
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1993-09

Object recognition through image

understanding for an autonomous mobile robot

DeClue, Mark Joseph.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/39933

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A273 206

0 TI~l~l'l I I!HIltl

ELECTSA
S.......THESIS

OBJECT RECOGNITION THROUGH IMAGE
UNDERSTANDING FOR AN AUTONOMOUS

MOBILE ROBOT
by

Mark J DeClue

September 1993

Thesis Advisor Yutaka Kanayama

Approved for public release; distribution is unlimited.

93-29353
//I .LLllllil•

I II iForm Approve

REPORT DOCUMENTATION PAGE OW No. 0704_ _ _ _

Pubkc mweqtm buuden two adleatwt of cWor",onuc a astmeut"d Iag how pe, reaew. WidovWtifne MvW• m- C
giiweng end euwmi the dat"a neaedend Wo~mW -- v'1 We~ .wow" toeee~ ci edeeon W0 Send cemfwwef eegaedm Me burden. aetwoaft or &"any 4 O fes "a i
-110,tm of miomwedn. wonkdrvn auggweOan tor to"ue tha burd.en to Washengien tleadaueens. Ss.v.e. Dwegeeufta for 6*Weenuoe Opeealone and Plepeet 1215 jadmuon

Dom I hghway Se.. 1204 Aington. VA 1W-1 2 and to the 01me of Mana ue and Budg Papewor Adeed Peqeci (070•-o01) WnahVe DC 20503

¶. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED
r September 1993 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Object Recognition Through Image Understanding for an Autonomous

Mobile Robot

6. AUTHOR(S)

DeClue, Mark Joseph

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

B. SPONSORINGI MONITORING AGENCY NAME(S) AND A•DRESS(ES) 10. SPONSORING] MONITORING
Naval Postgraduate School AGENCY REPORT NUMBER

Monterey, CA 93943-500

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION i AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public use; distribution is unlimited

13. ABSTRACT (Maximum 200 words)
The problem addressed in this research was to provide a capability for sensing previously unknown
rectilinear, polyhedral-shaped objects in the operating environment of the autonomous mobile robot
Yamabico-l/. The approach to the system design was based on the application of edge extraction and least
squaies line fitting algorithms of [PET92] to real-time camera images with subsequent filtering based on
the environmental model of ISTE92]. The output of this processing was employed in the recognition of
obstacles and the determination of object range and dimensions. These measurements were then used in
path tracking commands, supported by Yamabico's Model-based Mobile Robot Language (MML), for
performing smooth, safe obstacle avoidance maneuvers. This work resulted in a system able to localize
objects in images taken from the robot, provide location and size data, and cause proper path adjustments.
Accuracies on the order of one to ten centimeters in range and one-half to two centimeters in dimensions
were achieved.

14. SUIBECT TERMS 15. NUMBER OF PAGES
mobile robotics, computer vision, edge extraction, obstacle avoidance 198

16. PRICE CODE

7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION IS. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI St& 239-1I

Approved for public release; distribution is unlimited

Object Recognition Through Image Understanding
For An

Autonomous Mobile Robot

by
Mark J. DeClue

Laieutenant, United States Navy
B. S. in Computer Science, United States Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Author:
Mark Joseph DeClue

Approved By:

YutgkKna esi T Advisor

Chin-Hwa Lee, second R~ae

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

The problem addressed in this research was to provide a capability for sensing

previously unknown rectilinear, polyhedral-shaped objects in the operating environment of

the autonomous mobile robot Yamabico-I1. The approach to the system design was based

on the application of edge extraction and least squares line fitting algorithms of [PET92] to

real-time camera images with subsequent filtering based on the environmental model of

[STE92]. The output of this processing was employed in the recognition of obstacles and

the determination of object range and dimensions. These measurements were then used in

path tracking commands, supported by Yamabico's Model-based Mobile Robot Language

(MML), for performing smooth, safe obstacle avoidance maneuvers. This work resulted in

a system able to localize objects in images taken from the robot, provide location and size

data, and cause proper path adjustments. Accuracies on the order of one to ten centimeters

in range and one-half to two centimeters in dimensions were achieved.

DT•C qUTA-LY INSPECTED 5

AAccesion For

NTIS CR"A&;

DTtC TA•3 Fi•

JU ii!K ,fl;O .. •

By

..................
D A, 3 I bttin !i

Avtlatb:ty Coces
Di Avail ard or

i~t j Special

IWi

TABLE OF CONTENTS

1. INTRODUCTION .. 1
A. BACKGROUND .. I
B. OVERVIEW ... 1

II. PROBLEM STATEMENT ... 3
A. ASSUMPTIONS .. 3

1. Orthogonal World .. 3
2. Obstacle Constraints .. 3
3. Environment Model and Localization .. 4

B. APPROACH ... 4
1. Object Extraction .. 4
2. Evaluation .. 5
3. Obstacle Avoidance .. 5
4. Object Identification ... 5

In. YAMABICO-l 1 ROBOT .. 7
A. HARDWARE ... 7
B. SOFTWARE ... 10

IV. SYSTEM COMPONENTS ... 12
A. THREE-DIMENSIONAL WIRE-FRAME MODEL 12

1. Operating Environment ... 12
2. Two-Dimensional Projection .. 14
3. Coordinate System Transformations ... 15

B. EDGE EXTRACTION ... 17
1. Pixel Storage and Manipulation ... 17
2. Edge Determination .. 20
3. Least Squares Line Fitting .. 21

C. VISION SYSTEM .. 21
I. Camera Mounting .. 21
2. Focal Length and Field of View .. 24

V. UNKNOWN OBJECT RECOGNITION .. 25
A. EXTRACTING UNKNOWN OBJECTS .. 25

1. Image/Model Processing ... 25
2. Object Analysis ... 29
3. Multiple Object Filtering .. 30

B. RANGE DETERMINATION .. 31
1. Theoretical Range Data ... 31
2. Empirical Range Data ... 32

C. DIMENSION DETERMINATION .. 38
VI. OBSTACLE AVOIDANCE .. 41

A. IMAGE ANALYSIS INTERPRETATION .. 41
B. PATH GENERATION ... 41

VII. CONCLUSIONS AND RECOMMENDATIONS .. 45

iv

A. CONCLUSIONS .. 45
1. Results ... 45
2. Concerns ... 45

B. RECOMMENDATIONS .. 46
1. Hardware .. 46
2. Software .. 46

APPENDIX A - MODEL AND EDGE EXTRACTION ROUTINES 47
APPENDIX B - IMAGE UNDERSTANDING ROUTINES ... 151
APPENDIX C - SUPPORT ROUTINES ... 184

LIST OF REFERENCES .. 189
BIBLIOGRAPHY ... 190
INITIAL DISTRIBUTION LIST ... 191

I. INTRODUCTION

A. BACKGROUND

Object recognition is a common application of computer vision and in fact has become

a common c,"mponent in many manufacturing processes requiring recognition of specific

parts and the subsequent transport to various locations. In much of the research in this area,

either a search is conducted for a specific object within the confines of the image or

heuristics are applied in analyzing the image in an attempt to identify objects. A specific

branch of computer vision, robot vision, has been the subject of significant research in the

past decade. While many of the basic approaches have undergone progressive refinement,

numerous new directions continue to be pursued in both general and system specific

applications. A vision system for an autonomous vehicle may be employed for a variety of

uses including navigation, object recognition, and environmental mapping. Of course, the

usefulness of any such system is limited by the robotic platform into which it is integrated.

In previous research at the Naval Postgraduate School, robot position determination

through camera vision was addressed in [PET 92] and resulted in accuracies varying from

a few inches to more than one foot. However, recent work using line segment extraction via

sonar [MAC 93] on the Yamabico-1I robot has provided positioning accuracies on the

order of a fraction of a centimeter, virtually eliminating the usefulness of implementing the

visual system as originally intended.

B. OVERVIEW

Although Yamabico may have precise knowledge of its location in a given

environment, it is only capable of detecting the presence of unexpected obstacles in its path

when relying on sonar as the sole sensor. The ability to determine position accurately does

allow a new approach to be evaluated which incorporates vision as an additional sensor

with complementary capabilities to that of sonar. Specifically, if a model of the

I

environment and its location within that environment are known, it should be possible to

immediately detect unexpected elements in what the robot camera sees by filtering out

those elements which are in a generated image based on the model. This alleviates the need

for pre-processing the image before any interpretation may be attempted. This makes

isolation of an obstacle fairly straight forward. Hence, the fusion of object recognition

through vision and the current precise locomotion capability can provide the necessary

foundation for intelligent and autonomous obstacle avoidance. It is on this basic premise

that the vision system for Yamubbico has been designed and implemented.

2

II. PROBLEM STATEMENT

The problem being addressed in this work is as follows:

Given a mobile autonomous vehicle with accurate knowledge of its position in a partially

known environment, develop the capability to detect objects in a video image taken from

the robotic platform by recognizing elements unknown to the environmental model, and

subsequently extract range and dimension data which will aid in avoidance maneuvers.

This information should be derived solely from the information provided by the vision

system without input from other active external sensing systems.

A. ASSUMPTIONS

The following assumptions were incorporated into the research in order to focus the

work on the image understanding problem and ensure the goals were realizable with a

single camera system (i.e. no stereo vision).

1. Orthogonal World

The robot is operating in a partially known, orthogonal world. The world is

partially known in that the robot has information on the location of fixed walls, but has no

information on the positions of doors or the presence of obstacles in the world. The world

is orthogonal in that all walls meet at right angles. The normal operating environment for

Yamabico is the fifth floor of Spanagel Hall, which adequately meets the above

assumptions.

2. Obstacle Constraints

An obstacle is any object that is not part of the known world. The placement of

obstacles is arbitrary, with a restriction that they rest on the floor and not be suspended in

the air. This is not unreasonable since it would be highly unlikely for a suspended obstacle

to be encountered which is not a permanent part of the operating environment. An

additional constraint on the research is that when an object is encountered, it is assumed

3

that it is positioned orthogonal to the robot so that base edges can be used in calculating

ranges with a single camera. Obstacles are assumed to be stationary while the robot is in

the vicinity of the obstacle. However, if the robot leaves and then returns to the same area,

the obstacle may be in the same position, a different position, or it may be gone.

3. Environment Model and Localization

The experimentation assumed the existence of a three-dimensional, wire-frame

model of the robot's operating environment as well as accurate knowledge of the position

within this domain. These requirements are certainly realizable, and in fact each has been

achieved in previous work at the Naval Postgraduate School.

B. APPROACH

Like many research projects, the job of employing vision in support of obstacle

avoidance for an autonomous mobile robot entails a step-wise progression toward the

desired capability.

1. Object Extraction

The fundamental problem is to derive the ability to recognize the existence of an

obstacle in the robot's path which could prevent it from safely carrying out its assigned task

or proceeding to the desired goal. This basic functionality requires knowledge of what the

robot anticipates encountering combined with subsequent recognition of elements in the

environment which conflict with this a priori expectation. Requirements inherent in this

task are proper generation of the expected view (provided by an environmental model in

the case of this work), processing of an input video image, pattern matching between the

two, and a subsequent localization of an object. he localization process can become more

difficult when multiple objects are considered. The problem at this stage is to develop an

efficient algorithm which can properly group associated line segments together to form

each object. Once this has been accomplished, the same approach as was used for the

single object case can be applied to obtain individual object dimension and location data.

4

2. Evaluation

Once the presence of an "object" has been confirmed, it is desirable to evaluate

the dimensions and location of the object so that appropriate avoidance measures may be

pursued. At this stage, the vision system is capable of providing information which will

allow initial path corrections to be carried out but can not provide insight into how long the

object will be of concern to the robot. This limitation exists because the data obtained from

the image is based solely on two-dimensional information, and the classification of the

object type is not generally required in order to adequately carry out this fundamental

assessment. It should be noted that this aspect of the research is actually the central concern,

with a primary goal of ensuring robust and consistent implementation of this capability.

3. Obstacle Avoidance

One of the most notable aspects of Yamabico is a fine and extensive locomotion

capability, making obstacle avoidancz relatively straight forward. Combining the range and

dimension data generated in the evaluation described above with !he variety of path types

available through the Model-based Mobile Robot Language (MML) used to control thý-

robot enables the performance of a smooth, safe obstacle avoidance maneuver.

Specifically, the use of parabolic-curved elements would enable the robot to accurately

track a path specified according to Voroinoi boundaries between the obstacle and the

surrounding environment, thus providing the maximum safe path [KAN93]. Since the

motion is based on a path-tracking approach, the robot can automatically make smooth

transitions between newly computed paths.

4. Object Identification

Although not pursued in this work, the ability to extract enough information from

the image for identification of the object would provide three-dimensional information,

thus enhancing the "intelligence" of the robot's obstacle avoidance maneuvers. This topic

is in itself a widely researched field and numerous approaches have been suggested for a

wide range of applications. One technique which appears to be especially attractive for

5

implementation on Yamabico is the alignment method [ULL91]. The basic premise of this

approach is that given a known set of feature points for a known object and the same points

on an unknown object, it is possible to map the two sets via constant coefficient linear

equations if they are alike. The powerful aspect of this relationship is the fact that it is valid

regardless of rotational and/or translational differences, permitting direct analysis of image

objects according to the object database. Once the object has been classified, available

information would include the object depth, which provides the final parameter needed to

carry out complete avoidance measures solely on the basis of visual input.

6

L. YAMABICO-11 ROBOT

Yamabico-)), shown in Figure 3.1, is an autonomous mobile robot used as a test

platform for research in path planning, obstacle avoidance, envir,nment exploration, path

tracking, and image understanding.

A. HARDWARE

The robot is powered by two 12-volt batteries and is driven on two wheels by DC

motors which drive and steer the robot while four spring-loaded caster wheels provide

balance.

The master processor is a MC68020 32-bit microprocessor accompanied by a

MC68881 floating point co-processor. (This is the exact same CPU as a Sun-3

workstation). This processor has one megabyte of main memory and runs with a clock

speed of 16MHz on a VME bus. An upgrade to a SPARC-4 processor with 16 megabytes

of main memory was nearing completion when this research was completed.

All programs on the robot are developed using a Sun 3/60 workstation and UNIX

operating system. These programs are first compiled and then downloaded to the robot via

a RS-232 link at 9600 baud rate using a PowerBookTm 145 computer for the

communication interface. The new SPARC-4 board will be accessible via an ethernet

connection, decreasing download time from about five minutes to a few seconds.

Twelve 40 kHz ultrasonic sensors are provided as the primary means by which the

robot senses its environment. The sonar subsystem is controlled by an 8748 micro-

controller. Each sonar reading cycle takes approximately 24 milliseconds.

The visual images from the robot are generated by a JVC TK870U CCD camera head

equipped with a FUJINON TV zoom lens. The unit is mounted along the centerline of the

robot at a height of 34 inches. This camera provides a NTSC standard RGB video image

through a video framer attached to a Silicon Graphics Personal IrisTr workstation as shown

in Figure 3.2. The framer digitizes the sync and composite signals for storage on the Iris

7

Figure 3.1: Yamabico-<II Mobile Robot

8

and also passes the signal to a high definition monitor. Currently, the video signal is

transmitted via standard coaxial video cable to the image processing hardware. When

Composite & Sync
Video Cables

SGI VIDEO FRAMER

SGI DMIAAMOND

PERSONALI VISION

IRIS MONITOR

Figure 32.: Vision system hardware arrangement

operating with the vision system on line, a telephone line is also connected between the

processing hardware and the robot, via RS232 ports, eliminating the need for the

PowerBook"'. This allows interactive simulation of visual interpretation in support of

obstacle avoidance to be conducted in lieu of the eventual on-board image processing

capability which will be integrated on the VME bus in the future.

9

B. SOFTWARE

The software system consists of a kernel and a user program. The kernel is

approximately 82,000 bytes and only needs to be downloaded once during the course of a

given experiment. The user's program can be modified and downloaded quickly to support

rapid development.

Motion and sonar commands are issued by the user in MML, the model-based

mobile robot language. While the previous version of MML was based on point-to-point

tracking, the current version being integrated into Yamabico's control structure relies on a

'path tracking' approach. While MML provides the capability to define path types which

include parabolic and cubic spiral, the most fundamental 'path' for the robot to follow is a

line which is defined by a curvature (I) and a location and orientation in two-dimensional

space described in x, y, and theta. With 'K=O, the line is straight, and X*) produces a circle

of radius I/N (IC<O =_ clockwise & iC>O counter-clockwise). The location and orientation

can be the starting point of a semi-infinite line called a forward line (fline), the end point of

a semi-infinite line called a backward line (bline), or a point and direction along and infinite

line (line). For all path types, once one has been specified and commanded, the robot

performs the required calculations and adjusts the curvature of its motion as necessary.

Additionally, transitions between successive paths are performed automatically and

autonomously.

The functionality inherent in the MML plays a significant role in developing the

capability for the robot to avoid obstacles. Consequently, a portion of this research effort

was devoted to implementing some of the core functions in the newly developed 'path

tracking' approach to motion control. This method allows for dynamic real-time

specification of the proposed robot path based on sensory input and is especially well suited

to employing the information generated from object recognition. Since the available

information will include not only ranges (which is the sole data provided by sonar) but also

dimensions, a complete avoidance maneuver can be determined.

10

As mentioned above, the sonar system is also controlled through the MML. Both

raw sonar range returns as well as processed 'global' results incorporating least-squares

line fitting are available to the user on board the robot. This capability should prove

particularly useful in extending the environment in which the vision system can be applied,

and its application is addressed in the discussion of the environmental model.

11

IV. SYSTEM COMPONENTS

A. THREE-DIMENSIONAL WIRE-FRAME MODEL

One of the key components of the obstacle detection routine as implemented on

Yamabico is the process by which known or expected edges are filtered from the acquired

video input by matching the edges extracted from the video image to corresponding edges

in a superimposed model image. In order to accomplish this task, a wire-frame model of the

robot's operating environment created by Jim Stein in [STE 921 was employed. The

following is a general description of the method by which this model is implemented along

with a discussion of the modifications which were required for integration into this work.

The modified code is provided in Appendix A and includes all files with a 'model' prefix.

1. Operating Environment

The fifth floor of Spanagel Hall at the Naval Postgraduate School is currently the

only environment in which testing of Yamabico is conducted. Consequently, a three-

dimensional model of this area has been created using precise measurements (within a

quarter centimeter). It is based on a hierarchical list structure which consists of a world,

various polyhedra within the world (including instances of similar configurations), and

polygons (made up of three or more vertices described in terms of local two-dimensional

coordinate space) which are connected to form each polyhedron. In defining each polygon,

a 'z' coordinate value is included to specify its height. Subsequently, corresponding (x,y)

vertices from polygons of differing heights may be connected by edges to form walls or

other vertical plane structures. It should be noted that since the height of the vertices of a

polygon is limited tr. a single value, this structure is strictly limited to being a horizontal

surface.

As a simple example, a rectangular room would be represented as a world

containing one polyhedron, namely the room, and two polygons, the floor described by the

four (x,y) vertices of the comers with a height of zero, and the ceiling described by the same

12

(x,y) vertices but with a height equal to that of the actual ceiling. Finally, each set of

corresponding vertices are connected by a pointer which represents a vertical line, in this

case the corners from floor to ceiling. It should be noted that under this system, anything

added to the world must be described in three-dimensional terms since a minimum of three

vertices are required to create a valid polyhedron. This restriction would at first appear to

prohibit the inclusion of various items in the real environment such as room placards which

are essentially two-dimensional. In fact, by describing such an item with a very small

thickness (one tenth of an inch perhaps) this limitation is lifted.

A number of aspects to this model directly impact the degree to which the vision

system may be employed. One is that the distinction between status as an obstacle or an

enclosure is inherent to the polygon description by the order in which vertices are defined.

Specification in a clockwise manner denotes an enclosure while a counter-clockwise order

is used for obstacles. Another is the capability to specify a pivoting axis (in the z direction

only) and the corresponding degree of rotation about that axis for each polyhedron. Thus a

door is not limited to strictly an open or shut condition, and its position may be altered

accordingly. A final important facet to the model is the ease with which changes can be

made to the modeled environment. The implications here are that fairly accurate object

recognition data can be used to update the model on a real-time basis, and additionally a

completely new environment may be mapped via automated sonar cartography [MAC93]

with subsequent generation of a viable model for use by the vision system in pattern

matching routines.

The fifth floor model originally consisted of only the main wall structures, floor,

ceiling (with lights), doors, and floor molding and did not include various items such as

door placards, bulletin boards, etc., all of which significantly impact the edges which are

extracted from a video image. Consequently, accurate measurements of all permanent

fixtures which would be picked up via video were taken, and the appropriate structures

were created and added to the database for the fifth deck passageway. Subsequent to these

13

modifications, the model could be relied upon for use in filtering out all expected edges

from the input images.

2. Two-Dimensional Projection

Although having an accurate model of the robot's operating environment is

fundamental to the foundation for object recognition, it would be useless without any

means by which to project the three-dimensional view onto the two-dimensional image

plane for matching purposes. By applying fundamental three-dimensional mapping

techniques and incorporating derived parameters of the video hardware, the two-

dimensional perspective from any given position (x,y,zq) can be projected onto a plane

which emulates that of the focal plane of the video camera as shown in Figure 4.1. This

DEZD

Figure 4.1: Two-dimensional view generated from the three-dimensional wire-frme model

image can then be superimposed upon a video image for visually assessing the match-up,

and model line segments can be compared to image line segments on a pixel basis, as is

carried out in programs described in Chapter V. To aid in the matching process, model lines

14

are stored in two lists, one for vertical lines and the other for the rest. Each model line is

described by both end points (given as xy pixel coordinates) and pixel length.

3. Coordinate System Transformations

Two coordinate transformations are necessary if location data for an object,

generated via the vision system, is to be useful in maneuvering the rotit. The first is

required because the coordinate system on which the wire-frame model used by the vision

system is based differs in both axis direction and origin point from the system now being

used in the Yamabico project. Figure 4.2 shows the current coordinate system in solid lines

S+Yold +Xcurrent

"4"o1d " n0

A+Xld
+Ycurrent ... '.... q I

w = 249 cm

Figure 42.: Comparison of Yamabico operating environment coordinate systems

while the vision system's frame of reference is given in dashed lines. From this drawing it

can be seen that for a given (x], yl, 0 1) in the old reference frame, the coordinates in the

current system would be (yI, w - xI, 01).

1$

Once the robot's position is known in the current system, it is desirable to

transform vision generated object location data into the global reference frame since all

commands for the locomotion control of the robot, as well as all processed sonar data, are

given with respect to this coordinate system. Given the robot's position described by a

configuration which is comprised of its x, y, and 0 values referenced to the current global

coordinate system and a local coordinate system fixed on the robot, a location in the robot

local system may be described with respect to the global system through the use of the

compose function [KAN 93]. Referring to Figure 4.3, if the position of the robot in the

qo

+ Yg
Figure 4.3: Comparison between robot local to environment global coordinat systems

global system is given as aO and the position of an object in the robot local system as ql,

then the object's position described in the global system will be q and is equal to the

composition of qo with ql, where the compose function is defined as follows:

16

Xo x1] X0 + x1cos0o - ylsin0o

q = qo 0 q, = yo = yo +x1 sin0o +y1 cos0o

00 02 00+01

Note that in this situation the resulting orientation value (0o + 0i) actually

contains no significant information because even though the robot's orientation (0o) is

usually a known quantity, the orientation of the object (01) is purely arbitrary.

B. EDGE EXTRACTION

The ability to extract edge information which will be matched against the two-

dimensional projection generated by the model provides the foundation for being able to

analyze the video images seen by the robot. While the initial implementation of vision for

Yamabico has become obsolete, a portion of the groundwork was applicable to this effort.

Namely, the routines coded by Kevin Peterson in [PET92) which provide edge extraction

of CCD video camera input (stored as an RGB image) via gradient intensity analysis and

application of a least squares method of line determination. As in the case of the wire-frame

model, a general description of the implementation is provided and includes those aspects

which were modified in order to better support the goals of this work.

1. Pixel Storage and Manipulation

The data generated by the video frame grabber is stored in a 32 bit format with

eight bit values for the level of red, green, and blue intensity of each pixel in the image,

giving a range of 0 to 255. A conceptual block of storage for describing a single pixel is

shown in Figure 4.4. The alpha component, which represents the transparency of the pixel,

is not considered when using the RGB format since all pixels are taken to be completely

opaque. The data for all the pixels in an image is stored in a long, one-dimensional array

which is manipulated by pointers. The ordering in the array with regard to position in the

17

image is left to right, bottom to top, so the lower left comer pixel would be the first element

in the array while the upper right would be the last. Since the edge extraction process, which

ALPHA BLUE GREEN RED

Bits 231 23 157

Figure 4.4: 32 Bit pixel storage fornat

will be described below, requires a black and white ('grayscale') representation for the

pixels in an image, a conversion from the RGB values is necessary. According to the

standard weighting factors set by the National Television Systems Committee (NTSC), a

RGB color pixel is given an equivalent grayscale value by the following relationship:

-Red Intensity -

GRAYSCALE - [0.299 0.587 0.114] jGreen Intensity
Blue Intensity]

An example of a grayscale image is shown in Figure 4.5. It should be noted that

since the factor for green dominates over the other two colors, it is possible to reduce the

computation involved in this conversion to a single intensity value by basing it on only the

green intensity. This, in fact, is how the process was implemented in Peterson's work. After

experimentation in the cun'ent application, however, it was determined that better image

analysis resulted when all three colors were considered. The increased processing time is

negligible with respect to the overall analysis and consequently this implementation

employs the conversion shown above.

With each pixel now described by a single intensity value, a Sobel operator is

applied in order to determine the change in horizontal and vertical intensity with respect to

those pixels which surround it. Figure 4.6 shows the Sobel matrix window where the values

18

in the boxes are the factors by which grayscale pixels intensity is multiplied and the boxes

themselves represent a pixel with the center box being the pixel to which the operator is

Figure 4.5: Grayscale image of hallway

-1 0 1 1 F2 1

,F2 0 r2- 0 0 0

-1 0 1 -1 .12 -1

dx dy

Figure 4.6: Sobel rrmarix window for pixel gradient determination

being applied. A pixel's gradient magnitude and direction is then given by the following

relations where the atan2 functions returns the arc tangent in the range -7r/2 to tf/2.

19

Gradient Magnitude = (dx 2 + dy2)1I/2

Gradient Direction = atan2(dy , dx)

2. Edge Determination

The first two of five criterion for line image analysis are now availablc at this

point. I, order for a pixel to even be considered for inclusion in an edge region, its gradient

magnitude must be above a specified threshold value (CI). It is possible to construct a

'gradient' image based on this information alone as shown in Figure 4.7. In this format,

;. ...- -

,o

Figure 4.7: Gradient image of aliway

pixels with a gradient magnitude above C1 are stored as pure black while the rest are stored

as pure white. Although this representation is not explicitly used in the subsequent edge

generation and line determination, it does provide insight into how well the Sobel is

isolatirg regions of differing light intensity.

20

By grouping together adjacent pixels (which have met the C1 criteria) with

gradient directions which differ by a set angular amount (C2), edge regions are generated

for the entire image. As each pixel is added, the primary moments of inertia (which include

the total number of pixels in the edge) are updated for the region. Additionally, once no

more pixels are to be added to an edge, it is immediately analyzed for line fitting potential.

3. Least Squares Line Fitting

Once all of the appropriate pixels have been included to form an edge, the region's

secondary moments of inertia are computed, making it possible to represent the area as an

equivalent ellipse of inertia with a major and minor axis length. Additionally, rho is defined

as the ratio between the two axes and describes edge thickness. A line is then fitted by

applying the final three criterion which include maximum thickness (C3), minimum

number of pixels (C4), and minimum length (C5). Of these, C3 has the most significant

overall impact as a value of 0. ! requires a fairly thin region while a value of 1.0 permits a

square blob to be a candidate for line fitting. Figure 4.8 shows the lines which were fitted

based on the image in Figure 4.7. After extensive testing, the values used for all the

criterion, with the exception of C1, were modified in order to provide the most useful line

segments to the object recognition routines. The code, as modified for this implementation,

is provided in Appendix A.

C. VISION SYSTEM

1. Camera Mounting

In mounting the CCD camera on Yamabico, a rumber of variables had to be taken

into consideration. Among the less significant concerns was the desire not to interfere with

the operation of other robot components and to avoid placement which would significantly

alter the confines of the robot structure. Of course, the primary criteria was finding a

location which provided the most useful field of view for the task at hand. Due to the

hardware limitations of the current camera, the zoom and focus must remain static and

21

consequently, the depth of image which is generated is constanL This translates into the

restriction that the only way to alter the range at which objects initially come into view is

ZU'-

k k4

LIS i2

1011 --. ----u~i~... 32 17.___

Figure 4.8: Line segments exuxated from gradient image in Figure 4.7

by physically altering the line of sight direction of the entire camera. When tilted downward

in an effort to pick up objects at fairly close range, two significant problems were

introduced. The first resulted from the specular reflection of the florescent lighting system

in the passageway upon the tile floor which resulted in a sharp increase in the amount of

clutter picked up in the gradient image. Figures 4.9 and 4.10 show the grayscale and

gradient images taken from the same location as those taken in Figures 4.5 and 4.7 but with

the cam-era tilted down by approximately 20 degrees. Comparison of Figures 4.7 and 4. 10

reveal the significance of this effect. Although the routines which conduct the edge

extraction and object detection have some intrinsic filtering effect, this significant increase

in the level of clutter would adversely impact subsequent processing.

Secondly, this large tilt angle causes a distortion in the non-vertical, non-

horizontal image lines. Since the wire-frame model operates on the premise that the

22

Figure 4.9: Grayscale image of hall way with 20 degree tilt angle

7*ý* R.- -

ara

Figre.10 Grdetiaeot ala ih2 eretl nl

~. 23

viewing is done parallel to the floor, the ability to match lines between the model and image

would be seriously impaired.

Obviously, a mounting orientation which is level to the ground, or at least nearly

level, is desirable for proper image processing. The concern then turns to what does the

camera see and is this useful. After some experimentation, a very satisfactory setup was

achieved. With only a slight downward tilt (< 20), no increase in specular reflection is

apparent in the images while an object comes completely into view at a range of just under

four meters. Since the sonars have a maximum effective range of four meters, this provides

a smooth transition between close-in operations to be handled by sonar and long-range

planning via vision.

2. Focal Length and Field of View

With the zoom setting held constant, camera focal length will remain static as

well. For the camera, as used in this project, the focal length is 4.16 centimeter and its CCD

element, or the plane onto which images are projected, is 1.69 centimeters square. Figure

4.11 depicts the physical significance of the focal length (fi), CCD element size, and

vertical field of view (FOV) at a range r, if looking at the side of the camera. These factors

will be important in performing range and dimension calculations.

.0_ýmera

!.69cm Vertical FOV

CCD element 4fl=4.16cm r

Figure 4.11: Depiction of focal length, CCD element size, and angle delta

24

V. UNKNOWN OBJECT RECOGNITION

A. EXTRACTING UNKNOWN OBJECTS

With the basic tools described previously, it is now possible to consider the integrated

approach for recognizing the presence of an object in any given video image and evaluating

the localized object for range and dimension information. Functionally, the entire process

can be divided into two parts, image/model processing and object localization. The

implementation on Yimabico by programs in Appendix B is described in the following

sections and includes the details of why a particular action is necessary and how it is carried

out.

1. Image/Model Processing

The first thing which must be accomplished is transferring the RGB image data

from the video framer storage format into a one-dimensional array structure used during

line segment processing. Each element of this array will hold information on a pixel

including its red, green, and blue intensity levels, allowing for rapid, sequential analysis of

each pixel. A major portion of the image processing, including grayscale conversion, edge

determination, and line fitting, may now proceed. The approach, as detailed in Chapter TV,

is followed without modification.

As in the case of initial image line generation, the creation of the model view

follows the methodology outlined in Chapter IV. A single file is devoted to storing the data

describing the fifth floor hallway in which the robot operates and is employed in generating

the three-dimensional wire-frame model of this area. The two-dimensional projection of

the expected view in this world is then created based on the input robot position and

orientation.

Before the ilifrmation available in the model projection can be applied to the

input image for patters mnatching, the lines making up the model representation must be

filtered. This need arises because the methods inherent in generation of the model list of

25

lines will initially produce lines which are either out of bounds with respect to the image

plane area or by their very nature will not be a concern to object detection. This results in

wasteful comparisons during matching. The list of two-dimensional model lines is not

constrained by the 486 pixel height of the image lines and consequently a model line

filtering process is applied to this list which eliminates any lines which lie entirely above a

height of 486. Another characteristic of the projection routine which creates the model view

is a tendency to generate a number of very short line segments (some that are only a fraction

of a pixel in length). Thus, any model line of length less than two pixels is also deleted to

reduce the number of comparisons and hence, further cut computation time. One additional

test, which is conducted as each model line is analyzed, involves determining the height in

the projected view at which the wall meets the floor or the 'horizon'. This simply consists

of keeping track of the lowest horizontal line which cuts across the center area of the

projection and its usefulness will be covered in the pattern matching discussion.

Additionally, the model lines are not necessarily contiguous segments and in fact

what appears as a single line is often a group of adjacent segments. The problem presented

by this fragmentation would arise when the actual matching process is initiated because an

image line is tested for end point inclusion between the model line's end points. Although

a image line may be a valid candidate for filtering, it would be dismissed because it covers

a distance greater than each of the individual segments. Therefore, adjacent model lines are

combined into one continuous line segment prior to initiation of the matching process.

Facets of the generated image lines as well as their intended application in the

object recognition process present the opportunity for elimination prior to the application

of the model lines for matching. Unlike the pre-processing conducted on the model lines,

all of these checks can be accomplished during the matching of the individual image lines

to the list of model lines. The first concerns removal based solely on location in the image

plane. Results from a typical line fitting run will include a few lines along the bottom edge

of the image frame which carry no significance with regard to any objects. Therefore,

image lines which lie entirely below a height of two pixels are marked for deletion. Next,

26

lines which are located along the left and right sides are also set for deletion since the

concern of object recognition generally centers on the view directly ahead. The final filter

follows concepts outlined in [KAH90] where computation time can and should be reduced

by focusing the processing only on the regions of concern. In the case of this work, a very

significant area of an image may be disregarded because the robot has a maximum height.

Any image lines located entirely above this value will not have an impact on the robot's

ability to navigate safely and are therefore marked for deletion.

With all of the model and image line pre-processing completed, the actual

elimination of expected image lines by pattern matching with the model lines may be

initiated. Each image line is tested against the filter criteria described above, and then it is

eliminated either through filtering or by qualifying as a match to a model line with

appropriate end point inclusion, or it remains as a valid candidate for being a part of an

object's outline. It should be noted that although the model lines are stored in two lists, one

for vertical lines and the other for the rest, the image lines are simply contained in a single

list in the order in which they were fitted. In pursuit of minimized computation time, it is

desirable to only compare a vertical image line to the vertical model lines and likewise for

horizontal lines. This is accomplished by determining the image line orientation (vertical,

horizontal, or diagonal) through simply assessing its phi value and then performing the

matching against the appropriate model list. During this test, the orientation is stored for

later use by a sorting routine. For the image shown in Figure 5.1, the initial extracted line

segments are presented in Figure 5.2 while Figure 5.3 shows the lines which remain

following the pattern matching. Notice that the memos posted on the doors are not

eliminated since it would not be appropriate to include them as a permanent part of the

hallway model. It should also be noted that although these lines are located well above the

maximum height of the robot, they still appear in the final image. This is because any image

line (which was not filtered or matched to a model line) located above the robot height will

have its respective data structure description annotated to reflect the fact that it is not of

concern as an obstacle but is kept in the list of lines for possible post-analysis.

27

Figure 5. 1: Unanal yzed grayscale image

Figure 5.2: Initial line segments for image in Figure 5.1

28

Figure 5.3: Final line segments for image in Figure 5.1 following filtering

An even more ambitious approach to focusing on specific regions may be applied

to the elimination process when considering one of the base assumptions which stated that

any obstacle encountered will be resting on the floor and not suspended above the floor. It

therefore, is a direct consequence that the base of the obstacle will have its edge at a height

that in all instances will be lower than the height at which the wall meets the floor.

Additionally, the edges which comprise the sides connecting to the base will also have a

portion of their length below this level. The height of this meeting point, determined during

the model line filtering, is a known value and consequently, it is possible to consider only

image lines which exist, at least in part, below this horizon. Figure 5.4 shows the lines

which would remain when employing this approach. Even though only a few lines remain,

they can provide all the information necessary to effectively carry out object analysis.

2. Object Analysis

Two approaches were pursued in order to properly localize an object in a

processed image. The first assumed that the robot would encounter only a single object

29

Figure 5.4: Line segments for image in Figure 5.1 after horizon filtering

while the second, which is described in the next section, lifted this restriction. In both cases,

the derived information is of the same format and applicable to the subsequent calculations

which are necessary for obstacle avoidance. The former method operates on the list of

remaining image lines without any further processing. A search is conducted for the left-

most vertical line which would be the left edge of the box and a corresponding closest line

to the right as the box's right edge. Next, horizontal lines which lie within the confines of

the left and right sides are found and designated as the bottom and top of the object. This

approach is actually limited in its robustness because the presumption that only one object

will be present is compromised by extraneous lines resulting from phenomena such as

reflections, shadowing, and light between doors.

3. Multiple Object Filtering

Introducing the possibility that more than one object will be present in an image

required both additional processing and a revised approach. Since the number of image

lines which are still valid candidates for making up the object outline is relatively small, it

30

proves worth while to devote the computation time necessary to sort both the vertical and

horizontal lines once at the start of object analysis. This eliminates repeated searches

through the entire list of lines which would otherwise be required. Following the storage of

each line's description in an element of separate arrays for vertical and horizontal lines, an

implementation of a quick-sort algorithm as outlined in [MAN91], is applied to position the

lines in ascending order, going left to right or bottom to top. This makes it possible to move

through the lines only one time in search of the proper combinations.

With the lines sorted, the basic algorithm used to localize those making up an

object is as follows: Start with the first vertical line and look at subsequent vertical lines

until one is found with the condition that there exists a horizontal line between the two. If

no subsequent line was found, move to the next line over and repeat. Once a pair of lines

has been found, the element number in the array for the right side line may be saved and

searching for the next object continues, beginning with the next element.

B. RANGE DETERMINATION

Yamabico is capable of detecting obstacles at a range of up to four meters using the

installed sonar system. However, the robot is essentially 'blind' beyond this range without

the benefit of other sensors. Provided that the orthogonal orientation and non-suspension

assumptions hold true for each object, it is possible to derive range information from an

image generated by the vision system both theoretically and empirically.

1. Theoretical Range Data

Using the physical hardware constants discussed in Chapter IV, it is possible to

calculate the range to an object through analysis of the object's base in a video image.

Referring to Figure 5.5, j3 is the angle from the horizontal to the bottom edge of the object,

a is the tilt angle of the camera as physically mounted, 0 is the angle from the vertical

centerline of the camera image (CL) to the bottom edge of the object, and p is the distance

from the vertical centerline of the camera image to the bottom edge of the object as

31

P"-fl

J1: camnera

"'%":"... ,4. o

h % object

Figure 5.5: Side view depiction of various vision system parameters

measured on the CCD element in pixels. Figure 5.6 depicts how the box would appear in a

video image and shows p on the image plane. With this information, the range to the object

is calculated as follows:

tan(6) = p/fl .. 0 = arctan(p/fl)

h/r = tan(P3) = tan(a + 0)

Combining and solving for r gives ...

r= h / (tan(a + arctan(p/fl)))

A plot of this result, using a tilt angle of 1.83 degrees, is shown in Figure 5.7.

Z. Empirical Range Data

Since the base of the object is flush with the floor, the edge at this meeting point

will appear in the image as a horizontal line at a given height, measured along the vertical

axis. As the range to an object increases, the apparent height of this edge will increase, at a

32

CL

p (piels) .

Figure 5.6: Projection of camera view in image plane

250
i i 'te, t3tiU --

200 .

1 5 0 -.-.-. -. .-.--.-.............-. •

.C

SlOO~~~~~~..

so

200 400 600 Soo 1000 1200 1400 10o 18eoo
Range (cm)

Figure 5.7: Theteical change in base height with increasing range to object

33

decreasing rate. Figures 5. "'-,-ugh 5.11 demonstrate this phenomena, as the first two

figures reflect the difference in the position of a box at 4.0 versus 4.5 meters while the

seccnd two show the same 0.5 meter change in range, but from 8.0 to 8.5 meters. Clearly

-28.2

Figure 5.8: Box at a range of 4.0 meters

the change in the vertical height of the box's base is larger at the four meter range than at

eight. In fact, a pixel analysis of the images reveals that the base moved from a vertical

position of 28.2 to 57.0 pixels at four meters while it only moved from 156.7 to 164.5 pixels

at the eight meter range. Figure 5.12 provides a plot of the actual range of a box in

centimeters versus the vertical height in pixels of the box's base as seen in an image, much

like the theoretical plot of Figure 5.7. Two separate sets of data (taken on the same box but

on different days) are shown to demonstrate the fairly consistent nature of this data. As

might be expected, the slope of the curve is steeper at shorter distances since a change in

the range will be reflected in a noticeable edge height change while at the longer distances

a much larger variation in range would be required to detect any significant edge height

34

Figue 5.: Bo at rane of4.55e7.r

Figure 5.10: Box a! a range of 8.0 meters

35

164.5

Figure 5.11: Box at a range of 8.5 meters

120

110............................. -

Bul"
8 0

0
U

20
400 450 500 550 600 650

Range (cm)

Figure 5.12: Box range versus the height of its base in an image for two separate test runs

36

movement. The tendency of the data runs to drift apart at longer ranges can be attributed to

the diminishing accuracy which is caused by this situation.

