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Background: Statistical models are successfully used to describe particle multiplicities in (ultra)relativistic
heavy ion collisions. Transport models usually lack the ability to describe special aspects of the results of these
experiments, as the fast equilibration and some multiplicity ratios.
Purpose: An alternative, unorthodox picture of the dynamics of heavy ion collisions is developed using the
concept of Hagedorn states.
Method: A prescription of the bootstrap of Hagedorn states respecting the conserved quantum numbers baryon
number B, strangeness S, isospin I is implemented into the GiBUU transport model.
Results: Using a strangeness saturation suppression factor suitable for nucleon-nucleon collisions, recent
experimental data for the strangeness production by the HADES collaboration in Au + Au and Ar + KCl is
reasonably well described. The experimentally observed exponential slopes of the energy distributions are nicely
reproduced.
Conclusions: A dynamical model using Hagedorn resonance states, supplemented by a strangeness saturation
suppression factor, is able to explain essential features (multiplicities, exponential slope) of experimental data for
strangeness production in nucleus-nucleus collisions close to threshold.
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I. INTRODUCTION

Statistical models are considered to be a valuable tool
to understand the properties of the matter generated in (ul-
tra)relativistic heavy ion collisions [1–3], but also in high
energetic e+e−, pp, and pp collisions [4].

On the other hand, starting with Fermi’s statistical model
[5], fireball models were applied successfully for the descrip-
tion of experimental data in nucleon-antinucleon annihilation
events at low energies. With the invention of the statistical
bootstrap model (SBM) by Hagedorn [6] and its microcanoni-
cal reformulation by Frautschi [7] a systematical and consistent
way for the inclusion of higher mass resonances was formu-
lated. Hamer was the first to apply the (microcanonical) SBM
to nucleon-antinucleon collisions [8] (see also Refs. [9,10] for
recent reviews).

In Refs. [11–13] the authors developed a prescription
of a microcanonical bootstrap of Hagedorn states with the
explicitly conserved quantum numbers baryon number B,
strangeness S, and charge Q. The covariant formulation is
analogous to Refs. [8,14]. Due to the restriction to only two
constituents, a simple picture of creation and decay of Hage-
dorn states as 2 → 1 and 1 → 2 processes could be formulated
on the basis of detailed balance. This allows for dynamical cal-
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culations, and the model was successfully implemented into the
hadronic transport model UrQMD [15,16]. It has been shown
in a first step, that from the Hagedorn model alone hadron
multiplicities from cascading decay chains of a single heavy
Hagedorn state are close to experimental data and that the en-
ergy spectra of the resulting hadrons from these decays follow
an exponential law and thus look thermal by itself. Secondly, by
performing box calculations, a desired fast equilibration time
of strange and multistrange baryons and mesons was extracted.

Unfortunately, the numerical effort for these processes
is quite high and especially the calculation of the decay
of a Hagedorn state becomes slow when the mass of the
resonance increases. An alternative prescription using isospin
I instead of charge Q is presented here and allows for much
faster calculations. Therefore for the first time, dynamical
calculations of heavy ion collisions become feasible. Here
now the transport model GiBUU [17] is used. This presents an
unorthodox picture of the microscopical processes of the dy-
namics of heavy ion collisions. It has to be confronted against
experimental findings and also against results of traditional
transport calculations. In this exploratory work the production
of φ mesons in low energetic heavy ion collisions will be used
as the test ground.

Recently, the HADES Collaboration has studied the role
of the φ meson for the production of K− mesons in Ar +
KCl collisions at a kinetic beam energy of 1.756 AGeV [18]
and in Au + Au collisions at 1.23 AGeV [19,42], covering
the region

√
sNN = 2.4–2.6 GeV. Their data are compatible

with former results by other experiments. The measured φ/K−
ratio was found to be 0.4–0.5, meaning that ≈18−25% of
the K− originate from decays of φ mesons. The spectra
of the produced particles are thermal with slope parameters
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Teff = 70–100 MeV. Traditional transport models have prob-
lems explaining theses findings.

It has to be noted that the idea of using higher mass
resonances as a possible explanation of the above-mentioned
HADES data was already used in Ref. [20]. Contrary to that
work, the present approach represents a consistent way for the
introduction of higher mass resonances.

