves like a weak lens on the level of the horizon, but is strong enough to make the Sun appear to be above the horizon for longer than the theory "without an atmosphere" allows. (The Sun can be seen for some minutes over twelve hours on that date - even at the Equator, where the "new" definition applies).

In March, the date for the traditional, twelve-hour "Equilux", as some describe it, is EARLIER as a consequence, by a number of days - the number depending on how far North or South is the latitude of the observer.

In September, that date is similarly LATER as a consequence, by a number of days.
The variation in the DATE of the Equilux with latitude is principally a result of the angle at which the Sun approaches the horizon, either from below or above at dawn or dusk, and appears as a result of the degree of "refraction" by the atmospheric "lens".

The Sun, with few exceptions, is always visible from levels below the horizon about the dates of the Equinox, when it has or will travel an equivalent of a vertical "distance or time" of 3.50 to 4.00 minutes. The effective time or "distance" is longer because the Sun "moves" along the path defined by the angle just mentioned, until it has traversed that depth.

The Table shows by the results, that the time taken for the Sun to achieve the steps above, around the time of the Equinoxes, at the particular latitude of an observer, is inversely dependent on the COSINE of the latitude angle. (That is particularly clear for the situations of Quito and Oslo in the Table!). The Table is constructed on the assumption that 3.50 minutes divided by the cosine of the latitude is appropriate. (As a consequence of the large number of days difference between the two types of Equinox at high latitudes, that formula is not so accurate for very high locations, both North and South!).

Very often, observers having newspapers available for a city, or sometimes are located near a "web-camera" site on the internet, can find quotes for the sunrise and sunset times for the day of publication. (Do not confuse with times quoted for traffic lighting up and extinguishing times!).

If such times are available, then on the Equilux date the times will show virtually identical minutes! On the Official Equinox date, the times will differ by the "twice factor" shown on the Table.

Please inform colleagues who might find this of interest. "GOOD OBSERVING!"

William E G Plumtree, M. Phil. (Lond) 10 / 02 / 2007