Although there is no physical cut-off in range to delineate where the accuracies

are no longer adequate, it was prudent to make such a determination. A value of ten meters

was chosen because variation between differing base heights at this range will introduce no

more than a 10 centimeter error, permitting safe navigation of the robot using vision system

data. The primary concern, however, centers on how well the theoretical results match up

against the raw data. Figure 5.13 provides just such a comparison, with the theoretical
120 I T

I I I .o. O32 dpt -

I I29ju 8

1 .o

. so" "- ..".....................

S!,4iI I

40

20 - 1 , ,
350 400 450 So0 550 600 65,

Range (cm)

Figure 5.13: Comparison theoretical versus actual data points

points shown plotted as a solid line and actual, image-based points displayed as a dotted

line. As can be seen, the derived formula very accurately predicts the actual vision system

output, which translates into a precise range determination capability based on visual

analysis.

37

C. DIMENSION DETERMINATION

By using the range determined in the previous section and applying trigonometry in a

manner similar to its use in the range calculation, it is a relatively simple task to derive

dimension information for an object from image analysis. Figure 5.14 depicts an object in

A (pixels)

Figure 5.14: View in image plane during determination of height A

the image plane with the bottom and top at a vertical position of yl and y0 prime

respectively and a distance in-between (or height) of A. A side view of this situation is

provided in Figure 5.15 and includes the focal length of the camera and the projection of

1.6 cm CCD

Figure 5.15: Side view of image projection onto CCD element

38

Yo and YI prime as yo and YI (measured in pixels) from a range &. The following derivation

solves for the object height (A):

Y = YO YO Z

similarly, YJ .

A Y'- Y'O == .-- -Y0Z = f'lY0)

Since Yo and Yi are given in pixels, a conversion to centimeters is necessary...

CCD physical size = 1.69 cm and CCD pixel size = 486 pixels

.*. conversion = 1.69 / 486 = 0.00348 cm/pixel

As an example, Figure 5.14 depicts a hallway image with a box placed at a distance of

507 cm from the camera. A pixel analysis reveals that the top and bottom are located along

the vertical axis at 48 and 154 pixels while the sides are at 206 and 276 pixels along the

horizontal axis. The differences provide a height of 106 pixels and a width of 70 pixels.

Applying the above formula, the box dimensions are estimated to be 44x29.5 cm. The

actual dimensions of the box are 44x29 cm, so this approach clearly provides very accurate

results.

39

405

VI. OBSTACLE AVOIDANCE

A. IMAGE ANALYSIS INTERPRETATION

Following object evaluation, the left and right sides of the object as known values and

the approach to applying this information in obstacle avoidance is fairly simple. Five

possible situations can exist with regard to the 'best' path for avoidance by a minimum

distance L. The first two cases occur when the entire obstacle is situated more than L to the

left or right of the current robot path and consequently, do not require maneuvering. In the

third scenario, an obstacle may be positioned such that the current path would bisect iL This

necessitates basing the decision to shift left or right on the presence of other obstacles or

the proximity to surrounding enclosures. Finally, the obstacle may cross the path, extending

more to one side than the other. In these instances, the tendency would be to shift to the side

which causes the least significant movement away from the desired trajectory. Once again,

other factors might be considered.

In general, however, the objective is still to maneuver around the obstacle by at least

L. Since the camera is mounted in line with the center line of the robot, it is reasonable to

consider the horizontal center of the images it generates to be in line with the current robot

path. The exact same relationship which was used in determining the obstacle's dimensions

can also be applied to calculating the distance (D) from the center of the image (or robot

path) to the side along which the robot will pass. Corresponding to the cases discussed

above and referring to Figure 6.1, a value of D > L with the object entirely to one side would

mean that the object will not be of concern while D < L would require a shift by a distance

of L±D. The convention used in the implementation is that a shift to the right is positive

and a shift to the left is negative.

B. PATH GENERATION

At this point, the information available from the vision system, as currently

implemented, provides the data necessary for the robot to alter its current path such that an

41

D > L with obstzle entirely to one side -> Obsacle does not force change in path

L

D < L with obstacle entirely to one side -> Obstacle forces shift of L.D

L

D < L with obstacle directly in path -> Obstacle forces shift of L+D

Figure 6.1: Variation in obstacle avoidance maneuvers

42

obstacle will be avoided by a safe distance L. This essentially amounts to an 'intelligent'

lane change. It is possible, however, to enhance this maneuver and return to the original

path. By enabling a side looking sonar while passing along side the obstacle, its depth can

be determined and a subsequent shift back to the initial path may safely take place. The

combination of the two sensors would lead to the following general algorithm:

- Grab an image while traveling along a particular path.

- Perform image analysis on the image.

- If no object is detected, continue on the current path.

- If an object is detected, analyze object for range and dimension information.

- Determine the 'safest' and least significant maneuver and compute the required

distance to shift left or right.

- Define a new path based on the above input and transition to it.

- Return to the original path once past the object, as detected by side-looking sonar.

Essentially all of the elements in this approach have been covered in detail with the

exception of the method used to defime a path and the subsequent transition to it. Path

definition is a very straight forward task under MML and transitioning between paths is

even easier. First, a configuration must be defined. This is accomplished through a call to

the function defconfiguration with input arguments of x, y, theta, kappa and name,

where the first four arguments are described in Chapter III and name is an arbitrary, yet

unique, label given to each configuration. Next, a path which will include this configuration

is declared via the line function with a single input argument of the configuration name.

Once line has been invoked, MML will automatically determine a smooth path for

transitioning to the new path as well as provide the locomotion control necessary for

steering the robot along these paths.

As an example, if avoidance requires moving left or right a distance A to a parallel

path as shown in Figure 6.2, the actual commands to the robot would be as follows, where

43

a call to the get robO function will provide the current robot configuration in the global

coordinate system:

defcorfiguralion(O, - 0,0 , &local)

getrrobO(&config)

Iine(compose(&config, &local, &config))

There are two important aspects to note in this series of commands. First, the call to

defjconfiguration simply defines an orientation which is physically A to the right or left of

the robot. This is based on the local frame of reference where x is in the direction of motion

and corresponds to a theta of 00, leaving the y axis to describe the distance to either side.

Second, as discussed in Chapter IV, the compose function must be employed in order to

convert this locally based orientation derived from the image analysis into the global frame

of reference in which the robot operates. The shift back to the original path would require

the identical three calls with the exception of using A in the call to def configuration.

D L Al
, -A

Figure 6.2: Obstacle avoidance employing image analysis input for situation decribed in Figure 6.1.c

44

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Results

Experiments employing the integrated system were successful in a number of

regards. The accuracies with respect to dimension and range determination certainly

exceed the expectations which were present upon commencing this work and the pattern

matching implementation appears to provide consistent object recognition. Unfortunately,

testing under fully autonomous conditions was not feasible due to the lack of an on-board

image processing capability. Even without the capability to identify obstacles and ascertain

depth information, the robot gains increased knowledge about the world in which it is

operating compared to operating solely off of sonar output.

2. Concerns

Despite the generally favorable results from this implementation, a number of

factors are still a concern. As with most vision systems, variations in lighting can have an

adverse effect on the ability to properly extract line segments, resulting in improper object

analysis. Another aspect which may hinder the processing is the dependency on accurate

position information for generating the expected view from the model. Robot odometry is

subject to errors due to floor unevenness and wheel slippage which accumulate with time

if left uncorrected. The need for stable robot locomotion to prevent fluctuations in the tilt

angle is also a critical factor, although Yamabico's movements are very smooth. Finally, if

the robot is travelling at medium to high speed, the processing time may prohibit the image

understanding system from providing the necessary avoidance information rapidly enough

to ensure a safe and timely maneuver.

45

B. RECOMMENDATIONS

1. Hardware

Obviously, the biggest physical limitation to this system is the requirement to

have video cables attached to the robot in order to grab an image. Although the ultimate

goal is to perform all processing on board the robot with dedicated hardware specifically

designed for this task, a wireless video link would be an economical, yet practical interim

solution. An added benefit to this upgrade is that when the processing capability is available

on the robot, the wireless link could still be used for remotely monitoring what the robot is

seeing. A pivoting camera, possibly with auto-focus capability, would certainly enhance

the usefulness of vision as a sensor by drastically reducing the field of view and the

directional limitations imposed by a static mounting and the constant focus. Additionally,

an inclinometer mounted to the vehicle could be used to provide accurate tilt angle

measurements.

2. Software

Another potential approach to verifying the tilt angle would be to base its

calculation on interpretation of each image. Just as range to an object is computed by the

height of its base in an image, the reverse could be done, in that knowledge of the height

where the wall meets the floor and the range to the wall is sufficient for determining the tilt

angle. Probably the most promising concept is the use of the recently implemented

automated cartography capability for generating a three-dimensional wire-frame model of

a previously unknown environment. By mapping the walls which enclose the robot and

transforming this data into a 'global' frame of reference, the model building routines could

be directly invoked to create a three-dimensional world model with an arbitrary value for

the height of the enclosure, thus permitting use of the image understanding system in what

was previously an unknown environment.

46

APPENDIX A - MODEL AND EDGE EXTRACTION ROUTINES

The folowing routines provide implementation for the creation of the fifth floor model, the
transformation of a three-dimensional view from a position in the model onto a two-
dimensional plane, image storage structures, and edge extraction of video images. The files
included are the following:
model5th.h, modelgraphics.h, modelvisibility.h, model2d+d.h, edgesupport.h,
npsimagesuport.h

/* FILE: Sth.h

AUTHORS: LT James Stein / LT Mark DeClue

THESIS ADVISOR: Dr. Kanayama

CALLS TO FILES: 2d+.h

COMMENTS: This is the construction file for the 2d÷ model of the
5th floor Spanagel Hall (1st half only - up to glass double doors). All
coordinates are in inches while all angles are in degrees.

The main function 'make_worldO is called to
build the model using function calls to file 2d+.h. Type definitions for
WORLD, POLYHEDRON, POLYGON, and VERTEX can be found at the top of this file
also.

Notice that the floor of Hl is one huge, concave polygon which
makes up the floor to the hallway as well as all of the office floors. To
this
floor numerous ceilings are added for offices, door jams, and main
corridors.
Doors, lights, and molding strips are then added to the model as separate
polyhedra.
*/

WORLD *makeworld()
(

WORLD *W;
POLYHEDRON *H1, *H2, *H3, *H4, *H5, *H6, *H7, *H8, *H9, *H10, *Hll, *H12,

*H13, *H14, *H15, *H16, *H17, *H18, *H19, *H20, *H21, *H22, *H23, *H24,
*H25, *H26, *H27, *H28, *H29, *H30, *H31, *H32, ýH33, *H34, *H35, *H36,
*H37, *H38. *H39. *H40. *H41, *H42, *H43, *H44, *H45, -H46, -H47, *H48;

POLYGON *HlP1, *HlP2, *H1P3,
*H1P4, *HlP5 ,*HlP6, *HlP7, *H1P8, *HIP9, *HlP10, *HlPll, *HlP12,

*HlPl3, *HlP14, *HIP15, *HlPl6, *H1P17, *H1P18, *HlP19, *H1P20, *H1P21,
*H1P22, *HIP23, *HIP24, *H1P25, *H1P26, *H1P27, *H1P28, *H1P29, *H1P30,
*H1P31, *H1P32, *H1P33, *HIP34, *H1P35, *H1P36, *H1P37, *H1P38, *H1P39,

*H1P40, *HlP41, *H1P42, *H1P43, *HIP44, *H1P45, *H1P46, *H1P47, *H1P48,

47

*HlP49, *HlP5O, *HIPSI, *HlP52, *HIP53, 'H1P54, *HlP55, *H1P56, *HlP57,
*HlP58, *HlP59, *H1P6, *H1P61, *H1P62. *H1P63, *H1P64, *H1P65,

*H2PI, *H2P2, *H3Pl, *H3P2, *H4P1, *H4P2, *H5Pl, *H5P2,
*H6PI, *H7PI, *H7P2, *H8PI, *H8P2, -H9P1, -H9P2, WHIOPI, *H1OP2,

*H11Pl, *Hl1P2, *H12P1, *H12P2, *H13P2, *H13P2. *H14Pl, -H14P2, *41SP1.
*HlSP2, *H16P1, *H16P2, *H17P1, *H17P2, -HlBPl, *H1BP2, *H19P1. -Hl9P2,

*H2OPl, *H20P2,
*H21P1, -&-21P2, *H22P1, 'H22P2, *H23P1, *1:23P2, *H24P1. *H24P2, *H25P1,
*H25P2, *H26P1, *H26P2, *H27P1, *H27P2, *128P1, -H28P2, -H29Pl, *H29P2,

*H30Pl, *H30P2,
*H3lPl, *H31P2, *H32PI, *H32P2, *H33PI, *H33P2, *H34P1, *H34P2, *H35P1,
*H35P2, MH36P1, *H36P2, *H3?Pl, *H37P2, *H38P1, -H38P2, *H39P1, *H39P2,
*H40Pl, 'H4OP2, *H41P1, *H41P2, *H42P1, H42P2, *H43P1, *H43P2, *H44PI,
*H44P2, *H45PI, *H45P2. *H46P3, *H46P2, *H47P1, -H47P2, -H48P1. *H48P2,

last...p;

VERTEX *H1PlV1, *HlP1V2, *HlPlV3, *H1P1V4, -H1PlVS, *H1P11V6, -HlP1V7,
*HIP1V8,*H1PlV9,*HlPlVlO, *H1PlVl1, *HlPlV12, *HlPlV3, -HlPlV14,
*HlP1V15,*HlPlV1E.,*H1P1V17, *HlPlVlS -H1PIV19, *H1P1V2O,

*HlPlV21,
*HlP1V22,*HIP1V23,*HlPlV24, *HlPlV25, *HlP1V26, *HlPlV27,

*HlP1V28,
* H1PlV29,*H1IP1V3O.*HlPlV31, *HlP1V32. *HlP1V33, *HlPlV34,

*HlP1V35,
*HlPlV36,*HlP1V37,*HlP1V38, *H1P1V39, *H1PlV4O, *H1PlV41,

*HlP1V42,
*HIPIV43, *HlP1V44. *H1P1V45, *HlP1V46, *H1P1V47, *HlP1V48,

*H1PlV49,
" H1PlV5O,*H1PlV51,*H1PlV52, *H1P1VS3, *H1PIV54, *HlP1V55,

*H1P1V56,
" HlP1V57, *HlPlV58, *',.P1V59, *H1P1V6O, *HlP1V61, *HlP1V62,

*H1P1V63,
" HlPlV64, *HlP1V65, t HlPlV66, *HlPlV67, *HlP1V6S, *HlP1V69,

*HlPlV70,

" HlPlV2a, *HlP1V2b, *HlPlV2c, *HlPlV2d, *HlPlV2e, *H1PlV2f,

*H1P1V4a, *H1P1V4b, *HlPlV4c, *HlPlV4d, *HlP1V4e, *H1P1V4f,
*HlP1V6a, *H1P1V6b, *H1P1V6c, *HlPlx?6d, *HlPlV6e, *HlP1Vf,
*HlP1V~a, *HlP1V8b, *HlP1V8c, *HlPlV8d, *H1PlV8e, *HlP1V8f,

*HlP1V1Oa, *HlPlVlOb, *HlP1VOc, *H1P1V1Od, *H1P1V1Oe, *H1P1V1Of,
*HlPlV12a, *HlP1V12b, *H1PlV12c, *H1P1Vl2d, *HlPlVl2e, *HlP1V12f,
*H1PlVl4a, *HlPlVl4b, *HlPlV14c, *HlP1Vl4d, *H1P1V14e, *HlP1Vl4f,
*HlPlVl6a, *H1PlVl6b, *HlPlVl6c, *HlP1Vl6d, *HlPlVl6e, *MlP1V16f,

*HlPlVl8a, *HlPlVl8b, *HlP1V18c, *H1P1Vl8d, *HlPlVl8e, *HlP1V18f,
*HlP1V2Oa, *HlPlV2Ob, *HlPlV2Oc, *HlP1V2Od, *H1P1V2Oe, *H1P1V2Of,
*HlP1V22a, *H1PlV22b,

*HlPlV24a, *HlPlV24b, *HlPlV24c, *HlplV24d, *HlPlV24e, *HlPlV24f,
*HlP1V26a, *HlPlV26b, *HlPlV26c, *HlPlV26d, *HlPV26e, *HlPlV26f,

*H1P1V28a, *HlPlV28b, *HlPlV28c, *HlPlV28d, *H1PlV28e, *H1P1V28f,
*H1P1V3Oa, *HlPlV:Ob, *HlPlV3Oc, *HlPV3Od, *H1P1V3Oe, *HlP1V3Of,

48

*HlP1V32a, *H1PlV32b, *H1P1V32c, *H1PlV32d, *H1PlV32e, *H1P1V32f,
*HlPlV34a, *HlPlV34b, *H1P1V34c, *H1PlV34d, *HlPlV354e, *HlP1V34f,
*HlP1V36a, *HlPlV36b, *HlP1V36c, *HlPlV36d, *HlPlV36e, *HlPlV36f,
*HlPlV38a, *H1PIV3Sb, *HlPlV38c, *HlP1V38d, *H1P1V38e, *H1P1V38f,
*HlPlV4Oa, *HlPlV.4Db, *H1PlV4Oc, *HlPlV4Od, *HlPlV4Oe, *H1P1V4Of,
*HlPlV42a, *HlP1V42b, *HlP1V42c, *H1P1V42d, *H1PlV42e, *H1PlV42f,
'HlPlV44a, *H1P1V44b, *HlPV44c, *HlPlV44d, *HlPlV44e, *HlPlV44f,
*HlPlV46a, *HlPlV46b, *HlP1V46c, *HlPlV46d, *H1PlV46e, *HlPlV46f,
*H1PlV4Ba, *HlPlV48b, *H1P1V48c, *H1PlV4Sd, *HlPlV4B., *HlPlV48f,
*HlPlVSOa, *HlP1V50b, *HlplVSOc, *H1PV5Od, *HlPlV5Oe, *HlPlVsOf.
*HlPlV52a, *HlPlV52b, *H1PlV52c, *H1P1V52d, *HlPlV52e. *HlP1V52t,
*HlPlV55a, *HlP1VS5b, *HlP1V55c, *HlP1V55d, *HlPlV55e, *HlPlV55f,
*HlPlV58a, *HlPlV58b, *H1PaV58c, *HlPlV58d, *H1P1V58e, *HlP1V58f,
*H1PlV6Oa, *HlPlV6Ob, *HlPlV6Oc, *H1PlV6Od, *H1PlV6Oe, *HlPlV60f,
*HlPlV63a, *H1P1V63b, *H1PlV63c, *HlP1V63d, *H1P1V63e, *HlPlV63f,
*HlPlV63g.
*HlP1V65a, *HlPlV65b, *HlP1V65c, *HlP1V65d, *HlP1V65e, *HlPlV65f,
*HlPlV65g,

*H1PlV68a, *H1P1V68b, *H1P1V6Bc, *H1PlV68d, *H1P1V6Be, *HlPlV68f,

*HlP2V1, *HlP2V2, *H1P2V3, *H1P2V4,
*H1P3V1, *HlP3V2, *H1P3V3, *HlP3V4,

*HlP4V1, *H1P4V2, *HlP4V3, *H1P4V4,
*HP5V1, *H1P5V2, *HlP5V3, *H1P5V4,
*HlP6V1, *H1P6V2, *H1P6V3, *jH1P6V4,
*H1P7Vl, -H1P7V2, *HlP7V3, *HlP7V4,
*HlP8V1, *H1P8V2, *HIP8V3, *H1P8V4,

*HlP9VI, *HlP9V2, *HlP9V3, *HlP9V4,

*HlP1OV1, *HlPlOV2, *HlP1QV3, *HlPlGV4,

*H1Pl2Vl, *HlPllV2, *HlP12V3, *HlP12V4,
*H1P13V1 *H1P12V2, *HlPl2V3, *H1P13V4,
*H1P14VI, *H1P14V2, *HlPl4V3, *H1Pl4V4,
*HlP1SVl, *HI.Pl4V2, *H1P14V3, *H1P14V4,
*HlPl6Vl, *HlP1EV2, *H1P16V3, *H1P16V4,
*HlPl7V1, *HlP17V2, *HlP17V3, *HlP17V4,
*HlP18V1, *HlP18V2, *HlPl8V3, *H1P1SV4,
*MlP19Vl, *H1P18V2, *H1P19V3, *HlP19V4,
*HlP2OVl, *HlP2OV2, *HP1P2V3, *HlP2OV4,
*HlP21Vl, *HlP21V2, *H1P21V3, *HlP20V4,

*HlP22V1, *HlP22V2, *H1P22V3, *H1P22V4,

*HlP23V1. *HlP23V2, *HlP23V3, *HlP23V4,
*HlP24Vl, *H1P24V2, *HlP24V3, *H1P24V4,
*HlP25Vl, *H1P25V2, *H1P25V3, *HlP25V4,
*HlP26Vl, *HlP26V2, *HP26V3, *HlP26V4,
*HlP27V1. *H1P27V2, *H1P27V3, *H1P27V4,
*HlP28Vl, *HlP28V2, *HlP28V3, *H1P28V4,
*HlP29VI, *H1P29V2, *H1P29V3, *HlP29V4,

*HlP3OVl, *HlP30V2, *HIP30V3, *HlP30V4,
*HlP31V1, *H1P3lV2, *H1P31V3, *HlP3lV4, *HlP3lV5,
*HlP32V1, *H1P32V2, *HlP32V3, *H1P32V4, *H1P32V5,

49

*H1P33V1, *HlP33V2, *H1P33V3, *HlP33V4,
*HlP34Vl, *HJP34V2, *HlP34V3, *H1P34V4,
*HlP35VI, *HlP35V2, *HlP35V3, *HlP35V4,
*HlP36V1 *HlP36V2, *H1P36V3. *HlP36V4,
*H1P37Vl, *HlP37V2. *HI1P37V3, *HlP37V4,
*H1P3BV1, *H1P38V2, *HlP38V3, *HlP38V4,
N1lP39Vl, *HlP39V2, *HlP39V3, *HlP39V4,
*H1P4OV1, *H1P4OV2, *111P40V3, *HlP40V4,
*HlP4lVl, *HlP4lV2, *H1P42V3, *HlP41V4,
*H1P42VI, *H1P42V2, *HlP42V3. *HlP42V4,
*H1P43Vl, *H1P43V2, *H1P43V3, *N1P43V4,
*J41P44Vl, *HlP44V2, *HlP44V3, *HlP44V4,
-HlP4SVl, *HlP4SV2, -HP45V3, -HlP45V4,
*H1P46Vl, *H1P46V2, *141P46V3, *H1P46V4,
*HlP47Vl, *HP47V2, -HlP47V3, *HlP47V4.
*HlP4BV1, *H1P48V2, *141P48V3, *HP48V4,
*HlP49Vl, *HlP49V2, *HlP49V3, *HlP49V4,
*HlPSOV1, *HP50V2, *HlP50V3, *HlP5OV4,
*H1PS1Vl *HlP5lV2, *H1P5lV3, *H1P5lV4,
*HlP52Vl, *HlP52V2. -HlP52V3, *HlP52V4,
*H1P53V1, *HlP53V2, *H1P53V3, *HlP53V4,

'HlP54Vlg -HIP54V2, *HlP54V3, *H1P54V4,
*HlP55Vl, *HlP55V2, *HlP55V3, *H1P55V4,
*HlP56V1, *H1P56V2, *HlP56V3, *H1P56V4,
*H1P57Vl, *H1P57V2, *H1P57V3, -HlP57V4,
*HlP5SV1, *H1P5BV2, *HlP5SV3. *HlP58V4,
*HlP59Vl, *HlP59V2, *HlP59V3, *HlP59V4,
*HlP6OVl, *HlP6OV2, *HlP60V3, -HlP6OV4,
*HlP6lVl, *M1PG1V2, *HlP6lV3, *HP61V4,

*HlP62V1, *HlP62V2, *H1P62V3, *H1P62V4,
*H1P63V1, *HlP63V2, *HlP63V3, *H1P63V4,
*HlP64V1. *HlP64V2, *H1P64V3, *HlP64V4,
*H1P65VI, *H1P65V2, *HlP65V3, *HlP65V4,

*H2PlV1, *H2PlV2, *H2PlV3, *H2PlV4, *H2P2Vl, *H2P2V2, -H2P2V3, -H2P2V4,
*H3PIV1, *H3P1V2, *H3P1V3, *H3PlV4, *H3P2V1, *H3P2V2, *H3P2V3, *H3P2V4,
*H4PIV1. *H4P1V2, *H4PlV3. *H4PlV4, *H4P2Vl, *H4P2V2, *H4P2V3, *H4P2V4,
*H5PIV1, *H5PlV2, *H5PlV3, *H5P1V4, *HSP2V1, *HSP2V2, *H5P2V3, H5P2V4,
*H6PIV1, *H6PlV2, *H6P1V3, *H6PlV4,
*H7PIV1, *H7PIV2, *H7PlV3, *H7P1V4, *H7P2Vl, *H7P2V2, *H7P2V3, *H7P2V4,
*HSPlV1, H8PlV2, *H8PlV3, *H8PlV4, *H8P2Vl, *H8P2V2, *H8P2V3. *H8P2V4,
*H9PlV1. *H9PlV2, *H9P1V3, *H9PlV4, *H9P2V1, *H9P2V2, *H9P2V3, *H9P2V4,
-H1OPlVl, *HlOP1V2, *HlOP1V3, 1410PlV4, *HlOP2V1, *H1OP2V2. *HlOP2V3,
*Hl0P2V4,
*HllPlV1, *Hl1P1V2, *HllP1V3, *HllPlV4, *Hl1P2VI, *Hl1P2V2, *Hl1P2V3,

*Hl2P1Vl, *H12PIV2, *H12PIV3, *Hl2PIV4, *H12P2V1, *Hl2P2V2, *H12P2V3,
-Hl2P2V4,
*H13P1V1. *Hl3PlV2, *Hl3PlV3, *H13P1V4, *Hl3P2Vl, *Hl3P2V2. *Hl3P2V3,

*H14PlV1, *Hl4P1V2, *H14PV3, *Hl4P1V4, *Hl4P2Vl, *Hl4P2V2, *H14P2V3,

50

*Hl4P2V4,
*HlSPlV1, *Hl5PlV2, *Hl5PlV3, *Hl5PlV4, *H1SP2VI, *Hl5P2V2, *Hl5P2V3,
*Hl5P2V4,

*Hl6PlVl, *Hl6PlV-&, -Hl6PlV3, *Hl6PlV4, *Hl6P2VI, *Hl6P2V2, *H16P2V3,
*Hl6P2V4,
*H17P1Vl, *Hl7PlV2, *Hl7P1V3, *Hl7PlV4, -Hl7P2VI, *Hl7P2V2, *Hl7P2V3,

*H17P2V4,
*HlSPlVl, *HlSP1V2, *H1BP1V3. *Hl8PlV4, *HlSP2Vl, *H18P2V2, *HlSP2V3,
*HlSP2V4.

*H19PlV1. *Hl9PlV2, *Hl9PlV3, *Hl9P1V4, *Hl9P2Vl, *Hl9P2V2, *H9P2V3,
*Hl9P2V4,
*H2OPlVl, *H20PlV2, -H20PlV3, *H20PlV4, -H20P2VI, *H20P2V2, *H20P2V3,
*H20P2V4,
*H2lPlVl. *H2lPlV2, *H2lPlV3, *H21PlV4, *H2lP2V1, *H2lP2V2, *H2lP2V3,
*H2lP2V4,
*H22P1V1, *H22PlV2, *H22PlV3, *H22P1V4, *H22P2Vl, *H22P2V2, *H22P2V3,
*H22P2V4,
*H23PlVl, *H23P1V2, *H23PlV3, *H23P1V4, -H23P2Vl. *H23P2V2, *H23P2V3,

*H23P2V4,
*H24P1V1. *H24PlV2, *H24PlV3, *H24PlV4, *H24P2V1, *H24P2V2, *H24P2V3,

*H24P2V4,
*H25PIV1, *H25PlV2, *H25PlV3, *H25P1V4, *H25P2Vl, -H25P2V2, -H25P2V3,
*H25P2V4,
*H26PlV1, *H26PlV2, -H26PlV3, *H26PlV4, *H26P2V1, *H26P2V2, *H26P2V3,
*H26P2V4,
*H27PlVl, *H27PIV2, -H27PlV3, *H27PlV4, -H27P2VI, *H27P2V2, *H27P2V3,

*H27P2V4,
*H28P1Vl, *H28PlV2, *H28PlV3. *H28PlV4, *H28P2Vl, *H28P2V2, *H28P2V3,
*H28P2V4,
*H29PlVl, *H29P1V2, *H29PlV3, -H29PlV4, *H29P2Vl, -H29P2V2, -H29P2V3,
*H29P2V4,
*H3OPIV1, *H30PlV2, *H30PlV3, *H30PlV4, *H30P2Vl, *H30P2V2, *H30P2V3,
*H30P2V4,

*H3lPlV1. H31P1V2, *H3lP1V3, *H31PlV4, *H3lP2V1, *H31P2V2, *H3lP2V3,
*M3lP2V4,
*H32P1V1, *H32PlV2, *H32P1V3, *H32PlV4, *H32P2Vl, *H32P2V2, *H32P2V3,
*H32P2V4,
*H33P1V1, *H33P1V2, *H33PlV3, *H33P1V4, *H33P2V1, *H33P2V2, *H33P2V3.
*H33P2V4,
*H34PIV1, *H34PlV2, *H34P1V3, *H34PlV4, *H34P2V1, *H34P2V2, *H34P2V3,
*H34P2V4,
*H35P1V1, *H35P1V2, *H35P1V3, *H35PlV4, *H35P2V1, *Hl5P2V2, *H35P2V3,
*H35P2V4,
*H36PIV1, *H36P1V2, H36PlV3, *H36P1V4, *H36P2V1, *H36P2V2, *H36P2V3,
*H3 6P2V4,
*H37PlV1, *H37PlV2, *H37PlV3, *H37PlV4, *H37P2Vl, *H37P2V2, *H37P2V3,
*H37P2V4,
*H38PlV1, *H3BPlV2, *H38P1V3, -H38PlV4, *H3SP2V1. *H38P2V2, *H38P2V3,
*H38P2V4,
*H39PlVl, *H39P1V2, -H39PlV3, *H39PlV4, *H39P2V1, *H39P2V2, *H39P2V3,

*H39P2V4,

51

*H4OPlV1, *H40P1V2, *H4OP1V3, *H40PlV4, *H40P2Vl, *H40P2V2. *H40P2V3.
*H40P2V4,
*H4lPlVl, *H4lPlV2, *j4lPlV3, *H41P1V4, *H4lP2Vl, *H4lP2V2, *H4lP2V3,
*H4lP2V4,
*H42P1Vl, *H42P1V2, *H42plV3, *H42PIV4, *H42P2V1, *H42P2V2, *H42P2V3,
*H42P2V4,
*H43PlV1, *H43P1V2, *H43P1V3, *H43PlV4, *1443P2Vl. *H43P2V2, *H43P2V3,
*H43P2V4,
-H44P1Vl, -H44PlV2, *H44P1V3, *H44P1V4, -H44P2Vl, -H44P2V2, *H44P2V3,
*H44P2V4,
*H45PlVl, *H45PlV2, -H45P1V3, *H45P1V4, -H45P2Vl, -H45P2V2, *H45P2V3,

*H45P2V4,
*H46PlVl, *H46PlV2. *H46PlV3, -H46PlV4, *H46P2Vl, -H46P2V2. -H46P2V3,
*H46P2V4,
*H47P1Vl, *H47P1V2, -H47PlV3, *H47PlV4, *H47P2Vl, *H47P2V2, *H47P2V3,
*H47P2V4,
*H4SPlVl, *H48PlV2, *H48P1V3, *H48P1V4, *H4SP2Vl, *H48P2V2, *H48P2V3,
*H48P2V4,
last....v;

W=add_world("5th-floor*,9);
Hl=add-..ph(Ofront-hall*,10,W,1,0);
HlPl=add...pg(H1, 0.0,1,0);
HIPM~ = addt-vertex(H1P1,O.0,O.O);
H1PlV2 = add-vertex(H1P1,0.0,239.5); /*rrn 506*/
HlPlV2a = add....ertex(HlPl,-5.3,239.5);
HlPlV2b = add-vertex(H1P1,-5.3,203.3);
HlPlV2c = addý_vertex(H1P,-244.1,203.3);
HlPlV2d = add-vertex(H1P1,-244.1,309.4);
HlPlV2e = add_vertex(H1P1.-5.3,309.4);
HlPlV2f = add_vertex(H1P1,-5.3,275.2);

HlP1V3 = ad&..vertex(HlPl,0.0,275.2);
HlPlV4 = add-vertex(H1P1,0.0,713.7); /*rin 510*/
HlPlV4& = add~vertex(H1P1,-5.3,713.7);
HlPlV4b = add_vertex(H1P1,-5.3,677.5);
H1PlV4c = add_vertex(H1P1,-244.1,677.5);
HlPlV4d = add_vertex(H1P1,-244.1,783.6);
H1P1V4e = add_vertexCHlPl,-5.3,783.6);
HlP1V4f = add-vertex(H1P1,-5.3,749.4);

HlPlV5 = add...vertex(HlPI,0.0,749.4);
HlPlV6 = add~vertex(H1P1,0.0,825.9); /* no 512*!
HlPlV6a = add_vertex(H1P1,-5.3,825.9);
HlPlV6b = add_.vertex(HMP, -5.3,789.7);
HlPlV6c = add~vertex(H1P1,-244.1,789.7);
HlPlV6d = add~vertex(H1P1,-244.1,895.S);
HlP1V6e = add~vertex(H1P1,-5.3,895.8);
H3.P1V6f = add-yertex(H1P1. -5.3, 861.6);

HlPlV7 = add..yertex(H1P1,O.0,861.6);

52

HlPlV$ add..vertex(H1P1,0.O,937.5); 1* rm 514*/
H1F1V~a uadd-vortex(HlP1,-5.3,937.5);
H1P1V~b *add~vertox(HlP1,-5.3,901.3);
HlP1V~c *add-vortox(HlPl,-244.1,901.3);
HlP1V8d aad&-v*rt*x(HlPl,-244.1,1007.4);
)11P1V8. ad&..vertex(HlPl,-5.3,1007.4);
H1P1V~f & d&..vertex(HlP1,-5.3,973.2);

HlPlV9 =add-vert~x(II1Pl,0.0,973.2);
H1P1V1O =add...ertex(HlP1,O.O.1049.7); 1' rm 516 *
HlP1V1Oa a add..yertex(HlPl,-5.3,1049.7);
HiPlVlOb = add...vertex(HlPl1-5.3,1013.5);
HIPIViOc a add~vertox(H1Pl,-244.1,1013.5);
HiPlViOd a add..vertex(HlPl,-244.1,1119.6);
H1P1V1Oe a add..vertex(HlPl,-5.3,1119.6);
HlPlVlOf cadd..vertex(HlPl.-5.3,1085.4);

HlPlVil add...vertex(HlPl,0.0,1085.4);
HlPlVl2= add...vertex(HlPl,0.0,1161.7); 1* rm 518 *
HlP1V12a a' add_vortex(H1P1,-5.3,1161.7);
H1PIV12b = ad4_.vertox(HlP1,-5.3,1125.5);
HlP1Vl2c = add_vertex(H1P1,-244.1,1125.5);
HlPlVl2d = add_vertex(H1P1, -244.1, 1231.6);
HlPlVl2e = add-_veztex(H1P1,-5.3. 1231.6);
HlPlVl2f = add~vertex(H1P1,-5.3,1197.4);

HlPlV13 =add-vertex(H1P1,0.0,1197.4);
HlP1V14 =add-ývertex(H1P,0.0,1273.4); /* rm 520 ~
HlPlV14a = add~vertex(H1P1,-5.3,1273.4);
H1P1Vl4b = add,..vertex(HlP1,-5.3, 1237.2);
HlPlVl4c = add...vertex(H1P1,-244.1,1237.2);
HlPlVl4d = add...vertex(H1Pl,-244.1,1343.3);
HlP1Vl4e = add-vertex(H1P1,-5.3,1343.3);
H1P1V14f = add~vertex(H1P1,-5.3,1309.1);

HlPiVlS =add-vemtex(H1P1,0.0,1309.1);
II1PlVl6 =add_vertex(Hl'1,0.0,1429.6); /* rm S22R *
H1P1V16a = add_ývertex(HLC-,-5.3,1429.6);
H1P1V16b = add_vertex(H1P1,-5.3, 1393.4);
HlP1V16c = add...vemtex(H1P1,-244.1,1393.4);
H1P1V16d = add_vertex(H1P1,-244.1,1499.5);
H1PlVl6e w add_v'ertex(H1P1,-5.3,1499.5);
HlPlV16f = add...vertex(H1P1,-5.3, 1461.3);

H1P1V17 = add...vertex(HlPl,0.0,1461.3);
HMPIV = add...vertex(H1P1O0.0,1488.O); 1* FD #1 *
HiPlVi~a = add..vertex(H1P1,-5.5, 1488.0);
H1P1V18b = add..vertex(H1P1,-5.5,1486.0);
H1P1V18c = ad&..vemtex(H1Pl,-50.0,1486.O);
H1PlV1Bd a ad&..v~rtex(HlPl, -50.01 1562.0);
HlPlVi~e = add...vertex(H1P1,-5.5, 1562.0);

53

II1PlV1Sf a ad&..vert*X(HlP1,-5.5. 1560.0);

HlPlV19 = add_vertex(H1P1,0.O.1560.0);
HlPlV20 = add...vert~x(HlPl,0.O.1583.3); I* rm 524 *

HlPlV2Oa = add~vortex(HlP1,-5.3,1583.3);
HlPlV2Ob = add.vert~xCH1PI,-5.3,1547.1);
HlPlV2Oc = add vertox(141Pl,-244.1,1547.1);
H1PlV2Od = add...vertex(HIPI,-244.1,1653.2);
HlPlV2O. z add..yertex(HlP1, -5.3, 1653.2);
HlP1V20f = add-vortexCHlPl,-5.3,1619.0);

HlPlV21 = add-vortex(H1P1,0.0,1619.0);
HlPlV22 = addA-vortex(H1P1.0.0,1650.4); I' water cooler *
HlP1V22a a add.yortex(HlPl,-30.0,1650.4);
HlPlV22b = add-vortex(H1Pl,-30.0,1684.5);
HlPlV23 = add~vertex(H1P1,0.0,1684.5);
HlPlV24 = add~vertex(N1P1.,0.0,1754.5); /* rm 526R *
HlPlV24a = add.yertoxCHlPl,-5.3,1754.5);
HlPlV24b = add..vertex(HlPl,-5.3, 1718.3);
HlPlV24c = add__vertex(HlP1,-244.1,1718.3);
HlPlV24d = add_vertex(H1P1,-244.1,1790.0);
HlPlV24e = add...ertex(H1P1,-5.3,1790.0);
HlPlV24f = add....ertexCHlPl,-5.3,1786.2);

HlP1V25 = add_vertex(H1P1,0.0,1786.2);
HlPlV26 = add_vertex(H1P1,0.0,1836.4); /* rm 528A *
HlPlV26a = add..vertex(H1Pl,-5.3,1836.4);
HlP1V26b = add-vertexCHlPL,-5.3,1800.2);
HlPlV26c = add...ertexlHlPl,-244.1,1800.2);
H1P1V26d = add_vertex(H1P1,-244.1,1875.0);
HlPlV26e = add__vertex(H1Pl,-5.3,1875.0);
HlPlV26f = add..vertex(HlPl,-5.3, 1872.1);

111PlV27 = add..vertex(H1Pl,0.0, 1872.1);
HlPlV28 = add_vertex(H1Pl,0.0,1919.1); /* rm 528B
HlPlV28a = add...yertex(H1P1,-5.3,1919.1);
HIP1V28b = add...vertex(HlPl,-5.3,1882.9);
HlPlV28c = add_.vertex(H1P1,-244.1,1882.9);
HlP1V28d = add..vertex(HlPl,-244.1, 1989.0);
HlPlV28e = ad&..vertex(H1P1,-5.3,1989.0);
H1PlV28f = ad&..vortox(H1P1,-5.3,1954.B);

H1PlV29 = add_vertexCHlPl,0.0,1954.B);
HlPlV3O = add~vertex(HlP1,0.0,2030.4); /* rm 530A *
HlPlV3Oa = add~vertex(HlP1.-5.3,2030.4);
HlP1V3Ob = add...vortex(HlPl,-5.3,1994.2);
H1P1V3Oc = ad&..vertox(H1P1,-244.1,1994.2);
HlP1V3Od = add~vortex(H1P1,-244.1,2100.3);
H1P1V30e = add~vertex(H1P1,-5.3,2100.3);
HlP1V3Of = ad&..vertex(H1P1,-5.3,2066.1);

54

HlPlV31 u add-vortex(HlPl,0.0,2066.1);
HlPIV32 a add..vertex(HlP1,O.O,2195.1); /* nn 530B
H1P1V32a a add~vertex(HlPl, -5.3,2195.1);
H1PlV32b a add..yertex(HlPl,-5.3,2158.8);
HlPlV32c = add..y~rt~x(HlPl, -244.1,2158.8);
H1P1V32d a add-vertex(H1P1,-244.1,2250.O);
HlPlV32e a add_veztex(H1P1.-5.3.2250.0);
HlP1V32f = add..vertex(HlPl,-5.3.2230.8);