The transport model GiBUU has been used for a long
time to study low energetic heavy ion collisions [21] and
strangeness production therein [22,23]. It was also used for
understanding production of hypernuclei in heavy ion colli-
sions and antiproton induced reactions (see Ref. [24] for a
recent survey). The interaction of the φ meson with hadronic
matter has been studied in the case of photoabsorption on
nuclei [25,26]. In addition, the hadronic resonance model of
GiBUU has been tested against dilepton measurements of
many experiments, especially against HADES measurements
of proton induced events, C + C collisions at 1 and 2 AGeV
and the (above-mentioned) Ar + KCl at 1.76 AGeV [27,28]. It
has to be mentioned that the prescription of Kaon production
in p + p collisions in GiBUU has recently been improved to
match experimental data of the HADES group [29].

The paper is organized as follows. In Sec. II the mayor
equations for the actual bootstrap model are shortly given and
the overlap and the differences to previous work is indicated.
The implementation of a strangeness saturation suppression
factor is described. Then, in Sec. III, results from the present
calculations are compared with experimental data from the
HADES collaboration for A + A collisions. In a first step, only
total particle multiplicities are considered, while in a second
step, also energy spectra of particles are compared. Finally,
conclusions are drawn in Sec. IV.

II. MODEL

Hagedorn states are hadron-like resonances, which are not
limited to quantum numbers of known hadrons and also can
be much heavier than known resonances. In the presented ap-
proach, these states are characterized by the quantum numbers
baryon number (B), strangeness (S), and isospin (I ). Instead
of the last, also the electrical charge (Q) can be used.

In the following a microscopic and dynamic description is
provided of how a hadron resonance gas can be consistently
expanded by Hagedorn states. Hagedorn state creation from
two hadrons, their interaction with hadrons and other Hage-
dorn states, and finally their decay into hadrons and/or other
Hagedorn states are developed in a microcanonical way by
respecting all the above-given quantum numbers explicitly in
each step. All this can be implemented into the transport model
GiBUU [17], replacing most of its default interactions. Also,
the resulting mass degeneracies can be used to enrich thermal
model prescriptions by Hagedorn states, as in Refs. [30,31].
Actually, the used prescription is a close extension of [32,33].

A. Basic equations

The first mayor equation for the microcanonical bootstrap
model with some conserved quantum numbers �C [11–13] is

the bootstrap equation,1

τ �C(m) = τ 0
�C(m) + V (m)

(2π )2

1

2m

∑
�C1, �C2

∗ ∫∫
dm1dm2

τ �C1
(m1)τ �C2

(m2) m1 m2 pcm(m,m1,m2), (1)

which tells, how the mass degeneration spectrum of the
Hagedorn states τ �C(m) is built up from a low mass input
τ 0

�C(m) and the combination of two lower lying Hagedorn states.

Here, τ 0
�C(m) may be identified with the spectral functions (delta

function or Breit-Wigner) of the input hadrons.
The second fundamental equation is the connection between

decay width and production cross section,

� �C(m) = σ (m)

(2π )2

1

τ �C(m) − τ 0
�C(m)

∑
�C1, �C2

∗ ∫∫
dm1dm2

τ �C1
(m1)τ �C2

(m2) p2
cm(m,m1,m2). (2)

Here, the production cross section σ = πR2 and the volume
of the Hagedorn resonances V = 4

3πR3 are given by a single
radius parameter R. In a more general picture, the radius
parameter R can be taken as mass dependent R = R(m), σ
and V . The center of mass momentum is given as usually as

p2
cm(m,m1,m2) =

(
m2 − m2

1 − m2
2

)2 − 4m2
1m

2
2

4m2
. (3)

We introduced the notation �C for the set of conserved quantum
numbers and as abbreviation∑

�C1, �C2

∗ =
∑
�C1, �C2

δ( �C; �C1, �C2) (4)

with

δ( �C; �C1, �C2) = δ
(
Ca; Ca

1 ,Ca
2

)
δ
(
Cb; Cb

1 ,Cb
2

) · · · (5)

for indicating, that the summation just runs over the quantum
number combinations, which are compatible with the overall
quantum numbers.

In the case of additive discrete quantum numbers, as,
e.g., baryon number B, strangeness S, and charge Q, the
“generalized” delta symbol δ(z; x,y) in Eq. (5) is the usual
one,

δ(X; X1,X2) = δX,X1+X2 for X = B, S,Q, . . . . (6)

This set of quantum numbers (B,S,Q) was used in
Refs. [11,12], where the model was implemented into the
hadronic transport model UrQMD [15,16]. This implemen-
tation has been shown to be rather ineffective and slow in
computation time. Therefore the set of quantum numbers
(B,S,I ) with I standing for the isospin will be used in present
work.

The Gell-Mann–Nishijima formula (2Iz = 2Q − B − S)
connects the charge Q (for known B and S) with the z-
component of the isospin, Iz, not with the isospin, I , directly.

1A factor 1/2! was missing in Refs. [11,12].

024915-2



STRANGENESS PRODUCTION IN LOW ENERGY HEAVY … PHYSICAL REVIEW C 98, 024915 (2018)

Therefore, the corresponding Clebsch-Gordan coefficients
have to be respected in the “generalized” δ-symbol in Eq. (5),

δ(I ; I1,I2) =
{

1 ∃I z,I z
1 ,I z

2 :
〈
I1 I z

1 ; I2 I z
2 |I I z

〉2 �= 0
0 otherwise

. (7)

While thus the equations look more difficult, the actual calcu-
lation is much faster because the number of possible quantum
number combinations to consider is much smaller.

It has been tested that both approaches, i.e., the new (B,S,I )
and the former (B,S,Q) approach, give the same results, when
the quantum numbers are identical. This needs some rework
since if the quantum numbers are fixed e.g. to some values
of (B,S,Q), one has to iterate in the (B,S,I ) approach over
all states, which may contribute to the given state. From the
Gell-Mann–Nishijima formula we get some Iz value, which
indicates the minimal I value of the iteration.

The presented prescription preserves quantum numbers in
a microcanonical sense such that some quantum numbers are
conserved explicitly. Unfortunately, some other quantities are
not preserved. So the G-parity is violated; processes like 2π →
X → 3π are possible. This may have direct consequences on
the number of produced particles. Such considerations are left
for further studies.

In the large mass region (m � 3 GeV), the resulting mass
degeneracy can be fitted very well with a function including
an exponential increase,

τ �C(m)
m→∞−→ a �C m−b �C ec �C m, (8)

were the three parameters a, b, and c depend on the quantum
numbers �C. The parameter c depends only very weakly [11–
13]; it is assigned with the label “Hagedorn temperature”
TH, �C ≡ 1/c �C . Usually, this notion is connected with the tem-
perature of the system, where the partition function diverges.
Since the present model is constraint in the bootstrap to some
maximal mass (m < 10 GeV) for the Hagedorn states due
to numerical reasons, the actual divergence can not fully
been observed. Therefore only an approximate value of the
Hagedorn temperature derived from the fits according to Eq. (8)
can be given, TH = 〈TH, �C〉, were the averaging is done over

all possible quantum number states �C.
The only free parameter of the presented statistical bootstrap

is the radius parameter R, which enters Eqs. (1) and (2) as
the volume V of the Hagedorn state and as the production
cross section σ . But it also directly influences the slopes of
the spectra and is thus directly connected with the value of the
Hagedorn temperature TH . In the present work, a fixed value
R = 1.0 fm is chosen, yielding σ = 31 mb, V = 4.2 fm3, and
a Hagedorn temperature TH ∼ 165 MeV. Due to numerical
reasons, we have to restrict to masses m < 10 GeV in the
bootstrap.