HlPlV33 = add..yertex(HlPI,0.0,2230.8);
HlPlV34 = ad&..vortox(HlPl,O.0,2253.8); /* n~n 530C *
H1P1V34a = add-vertex(H1P1,-5.3,2253.S);
HlPlV34b =add~vertex(H1P1,-5.3,2251.0);
H1P1V34c = add...vertox(HlP1,-244.1,2251.0);
HlPlV34d = add....vrtex(H1Pl,-244.1,2350.0);
HlP1V34e = add_vortex(H1Pl,-5.3,2350.0);
HlP1V34f = add...vertex(HlPl,-5.3,2289.5);

HlP1V35 = add...vertex(HlPl,0.0,2289.5);
HlPlV36 = add_vertex(H1P1,0.O,2351.2);
HlP1V37 = add_vertex(H1P1,98.0,2351.2);
HlPlV3B = add...vertex(H1Ii,98.0,2171.9); /* rm 4211
HlPlV38a = add~vertex(HlPl,103.3,2171.9);
HlP1V3Sb = add..vertex(HlPl,103.3,2206.6);
HlP1V38c = add_vertex(H1P1,342.1,2206.6);
H1PlV38d = add~vertex(H1P1,342.1,2099.5);
HlPlV38e = add....ertex(H1P1,103.3,2099.5);
HlPlV3Bf = add....ertex(HlP1.103.3.2136.2);

HlPlV39 = add-vortex(H1P,98.0,2136.2);
HlP1V40 = add~vertex(H1P1,98.0,1937.1); /* rm 531 ~
HlPlV4Oa = ad&..vertex(HlP1,103.3,1937.7);
H1PlV4Ob = add_vertex(H1P1,103.3,1972.7);
HlPlV40c = add_vertex(H1P1,342.1,1972.7);
HlP1V40d = addj_vertex(H1P1,342.1,1865.6);
HlPlV40e = add...ertex(HIP1,103.3,1865.6);
H1PlV4Of = add_vertex(H1P1,103.3,1877.7);

HlP1V41 = add...vertex(IiPl,98.0,1877.7);
H1PlV42 = add-vortex(H1P1,98.0,1744.5); 1* rm 529
HIP1V42a = add...vertax(H1Pl,103.3,1744.5);
HlPlV42b = add_vertex(H1P1,103.3,1779.5);
HIP1V42c = add..yertex(H1P1,342.1,1779.5);
H1P1V42d = add~vertox(H1P1,342.1,1672.4);
HlPlV42* = add-vertox(HlPl,103.3,1672.4);
HlPlV42f = add...vertex(HlPl,103.3,1684.5);

HlPlV43 = add...vertex(H1Pl,98.O,1684.5);
H1P1V44 a ad&..vortex(HlPl.98.0,1522.4); 1* rm 527
HlPlV44a = add-vertex(H1Pl,103.3,1522.4);
HlPlV44b = add..vertex(HlPl, 103.3,1557.4);

H1P1V44c a add...vortex(HlP1,342.1,1557.4);
HlPlV44d a add...yrtex(HlPl,342.1,j4S0.3);
HlP1V44o a add..yertex(H1P1,103.3,1450.3);
HlP1V44f = ad&..vertex(HlP1,103.3,1462.4);

H1P1V45 a add...v~rtex(H1P1.9S.0,1462.4);
H1PlV46 = add..yert~x(HlPl,98.0,1342.7); /* rm 5251
H1PlV46a z add...vort~x(H1P1,103.3, 1342.7);
HlPlV46b a add.~.vertex(HlPl,103.3,1377.7);
HlP1V46c = add..vortex(HlPl,342.1, 1377.7);
HlPlV46d a add...vertex(HlPl,342.1,1270.6);
H1PlV46e a add....vrtex(H1Pl,103.3,1270.6);
H1PlV46t = addLvertex(II1P1,103.3,1307.0);

H1P1V47 a ad&..vort~x(H1P1,98.O, 1307.0);
HlPIV48 a add...vertex(HlF1,98.O,1118.8); 1* rm 5231
HlP1V48a = add~vertox(H1P1,103.3,1118.S);
HlPlV48b aadd-vert~x(H1P1,103.3. 1153.8);
HlPlV48c = add-vertox(HIP1,342.1,1153.S);
HIPIV48d = add-vertex(141P1.342.1. 1046.7);
HlPlV489 = add-vert~x(N1P1,103.3,1046.7);
HlPlV48f = add...vortax(HIP1,103.3,1083.1);

HlPlV49 = add-vertex(H1P1, 98.0,1083.1);
HlPlV5O = add...vertex(H1Pl,98.0,796.1); 1* rm 521 ~
H1P1V5Oa =add-.vortex(HlPl.103.3,796.1);
HIPIV50b = add...vertex(HlP1,103.3,831.1);
H1PlV5Oc = add..yert~x(HIP1,342.1,831.1);
HlPlv5Od = add-vertex(H1P1,342.1,724.0);
HlP1V5O. = add...vertex(H1P1.103.3,724.0);
HlPlV50f = add-vertex(H1P1,103..3,760.4);

HlPlV51 = add....ertex(H1P1, 98.0,760.4);
HlPlVS2 = add...vertex(H1P1,98.0,564.5); /* nii 519 *

H1P1V52a = add-vertex(H1P1,103.3,564.5);
H1PlV52b = addLvertexCHlPl,103.3,599.5);
H1PlV52c = add-vertex(H1P1,342.1,599.5);
H1PlV52d = add..yertex(H1P1,342.1,492.4);
H1P1V52e = add..yertex(HlPl,103.3,492.4);
HlPlV52f = add-vertexCH1Pl,103.3,528.8);

H1P'LV53 =add...vertextHIP1,98.0,528.8);
HlPlV54 = add..yertex(HlP1,98.O,413.9); /* corners ~
H1PlV55 = add-.vertex(H1P1.257.9,413.9); /* rm ?
H1P1V55a = add-.vortex(H1P1,257.9,419.2);
H1P1V55b a add-vertex(HIP1.221.7,419.2);
H1P1V55c = add-vertex(HlP1,221.7,500.0);
HlPlV55d w add..yortex(HlP1,300.0,500.O);
HlPlVS5e = add-vertex(H1Pl,300.0,419.2);
H1PlV55f = add-vertex(HlP1,293.9,419.2);

56

H1P1VS6 a add..yertox(HIP1,293.9,413.9);
H1PIV57 = add~vertox(HlP1,337.5,413.9);
HIPIV58 = add...vertex(HIP1,337.5.402.6); /* office ~
H1PlV5Ba = add..yert~xCHlPl,342.8,402.6);
HlPlV58b = add_..vertexCH1P1,342.8,600.0);
HlPlVSSc = add...vortex(HIP1,449.9,600.0);
H1PlV5Sd x add...ertex(H1P1,449.9, 330.0);
HlPlV58e a add..v~rt~x(HlPl,342.8. 330.0);
H1PlV58f = add-vertex(HIPI,342.8,342.6);

HlPlV59 = add...vertex(H1Pl,337.5,342.6);
HlPlV6O = add-vertex(HlP1.337.5,31O.2); /* rm 511 *

HlPlV6Oa - add_ývertex(H1P1 342.8, 310.2);
HlPlV60b = addvertex(H1Pl.342.S, 315.0);
HlPlV60c = add..y~rt~x(H1P1,449.9,3l5.0);
HlPlV6Od = ad&..vertex(HlP1.449.9,0.0);
HlPIV6O. = add~v~rtex(HlPl, 342.8, 0.0);
HlPlV60f = add~vertex(HlPl,342.S,274.5);

HlPlVG1 = add_vertex(H1P1,337.5,274.5);
HlPlV62 = add~vertex(I{1Pl,337.5,267.4);
HlPlV63 = add..vertex(HlPl,306.9,267.4); /* elev 1 (left)*/
HIPIV63a = ad&..vertex(HlPl,306.9,267.7);
HlPlV63b = add_vertexCHlPl,303.9,267.'7);
HlP1V63c a add,..vertex(HlPl,303.9,255.7);
)I1PlV63d = add~vertex(HIPl,277.9,255.7);
HlPlV63e = add...vortex(HlPl,251.9,255.?);
HlPlV63f = add_vertex(H1P1,251.9,267.?);
HlPlV63g = add...vertex(HIP1,248.9,267.1);
H1PlV64 = add_vertex(H1Pl,24S.9,267.4);
HlPIV65 =add_vertex(H1P1,192.2,267.4);

/* elev 2

H1P1V65a = add..yertex(H1P1,192.2,267.7);
HlPlV65b = add~vertex(H1P1,189.2,267.7);
HlF1V65c = add.,yertox(HlP1,189.2,255.7);
HlPlV65d = add_v~rtex(H1P1,163.2,255.1);
HlPlV6Se = add....ertex(HIP1,137.2,255.7);
HlP1V65f = add~vertex(H1P1,137.2,267.7);
H1PlV65g = add~vertex(H1P1,134.2,267.7);
HlF1V66 = add..vertex(HlPl,134.2,267.4);

H1PlV67 = add..yertex(H1P1,98.0,267.4);
HlP1V68 = add...vertex(HIP1,98.0,100.0); /* stairwell *
HlPlV68a = add-vertex(H1P1,103.3,100.0);
HlPIV68b = add..yert~xtRlP1,103.3, 125.0);
H1PlV68c = addL_vertox(H1P1,150.0, 125.0);
HlPlV68d = add-vort~x(H1Pl,150.0,40.0);
HlPlV68e = add...vortex(H1P1,103.3,40.0);
H1P1V68f = ad&..vertex(HlPl,103.3,64.3);

57

H1PlV69 a ad&..vertexCHlPl,98.0,64.3);
HIP1V70 m add-vortex(HlP1,98.0.0.0);

HlP2=add...pg(H1,102.0,0,1); /*maina coiling*/
HlP2V1 = add..vertex(HlP2,0.0,0.0);
HIPMV z ad&..vortex(HlP2,0.0,2351.2);
H1P2V3 a ad&..vortex(H1P2,98.0,2351.2);
HlP2V4 z add...vortox(H1P2,98.0,0.0);

HlP3=add...pg(Hl,113.3,0.1); /*elev c~iling*/
HlP3Vl z add..vertex(H1P3,98.Q,267.4);
H1P3V2 m ad&..vertex(H1P3,98.0,413.9);
HlP3V3 = add-.vortax(H1P3,337.5,413.9);
HlP3V4 = add...vertex(HlP3,337.5,267.4);

HlP4 a add...pg(Hl,84.0,0,1); /*rm 506 door jam coiling*/
H1P4V1= add__vertex(H1P4,0.0,239.5);
H1P4V2u add-.vertex(HlP4,-5.3,239.5);
HlP4V3= add_vertex(H1P4,-5.3,275.2);
HlP4V4= add-.vertex(HlP4,0.O,275.2);
HIP5 = add..pg(H1,84.0,0,1); /*rm 510 door jam ceiling*/
HlPSVl= add-vertex(H1P5,O.0,713.7);
HlP5V2= add...vertex(H1P5.-5.3,713.7);
HlP5V3= ad&..vertex(H1P5,-5.3,749.4);
HlP5V4= add-vertex(H1P5,0.0,749.4);
HlP6 = add....p(H1,84.0,0,1); /*rrn 512 door jam ceiling*/
HlP6V1= add-vertex(HlP6, 0.0,825.9);
H1P6V2= add_vertex(H1P6, -5.3,825.9);
HIP6V3= add-vertex(H1P6,-5.3,861.6);
HlP6V4= add_vertsx(HiP6,0.0,861.6);
H1P7 = add...pg(Hl,84.0,0,1); /*rm 514 door jam ceiling*/
HlP7Vl= add...vertex(HlP7,0.0,937.5);
H1P7V2= add-vertex(H1P7,-5.3,937.5);
HlP7V3= add_vertex(H1P7,-5.3,973.2);
HlP7V4= add-.vertex(HlP7,0.0,973.2);
HiPS = add....p(H1,84.0,0,1); /*nn 516 door jam ceiling*/
H1P8V1= add..vertex(H1P8,0.0,1049.7);
H1PSV2= add...vertex(H1P8,-5.3,1049.7);
H1P8V3= add-vertex(H1PB,-5.3,1085.4);
H1P8V4= add-vertex(HlP8,0.0,1085.4);
HlP9 = add...pg(Hl,84.0,0,1); /*rm 518 door jam ceiling*/
HlP9V1= add..yertex(HlP9,0.0,1161.7);
H1P9V2= add_vertex(H1P9,-5.3, 1161.7);
HlP9V3= add..vertex(HlP9,-5.3,1197.4);
HlP9V4= add_vertex(H1P9,0.0, 1197.4);
HIP10 = add..pg(H1,84.0,0,1); /*rm 520 door jam coiling*/
HiPlOVia add..vortex(H1PlO,0.0, 1273.4);
HIP10V2= add..vertex(HlPlO,-5.3,1273.4);
H1PlOV3= add...vertex(HlP1O, -5.3,1309.1);
H1P1OV4= add...vertex(H1PlO,0.0,1309.1);
HiPil = add..pg(H1,84.0,0,1); /*rm 522R door jam ceiling*/

58

HiPliVl= add...v~rt~x(HlPl1, 0.0.1429.6);
HlP11V2= add...v~rtex(H1Pll, -5.3, 1429.6);
H1P11V3z add~vertexCHlPll,-5.3,1461.3);
Hl211V4= add~vortex(HlPll,0.0,1461.3);
HlP12 a add-M p(H1.84.0.0.1); /*rr FD 1 door jam c~ilixg*/
H1P12Vlz add..vert~x(HlP12, 0.0. 1488.0);
HlPl2V2= add...vert~x(HlPl2, -5.5,1488.0);
H1P12V3= add..vertex(H1Pl2,-5.5, 1560.0);
HlPl2V4= add...vertex(H1P12, 0.0,1560.0);
H1P13 - add...pg(H1,84.0,0,1); /*rm 524 door jam ceiling*/
HlPl3Vlw ad&..v~rt~x(HlP13.0.0. 1583.3);
H1Pl3V2z add..yertex(HlP13,-5.3,l583.3);
HlPl3V3= add..v~rt~x(H1Pl3, -5.3,1619.0);
H1P13V4= add...vert~x(HlPl3,0.0.16l9.0);
HlPl4 z add...pg(H1,84.0,0.1); 1* 526R ceiling*/
HlP14Vlw add..vortex(H1Pl4, 0.0,1754.5);
HIP14V2= add~v~rt~x(141P14,-5.3,l754.5);
HlP14V3= add.vortex(HlP14, -5.3,1786.2);
H1Pl4V4= add-v~rtox(jHlPl4,0.0,1786.2);
HlPiS = add...pg(H1,84.0,0,1); /*rn 528A door jam ceiling*/
HlP15V1= add...ertex(H1P1S,0.0,1836.4);
H1P15V2z add_vertex(H1P15,-5.3,1836.4);
H1Pl5V3= add...vertexCHlP15,-5.3,1872.1);
HlP1SV4= add..vert~x(H1P1S,0.0,1872.1);
HlP16 a add..pg(Hl,84.0,0,1); /*ri 528B door jam ceiling*/
H1P16V1= add...vrtex(HlPl6,0.0,1919.1);
HlPl6V2= add...vertex(HIP16, -5.3,1919.1);
HlPl6V3= add_vertox(H1P16,-S.3,1954.8);
H1P16V4= add..vertex(H1P16,0.0,1954.8);
H1P17 = add..pgCHl,84.0,0,1); /*rm 530A door jam ceiling*/
HlP17V1= add..vertex(HlP17,0.0,2030.4);
HlPl7V2= add-y.ertex(HlP17,-5.3,2030.4);
HlP17V3= add~vertex(H1P17,-5.3,2066.1);
HlP17V4= add-vertex(H1P17,0.0,2066.1);
HI1P18 = add..pg(H1,84.0,0,1); I*rm 530B door jam ceiling*/
HlP18V1= add...vertex(HlP18,0.0,2l95.1);
H1P1SV2= add-vertex(H1P1S,-5.3,2195.1);
H1P18V3= add..vortex(HlP18, -5.3,2230.8);
HlP18V4= add~vertex(H1P1S,0.0,2230.8);
HlP19 z ad&..pg(Hl,84.0,0,1); /*rm 530C door jam ceilinig*/
H1P19V1= &dd-vertox(H1P19,0.0,2253.8);
H1P19V2= adcLv~krt~x(H1P19,-S.3,2253.8);
HlP19V3= addve~rtex(H1P19,-5.3,2289.5);
H1P19V4= add-vertox(H1P19,0.0,2289.5);
H1P20 = add..pg(H1,84.0,0.1); /'rm 421 door jam ceilinlg*/
HlP20Vl= add_vertex(H1P2O,98.0,2171.9);
HIP2OV2= add..vertex(H1P2O,103.3,2171.9);
HlP2OV3= add_.yertex(HIP20,103.3,2136.2);
HlP20V4= add...vortex(H1P20,98.0,2136.2);
H1P21 z add..pg(H1,84.0.0,1); I'rm 531 door jam ctiling*/
H1P21V1= add-vertox(H1P21,98.0, 1937.7);

59

H1P21V2= add..v~rtex(HIP21, 103.3,1937.7);
HlP21V3= add...vertex(H1P21,103.3. 1877.7);
HlP2lV4= add...v*rtex(HlP21,98.0,1877.7);
HI1P22 a add...pg(H1,84.0,0,1); /*ru 529 door jam coiling*/
i11P22V1w add..y~rt~x(H1P22,98.0,1744.5);
H1P22V2ui add...vertex(HlP22,103.3,1744.5);
111P22V3= add...vertex(HlP22,103.3,1684.5);
H1P22V4x add.yortex(HlP22,98.O,1684.5);
H1P23 a add...pg(HII,84.O,O,1); /'rmr 527 door jam coiling*/
H1P23Vlu ad&..vertex(HlP23,98.0,1522.4);
H1P23V2= add..vertex(HlP23,103.3,1522.4);
)I1P23V3= add-vertex(HIP23,103.3, 1462.4);
HlP23V4z add~vertex(H1P23.98.0,1462.4);
H1P24 z add...pg(H1,84.0,0,1); /*rm 525 door jam ceiling*/
H1P24V1= add..vertex(H1P24,98.0,1342.7);
H1P24V2= add...vertex(HlP24.103.3,1342.7);
H1P24V3= add...vertex(H1P24,103.0,1307.0);
H1P24V4u add_vertex(H1P24,98.O,1307.0);
H1P25 = ad&..pg(II1,84.0,0,1); /*rm 523 door jam ceilinag*/
H1P25Vl= add...vertex(H1P25,98.0,111S.8);
H1P25V2= add...vort~xCH1P25, 103.3, 1118.8);
H1P25V3= add-vertex(H1P2S,103.3,1083.1);
H1P25V4= add..vertex(H1P25,98.0, 1083.1);
HlP26 = add..pg(H1,84.0,0,1); /*rm 521 door jam ceiling*/
H1P26V1= add-v~rtex(H1P26,98.0,796.1);
HlP26V2= add-.vertex(H1P26,103.3,796.1);
H1P26V3= add_vertex(H1P26,103.3,760.4);
H1P26V4= addA-vertex(H1P26,98.0,760.4);
H1P27 = add..pg(H1,84.0,0.1); /*rm 519 door jam ceiling*/
H1P27Vl= add_vertex(H1P27,98.0,564.5);
H1P27V2= add~vertex(H1P27,103.3,564.5);
HlP27V3= add...vertex(HlP27,103.3,528.8);
H1P27V4= add...vertex(H1P27,98.0,528.B);
HlP28 = ad&..pg(H1,84.0,0,1); /*rm ? door jam ceiling*/
HlP28V1= add-vertex(H1P28,257.9,413.9);
HlP28V2= add_vertex(H1P28,257.9, 419.2);
H1P2SV3= add_vertex(H1P2S,293.9,419.2);
H1P28V4= add_vertex(H1P28,293.9, 413.9);
H1P29 = add..pg(Hl,84.0,0,1); 1* office door jam ceiling*/
HlP29V1= add...vertex(H1P29,337.5,402.6);
111P29V2= add...vertex(H1P29,342.8, 402.6);
H1P29V3= add-vertex(H1P29,342.S.342.6);
H1P29V4= add-v~rtex(H1P29,337.5. 342.6);
H1P30 a add..pg(H1,84.0,O,1); /* rm 511 door jam coiling*/
HlP3OVl= add~vertex(HlP3O,337.S,310.2);
HlP30V2= add...vertex(H1P30,342.8,310.2);
HlP30V3= add...vertex(HlP30,342.8,274.5);
HlP30V4= add...vertex(H1P3O,337.5,274.5);

H1P31 = add-..,g(H1,83.8,O,1); /* .1ev 1 door jam ceiling*/
HlP3lV1= add...vertex(H1P31,303.9,267.7);

60

HlP31V2=i add...vertex(H1P3l,303.9,255.7);
HlP3lV3= add-vertex(H1P31.277.9,255.7);
HlP31V4a add..vert~x(H1P3l,2S1.9,255.7);
K1P31VS= add..vertex(HlP3l,2Sl.9,267.7);
HlP32 aad&..pg(H1,83.8,0,1); /* @1ev 2 door jam coiling*/
HlP32V1= add-.vert~ex(111P32,189.2,267.7);
HIP32V2= add..,vertex(HlP32,189.2,255.7);
H1P32V3z add-vertex(H1P32,163.2,255.7);
HlP32V4= add_vertex(N1P32,137.2.255.7);
H1P32V5= ad&..vertex(HlP32,137.2,267.7);

HlP63 = add...pg(H1,86.B.0.1); 1* 0@3ev 1 coilin~g*/
H1P63Vl= add-vertex(H1P63,306.9.267.4);
HlP63V2= add_vertex(H1P63,306.9,267.7);
HlP63V3= ad&..vertex(HlP63,248.9,267.7);
HlP63V4= add~vert~x(H1P63,248.9,267.4);

HIP64 = add...pg(H1,86.8,0,1); /* .1ev 2 ceiling*/
HIP64V1= add_vertex(H1P64,192.2,267.4);
H1P64V2= add_vertex(H1P64,192.2,267.7);
HlP64V3= add...ertex(H1P64,134.2,267.'7);
HlP64V4= add~vertox(H1P64,134.2,267.4);

HlP33 = add..pg(Hl,84.0,0,1); I' stairwell docr jam ceiling*/
HlP33Vl= add_vertex(H1P33,98.0, 100.0);
H1P33V2= add....ertex(HlP33,103.3, 100.0);
HlP33V3= add...vertex(HlP33,103.3,64.3);
HlP33V4= add_vyertex(H1P33,98.0,64.3);

HIP34 = add-..Pg(Hl,144.0,0,1); /*rrn 506 ceiling*/
HIP34Vl= add...vertex(HlP34, -5.3,203.3);
HIP34V2= add_vertex(H1P34,-244.1,203.3);
HlP34V3= add_vertex(H1P34,-244.1,109.4);
HlP34V4= add_vertex(H1P34,-5.3,30ýo.4);
HlP35 = add-Pg(H1,144.0,0,1); /*ri 510 ceiling*/
H1P35VI= add_vertex(H1P3S. -5.3, 67'?.5);
H1P35V2= addlvertex(141P35,-244.1,6'77.5);
H1P35V3= add_vertex(H1P35,-244.1,'783.6);
H1P35V4= add_vertex(H1P35,-5.3,783.6);
HlP36 = add..pg(Hl,144.O,0,1); /*ri 512 ceiling*/
HlP36V1= add..yertex(HlP36,-5.3,789.7);
H1P36V2= add-vertexc(H1P36,-244.1,789.7);
H1P36V3= add-vertebx(HlP36,-244.1,S95.8);
HlP36V4= add-vortex(H1P36,-5.3,895.8);
H1P37 = add-"..p(Hl,144.0,0,1); /*rm 514 ceiling*/
H1P37Vl= ad&..vertex(H1P37,-5.3,901.3);
H1P37V2= add-.ver-ex(H1P37,-244.1,901.3);
H1P37V3= add~vertex(H1P37, -244.1,1007.4);
H1P37V4= add...vertex(HlP37,-5.3,1007.4);
HIP38 = add...pg(H1,144.0,0.1); /*rm 516 ceiling*/

61

H1P38Vl= Peid...ertex(H1P38.-5.3,1013.5);
H1P3SV2= add...vertex(HlP38,-244.1,1013.5);
H1P3SV3= add...vertex(HlP38. -244.1,1119.6);
H1P38V4z add...vortox(HlP38, -5.3, 1119.6);
i41P39 m add..pg(H1.,144.0,0,1); /*rm 518 coiling*/
H1P39Vls add_..vertexH1P39,-5.3, 1125.5);
H1P39V2= add..vertex(HlP39,-244.1,1125.5);
141P39V3= add...v~rt~x(HlP39. -244.1. 1231.6);
H1P39V4x add_vertex(H1P39,-5.3,1231.6);
H1P40 a add-pg(H1,144.0,O,1); /*rm 520 coiling*/
H1P4OVlu ad&..vertex(HlP40,-5.3,'.237.2);
HlP40V2= add_vertex(H1P4O,-244.1,123'7.2);
HlP4OV3= add..vertex(H1P40,-244.1,1343.3);
HlP40V4= add-vertex(ElP4O,-S.3,1343.3);
H1P41 a add-..pg(H1,144 0,0,1); /*rrn 522R ceiling*!
H1P41Vlx add_vertlex(HIaP41,-5.3,1393.4);
H1P41V2= add~vertex(HlP41 -244.1, 1393.4);
H1P41V3z add-v~rtex(H1P41, -244.1, 1499.5);
H1P41V4z add_vertex(N1P41,-5.3,1499.5);
H1P42 = add-...p(H1,144.0,0,1i; 1* MD ceiling*!
H1P42V1= add_vertex(H1P42,-5.5,1486.0);
H1P42V2= add~vortex(H1P42,-50.0,1486.0);
H1P42V3- add_..vertex(H1P42,-50.0, 1562.0);
H1P42V4= add-vertex(H1P42,-5.5,1562.0);
H1P43 = add..pg(H1.144.0,0,1); /*rm 524 ceiling*/
H1P43V1= add_vertex(H1P43,-5.3,1547.1);
I11P43V2= add~vortex(H1P43. -244.1.1547.1);
111P43V3= addlvortexCHlP43.,-244.1,1653.2);
111P43V4= add_vertex(M1P43,-5.3. 1653.2);
H1P44 = add-..pg(H1,84.0,0,1); I' water fountain ceiling*/
H1P44V1= add_vertex(H1P44,0.0,1650.4);
H1P44V2= add-ývertex(H1P44,-30.0,1650.4);
H1P44V3= add-vortex(H1P44,-30.0,1684.5);
HlP44V4= add..vertex(H1P44,0.0,16B4.5);
H1P45 = add..pg(H1,144.0,0,1); /*rrn 526R coiling*/
H1P45V1= add_vertex(H1P45,-5.3,1718.3);
H1P45V2= addi_vertex(H1P45,-244.1. 1718.3);
H1P4SV3= add_vertex(H1P4S,-244.1,1790.0);
H1P45V4= add-vertex(H1P45,-5.3,1790.0);
H1P46 = add..pg(H1.144.O,0,1); /*rrn 528A ceiling*/
H1P46V1= add...vertex(H1P46, -5.3,1800.2);
H1P46V2= add_vertex(H1P46,-244.1,1800.2);
111P46V3= add...vertex(H1P46,-244.1,1875.0);
H1P46V4= add-vertex(N1P46,-5.3, 1875.0);
H1P47 = add_..pg(H1,144.0,0,1); /*rln 528B coiling*/
H1P47Vl= add...vertex(H1P47,-5.3,1882.9);
H1P47V2= add-vortox(H1P47,-244.1,1882.9);
H1P47V3= add-.vertex(H1P47, -244.1, 1989.0);
H1P47V4= add_vertex(H1P47,-5.3, 1989.0);
H1P48 = add-pg(H1,144.0,0,1); /*rm 530A coiling*/
H1P48V1= add_vertex(141P48,-5.3,1994.2);

62

H1P4SV2= add-vertex(H1P48,-244.l,1994.2);
H1P48V3= add...vertex(H1P48, -244.1,2100.3);
H1P48V4= add_vertex(H1P48,-5.3,2100.3);
H1P49 = add...pg(H1,144.0,0,l); /*rw 530B ceiling*/
HlP49V1= add-.vertex(H1P49, -5.3,2158.8);
H1P49V2= add-ývertex(H1P49, -244.1,2158.8);
HlP49V3= add~vertex(H1P49,-244.l,2250.0);
HlP49V4= add_vertex(H1P49,-5.3,2250.0);
HiPSO = add...pg(H1,144.0,0,1); /*rrn 530C ceiling*/
HlPSOV1= add-vertex(H1P5O,-5.3,2251.0);
HlPSOV2= add-vertex(HlPSO,-244.1,2251.0);
HlP50V3= add_..vertex(H1P50,-244.l,2350.Q);
HlP5OV4= add_vertex(H1P5O.-5.3,2350.0);

I' following ceilings are incorrect based on 35, to either side of door*/

HIP51 = add..pg(Iil,144.0,0,1); /*rrn 421 ceiling*/
HlPS1V1= add-.vertex(HlP5l,103.3,2206.6);
H1P~lV2= add_vertex(HlP51,342.l,2206.6);
H1P51V3= add~vertex(H1P5l,342.l,2099.5);
HlP51V4= add_ývertex(HlP5l,103.3,2099.5);
H1P52 = add..pg(Hl,144.0,0,1); /*rm 531 ceiling*/
H1P52V1= add_vertex(H1P52,103.3,1972.7);
HlP52V2= add_vertex(H1P52,342.l,1972.7);
H1P52V3= add._vertex(HlPS2,342.l,1865.6);
H1P52V4= add_ývertex(H1P52,103.3,1865.6);
H1P53 = add...pg(Hl,144.0,0,l); /*rm 529 ceiling*/
HlP53Vl= add_vertex(H1P53,103.3,1779.5);
H1P53V2= add_vertex(HlP53,342.l,1779.5);
H1P53V3= add_vertex(H1P53,342.1,1672.4);
H1P53V4= add_vertex(H1P53,103.3,1672.4);
HIP54 = add~..pg(Hl,144.0,0,1); /*rm 527 ceiling*/
HlP54Vl= add_vertex(H1P54,103.3,1557.4);
H1P54V2= add_vertex(H1P54,342.l.1557.4);
HlP54V3= add_vertex(H1P54,342.l,1450.3);
H1P54V4= add_vertex(HlP54,103.3,1450.3);
HlP55 = add...pg(Hl,144.0,0,l); /*rm 525 ceiling*/
HiP55Vl= add_vertex(H1P55,103.3,1377.7);
HlP55V2= add_ývertex(M1P55,342.l,1377.7);
H1P55V3= add_vertex(HlPSS,342.l.1270.6);
HlP55V4= add_vertex(H1P55,103.3,1270.6);
H1P56 = add...pg(Hl,144.0,0,1); /*rrn 523 ceiling*/
H1P56V1= add_vertex(HlPSE,103.3,1153.8);
H1P56V2= add_.vertex(H1P56,342.l,1153.8);
HlP56V3= add_vertex(H1P56,342.l,1046.7);
H1P56V4= add...vertex(HlP56,103.3,1046.7);
HlP57 = add...pg(Hl,144.0,0,l); /*rrn 521 ceiling*/
HlP57Vl= add_vertex(HlP57,l03.3,81l.l);
HlP57V2= add_ývertex(H1P57,342.l,831.l);
H1P57V3= add_:vertex(H1P57,342.l,724.0);
HIP57V4= add~vertexCHlPS7,103.3,724.0);

63

HIP58 a add..pg(Hl,1440.O,.1); /*rm 519 coiling*/
H1P58Vlz ad&..yertex(HlP58,103.3,599.5);
H1P58V2u add...vertox(HlPS8,342.1,599.5);
HlP5SV3= add~vertex(HlPSS,342.l,492.4);
HlP5SV4= add_vertex(H1P58,103.3,492.4);
HlP59 a add..pg(Hl,144.O.,l,); /*rm ? coiling*/
HlP59Vlv add..vertex(H1P59,221.7,419.2);
HlP59V2= add-vertexCHlP59,221.7,500.O);
HlPS9V3z add_vertex(H1P59,300.O,500.O);
HlP59V4= add...vertex(H1PS9,300.O,419.2);
HlP6O a add...pg(Hl.144.O,O.1); /* office ceiling*/
HlP6OVlu add_..v~rtoxCHIP6O.342.S, 600.0);
HlP6OV2= add_vertexCHlP6O,449.9,600.0);
HlP60V3= add..y)ertex(HlP6O,449.9,330.0);
HlP6OV4= add_ .ertex(HlP60,342.8,330.0);
HlP6l addpg(Hl,144.0,0, 1); /*rrn 511 ceiling*/
H1P6lVl= add_vertex(NlP6X,342.8,,315.0);
HlP~lV2= add_vertex(H1P61,449.9.315.0);
H1P6lV3= add_vertex(HlP6l,449.9,0.0);
HlP61V4= add_vertex(H1P6l.342.8.,O.O);
141P62 = add...pg(Hl,144.0,0,l); /*rm stairwell ceiling*/
H1P62V1= add..vertex(HlP62,103.3,125.O);
HlP62V2= add_vertex(H1P62..150.0,125.0);
HlP62V3= add_vertex(H1P62,150.O,40.O);
HlP62V4= add_vertex(H1P62,103.3,40.0);

I' Don't forget to add the ceiling associations or else we can't tell
how high each section of the hallway is*/

add_ceiling(HlPl,HlP2);
add-ceiling(HlPl.HlP3);
add-ceilirig(HlPleHlP4);
add_ceiling(HlPl,HlPS);
add_ceiling (HlPl,HlP6);
add-ceiling (HlPl,HlP7);
add_ceiling(HlP1,H1P8);
add-ceiling(HlPl,HlP9);
add-ceiling(HlPlHlPlO);
add_ceiling(HlPl,HlPll);
add!_ceiling(HlP1,H1Pl2);
add_ceiling(HlPl,HlPl3);
add-ceiling(HlP1,H1Pl4);
add...ceiling(HlPl,HlPl5);
add_ceiling(HlPl,HlPl6);
add-ceiling(HlPl,H1Pl7);
add...ceiling(HlPl,HlPl8);
add_ceiling(HlPl.HlPl9);
add...ceiling(HlPl,141P20);
add~ceiling(HlPl,HlP21);
add-ceiling(HlPlH1P22);
add-ceiling(HlP1,H1P23);

64

add...ceilingCHlPl,HlP24);
add-ceiling(HlPl,HlP25);
add...ceiling(HlPlHlP26);
add-ceiling(HlPlH1P27);
add-ceilingCHlPl,HlP2S);
add-.ceiling(HlPl.H1P29);
add...ceiling(HlPl,HlP3O);
ad&..ceiling(HlPlHlP3 1);
add~ceiling(H1Pl,H1P32);
add_ceiling(HlP1,HlP33);
add_ceiling(HlPl,H1P34);
add-ceiling(HlPl,H1P35);
add-ceiling(HlP1,H1P36);
add~ceiling(H1Pl,HlP37);
add-ceiling(HlPl,H1P38);
add-ceiling(HlPl,HlP39);
add_ceiling(IHlPl,HlP4O);
add~ceiling(HlP1,MlP41);
add-ceiling(HlPl,HlP42);
add-ceiling(IHlPI,H1P43);
add-ceiling(HlPl,H1P44);
add-ceiling(HlPl,H1P45);
add-ceiling(H1Pl.HlP46);
add-ceiling(HlPI,H1P47);
add_ceiling(HILPl,HlP48);
add-ceiling(HlPl,H1P49);
add-ceiling(HlPlH1P5O);
add-ceiling(IilPl,HlPSl);
add-ceiling (HlPl,HlP52);
add-ceiling(HlPl,HlP53);
add-ceiling(HlPl,H1P54);
add-ceiling(HlPl,H1P55);
add-ceiling(HlPl,HlPS6);
add_ceiling(HlPl,H1P57);
add~ceilirng(H1Pl,HlP5B);
add-ceiling(HlPl,H1P59);
add-ceiling (HlPl,HlP6O);
add~eeiling(HlPl,HlP6l);
add.ceiling(HlPl,H1P62);
add_ceiling(HlPl,H1P63);

/* Vertical edges must alway be explicitly added ~

add!edge%(HlPlVl, HlP2VI);
add~edge(HlPlV2,HlP4Vl); /*link up vert edges of room 506*!
add...edge (HlPlV2a, HlP4V2);
add~edge (HlPlV2b, HlP34Vl);
add....dge(H1PlV2c,H1P34V2);
add...edge (HlPlV2d, H1P34V3);
add...edge (HlPlV2e. H1P34V4);

65

add-edg*(HlPlV2fHlP4V3);
ad&...dg. (HlP1V3,H1P4V4);
add-.edg.(HlP1V4,HlP5Vl); /*linik up veit edges of room 510*/
addedg. (HlP1V4a. HlP5V2);
ad&.dgedq(H1PlV4b. H1P35V1);
adc~edge (HlPlV4c. HlP35V2);
adde9dge (HlPlV4d. H1P35V3);
ad&..edge (HlPlV4e*H1P3 5V4);
ad&..dg*(H1P1V4f. HlP5V3);
ad&..edge (HlP1V5, H1P5V4);
ad&..edge(HlP1V6,HlP6Vl); /*link up vert edges of room 512
ad&...dge (Hi PV6&, H1P6V2);
add*dge (HlPlV6b. HlP36Vl);
add-*dge (H1P1V6c, HlP36V2);
add...dge (HlPlV6d, HlP36V3);
ad&..edge (HlPlV6e. HlP36V4);
add-edge (H1PlV6f,*H1P6V3);
add...edge(HlP1V7,HlP6V4);
add-edge(HlPlV8,HlP7Vl); /*link up vert edges of room 514*/
add-edge (HlPlV8a, HlP7V2);
add-edg. (HMMV~. HMP7V);
add-*dge (HlP1V~c, HlP37V2);
add-edge (HlPlV8d. HlP37V3);
adcL-edge (HlPlV8e, HlP37V4);
add-edge(HlPlV8fHlP7V3);
add-edge CHlPlV9, H1P7V4);
ad&..edgeCHlPlVlO,HlPSVl); /*link up vert edges of room 516*/
add-edge(HlPlVlOa, HlP8V2);
ad&..edge (HiPlVlOb, HlP38Vl);
add..edg. (HiPlViOc, HlP3SV2);
ad&..edge (HlPlVlOd, HlP38V3);
add-e'Age (HlPiViOe, H1P3SV4);
add~edge(HlPlVlOf,HlPSV3);
ad&...dge (HlPlVll, HlP8V4);
add-.edge(HlPlV12,HlP9Vl); /*link up vert edges of room 518*/
ad&.-edge (H1P1Vl2a, H1P9V2);
ad&..edge (H1PlVl2b, HlP39V1);
add~edge (HlPlVi2c, HIP39V2);
add..edge (H1PlVl2d, H1P39V3);
add~odge CHlPlV12e, HlP39V4);
add~edge(HlPlVl2f, HlP9V3);
add~edge (HlPlVl3 , HP9V4);
add...edge(HlPlV14,HlP1OV1); /*link up vert edges of room 520*1
add~edge (H1P1Vl4a, HlPlOV2);
ad&..edg*(HlPlVl4b,HlP4OVl);
adde&dge (M1P1V14c, HlP40V2);
add~edg* (HlPlVl4d, HlP4OV3);
add...edge (HlPlVl4e, HlP4OV4);
ad&..edge(HlPlVl4fH1P1OV3);
add-*dge (HlPlVl5, HlPlOV4);
add-o.dge(HlPlV16,HlPl1Vl); /*link up vert edges of room S22R*/

66

add....dge (H1PlVl6a, H1PllV2);
add...dg. (HlPlVl6b, H1P4lVl);
add....dg. (HlP1V16c, HlP4lV2);
add-..dge (H1PlVl6d, H1P41V3);
add~edge (HlPiVi 6., HP41V4);
add....dge(HlPlV16f,HlPllV3);
add....dg. (HIPlV17,HlP2.1V4);
add...edg.(HlPlVl8,HlPl2V1); /*link up vert. edges of room FD1*/
addeodge (HiPlVi a, H1P12V2);
addLedg (HlPlVlBb, HlP42V1);
addLedg (Hi PlVl8c, H1P42V2);
ad&..edg. (HlPlViSd. H1P42V3);
add....dge (HlPiViS., H1P42V4);
add-edge (HlPlVi8f, HlP12V3);
add....dge (H1PIV19, HlP12V4);
add..edge(HlPlV2O,HiPl3V1); /*link up vert edges of room 524*/
add-edg. (HiPlV2Oa, HlPi3V2);
add~edge (HlP1V2Ob, HlP43V1);
ad&..edge (H1P1V2Oc, H1P43V2);
add~edge (H1PlV2Od, H1P43V3);
add~edge (HlP1V2Oe, HlP43V4);
ad&..edge (H1PlV2Of, HlP13V3);
add...edge(HlPlV21,HlPl3V4);
add....dge(H1PlV22,HlP44V1); /*link up vert edges of water fountain*/
ad&..edge (HlPlV22a, H1P44V2);
add~edqe (H1PlV22b, H1P44V3);
add...edge (HlPlV23 ,H1P44V4);
add...edge(H1PlV24,HlP14Vl); /*link up vert edges of room 526R*/
addedge (HlPlV24a, H1P14V2);
add~edge (HIPIV24b, HiP45VI);
add~edge (H1PlV24c, HlP45V2);
add...edge (HlPiV24d,HiP45V3);
add~edge (HlPlV24e, HIP4SV4);
add~edge (H1P1V24f, HiP14V3);
add~edge (H1PiV25, HlP 4V4);
add~edge(HlP1V26,H1PiSV1); /*link up vert edges of room 528A*/
ad&..edge (HlPiV26a, H1PiSV2);
add~edge (HlPlV2Gb, HiP46Vl);
addedge (HlP1V26c, H1P46V2);
add...edge (HlPlV26d, H1P46V3);
ad&..edge(HlPlV26e,H1P46V4);
add...edge (H1P1V26f, HlP15V3);
add...edge (H1PlV27,H1P15V4);
adO-edge(HlP!V28,HiPl6Vl); /*link up vert. edges of room 528B*/
ad&..edge (H1P1V2Sa, HlP16V2);
add~edge (HlPlV2 b, HiP47Vi);
add...edge (HiPlV28c, HlP47V2);
add~edge (H1P1V28d, H1P47V3);
add...edge (H1P1V2Be,H1P47V4);
add-edge (HiPlV28f ,H1Pl6V3);
ad&..edge (Hi V2,H1Pl6V4);

67

ad&..edg.(HlPlV3O,HlPl7Vl); /*link up vert edges of room 530A*/
adde*dg (H1PlV3Oa, H1P17V2);
add~edge (HlPlV3Ob,HlP4BVl);
add_*dge (HlPlV3OcHlP48V2);
add.edg (HlPlV3Od. H1P4BV3);
adde*dge (HlPlV3 0.,H)P48V4);
add...dg*(HlIPV3Of. HlPl7V3);
add..edg (H1PlV31, H1P17V4);
add_*dge(HlP1V32,HlPlSV1); /*link up vert edges of room 530B*1
add-*dge (HlPlV32a. HlP1SV2);
add_*dge (H1P1V32b,HI1P49Vl);
add~odge (HlP1V32c, HlP49V2);
add..edg. (J1PlV32d. HIP49V3);
addedge (J1PlV32*, H1P49V4);
addedge (H1PlV32f,HIP18V3);
ad&..edge (HlPlV33, H1P18V4);
edd....dge(HlPlV34,HlPl9Vl); /*link up vert edges of room 530C*/
add....dge(HlP1V34a, N1Pl9V2);
add...edge (HlPlV34b, H1P5OVl);
adde*dge (H1PlV34c, N1PSOV2);
addLedge(II1PlV34d,HlP50V3);
add...edge (HlPlV34.. H1P5OV4);
ad&..edge (HlPlV34f, HlPl9V3);
ad&..edge (H1PlV35, H1P19V4);
ad&..edge(HlPlV36,HlP2V2); /*corner*/
add.edge(HlPlV37,H1P2V3); /*corner*/
add._edge(HMPV3S,HMPOV1L; /*link up vert edges of room 421*1
ada...edge (HlPlV3Ba. HlP2OV2);
add-edg. (HlPlV3 b, HiP~lVi);
ad&..edge (HlPlV3Sc. H1P51V2);
ad&..edge (H1P1V3 d, HlP5lV3);
add...edge (HlPlV38e,H1PS1V4);
ad&..edge (HlPlV38f,.HlP2OV3);
add...edge(HlPlV39,HlP2OV4);
add...edge(HlPlV4O,HlP2lV1); /*link up vert edges of room 531*1
add~edge (HlPlV40a. HlP21V2);
ad,._edge (H1P1V40b,HlP52VI);
add_..dge (HlPlV4Oc, HlP52V2);
add...edge (HlPlV4ad, HlP52V3);
ad&..edge (HlP1V4Oe, H1P52V4);
add_*dge(HIPIV40f,H1P2IV3);
add....dge(H1P1V41,HlP2lV4);
add~edge(HlP1V42,HlP22Vl); /*link up vert edges of room 529*1
ad&.edg. (HlPlV42a, H1P22V2);
add~edge (HlPlV42b, HIP53V1);
addedge (HlPlV42c, HlP53V2);
add_*dge (HlPlV42d, HlP53V3);
add~odge (H1PlV42e, HlP53V4);
add...dge (H1PlV42 f, HlP22V3);
add-.edge (H1PlV43, HlP22V4);
add...edge(H1P1V44,HlP23Vl); /*link up vert edges of room 527*/

68

add-edge(H1P1V44a,H1P23V2);
ad&..edge (HP1V44b. H1P54Vl);
add-odg. (HlPlV44c. HlP54V2);
add....dge (HlPlV44d, H1P54V3);
add-edge(H1P1V44e,x1P54v4);
adcLdgedq(HlPlV44f. HlP23V3);
addedg. (N1P1V45. HlP23V4);
add....dge(H1PlV46,H1P24V1); /*link up vert edges of room 525*/
add~edge (H1P1V46a, H1P24V2);
add-.dge (H1P1V46b. HlP55Vl);
adde*dge (H1P1V46c, HlPS5V2);
add...edg. (H1PlV46d, HlP55V3);
add-*..dge (H1PlV46e, H1P55V4);
add-edge(N1P1V46f.H1P24V3);
add-edge CHlPlV47,HlP24V4);
add-.edge(HlPlV48,HlP25Vl); /*link up vert edges of room~ 523*/
add_*dge(H1P1V48a,N1P25V2);
add-edge(HIP1V4Bb,H1P56V1);
add-edge(H1P1V4Bc,H1PS6V2);
add_edge(H1P1V4Sd,H1P56V3);
ad&..edge(HlPlV4 Be, HlP56V4);
add-edge(H1P1V48fM1P25V3);
add-edge (H1P1V49,H1P25V4);
add-edge(H1PlV5O,I11P26V1); /*link up vert edges of room 521*/
add-edge (H1PIV5OaHIP26V2);
add-edge(H1P1V5Ob,H1P57V1);
add_edge tHlPlV5Oc,HlP57V2);
add~edge(H1P1V5Od,H1P57V3);
add_edge(HlPlV5Oe,HlP57V4);
add_edge(H1P1V5Of,H1P26V3);
add_edge(H1P1V5I,H1P26V4);
add_edge(H1P1V52,H1P27V1); /*link up vert edges of room 519*!
add_edge(H1P1VS2a,H1P27V2);
add_edge(H1P1V52b,H1P58V1);
add...edge (HlP1V52c, HlP58V2);
add_edge(H1P1V52d,H1P5BV3);
add_edge (HlPlV52e,HlP58V4);
add_edge(H1P1VS2fH1P27V3);
add_edge(H1P1VS3,H1P27V4);
add..edge(I{1P1V54,HlP3V2); /*corner*/
add...edge(HlP1V55,HlP28V1); /*link up vert edges of room I
add_edge(H1P1V55a,H1P2SV2);
add~edge (H1PlVSSb, HlP59Vl);
add..edge (HlP1V55c, HlPS9V2);
add~edge (HlPlV55d, HlP59V3);
add...edge (HlP1V55e. HlP59V4);
add_..edge (H1PV55f, HMPSV);
add...edge (HlP1V56, H1P2SV4);
add_edge(H1P1V57,H1P3V3); /*corner*/
ad&..edge(H1PlV58,HlP29V1); /*link up vert edges of office 515 ~
add...edge (H1PlV58a, H1P29V2);

69

add_*.dg (HIP1V5Sb, H1P6OV1);
add..dge (HlPlVSSc, H1P6OV2);
addodg* (HlPlVSSd,Hl1P60V3);
add..edg (HlPlV5Se, H1P6OV4);
add_*,dge (H1P1VS~f,Hl1P29V3);
adde&dge (JlP1V59,HJlP29V4);
addeodg*(HlPlV60,HlP3OVl); /*link up vert edges of room 511/
add_*dg* (HlPlV60a, HlP3V2);
add_.dge (H1P1V6Ob, H1P61V1);
add~edge (HlPlV6Oc, HlP6lV2);
addedg (HlPlV6Od, H1P61V3);
add~edge (HlPlV6Oe, HlP61V4);
add~edge (H1PlV6Ofg HlP30V3);
add....dge(HlPlV61,HlP3OV4);
ad&..edg*CHlPlV62,HlP3V4); /*corner*/

ad&..edge(HlPlV63,HlP63Vl); /*link up vert edges of room *lev 1*/
add~edge (HlPlV63a, H1P63V2);
add.edge (HlP1V63b, N1P31V1);
add_*dge(HIPIV63c,HlP31V2);
add~edge (HlP1V63d, N1P3lV3);
add~edge (HlPlV63e, HlP3lV4);
add...edge(HlPlV63f,HlP3lV5);
add~edge (HlPlV63g, N1P63V3);
add...edge (H1P1V64, HlP63V4);
add..edge(141PlV65,HlP64Vl); /*link up vert edges of room elev 2*/
add..edge(H1PlV65a,HlP64V2);
add~edge (HlPlV6 b, HlP32Vl);
add~edge (HlPlV65c, HlP32V2);
add~edge (HlPlV6Sd, H1P32V3);
add~edge (HlP1V65e, HlP32V4);
add~edge(HlP1V65f, H1P32V5);
ad&..edge (HlP1V65g, HlP64V3);
add..edge(HlPlV66,HlP64V4);

add...edge(HlPlV67,HlP3Vl); /*corner*/
ad&..edge(HlPlV68,HlP33Vl); /*link up vert edges of stairwell*/
ad&..edge (HlPlV6Sa, HlP33V2);
add...dg.CH1PlV6Sb, HlP62Vl);
add~edge (H1P1V6Sc, HlP62V2);
add~edge CHlP1V68d, HlP62V3);
ad&..edge CI4PlV68e, HIP62V4);
add_*dg (HlPlV6Sf. H1P33V3);
add...edge (HlPlV69, H1P3 3V4);
addLodge(HlPlV7O,H1P2V4); /*corner*/

/* Now define the different classes of doors and put instances inside the
door jams '

70

add...insta~nce(hallwaYO,7,Hl,0.0,0.0,0.0,0.0,0.0,0.O);

H2aadd-.ph(ooffice_doora,11,W,0,1);
H2Plnadd..pg (12 ,0. 0, 1, 1)
H2P1V1 = add~vertexCH2Pl,O.0,0.O);
H2P1V2 a add...vertex(H2P1,1.75,O.O);
H2PlV3 a add-vsrt~x(H2Pl,l.75, 35.5);
H2P1V4 = add._vertex(112Pl,.0.,35.5);
H2P2=add...pg(H2, 83.5,0,1);
112P2V1 = add-vartex(H2P2,0.0,0.0);
112P2V2 =add-vortex(H2P2,1.75,0.0);
H2P2V3 = add...vertex(112P2,1.75, 35.5);
H2P2V4 = add-vertex(H2P2,0.0,35.5);
ad&..edgeCH2PlVl,H2P2V1); /*link up vert edges of door*/
ad&..edge (H2PlV2, H2P2V2);
ad&..edg. (12 P1V3, H2P2V3);
add....dge (H2PlV4, H2P2V4);

add_ceiling(H2P1,H2P2);

add...irstanc(adoorSO60,7,H2,-5.3,239.6,0.2,0.0,0.0,0.0);
add~instance(wdoor~lOo,7,112,-5.3,713.8,0.2,0.0,0.0,0.0);
add-instance(ldoor5120,7,H2,-5.3,S61.5,0.2,0.0,35.5,0.0);
add-instance(Odoor514*,7,H2,-5.3,937.6,0.2,0.0,0.0,0.0);
add-instance(*door5l6*,7,H2,-5.3,1085.3,0.2,0.0,35.S,0.0);
add-instance('door51lB.7,H2,-5.3,1161.S,O.2,0.O,O.0,O.0);
add~instance(odoor52O0,7,H2,-5.3,1309.O,O.2,O.0,35.5,O.0);
add-instance('door5241,7,H2,-5.3,1618.9,O.2,0.0,35.5,0.0);
add~instance('doorS28A*,8,H2,-S.3,1836.5,0.2,0.0,0.0,0.O);
add~instance('door528B',8,H2,-5.3,1919.2,0.2,0.0,O.0,O.O);
add-inistance(odoor53QA0,8,H{2,-5.3,2030.5,0.2,0.0,0.0,0.0);
add-instance(odoorS3OB",S,H2,-5.3,2230.7,0.2,0.O,35.5,0.0);
add~instance('door53OC0,8,H12,-5.3,2253.9,0.2,0.0,0.0,0.0);
add-instance(Odoor42l,.7,H2,103.3,2136.3,0.2,1.75,O.0,0.0);
addI-instance(Odoor5250,7,H2,103.3,1342.6,0.2,1.75,35.5,0.O);
add-instance('door5230,7,H2,103.3,1118.7,0.2,1.75,35.5,O.O);
add-instance(odoor52lf,7,H2,103.3,796.0,0.2,1.75,35.5,O.0);
add~instance(Odoor5l90,7,H2,103.3,564.4,0.2,1.75,35.5,0.0);
add~instance(Odoor?0,5,H2,293.8,415.65,0.2,0.O,35.5,90.0);
add~instance(adoor5ll',7,H2,342.8,310.1,0.2,1.75,35.5,0.0);
addL~instance(odoorstairsu,10,H2,103.3,64.4,0.2,1.75,0.0,0.O);

H3=ad&..ph(Ofire-..door*,9,W, 0,1);
113Pl=add..pg (13 ,0 .0, 1,1) ;
H3PlV1 = add-vertex(H3P1,0.0,0.0);
H3PlV2 = add-vertex(H3P1,1.75,0.0);
H3P1V3 z add...vertex(H31,1.75, 35.6);
H3PlV4 = add...vertex(113P1,0.0,35.6);
H3P2=add...pg(H3, 82.9,0,1);
H3P2Vl = add-.vertex(H3P2,0.O,0.0);

71

113P2V2 = add~vertex(H3P2,l.75,0.0);
113P2V3 z add...vertex(H3P2,1.75,35.6);
H3P2V4 a add-.vertex(H3P2,0.0,35.6);
add-edg*(H3P1Vl,113P2VI); /*link up vert edges of door*/
add....dge (13 PIV2,H13 P2V2);
adde*dge (113 PV3,H3P2V3);
add&*dg*(113PlV4,H13P2V4);

ad&..ceilingCH3Pl,113P2);

add~instance(Olstfiredoorl*,,13,3,-S.S,1488.3,0.2,0.0,0.0,0.0);
add-instance(Olst-fire-door2*,l3,H3,-5.5,1559.7,0.2,0.0,35.6,0.0);

H4=add..ph(restroom-.dooro,13,W, 0.1);
H4Pl=add..pg(114 ,0.0, 1,1) ;
H4PlV1 = add..yertexCH4Pl,0.0,0.0);
114PlV2 = add-vertex(H4P1,1.75,0.0);
114P1V3 = add_vertex(114P1,1.75,31.5);
114P1V4 = add-vertox(H4P1,0.0,31.5);
H4P2=add...pg(14, 83.25,0.1);
114P2Vl = add-vertex(114P2,0.0,0.0);
H4P2V2 = add~vertex(H4P2,1.75,0.0);
114P2V3 =ad&..vertex(114P2,1.75,31.5);
H4P2V4 = add_vertex(H4P2,0.0,31.5);
add...edge (114 PlVi,H4P2Vl);
add...edg. CH4PlV2,H4P2V2);
add...edge (H4PlV3, H4P2V3);
add..edge (14 PlV4, H4P2V4);

add~ceiling(114P1,114P2);

add-instance("door522R*,8,114,-5.3,1461.0,0.2,0.0,31.5,0.0);
add-instance(Odoor526R",8,H4,-5.3,1785.9,0.2,0.0,31.5,0.0);

H5=add...ph(double. doorl, 1,W, 0, 1);
115P1=add..pg(115, 0.0, 1, 1)
H5PlVl = add~vertex(H5Pl,0.0,0.0);
H5P1V2 = add..vertex(115P1,1.75,0.0);
H5PlV3 = add-vertex(H5P1,1.75,29.6);
H5PlV4 = add_vertex(115P1,0.0,29.6);
115P2=add...pg(H5, 82.9,0,1);
115P2V1 = add~vertex(H5P2,0.0,0.0);
115P2V2 = add_vertex(H5P2,1.75,0.0);
H5P2V3 = add_vertex(115P2,1.75,29.6);
115P2V4 = add~vertex(115P2,0.0,29.6);
ad&..edge(H5PlV1,H5P2Vl); /*link up vert edges of door*/
ad&..edge (H5PlV2, H5P2V2);
add...edge H~V,H5P2V3);
add-edge (H5PlV4,H15P2V4);

72

add-ceiling(H5Pl. H5P2);

Add...instance(ldoor53lo,8,H5,103.3,1937.4,0.2,l.75,29.6,0.0);
add...instance(02door5310,8,H5,103.3,1878.0.o.2,1.75,0.0,0.0);
add...instance(Oldoor5290,,HS.H103.3,1744.2,0.2,1.75,29.6,O.0);
add~instance(ff2door5290,8,H5,103.3,l984.8.0.2,1.75,0.0,0.0);
Add...instance(Oldoor5270,8,H5,103.3,.l522.l,0.2,l.75,29.6,O.O);
add...instance(62door5270,8,H5,103.3,1462.7, 0.2. 1.75. 0.0, 0.0);
addl-instance(ffldoor_ office'. 12, H5. 339.25, 402.3,0.2,1.75,29.6,0.0);
add-instance(*2door~officeo,12,H5,339.25,342.9,0.2,l.75,0.0,0.0);

/~Notice that lights have no height '

H6=Add..ph(6light",5,W,l. 1);
H6Pl=add-pg(H6, 0.01,1~);
H6PlVl = add_vertex(H6Pl,0.0,0.O);
H6PIV2 = add~vertex(H6P1,45.5,0.0);
H6PlV3 = add_vertex(H6P1,45.5,21.25);
H6PlV4 = add-ývertex(H6P,0.0,21.25);

add~instance("lightl',6,H6,26.25,98.5,102.0,0.0,0.0,0.0);
add~instance(Olight2s,6,H6.26.25,362.75,102.0,0.0,0.0,0.0);
add_instance(Olight3*,6,H6,26.25,651.0,102.0,0.O,0.0,O.0);
add-instance("light4',6,H6,26.25,915.25,102.0,0.0,0.0,0.0);
add_instance(slight5*,6,H6,26.25,1251.5,102.0,0.0,0.0..0.0);
add-instance(*light6l,6,H6,26.25,1539.75,102.0,0.0,0.0.,0.0);
add-instance(lIight7l,6,H6,26.25,1828.0,102.0,0.0,0.0,0.0);
addý-instance(Olight86,6,H6,26.25.2140.25,102.0.0.0,0.0,O.0);

I* Since all molding sizes are different, we need to add a separate
polyhedron for each one. But we still need to add one instance
of each so it will appear in the model*/

/* 37 different molding pieces *1

H7=add~ph("moldingl-,B,W,1,l);
H7Pl=add...pg(H7.,0.0,l,l);
H7PlV1 = add~vertex(H7Pl,0.0,0.0);
H7PlV2 = add_vertex(H7Pl,0.2,0.0);
H7PlV3 = add~vertex(H7Pl,0.2,237.5);
H7PlV4 = add-vertex(147P1,0.0,237.5);
H7P2=add...pg(H7,3.875,0,l);
H'7P2Vl = add-vertex(H7P2,0.0,0.0);
H7P2V2 = add-vertex(W7P2,0.2,0.0);
H7P2V3 = add-vertex(H7P2,0.2,237.5);
H7P2V4 = add-vertex(H7P2,0.0,237.5);
add...edge (H7PlV1 * 7P2Vl);
add-edge (H7PlV2. H7P2V2);
ad&..edge (H7P1V3 , 7P2V3);
ad&..edge (H7PlV4, H7P2V4);

73

addý_ceiling(H7P1,H7p2);

add...irstanc.(OmoldinglO,B,H7,0.0,0.0, 0.0,0.0,0.0.0.0);

H8=add-.ph(4molding2*,8,W, 1.1);
HSP1=add..pg (HS, 0 .0, 1,1);
HSP1Vl = add-vort~x(HSP1,0.0,O.0);
H8PlV2 z add-..vertex(HSP1,0.2,O.0);
H8PlV3 = add-vertexCH8Pl,0.2,434.S);
H8PlV4 = add....vrtex(HSP1,O.0,434.5);
H8P2=add..pg (MS.3.875,0,1);
HSP2v1 = add....ertex(H82,0.0,0.0);
HSP2V2 = add...vertex(HSP2,0.2,0.0);
H8P2V3 = ad&..vortexCHSP2,0.2,434.5);
HSP2V4 = add-.vertox(H8P2,0.0,434.5);
add....dge (HBPIV1, H8P2Vl);
add....dge (H8PlV2. H8P2V2);
add...edge (H8PIV3, H8P2V3);
ad&..edge (H8PlV4, H8P2V4);
add_ceiling(H8P1,H8P2);

add_instance(rnolding26,8,HS,0.0,277.2,0.0.,0.0.0.0,0.0);

H9=add..ph(*molding3 , 8,W, 1,1);
H9P1=add...pg(H9, 0.0,1,1);
H9P1Vl = add-.vertex(H9Pl,0.0,0.0);
H9PlV2 = add-..vertex(H9Pl,0.2,0.0);
H9PlV3 = add.-vortex(H9P,O.2,72..5);
H9PlV4 = add-y.ertex(M9P,0.0,72.5);
H9P2=add...pg(H9,3.875,0,1);
H9P2V1 = add_vertex(H9P2,0.0,0.O);
H9P2V2 = add--vertex(M9P2,O.2,0.0);
H9P2V3 = add-vertex(H9P2,0.2,72.5);
H9P2V4 = add--vertex(M92,0.0,72.5);
add...edge (H9P1V1, H9P2V1);
ad&..edge (H9PlV2, H9P2V2);
add...edge (H9PlV3 ,H9P2V3);
add~edge (H9PlV4, H9P2V4);
add_ceiling(H9P1.H9P2);

add-instance(uiolding3",8,H9,0.0,751.4,0.0,0.0,0.0,Q.0);

HlO=add...ph(8molding4",8,W, 1,1);
HlOP1=ad&..pg (HlO,0.0, 1, 1)
HlOPlVl = add_vertex(H1OP1,0.0,0.0);
HlOPIV2 = add_vyertex(H1OP1,O.2,0.0);
Hl0PlV3 = add_vertex(H1OP1,0.2,71.9);
HlOPlV4 = add-vertex(H1OP1,0.0,71.9);
HlOP2=add..pg(H1O,3.875,0,1);
HlOP2Vl = add-vertex(H1OP2,0.0,0.0);
Hl0P2V2 = add_vertex(H10P2,0.2,0.O);

74

Hl0P2v3 = add~vertex(HIOP2,0.2,7j.9).
H10P2V4 z add..vertex(HlOp2,O.0,71.9);
add....dg (HlOPIVI, H1OP2V1);
add-..dg. (HlOP1V2, Hl0P2V2);
add-..edg*(HIOPIV3,Hlop2V3);
add_*..dg. (HIOPIV4, H1O?2V4);

HllPl~add-pg(1111,0.o,1,1);
HllPlVl = add~vortex(Hl1P1,0.0,0.0);
H11PlV2 = ad&..vertox(HllPl,0.2,0.0);
HllPlV3 aadd~vertox(HllPl,0.2,72.S);
Hl1PlV4 = add...vertex(HllPl,0.0,72.5);
H11P2=add-pg(Hll,3.875,0,1);
HllP2Vl = add-vertox(HllP2,0.0,0.0);
Hl3P2V2 = add-vertex(HllP2,0.2,.0.);
HllP2V3 = add...vertex(HllP2,0.2,72.5);
HllP2V4 = add..vertex(Hl1P2,0.0,72.5);
add.o.dg. (HllPlVl, H1P2V1);
add-..edge (Hl1P1V2,Hl1P2V2);
add..edge(HllPlV3,H11P2V3);
add-..edge (Hl1PlV4, Hl1P2V4);
add...ceiling(HllPl,H11P2);

ad&..irstancecznouding5* S,Hl,0.,Huu 0.,,o0o97s 00oo o);

H12PlZadd-pg(Hl2,O.O,1,1);
H12PIV1 = add...vertex(Hl2Pl,0.O,O.O);
H12PlV2 = add...vertex(Hl2Pl,0.2,0.0);
H12PlV3 = add...vortex(Hl2Pl,0.2,72.3);
H12PlV4 = add..yertex(Hl2Pl,O.O,72.3);
H12P2=add...pg(Hl2, 3.875,0,1);
H12P2VI = add-.vertex(Hl2P2,0.0,0.0);
H12P2V2 = add...vertex(H1P2,0.2,0.O);
H12P2V3 = add...vertex(HJ.2P2,0.2,72.3);
H12P2V4 = add-vertex(H12P2,0.0,72.3);
add..edge ,2P~lH12P2V1);
add..edge (H12P1V2, Hl2P2V2);
add...edge (H12P1V3.Hl2P2V3);
add...edge (Hl2P1V4, Hl2P2V4);
add...ceiling (H12P1.HIMP);

add-instance(inmolding6u,8sl,0.01087.4,0.4
0 0.0 0.0,0 0);

H13P1=add-pg(H13, 0.0,1,1);
H13PlVl = add..yertex(H13Pl,0.O,O.O);

75

H13PlV2 = add_...vrtex(Hl3P1,0.2,0.0);
H13P1V3 a add...vrt~x(Hl3Pl,0.2,72.0);
H13PlV4 =addvyertex(Hl3Pl1.0.,72.0);
H13P2=add-..Pg(Hl3, 3.875,0,1);
H13P2Vl = add.-vortex(H13P2,0.0,0.0);
H13P2V2 = add..yertex(Hl3P2,0.2,0.0);
H13P2V3 a. add..vertex(Hl3P2,0.2,72.0);
H13P2V4 = add....ert~x(Hl3P2O0.0,72.0);
ad&...dg (Hl3PlVl, Hl3P2Vl);
add~edge(Hl3PlV2,Hl3P2V2);
add....dge (Hl3PlV3 , H3P2V3);
add....dgo(Hl3PlV4,Hl3P2V4);
add-ceiling(H13P1,H13P2);

addi_instance(omoldirig7o,B,H13,0.C,1199.4,0.0,0.0,0.O,0.0);

H14=add...ph("molding8*,8,W,1,1);
H14Pl=add..pg(Hl4,0.0,1,1);
H14P1Vl = add_voertex(H14P1,0.0,0.0);
H14PIV2 = add..vertex(Hl4Pl,0.2,0.0);
H14PlV3 = add_vyertex(H14P1,0.2,116..S);
H14PlV4 = add_vertex(H14P1,,0.0,116.5);
H14P2=add...pg(Hl4, 3.875,0,1,
H14P2Vl = add_vertox(H14P2,0.0,0.0);
H14P2V2 = add&.vortex(H14P2,0.2,0.0);
H14P2V3 = add....ertexIH14P2,0.2,116.5);
H14P2V4 = add_vertex(H14P2,0.O,116.5);
add-edge (H14PIV1, Hl4P2Vl);
add...edge(Hl4PlV2,Hl4P2V2);
add...edge (H14PIV3 ,H14P2V3);
add~edge(M14PlV4,Hl4P2V4);
add_ceiling(H14P1,H14P2);

add-instance(xnolding8",8,H14,0.O,1311.1,0.0,0.O,O.O,0.O);

H15=add..ph(rnolding9",8,W,1,1);
H15P1=add...pg(M15,0.0.1,1);
H15PIV1 = add_ývertex(H15P1,0.0,0.0);
H15P1V2 = add_.yertex(H1P1,0.2,O.0);
Hl5PlV3 = add__vertex(H15P1,0.2,22.7);
H15PlV4 = add_.yertex(HlSP1,0.0,22.7);
H15P2=add...pg(Hl5, 3.875,0,1);
H15P2V1 = add_vertex(H15P2,0.0,0.0);
H15P2V2 = add-..ertex(Hl5P2,0.2,0.0);
H15P2V3 = add..yertex(H15P2,0.2,22.7);
H15P2V4 = add~vertex(Hl5P2,0.0,22.7);
add~edge (H15PlV1, H15P2V1);
add....dge (Hl5PIV2, Hl5P2V2);
add~edge CHl5PlV3 ,Hl5P2V3);
ad&..edge (HiS PlV4, H1SP2V4);
add~ceiling(H15P1,H15P2);

76

add..Anstance('molding9O,8,Hl5,0.0,1463.3,o.o,o.o,o.o,o.o);

H16=add...ph(umclding100,9,W,1.,1);
H16Pluadd..pg(H16,0.0, 1,1);
H16PlVl = add_vertex(H16P1,0.0,0.0);
H16PlV2 = add_vertex(H16P1,0.2,0.O);
H16PlV3 =add_vertex(H16P1,0.2,19.3);
H16PlV4 = add~vertex(H16P1,0.0,19.3);
H16P2=add...pg(Hl6,3.875,O,1);
H16P2Vl = add_vertex(H16P2,0.O,0.O);
H16P2V2 = add_vertex(H1EP2.0.2,0.0);
H16P2V3 = add-vortex(H16P2,0.2,19.3);
H16P2V4 = add~vertex(H16P2,0.O,19.3);
add...edge (H16P1V1,H16P2V1);
ad&..edge(H16P1V2,H16PMV);
add...edge (H16PlV3, H16P2V3);
add...edge (Hl6PlV4 ,H16P2V4);
add_ceiling(H16P1,H16P2);

add-instance("xnoldingl0l,9,H16,0.0,i562.0,0.0,0.0,0.0,0.0O);

Hl7=add...ph("zuoldingl '9,W,1,1);
H17P1=add...pg(H17, 0.0, 1.1);
H17PIV1 = add_vertex(H17P1,0.0,0.O);
H17P1V2 = add_vertex(H17P1,0.2,O.O);
H17P1V3 = add_vertex(H17P1,O.2,31.4);
H17PlV4 = add-vertex(H17P1,O.0,31.4);
H1~7P2=add...pg(HI7,3.8?S,0,1);
H17P2Vl = add-vertex(H17P2,O.0,0.O);
H17P2V2 = add-vertex(H17P2,0.2,0.0);
H17P2V3 = add_vertex(H17P2,0.2,31.4);
H17P2V4 = add_vertex(H17P2,0.0,31.4);
add..edge (H17P1Vl,Hl7P2V1);
add..edge (H17PlV2, Hl7P2V2);
add.,edge(Hl7PlV3,H17P2V3);
add...edge (Hl7P1V4, H17P2V4);
add_ceiling(H1l7P1,H17P2);

addI-instance(xnoldinglV, 9,Hl7, 0.0, 1619.0, 0.0,0.0,0.0,0.0);

H1B=add-..ph(Omoldirglr8,9,W,1.1);
Hl8P1=add...pg(HIB, 0.0,1,1);
H18PIV1 = add~vertex(H18P1,0.0,0.0);
H18PIV2 =add_vertex(H18P1,0.20.00);
Hl8P1V3 = add...vertex(Hl8P1,0.2,68.0);
Hl8PlV4 = add~vertex(H1SP1,0.0,68.0);
H18P2=add...pg(HlB.3.875,0,1);
HlSP2V1 = add_vertex(H18P2,0.0,0.0);
H18P2V2 = add~vertex(H18P2,O.2,0O0);
H18P2V3 = addý_vertex(H18P,0.2,68.0);

T/

H18P2V4 = add~vertex(H1SP2,0.0,68.0);
add_edge(H1SP1V1,H1SP2V1);
add..edge(H18PlV2,H1SP2V2);
add..edge (HISPIV3,Hl8P2V3);
add-edge (Hl8P1V4,H1SP2V4);
add_ceiling(Hl8P1,H1SP2);

add...instaxc.(mmoldingl28,9,HlS,0.O,1684.5,0.0,0.C,0.0,0.O);

H19.add..ph(mmoldingl3",9,W, 1,1);
H19Pl=add..pg (H19, 0. 0, 1.1)
H19PlVl = add~vertex(H19P1,0.0,0.0);
H19PlV2 = add~vertex(H19P1,O.2,0.0);
H19PlV3 = add~vertex(H19P1,0.2,46.2);
H19PlV4 = add.~vertex(Hl9Pl,0.0,46.2);
H19P2=add...pg(Hl9, 3.875. 0.1);
H19P2Vl = add_vertex(H19P2,0.0,0.0);
H19P2V2 = add_vei-tex(1419P2,0.2,0.0);
H19P2V3 = add_vertex(Hl9P2,0.2,46.2);
H19P2V4 = add-.vertex(M19P2,0.0,46.2);
add_edge(H19PlV1,H19P2V1);
add_edge(H19P1V2,H19P2V2);
add_edge(H19PlV3,H19P2V3);
add_edge(H19P1V4,H19P2V4);
add_ceiling(H19P1,H19P2);

add-instance(xnoldirigl3",9,H19,O.0,1788.2,0.0,0.O,0.O,0.0);

H20=add...ph("moldingl4l,9,W, 1,1);
H2OPl=add...pg (H20,0. 0,1.,1);
H2OPlVl = add~vertex(H2OPl,0.0,0.0);
H2OPIV2 = add_vei-tex(H2OP1,0.2,0.0);
H20PlV3 = add_vertex(H2OPl,0.2,43.0);
H2OPlV4 = add~vei-tex(H20P1,0.0,43.0);
H20P2=add...pg(H20. 3.875,0,1);
H2OP2Vl = add_vertex(H20P2,0.0,0.0);
H20P2V2 = add_vertex(H20P2,0.2,0.0);
H20P2V3 = add~vertex(H20P2,0.2,43.0);
H20P2V4 = add_vertex(H20P2,0.0,43.0);
add-edge(HM20PMV,H2OPMV);
add_edge(H2OPlV2,H20P2V2);
add...edge (H2OPlV3, H20P2V3);
add_edge(H2OPlV4,H20P2V4);
add...ceilinig(H2OPl,H20P2);

add~instance(mmoldingl4'.9.H20,0.0,1874.1,0.0,0.0,0.0,0.0);

H21=add...ph(moldingl5n,9,W. 1,1);
H21Pl=add..pg(H21,0.0,1,1);
H2lPlVl = add-vei-tex(H21P1,0.0,0.0);
H21PlV2 = add-vertex(H2P1,0.2,0.0);

78

H21PIV3 = ad&...vertox(H21P1,0.2,'±..6);
)121PIV4 a add..yertex(H21Pl,0.0,71.6);
H2lP2zadd...pg(H21,3.875,0,1);
H21P2Vl = add...vertex(H2lP2,0.0,0.0);
H2lP2V2 = add-vertex(H2P2,0.2,0.0);
H2lP2V3 = add-ývort.,c(H21P2,0.2,71.6);
H2lP2V4 a add..vertex(H21P2,0.0,71.6);
add...edge (H21PIV1. H2lP2Vl);
ad&dged (H21P1V2, H21P2V2);
add....dge (H21P1V3 ,H21P2V3);
add..dge (H21PIV4,H2lP2V4);
add-..ceiling(H21P1,H21P2);

addý-instance(znoldingl5*,9,H21.0.0,1956.8,0.0,0.0,0.0,0.0);

H22=add..ph(*moldingl6l,9,W,1,1);
H22P1=add~pg(H22, 0.0,1,1);
H22PIV1 = add....ertex(H22Pl,0.0,0.0);
H22P1V2 = add...vertex(H22Pl, 0.2,0.0);
H22PlV3 = add...vertex(H22P1,0.2,125.0);
H22P1V4 = add...yertex(H22Pl,0.0,l2S.0);
H22P2=add...pg(M22,3.875,0,1);
H22P2V1 = add_vertex(H22P2,0.0,0.0);
H22P2V2 = add~vertex(H22P2,0.2,0.0);
H22P2V3 = addvyertex(H22P2,0.2,125.0);
H22P2V4 = add-vei-tex(H22P2,0.0,125.0);
add...edge (H22PIV1, H22P2V1);
add...edge (H22PIV2, H22P2V2);
add-.edge (H22P1V3, H22P2V3);
add...edge (H22PlV4, H22P2V4);
add...ceiling(H22P1,H22P2);

add-instance(Omoldingl6*,9,H22,0.0,2068.1,0.0,0.O,0.0,0.0);

H23=add...ph(mmolding9",8,W, 1,1);
H23P1=add...pg(H23,0.0,1,1);
H23PlV1 = add~vortex(H23P1,0.0,0.0);
H23PlV2 = adddvertex(H23P1,0.2,0.0);
H23PlV3 = cdd_vertex(H23Pl,0.2,19.0);
H23PIV4 = add_vortex(H23P1,0.0,19.0);
H23P2=ad&..pg(H23,3.875,0,1);
H23P2Vl = add..vertex(H23P2,0.0,0.O);
H23P2V2 =add_vyertex(H23P2,O.2,0.0)
H23P2V3 = addvyertex(H23P2,0.2,19.0,;
H23P2V4 = add....ertex(H23P2,0.0,19.0);
add...edge (H23PIV1, H23P2V1);
add....dge (H23P1V2,H23P2V2);
add....dge (H23P1V3 ,H23P2V3);
add...edg. (H23P1V4, H23P2V4);
add...ceilirig(H23P1,H23P2);

79

add_instance(omoldingl6o,9,H23,0.0,2232.B,Q.0,0.O,0.0,o.0);

H24=add...ph(Omoldingl7O,9,W, 1,1);
H24Plzadd-pg(H24,O.O,1,1);
H24PlV1 = add..yertex(H24Pl,0.0,0.0);
H24PlV2 = add-vertex(H24P1,0.2,0.0);
H24PlV3 = add..yertex(H24Pl,0.2,61.7);
H24PlV4 = add~vertex(H24P1,0.0,61.7);
H24P2=add.pg(H24, 3.875,0,1);
H24P2Vl = add..vertex(H24P2,0.0,0.0);
H24P2V2 = add_vertex(H24P2,0.2,0.0);
H24P2V3 = addý_vertoxCH24P2,O.2,61.7);
H24P2V4 = add_vertex(H24P2,0.0,61.7);
ad&...dge (H24P1Vl, H24P2Vl);
add....dge (H24PlV2, H24P2V2);
ad&..edg. (H24PlV3 ,H24P2V3);
add-edge (H24PlV4, H24P2V4);
add-ceiling(H24Pl,H24P2);

add-instance(rnoldingl7w,9,M24,0.0,2289.5,0.0.0.o,0.0,0.0);

H25=add...ph('moldingIl8,9,W,1,1);
H25P1=add...pg(H25. 0.0,1,1);
H25P1Vl = add__.vertex(H25P1,0.O,0.0);
H25P1V2 = add_vertex(H25P10O.0,177.3);
H25PlV3 =addý_vertex(H25P1,-0.2,177.3);
H25PlV4 = add_vertex(M25P1,-0.2,0.0);
H25P2=add...pg(H25,3.875,O 1);
H25P2V1 = add~vertex(H25P2,0.0,0.0);
H25P2V2 = add_vertex(H25P2,0.0,177.3);
H25P2V3 = add_vertex(H25P2,-0.2,177.3);
H25P2V4 = add-vert-x(H25P2,-0.2,0.0);
add...edge (H25P1V1, H25P2V1);
add....dge (H25PlV2, H25P2V2);
add-edge (H25P1V3, H25P2V3);
add_edge (H25P1V4,H25P2V4);
add-ceiling(H2SP1,H25P2);

add-instance(*moldinglao,9,H25,98.0.2173.9,0.0,0.0,0.0,0.0);

H26=add...phcznoldingl9m,9,W,1,1);
H26P1=add...pg(H26,0.0,1,1);
H26PlVl = add_vertex(H26P1,0.0,0.0);
H26PlV2 =add..vertex(H26P1,0.0,194.5);
H26PlV3 =add_vertex(H2EP1,-0.2,194.5);
H26PIV4 = add_vertex(H26P1,-0.2,0.0);
H26P2=add...pg(H26,3.875,0,1);
H26P2Vl = add..yertex(H26P2,0.0,0.0);
H26P2V2 a add-vertex(H26P2,0.0, 194.5);
H26P2V3 = ad&..vertex(H26P2, -0.2,194.5);
H26P2V4 = add_vertex(H26P2,-0.2,0.0);

80

add....dge(H26PlV1. H26P2Vl);
add-o.dg. (H26PlV2. H26P2V2);
add..edg. (H26P1V3,*H26P2V3);
add-edg. (H26P1V4,H26P2V4);
add...ceiling(H26Pl,H26P2);

addl~instance(omoldingl9u,9,H26,98.0,1939.7,O.0.,0.0,0.0,0.O);

H27=add-.ph(umolding20f,9,W,1,1);
H27P1=add..pg(H27,0.0,1,1);
H27P1V1 = add_vertex(H27P1,O.0,O.0);
H27P1V2 = add_vertex(H27P1,0.0, 129.2);
H27PlV3 = add~vertex(H27P1,-0.2,129.2);
H27P1V4 = add_vertex(H27P1,-0.2,0.0);
H27P2=add...pg(H27,3.875,O,1);
H27P2Vl = add_vertex(H27P2,0.0,0.0);
H27P2V2 = add_vertex(H27P2,0.0,129.2);
H27P2V3 = add_vertex(M27P2,-0.2,129.2);
H27P2V4 = add_vertex(M27P2,-O.2,0.0);
add..edge (H27PlV1,H27 P2 V);
ad&..edge (H27PIV2,*H27P2V2);
add..edge (H27P1V3 ,H27P2V3);
add...edge (127P1V4, H27P2V4);
addý_ceiling(H27P1.H27P2);

add_instance(xmolding2O',9,H27,98.O,1746.5,O.0,O.O,0.O,O.O);