B. Phase-space diagram

As in Refs. [32,33], the calculated Hagedorn spectra may be
included into a statistical model with baryochemical potential
μB and strange potential μS . As mentioned above one normally
connects the notion of a Hagedorn temperature with that
temperature, where the partition function diverges. To illustrate
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FIG. 1. The energy density as function of the temperature for
μB = 0 (red curves) and μB = 0.85 GeV (blue curves) with vanishing
net strangeness density. Solid curves show results including Hagedorn
states, dashed curves a hadron gas only.

this behavior, the divergence of the energy density as function
of the temperature is shown in Fig. 1. Here results for vanishing
baryochemical potential μB = 0 are compared to those with
some nonvanishing value. For the latter case, the chemical
potential μS is adjusted to guarantee vanishing net strangeness.
(Resulting curves with fixed μS = 0 vary just within temper-
atures of 1–2 MeV.) While for the vanishing baryochemical
potential the curve starts to increase very rapidly close to the
fitted TH above, the divergence occurs for large values of μB

at clearly smaller temperatures. Again, if in the present model
Hagedorn masses would not be limited, the divergence would
be much sharper.

For large temperatures ∼TH , the mass spectrum for every
quantum number gets enhanced for large masses. This is shown
in Fig. 2, where the mass spectrum yielding energy densities
ε = 1 − 3 GeV fm−3 are shown. At least for the latter condition
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FIG. 2. The mass distribution for vanishing baryochemical poten-
tial. The gray area shows the hadronic contribution, while the lines
indicate the results for given ε.
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FIG. 3. Same as Fig. 2, but for μB = 0.85 GeV.

the spectrum seems to increase with increasing mass, yielding
definitely a diverging partition sum.

For the case of a large value of the baryochemical potential
μB , the situation is different. The connected temperature
leading to a divergence is much smaller (∼75 MeV, see Fig. 1),
yielding slopes, which drop very fast with increasing mass,
when the net baryon number is fixed. The large factor eB μB/T

enhances more and more particles with larger baryon numbers.
Finally, in the limit of vanishing temperature but maximal
baryochemical potential, the mass distribution would consist of
a sum of equipotent, rather spiky functions, located at multiples
of the nucleon mass mN = 0.938 GeV. This is clearly and
prominently visible in Fig. 3. Obviously, only particles with
B � 8 are considered in the present prescription. Nevertheless,
this constraint does not influence the results. For example,
the inclusion of baryon numbers reduced by 1 only shifts the
divergence region by ∼2 MeV.

In the case of vanishing baryochemical potential, the ratio
of particles with strangeness |S| = 1 is 35–45% for masses
M > 2 GeV. The content of multistrange particles increases
with increasing mass and reaches 25%, 15%, and 10% for
|S| = 2, |S| = 3, and |S| > 3 at M = 10 GeV. This ratio is
independent of the underlying energy density. For the case of
μB = 0.85 GeV, the two different treatments of the strange
chemical potential yield different contributions. In the case of
μS = 0, the strangeness content oscillates with mass according
multiples of mN and reaches approximately the same values
as above in maximum. In between, the strange contribution
drops close to zero. If μS is varied to guarantee a vanishing net
strangeness, the total strangeness is significantly suppressed.
Only approximately 20% of all particles have strangeness
|S| = 1. Multistrange states with |S| > 1 do not play any role
at all.

It is instructive to study the divergence in the T − μ plane.
Since it is not possible to show the real divergence, some
cut into the energy distribution may serve as a hint to the
phase boundary. This is done in Fig. 4, where the value
ε = 1 GeV fm−3 is chosen. Low temperatures (T < 25 MeV)
are excluded from this consideration, since here the Bose or
Fermi nature of the particles become important. As also shown
in this figure, the treatment of the strange chemical potential
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FIG. 4. The boundary ε = 1 GeV fm−3 in the T − μ plane. Also
shown the freeze-out curve from Refs. [2,34].

is only of minor importance for this boundary. In addition,
the boundary is compared to the freeze-out parametrization
from Refs. [2,34]. While for small values of the baryochemical
potential, the two curves lie on top of each other, the boundary
of the Hagedorn scenario reaches larger values of μB for a
given temperature.

C. Strangeness saturation suppression factor
and N + N collisions

It is well known, that statistical models, including the SBM,
yield too large multiplicities of strangeness carrying particles
compared to data of the annihilation experiments [8 (and
references therein)]. Dynamical suppression according the OZI
rule [35] could be an explanation.

Therefore, in the following, a strangeness saturation sup-
pression factor γs is implemented by rescaling the cross section
(and via the detailed balance constraint also the decay width)
by a “penalty” factor γ 2

s , if the creation or deletion of a ss quark
pair is involved. This can be formulated by the replacement

σ (m) −→ σ (m) γ |S1|+|S2|−|S1+S2|
s , (9)

in Eq. (2), where S1,2 is the strangeness content of the two
incoming/outgoing particles. A closer inspection of this equa-
tion and Eqs. (1) and (2) shows, that (when the inhomogenity
τ 0 can be neglected) this rescaling of the cross section σ is
equivalent to a rescaling of the τ itselves

τ �C(m) −→ τ �C(m) γ |S|
s . (10)

Note that this rescaling should happen after the bootstrap, but
before calculating �.

Also processes deleting or producing a φ meson have to
get some “penalty” factor γφ , since the φ meson has some
ss quark content, while its overall strangeness is zero. In the
following, the simplest assumption, γφ = γ 2

s , will be choosen.
The inclusion of this factor has to be done independent of the
treatment in Eq. (9) [or Eq. (10)] in some additional, separate
step.
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FIG. 5. The averaged number of negative charged hadrons h−,K

mesons, and 
 baryons from a Hagedorn state (B,S,I,(Q)) =
(2,0,1,(2)) decay compared to experimental data from p + p col-
lisions as a function of

√
s (data compilation, Refs. [36,37]). The

strangeness suppression is γs = 0.3.

A different approach would already rescale the τ 0
�C according

the prescription Eq. (10) before the bootstrap. It has been
tested, that this approach would yield similar results like shown
below for the case for A + A collisions. Nevertheless, the
thermodynamical limit would yield a different asymptotic state
than given here. Therefore this approach is not followed here.

It has to be noted that the dynamical approach described
here is close to the thermal description described in Ref. [4]:
a microcanonical suppression in addition to a dynamical
strangeness suppression factor γs .

To adjust the value of γs , experimental data for strangeness
production in low energetic p + p collisions is considered
(data compilations [36,37]). A comparison of calculations
doing Monte Carlo decays of a Hagedorn state with the quan-
tum numbers (B,S,I ) = (2,0,1) and the additional constraint
Q = 2 with the experimental data is shown in Fig. 5. As a
“fit-by-eye,” the value γs = 0.3 will be used in this work. This
value is compatible with Ref. [4], where the energy dependence
for energies larger than considered here shows a linear increase.

As can be seen in Fig. 5, the charged hadron (mainly
pions) multiplicity is slightly underestimated directly at the
threshold, but somewhat overestimated for

√
s > 3 GeV. This

behavior is hardly influenced by the choice of the γs value. Also
the excitation function of K+ and 
 + �0 is only described
well in the overall view; in the details differences are visible.
Unfortunately, data for K− multiplicities is not available in the
region below 5 GeV, thus no conclusion about the quality of
the theoretical prescription can be drawn.

The implemented strangeness suppression factor γs is di-
rectly responsible for the multiplicity of the K+ mesons and
the 
 and � baryons. On the other hand, the yield of the K−
mesons is connected with the yield of φ mesons. Here, the
above mentioned factor γφ is responsible via the connection
γφ = γ 2

s .
It has been checked that the description of the negatively

charged hadrons in p + n is similar to the shown case here;
underestimation directly at the threshold, while for larger
energies the data is overestimated.

As a note, another source of adjustment could be the large
number of experimental observables, especially all the differ-
ent final state channels in nucleon-antinucleon annihilation.
Nevertheless, there the situation is much different since due to
the different total baryon number, the production channels for
mesons are already open at threshold. Therefore these data are
not really applicable to the calculation of heavy ion collisions,
where also the baryon number plays a very import role. Thus
the annihilation data will not be used here.

TheA + A collisions discussed in this work cover the region√
sNN = 2.4 − 2.6 GeV.

III. A + A COLLISIONS

In the following, heavy ion collisions are performed in the
framework of GiBUU [17]. The colliding nuclei are initialized
consisting of a given number of protons and neutrons. The
nucleons have Fermi momentum and are bound in a potential.
At initial time t = 0, the nuclei are initialized with a nec-
essary distance away from each other and then propagating
onto each other. Centrality/impact parameter constraints are
implemented according the experimental needs [19,38,42].
When not stated otherwise, usual collisions are replaced by the
formation of Hagedorn states in this work. Hagedorn states are
produced by hadron-hadron, hadron-Hagedorn, and Hagedorn-
Hagedorn collisions, and may propagate freely before de-
caying again into lighter states. Thus, all final, nonspectator
hadrons are stemming directly or indirectly from intermediate
Hagedorn states.