H28=add...ph (zolding2l", 9,W, 1, 1);
H28Pl=add..pg (H28, 0.0, 1, 1)
H28PlV1 = add_vertex(H28P1,0.0,0.O);
H28PlV2 = add~vortex(H28P1,O.0,158.1);
H28PlV3 = add_vertex(H28P1,-0.2,158.1);
H28P1V4 = add_vertex(H28P1,-0.2,0.O);
H28P2=add...pg(H28, 3.875,0,1);
H28P2Vl = add_vertex(H28P2,0.0,0.0);
H28P2V2 = add_vertex(H28P2,0.0,158.1);
H28P2V3 = add_vertex(H28P2,-0.2,158.1);
H28P2V4 = add_vertex(H28P2,-0.2, 0.0);
add...edge (H28P1V1, H28P2Vl);
add..edge (H28P1V2. H28P2V2);
add..edge (H28P1V3 ,H28P2V3);
add..edge (H28PIV4,H28P2V4);
add_ceiling(H28P1,H28P2);

add_instarice(emolding2lm,9,H28,98.0,1524.4,0.0,0.O,0.0,0.0);

H29=add..ph(Omolding220,9,W, 1,1);
H29Pl=add.pg(H29,0.0,1, 1);
H29PlV1 = add_vertex(H29P1,0.0,0.0);
H29PIV2 = addi_vertex(H29P1,0.O,115.7);

81

H29PIV3 z add~vert~x(H29P1,-0.2.,115.7);
H29PIV4 = add_vortex(H29P1,-0.2O0.0);
H29P2=add...pgCH29,3.875,0, 1);
H29P2Vl = add_vertex(H29P2,0.0,0.0);
H29P2V2 z add~vertex(M29P2.0.0,115.7);
H29P2V3 = addý_vert~x(H29P2,-0.2, 115.7);
H29P2V4 a add_vertex(H29P2,-0.2,0.0);
ad&..edge (H29PlV1, H29P2V1);
add....dg. (H29PlV2, H29P2V2);
add....dge (H29PlV3, H29P2V3);
add_*dge(H29P1V4,H29P2V4);
add_coiling (H29Pl,H29P2);

add-iristance(umolding22*,9,H29,98.0,1344.7,0.0,0.0,0.O,O.0);

H30=add...ph(mmolding230,9,W,1,1);
H3OPl=add...pg(H30, 0.0,1,1);
H30PlVl = add_vortex(H30Pl,0.0,.0.);
H30PlV2 = add.....ertex(H3OP1,00,184.2);
H3OPlV3 = add~ver-tex(H30Pl,-0.2,184.2);
H3OPlV4 = add-vertex(H3OPl,-0.2,0.0);
H30P2=add...pg(H30,3.875,0,1);
H3OP2Vl = add_yertex(H30P2,0.0,0.0);
H30P2V2 = add-vertex(H30P2,0.0,184.2);
H30P2V3 = add_vertex(H30P2,-0.2,184.2);
H30P2V4 = addI-vertex(H30P2,-O.2,0.0);
add_edge(H3OP1V1,H3OP2VI);
ad&..edge (H3OPIV2, H30P2V2);
add_*dge(H3OPlV3,H30P23);
addý_*dge(H3OP1V4,H302V4;
add_ceiling(H3OPl,H30P2);

add-instance('niolding230,9,H30,98.0,1120.8,O.0,0.0,0.0,0.0);

H46=ad&..ph(Omolding240,9,W,1,1);
H46Pl=add...pg(H46,0.0,1,l);
H46PlVl = add_vertex(H46Pl,0.0,0.0);
H46P1V2 = add_vertex(I146P1,0.0,202.O);
Ji46PlV3 = add_vertex(H46P1,-0.2,202.0);
H46PlV4 = add_vertox(H4EP1,-O.2,0.0);
H46P2=add...pg(H46,3.875,0,1);
H46P2Vl = add_vertex(H46P2,0.0,0.0);
H46P2V2 = add..yertex(H46P2,0.0,202.0);
H46P2V3 = add_vertex(H46P2,-0.2,202.0);
H46P2V4 = add_vertex(H46P2,-0.2,0.0);
add..edge (H46PlV1. H46P2Vl);
add~edge (H46PIV2,Hl46P2V2);
add-*dge (H46PlV3, H46P2V3);
add_*dge(H46P1V4,H46P2V4);
add-ceiling(1446P1,H46P2);

82

add...instance(znolding241.9,H46,98.O,877.1,O.O,O.O,o.o,.O.);

H31:add...ph(Omolding2S',9,W. 1,1);
H3lPl=add...pg(H31,O.O..1,1);
H31PIVI = add-vertex(H3lPl,O.O,O.O);
H31PlV2 = addvyertex(H31Pl,O.O,32.O);
H3lPlV3 = ad&..vertex(H3lPl,-G.2,32.O);
H3lPlV4 = add-v.ertex(113lPl,-O.2,O.C);
H3lP2=add...pgCH31,3.875,O,1);
H3lP2VI = add...vertex(H3lP2,O.OO0.O);
H31P2V2 = add....ertex(H3lP2,0.O,32.O);
H3lP2V3 = ad&..vertex(H3lP2,-O.2,32.O);
H3lP2V4 = add....ertex(H31P2,-0.2,0.O);
add...edg (H3 1PlV1,H3 1P2Vl);
add-.edge (H3lP1V2, H3lP2V2);
add..edge (H3lPlV3,*H3lP2V3);
add...edg. (H3lPlV4, H31P2V4);
addý_ceiling(H31P1.H31P2);

addý-instance(Omolding25',9,H31,98.O,798.1,O..O.O,O.O,.O.);

H32=add.ph(umolding26*,9,W,1 .1);
H32Pl=add...pg (132, 0.0, 1, 1)
H32P1V1 = add._vertex(H32P1,O.0,0.0);
1132PIV2 = add-vertex(1132P1,0.0,191.9);
H32PlV3 = add_vertex(1432P1,-0.2,191.9);
H32PlV4 = add~vertex(H32P1,-0.2,O.0);
H32P2=add...pg(H32.3.875,0,1);
H32P2VI = add.vertex(H-32P2,.0.,0.0);
H32P2V2 = add_vertex(1132P2,O.O.191.9);
1132P2V3 = add_vertex(H32P2,-O.2,191.9);
H32P2V4 = add_vertex(H32P2,-0.2,0.0);
add...edge (H32PlVl, H32P2Vl);
add~edge (132PIV2,H132P2V2);
add.edge (132P1V3,*H32P2V3);
add~edge (H32P1V4,H132 P2V4);
add...ceiling(H32P1,1132P2);

add-instance(*molding260,9,H32,98.0,566.5,0.0,0.0,0.0,0.O);

H33=add-ph(omolding278,9,W,1,1);
H33Pl=add...pg(H33,0.O,1,1);
H33PlVl = add~vertex(H33P1,O.0,O.0);
H33P1v2 = add-vertex(H3P1,O.0, 112.9);
H33PlV3 = add-vertex(H33P1,-0.2,112.9);
1133P1V4 = add-vertex(H33Pl,-O.2,0.0);
H33P2=add..pg(H33, 3.875, 0,1);
H33P2Vl = add-vertex(H33P2,0.0,0.0);
1133P2V2 = add_vertex(1133P2O0.0, 112.9);
H33P2V3 = add~vertex(H33P2,-0.2,112.9);

83

H33P2V4 a add~vertex(M33P2,-0.2,0.0);
add....dge (H33PlVl,H33P2Vl);
add...dg. (H33PlV2,H33P2V2);
add...dge (H33PlV3, H33P2V3);
add_*dge(H33P1V4,M33P2V4);
add..ceilingCH33Pl,H33P2);

add-inutance(Omolding270,9,H33,98.0,413.9,0.O,0.O,0.0,0.0);

H34=add-ph(molding280,9,W,1,1);
H34Pl=add...pg(H34,0.0,1..1);
H34P1V1 = add..yertox(H34Pl,O.0,0.0);
H34PlV2 = add_vertex(H34P1,0.0,-0.2);
H34PlV3 = add~vertex(H34P1,l57.9,-0.2);
H34PlV4 =add-.vertex(H34P1,157.9,O.0);
H34P2=add-jPg(H34,3.S75,0,1);
H34P2Vl = add_vertex(H34P2,0.O,0.0);
H34P2V2 = add...vertex(H34P2,0.0, -0.2);
H34P2V3 = addý_vertex(H34P2,157.9,-0.2);
H34P2V4 = add_ývertex(H34P157.9,0.0);
addý_edge (H34PV1,H34M2V);
add-edge(H34P1V2,H34P2V2);
add-edge(M34P1V3,H34P2V3);
add_edge(H34P1V4,H34P2V4);
add_ceiling(H34P1,H34P2);

addI-instance(xnolding2B0,9,H34,98.0,413.9,O.0,0.0,0.0,O.O);

H35=add-.ph(znolding290,9,W,1,1);
H35Pl=add..pg(H35,G.0,1,1);
H35PlVl = addý_vertex(1435P1,0.0,O.0);
H35PIV2 = addý_vertex(H35P1,0.0,-0.2);
H35PlV3 = add~vertex(H35P1,41.6, -0.2);
H3SP1V4 = add-vertex(H35P1,41.6,0.O);
H35P2=add-..pg(H35,3.875,0,1);
H3SP2Vl = add_vertex(H35P2,0.0,0.0);
H35P2V2 = addý_vertex(H35P2,0.0,-0.2);
H35P2V3 = add-vertex(M35P2,41.6, -0.2);
H35P2V4 = addlvertex(H35P2,41.6,0.0);
add-edge (H3SP1Vl,H35P2V1);
add-..ýedge (H35PlV2,H35P2V2);
add...edge (H35PlV3,*H35P2V3);
add_*dge(H35P1V4,H35P2V4);
addj_ceiling(H3SP1,H3SP2);

add-instance(omolding29",9,H35.,295.9,413.9,0.0,0.0,0.0,0.0);

H36=add...ph(smolding30.,9,W,1,1);
H36Pl=add....p(H36, 0.0,1,1);
H36PlVl = add-vertex(H36P1,0.0,0.0);
H36PlV2 = add...ertex(H36Pl,-0.2,0.0);

84

H36PlV3 = add..yert~x(H36P1,-O.2,9.3);
H36PlV4 =add~v~rtex(H36Pl,O.0.9.3);
H36P2=add-..pg(H36,3.875,0,1);
H36P2Vl = add_vertex(H36P2,0.0,0.O);
H36P2V2 = add_vertex(H36P2,-0.2,0.O);
1136P2V3 = add_vertex(H36P2,-O.2,9.3);
1136Pd-V4 = add_ývertex(H3P2,0.0,9.3);
ad&...dg.(H36P1Vl, H36P2V1);
add-.dge (13 6PlV2,H13 6P2V2);
add....dg. (13 6PlV3,H136P2V3);
add-edge (13 6P1V4, H36P2V4);
add.-ceiling(H36P1.H36P2);

add-instance(mmoldirng30o,9,H36,337.5,404.6,0.0,0.0,0.0,0.0);

H37=add...ph(nmolding3l1,9,W,1,1);
H37Pl=add..pg (H137, 0. 0, 1,1)
H37PlVl = add-vertex(1137P1,0.0,0.0);
1137PlV2 = add_vertex(H37P1,-0.2,0.O);
1137PlV3 = add_vertex(H37P1,-0..2,28.4);
H37PlV4 = add~vertex(1137P1,0.0,28.4);
1137P2=add...pg(H37,3.875,0.1);
H37P2V1 = add_vertex(1137P2,0.O,0.O);
H37P2V2 = add_vertex(H37P2,-O.2,0.0);
H37P2V3 = add_vertex(H37P2.,-0..2,28.4);
1137P2V4 = addý_vertex(H37P,O.0,28.4);
add..edge (137P1V1,H137P2Vl);
add...edge(1137PlV2,1137P2V2);
&dd...edge(1137 PIV3 ,137P2V3 1;
adcL-edge (H37P1V4, H37P2V4);
add-ceiling(H37P1,H37P2);

add_instance(xnolding31',9,H37,337.5,312.2,O.O,O.O,O.O,0.0);

H38=add...ph('molding320,9,W,1.,1);
13 8P1=add~pg (138.0. 0,1, 1)
H38P1Vl = add_vertex(H38P1,0.O,O.O);

11381V2= add-vertex(1138P1, -0.2, 0.0);
H38P1V3 = add__vertex(1138P1,-O.2,5.1);
H38P1V4 = add_vertex(H3BP1,0.0,5.1);
H38P2=add...pg(H38,3.875,0,1);
H38P2Vl = add~vertex(H38P2,0.O,0.0);
H38P2V2 = add_vertex(H38P2,-O.2,O.0);
1138P2V3 = add_vertex(H38P2,-O.2,5.1);
H38P2V4 = add_vertex(1138P2,0.O,5.1);
add-.edge (H38PlVl,H13 BP2V1);
add...edge (13 8PlV2, H38P2V2);
add-edge (1138PlV3, H38P2V3);
add...edge (H38PlV4,H138P2V4);
add_ceiling(H38P1,H38P2);

85

add-insta~nc@(molding32r,9,H38,337.5,267.4,0.0,0.0,0.0,0.0);

H39uadd-ph(Omolding33.,9,W,1,1);
H39Plzadd...pg(H39,0.0,1,1);
H39PlVl a add~vertex(H39P10O.0,0.O);
H39PlV2 = add~vortex(H39P1,30.6,0.0);
H39P1V3 = add...vertex(H39P1,30.6,0.2);
H39PlV4 a add_vertex(H39P1,0.0,0.2);
H39P2=add...pg(H39,3.875,O,1);
H39P2Vl = add~vertex(H39P20.0O,0.0);
H39P2V2 = add...vertex(H39P2,30.6,0.0);
)139P2V3 = add_vertex(H39P2,30.6,0.2);
H39P2V4 = add_vertex(H39P2,0.0.0.2);
ad&l..dg. (H39PlV1. H39P2Vl);
add-edg. (H39PlV2, H39P2V2);
add-.dg. (H39PIV3 ,H39P2V3);
ad&..edge (H39PlV4, M39P2V4);
add-ceiling(H39P.H3P2);

add-instance(rnolding33V,9,H39,306.9.,267.4,0.0,O.0,0.0,0.0);

H40=add-.ph(omolding34-,9,W,1, 1);
H4OPl=add-pg(H40, 0.0,1,1);
H4OPlVl = addA_vertex(H4OPl,0.0,0.O);
H4OPlV2 = add~vortex(H4OPl,56.7,O.0);
H40PlV3 = add_vertex(H4OP1,56.7,0.2);
H4OPlV4 = add_vertex(H4OP1,0.0,0.2);
H40P2=add...pg(H40,3.875,,0,1);
H4OP2VI = add_vertex(H40P2,0.0,0.0);
H40P2V2 = add~vertex(H40P2,56.7,0.0);
H40P2V3 = addA_vertex(H40P2,56.7,0.2);
H40P2V4 = add_ver-tex(H40P2,0.0,O.2);
add...edge (H4OPlV , H4OP2Vl);
add..edge (H4OPlV2, H40P2V2);
add-..edge (H4OPlV3 ,H40P2V3);
add-edge (H4OPlV4, H40P2V4);
add_ceiling(H4OPl,H40P2);

add-instance(xnolding340,9,H40,192.2,267.4,0.O,0.0,0.0,0.0);

H41=add...ph('moldirig35',9,W,1,1);
H41P1=add...pg(H41,0.0,1,1);
H4lPlVl a add.vertex(H4lPl,0.0,0.0);
H4lPlV2 = add_vertex(H41P1,36.2,0.0);
H41PIV3 = add_vertex(H41P1,36.2,0.2);
H4lPlV4 = add~vertex(H41P1,0.00O.2);
H4lP2=add...pg(H41,3.875,0,1);
H4lP2Vl = add_vertex(H41P2,0.0,0.0);
H4lP2V2 = add...vertex(H4lP2,36.2,0.0);
H41P2V3 = add_vertex(H41P2,36.2,0.2);
H4lP2V4 = add_vertex(M41P2,0.0,0.2);

86

addq.ed.(H41PIV1,H41P2Vl);
addAedge (H4lPlV2,H41P2V2);
add_...dg. (H4lPlV3,H4lP2V3);
add~odge (H41P1V4,H4lP2V4);
add_ceiling(H41P1,H41P2);

add...instance(Omoldirig35o,9,H41,98.0,267.4, 0.0. 0.0, 0.0, 0.0);

H42=add..ph(Omolding360,9,W,1,1);
H42P1=add...pg(H42, 0.0,1,1);
H42PlVl = add...yertex(H4P1, 0.0, 0.0);
H42P1V2 = ad&..vertex(H42Pl,0.0,-0.2);
H42P1V3 = add.vertex(H42P1,16S.4, -0.2);
H42PIV4 = addvyertex(H42Pl, 165.4,0.0);
H42P2=add...pgCH42,3.875,0,1);
H42P2Vl = add...ertex(H42P2,0.0,0.0);
H42P2V2 = add_vertex(H42P2,0.0,-0.2);
H42P2V3 = add..vertex(H42P2,165.4,-0.2);
H42P2V4 = add_vertex(H42P2,165.4,0.0);
add...edge (H42PlV1, H42P2V1);
ad&..edge (H42PIV2, H42P2V2);
add...edg. (H42PIV3 ,H42P2V3);
adcLedge (H42PlV4, H42P2V4);
add~ceiling(H42P1.H42P2);

add~instance(znolding36*,9,H42,98.0,102.0,0.0,0.0,0.0,0.0);

H43=add..ph(Omolding370,9,W. 1,1);
H43P1=add..pg(H43, 0.0.1,1);
H43PIV1 = add_vertex(M43P1,0.0,0.0);
H43PIV2 = add_vertex(H43P1,-0.2,0.0);
H43P1V3 = add_vyertex(H43P1,-0.2,62.3);
H43PlV4 =add...ertex(H43P1,0.0,62.3);
H43P2=add...pg(H43, 3.875,0,1);
H43P2V1 = add._y.ertex(H43P2,0.0,.0Q);
H43P2V2 = add~vertex(H43P2,-0.2,0.0);
H43P2V3 = add_vyertex(H43P2,-0.2,62.3);
H43P2V4 = add..vertex(H43P2,0.0,62.3);
add~edge (H43P1.V1, H43P2VI);
add...edge (H43PlV2, H43P2V2);
add...edge (H43P1V3 ,H43P2V3);
add..edge (H43 P1V4, H43 P2V4);
addý_ceiling(M43P1,H43P2);

addý-instance(xnolding370,9,H43,98.0,0.0,0.0,0.0,0.0,0.0);

H44=add-.ph(lelectric...panelm,14,W,1,1);
H44Pl=add...pg(H44,0.0,1,1);
H44P1V1=add_vertex(H44Pl,0.0,0.0);
H44PlV2=add_vertex(H44Pl,0.0,47.0);
H44P1V3=add~vertex(H44P1,-0.2,47.0);

87

H44PlV4=add_vertox(H44Pl.-0.2,0.0);
H44P2=add...pg (H44, 86.0, 0, 1)
H44P2Vl=add...vertex (H44P2, 0.0 *0.0);
H44P2V2=add_ývertex(H44P2,0.0,47.0);
H44P2V3=add_vertex(H44P2,-0.2,47.0);
H44P2V4=add-ývertex(H44P2,-0.2,0.0);
add...dg. (H44PIV1, H44P2V1);
add~edg. (H44P1V2, H44P2V2);
add....dg. (H44PlV3,H44P2V3);
add&.dge (H44PlV4, H44P2V4);
add_coiling (H44P1,H44P2);

add-instance(eloctric...panellV,lS,H44,98.0.830.l,0.0,0.0,0.0,0.0);

H45=add..ph("roonz...labol", 0,W, 1,1);
H4SPl=add..pg(H45,57 .6, 1, 1)
H45PlVl=add_vertex(H45Pl,0.0,.0.);
H45PlV2=add_vortex(H45P1,0.0,7.0);
H45P1V3=add_.vertex(H45P1,-0.2,7.0);
H45P1V4=add...vertex(H45P1, -0.2, 0.0);
H45P2=add...pg(H45, 64.6.,0, 1)
H45P2V1=add_vertex(H45P2,0.0,0.0);
H45P2V2=add_vertox(H45P2,0.0,7.0);
H45P2V3=add_..vertex(H45P2, -0.2,7.0);
H45P2V4=add_vertex(H45P2,-0.2,0.0);
ad&..edge (H45PlVl. H45P2V1);
add-.edge (H4SPlV2, H45P2V2);
adc-edgo (H45P13, H45PM);
add-.edge (H4SPlV4H45P2V4;
add~ceiling(H45P1,H45P2);

add...instance(*office-label",12,H45,337.5,331.l,0.0.,0.0,0.0,0.O);
add-instance(*5ll..labelV,9,H45,337.5,314.9,0.0,0.0,O.0,0.0);

H47=add-.ph('elevator-control",16,W,1,1);
H47P1=add...pg CH47 ,42.0, 1,1) ;
H47PlVl=add_vertex(H47P1,.0.0,.0);
H47PlV2=add....ertex(H47Pl,7.0,0.0);
H47P1V3=add_ývertex(I147P1,7.0,0.2);
H47P1V4=add_vertex(1447P1,0.0,0.2);
H47P2=add...pg (H47, 64.6, 0, 1)
H47P2Vlzad&..vertex(1447P2,0.0,0.0);
H47P2V2=add-vertex(H47P2,7.0,0.0);
H47P2V3=add...vertex(H47P2,7.0,0.2);
H47P2V4=add...vertex(H47P2, 0.0,0.2);
add...edge (H4?PlVl, H47P2V1);
add..edge (H47PlV2, H47P2V2);
add~edge (H47P1V3, H47P2V3);
add...edg. (H47P1V4, H4P2V4);
add...ceiling(H47P1,H47P2);

88

add~instanc.(.olevator-controlo,16,H47,216.9,267.4,0.0,0.0,0.0,0.0);

H48=add-ph('bulletin-board.,14,W,1,1);
H48P1.add...pg(H48..36.5,l, 1);
H48P1Vl=add..yortex(H48P1, 0.0,0.0);
H48PlV2=add...vertex(H48Pl, 0.0,-3 .25);
H48PlV3=add...vertex(H48Pl.l44.1. -3.25);
H4BP1V4=adc~vertex(H48P1, 144.1,0.0);
H48P2=add...pg (H48. 84 .5, 0,1);
H48P2Vl=add...vertex(H48P2, 0.0, 0.0);
H4SP2V2=add-vertox(H48P2,0.0. -3.25);
H48P2V3=add~vortex(H48P2, 144.1, -3.25);
H48P2V4=add...vertex(H48P2, 144.1,0.0);
addLodge (H48P1V1,H48P2V1);
add...edge (H48P1V2, H48P2V2);
add~edge (H4BP1V3 ,H48P2V3):
add...edge (H48P1V4, H48P2V4);
adcL~ceiling(H48P1,H4BP2);

add~instance("bulletin-board*,14,H48,105.9,413.9,0.0,0.0,0.0,0.0);

return W; /*return pointer to this entire world structure*/

89

Lt James Stein

This file contains the routines neccessary to support the projection of
our
2d+ model world into a 2 dimensional window. This view will then be used
for
pattern matching against the processed images extracted from the raw
camera
data.

#define CCD (2.0/3.0)
#define VIEW_ANGLE 300.0
#define NEARCLIP 1.24
#define FARCLIP 5000.0
#define MAXX 646.0
#define MAXY 587.28 /* changed fm 587.28 on 29 Jun 93 */

typedef struct line (
double XI,X2,Yl,Y2,Zl,Z2;
double MODELX, MODELY;
int CLIP1[6],CLIP2[6];
struct line *NEXT;

/* pattern-matching parameters /
char name(2];
float length;
double est-pose.orient, estangle-toimagecenter;
int sum-imglines;
float sumconf, sum_dist, suxn._scale;

LINE;

typedef struct linehead
int LINES,VERTLINES;
LINE *LINELIST,-VLINELIST, -TAIL,-VTAIL;

) LINE-HEAD;

typedef struct window
double XMIN, XMAX, YMIN, YMAX,

ZMIN, ZMAX;
) WINDOW;

90

I. Y
0

-X 90 -90 X

180
-Y

NOTE: convert angles and tenths degrees to rads for sin and cos functions

LINEHEAD *conduct-visibility-.sweep(WORLD*,double,double,double);

float find-z(PH,V)
POLYHEDRON *PH;
VERTEX *V;

POLYGON *NMXT_PG;
VERTEX *NEXT-V;
float ZVALUE=66.6;
mnt FOUND=0, PG-.CNT=0;

NEXTPG=PH->POLYGON_LIST;
while (NEXT...PG){

PGSCNT+.;
NEXTV=NEXTPG->VERTEXLIST;
while (NEXT V) (

if (NEXT..V==V){
ZVALUE=NEXTPG->ZVALUE;
NEXT-V=NULL;

FOUND=l;

else{
NEXT...V=NEXT-V->NEXT;

) I end while *

if (FOUND==0)
NEXTPG=NEXTPG->NEXT;

else
NEXT..YG=NULL;

91

)/* end while/
return (ZJJALUE);
I* end find-z *I

WINDOW *calc-window(X,Y.Z,ORIENTFOCALLEN)

double X,Y,Z,ORIENT.FOCAL_LEN;

WINDOW *WIN;
double HYP,XMIN,YMIN,ZMIN, RADS;

WIN=(WINDOW *)malloc(sizeof (WINDOW));

RADS=VIEWANGLE/lO.0*PI/180.O;
/*printf("\n\nView angle= %.21~f (%.21f rads)",VIEK-ANGLE,RADS);
printf("\n\nFocal length= %.21f,,FOCALLEN) ;*/

HYP = FOCALLEN/cos(RADS/2.O);
/*printf(*\n\nHyp len= %.21f*HYP) ;*/

WIN->XMIN = X-cos((90.O-ORIENT-VIEW_ANGLE/20.O)*P1/180.O)
HYP;

WIN->XMAX = X-sin((ORIENT-VIEW._ANGLE/20.O)*PI/180.O) * HYP;
WIN->YMIN = Y+sin((90.O-ORIENT-VIEWANGLE/20.O)*PI/180.O)

HYP;
WIN->YMAX = Y+cos((ORIENT-VIEWý_ANGLE/20.O)*PI/180.O) *HYP;

WIN->ZMIN = Z-CCD/2.O;
WIN->ZMAX = Z+iCCD/2.O;
return WIN;

)/* end caic_window *

void lprint...l(L)
LINE *L;

printf (\n\nline: Xl=%.21f Yl=%.21f Zl=%.21f 8,L->Xl,L->Yl,L-

printf("\n X2=%.21f Y2=%.21f Z2=%.21f \n,,L->X2,L->Y2,L-

fflush(stdout);

92

void iprint-llist(LIST)
LIN&-HEAD *LIST;

LINE *NEXT...L=LIST->VLINE.,.LIST;

printf(*\n\n\nVertical lines M%) are:\n\n*.LIST-
>VERT...LINES);

while (NEXT...L)

NEXT_L=NEXTL->NEXT;

printf(u\n\n\nnon-vertical lines (%d) are:\n\no,LIST-
>LINES);

ft lush(stdout);
NEXT_.L=LIST->LINEý_LIST;
while (NEXT-L) (

lpririt-..1(NEXT-L);
NEXTL=NEXT-L- >NEXT;

void print-lneCL)
LINE *L;

printf(*\nXl:%.41f Yl:%.41f Zl:%.4!f X2:%.41f Y2:%.4lf
Z2:%.41f ",

1 /* end print...line */

LINE *ake-line(I,Vl,V2,Zl,Z2)
INSTANCE *I;

double Zl.,Z2;

LINE *NEWLINE;
double LOCAL...X, LOCALY ROTX, ROT...Y, RADS;

NEWLINE = (LINE *)malloc(sizeof (LINE));
NEWLINE->NEXT = NULL;

/* adjust all local coordinates to pivot point*/

93

LOCAL_X = Vl->X - I->PIVOTJC;
LOCAL_Y = Vl->Y - I->PIVOT...Y;

1* rotate about the z axis */
RADS aI->ROTATION * PI / 180.0 /*I convert dogs to rads ~
ROT...X =(cos(RADS)*LOCALX),(sin(RADS)*LOCALY);
ROTY =(cos(RADS)*LOCAI.Y)-(sin(RADS)*LOCALX);

/* translate to proper position in world model

NEW_LINE->Xl a I->X +ROTX;
NEW_LINE->Yl = I->Y + ROTY;
NEWLINE->Zl = I->Z + Zi;

/* caic second vertex */
LOCAL_X = V2->X - I->PIVOT..X;
LOCAL_Y = V2->Y - I->PIVOT_.Y;

/* rotate about the z ax-4z */
RADS =I->ROTATION * PI / 180.0 ; /* convert dogs to rads ~
ROTX =(cos(RADS)*LOCALJCX).(sin(RADS)*LOCAL-.Y);
ROTY =(cos(RADS)*LOCAL2Y)-(sin(PADS)*LOCAL...X);

/* translate to proper position in world model1
NEW_LINE->X2 = I->X + ROTX;
NEW._LINE->Y2 = I->Y + ROTý..Y;
NEW_-LINE->Z2 = I->Z + Z2;

return NEW_LINE;
) /* end make-line ~

void ad&..lines (LIST, L)

LINEHEAD *LIST;
LINE *L;

LINE *NEXT_-LINE;

if (LIST->LINE_LIST==NULL)
LIST->LINE_LIST=L;
LIST->TAIL=L;
LIST->LINES=l;

else(
LIST->TAIL->NEXT=L;
LIST->LINES++;
LIST- >TAIL=L;

) /* end add-lines ~

94

LINE_HEAD *create_line_head()

LINE_HEAD *LH;

if ((LH=(LINE-HEAD *)alcszo(IEHA))=UL
printf(O\n\ncannot create line head\n*);

LH->LINEs =0;
LH->LINE_LIST = NULL;
LH->TAIL = NULL;

return LII;
/* end create-line-head ~

void print-line-list(LH)
LINEHEAD *LH;

LINE *NEXT-L;

NEXTý_L=LH->LINELIST;
printf(*\n\nThere are %d lines: \n\n*,LH->LINES);
while (NEXTL) (

print_line(NEXT-L);
NEXT_L=NEXT_L->NEXT;

void free-lines(LH)
LINEHEAD *LH;

LINE *NEXT-.L, *TRASH;

NEXTL=LH->LINELIST;
while (NEXT...L) (

TRASH=NEXT-L;
NEXTL=NEXTL- >NEXT;
free (TRASH);

NEXTL=LH->VLINELIST;
while (NEXT-.L) (

TRASH=NEXT-L;
NEXT...L=NEXTL- >NEXT;
free (TRASH);

95

f roe(LH);
/* end fre...lines1

void scale...lineCL,SX,SY,SZ)

LINE *L;
double SX,SY,SZ;

L->Xl = L->Xl *SX
L->X2 = L->X2 * SX
L->Yl = L->Yl * SY
L->Y2 = L->Y2 * SY
L->Zl = L->Zl *SZ
L->Z2 = L->Z2 * SZ

)/* end scale-line */

void scale_window(W,SX,SY,SZ)

WINDOWq *W;
double SX,SY,SZ;

W->XOAIN = W-'>XMIN * SX
W-,>O4AX = W->XMAX * SX
W->YMIN = W->YMIN * SY
W->YMAX = W->YMAX * SY
W->ZMIN = W->ZMIN * SZ
W->ZMAX = W->ZMAX *SZ

/* end scale-line/

1* shift from world coordinates to machine coordinates *
void shift...coord...line CL)

LINE *L;

double TEMPI, TEMP2;

TEMPI = L->Yl;
TEMP2 = L->Y2;
L->Y1 = L->Zl;
L->Y2 = L->Z2;
L->Zl = TEMPI;

96

L->Z2 = Tfl4P2;
I* end shift...coord_line ~

/* shift from world coordinates to machine coordinates '
void shift-coord-window(W)

WINDOW *W;

double TEMPl, TEMP2;

TEMPl z W->YMIN;
TEMP2 = W->YMAX;
W->YMIN = W->ZMIN;
W->YMAX = W-->ýZMAX;
W->ZMIN = TEMP1;
W->ZMAX = TEMP2;
/* end shift_coord_window '

void translate~line(L,X,Y,Z)

LINE *L;
double X,Y,Z;

{-X =X
L->Xl += X;

L->Yl += Y;
L->Y2 += Y
L->Zl += Z;
L->Z2 += Z;

/* END TRANSLATE-..LINE t

void translate_window(W,Xy,Z)

WINDOW *W;
double X,Y,Z;

(-XI =X
W->XMIN += X;
W->YMAX += Y;
W->YMIN += Y;
W->YMAX *= Z;
W->ZMIN += Z;

) * END TRANSLATEWINDOW *

97

I* rotate about the vertical axis1

void rot-z(L, ORIENT)

LINE *L;
double ORIENT;

double Xl=L->Xl,
X2=L->X2.
YI =L->Yl,
Y2=L->Y2,

RADS =ORIENT *PI / 180.0 ; /* coajvert degs to rads

L->Xl Xl~cos(RADS)-Yl~sin(RADS);
L->X2 =X2*cos(RADS)-Y2*sin(RADS);
L->Yl =Yl*cos(RADS)+Xl~sinCRADS);
L->Y2 aY2*cos(R.ADS)+X2*sin(RADS);

/* end rot-z */

void rot_window(W,ORIENT)

WINDOW *W;
double ORIENT;

double XMIN=W->XO4IN,
XM~AX=W- >XMAX,
YMIN=W- >YMIN,
YMAX=W- >YMAX,

RADS =ORIENT * PI / 180.0 ; 1 convert degs to rads '

W->XMIN =XMIN~~cos(R.ADS)-YMIN*sin(RADS);
W->XMAX XMAX~cos(RADS) -YMAX*sin(RADS);
W->YMIN =YMIN*cos(RADS)+XMIN~sin(RADS);
W->YMAX =YMAX*cos(RADS).)XMAJ*sin(RAflS);

/* end rot..z */

void perspective_transform(L,ZMIN)
LINE *L;

double ZMIN;

double Wl=L->Zl/ZMIN ,W2=L->Z2/ZMIN;

if (Wl!=0.0) (
L->Xl=L->Xl/Wl;
L->Yl=L->Yl/Wl;

98

L->Z1=L->Zl/Wl;

else
printf(*\nERROR -- tried to divide by Wl=O\no);

if (W2!=Q.Q) (
L->X2=L->X2/W2;
L->Y2=L->Y2/W2;
L->Z2=L->Z2 /W2;

else
printf(O\nERROR -- tried to divide by W2=O\nO);

1* end perspective-transform1

void get...clipping...codes (L. ZMIN)
LINE *L;
double ZMIN;-

mnt i;

for (i=O;i<=5;+.i){
L->CLIP1[i]=O;
L->CLIP2[i]=O;

if (L->Yl>-L->Zl)
L->CLIPl [0] =1;

if (L->Y1<L->Zl)
L->CLIPl [11=1;

if (L->Xl>-L-->Zl)
L->CLIPl [2] =1;

if (L->XlcL->Zl)
L->CLIP113]=l;

if (L->Zl<-1.O)
L->CLIP1141=l;

if (L,->Zl,.ZMIN)
L->CLIP1[5]=l;

if (L-->Y2>-L->Z2)
L->CLIP2[O]=l;

if (L->Y2<L->Z2)
L->CLIP2 (13=1;

if (L->X2>-L->Z2)
L->CLIP2 [2] =1;

if (L->X2<L->Z2)
L->CLIP2[3]=l;

if (L->Z2<-l.O)
L->CLIP2 [4] =1;

if (L->Z2>ZMIN)
L->CLIP2 [5] =1;

I*print...line(L);

99

printf(o\nclipping codel = %d %d %d %d Sd %d\n,,L->CLIPl[O],L->CLIPl1l].

printf(a\nclippirig code2 = %d %d %d %d %d td\n*,L->CLIP2[O],L->CLIP2[l],
L->CLIP2[21,L-ýlCLIP2[3JL->CLIP2[4],L->CLIP2t5]);*/

) I end get...clippingecodes .

void clipt(NUM.DENOM,TE,TL)
double NUM, DENOI4;
double *TE, *TL;

double t;

/*printf(o\rNUMu %.61f DENOM= %.61f TE= %.61f Thz
t.61f*.NUMDENOM, *TE,*?LJ;*/

if (DENOM<.0O.)
t=NUM/4DENOM;

/*printf(* t= %.61f~t);*/
if (t>*TL)

t~t;

1* printf('\nclipt errorl');*/
else
if (t->*TE)

if (DENOM>O.O)
t =NUM/DENOM;

/*printf(*t %.61f*,t) ;*/
if (t<*TE)

t~t;

1* printf("\nclipt error2*);*/
else

if (t<*TL)
*TL=t;

/* if (DENOM==O.O)
printfv,\nclipt error #3 -- > dividing by O.0');*/

) /* end clipt */

void clip...line(L,ZMIN)
LINE *L;
double ZMIN;

double dx, dy, dz;
double TMIN=O.O, TMAX=l.O;

dx=L->X2-L->Xl;
dy=L->Y2-L->Yl;
dz=L->Z2-L->Zl;

100

/*rintf(o\ntminj %.61f tma~x %.6lf zmin t .61f",ThIN,ThAXZMIN);*/

clipt((L->X1-L->Zl), (dx~dz),&ThAIN,&TMAX);

cik(L->Yl-L->Zl). (-dy+dz) .&ThIN,&TMAX);

clipti (-L->ZleZMIN), (dz) ,&TMIN.&ThAX);

L->X2 = L->Xl + (TMAX*dx);
L->Y2 = L->Yl + (THAX~dy);
L->Z2 = L->Zl + (TKAX'dz);

if (ThIN>O)(
L->Xl = L->Xl + (TMIN~dx);
L->Yl = L->Yl + (TMIN'dy);
L->Zl =L->Zl + (TMIN*dz);

/* end clip-..line *

I* returned codes: 0 outside of view volum~e
I partially inside volumie

2 entirely in view volume

int clip line-3d(L)
LINE *L

int IN-JOLUM.E=l, i, C1=0 ,C2=0;

for (i0O;i<=5;++i)
Cl.=L->CLIPlf i];
C2.=L->CLIP2[i];
if ((L->CLIPltiI==l)&&(L->CLIP2(iI==l))

IN-VOLUME=0; /* outside view volumre/

if ((IDLVOLUME=l)&&((Cl==0)&&(C2==O)))
INVOLUME=2; 1' entirely in view volume *

return INVOLUME;
) /* end clip...line-3d

void display-.window,(W)
WINDOW *W;

irit DUMMY;

printfC*\n\nWindow limits calculated: 1);
printf(*\nX: %.21f-%.21f\nY: %.21f-%.21f\nZ: %.21f-%.21t\n\nl,

W->XMIN, W->)G(AX.W->YMIN,W->YMAX,W->ZMIN,W->ZMAX);
fflush~stdout);
printf('\n\nEnter a num~ber to continue");
/'scanf (%d*,&DUMMY) ;*/

double myabs CX)
double X;

if (X<0.0)
x=0. o-X;

return X;

void map to-screen (L. XMIN. YMIN)
LI1E *L;
double)X4IN,YMIN;

L->Xl = inyabs(C(L->Xl-XO4IN) / 2*XMIN) 'MAX-X);
L->X2 = inyabs ((L->X2-XMIN) / C2*Q'IN)*HAX...X);
L->Yl = znyabsCCL->Yj.-YMIN,/(2*YMIN)*MAXY);
L->Y2 = myabs(CL->Y2-YMIN)/C2*YMIN)*MAX...Y);

/* 1279.0 , 1023.0 */
)/* end map-.to.-.screen/

/* retrun with 1 if line was not totally clipped out of view

mnt project...line(X,Y,Z,ORIENT.LW,WWl,FL)

double X,Y,Z,ORIENT;
LINE *L;
WINDOW *W,*Wl;

double FL;

double ZMIN. SCALEX, SCALEY, SCALEZ, VRPýZ;
nt, USED_-LINE=l, CLIPT;

double f1=1.24;
double Xl,Yl,Zl,XTEMP,YTEM4P,RADS;

translate-line CL, -W->XMIN, -W->YMIN, -W->ZMIN);
rot_zCL,-ORIENT);

Xl=X-W->XM4IN;
Yl=Y-W->YMIN;

102

Zl=Z-W->ZMIN;
XTEMP=Xl;
YTEMP=Yl;
RADS = ORIENT * PI / 180.0 ; /* convert dogs to rads ~
Xl aXTEMP*cos(-RADS)-YTEMP*sin(-RADS);
Yl =YTEMP~cos(-RADS).4XTE4P~sin(-RADS);

translate_line(L. -Xl. -Yl, -Zi);
/* change from world to view coords 1/

/* shear so view volume centered on Z-axis/

/* now scale view vol to unity using %_per ~
/* NOTE: FAR_CLIP is global value */

VRP...Z =-Yl; /*since still in world coords*/
SCALEX =2.0*VRP..Z/((Wl->XMAX-Wl->XO4IN)*(VRP...Z+FARCLIP));
SCALEY =2.OWVRP..Z/((Wl->YMAX-W1->YMIN)*(VRP...Z+FARCLIP));
SCALEZ =-1.0/(VRP...Z.FARCLIP);
shift-coord-line(L);
scale-line CL, SCALEX, SCALEY,SCALEZ);