Contrary to the usual prescription, Hagedorn states can
be formed by a first N + N collision, but then also gather
additional energy by picking up a second nucleon. Thus, the
Hagedorn states can act as some kind of “energy reservoir.”

To illustrate this Hagedorn state scenario at work, the mass
distribution of Hagedorn states at a some fixed times for
Au(1.23 AGeV)Au collisions is shown in Fig. 6. The maximal
overlap of the colliding nuclei happens at t = 12.0 fm. Thus
the maximal mass extend of the generated Hagedorn states is
approximately 3 fm after this point.
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FIG. 6. The mass distribution of hadrons and Hagedorn states at
different time steps of the calculation for Au(1.23 AGeV)Au (0–40%)
collisions. The maximal overlap of the nuclei is at t = 12.0 fm.
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FIG. 7. The evolution of Hagedorn states (excluding known
hadrons) with different baryon number B for Au(1.23 AGeV)Au (0–
40%) collisions. The maximal overlap of the nuclei is at t = 12.0 fm.
(The number of hadrons is too large to be visible in this plot.)

It is a remarkable feature that very high mass states are
populated. The distribution is very smooth in its maximal
extend. Before and after this time, sharp structures are visible.
At the beginning, Hagedorn states are being built up by 2,
3, . . . , nucleons. These nucleons have approximately the same
energy, therefore multiples of the initial kinetic energy governs
the mass distribution of the Hagedorn states. When decays of
the Hagedorn states set in, then the mass of the nucleons is
the relevant scale. Then, again sharp structures in the mass
distribution develop, but now different from the initial ones.

The time evolution of states with different baryon numbers
is illustrated in Fig. 7. A similar picture as Fig. 7 for different
strangeness states is not very illustrative since the number of
states with S = |1| is already suppressed by a factor of 1000,
particles with larger strangeness do essentially not play any
role at all.

A. Multiplicites

The transport model GiBUU features two different kinds of
calculation setups. In the first one, called “parallel ensemble,”
multiple ensembles are calculated in parallel, without any
interference. The number of testparticles is unity; this setup is
a microcanonical one. The other setup, called “full ensemble,”
mixes all ensembles and thus the number of testparticles equals
the number of ensembles. Therefore, this is a (grand)canonical
setup. This is of importance for the production and absorption
of rare particles [39,40].

In Fig. 8, the calculated multiplicities are compared with
experimental data for Au(1.23 AGeV)Au (0–40%) [19,42]
and Ar(1.76 AGeV)KCl (min. bias) [18]. An effect of the
microcanonical treatment is visible since the multiplicities
of the rare particles are even more suppressed than in the
canonical treatment. Nevertheless, the φ multiplicities come
out too high in the calculations, influencing the K− in the
same manner. The effect is larger at the smaller energy. For
the higher energy, the multiplicity of the K− is described very
reasonable. The multiplicities of π−,K+,K0

s , and 
 + �0 are
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FIG. 8. Comparison of calculated and measured multiplicities in
Au(1.23 AGeV)Au (0–40%) [19,42] and Ar(1.76 AGeV)KCl (min.
bias) [18]. The strangeness suppression is γs = 0.3.

described well where measured. The visible overestimation for
the φ meson yields will be further discussed below when the
spectra are considered.

One observes, that the K− are strongly produced via φ
decays; the calculated φ/K− ratio is in the order of 80%
(cf. Table I). It is important to keep in mind that the fraction
of K− stemming from φ decays is given as K−

(from φ)/K
− =

φ/K− · Bφ→K−K+ with Bφ→K−K+ giving the branching ratio
for the decay of the φ meson into two charged kaons, which
is taken as 0.42 in this model. Thus even with φ/K− ∼ 0.85,
only approximately 1/3 of the final K− stem from φ decays.

The φ mesons are only produced via Hagedorn resonance
decays into a φ meson and a hadron/Hagedorn state, while

TABLE I. Values for the ratio φ/K−.

Au(1.23 AGeV)Au Ar(1.76 AGeV)KCl

HADES 0.52 ± 0.16 0.37 ± 0.13
Hagedorn 0.85 ± 0.11 0.77 ± 0.06
GiBUU 0.13 ± 0.04 0.11 ± 0.01
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FIG. 9. Comparison of calculated and measured multiplicities in
Au(1.23 AGeV)Au (0–40%) [19,42] and Ar(1.76 AGeV)KCl (min.
bias) [18]. GiBUU is used in its defaults; microcanonical prescription.

approximately 33% of all produced φ is reabsorbed again.
Here 60% of all interactions (production and reabsorption) are
governed by B = 1 Hagedorn states. All states with higher
baryon number contribute, while B = 7 is only weaker by
20% than B = 2 (reabsorption factor is constant for all B).
Comparing these numbers to Fig. 7, one finds a nontrivial
dependency of φ production on the baryon number of the
Hagedorn states.

B. Traditional transport (GiBUU)

To digest the effects of the Hagedorn states, the same
calculations have been performed using the default interaction
scenario implemented in GiBUU. Here, no modifications for
better descriptions of experimental date have been adopted.
The equation of state etc. is kept as its default. As mentioned
above, GiBUU was earlier used to study strangeness produc-
tion in more detail, see especially Ref. [29].

The comparison of the resulting multiplicities to experimen-
tal ones is shown in Fig. 9. The agreement between calculations
and experiment is as good as within the Hagedorn approach.
One significant difference is observable: In the default GiBUU
approach, the φ/K− ratio is much smaller (∼0.1) than in
the Hagedorn approach (∼0.8), see Table I. In addition, the
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FIG. 10. Transverse mass spectra at midrapidity for
Au(1.23 AGeV)Au (0–40%). Symbols show experimental data
[19,42] (solid: midrap, open: next-to-midrap). The dotted curve
shows the K− spectrum without φ decays. Normalization of
theoretical curves arbitrary.

K− multiplicities in the Hagedorn and in the GiBUU default
approach are more or less identical, but only the origin of these
mesons is different. Thus, within the hadronic treatment of
GiBUU, the K− are not mainly generated via φ decays.

In this pure hadronic treatment, approximately 60% of all
produced φ mesons will be reabsorbed, mainly due to Nφ →
Nππ processes. For this process, the parametrizations by
Golubeva et al. [41] are used in GiBUU, see, e.g., Refs. [25,26].
At low energies, this cross section becomes larger than the
(constant) cross section used in the Hagedorn picture. The
main production mechanisms for φ production are the channels
πρ → φ (35%) and Nπ → Nφ (20%).

C. Slopes

In addition to the multiplicities, also the spectra of the
particles are examined. In the experiment, the data were divided
into different rapidity bins, for which then the transverse
mass spectra were fitted with some exponential slope.2 In a
second step, the resulting temperatures as function of rapidity y
where fitted assuming a pure thermal source with a distribution
Teff/ cosh y, yielding one final number. For the calculations, ef-
ficiency or acceptance considerations play no role and one can
directly look at the energy spectra dN/pEdE ∼ e−E/Teff (as
long as one has not to expect any asymmetry of transversal and
longitudinal direction). Unfortunately, low numerical statistic
do not allow for reasonable fit values for the theoretical curves.
The calculated spectra follow extremely well exponential
slopes of a thermal source, except for the pions. Here some
excess for low energies is given, which may be due to the
contributions of pions stemming from hadronic decays and
additional flow effects.

Thus, instead of comparing some fit values, a comparison of
calculated spectra with experimental data is shown in Fig. 10.

2Actually, the fitting may be more involved. For details see
Refs. [18,19,42].
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FIG. 11. Same as Fig. 10, but with GiBUU in its defaults. (φ decay
contribution to the K− spectrum not visible.)

The normalization of the theoretical curves is chosen such that
the overall multiplicities agree with the experimental ones.
The calculated and the experimental spectra for the K+ agree
prominently well. The comparison for the K− (and even more
for the φ mesons) is complicated by the statistical fluctuations,
both of experimental data and calculated results.