/*Printf(*\nafter scaling:)

print line(L);*/
ZMIN=SCALEZ* (VRP_Z+NEARCLIP);

/*printf("\nZMIN = %.51f*,ZMIN);*/
get~clipping-codes (L, ZMIN);

/* divide by w/d */
CLIPT=clip...line...3d L);
if (CLIPT!=0)(

if (CLIPT==1)
cl ip-..line (L, ZMIN);

/*printf('\nafter clipping:");
print-line(L);*/

perspective-transforxn(L,ZMIN);
/*printf(*\nafter M-per");

print-line(L);*/
map...to...screen CL, ZMIN, ZMIN);

/*printf("\nafter map to screen\n\n");
print-lin-(i,);*/

else
USED-LINE=0;

return USEDLINE;
) I end project-line *

void remove-..line (L,LH)
LINE *L;
LINEHEAD *LH;

LINE *NEXT_L=LH-->LINE...LIST, *TRASH;

103

if (L==LH->LINELIST)(
LH->LINELIST=LH->LINE_LIST->NEXT;
free(L);

else(
while ((NEXTL->NEXT)&&(NEXT!_L->NEXT!=L)){

NEXTL=NEXTL->NEXT;

NEXT_L->NEXT=NEXT_L->NEXT->NEXT;
free CL);

LH->LINES--;
I* end remove..line */

void remove_ývert~line CL. L)
LINE *L;
LINEHEAD *LH;

LINE *NEXT,..L=LH->VLINE...LIST, *TRASH;

if (L==LM->VLINELIST) (
LH->VLINE_LIST=LH->VLINE_LIST->NEXT;
free CL);

else{
while ((NEXT_L->NEXT)&&(NEXT_L->NEXT!=L)){

NEXTL=NE:XT_L->NEXT;

NEXT_L->NEXT=NEXT_L->NEXT->NEXT;
free(L);

LH->VERT_LINES--;
1/* end remove_vert-line *I

LINE_HEAD *get _view(PRPX. PRPY, PRPZ,ORIENT,W,FL)

double PRPX, PRPY. PRPZ,ORIENT. FL;
WORLD *W;

LINE *NEXT...L,*TRASH;
LINEHEAD *LH;
WINDOW *WIN=calcwindow(PRPXPRPY, PRPZ. ORIENT, FL);
WINDOW *W1=calc-window(PRPX, PRPY, PRPZ,ORIENT, FL);
double Zi, Z2, temp. XX, YY, ZZ, RADS, XTEMP, YTEMP;
int count=O;

translate_window(Wl, -(WIN->X.1IN) ,- (WIN->YMIN),

104

- CWIN->ZMIN));
rot_window(Wl, -ORIENT);

XX=PRPX-WIN->XMIN;
YY=PRPY-WIN- >YM IN;
ZZ=PRPZ-WIN- >ZMIN;
XTENP=XX;
YTEI4P-YY;
RADS a ORIENT *PI / 180.0
XX = XTE14P*cos(-RADS)-YTEMP~sin(-RADS);
YY = YTE?4P*cos(-RADS)+XTEMP*sin(-RADS);

translate-window(Wl, -XX, -YY, -ZZ);
/* change from world to view coords .

shift_coord_window(Wl);
LH=conduct..visibility...sweep(W, PRPX, PRPY, PRPZ);
NEXTL=LH-->VLINE...LIST;
while (NEXT...L)(

/*printf(m\nRAW LINE:8);

if
(project...line(PRPX,PRPYPRPZ,ORIENT,NEXT...L,WIN,Wl,FL) !1)

TRASH =NEXT..L;
NEXT...L=NEXT_L- >NEXT;
remove-vert-line(TRASH,LH);

else{

NEXT..L=NEXT_L->NEXT;

1/* end while *

NEXTL=LH->LINE..LIST;
while (NEXT...L){

if
(project...line(PRPX,PRPY,PRPZ,ORIENT,NEXT_..LWIN,W1,FL) !l)

TRASH =NEXT..L;
NEXT...L=NEXT...L- >NEXT;
remove..line (TRASH, LH);

else(
NEXT...L=NEXT_L- >NEXT;

) 1 end while '

printf(*\nCompleted projection\n");
printf("\n\nVert lines kept = %d\nOthers = %d\n"LH->VER.TLINES,LH-
>LINES);
fflush(stdout);

free (WIN);

105

f ree (Wi) ;
return LH;

1 /* end get_..view */

LINE_HEAD *get...view...orig(PRPX, PRPYE PRPZ,ORIENT,W,FL)

double PRPX, PRPY, PRPZ,ORIENT. FL;
WORLD *W;

POLYHEDRON *NEXT--.PH;

POLYGON *NEXT-PG;
VERTEX *NEXT2J;

INSTANCE *NEXT-I;
LINE *ETL
LINEHEAD *LH...create-line-heado;
WINDOW *WIN=calc...window(PRPX, PRPY, PRPZ,ORIENT, FL);
WINDOW *Wl=calc-window(PRPX, PRPY, PRPZORIENT, FL);
double Zl, Z2, temp. XX, YY, ZZ, RADS, XTEMP, YTEk4P;
int count=0;

translate-window(Wl,-(WIN->XMIN),-(WIN->YMIN),
- (WIN->-ZMIN));

rot_window(Wl, -ORIENT);

XX=PRPX-WIN->XMIN;
YY=PRPY-WIN->YMIN;
ZZ=PRPZ-WIN- >ZMIN;
XTEMP=XX;
YTEMP=YY;
RADS = ORIENT * PI / 180.0
XX = XTEMP~cos(-RADS)-YTEMP~sin(-RADS);
YY = YTEMP*cos(-RADS)+XTEMP~sin(-RAflS);

translate_window(Wl, -XX, -YY, -ZZ);
/* change from world to view coords ~

shift_coord_window(Wl);

NEXT_PH=W- >POLYHEDRON..LIST;
while (NEXT..YH) (

NEXTI=NEXTPH->INSTANCELIST;
while (NEXT...I) (

NEXTPG=NEXTPH ->POLYGON..LIST;
while(NEXT_.PG)(

NEXT2J=NEXT..YG- >VERTEX-LIST;

Zi =NEXT...PG->ZSYALUE;
while(NEXT....) (

if (NEXT....->VERT_-EDGE)(

106

Z2=find_zCNEXTPH,NEXT-V-
>VERT-EDGE);

NEXTL~make_line (NEXT. , NEXT2', NEXT-V-
>VERT...EDGE,Zl,Z2);

printf(*\nRAW LINE:*);
lprint....l(NEXTL);
count++;

if
(project...line(PRPX,PRPYPRPZ,ORIENTNEXTLWINWlFL)u=l)

printf (6\nACCEPTED\nO); lprint_..l(NEXT...L);

add-lines (LH,NEXT..L);

/*end if

if (NEXT..y->NEXT)

NEXT..L=make_line (NEXT...I.NEXT..y,NEXT_2J->NEXT, Zi Zi);
printf(*\nRAW LINE:*);
lprint-j (NEXT_..L);
count++;

if
(project..jine(PRPX, PRPY,PRPZORIENT,NEXT-L,WIN,Wl,FL)==l)

printf (*\nACCEPTED\n,);
lprint-l... NEXTL);

add-lines(LH,NEXT-L);

NEXTV=NEXT.V-Y->NEXT;
I/* end if *

else (
NEXTL=rnake_line(NEXT...INEXT..Y,NEXT_PG-

>VERTEXLIS'r,Zl,Zl);
printf("\nRAW LINE:");
lprintl (NEXTL);
count++;

if
(project...line(PRPX,PRPY,PRPZ,ORIENT,NEXT_..L,WIN,W1,FL)==l)

priritf (m*\nACCEPTED\nu);
lprint-..l(NEXT...L);

add_lines (LHNEXT-L);

NEXTV=NULL;
I/* end else *

I /* end while *
NEXT..PG=NEXT..YG- >NEXT;

107

) /* end while 1/
NEXT..I =NEXTI - NEXT;

)/* end while */
NEXTPH=NEXT..PH-->NEXT;

) /* end while *1
1* print_line_list(LH);

priritf (\n\nTotal lines considered = %d\n\nO*count);
printf(*\n\nTotal lines accepted = %d\n\n",LH-,.LINES);*/
printf(o\n\nLiries returned by get..view..orig\n\n");
lprint-Ilist (LH);

return LH;
I /* end get..viewý_orig ~

108

FILE NAME: visibility.h
AUTHOR: James Stein
PROJECT: Thesis, supporting Yamabico vision system
DATE: March 1992
ADVISOR: Dr. Kanayama

COMMENTS: This file implements a algorithm which determines the set of
visible line seen from a given position in a wire frame model. The observer
is
assumed to have omni-directional vision. To impose the physical limits of
a camera's field of view, the function get_.view in file graphics.h can be
sent a model (as it in turn uses this file).

Primary Function(s):

- conduct_vsiibilitysweep

INPUT: W a pointer to a 2d+ world model
EYE_X,EYEY,EYE_Z position of observer in model W

OUTPUT: LINE-LIST structure pointing to 2 lists of
visible vertical and non-vertical

lines
*/

/* ----------------------- Structure definitions:-------------------------

typedef struct sweeplink
double THETA, X, Y, Z,

MINZ, MAXZ, UPPER Z, DIST;
VERTEX *V;
INSTANCE *I;
POLY-LINK *CEILINGS;
struct sweep-link *PREV, *NEXT;

) SWEEP-LINK;

/* --------------------------------- /

typedef struct considered_link {
double MIN_SWEEP,

MINZ, MAX.Z, DIST,
NEW.MIN_Z,NEWMAXZ,UPPERZ;

int
VISIBILITY,BVISIBILITY,NEW.YISIBILITY,NEW_BVISIBILITY;

109

POLYLINK *CEILINGS;
SWEEPLINK *SLl, *SL2;
struct considered_link *NEXT;

) CONSIDEREDLINK;

/* --

typedef stiuct considered_head (
CONSIDEREDLINK *LINKS;

) CONSIDEREDHEAD;

/* .--

/* global variables: */

static double X,Y,Z; /*Position of observer within the model*/
static double THETA; /*Current angle of visibility sweep*/
int IN_MAIN; /*if 0 we are still preprocessing straddlers*/

void line_rayintersection(CONSIDEREDLINK *CLdouble ANGLE,
double *INT-X,doublp *INTY,double

*DIST);

/* Doubles can be truncated to 4 decimal places to compensate for
inexactness

of floating point operations*/

double trunc(X)
double X;

{

int DUMMY;
double XX=X;

DUMM=XX*10000;
XX=DUMMY;
XX=XX/10000.0;
return XX;

/*******************************CONVERSION
FUNCTIONS***********************/

double degs(RADS)
double RADS;

(

110

return trunc(RADS*180.O/PI);

dobe)d(ES

dou ble ra s DEGS)

return trunc(DEGS*PI/180.O);

/* Determines if the edges from 2 considered links are colinear*/

int colinear(F,B)
CONSIDEREDLINK *F,*B;

double Ml,M2; /*we will compare slopes and distance*/

Ml=trunc(C(F->SLl->Y-F->SL2->Y) /(F->SLl->X-F->SL2->X));

if ((Ml==M2)&&(F->DIST==B->DIST))
return 1;

else
return 0;

/ ** * *** ** * *** ** * *** ****** ** ** **CUNE CLOCKWISE

CHECKS** ********************/

mnt ccw(SL,PREV_.SL)
SWEEP__LINK *SL, *PREVSL;

double AREA;

(PREVSL'->X-X) *(SL->Y-Y));
if (AREA>O.O)

return 1;
else

return 0;
)/* end ccw*/

mnt ccw2(SLl,SL2,SL3)

SWEEPLINK *SLl,*SL2,*SL3;

double AREA;

AREA= 0.5*((SL2->X-SLl->X)*(SL3->-Y-SLl->Y)-
(SL3->X-SLl->X)*(SL2->Y-SL1->Y));

if (AP.EA>0.0)
return 1;

else
return 0;

/* end ccw ~

/* Finds the angle from Xl,Yl to V for use in determining if XlYl lies
within the bounds of a polygon.*/

double find_theta(Xl,YlVI)
double Xl,Yl;
VERTEX *V;
INSTANCE *I;

double X2,Y2,T;
double LOCALXDLOCAL-Y, ROT..X, ROT.Y, RAJDS;

LOCAL_X = V--;,X - I->PIVOTX;
LOCAL...Y = V->Y - I->PIVOT..Y;

,'* rotate about the z axis */
RADS =I->ROTATION * PI / 180.0 ; /* convert degs to rads
ROTX (cos(RADS)*LOCAL-X)+(sin(RADS)*LOCAL_Y);
ROTY =(cos(RADS)*LOCAL-Y)-(sin(RADS)*LOCALX);

/* translate to proper position in world model *

X2 = I->X + ROT._X;
Y2 = 1->Y + ROT_.Y;
if ((Xl==X2)11I((Ylz=Y2)&&(Xl==X2)))

T=0.0;
else

Tuatan2(Y2-Yl,X2-Xl); /* both won't be 0 ~
if (T<0.0)

T+=rads(360.O); /* normalize to 0-360 *
return T;

/* end find-theta/

112

/* This function determines if the point Xl,Yl lies within the polygon, PG.
The angle formed between lines drawn to each edge of PG is calculated.
CW angles are added and CCW ones are subtracted from the sum.
If the sum~ is not equal to 0.0 the point is within PG and 1 is

returned.*~/

mnt in-polygon(Xl,Yl,PG,I)
double Xl,Yl;
POLYGON *PG;
INSTANCE *I;

VERTEX *FIRSTV, *V=PG->VERTEX...LIST;
double TMETA1,THETA2,FIRSTý_THETA,SUM=0.0,SUMl=0.0;
double XX,YY;

THETA2=find-theta(Xl,Yl,V,I);
FIRST2J=V;
FIRSTTHETA=THETA2;
while (V->NEXT)(

if ((Xl==V->X)&&(Yl==V->Y))
SUMl=l.0; /*if directly under

a point accept*/
THETAI1=THETA2;
THETA2=find...theta(Xl,Yl,V->NEXT,I);

/ *ccw* /
if ((.* (-> -l *(-N X -Y Y)

if (THETA2'-THETAI)

SUM+.=(THETA2.irads(360.0))-THETAl;
else

SUM. =THETA2 -THETA 1;

/*cw*/else
if (THETA2>THETAl)

SUM. =THETA2 -
(THETA1+rads(360.0));

elseSUM+=THETA2 -THETAl;

V=V->NEXT;
) * end while */

/*Lastly: check the closing edge to see if we add or subtract its angle*/
THETAl=THETA2;
THETA2 =FIRST-.THETA;
if ((O.5C -XXl*FRTV-YY)(FRTV>-X)(-Y

0.0) (/*ccw*/
if (THETA2 'THETAl)

SUM.= (THETA2.erads (360.0)) -THETAl;

113

else
SUM+=THETA2 -THETAl;

else
if (THETA2>THETAl)

SUM+=THETA2-(THETAl+rads(360.O));
else

SUM. =THETA2 -THETAl;

if (((trunc(SUM)==O.O))&&(SUMl==O.O))
return 0;

else
return 1;

/* Function checks to see which ceiling of CL's ceiling list the 1st
endpoint

falls under. This height is returned and is used to determine how much
coverage the CL has along the z-axis (that is what angle bound the

port ion
of the z-axis which CL occludes*/

double find_ceiling...z(CL)
CONSIDERED_-LINK *CL;

double IX, IY,DIST,CEILING_-ZVALUE=(-9999999.9);
POLY-..LINK *N4EXTC=CL->CEILINGS;
mnt FOUND=0;

IX=CL->SLl ->X;
IY=CL->SLl ->Y;
while (NEXT-C){

/*keep track of highest ceiling over CL*/
if ((in-..polygon(IX,IY,NEXTS-C-REF_POLY,CL->SLI->I)==l)&&

(NEXT_-C-->REF_POLY->Z_..VALUE.CL->SLl->I-
>Z>CEILINGZVALUE)) (

CEILING_Z_ýVALUE=NEXT_C->REF_POLY->Z_VALUE.CL-
>SLI->I->-Z;

FOUND~l;

NEXT_C=NEXT_C->NEXT;

if (FOUND==0)
CEILING_Z_VALUE=CL->SLl->UPPERZ; /*if none ht same as

endpoint */

return trunc (CEILING_Z_..VALUE); /*return highest ceiling
ht */

)/* end fin&..ceiling..z *1

114

/* Calculate the minimum and maximum angles which SL covers on the z-axis.
Any object which is farther away and behind SL that falls within these
limits will not be able to be seen. '/

void calc_z_coverage(SL)
SWEEPLINK *SL;

(
double dzLEN;

dz=SL->Z-Z;
LEN=SL->DIST; /*dist to line in X-Y plane*/
if (LEN==0)

LEN=0.00001;
SL->MIN_Z=trunc(atan(dz/LEN));
dz=SL->UPPERZ-Z;
SL->MAX_Z=trunc(atan(dz/LEN));

/* end calc_z_coverage */

/* Absolute value of a double 0/

double my-abs(A)
double A;

{

if (A>=0.0)
return A;

else
return -A;

/* Calculates the limiting angles along the z-axis for each item on the

considered list. These limits are based upon the height of each
endpoint (value of CL->MINZ) and the height of the ceiling (if any)
lying above CL (CL->UPPERZ). */

void calccurrent-z_coverage(CLIST)
CONSIDEREDHEAD *CLIST;

(

CONSIDEREDLINK *CL=CLIST->LINKS;
double MIN,MAXDIST;
double dx,dy,dz, IX, IY,LEN1,LEN2,

CEILINGZ;

while (CL) (
CL->NEW_.MAX._Z=trunc(atan((CL->UPPER_Z-Z)/CL->DIST));
CL->NEW_MINZ=trunc(atan((CL->SLl->Z-Z)/CL->DIST));
CL->NEW_VISIBILITY=l; /*reset visibilities*/
CL->NEW_B_VISIBILITY=l;

115

CL=CL- >NEXT;

1/* end calc_current-z_coverage '

/**00* * * ******** ** *00000
0NDOY ALLOCATION

FUNCTIONS
0
*****0* * 00***00****0**0*0/

LINE_HEAD *0 ak*_line-head()

LINEHEAD *LH=(LINZ-HEAD *)malloc~sizeof(LINE.J4EAD));

LH->LINES=O;
LH->VERT_LINES=O;
LH->LINELIST=NULL;
LH ->TAIL=NULL;
LH- >VLINE-.LIST=NULL;
LH ->VTAIL=NULL;
return LH;

/0 end make_line_head 0

CONSIDEREDHEAD *make_consideredjhead()

CONSIDERED-HEAD *CH;

CH= (CONSIDEREDHEAD *)malloc(sizeof CCONSIDERED..YEAD));
CH->LINKS=NULL;
return CH;

)/* end make_considered_head 0

SWEEPLINK *make-sweep-link(PHPG,V,I,PQ.Z)
POLYHEDRON *PH;
POLYGON *PG;
VERTEX *V;
INSTANCE *I;
double PG..Z;

SWEEPLINK *SL;
double LOCALX, LOCAL-Y, ROT...X, ROT_`.Y, RADS;

SL= (SWEEP-L.INK *)malloc(sizeof(SWEEP-.LINK));
SL->PREV= NULL;
SL->NEXT= NULL;
SL->V=V;

116

SL->I=I;
SL->CEILINGS=PG->CEILINGLIST;
LOCAL_X = V->X - I->PIVOT..X;
LOCAL_Y = V->Y - I->PIVOTY;

/*rotate about the z axis */
RADS = I->ROTATION * PI / 180.0 ;/* convert degs to rads *

ROT_X = (cos(RADS)*LOCAL_-X),(sin(RADS)*LOCAL..Y);
ROTY = (cos(RADS)*LOCAL-Y)-(sin(RADS)*LOCAL9C);

I' translate to proper position in world model *I

SL->X = trunc(I->X + ROT...X); /*must be truncated*/
SL->Y = trunc(I->Y +ROTY)
SL->Z = trunc(I->Z + P)

SL->THETA=(atan2(SL->Y-Y,SL->X-X)); /* both won't be 0
if (SL->THETA<0 .0)

SL->THETA=(2.O*PI+SL->THETA); /* normalize to 0-
360 ~

SL->DIST= trunc(sqrt(pow((SL->Y-Y) .2.0).pow((SL->X-
X) .2.0)));

if (V->VERTEDGE)
SL->UPPER_Z=find_z(PH,V-..VERTEDGE)+I->Z;

else
SL->UPPER_Z=SL->Z;

if ((PH->OBSTACLEz==)&&(PG->FLOOR==0))
SL->UPPER_Z=99999999999.9; /*max float *-o cover

90 degs*/
calc-z-.coverage(SL);
return SL;

)/* end make_sweep...link ~

CONSIDERED_LINK *make..considered-link(SL)
SWEEP-..LINK *SL;

CONSIDEREDLINK *CL=(CONSIDEREDý_LINK
*)malloc (sizeof (CONSIDERED-LINK));

CL->SL1=SL;
CL->DIST=SL->DIST;
CL->SL2=SL->PREV;
CL->CEILINGS=SL->CEILINGS;
CL- >VISIBILIT1= 1;
CL->BVISIBILITY=l;
CL->NEW_VISIBILITY=l;
CL->NEW_B_VISIBILITY~l;
CL- >NEXT=NULL;

117

CL->MIN_SWEEP=SL->THETA;/*set mini to reflect sweep so far*/
CL->MIN_Z=SL->MINZ;
CL->MAXZ=SL->MAX-Z;
if (CL-ý,SLl->UPPER_Z-,9999999.9) /*need to trunc????*I

CL->UPPERZ=99999999999.9;
else

CL->UPPER_Zmfind...ceiling..z(CL);
return CL;

)/* make-considered_link/

DEALLOCATION* ** ** ** ** ** ** ** ** ** ** ** *0* * * *

void free...sweep~list (SLIST)
SWEEPLINK *SLIST;

SWEEPLINK *TRASH=SLIST;

while (TRASH)(
SLIST=SLIST->NEXT;
free(TRASH);
TRASH=SLIST;

/* end free_sweep...list *

void free-clist (CLIST)
CONSIDEREDHEAD *CLIST;

CONSIDEREDLINK *NEXTCL=CLIST->LINKS.*TRASH;

while (NEXT...CL) (
TRASH NEXTSCL;
NEXT-.CL=NEXTCL- >NEXT;
free (TRASH);

free(CLIST);
) 1 end free..clist ~

118

FU1NCTIONS****a********a********a*******
NOTE: These functions were used in debugging, but they have been left

in case inspection of intermediate results is needed in the future.*/

void print..j(L)
LINE *L;

printf (\n\nline: Xl=%.21f Yl=%.21f Zl=%.21f 0,L->Xl,L->Yl,L-

printf(*\n X2=%.21f Y2=%.21f Z2=%.21f \n',L->X2,L->Y2,L-

fflush(stdout);

void print...llist (LIST)
LINEHEAD *LIST;

LINE t*iEXTL=LIST-->VLINELIST;

printf('\n\n\nVertical lines (%d) are:\n\n'.LIST-
>VERT_LINES);

while (NEXTL)
print..l (NEXT..L);
NEXTý_L=NEXT_L->NEXT;

printf (*\n\n\nnon-vertical lines (%d) are:\n\n",LIST-
>LINES);

fflush(stdout);
NEXTL=LIST->LINELIST;
while (NEXT...L) (

print_l(NEXT...L);
NEXT__LNEXT_L->NEXT;

void print...sl(SL)
SWEEPLINK *SL;

printfC"\nSL: X=1.21f Y=%.21f Z=%.21f*,SL->X,SL->Y,SL->Z);
printf("\n THETA=%.201f DIST=%.21fO,degs(SL->THETA),SL-

>DIST);
printf(*\n MINZ=%.21f MAXZ=%.21fo,

degs(SL-->MIN..Z) ,degs(SL->MAX.Z));
if (SL->PREV==NULL)

printf('\nWarning no previous link');

119

if (SL->NEXTx=NULL)
printf("Warraing should be last link*);

ft lush Cstdout)

I' end print-sl*/

void print..slist (SL)
SWEEPLINK *SL;

SWEEPLINK *NEXT...SL=SL;

printf(u\n\nSWEEP LIST: \n\na);
while (NEXT...SL) (

print...sl(NEXTSL);
NEXT_SL=NEXT-SL- >NEXT;

void print..cl (CL)
CONSIDERED_ýLINK *CL;

printf("\n\n MIN_Z=%.21f MAXZ=%.21fO,
degs(CL->MIN_Z).degs(CL->MAX_Z));

printf("\n\n NEWMIN_Z=%.21f NEW_.IAX_Z=%.2lf',
dogs (CL->NEW_MINZ) ,degs (CL->NEW_4AXZ));

printf(o\n MIN_SWEEP=%.21f DIST=%.Zlt",
degs(CL->MIN_SWEEP) .CL'->DIST);

printf('\nUPPER_Z:%.21fo,CL->UPPER_.Z);
print (m\nOLD: VISIBLE=%d BVISIBLE=%dw,CL-WVISIBILITY, CL-

>Bý_VISIBILITY);
printf(*\nNEW: VISIBLE=%d B_VISIBLE=%do,

CL->NEW_VISIBILITY,CL->NEW_B_VISIBILITY);
print...sl CCL->SLl);
print...sl (CL->SL2);

1' end print...cl *

void print...clist (CLIST)
CONSIDEREDHEAD *CLIST;

CONS IDERED-..LINK *CL=CLIST->LINKS;

printf C *\n\nConsidered list
(THETA=%.21f) :\n\n-,degs(THETA));

120

while (CL) (
print-cl(CL);
CLmCL->NEXT;

)
) /* end print-clist */

/

/* Sweep links are added to the list in order of their THETA values*/

SWEEPLINK *addsweeplink(LIST,LINK)
SWEEP-LINK *LIST, *LINK;

(
SWEEPLINK *TEMP;

if (LIST) {
TEMP=LIST;
if (TEMP->THETA>LINK->THETA)

LINK->NEXT=LIST;
LIST=LINK; /* inserted as 1st element */

)
else {

while ((TEMP->NEXT)&&(TEMP->NEXT->THETA<=LINK-
>THETA))

TEMP=TEMP->NEXT;
)
LINK- >NEXT=TEMP- >NEXT;
TEMP->NEXT=LINK;

) /* end else */
/* end if */

else
LIST=LINK; /* is first element to add to list */

return LIST;
/* end add.sweep-link */

1* This function scans through the entire world model (W). A sweep link
is

made for each vertex of the model. The angle from the observer (global
variable) to the vertex is calculated and used to sort the links.
When r Uink is made, we also inspect its ->VERT_EDGE pointer to see
if a irtical line leaves it. Calculate.z-coverage uses the height of
this vertical line to determine coverage of the vertex along the z-axis.

Each sweep link has its PREV pointer assigned to indicate the link
which proceeded it in the polygon list. In latter processing only sweep
links with a ccw relationship to this PREV link will be considered as
visible.

121

Since we will latter require all floors residing above the observer and

all ceiling below them to be visible, we inspect each polygon for these
properties. When a polygon satifies one of these, it's vertices are
processed a second time in reverse order. This ensures that every edge
of the polygon will swho up as a ccw CONSIDERED_LINK.

SWEEP...LINK *make...sweep...list (W)
WORLD *W;

SWEEPLINK *SWEEPLIST=NULL,*NEXT...L, *LAST-L,*FIRST...L;
POLYHEDRON *NEXT...PH;
POLYGON *NEXT..PG;
VERTEX *ETVY, *LAST-=V;
INSTANCE *NEXT...I, *LAST..I;

NEXT_PH=W->POLYHEDROICLIST;
while (NEXT-..PH) {

NEXT_I=NEXTPH->INSTANCELIST;
while (NEXT....I(

NEXT_PG=NEXT_PH->POLYGON_-LIST;
while (NEXT...PG) (

NEXT_V=NEXT_PG->VERTEX_LIST;
NEXT_-L=make..sweep-j ink (NEXT...PH *NEXT..P0,NEXT...V, NEXT...I,

NEXTPG->ZVALUE);
SWEEP_LIST=add_sweep..link (SWEEP...LIST. NEXT..L); / *make and

add links*/
FIRSTL=NEXT..L;
LASTL=NEXT...L;
NEXT_-V=NEXTV-->NEXT;
while (NEXT....) (

NEXT_L=znake_sweep-link (NEXT..YH, NEXT...PG. NEXTY, NEXTI,
NEXTPG-

>Z_VALUE);
NEXTL- >PREV=LAST...L;
SWEEPLIST=add..sweep..jink (SWEEP...LIST, NEXT..L);
LASTL=NEXT..L;
NEXTV=NEXTV->NEXT;
)/* end while */

FIRSTL->PREV=LAST...L; /* add line which closes polygon *

/* Make entire polygon ccw so it may be visible */
if ((((NEXTPG->ZVALUE.NEXTI->Z<cZ)&&(NEXTý_PG-

>FLOOR==O)) I
((NEXT_PG->Z_ýVALUTE+NEXT_I->Z>Z)&&CNEXT_PG-

>FLOOR==l))) I
((NEXTPH->OBSTACLE==O)&&(NEXT_P0-

>FLOOR==O))) (

/* To cut down on processing time the above if statement can be commented
out and the below one used. This has the effect of assuming a model

122

is composed of only large objects (observer doesn't look down or up to
them).
We still must make enclosure ceiling visible since items such as door jam
ceilings will not always be above the observe*/

1* ~if (CNEXT...PH->OBSTACLE==O)&&(NEXT-P.G->FLOOR==O)) Q*/
NEXT.VzNEXTPG->VERTEXLIST;
NEXT..L=make-uweep...link (NEXTPH, NEXT.YG, NEXT2J. NEXT_I,

NEVT..PG->Z_VALUE);
if (!C(NEXTPH->OBSTACLE==O)&&(NEXTPG->FLOOR==O)))(

NEXT_,.L- >MAX_Z=NMXT_L- >MIN..Z; /*take away height if any*/
NEXTL->CEILINGS==NULL;
NEXTL->UPPERZ=NEXTL->Z;

FIRST_L=NEXT...L;
NEXTV=EXTV-NEXT;
while (NEXT-V) (

LAST_ L=make...sweep-j ink (NEXT..PH.NEXT-PG, NEXTV, NEXT....,
NEXTPG-

>Z-VALUE);
if (!((NEXTPH->OBSTACLE==O)&&(NEXTPG->FLOOR==O)))

LASTLJ->MAX_Z=LAST_L-->MIN_.Z; /*take away height
if any*/

LASTL->CEILINGS==NULL;
LASTL->UPPERZ=LASTL->Z;

NEXTL->PREV=LASTL;
SWEEPLIST=add-sweep-ink(SWEEP-..LIST,NEXT-..L);
NEXT_ LLAST-L;
NEXTV=NEXT_V->NEXT;

NEXTL->PREV=FIRST..L;
SWEEPLIST=add_sweep~j ink (SWEEP...LIST, NEXT...L);

NEXTPG=NEXTPG->NEXT;
/*I end while NEXTPG*/

NEXTI=NEXTI->NEXT;
I 1 end while NEXT...I/

NEXTPH=NEXTPH->NEXT;
)/* end while NEXTPH ~

return SWEEPLIST;
/* end make_sweep~list '

/* Searches considered list (CL) . if sweep link (SLINK) is the 2nd endpoint
of an edge, that edge is returned to complete its processing. If no
match is found a null pointer is returned*/

CONSIDERED_LINK *under-consideration(SLINK,CL)
SWEEP_LINK *SLINK;

123

CONSIDEREDHEAD *CL;

CONSIDERED_LINK *NEXTCL.CL->LINKS;

while (NEXT_CL) (

if (NEXTCL->SLl==NULL)
printf("\nWarning CL with no SLl0);

if (NEXTCL->SL2==NULL)
printf(u\nWarning CL with no SL20);
if (NEXT_CL->SL2==SLINK)(

return NEXTCL; /* retrun ptr if in
list*/

)

else
NEXT_CL=NEXT_CL->NEXT;

)
return NEXTCL; /* returns NULL if not in list */

/* end under-consideration */

/* Determine the point of intersection along CL's edge which occurs with
the ray originating from the observer's position (X,YZ) along ANGLE.
The distance to this intersection ios also calculated.

NOTE: Intersection and distance are returned by reference in variable
addresses INT_X,INTY and DIST.

It is assumed an intersection does take place (dictated by
usage

in algorithm).*/

void line-ray-intersection(CL,ANGLE, INTX, INTY,DIST)
CONSIDEREDLINK *CL;
double ANGLE0*INTX,*INT_Y,*DIST;

double XXYY; /*values at intersection */
double dx,dy; /*delta values*/
double M_LINE,M_RAY; /*slope of line and ray*/
double B_LINE,B_RAY; /*y-intercept-*/

dy=CL->SL2->Y-CL->SLI->Y;
dx=CL->SL2->X-CL->SL1->X;
if ((ANGLE==CL->SL1->THETA)&&(ANGLE==CL->SL2->THETA))

if (CL->SLI->DIST<=CL->SL2->DIST) {
XX=CL->SLI->X;
YY=CL->SLl->Y;
*DIST=CL->SLI->DIST;

)
else (

/*colinear cases*/
XX=CL->SL2->X;

124

YY=CL->SL2->Y;
*DIST=CL->SL2 ->DIST;

else
if ((ANGLE==90.O)Ii(ANGLE==180.O)) {/*ray has no slope*/

XX=X;
J.LLINE=dY/dx;
YY=MLLINE*XX+ (CL->SLl->Y- CMLINE*CL->SLl->X));

else(
MRAY=tan(ANGLE);
BRAY=Y-M-RAY*X;
if (CL->SLl->X==CL->SL2->X) (/*line has not

slope *
XX=CL->SLl->X;
YY=MRAY*XX+BRAY;

else (/* both line and ray have
a slope *

MLINE=dy/dxc;
B_LINE=CL->SLl-'>Y-M_LINE*CL->SLl->X;
XX=(B...LINE-BRAY) /(M-RAY-MLINE);
YY=MtRAY *XXq.-RAY;
1/* end else *

) /* end else */
*DIST~trunc(sqrt(pow(XX-X,2.O)+pow(YY..Y,2.O))); /*assign

distance*/
)/* end else/
*INTX=trunc(XX); /*assign x-y coordinates of

intersection*/
*INTY..trunc(YY);

1/* end line...ray...intersection *

/* Searches currently accepted lines. If L duplicates one of these, a I is
returned. Duplications will naturally occure since each vertical line is

common to 2 edges. *1

int duplicate_vert...lirie(L,LIST)
LINE *L;
LINE-HEAD *LIST;

mnt DUP=O;
LINE *NEXT_L=LIST->VLINE...LIST;

while (NEXT...L) (
if ((L->Xl==NEXT...L->Xl)&&(L->Yl==NEXTL->Yl)&&

(L->Zl==NEXTL->Zl)&&(L->Z2==NEXTý_L-

125

DUP=l;
NEXTLZNEXTL->NEXT;

return DUP;
1* end duplicate...vrt~line

void add~vert..l inc (CL, SL,LIST)
CONSIDEREDLINK *CL;
SWEEPLINK *SL;
LINEHEAD *LIST;

LINE *NEWLINE=(LINE *)ralloc(sizeof (LINE));
double len;

len=SL->DIST;
NEWLINE->X1=SL->X;
NEW_LINE->Y1=SL->Y;
NEW_LINE->MODEL_X=SL->X;
NEW_LINE->HODEL_Y=SL->Y;
if (CL->MIN..Z>=SL->MIN_Z)

NEW_LINE->Zl=tan(CL->MIN...Z) *lef+Z; /*clipped
short*/

else
NEW_LINE->Zl=tan(SL->HIN..Z) *len.Z;

NEWLINE->X2=SL->X;
NEW_LINE-->Y2=SL->Y;
if (CL->MHULZ<=SL->MAXZ)

NEW_.LINE->Z2=tan (CL->MAX..Z) *len+Z; /*clipped
short*/

es

NEW_LINE->Z2=tan (SL->MAX...Z)*len+Z;
NEWLINE- >NEXT=NULL;
if (duplicate_vert_line(NEW...LINE,LIST)==O){

LIST->VERT_LINES++;
if (LIST->VTAIL)(

LIST- >VI'AIL- >NEXT=NEW..LINE; /*add as
last vert. line*/

LIST- >VTAIL=NEW-.LINE;

else(
LIST->VTAIL=NEW_LINE; /* 1st

vertical line added '
LIST->VLINE-LIST=NEW-LINE;

)/* end if *
else

free(NEW_.LINE);

126

) /* end addvertline /

/* Adds only bottom edge of a considered link (CL). Lines are only accepted
from their MIN_SWEEP angle to the current sweep angle (THETA).*/

void add_line(CL,LIST)
CONSIDEREDLINK *CL;
LINEHEAD *LIST;

LINE *NEWLINE;
double IX, IY,DIST;

/*DIST req fro call to intersection but value
not used*/

/*bottom line is visible and not just a single point*/

if ((CL->BVISIBILITY==l)&&(my-abs(CL->MIN_SWEEP-THETA)>0.0001))
NEWLINE=(LINE *)malloc(sizeof(LINE));
NEWLINE->NEXT=NULL;
LIST->LINES÷+;
if (LIST->TAIL) {

LIST->TAIL->NEXT=NEWLINE; /* add non-vertical
line*/

LIST->TAIL=NEWLINE;
)

else (
LIST->TAIL=NEWLINE; /* 1st non-vertical line

added '/

LIST->LINE_LIST=NEW._LINE;
)

/* find first endpoint to accept*/
linerayintersection(CL,CL->MINSWEEP,&IX,&IY,&DIST);
NEW_LINE->Xl=IX;
NEWLINE->Yl=IY;
NEWLINE->Zl=CL->SLl->Z;

/*find second endpoint*/
line_rayintersectio.i(CL,THETA,&IX,&IY,&DIST);
NEWLINE->X2=IX;
NEW_LINE->Y2=IY;
NEW_LINE->Z2=CL->SL2->Z;

) /* end if */
CL->MINSWEEP=THETA;

) /* end addline */

/* This function calculates distances from the observer along the current
THETA to each edge on the considered list. Distances do not account for
z infromation (height), but reflect straight line distance to the
intersection lying in the x-y plane. *I

127

void calculateodistances(CLIST)
CONSIDERED-HEAD *CLIST;

(
CONSIDEREDLINK *NEXTCL=CLIST-'>LINKS;
double IXIY; /pointers and values at intersection */
double DIST; /*distance to intersection values*/

while (NEXTCL) (
lineorayintersection(NEXTCL,THETA,&IX,&IY,&DIST);

NEXTSCL->DIST=DIST;
NEXT_CL=NEXTCL->NEXT;

) /* end while */
/* end calculatedistances 0/

/* When a link is put on the considered list, we must determine how much of
it is blocked from view (along the z axis) and what affect it has on
more distant edges.

Notice that case 2 is not accounted for since we are dealing with a
wire frame representation.*/

void calculatevisibilityadd(CLINK,CLIST,LLIST)
CONSIDEREDLINK *CLINK;
CONSIDERED_HEAD *CLIST;

LINEHEAD *LLIST;
{

CONSIDEREDLINK *CL=CLINK->NEXT;
int TYPEOCCLUSION;

if (CLINK->NEWVISIBILITY==l) (/*if visible it may occlude
others*/

while (CL) {
if (CL->NEW_VISIBILITY==l) (/*can only block

visible lines*/
TYPEOCCLUSION=occlusion(CLINK,CL);

switch (TYPEOCCLUSION)
case 4:

/*totally occluded*/
CL->NEW_VISIBILITY=O;
CL->NEW_BVISIBILITY=0;
break;

case 3: /*bottom
occluded*/

CL->NEWB_VISIBILITY=O;
CL->NEWMIN_Z=CLINK-

>NEWMAXZ;
break;

case 2:

128

CL->NEW_MIN_Z=CLINYK-
>NEWJ4AXZ;

break;
case 1:

/*top occluded*/

CL->I4EW_MAXZ=CLINK-
>1I-W,_MIN_Z;

break;

/* end if/
CL=CL- >NEXT;

)/* end while ~
) I end if */

)/* end calculate..visibility-add *

/*Calculate the visibility of the vertical edge (if any) residing on the
2nd endpoint of a link which is being passed by the sweep (thus removed
from the considered list)*/

void calc-vis-remove(CL,CLIST)
CONSIDERED_-LINK *CL;
CONSIDEREDHEAD *CLIST;

CONSIDEREDLINK *NEXTCL=CLIST->LINKS;
mnt TYPE_OCCLUSION;

/*now calc visibility bounds of SL2,s vertical line if there is one*/
if (CL->SL2->V->VERTEDGE) (

while ((CL!=NEXTCL)&&(CL->NEW-3TISIBILITY==l))
if (CL->SL2->THETA==NEXT_CL->SLl->THETA)

TYPE_OCCLUSION=O;
else

TYPE_OCCLUSION=occlusion (NEXTCL, CL);
switch (TYPE_OCCLUSION)(

case 4:
CL->NEW__VISIBILITY=O;
break;

case 3: case 2:
CL- >NEW..MINZNEXT_CL- >NEW_MAXZ;
break;

case 1: /*top of B occluded*/
CL->NEW_.MAX_Z=NEXT_CL->NEW_MIN..Z;
break;

)/*end switch*/
NEXT_CL=NEXT_CL->NEXT;

)/* end while */
CL->VISIBILITY=CL->NEW_VISIBILITY;

CL->MIN_Z=CL->NEW_MIN_Z;
CL->MAXZ=CL->NEWJ4AX...Z;

1/* end if *

129

else
CL->VISIBILITY=O;

1* end caic-via remove ~

/* If visibility has been altered from last time, we must accept lines
which

were already visible and reset the value of MIY'LSWEEP to reflect where
along

the edge these new values start.*/

int visibility...changes (CL)
CONSIDEREDLINK *CL;

int CHANGES=O;
double EXP_MIN...Z, EXP...MAX...Z; /*expected coverage based on

perspeztive*/

E-XP_MIN_Z=trunc(atan((CL.->SL1->Z-Z) /CL->DIST));
EXPMAXZ=trunc(atan((CL->UPPERZ-Z)/CL->DIST));

if (CL-,>VISIBILITY!=CL--,NE'b'LVISIBILITY)
CHANCES++;

if (CL->B_ýVISIBILITY!=CL->NEWB_ýVISIBILITY)
CHANGES++;

if (EXPý_MIN_Z!=CL->NEW_MINZ)
CHANGES++;

if (EXP~J4AX..,Z!=CL->NEW_MAXZ)
CHANGES++;

return CHANGES;

void update_visibility(CLIST,LLIST)
CONSIDERED_-HEAD -CLIST;
LINEHEAD *LLIST;

CONSIDEREDLINK *CL=CLIST->LINKS;

while (CL)(
if (visibility-changes(CL)!=O)(

if (CCL->BVISIBILITY==l)&&(IN_..MAIN))
add-.line (CL, LLIST);

CL->VISIBILITY=CL->NEW_VISIBILITY;
CL->B_ýVISIBILITY=CL->NEWBJISIBILITY;
CL->MIN_Z=CL->NEWJ4IN,..Z;
CL->MAX_Z=CL->NEW_.MAXZ;

hereon*/CL->MINSWEEP=THETA; /*values only affect

130

CL=CL->NEXT;

/* Visibility must be periodically recomputed to account for the effects
of

perspective as the sweep progresses around 360 degrees.*/

void recompute_visibility(CLIST, LLIST)
CONSIDEREDHEAD t CLIST;
LINEHEAD *LLIST;

(

CONSIDERED-LINK *CL=CLIST->LINKS;

calc_current_z-coverage(CLIST); /*will change due to
perspective*/

while (CL) { /add each link again*/
calculate_visibility.add(CL,CLIST,LLIST);
CL=CL->NEXT;

)
updatevisitility(CLIST,LLIST); /*see if changes occuredt /

) /* end recompute-visiLility */

/* Add a new link to the considered list (sorted by distance from observer

in the x-y plane). If a vertical edge resides on the links first endpoint
accept it based on the edges computed visibility*/

void addconsidered.link(CL,CLIST, LLIST)
CONSIDEREDLINK *CL;
CONSIDEREDHEAD *CLIST;

LINEHEAD *LLIST;
{

CONSIDEREDLINK *NEXT_CL=CLIST->LINKS;

if (CLIST->LINKS) (/*recalc distances for insert t /
calculate_distances(CLIST);
if (CL->DIST<NEXTCL->DIST)

CL->NEXT=CLIST->LINKS;
CLIST->LINKS=CL;/ t add as 1st element t /

/* end if
else (

while ((NEXT_CL->NEXT)&&(NEXTCL->NEXT->DIST<CL-
>DIST)) (

NEXT_CL=NEXTCL->NEXT;
)

/tkeep ones leaning in towards camera 1st on list*/
while (((NEXTCL->NEXT)&&(NEXT_CL->NEXT-

>DIST==CL->DIST))&&

131

(ccw2 (CL->SLl *CL-"SL2, NEXTSCL-->NEXT-
>SL2)))(

NEXT_CL=NEXT_CL->NEXT;

CL- >NEXTzNEXT_CL->NEXT;
NEXTCL->NEXT=CL;

) * end else */
recompute...visibility (CLIST. LLIST);
/* end f *

else (
CLIST->LINKSzCL;/*lst element added to null list*/
CL->VISIBILITY=l; /*so must be visible*/
CL->B_VISIBILITYzi; /*so must be visible*/

if ((IN..YAIN)&&(((CL->VISIBILITY==l)&&(CL->MINZ<CL->MAX...Z))
&& (CL->SLl->V->VERT_.EDGE)))

addý_vert-line(CL,CL->SLl,LLIST);
) /* end add-considered-link ~

/* Remove a CL from the list*/

void remove-cl (CL, CLIST)
CONSIDEREDLINK *CL;
CONS IDERED-HEAD *CLIST;

CONS IDERED-..LINK(*NEXTCL=CLIST-->LINKS;

if (CL==NEXTSCL) (1' removing 1st link *

CLIST- >LINKS=NEXTSCL- >NEXT;
free(CL); /*deallocate memory*/

else(
while ((NEXTCL->NEXT)&&(NEXT_CL->NEXT!=CL))(

NEXT_CL=NEXTý_CL->NEXT;

if (NEXTCL->NEXT)
NEXTCL->NEXT=CL->NEXT;
free(CL); /*deallocate memory*/

)/* end else *
/* end remove-cl */

/* The sweep has progresses to the end of link CL. We need to inspect the
visibility and accept both the bottom edge and vertical line (at 2nd
endpoint) if required.

once this is done, visibility of the entire considered list (CLIST)

132

must be recomputed to account for perspective and the deleted edge*/

void complete_line(CLCLIST,LLITT)
CONSIDEREDLINK *CL;
CONSIDERED-HEAD *CLIST;
LINE-HEAD *LLIST;

(
LINE *L;

if ((CL->VISIBILITY==l)&&(CL->BVISIBILITY==l))
addline(CLLLIST); /*also checks for and adds right vert

line*/
calculatedistances(CLIST);
calc_current_z-coverage(CLIST);
calc_vis-remove(CL,CLIST);
if ((CL->SL2->V->VERT_EDGE)&&(CL->VISIBILITY==l))

addvertline(CL,CL->SL2,LLIST);
remove-cl(CL,CLIST); /*if not visible no changes needed

before removal*/
recomputevisibility(CLIST,LLIST);

) /* end completeline *I

/* These occlusion codes applie if both links begin at the same vertex
in the model.*/

int overlayocclusion(F,B)
CONSIDEREDLINK *F, *B;

{

int TYPE=O; /*default is no occlusion occurs*/

if (F->NEW->NW_Z<=B->NEWMIN_Z) (
if (F->NEW_MAXZ>=B->NEW_MAX_Z)

TYPE=4; /* totally occluded*/
else (

if (F->NEW_MAX_Z>=B->NEW_MINZ)
TYPE=3; /*bottom of B occluded*/

)
/* end if 'I

else (
if (F->NEWjMAXZ<B->NEWMAX_Z)

TYPE=2; /*middle prtion of B occluded*/
else (

if (F->NEW_MIN_Z<=B->NEW_.MAXZ)
TYPE=l; /*top of B occluded*/

)
) /* end else '/
/* otherwise there is no occlusion '/
return TYPE;

/* end overlayocclusion '/

133

/* The type of occlusion imposed upon the back edge (B) by the front edge
(F)

is determined: return value is 0*1,2,3, or 4 */

int occlusion(FoB)
CONSIDEREDLINK *F, *B;

(

int TYPE=O; /*default is no occlusion occurs*/

/*No occlusion if edges fall on the same plane or are end-to-end*/

if (((F->SLI->THETA==B->SL2->THETA) II(F->SL2->THETA==B->SLl->THETA))II
((F->MINZ==F->MAXZ) II(colinear(FB))))

TYPE=O;
else (

if (((F->SL1->DIST==B->SL1->DIST)&&(F->SLI->THETA==B->SL1->THETA))
&&(B->UPPER_Z<9999.0))
TYPE=overlay-occlusion(F,B);

else {

if (F->NEW_MIN_Z<B->NEWMIN_Z)
if (F->NEW_.MAX_Z>B->NEW_MAX_Z)

TYPE=4; /* totally occluded*/
else (

if (F->NEWMAXZ>B->NEWMINLZ)
TYPE=3; /*bottom of B occluded*/

)
1 /* end if /
else (

if (F->NEW_MAX_Z<B->NEW_MAX_Z)
TYPE=2; /*middle prtion of B occluded*/

else {
if (F->NEW_MIN_Z<B->NEW_MAXZ)

TYPE=l; /*top of B occluded*/
e

) /* end else /
S/* end else */

1 /* end else */

/* otherwise there is no occlusion /
return TYPE;

/* end occlusion */

/* This is the primary function which will be called from outside this
file.
A list of sweep links is constructed based on the model (W) and the
observer's
position (EYEX,EYE_Y,EYEZ).

Next edges straddling 0 degrees are placed on the considered list (if
they
are ccw). Then main processing begins and each sweep link and its

134

predicessor
pair is inspected. If the circuit from observer to SL to prev(SL) is ccw,
the
SL's are put into a considered link (CL) and added to the considered list
(CLIST).
As the sweep progresses throught the sweep links: visibility is updated,

lines are accepted, and edges are removed from CLIST (as they are passed).

OUTPUT: LINELIST structure pointing to 2 list of lines
(vertical and non-vertical accepted lines)

LINE_HEAD *conduct_ývisibility-sweep(W,EYEX,EYEY,EYEz)
WORLD *W;
double EYE..X, EYE..Y, EYEZ;

SWEEPLINK *NEXTSL, *SWEEPLIST=NULL;
CONSIDERED_LINK *CL, *PASTSL;
CONSIDEREDý_HEAD *CLIST=make_considered heado;
LINEHEAD *LINELIST=make..jine~heado;
int STRADDLERS=O;

INMAINO0; /*still processing straddlers*/
X=EYEX;
Y=EYE_Y;
Z=EYEZ;
SWEEPý_LIST=make...sweep...list (W);
NEXTSL=SWEEPLIST;

/* Add all visible straddlers*/
while (NEXT_..SL) (

THETA=NEXT_SL.->THETA;
if ((ccw(NEXTýSL,NEXTý_SL->PREV)==l)&&

(NEXTý_SL->THETA>.NEXTý_SL-->PREV->THETA))
CL=make-considered_link(NEXTý_SL);

add-considered-link(CL,CLIST,LINE-LIST);

CL->MIN...SWEEP=O .0;
STRADDLERS=l;

NEXT...SL=NEXT_SL->NEXT;
)/* end while *I

NEXT...SL=SWEEPLIST;
THETAO0.O;
IN-34AIN=l;

/* Process all of sweep list*/
while (NEXTSL) (

THETA=NEXT!_SL- >THETA;
while

(PAST_CL=under_consideration(NEXT...SL,CLIST)){

135

complete-j in. (PASTSCL.CLIST, LINE..LIST);

if (ccw(NEXT...SLNEXTý_SL->PREV)==l)
CL=make-considered_link(NEXT...SL);

add~considered.) ink (CL, CLIST, LINE_.LIST);

NEXT_SLzNE.XT_.SL- "NEXT;
1/* end while */

if (STRADDLERS) (/* have lines crossing ZERO degrees
THETA=0.0;
calculate-distances(CLIST);
CL=CLIST->LINKS;
while (CL)(

if ((CL->VISIBILITY==l)&t&(CL-
>B_ýVISIBILITY==l))

add-line(CL,LINE...LIST);
CL=CL->N.NXT;

)/* end if *

free-clist (CLIST);
free-sweep-jist (SWEEP...LIST);
return LINELIST;

)/* end conduct_ývisibility...sweep

136

/

FILENAME: 2d+.h
AUTHOR: LT James Stein
CONTENTS: 2d+ model support tools (for building, displaying, searching,

and deallocating a model)
DATE: Mar 1992
COMMENTS: A 'world, consists of a list of polyhedrons (PH) Each PH is in

turn a list of polygons (PG). Each PG is a list of VERTICIES which contain
the X,Y, and Z coordinates of that point in the world.

File 5th.h is an example construction file which uses these functions to
build a model of the 1st half of Spanagel Hall's 5th floor.

/* constants */
#define PI 3.141592653589793
#define MAX_LEN 30

/* typedefs: Define structures to be used for representing a 3-d world */

typedef struct vertex (
float X,Y;
struct vertex

*NEXT, *PREV,
*VEIRAEDGE;

VERTEX;

/* WHERE: VERT_EDGE = pointer to upper vertex of vertical edge

-------------------------------'I

typedef struct polylink (
struct polygon *REF_POLY;
struct poly-link *NEXT, *PREV;
POLY_LINK;

/* ------------------------------------

typedef struct polygon (
int DEGREE, C-DEGREE, FLOOR, CONVEX;
float ZVALUE;
VERTEX *VERTEXLIST;
POLYLINK *CEILING_LIST;
struct polygon

*NEXT, *PREV;
) POLYGON;

137

/* WHERE: DEGREE = # of vertices
FLOOR, CONVEX = booleans
Z_VALUE = local Z position poly located at
CEILINGLIST, FLOORLIST = list of associated

poly's

--- -------------------------------- *

typedef struct instance (
char NAME[MAXLEN];
float X, Y, Z, ROTATION,

PIVOT_X, PIVOTY;
struct instance *NEXT, *PREV;
INSTANCE;

/* WHERE: NAME = something like "rm501"
X, Y, Z = position to instantiate PH into world
ROTATION = degrees to rot about Z axis

-------------------------------*

typedef struct polyhedron {
char CLASS[MAXLEN];
int DEGREE, IDEGREE, OBSTACLE, FIXED;
POLYGON *POLYGONLIST; /*ordered by Z value*/
INSTANCE *INSTANCELIST; /*ordered by Z value*/
struct polyhedron *NEXT, *PREV;

) POLYHEDRON;

/* WHERE: CLASS = general name like 'door'
DEGREE = # of polygons
OBSTACLE and FIXED = booleans
CEILINGLIST, FLOORLIST = list comprise all

polygons
INSTANCE_LIST = all tranformations of object into

world

-------------------------------*

typedef struct world (
char NAME[MAXLEN];
int DEGREE;
POLYHEDRON *POLYHEDRONLIST;
WORLD;

/* WHERE: NAME = label for world
DEGREE = number of object representations
POLYHEDRON_LIST points to them

138

-/

The following routines are called to allocate memory for a structure(WORLD, POLYHEDRON, POLYGON, or VERTEX). Pointers are initialized tcN NULL
and the DEGREE field is set to 0;

WORLD *createworld()
(

WORLD *W;
int i;

/* allocate memory for a world */
if((W = (WORLD *)malloc(sizeof(WORLD))) == NULL) {

printf("\ncannot create a world\n*);
)
/* initialize fields /
W->DEGREE = 0;
W->POLYHEDRONLIST = NULL;
for (i=O; i<MAX_LEN; +÷i)

W->NAME[i]= ;
}

return(W);
I)

/* --

POLYGON *createpolygon()
(

POLYGON *P;

/* allocate memory for a polygon *,
if((P = (POLYGON *)malloc(sizeof(POLYGON))) == NULL) {

printf(O\cannot create a polygon');
)

/* initialize fields */
P->DEGREE = 0;
P->ZVALUE= 0.0;
P->VERTEXLIST = NULL;
P->CEILINGLIST= NULL;
P->NEXT = NULL;
P->PREV = NULL;

139

return(P);

INSTANCE *create-instance()

INSTANCE *I;
int i;

In (INSTANCE *)malloc(sizeof(INSTANCE));
for (i=O; i<MAX...LEN; *+i)

I->NAME[ilu ;

I-~NEXT =NULL;
I->PREV zNULL;
return I;

/*--*

POLY_ýLINK *create-poly-link()

POLY-LINK *P;

P=(POLYLINK *)mallocsizeof(POLYLINK));
P->REF_POLY = NULL;
P->NEXT = NULL;
P->PREV = NULL;
return P;

/*---

POLYHEDRON *create...polyhedrono(

POLYHEDRON *P;

int i;

P= (POLYHEDRON *)malloc (sizeof (POLYHEDRON));
for (i=O; i<MAX..LEN; ++i)(

P->CLASS[i] ';

P->DEGREE=O;
P->POLYGON...LIST=NULL;
P-NEXT=NULL;

P->PREV=NULL;
P->INSTANCE_LIST=NULL;
return P;
)/* end create...polyhedron *

140

VERTEX *create*vertexo()
(

VERTEX *V;

V=(VERTEX *)malloc(sizeof (VERTEX));
V->NEXT=NULL;
V->PREV = NULL;
V-> VERTEDGE =NULL;
return V;

The following routines are used for memory deallocation. Each type of
list is stepped through to free it's component structures. Higher level
structures call the free routine for the next lower level to deallocate
side lists (i.e. free_world calls freepolyhedron).

void freepg(PG)
POLYGON *PG;

(
VERTEX *NEXTV, *TRASH;
POLYLINK *NEXTLINK, *TRASH2;

NEXT_V=PG->VERTEX-LIST; /*free vertex list*/

while (NEXTV) (
TRASH =NEXTVY;
NEXT_V=NEXT_V- >NEXT;
free(TRASH);

)
NEXTLINK=PG->CEILINGLIST;
while (NEXT_LINK) (/*free links used to reference ceilings*/

TRASH2=NEXTLINK;
NEXT_LINK=NEXTLINK->NEXT;
free(TRASH2);

)
free(PG); /*free parent polygon structure */

/* end freepg */

I* .-- *

141

void free.ph(PH)
POLYHEDRON *PH;

(
POLYGON *NEXTPG, *TRASH;
INSTANCE *NEXTI, *TRASH2;

NEXTPG= PH- >POLYGONLIST;
while (NEXTPG) (/*free the list of polygons*/

TRASH=NEXTPG;
NEXT_PG=NEXTPG- >NEXT;
freepg(TRASH);

)
NEXTI = PH->INSTANCELIST;
while(NEXTI) (/*free the list of instances*/

TRASH2= NEXT-I;
NEXT_I= NEXTI ->NEXT;
free(TRASH2);

free(PH); /* release parent structure
/* end freeph */

i* --

void free_world(W)
WORLD *W;

(
POLYHEDRON *NEXTPH, *TRASH;

if (w) (
NEXT_PH=W- >POLYHEDRONLIST;
while (NEXT-PH) (/*free the list of polyhedra*/

TRASH =NEXT-PH;
NEXT_PH=NEXT_PH->NEXT;
free-ph(TRASH);

)
)
free (W);

/* end freeworld /

The next group of functions is used to display the world. A single
polygon, a single polyhedron, or the entire world can be displayed.
Display is in text format to the standard output device-

142

void display~pg(PG)
POLYGON *PG;

POLYGON * NEXTPG;
POLY-LINK *NEXTC;
VERTEX * NEXT):;
int V_-NUM=l, PRINTED=O;

printf(O\nDEGREE: %d FLOOR: %d Convex: %d *PG->DEGREE,PG->FLOOR,
PG->CONVEX);

printfCO\nZ z %.2f:\n",PG->ZVALUE);
NEXT_ýV=PO->VERTEXLIST;
while (NEXT...V) (

if (PRINTED>3) { I three vertices per line*/
printf(1\nV#%d(%.2f,%.2f) 0,V..NUM,NEXT-V->XNEXTV->Y);
PRINTED=l;

else(
printf(*V#%d(%.2f,%.2f) ,VJ-NU,NEXT...V->X,NEXT..V->Y);
PRINTED++;

NEXT_ýVNEXT_ýV->NEXT;
Vý_NUX++;
)/*end while

if (PG->FLOOR==l)
printf(O\nAssociated ceilings (td): ",PG->C...DEGREE);

NEXT_C= PG->CEILINGLIST;
I* end display...pg */

/*--*

void display..ph(PH)
POLYHEDRON *PH;

POLYGON *NEXTPG;
int PG_NUM.F...CNTl,CýCNT=l,I-CNT=l;
char dunvny;
INSTANCE *NEXTI;

printf(O\nPOLYHEDRON (%s):\n Obstacle: %d Fixed: %d \n",
PH->CLASS. PH->OBSTACLE, PH->FIXED);

printf (\nComporient polygons (%d) :\n 0,PH->DEGREE);
NEXT_PG=PH->POLYGOICLIST;
printf(m\n\nList of floors:w);
while (NEXT...PG) (

if (NEXTPG->FLOOR==l)(
printf(,\n\nFLOOR# %d ",FSNT);
display..pg (NEXT_.PG); /*display floor polygons*/
FSCNT,.;

143

) * end if1
NEXT_.PG=NEXT_P0- >NEXT;
)/* end while */

NEXTPGzPH->POLYGONLIST;
printf(O\n\nList of ceilings:*);
while (NEXT...PG)

if (NEXTPG->FLOOR=O)(
printf(o\n\nCEILING 0 %d ",C..CNT);
diuplay...p(NEXT..PG); /*display ceilings*/

I' end if1
NEXT_.PGZNEXTP0- >NEXT;
)/* end while */

printf(,\n\nThe following instantiations of this polyhedron exist:*);
fflush(stdout);
if (PH==NULL) (

printf(*\n\ndereferencing null pointer in display...ph\n\n');
fflush(stdout);

NEXT-j=PH->INSTANCELIST;
while(NEXT....) (

printf(o\n\nlnstance #%d (ts): ",I..CNT,NEXT_.I->NAME);
fflush(Rtdout);

printfC*\nLocation: (%.2f,%.2f,%.2f)*,NEXT_-I->X,NEXT...I->YNEXT-I->Z);
fflush(stdout);
printf(ORotated: %.2f degrees about point: (%.2f,%.2f)\no,

NEXTI-,>ROTATION,NEXT_I->PIVOTX,NEXTj->PIVOTY);
fflush(stdout);
I_.CNT++;
NEXT_-IzNEXTI->NEXT;
/* end while */
/* end disi.lay-.ph ~

* ---

void display...world (W)
WORLD *W;

POLYHEDRON *PH;
POLYGON *PG;
int NUMLPH~l;

if MW (
printf(o\nWorld Name: %s*,W->NAME);
printf(O\n\nWorld has:\n %d POLYHEDRONS\n 0,W->DEGREE);
PH=W->POLYHEDRON...LIST;
while (PH) (

printfiu\n\nPH #%d \ng,NUM-PH);

NUMPH++;
displayph(PH);
PH=PH->NEXT;

)
) /* end if *1
) /* end display world */

The following functions are used by the construction file
to add structures (i.e.- POLYHEDRON, POLYGON, VERTEX, and INSTANCE)

and associations (i.e.- vertical edges and floor->ceiling associations)
to a world.

void add.edge(Vl,V2)
VERTEX *Vl, *V2; /*lower and upper vertices of edge*/

if (Vl->VERT_EDGE)
printf(o\nWarning reassignment of vertical edge attempted!!!*);

else
Vl->VERT_EDGE = V2;

3 /* end addedge */

void add_ceiling(PG,C)
POLYGON *PG, *C; /*floor and its new ceiling*/

(
POLY_LINK *NEW_C,*NEXT._C;
int FOUND=O;

if (PG->CEILING_LIST) {
NEXT_C= PG->CEILING_LIST;
if (NEXT_C->REF_POLY==C)

FOUND=l;
else

while (NEXT_C->NEXT) (
if (NEXT_C->NEXT->REF_POLY==C)

FOUND=l;
NEXTC=NEXT_C->NEXT;

) /* end while */
if (FOUND==O) (

NEWC=create._polyiinko; /*link onto end of list*/
NEW_C->REFPOLY=C;
NEWC- >PREV=NEXTC;
NEXT_C->NEXT=NEWC;
PG->C_DEGREE++;
/* end if */

145

else
printf('\nWarning - attempted to add coiling which existse);

I* end if */
else (

NEWC=create_.poly_linkfl; /*adding 1st ceiling to list*/
NEW_C->REF_POLY=C;
PG->CEILING_LIST=NEW_C;
PG->C_DEGREE++;

) /* end else */
) /* end add-coiling */

/ ***Q**Q**•**•******.******QQ********t**********t*Q•tOt**.******t

X,Y,Z is the position in the parent world at which the pivot point
is to be placed.
PIVOTX and PIVOTY specify th local coordinates (in POLYHEDRON) of
the objects pivot point.
ROT is the number of degrees the object should be rotated about this
pivot point.

void *addinstance(NAME,LEN,PH,X,Y,Z,PIVOTX,PIVOTY,ROT)
POLYHEDRON *PH;
float XY,Z, PIVOT_X, PIVOT_Y,ROT;
char NAME[]. /*label for instance and number of characters in

label*/
int LEN;

{
INSTANCE *I, *TEMP_I, *NEXTI;
int i;

I=createinstanceo; /*allocate and initialize memory*/
for (i=O;i<=LEN;++i) {

I->NAME[iJ=NAME[i];
)
I->X=X;
I->Y=Y;
I->Z=Z;
I->PIVOTX=PIVOTX;
I->PIVOTY=PIVOTY;
I->ROTATION=ROT;
/*order by z*/
if (PH->INSTANCE_LIST==NULL) {

PH->INSTANCE-LIST=I;
)
else (

NEXT_I=PH->INSTANCELIST;
if (Z<=NEXTI->Z) (

I->NEXT=NEXTI;

146

NEXTI->PREV=I; /* add to head of list*/
PH->INSTANCE_LIST=I;

) /* end if /
else (

while (NEXTI->NEXT&&NEXT_I->NEXT->Z<Z) (
NEXTI=NEXTI->NEXT; /*scan to insertion point*/

)
if (NEXTI->NEXT)

I->NEXT=NEXT_I->NEXT; /*add to middle of list*/
I->PREV=NEXTI;
NEXTI ->NEXT=I;
I->NEXT->PREV=I;

) /* end if */
else (

I->PREV=NEXT.I; /*add as last instance*/
NEXTI->NEXT=I;

) /* end else '/
) /* end else */

) /* end else */
PH->I_DEGREE++; /*keep track of the number of instances*/

) /* end addinstance */

The remaining add functions create and add structures to the world.
Pointers to each newly added structure are returned to the caller for
future use.

VERTEX *add_vertex(PG,X,Y)
POLYGON *PG; /* parent polygon to add vertex to*/
float X,Y; /*local coordinates of vertex*/

(
VERTEX *V, *NEXT_V;

V=createyvertex();
V->X=X;
V->Y=Y;
if (PG->VERTEXLIST==NULL)

PG->VERTEX-LIST=V;
else (

NEXT_V=PG->VERTEXLIST;
while (NEXTV->NEXT) (

NEXTV=NEXT-V->NEXT; /* scan to end of list */
)
NEXTV->NEXT=V; /* add to end of list to retain order added*/
V->PREV=NEXTV;

) /* end else /

147

PG->DEGREE++;
return V;
1/* end add-vort~x/

I.--*

POLYGON *add..pg (PH, Z,FLOOR, CONVEX)
POLYHEDRON *PH; /*parent structur.*/
float Z; /*height in local coordinates*/
int FLOOR,CONVEX; /*bool~an valu**s/

POLYGON *PG, NEXT-PG;

PG=create-.polygon 0;
PG->ZVALUE=Z;
PG- >FLOOR=FLOOR;
P0- >CONVEX=CONVEX;
if (PH->POLYGON_LIST==NULL) /*sorted by Z height*/

PH- >POLYGON-LIST= PG;
else(

NEXT_PG. PH->POLYGObLLIST;
if (Z<NEXT...PG->ZVALUE) /*Iput at head of list*/

NEXT_PG->PREV=PG;
PG-->NEXT=NEXT..YG;
PH->POLYGON_LIST=PG;
/* end if/

else (
while ((NEXT_PG->NEXT)&&(NEXT..YG->NEXT->Z2JAWUE>Z)){

NEXTý_PG=NEXTPG- >NEXT;

if (NEXT..PO->NEXT)
PG->NEXT=NEXTPG->NEXT; /* put in middle of list/
PG- >PREV=NEXT...PG;
NEXT..y0->NEXT= P0;
PG->.NEXT->PREV=PG;

1/* end if/
else (

NEXT..P0->NEXT=PG; /* put at end of list ~
PG->PREV=NEXT-PC;

1 1 end else '
I/* end else .

)/* end else '
PH->DEGREE++;
return PG;
) /* end add-pg

/*--1

148

POLYHEDRON *add...ph (CLASS. LEN. W, FIXED. OBSTACLE)
char CLASS[]; /*class name*/
WORLD *W; /*world to add polyhedron to*/
int FIXED,OBSTACLELEN; /* 2 booleans and the length of CLASS*/

POLYHEDRON * PH * NEXT-PjH;
int i;

PH=create...polyhedrono;
for (i=O;i<c:LEN;.+i) (

PH->CLASS~i)=CLASS~i];

PH->FIXED=FIXED;
PH ->OBSTACLE=OBSTACLE;
if (W->POLYHEDRON_LIST==NtJLL)
W->POLYHEDRON_LIST=PH;

else (
NEXT_PH=W->POLYHEDRON_LIST;
while (NEXTPH->NEXT)(

NEXTý_PH=NEXT_PH->NEXT; /*scanl to end of list*/

NEXTPH->NEXT=PH;
PH->PREV=NEXT_PH;
I/* end else *

W->DEGREE.+;
return PH;

/* end add~ph *

/*---1

WORLD *add_w Ltd(NA)M.LEN)
char NAMEC]; /*label and its length*/
int LEN;

WORLD *W;
int i;

W=create~worldo;
for (i=O;i<LEN;++i) (/*assign label*/
W->NAMEfi]=NAME[i];

return W;
I/* end add_world ~

149

find-ph will find and display a polyhedron based on its class
name. Component polygons and instances will be listed to the screen.
If the pointer to a polyhedron is needed: change this function
return PH.

void find-ph(LABEL,W)
char LABEL[MAX_LEN]; /'class label to look for'/
WORLD *W; /*world to search'/

(

POLYHEDRON *NEXTPH, *PH;
int FOUND=O, i, MATCH;

if (W)
printf(o\nsearching for label: (a);
for (i=O;i<MAXLEN;++i) (

printf(0%c0,LABEL[i]);
)
printf(m)\n*);
NEXTPH=W->POLYHEDRONLIST;
while (NEXT._PH) (

MATCH=l;
for (i=O;i<MAX_LEN;++i)

if (NEXT_PH->CLASS[i]!=LABEL[i])(
MATCH=O; /*at least one character is different'/

I
I

if (MATCH==l)
FOUND++;
PH=NEXTPH;

)
NEXT_PH=NEXT_PH->NEXT;
/* end while '/

if (FOUND==O)
printf(O\nNo polyherdon found under this label!\n");

else (
display-ph(PH); /*show the polygon found*/
if (FOUND>l)

printf(O\nWarning non-unique label (last occurance
listed).\no);

) /* end else */
) /* end if */
else

printf(O\n\nCannot find polyhedron since world is empty !!!\nO);
} /* end find-ph */

150

APPENDIX B - IMAGE UNDERSTANDING ROUTINES

The following routines implement the anlaysis of video images, localization of objects in
those images, evaluation of the objects, and determination of avoidance parameters based
on this analysis. The files included are the following:
locatetypes.h locateio.h locateimagesupport.h locateobjectsupport.h

FUNCTlON: locatetypes.h
PURPOSE: Defines structures used in locate.c
AUTHORS: Kevin Peterson & Mark DeClue

DATE: 24 Mar 93

STRUCTURES: CMAPIMAGE, NPSIMAGE. EDGE, POINT. POSE, IMGLINE,
OBJECTDATA

GLOBALS: none
COMMENTS: None

-------- ------------------------------ -------- --

#define RGBA I /* RGBA 24 bit images (alpha is Oxff filled) */

#define CMAPPED 2 /* color mapped images */

#define RGBAWITHALPHA 3 /* RGBA 32 bit images where alpha is read/saved
in the image files. */

/* define a structure type for color mapped images */

struct cmapimage

short *bitsptr; /* the bits for the short images */

long nentries, /* the total number of entries in the color map */

short *reds; /* Iptr to the red entries of the color map */

short *greens; t' ptr to the green entries in the color map */

short *blues; /* ptr to the blue entries in the color map *1

long cmapoffset, /* color map offset. i.e. the first color
we wil us in the color map *

I;
typedef struct cmapimage CMAPIMAGE; (4 define a CMAPIMAGE type *1

151

/* define a union so that the top level image structure's
last pointer can point to several different kinds of images. *

union mgdt

long *titsPtr /0 Iong images need no more data than a put
to the bits. 0/

CMAPIMAGE *cmapptr. / a color mapped image must have
the bits and a color map so we
need a complete smucture. '/

};

/0 define the top level structure for the image 1

struct image

long type; /* image type 1

long xsize; /* xsize of the image */

long ysize; I ysize of the image*/

char *name; /' ptr to string naming the image /

union imagedptr imgdata./* pus to data for this type of image

1;
typedef struct image NPSIMAGE; /* define an NPSIMAGE type */

typedef struct edgejregion-type

char name; /* for use with "view.text" */

int active; /* boolean if past region is appended to
a present region */

long first..pixel;/0 first and last pixels added to region 0/

long lastz.pixel;

long xmin; /" min & max pixels for previous row 1

long xnmx;

long pres..xmin, pres xmax, prev..xmin, prev.xmax; / for alil.c */
double minphi, maxphi;

152

imt pi_.phiaram / for use with constant segmented angles 1
float ph_*_ma.
double temp.phi;

double av..phi; /' for use with dynamic averaging phi 01

double sum...phi;

1 Least Squares Fit momments: 0
long mOO*, /* Number of pixels 'I

double mlO;, /0 Sum x

double mOl; /0 Sum y/

double m I1; / Sum x*y/

double m20; /0 Sum xx*/

double mO2: /0 Sum y*y */

struct edge.region_type *next; / ptr to the next EDGE */

I EDGE:

struct point-type
I
double xy; /* x,y coordinates of the pixel endpoints *i

I;
typedef sruct pointjtype POINT;

suut postype

float x,y,theta-
};
typedef struct posejtype POSE;

typedef struct linetype
4
char name[31; f* for troubleshooting *

POINT pi, p2; /* the 2 endpoints for the line

153

P' Least Squares Fit momments: *1

long mOO / Number of pixels /

double mllY. /1 Sum x */

double mOl; /0 Sum y 0/

double ml 1; / Sum xy */

double m20; / Sum x*x /

double mO2; / Sum y*y /

double phi; /* Calculated normal orientation of IMG_LINE 1

double dmajor; / Length of major axis of equivallent ellipse /

double dminor; /* Length of minor axis of equivallent ellipse /

double rho; / Ratio dminorldmajor */

int orient, /* Line orientation: I-v-et, 2-horz. 3-diag 1
obstacle; /* True if any part of line <250 pixels since may

be obstacle to robot */

struct line-type *next; / ptr to the next IMG_LINE in the image */

} IMGLINE;

/* Structure which holds thc infonnation about an object /
typedef struct object-daza

double range, left, right. top, bottom, width, height;
} OBJECTDATA;

154

FILENAME: locateio.h
PURPOSE: Provides routines for scree and file io necessary in the

locate program.
AUTHOR. Mark DeClue

DATE: 24 Mar 93

FILES: write-lines. draw-lines, displayall, display_.alloop.
dimensionout

GLOBALS: none
COMMENTS: none

/ ...-- ----- - -- --- - -- ------ - ------.-.-- --.---...- ... -- --...

FUNCTION: writeiines(x.yjmgname.funcnamefilesname)
PURPOSE: Writes a list of lines with various parameters to text file.

PARAMETERS: x - horizontal dimension of image
y - vertical dimension of image
imgname- name of image from which lines were generated
funcname - name of function which generated the lines
filesname - name of file to which lines are to be written

RETURNS: none
CALLLED BY: locate.c

CALLS: fopen. fclose
COMMENTS: none

..-. ...-.-... .--.... --....------......----.--...

wntejines(x.y.imgnwne Juncnmerlesname)
long x,y;
char imgnameo;
char *funcname,
char *filesname;

IMG-LINE *1 - Line-list-head,
FILE Olines-file;

lines file - fopen(filesname,"w");
fprintf(lines_fle.*Lines for image: %sn",imgname);
fprintf(linesjile," Generated by: %sn",funcname);
fprintf(lines$fie.rnlmage size: nr pixels x axis a %d, in pixels y axis =%ftnx,y);
fprinf(lines_file."Exbacted line segments listed in order by length.\nM");

while(It=NULL)

155

frintf(hines_file,%s> length - %.4f, orient z %d. orientatio - a. mOO -- %da ',
l->name, l->xmajor. l->orient, l->phi, l->mOO);

fprintf(lines-fde,'endpoints: (%.2f %.2f) (%.2f %.2f)4',.
I->pl.x,l->pl.yJ->p2.xJ->p2.y);

I a I->next;

fclose(lines-file);

1/0 End writejines "

FUNCTION: drawjlines(l~color)
PURPOSE: Draws extracted lines pointed to by I over the current image

in an IRIS window.
PARAMETERS: I - pointer to list of lines to be displayed

color - desired color of lines
RETURNS: none

CALLED BY: display.._aioop
CALLS: c3f, cmov2, move2, draw2, swapbuffers (all IRIS routines)

COMMENTS: none

drawJines(l.color)
IMGLINE *1;

imt color;,

static float white[31 = 1 1.0,1.0,1.01; /* rgb white */

static float black[31 = 10.0.0.0,0.01; /* rgb black */
imt howto;

if(color - Black)
c3f(black);

else c3f(white);

while(l!-NULL)

/Ocmov2(l->pl.x,l->pl.y); charstr(l->narne), *1
/ NOTE: With comments removed, the above statements would generate

line numbers with the line segments */

nove2(i->pl .xJ->pl.y); draw2O->p2.x J->p2.y);
I - l->next;
I

msapbuftersO;

I/* End drawJines */

156

FUNCTIN: display..all(img I ýimg2jmg3)
PURPOSE: Displays the gradient image with or without lines, lines

alone. grayscale image or grayscale object only.
PARAMWETERS: imglI - ptr to grayscale image

ing2 - ptr to gradient image
img&3 - pt to gradient object only image

RETURNS: none
CALLED BY: locatec

CALLS: prefisize(z,y). winopen("name"). RGBmodeO., singlebufter()
gconfigo. qdevice(device name). display...all-loop(i I Ai 1.
i2.id2i3) free(m). winclosename").

COMMENTS: none

display..ali(imglI.img2,img3)
NPSIMAGE *imgl. t* Grayscale image ~

*img2. /0 Gradient image 1/
*img3: /0 Gradient object only image1

long winid I. winid2;

prefsize(imngl ->xsize,imgl ->ysize):,
winid I mwinopen("grayscale view");
RGBmode0;
singlebuffero:,
gconligO:

prefsize(imng2->xsize.img2->ysize);
winid2-winopen("gradient view"):
RGBmodeo.
singlebufferO:
gconfigo.

qdt.-Vice(REDRAW):.
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE):.
qdevice(RIGHTMOUSE);
qdevice(ESCKEY);

printfC"NiThe following options are available..)
printf("l Left mouse.-> Display grayscale with remaining lines~A").
printf("Nn Mfiddle mouse -> Display remaining lines on white~n");
printfC"\n Right mouse -> Display gradient view of only objectl");
priznf(Na~xftw Grayscale -> Display only grayscale imagelfi");
pr~ntf("nq Redraw Gradient -> Display entire gradient~n");
printfC"Nm ESC key -> Quit program'Wi);

display..al~oop(imgl ,winidl ,img2,winid2,img3);

157

free(img21->imgdasa~bitsptr);
freeinigl);
winclose(winid 1):
fre~img2->imgdata~bitsptr).

free(ung3);

FUNCTION: disPiaY..aljloop(img I ,winidl I img;2.winid2.img3)
PURPOSE: Allows user to alternate between various displays for the

2 windowsidlI & id2.
PARAMETERS: imglI - ptr to grayscale image

winidi I name forwindow#lI
img2 - ptr to gradient image
winid2 - name for window #2
img3 - ptr to object only gradient image

RETURNS: none
CALLED BY: display-.all

CALLS: winset(name), lrectwrite(q~rx.y.p). qread(&v).
reshapeviewporto. draw_white-lines(p). c3f(color).
clearo. draw..black-lines(p)

COMM4ENTS: none

display..a-l~oovimgl .winidl.irng2.winid2.img3)
NPSIMAGE *imglI. *img2. *img3;
long winid I, winid2;

staic float white[3]-f 1.0.1.0~.1.);
short value;
IMG-LJNE *1.

I a LineIistjiead;
winset(winid I);
lrectwrite(O.O.imngl ->xsize-l.imngl->ysize-l .mgl->imgdata.bitsptr);
winset(winzd2).
lretwrite(OO~imng3->xsize-l ,img2->ysize-l .mg2->imgdaza.bitsptr);

while(TRUE)

switch(qread(&value))

case REDRAW:
winset((Iong)value);

158

reshapeviewporto;
if(value - winid 1) lncwrite(O.Ojimg I ->xsize- l.ung I->ysize- 1 .irnglI ->irngdata~bitsptr);
if(value - winid2) Irectwrite(O,O0img2->xsize- 1.img2->ysize-I1.irng2->imngdata.bitsptr);
brak;

case LEFTMOUSE:
if(value - 0)

winset(winidl):,
lretwrite(OOjimg 1 ->xsize- 1 imng I ->ysize- I .img I ->imgdaza~bitsptr);
drawJines(l,White);

break:
case MIDDLEMOUSE:

if(vahie = 0)

winset(winidl).
c3f(white):.
clearo;
draw-lines(lBlack);

break;
case RIGHTMOUSE:

if(value =0)

winset(winid2);
Iretwrite(OOjmg3->xsize- I ,mg3->ysize- 1 .mg3->imgdar- bitsptr):.

break;
case ESCKEY:

if(value = 0) return-,
break:-

default:
break,
)/* End switch *
/* End while */

/* End display..alljloop *

FUNCTION: dimensionout(object)
PURPOSE: Print out results of object analysis.