The resulting spectra from the GiBUU default scenario, cf.
Fig. 11, show up to be different: the slope parameter of the
K+ is larger (∼20 MeV), while the slope of the K− is smaller
(∼40 MeV). As explained above, spectra looking quite similar
can lead to fitted slope parameters differingy by tens of MeV.

IV. CONCLUSION

In the present paper, a consistent way of including heavy
resonances via Hagedorn resonances into the hadronic trans-
port model GiBUU is presented and used for a full dynamical
microscopical calculations of heavy ion collisions. Hagedorn
states implement multibaryonic (and highly unstable) states as
“energy reservoirs”. The resonances are constructed according
a “microcanonical” bootstrap with explicit conservation of
baryon number, strangeness, and isospin. One single param-
eter, the radius of one such Hagedorn state, governs the full
prescription. It is chosen such that the mass degeneration
spectra exhibit an exponential slope with a slope parameter
TH � 165 MeV. In addition, this parameter also fixes the pro-
duction cross section of Hagedorn states in 2 → 1 processes
and, via detailed balance, also the decay width for the decays
1 → 2. These processes replace the conventional hadronic
interactions and thus present a new unorthodox picture for
production and absorption of hadrons.

To compare this scenario to experimental multiplicities of
charged particles in nucleon-nucleon collisions, a strangeness
suppression factor γs has to be induced. Here a good overall
agreement can be achieved.

This transport model is applied to A + A collisions in
the region of

√
sNN � 2.5 GeV as measured by the HADES

collaboration. The resulting multiplicities of pions and strange
hadrons are in good agreement. Special consideration has to
be done for the φ meson. Here the yields comes out too large.

Nevertheless, one observes that the production of K− mesons
is mainly governed by the decay of the φ meson, which can
be quantified by a φ/K− � 0.8 ratio. This is higher than the
experimental observed value.

The slopes of the mT spectra are nicely reproduced for
K+,K−, and φ mesons. The contribution of φ decays to the
K− spectra is important.

To test theses findings, also calculations with the default
hadronic treatment of the GiBUU transport code are per-
formed. The resulting multiplicities are nearly identical to
those within the Hagedorn treatment. Again, the φ meson plays
a special role. In the traditional hadronic picture, the yield of φ
meson is clearly underestimated. Nevertheless, since the K−
yields are the same, one clearly observes, that in this picture,
the production mechanism of the K− meson is different. The
experimental φ/K− is underestimated.

Also the slopes of the K+ and the K− are not so well
reproduced. While the K+ come out steeper than in the
Hagedorn picture, the K− slope parameter is larger.

It would thus be instructive to study in a next step the
thermodynamical evolution of the collision system in both
prescriptions and check the degree of thermalization reached.
Temperature profiles in space and time could be easily ex-
tracted by reporting the actual values of the energy momentum
tensor. This is left for future studies.

It has to be checked, whether a larger radius of the Hagedorn
state, yielding a lower Hagedorn temperature TH , would also
yield lower slope parameters of the spectra in these A + A
collisions. This could be connected then with the averaged
number of pions in N + N annihilations at rest, which comes
a little bit too low in the present prescription at the moment. All
these studies will be necessary for tests of the applicability of
the Hagedorn picture to systems with vanishing baryochemical
potential as, e.g., the matter produced in ultrarelativistic heavy
ion collisions.

A statistical bootstrap model, embedded into a (hadronic)
transport model is thus a valuable tool to study not only very
energetic, ultrarelativistic heavy ion collisions, but also the
behavior in such collisions at low energies. By providing a total
different production mechanism for strange particles it supple-
ments thus a usual treatment and thus provides new insights
into the properties of the produced matter in these collisions.

An extension of the given picture would allow in the field of
ultrarelativistic heavy ion collisions for the study of production
of heavier quark states as, e.g., charm or also the production
of light nuclei like deuterons, tritons and so on. Furthermore,
with a bootstrap picture of color neutral heavy states from the
partonic side, a real microscopic picture of the phase transition
of a partonic system to a pure hadronic system via Hagedorn
resonances could be developed.
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