PARAMETERS: object - Structure which contains all info on object
RETURNS: none

CALLED BY: locatexc
CALLS: none

COMMENTSM: none

159

void dimensionout(object)
OBJECTDATA object:

printf(CnX•Range to object is %.2f cmin'.object.range);
printf(CWnnObject is %.2f cm by %.2f cmIn'",object.height. objecLwidth):

---.--- - - - - - - - ----. ---.-- ---.-.. --

FILENAME: locateimagesupport.h
PURPOSE: Provides various routines in support of object recognition

programs.
AUTHOR: Mark DeClue
DATE: 20 Aug 93

FILES: setup-model. process-al]-image, eliminate-matching_lines,
delete.irmgline. fdtermodel_lines, combine.horzmodel_lines.
endpt-test

GLOBALS: hmodlist, vmodlist
COMMENTS: none

.- --- .- - .--- ------- ------- --- -- . . - - .---- ---

#define White 1
#define Black 2

LINE *hmodlist=NULL,/* Globals for model linelist and model vert linelist /
*vmodlist=NULL:

FUNCTION: setupmodel()
PURPOSE: Gets desired position, sets up 5th deck database, & returns

model view for this position.
PARAMETERS: none

RETURNS: pointer of type LINE-HEAD to the model line list
CALLED BY: locate.c

CALLS: make..worldO, get-view(x,yz.ztworld.fl)
COMMENTS: none

LINEHEAD *setup_modelO

160

LINEHEAD *m;
WORLD *fifhfluoor
double X, Y, Z, THETA, focal_lenuthul.4;

foreground0;
/* -- Initial pose & max pixel difference acceptance--- /
pintf(•nEnter stopped robot position...Nn");
prinff("rX: ");
scanf("na%Ur,&X);
printf("\nY: ");
scanf("•I%1r,&Y);
printf("%aZ: ");
scanf("m%%f",&Z);

printf('NnTHETA: ");
scanf('nrlr,&THETA);
fflush(stdout);

/* ---Set up 5th deck database model and get current view-- */

fifthfloor = makeworld(;
printf("\nWorld has been generated. Now obtaining model view...");
m=get_view(XYZTHETA,fifthfloorfocalJength);
printf("View obtainentn "):

return (m);

/* ---End setup..model---*/

I.- -- -------- ---- - ---------------

FUNCTION: process_.au_image(ptrl,ptr2,ptr3,ptr4)
PURPOSE: Creates grayscale & gradient images and does line finding

PARAMETERS: ptrl - ptr to input rgb image
ptr2 - ptr to grayscale image
ptr3 - ptr to gradient image
ptr4 - ptr to object only gradient image

RETURNS: none
CALLED BY: locate.c

CALLS: rgbalong_to bwlong(pl.&p2). pixel membership(z.v),
set_pixeLblack(&p), setpixel-white(&p),
check-activeedgesO, line-test(r)

COMMENTS: Pixel inclusion based on a threshold value of 5000000 for
gradient magnitude.

Least Squares Fit method for line-finding from "Sonar
Data Interpretaion for Autonomous Mobile Robots" by
Y.Kanayama, T.Noguchi, & B.Hartman, 1990.

161

Function rgbalongto~bwlong courtesy ot NI4 Zyda.

void process..al-ijmage(ptrl .t2.ptr3,ps4)
long OWLI Opr2. OpOr. *ptr4;

EDGE *reg;.
double dx. dy. Th - 5000000.003000000.0:

register int i - 0, z a 0

/* -Calculate bw values for first 2 rows of input image-- 0/
fo,(iumO; i<(2*Xdim)+2; ++i)

rgbalongjto..bwlong(ptrl [iJ,&ptr2[i]);

for(i - Xdim + 1, i < (Xdim*(Ydim-l))-l; .-.i)

/t Convert color(imngl) to b/w(img2) for pixel on next row up and one
pixel over to the right so that all eight neighbors of pixel
have black & white light intensities. */

rgbalong-to..bwlong(ptrl [i+Xdimn+lJ,&ptr2(i+aXdim+lJ)

/* Ensure pixel i is not in leftmost or rightmost column1
if((i%Xdim !=0) && (i%Xdim !- Xdim- 1))

1* Calculate dx~dy via Sobel operator for pixel i.

dx a (-ptr2[i+Xdim-lI] + ptr2[i.Xdim+lI]
-(2 * ptr2[i-l]). (2 * ptr2li+ 1])

dy = (ptr2(i+Xdim-l] + (2*pr2[i.Xdim]) + ptr2fi+Xdim+1]
-ptr2ji-Xdim-lj - (*ptr2[i-Xdim]) - ptu2li-Xdim+1]);

if((dx*dx)+(dy~dy) > Th)

pixel-memnbership(z~atan2(dy,dx));
set_..pixel~black(&ptr3[zJ);

set-.pixeLblack(&ptr4[z1);

else
I
setjpixel~white&ptr3[z]);

set-pixeLwhite(&ptr4[z]);
I

++Z; (Increment the pixel counter z for the gradient image. '
1

162

f0 If pixel i is in the leftmost column, do chck-octive-edgeso. *
else if(iXdim - 0)

check-active.edges0;

)/* endfor i

/* -Check remaining EDGEs for lines-- */
reg - Pastedgejfist-head;
while(reg !- NULL)

I
line.test(mg);
reg = reg->next;

I/* End process.alLimage *

FUNCTION: filter-modeLlineso
PURPOSE: Removes model lines which are <2 pixels in length or lie

entirely above y coord of 486
PARAMETERS: none

RETURNS: y height of edge between floor and wall
CALLED BY: locale.c

CALLS: free(m)
COMMENTS: none

double filter_modeljines0
I

LINE *mdh, *mdv. *modemp;
double flooredge=2.0.O. yavg;

FILE *hmodlinefile, *vmodlinefile;

mdh = hmodlist; /* List of non-vertical model lines *
mdv a vmodlist; /* List of vertical model lines */

hmodlinefile=fopen("hmodeLlines.text","w");
vmodlinefile=fopen("vmodeLlines.text","w");

while(mdb != NULL)

/* First see if this edge is the lowest horz in the model */

yavg - (mdh->Yl + mdh->Y2)/2.0.
if((mdh->X2 > 200.0) && (mdh->XI <400.0) && (yavg < flooredge))

flooredge - yavg;

163

/0 Test non-verticals for length <2 or location above 486 0
if((fabs(mdi.,X2 - mdh->XI1) < 2.0) 11 ((mdh->YlI > 486) && (mdh->Y2 > 486)))

P If removal criteria met. delete from the linked fisn 0/
ifthmodlist - mdh)

hmodlist - mdh->NEXT;.
ftrndh;
mdli a hmodlist:

else

modlemp->NEXT a mdh->NEXT:.

mdli m modiemp->NEXT.

else

fprinzf(hmodlineflie"y 1: %I2f y2: %I2f x 1: %.2f x2: %.2ftn.
mdh->Y I,mdh->Y2 jndh->X I.mdh->X2):.

modiemp a mdli;
mdli = mdli->NEXT;

while(mdv !- NULL)

1Test verticals for length < 2 or location above 486 0/

if((fabs(mdv->Y2 - mdv->Y 1) < 2.0) 11 ((mdv->Y I > 486) &&(mdv->Y2 > 486)))

/0 If removal criteria met, delete from the linked list ~
if(vmodlist - mdv)

vmodlist - mdv->NEXT;
freemdv);
mdv a vmodlist;

else

modtemp->NEXT - mdv->NEXT;
fteemdv);
mdv - modtemp->NEXT;

else

164

fprintf(vmodlinefile."yl: %.2f y2: %.2f xl: %I.2f x2: %'.2n.
mdv->Y I ,mdv->Y2,mdv->X l.mdv->X2);

modtemp - mdv-,
mdv a mdv->NEXT;

fclose(hmodlinefile);
fclose(vmodlinefile):

return(flooredge);
/* End filter-model-fines /

FUNCTION: Combine horzmodel_linesO
PURPOSE: Combines model line segments into contiguous lines

PARAMETERS: none
RETURNS: none

CALLED BY: locate.c
CALLS: none

COMMENTS: updates the fist pointed to by the global hmodlist

void combine_horzmodellineso

LINE *temp, *mdh 1, *mdh2;
double ylimit= 1.0, xlimit= -2.0; /*pixel dist to which line segments are

cinsidered close enough to combine */

mdh I = temp = hmodlist;

while(mdhl != NULL)

mdh2 mdh I ->NEXT;

while(md•. 1= NULL)

if((fabs(mdh I->YI - mdh2->Y1) < ylimit) && /* lines are same height */
((mdh2->X I - mdhl->X2) > xlimit) &&
(mdh2->X2 < mdh I ->X2))

!
mdhl I->X2 - mdh2->X2:
temp->NEXT = mdh2->NEXT;
free(mdh2);
mdh2 - temp->NEXT;

1

165

else if((fWs(mdh I->Y I - mdk2->Yl) < ylimit) &&/ lines we sme height 1
((mdhl->X I - nidh2->X2) > xlimit) &&
(mdh2->Xl > mdhl->Xl))

!
"mdhl->Xl a mdh2->Xl;
wmp->NEXT = mdh2->NEXT,
fnrmdh2);
mdh2 a Wmp->NEXT:
I

else
I

etunp a, mdh2;
mdh2 a mdh2->NEXT:

I
I Pend inner while /

mdh I = mdh I->NEXT:
temp - mdh 1;

I/*end outer while */

j/* end combine_horanodellines 1

1* ------
FUNCTION: eliminatematching_lines(pixdiffflooredge)
PURPOSE: Removes image lines which match to model lines

PARAMETERS: pixdiff - user chosen value for max allowable dist between
an image and model line (in pixels) in order to have a match.
flooredge - y coord of wall to floor edge based on model.

RETURNS: none
CALLED BY: Iocate.c

CALLS: atan2(xy). free(m)
COMMENTS: any img lines within 20 pixels of the left or right edge

of the image or 2 pixels from bottom are also deleted.

void eliminmejnmatchin.lines(pixdiff~flooredge)
double pixdiffflooredge;

IMGLINE *imgtemp, *im. *deletejmglineo;
LINE *md, *mdv;

double ho-jmid. /* avg y coord for a horizontal image line *
diag0.0

int remline=O, tmpcnt=0,
/0 flags*/

166

remnv-O, /0 sel to I if fine O~n 20 pixels of left or right
borz-0. vert-0,/* set tolI if fine fitshofztvertcriteria/
endp-testO;

imgtemp - Line-lisLhead;, /* List of image lines '
iml a Line jsL~head;,

printf("'Oaflooredge is %M2Wf"looredge);,

while(im != NULL)

if((im->pl-Y > flooredge) && (imn->p2.y > flooredge))

tim a delcte-imglmne~imirgtemp);
remlinc++;

else

md = hmodlist; /* List of non-vertical model lines *
mdv - vinodlist:, /* List of vertical model lines */

/* -- Sort out if img line is vert. honz. or diagonal and test for elimination
based on closeness to edge of picture frame--- */

if(tabs(im->phi) < 0.0698) /* Looking for veil lines (w/in 4 deg of veil)1

if((im->pl.x < 20) 11 (im->pl.x > 626)) remv=l;
veitlI;
im->onient- I;
if((ini->pI .y < 250.0) 11 (im->p2.y < 250.0))

im->obstacle=l1:
else im->obstacle-0; /* Any lines above 250 pixels can't effect robot *

else if((1.5708 - fabs(im->phi)) < 0.061) 1* Looking for horz lines *

hon...mid=(imn->pl.y + im->p2.y)12.O; /* Calc avg y coord for image line/
imn->orient=2.
horzwi;
ifthorz...mid < 250.0)

im->obstacle=1;
else im-'obstacle=0; /* Any lines above 250 pixels can't effect robot *

else

diag a atan2((iim->p2.x - im->pl.x).(im->p2.y - im->pl.y))-;
im->orient-3;
honz-i;

167

if((im->pl.y < 250.0) N (im->p2.y < 250.0))
im->obstacle- 1;

else im->obstze=,-. /0 Any lines above 250 pixels can't effect robot /

/* -Now that preliminary analysis is done on the line, compare to model.
delete as required. and update pointe/skounters- I

while((mdv != NULL) && (vet))

/ Remove vert img line if within pixdiff of a vert model line or if
if it was set for removal because it was within 20 pixels of an edge 0/

if(((fabs(im->pl.x - mdv->XI) < pixdiff) && endpt_test(mdv~im~pixdiff)) II remv)

remv=-,
ve-t=-O
remline ++;
im a delete_imgline(im~imgtemp):

else mdv = mdv->NEXT:

}/* -- End 2nd while--*/

while((md !- NULL) && (horz))

/* Remove img line if within pixdiff of a model line. it lies within 2
pixels of bottom, or it's diagonal and is oriented within 5 degrees of
a model diagonal line "/

if(((fabs(horz_mid - md->Y1) < pixdiff) && endptest(md.im ,pixdiff)) II
(horzmid < 2) 11
(fabs(atan2((md->X2 - md->X l),(md->Y2 - md->Y 1)) - fabs(diag)) < 0.0873))

horz--0;
remline ++;
im = delete_imgline(im~imgtemp);

else md = md-,NEXT:

)/* -End 3rd while- */

if(remline - tmpcnt) / line was not removed, so update pointers "/
I

rngtemp = im;
im a im->next;

i
else tmpcnt=remline;

168

diag=O.0

/ -End 1st while--/

Linecount - Linecount-remline: /* Update Linecount to reflect loss of lines 1
printfC("aumber lines remaining - %Ni".Linecount):

/ End eliminate-matching-lines/

FUNCTION: deletejimgline
PURPOSE: Deletes an image line from the linked fist

PARAMETERS: im pointer to the location being removed from the
linked list

imtemp - pointer to list location immediately before that
to which im points

RETURNS: pointer to the new current location
CALLED BY: eliminate_matching_lnes

CALLS: none
COMMENTS: none

IMGLINE *deletejimgline(imim gtemp)
IMGLINE *im,*imgtemp,

if(Linelisthead =- im)

Line_list_head = im->next:
free(ira);

im = Lineýlisthead.

else

imgtemp->next = im->next;
free(ira);

im = imgtemp->next;

return(im);

}/* end delete.imgline *

169

FUNCT1ON: endpt-es(mdjm~delta)
PURPOSE: determine if the image line is within delta of the confines

Of the model fine
PARAMETERS: md - ptr to a model line

tim -ptir to an image line
delta - max pixel difference for endpt inclusion

RETURNS: Ilif within endpi limit /O0if outside of limit
CALLED BY: eliminate..matchlnLfnes

CALLS: none
CON54ENTS: none

imt endpitjest(mdjm~delta)
LINE *m4;

IMG-LJNE *im;
double delta-,

double mdelta:

mdelta =-delta;
switch(imn->orient)

case 1:
/*printf("VlM%.2t %.2f and %.2f %.2Ni".md->Y2.im->p2.y~md->Y I .m->pl .y):1/

if((imn->.pl.y > md->YI) && (im->p2.y < md->Y2))
retwnO1)

else return(0):
break;

case 2:
if(im->pl.x > ini->p2.x)

if((imn->p2.x > md->X2) && (im->pI.x < md->XI))
return(1):,

else retwrn(0);

else

if((iin->pl.x > md->X2) && (im->p2.x < md->X I))
return(I);

else return(0);

brak

case 3:
default

wzw'rn(0);
break-,

/1 end endpt..test *

170

FENAME: locaeobjectsuppoiLh
PURPOSE: Provides various routines in support of object recognition.
AUTHOR: Mark DeClue

DATE: 20 Aug 93

FILES: isolahoobject. isoobject, exchange. hpanition. vpartition,
Hson, Vson, get-range. endptjest, geLdimensions.
avoid-object, fillarmy

GLOBALS: none
COMMENTS: none

IMGLINE harray[100]. varray[1001]
int vcnt=0, hcnt=0;

1*.------- - ------- ------ -----. - ----------------------

FUNCTION: fihlarrayO
PURPOSE: Fills varray & harray with lines from Line list.

PARAMETERS: none
RETURNS: none

CALLED BY: locate.c
CALLS: none

COMMENTS: Note that element zero does not get data

fillarray0

IMG_LINE *1 = Line ist_head;
int k=l;

varray[vcnt].pl.x = 0.0;
varray[vcnt].p2.x = 0.0;
varray[vcnt].pl.y = 0.0;
vaffay[vcntl.p2.y = 0.0;
harray[hcnt].pl.x = 0.0;,
harray[hcnt].p2.x = 0.0,
harray[hcnt].pl.y = 0.0;
harray[hcntl.p2.y - 0.0;

while(l!=NULL)
I
if(l->orient - 1)

vcnt++;

171

varaylvcntl.pl.x = I.>pl.x;
vaffaylvcntj.p2.x a I->p2.x:
varrytvcntl.pl .y - I->pl .y-.
vanfay~vcntj.p2.y - 1->p2.y-;
varray~vcin]obsiacle - l->obstacle:

else if(I->orient - 2)

hcnt++.;
haffay~hcntl.pI.i a I->pl.x-;
haffay~hcnt].p2.x - 1>2x
harray~hcntj.pl.y a 1kapl~y;
haffay~hcntJ.p2.y -- -p.,
haffay[hcntJ.obstacle - I->obstacle-,

] ->next;

Hsort(1.hcrn,harray);
Vsort(1 vcnt~vaffay);

while(k <= hcnt)

printf("\n y a %.2fN",harray[k].pl.y)-;

k= 1;
while(k <= vcnt)

printf("\n x %.2f\n"xvrrayRkj.pI.x);

printf("NMi vcnt =%d hcnt - %ft".vcnthcnt);.
/*I End fillaray '

The following routines wre used for sorting imS lines into
ascending order to allow grouping for multi-object analysis.
The implementation is adapted from algorithms presented in
ref (MAN89] of the thesis.

172

exchange(A.BV-jine)
int A.B;
IMG-LINE Vline[]:,

IMG_ýLINE temp.

temp = VjIine[A];
V-ine[A] - V-line[B]:
Vjine(B] = temp-,

irn hpantifon(Ieftxright.H-line)
int left, right-,
IMG-LNE Hjlinefl;

double pivot-,
int L.R~middle-,

pivot = H-linr-jleft1.p1.y;
L = left
R = right;
while(L < R)

while((HjineIILJ.pI.y <= pivot) && (L <= right))
I LL-. 1

whiie((HUlne[RJ.pI.y > pivot) && (R >= Jeff))
R=R-1.

if(L < R)
exchange(L.Rt,H-jine).

middle =R-
exchange~leftimiddleHI~ine);

return(middie),

int vpartition(left~right.V-jine)
int left, right-,
IMG_.LINE VlIine[I;

double pivot;
int L.R~middle:,

pivot aV_Iineleftl.pI .x:
L = left;
R = right;
while(L. < R)

173

while((VjIine[LJ.pl.x <- pivot) && (L <- right))
L=L.1;

while((V-line[RJ.pl.x > pivot) &&(R >= left))
R=R-l:

if(L < R)
exchange(Lj,RV line);

middle = R;
exchange(leftjmiddle,Vine);

return(middle);

Hsort(leftjrightHjine)
IMG_L.INE HIinea;
int left, right;

int middle;
int partibiono;

if(Ieft < right)

middle = hpartition(leftright,"_line);
Hsort(leftimiddle- I ,Itlne);
Hsort(middle+I ,right.Hjine);

Vsort(left,right,Vjine)
1MG_LINE VlIineo;
int left, right;

int middle;
int partitiono;

if (left < right)

middle - vparuition(left.,ight.VBne);
Vsort(leftjniddle-I ,Vjline);
Vsorn(middle+1 I nghtV..ine);

174

FUNCTION: iso,.obiectO
PURPOSE: Locates object in multi-object environment

PARANMETES: none
RETURNS: object - Info on the position of dhe object

CALLED BY: locatexc
CALLS: horzscheckO

COMM4ENTS: none

OBJECTDATA iso-object(imng)
NPSIMAGE *img;

OBJECLDATA object;
1MGLINE *1.

long *ptr,winid~xien;
register int Z..

char linenamne[3J;
int i= 1, j=2. match=0. bottom, top, horzcshecko;

xlen = img->icsize;
ptr = img->imgdata.bitsptr;
I1= Line_list_head;

while(i <= vcnt)

if(! varrayWi.obstacle) j = vcnt+ 1;

.while((j <= vcnt) && !match)

if(varrayUjJ.obstacle &&
((varrayUjI.pl.x - varrmyfli.pl.xi.> 10.0) &&
(bottom a hiorzsheck(vazmy[ij.pl .x.varraylj.pl .x,
l,hcnt,l)))

match = 1;
top = horz...heck(varryti].pl .x,vamryUj].pl .x.

(bottom),hcnt,0);

else j++;

I/* end inne while *

175

if(!match)

i++,

jM i41;
I
else

object.left = varraytil.pl.x;
objectright = vmrayU].pl.x;
ObjecLIbotom - harray[botuom.pl.y;
objecLIop = hafray[lopJ.pl.y;
i - vcnt + 1; / gets out of outer while loopI

} 1 end outer whue/

printf("WenLeft= %.2f right- %.2f bot- %.2f top- %.2•t",object.left.
object.right.objectbottomobject.top):

/1 ---These 2 steps are just done during testing to 'see' how well the image
is being isolated and isn't necessary for actual obstacle avoidance--- /

/* ---Set pixels white except those in an area around the object--- /

for(z-xlen+ 1; z<((object.top+20)*xlen)+ IL z++)

if(((z%xlen) < (object.left-5)) II ((z%xlen) > (object.right+5)))
set.pixelwhite(&ptIrz]);

/* ---Set remaining pixels above object to white--- /

for(z=((object.top+20)*xlen)+l; z<(xlen*(img->ysize - I)) - I: z++)
I
set-pixeLwhite(&ptr[z]):

retumn(object);

1/0 end iso-obj */

FUNCTION: horz7check(leftjrightnstancnendcnt.bonom)
PURPOSE: Determines if a hotz line exists between the two potential

Lines for the left and right side.
PARAMNETERS: left - potential left side of object

176

right - potential right side of object
startcnt - element where the array is currety being accessed
endcnt - last dement of array with data
bottom - I if looking for bottom line; 0 for top

RETURNS: 0 if no line inbetween or element number in the aray where
the inbetween line is located

CALLED BY: iso.objectO
CALLS: none

COMMENTS: none

int horz..check(left.rightstartcntendcnt.bouom)
double left, right;

int startcnt, endcnt, bottom;

int i=statcnt+l. match=O;

if(bottom)
!
while((i <= endcnt) && !match)

if(harray[i].obstacle &&
(fabs(harray[i].pl.x - left) <= 10.0) &&
(fabs(right - harray[i].p2.x) <= 10.0))

match = 1;
else i++;

if(match) return(i);
else return(O);

else

while((i <= endcnt) && !match)

if(harray[i].obstacle &&
((harray[i].pl.y - hamay[sancnt].pl.y) >= 10.0) &&
(fabs(harray[i].pl.x - left) <= 10.0) &&
(fabs(right - haray[i].p2.x) <= 10.0))

match = 1;
else i++;

if(match) return(i);
else return(O);
I

I /* end honcheck 0/

177

FUNCTION: isolate-object(img.object)
PURPOSE: Searches the remaining img lines (hopefully an object is

present) and whites out all but an area around the object.
Then gets data needed by robot for obstacle avoidance.

PARAMETERS: img - pitr to gradient object only image
object - structure which will hold range & dimension info

RETURNS: object - structure holding range & dimension info
CALLED BY: locate.c

CALLS: set.pixel-white(&p)
COMMENTS: Original obj isolation routine. doesn't employ array struc.

Applicable to single object case.
.- ----------- ----- - ----- ----------- ------- --

OBJECTDATA isolate-object(img)
NPSIMAGE *img;

IMGLINE *. *lefdine-NULL. *rightline=NULL:
OBJECTT_DATA object:

double clearance, inittop;
long *ptr,winid.xlen:

register int z:
int counter-0;

char linename[3];

xlen w img->xsize;
ptr a img->imgdata.bitsptr:
I = Line_list head;

foreground(;

leftline - (IMGLINE *)maloc(sizeof(IMG_LINE));
rightline = (IMGLINE *)malioc(sizeof(IMGLINE)):
leftline->pl.x - 0.0;
lefdine->pl.y - 0.0;
lefdine->p2.x - 0.0;
leftline->p2.y = 0.0;
fightline->pl.x a 0.0:
rightline->pl.y - 0.0:
rightline->p2.x = 0.0;
rightline->p2.y = 0.0;

/r -From remaining fines, find vert/obstacle line furthest to left-- /

object.left - 626.0:

178

wthileQ !u NULL)

/* oient-I means vertical and obstacle means y<25O
if((l->orient-1) && l->obstacle && (l->pl.x < objeCtlieft))

objeCt~eft - 1->pl.X;
lefiline - 10 This lineisthe leftledge of the object/

I W I->next;
I/*end while*/

I - Linejlist-head;

/' --From remaining fines, find vert/obstacle fine second furthest to left
but at least 5 pixels away from line set as left side---

object.right - 626.0;
while(l != NULL)

if((l->orient==l) && 1->obstacle && (1->pl .x < objeCt~rght) &&
(l->pl.x > (object.left+5.0)))

object~right = 1->pI.x;
nightline a 1; /* This line is the right edge of the object1

I = 1->next;
I Pend while*/

printf("\n~eftside = %I2f Rightside = %.2f\aV',objec.left.object~right);

printf("Vnleftp1 a %I2f, %.2Ni".leftline->pl .xJeftline->pI .y);
printfC(nWnrightpl = %.2f. %.2NV~rightline->pl .xjrightline->pl .y);
printf('\inleftp2 = %I2f. %.2tfn",lefftle->p2.xJeftline->p2.y);
printf("\n'.mightp2 = %I2f. %.2tN",rightline->p2.xjrigbdine->p2.y);

I" ---Determine top/bottom most point for the sides of the object--- *

if(leftline->pl .y >= Ieftline->p2.y)

inittop = Ieftline->pL.y;
object.bottom = leftline->p2.y;

I
else

inittop = leftline->p2.y;
object.bottom = leftline->pL~y;

I

if(rightline->pl.y >= rightline->p2.y)

179

if(rightlin->pl.y >= inittop) inittop a rightline->pl.y;
elme if(rightline->p2.y <= ObJeCt~bottom) object~boctom at righiline->p2.y;

else

if(rightline->p2.y >= inittop) inittop = righdine->p2.y;
else if(rightline->pI.y <= objeCt~botom) object bottom - nrghzline->pl.y;

printfC'Na~ninittop - %.2f initbonot'n - %.2fVI~a'jnitop~ObJeCt~buotM);

/0-Search forthe image lines which make up the top and bottomedges---

I - Linejlistahead;
object-top - 250.0;

whiieOl !- NULL)

if((I->onient - 2) && ((fabs(ObJect~left - l->p 1.x)) <= 10.0) &&
((fabs(object.right - 1->p2.x)) <= 10.0)) 10 Line is within 10 pixels

of lefth'ight edge1

if(]->pl.y <= ObjeCt~bottom) object.bottom = l->pl.y;
if((1->pl.y > inittop) && (I->pl.y <- object.top)) objeCUOP = l->pl.y;

I = l->next;

printfC"\nBottom at %.2f Top at %.2ft",object.bottom,object~top);

/* --- These 2 steps are just done during testing to 'see' how well the image
is being isolated and isn't necessary for actual obstacle avoidance-- *

/* -- Set pixels white except those in an area around the object--- *

for(z=xlen+ I; z<((obJect.top>+20)*xlen)+ I; z++)

if(((z%xien) <c (object.left-5)) 11 ((z%xien) > (object~right+5)))
set..pixel~white(&ptrjz]):

/* -Set remaining pixels above object to white---/

fbr(z=((obJect.toP+20)*xlen)+1; z<(Ylen*(img->ysize - 1)) - 1; z+-.)

set..pixeLwhite(&ptrfz]);

return(object);

1* End isolate-Opbect *

180

FUNCTION: geLrange
PURPOSE: Determines range to an object by base pixel height

PARAMETERS: bottom - the yen coord in pixels of the object's base
RETURNS: range - the range to the object

CALLED BY: locate.c
CALLS: none

COMMENTS: Uses range equation as derived in thesis

OBJECTDATA getwange(object)
OBJECT_DATA object;

double alpha-O.032. h=86.36. delta--8.26E-4;
double arg, pix:

pix = (486.0/2.0) - object.bottom:
arg = alpha+pix*delta;
object.range = h / tan(arg);

return(object);

}/* end get.range */

/* --.---------- ------------------- -----

FUNCTION: geLdimensions
PURPOSE: Determines the dimensions of an object

PARAMETERS: range - the range to the object
object - the structure which upon being sent to this routine

contains the left/right sides in pixels along the
horz axis and top/bottom along the vert axis

RETURNS: object - the same left/right, top/bottom values as sent in
but also the calculated width and height in cm.

CALLED BY: locate.c
CALLS: none

COMMENTS: Uses image pixel to physical length conversion factor (delta)
of 1205/d as described in thesis

OBJECT_-DATA getzdimensions(object)
OBJECTDATA object;

double pixeLwidth. pixel-height, delta;

181

delta - 1205.O/object.range;

pixel-width = objectright - object.left;
pixeLjheight = objecLtop - objecLbottom;

objecLheight = pixeljbeight * (1.0/delta);
object.width = pixewidth * (1.0/delta);

reurn(object);

1 / end get-dimensions /

FUNCTION: avoid-objecto
PURPOSE: Calculates the shift distance necessary to avoid the given

object by 1 meter
PARAMETERS: leftside - left edge of the object to be avoided

rightside - right edge of the object to be avoided
RETURNS: shift - the distance (in cm) necessary to avoid object where

a positive value is a right shift, a negative value
is a left shift, and 0.0 is maintain current path.

CALLED BY: locate.c
CALLS: none

COMMENTS: none

double avoid_object(leftsiderightside)
double leftsiderightside;

double deltaright. deltaleft, shift=1000.0, middle=646.0/2.0;

deltaright=middle-rightside;
deltaleft=leftside-middle;

if(deltaright >= 0.0)/* obj completely to left */

if(deltaright >= 100.0) shift = 0.0;
else shift = 100.0 - deltaright;

else if(leftside >= 0.0) P/ obj completely to right 1

if(deltaleft >= 100.0) shift = 0.0;
else shift = deltaleft - 100.0

else

if((fabs(deltaleft)) < (fabs(deltaright)))
shift = deltaleft - 100.0; /* obj more to right so shift left /

182

else shift - 100.0 - deltaright; / obj more to left so shift right */

if((shift > 0.0) && (shift < 1000.0))
printf("'Sln order to avoid the object. shift %.If cm to righsn".shift);

else if(shift < 0.0)
printf('•n'In order to avoid the object, shift %.If cm to ieftt'".-shift);

else if(shift - 0.0)
piintf("'aNoo path alteration necessary to avoid objecft');

if(shift - 1000.0) 1 None of the conditions applied /
I
shift = 0.0;
pintf("VnMCan't interpe object; maintaining present pathI');

I

return(shift);
I 1 end avoidOobject /

183

APPENDIX C - SUPPORT ROUTINES

SHOWMODEL: This routine is simple in nature and yet proved to be very useful during much of the
research work. When called, the user is prompted for x, y, z, and 0 coordinates of the camera based on the
original model coordinate system with distances in inches (a version which accepts data based on the current
coordinate system with distances in centimeters was also created SHOWMODEL_CM). The result of this
input is a window, which may be placed anywhere on the screen, displaying the two-dimensional view
generated from the wire-frame model for the input position placed over a white background.

/* FUCNTION: SHOWMODEL.C
/* PURPOSE: Presents model view based on keyboard input of /
/* position as X, Y, Z and theta. */
/* PARAMETERS: none
/* RETURNS: none
/* CALLED BY: none
/* CALLS TO: make-world, get-view, draw-lines. free-lines /
/* GLOBALS: none

#include <gl.h> /* SiliconGraphics (r) graphic library */
#include <glfimage.h> /* SGI image structure library
#include <device.h> / Machine-dependent device library */

/* for keys and mouse-buttons
#include <stdio.h> /* C standard i/o library */
#include <math.h> /* C math library for atan20 */

#include "model2d+.h" /* Wireframe model graphics code */
#include "model5th.h" P */
#include "modelgraphics.h" "
#include -modelvisibility.h" "

#include "showmod_support.h" /* Support structuresiroutines

#define focalength 1.4 /* Focal length

main()

I
WORLD *FifthFloor,
LINEHEAD *model = NULL;
long winid;
static float white[3] = 1.0, 1.0, 1.0);
VIEWPT *getview;

foregroundO;

getview = (VIEWPT *) malloc(sizeof(VIEWPT));

/*---Get pose values for model image.
Initialize world database for fifth floor of Spanagle Hall & determine
2D view of environment--- */

model = setup_.modelO;
/* ---Set up display configuration--- */

prefsize(648, 486):

184

winid - winopen("MODEL VIEW");
RGBmodeO;
singlebufferO;
gconfigO,
winset(winiud);

I* -Display image on white background-- /

c3f(white);
clearO;
drawlines(m I ->LINELIST, m I ->VLINELIST);

printf("vnEnter I to quit -> ");

scanf("Nlf, &getview->Z):

/* -Wrap up viewing- I

freeflines(m 1);
winclose(winid);

printf("n Thank's for using showmodel •\•n");

1/* ---End showmodel--- */

CHANGEOVERLAY: The primary use for this program is in determining if an image, based on a physical
position for the camera, coincides properly with the view predicted by the model. This routine is called with
an input argument of a sgi/rgb stored image. The image is then displayed in a window, which may be placed
anywhere on the screen, and the user is then prompted for position input as in SHOW-MODEL. Following
processing, the two-dimensional model view for this position is super-imposed over the image. A menu of
options is provided next which allows any of the following to be carried out:
"* Display only the image

" Display the image with the model superimposed

"* Input a new position and display

/* FUNCTION: CHANGEOVERLAY.C *I
/* PURPOSE: Displays input image with wire_frame model from pose */

superimposed. Mouse buttons function as follows: */
/* Left mouse --- Image only */

Middle mouse - Model lines over image
1* Right mouse -- Accepts pose and displays image with */
/* wire-frame model superimposed.
/* PARAMETERS: Stored rgb image as <image name>.pic */
/* RETURNS: none */
/* CALLED BY: none *I
/* CALLS TO: makeworld, get-view, read&sgLrgbimage, drawwhite_ */

model lines */
/* GLOBALS: CAMERA-HEIGHT, FOCALLENGTH (Both are constants) */
/* COMMENTS: Mark DeClue, 24 Feb 93 */

#include <gl.h> /1 SiliconGraphics (r) graphic library *I
#include <gl/image.h> /1 SGI image structure library
#include <device.h> /* Machine-dependent device library */
#include <stdio.h> /* C standard i/o library

185

#include <math.h> /* C math library for atan2O
#include "2d..h"
#include -5th.h"
#include -graphics.h"

#include "image -ypes.h' /1 Type definitions for NPSIMAGE. etc. ~
#include "match types.h' [1 Type definitions for EDGE, IMG_...INE..
#include "npsimagesupporLh" /* Some NPSIMAGE functions
#include "edgesupponth" 1* EDGE and IMG...LINE building functions
#include "vertsuppoith" /* Vertical EDGE and IMG..LIN supplement1
#include "matchsuppon~h" t* LINE and 1MG_LINE matching routines
#include "matchdisplaysupport.h" f* Graphics display functions
#include "marksubs.h" /* VIEEWPT data structure

main(argc, argv)
int argc:.
char Oargvo;

WORLD *fifthfloor;
NPSIMAGE *img;,
LINEHEAD *m = NUJLL;
VIE WPT *getpos;
short value-,
long winid;
Int keepon ai;

foregroundO;

1* ---Read in the image to be displayed---

img = read-sgi-rgbimage(argv[I]I);
printf(-\n%s has been storedn', img->name);

1* ---Set up 5th deck database model ---

fifthfloor = make woridO;

i' --Initialize for display and control --- *

prefsize(imng->xsize. img->ysize); 1* preferred size for window
winid = winopen(img->name): f* open the window *
RGBmodeO: /* set RGBmode, singlebuffer, and *
singlebuffero. /* configure the window
gcontigo;
qdevice(REDRAW);
qdevice(RIGHTMOUSE);
qdevice(ESCKEY);
qdevice(MIDDLEMOUSE);
qdevice(LEFTMOUSE);
getpos = (VIEWPT *) maiioc(sizeof(VIEEWPT));

1* -- Initial display of image--- *

winset(winid);
Irectwrite(O. 0, img->xsize - 1, img->ysize - 1, img->imgdata~bitsptr);

f* -- initial pose acceptance and display--- *

printfC¶~nter desired initial view:\n");

186

ffush(stdout);
printfC*X: ");
ffush(stdout);
scanfC~da%lfC. &getpos->X)-;
printf(**nY: ");
scanfr~niir, &getpos->Y):.
printfC'*W: ");
scanfC',%lr, &getpos->Z);
printfC'NaTHETA: *');
scanfC'*V%Wf. &getpos->THETA).

m get~view(getpos->X, getpos->Y, getpos->Z. getpos->THETA. fifthflocr,
FOCALLENGTH);

/* -List available options--- */

printfC**aOptions available are as follows ...',a");
printf("\n Left mouse button -> Display image onl9.");
printfC' Middle mouse button -> Superimpose wire-framne model based on 1
printfCcurrent pose'.");
printfC' Right mouse button -> Accepts new pose. Displays image & wire-");
printfC'fraine mode['"):,
pnintfC' ESC key -> Exit program'.");

/0 --- Loop until a mouse button is pressed--- *

while (keepon - 1)

switch (qread(&value))

case REDRAW:
winset((ong) value);
reshapeviewporto;
if (value = winid)

butcwrite(O. 0. img->xsize - 1, img->ysize - 1. img->imgdata~bitsptr);

case RJGHTMOUSE:
if (value ==0)
I

/* ---Get pose values for model image---/

printf('%Xnter desired new view:.N");
fflush(stdout);
printfC"X:)
fflush(stdout);
scanfC"Ia%lf. &getpos->X);
printfC"\nY: -);
scanfC'd1%lf', &getpos->Y);.
printffW.: ");
scanfC~NMf. &getpos->Z);
printfC*NaTHETA: ");

safC'm%lf", &getpos->THETA);

mn - gez..yiew(getpos->X. getpos->Y, getpos->Z, getpos->THETA. fifthfloor,
FOCAL..LENGTH);

187

lmtrit(O 0.im->xiz - . mg-ysat - 1. img->imgdatabusp~r):
&aw.ýwhie-modelhm~m- .IN-ST);.

draw-white-mode~l-ine(m->LINE-.UST).
printf(NaiNew wire-frame image has been suprmposeft);

break;
case ESCKEY:

case LEFThIOUSE:
if (value - 0)

lmetwrite(O, 0. imt->xsize - 1. img->ysize - 1. imng-Aingdatabitspl).

case MIDDLEMOUSE:
if (value-O0)
I
draw-.whiemode~l-ine(m->VLNE...LIS1):
draw-.white -model- ns(m->LINE-LIST);

break;
default

break;
10end switch *

V/end while/

/1 --Clean up from display work-/

free(imng-Aimgdata~bitsptr); /* delete the bitmap for the image *
free~img); /* delete the NPSIMAGE structure*
winc!ose(winid): (* close the window

printfC^-aThanks for using changwoverlay. Have a nice dayr\n");

198

LIST OF REFERENCES

[KAHMO] Kahn, P., Kitchen, L., and Riseman, EJ14, A Fast Line Finder for Vision-Guided

Robot Navigation, IEEE Transactions on Pautte Analysis and Machine

Intelligence, VoL 12, No. ll, pp. 1088-1102, Novemnber 1990.

[KAN93] Kanaymma, Yutaka, Lecture Notes: CS4313, Advanced Robotics, Naval Postgraduate

School, Monterey, California, Apil 1993.

[MAC93] MacPherson, David L.. Automated Cartography by an Autonomous Mobile

Robot, Ph.D. Dissertation, Naval Postgraduate School, Monterey, California,

September 1993.

[MAN89] Manber, Udi, Introduction to Algorithms-A Creative Approach,

Addison-Wesley Publishing Co. 1989.

[PET92] Peterson, Kevin L., Visual Navigation for an Autonomous Mobile Vehicle,

Master's Thes", Nnval Postgraduate School, Monterey, California, March 1992.

ISTE92) Stein, James E., Modelling, Visibility Testing and Projection of an Orthogonal

Three Dimensional World in Support of a Single Camera Vision System, Master's

Thesis, Naval Postgraduate School, Monterey, California, March 1992.

[ULL91] Ullman, Shimon and Basri, Ronen, Recognition by Linear Combinations of

Models, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 13. No. 10, pp 992-1005. October 1991.

189

BIBLIOGRAPHY

Ballard, Dana H. and Brown, Christopher M., Computer Vision, Pentice-Hali. Inc., Englewood Cliffs,

New Jersey. 1982.

Grimson. W. Eric L., Object Recognition by Computer: The Role of Geometric Constraints,

The Mit Press, Cambridge, Massachusets, 1990.

Kanayarna. Yutaka. Yamabico User's Manual, Naval Postgraduate School. Monterey. California, April

1993.

190

INITIAL DISTREIUTION LIST

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2

Code 052
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr Yutaka Kanayama, Code CS/KA 2

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Don Brutzman, Code OR/BR
Naval Postgraduate School
Monterey, CA 93943

Lt Mark J. DeClue
145 St Croix Ave
Cocoa Beach, FL 32931

191

